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BTD-PINN: Boundary-to-Domain Adaptive Point Propagation

in Physics-Informed Neural Networks

Dean Polimac

Abstract

Physics-Informed Neural Networks (PINNs) [1] have emerged as a promising mesh-free
approach for approximating solutions of partial differential equations (PDEs). While their
flexibility enables applications across diverse scientific domains, their performance is highly
sensitive to the sampling of collocation points. Existing adaptive strategies, such as PACMANN
[2], propagate points based on residual gradients but rely on uniform initialization within the
domain, which may underutilize the critical role of boundary and initial conditions.

This paper introduces a boundary-to-domain (BTD) propagation strategy, where collocation
points are initialized exclusively on the boundaries and subsequently propagated inward. By
firstly focusing training on the boundary and initial conditions, the method aims to provide a
more intuitive sampling progression that reflects the fundamental nature of PDEs. We combine
this propagation scheme with optimizer alternation between Adam and L-BFGS for stable and
efficient training.

Experimental evaluation on benchmark PDEs demonstrates that BTD propagation achieves
competitive performance compared to classical PINNs and PACMANN [2] strategies, particularly
on high-dimensional problems such as the 5D Poisson equation. While results on simpler PDEs,
such as the 1D Burgers’ and nonlinear Schrödinger equations, reveal limitations and sensitivity to
hyperparameters, the approach highlights both the potential and challenges of boundary-focused
sampling. Overall, this work provides new insights into the role of collocation point placement
in PINNs and opens up directions for reducing variance, automating hyperparameter schedules,
and further leveraging boundary information in adaptive sampling.

1 Introduction

Physics-Informed Neural Networks (PINNs) were first introduced by Raissi et al. [1] as a class of
neural networks designed to approximate solutions of partial differential equations (PDEs). Partial
differential equations are defined over a single or multiple spatial dimensions and often times a
temporal one, which form the PDEs domain.

Prior to PINNs, PDEs were solved using numerical techniques such as finite-difference, finite-
element, and spectral methods [3]. To this day, these methods are still commonly used, as they are
supported by decades of research and are known to perform well. Despite this, there are several
advantages that make PINNs more appealing. Firstly, all numerical techniques require a discrete
mesh of points for which they can approximate the solution. This approach lacks versatility, as then
the solution approximation is only available for the points which are on the mesh. Additionally, the
number of points required to achieve a decent approximation is often times large and incurs high
computational costs, and thus does not scale well for high-dimensional PDEs [1].

On the other hand, if one were to consider a standard data-driven neural network, instead of
a PINN, they would notice more stable training and smoother convergence. Despite this, purely
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data-driven neural networks struggle to find the true solution of PDE, that is, they lack the ability
to extrapolate [1]. This is most often an issue for time-dependent PDEs where the network is trained
on a short time interval, but is required to make approximations beyond the temporal horizon it was
trained on.

PINNs provide an alternative by learning a continuous approximation of the PDE solution, whilst
being able to extrapolate well enough beyond the training domain. A PINN takes as input the
coordinates of a point within the domain and is trained to approximate the solution at that point
for the given PDE. Unlike standard neural networks, which rely on supervised training, PINNs can
be trained without any labeled data, due to the formulation of the loss function which they are
trained to minimize. This is achieved by embedding the PDE, together with its initial and boundary
conditions, in the loss function of the neural network. Since the PDE is formulated in such a way
that it should always sum up to zero, the network adjusts its weight parameters so that the loss is
minimized for any given point. It is important to note that, if available, empirical data can also be
included in the loss function; however, in this work we do not focus on this data-driven approach,
but instead center our attention on the previously described physics-driven approach.

Given their versatility and mesh-free formulation, PINNs have been applied in a wide range
of scientific and engineering domains, including fluid dynamics [4, 5], heat transfer [6, 7], weather
prediction [8], geoscience [9, 10], and molecular dynamics [11, 12, 13, 14]. These applications
demonstrate the versatility of the method in modeling complex dynamical systems governed by
PDEs.

Although the aforementioned aspects present advantages over numerical solvers and pure data-
driven neural networks, they come at a cost. Training PINNs is computationally demanding, often
requiring many epochs for convergence. Moreover, their performance is highly sensitive to the choice
and distribution of collocation points, which must be carefully selected to ensure stable and accurate
learning [15, 16, 17, 18]. Collocation points refer to the set of domain-specific coordinates at which
the PDE residual is evaluated, and thus they determine how well the network learns to satisfy the
physical laws across the domain. This raises an important question: How should these points be
sampled to ensure that the network effectively learns the underlying solution of the PDE?

Currently, there exist two broad strategies for selecting collocation points, namely non-adaptive
and adaptive sampling. In non-adaptive sampling, collocation points are chosen once at the start
of training and remain fixed throughout the process. In contrast, adaptive sampling periodically
re-samples or adjusts the collocation points as training progresses. Within the adaptive category,
common approaches include random resampling and Latin hypercube resampling [15]. Despite their
widespread use, these methods are relatively simple, and until recently little emphasis had been
placed on developing more sophisticated sampling strategies. However, a growing body of work has
shown that the way collocation points are selected can have a significant impact on the performance
and stability of PINNs [2, 16, 19, 20].

Several adaptive sampling strategies have been proposed to improve PINN training, among them,
the PACMANN method [2] is particularly notable. PACMANN propagates collocation points using
different gradient ascent approaches to move the collocation points to regions where the PDE residual
is high. This allows the points in the domain to shift toward regions where the approximation is
poorest, while the boundary points remain fixed. Although effective, PACMANN begins by sampling
points uniformly throughout the domain, which may under-utilize the critical role of boundary
and initial conditions in shaping the solution. Since PDEs are fundamentally determined by these
conditions, uniform initialization risks placing many collocation points in regions that provide little
guidance during early training [19].

To address this limitation, we propose a new boundary-to-domain (BTD) propagation strategy.
Our approach initializes collocation points exclusively on the boundaries and propagates them inward,
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encouraging the network to learn the PDE solution in a manner consistent with its boundary and
initial constraints. In practice, during training, we alternate between the Adam optimizer [21], and
the L-BFGS optimizer [22] which is used for efficient convergence. The point propagation only
takes place during the Adam phase, since L-BFGS relies on a fixed loss landscape to approximate
second-order information reliably. This boundary-to-domain propagation approach is a more intuitive
sampling strategy, since PDE solutions are fundamentally determined by their boundary and initial
conditions. The motivation for adopting this perspective is supported by recent work that emphasizes
the importance of temporal and spatial sampling when training PINNs [16, 20].

The structure of this article is as follows. In Section 2 we discuss previous and relevant work in
the field of PINNs. Section 3 gives a brief overview of PINNs and introduces our proposed sampling
method. The results are presented in Section 4, while they are analyzed in Section 5. Lastly, in
Section 6 we summarize our findings and propose ideas for future work.

2 Related Work

In this Section we present the most common and relevant sampling approaches currently used. This
is in no way an exhaustive list, and our main focus is to cover approaches tangential to ours.

To our knowledge, the first work proposing an adaptive sampling approach is by Lu et al. [23]
that introduced residual-based adaptive refinement (RAR), where points are resampled according to
the distribution of PDE residuals. This approach successfully identifies regions of poor approximation
but requires evaluating residuals at a large number of candidate points, which can be computationally
costly. Later extensions such as RAR-D and RAD [15] introduced nonlinear residual-based probability
distributions or hybrid strategies, but these often lead to a continuously growing training set, which
increases memory and training overhead.

Other methods build on this residual-based principle, such as DAS-PINNs by Tang et al. [24],
where a generative model (KRNet [25]) is trained to approximate the residual distribution. While
this avoids explicit uniform resampling, it requires training an additional neural network, adding
computational overhead. Similarly, Mao and Meng [26] suggested splitting the sampling space into
subdomains, and Zhou et al. [27] proposed weighted resampling based on sensor placement. These
approaches can improve convergence but often require additional heuristics or domain knowledge to
balance the sampling distribution.

A different perspective was introduced by Celaya et al. [28], who framed collocation selection
as a fixed-budget optimization problem. By computing residuals at random points and applying
spectral decomposition (SVD + QR-DEIM), they identify the most informative points. While this
approach improves the efficiency of point selection compared to purely random sampling, it comes
with several limitations. Reliance on SVD and QR decompositions adds significant computational
overhead, which can become costly for large-scale or high-dimensional PDEs. Moreover, performance
on higher-dimensional PDEs is not explored in the work, as it is only evaluated on benchmark 1D
problems, namely the Burgers’ and Allen-Cahn equations. This suggests that the limitations and
practicality of this approach are not yet thoroughly investigated.

Another compelling method is presented in [20], where the authors propose a causality-aware loss
for time-dependent PDEs, ensuring that earlier states are learned before later ones. In essence, this
causality-aware approach exploits the fact that most PDEs contain a time component that is used to
sample the collocation points, thus preserving the physical causality inherent in dynamical systems.
However, one drawback of this method is the additional complexity in the loss design, which may
require careful tuning of weighting or scheduling strategies. Additionally, it is not clear how this
approach could be used to approximate solutions of time-independent PDEs, since causality cannot
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be exploited in those settings.
Building on this idea, Daw et al. [16] introduced the Retain–Resample–Release (R3) framework,

where collocation points with high residuals are retained while low-residual ones are resampled,
preventing PINNs from converging to trivial solutions. A causal extension further ensures that
learning progresses is temporally consistent. While effective in mitigating propagation failures, R3
comes with its own limitations, mainly the frameworks dependence on several hyperparameters (e.g.,
thresholds and update intervals) whose optimal settings may vary depending on the problem. When
it comes to the causal extension, it shares the same drawback as work done by [20], where it is not
clear how this approach can be used on time-independent PDEs.

Lastly, the work by Visser et al. [2] tackles the sampling problem by performing gradient ascent
to propagate the collocation points. The idea is to move the initially sampled points to regions with
higher residuals instead of resampling them. Points that are sampled at the domain boundaries
remain fixed throughout training, while points sampled within the domain are propagated. Authors
explore the impact of different propagation algorithms on the performance of the network. Some of
the propagation strategies include algorithms used by well-known optimizers such as RMSprop [29],
Momentum [30], and Adam [21].

In summary, existing methods either rely on repeated residual evaluations, grow the training set
indefinitely, or require uniform sampling over the entire domain. Our approach seeks to address these
limitations by initially sampling points at the domain boundaries and propagating them inward. This
boundary-to-domain strategy introduces a progression of collocation points, focusing the training
effort on the regions most relevant to learning the PDE solution.

3 Methodology

First, this section will provide a brief contrast between numerical solvers and PINNs. Furthermore,
we provide a more formal overview of Physics-Informed Neural Networks as defined by Raissi et al.
[1]. We proceed by presenting our method for sampling and propagating collocation points during
the training phase of a PINN. Lastly, we demonstrate the different network training approaches and
their hyperparameter settings.

3.1 Physics-Informed Neural Networks

Classical approaches to solving partial differential equations (PDEs) rely on numerical solvers such as
finite-difference, finite-element, finite-volue, and spectral methods [3]. These techniques approximate
the solution on a discrete grid, which has two main drawbacks: (i) they provide solutions only at
the predefined grid points, and (ii) the number of grid points grows rapidly with dimension, making
high-dimensional PDEs computationally expensive.

Physics-Informed Neural Networks (PINNs) provide an alternative by learning a continuous
approximation of the PDE solution. A PINN is a neural network that takes spatial and temporal
coordinates (x, t) as input and outputs an estimate û(x, t) of the true solution u(x, t). This inherently
solves the issue that classical approaches have, where the solution can only be approximated at
the predefined grid points. On the other hand, unlike standard supervised learning, which requires
labeled data, PINNs can be trained without explicit solution data by enforcing the PDE itself as a
learning constraint. This approach is referred to as the physics-driven approach – contrary to the
data-driven approach which requires labeled data – and is the one we are taking in this research. This
is because our focus lies in the propagation of collocation points, thus we cannot rely on preexisting
fixed data.
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We consider a time-dependent partial differential equation of the general form

∂u

∂t
+N [u] = 0, x ∈ Ω, t ∈ [0, T ] (1)

where u(x, t) is the true solution of the PDE, Ω ⊂ RD is the spatial domain, and T is the temporal
horizon. We use N [·] to denote the differential operator that is specific to the PDE, which when
applied to u produces its spatial derivatives. Lastly, we use x to denote spatial coordinates and t for
temporal coordinates.

To make the problem well-posed, we must also specify initial conditions (IC) describing the PDE’s
state at time t = 0, and boundary conditions (BC) describing its behavior on the spatial boundary
∂Ω. Without these, the PDE would, in general, not have a unique solution. We define the initial and
boundary conditions as follows:

u(x, 0) = h(x)

B[u](xbc, t) = g(x, t), xbc ∈ ∂Ω, t ∈ [0, T ]
(2)

Here, h(x) defines the initial condition for a given spatial coordinate x, and B[·] is the boundary
operator describing the type of boundary condition imposed. For instance, in the heat equation we
could impose a Dirichlet condition that fixes the temperature on the boundary (e.g., u(xbc, t) = 0), or
a Neumann condition that fixes its heat flux on the spatial boundary (e.g., ∂u

∂x = 0 on ∂Ω). Together
with the initial condition u(x, 0) = h(x), which specifies the starting temperature distribution inside
the domain, these constraints ensure that the PDE problem is well-posed. Figure 1a depicts the
initial setting of collocation points in a 2D domain, with the initial condition h(x), and boundary
condition g(x, t), as well the propagation of points towards regions of higher residuals at a later
epoch E.

(a) Epoch 0: Boundary initialization. (b) Epoch E: Adaptive propagation.

Figure 1: Illustration of boundary-to-domain propagation. Collocation points are initialized along
the boundaries of the domain (a), and later propagated into the domain towards high-residual regions
(b).

During training, the PINN learns parameters θ such that û(x, t) satisfies the PDE, the initial
condition, and the boundary conditions. This is achieved by minimizing the physics-informed loss
function shown in Equation 3. The loss function consists of three terms, namely, the loss at the
initial condition, the loss on the spatial boundaries, and the residual loss that enforces the PDE
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dynamics inside the domain. The loss function can be rewritten into Equation 4, where Lic is the
initial condition term, Lbc is the boundary condition term, and Lres represents the residual loss.

L(θ) = λic

Nic

Nic∑
i=1

(û(xic
i )− h(xic

i ))
2+

λbc

Nbc

Nbc∑
i=1

(B[û](xbc
i , ti))

2+

λres

Nres

Nres∑
i=1

(
∂û

∂t
+N [û](xi, ti))

2

(3)

For each of the loss terms, we use a regularization term λ
N to average the loss over the number

of collocation points N , which basically gives us a combined MSE loss for each of the terms. The
explicit form of the physics-informed loss can be seen in Equation 3.

L(θ) = λic

Nic
Lic +

λbc

Nbc
Lbc +

λres

Nres
Lres (4)

Here, Nic, Nbc, Nres denote the number of points used for the initial condition, boundary condition,
and residual terms, respectively, while the weights λic, λbc, λres balance out their contributions. The
λ parameters are often predefined hyperparameters, but they can also be optimized as has been done
in [31]. In our experiments, unless stated otherwise, all the weight terms λ are set to 1, while the
number of points is varied depending on the PDE.

Based on this formulation, we can see that the placement of collocation points strongly influences
how well the network learns the solution, motivating the adaptive strategy explored in this paper.

3.2 Collocation Point Propagation

The main contribution of this work is a new adaptive strategy for propagating collocation points. The
key idea is to start with points sampled on the spatial boundaries ∂Ω and the temporal boundary at
t = 0, and iteratively propagate them towards the interior of the domain. In contrast, the PACMANN
method [2] begins with points sampled uniformly throughout the domain and then propagates them.
Our approach therefore differs by introducing a boundary-to-domain progression, which can be
viewed as a more natural sampling strategy: information from the initial and boundary conditions is
gradually extended into the domain.

The intuition behind this design is that boundary and initial conditions play a crucial role in
determining the solution of a PDE, therefore, we focus on learning the PDEs behavior on the
boundaries first. This stands in contrast to uniform initialization, where points in the interior may
not yet carry meaningful residual information if the boundary behavior has not been sufficiently
learned.

To ensure consistently low loss on the initial and boundary conditions, we maintain a fixed set
of points along the boundaries. Without such anchors, collocation points would eventually need to
be propagated back toward the boundaries, since the network may drift away from satisfying these
conditions as it focuses disproportionately on minimizing the residual loss in the domain. Whether
keeping a fixed set of boundary points is strictly necessary remains an open question.

Formally, let zi = (xi, ti) denote the spatial–temporal coordinate of the i-th collocation point.
The propagation is performed using a gradient ascent update rule that moves points in the direction
of increasing PDE residuals. Specifically, each point is updated according to the derivative of the
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squared residual with respect to its coordinates as seen in Equation 5, where the PDE residual r(zi)
is defined in Equation 6.

zt+1
i = zti + γ · ∂

∂zi

(
r(zi)

2
)

(5)

r(zi) =
∂û(zi)

∂t
+N [û](zi) (6)

Thus, the update of each point is given by the derivative of its squared residual contribution. In
Equation 5, t denotes the training epoch and γ > 0 is the step-size parameter. Intuitively, this update
shifts collocation points towards regions where the PDE residual is large, thereby focusing training on
areas where the network’s approximation is poorest, as displayed in Figure 1b. To preserve stability,
the fixed boundary and initial points are never propagated, ensuring that the PDE constraints remain
enforced at all times. In addition, if any propagated point leaves the domain Ω× [0, T ], it is uniformly
resampled at random inside the domain. This prevents the effective number of collocation points
from shrinking and maintains coverage of the solution space throughout training.

3.3 Network Training

The training framework for our method combines collocation point propagation with optimizer
alternation. To ensure clarity, we first explain the main components before presenting the algorithms.

Collocation point schedule.

Collocation points are propagated every I epochs, after an initial warm-up period of W epochs. The
warm-up period allows the network to first fit the initial and boundary conditions before points
start moving into the domain. At each propagation event, every collocation point is updated for S
successive steps, using Equation 5 with step-size γ. This multi-step propagation allows points to
move further into regions of high residual, rather than being limited to a single incremental update.
The same multi-step propagation approach is taken in [2]. After each propagation event, points
that leave the domain Ω× [0, T ] are uniformly resampled inside the domain to maintain coverage.
This approach is summarized in Algorithm 1, and is applied only during training with the Adam
optimizer.

Propagation is not performed during the L-BFGS phase, since L-BFGS assumes a fixed loss
landscape to reliably approximate second-order information. Allowing the collocation points to move
during this stage would change the training set dynamically, undermining its stability and convergence.
Instead, L-BFGS is used once Adam has already adapted the collocation points, providing efficient
convergence on the resulting fixed configuration.

Optimizer alternation.

Training PINNs is notoriously challenging due to their non-convex loss landscape. Following the
approach taken in [2], we alternate between two optimizers: Adam and L-BFGS. During training, P
alternations take place, each time the network is trained using the Adam optimizer for EA epochs,
followed by EL epochs using the L-BFGS optimizer. This training approach is summarized in
Algorithm 2.

Other works, such as [32, 33], show that this alternating approach is beneficial to PINNs as
the parameter space is often quite rigid. It allows us to exploit Adam’s ability to avoid getting
stuck at poorly selected saddle points, while using a second-order optimizer such as L-BFGS to
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efficiently converge to a minimum once Adam finds a promising region. Alternating between these
two optimizers multiple times gives Adam more leeway to escape possible poorly selected regions, as
is also suggested in [34].

Algorithm 1 Collocation Point Propagation (given I, W , γ, S)

1: Initialize: sample collocation sets:
{zi}Nres

i=1 (collocation points);

{zicj }
Nic
j=1 (initial condition points);

{zbck }Nbc

k=1 (boundary condition points);
2: for epoch = 1 to max epochs do
3: Compute total loss L(θ) and residual squared loss r(zi)

2;
4: Update network parameters θ with the current optimizer;
5: if epoch ≥ W and rem(epoch, I) = 0 then ▷ rem(a, b) = remainder when dividing a by b
6: for s = 1 to S do ▷ multi-step propagation
7: for each residual point zi do
8: z,ti + γ · ∂

∂zi

(
r(zi)

2
)

9: end for
10: Resample out-of-domain points uniformly inside Ω× [0, T ];
11: end for
12: end if
13: end for

Algorithm 2 Network Training with Optimizer Alternation (given P , EA, EL)

1: for p = 1 to P do ▷ P alternation cycles
2: for epoch = 1 to EA do
3: Train network parameters θ using Adam;
4: Apply Algorithm 1 (collocation point propagation).
5: end for
6: for epoch = 1 to EL do
7: Train network parameters θ using L-BFGS;
8: Note: no propagation is performed during L-BFGS optimization.
9: end for

10: end for
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4 Results

We begin this section by introducing the experimental setup used to evaluate the performance on
different PDEs. Firstly, the metric used to measure the performance of said methods on different
PDEs is defined. Furthermore, the general hyperparameter settings used across all PDEs are outlined.
Lastly, the definitions and results obtained for each of the PDEs are presented, including their
respective hyperparameter values.

4.1 Experimental Set-up

All experiments were carried out on the Delft AI Cluster [35], each run was repeated ten times to
ensure statistical reliability. The implementation is based on the DeepXDE library [23] with PyTorch
[36] as the back-end. The metric used to evaluate performance is the relative L2 norm, defined as

Relative L2 =
∥u− û∥2
∥u∥2

, (7)

where u denotes the exact solution and û the PINN approximation.
Unless otherwise stated, the Adam optimizer is used with a learning rate of 10−3. The propagation

step size γ and the number of propagation steps S are determined via hyperparameter tuning specific
to the studied PDE. In the first stage of experiments, these settings are kept fixed while the warm-up
period W and propagation interval I are optimized. Initially the γ and S hyperparameters are set
to the ones used for the gradient ascent approach in [2]. Once suitable values for W and I are
determined, γ and S are subsequently varied for each PDE to identify their optimal configuration.
Training alternates between Adam and L-BFGS as described in Section 3.3, with specific schedules
detailed in each experiment.

We evaluate the impact of varying four hyperparameters of our method: the warm-up period
W , the propagation interval I, the propagation step size γ, and the number of propagation steps S.
For demonstration purposes, this evaluation is conducted on three representative PDEs commonly
used in the PINN literature and in particular by the PACMANN baseline [2], ensuring consistency
in comparison. The 1D Burgers’ equation, a nonlinear time-dependent PDE, is included as it is a
standard test case in PINN studies. The 1D Allen–Cahn equation is considered as a complementary
nonlinear PDE with different dynamics, allowing us to assess robustness across different PDE types.
Finally, we extend the evaluation to more complex PDEs, including the 5D Poisson equation and the
nonlinear Schrödinger equation, to investigate how the method performs in higher-dimensional and
more challenging scenarios.

To contextualize the results, we compare our propagation strategy against three baselines: the
classical PINN approach without propagation or resampling, the PACMANN method that propagates
points using gradient ascent, and the best performing PACMANN method where collocation points
are propagated according to updates from the Adam optimizer [2].

4.2 1D Burgers’ Equation

This section presents results obtained on the time-dependent 1D Burgers’ equation on the domain
x ∈ [−1, 1], t ∈ [0, 1]:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0, v = 0.01, (8)
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with boundary conditions

u(−1, t) = u(1, t) = 0,

and initial condition

u(x, 0) = −sin(πx).

For training, the number of static boundary points is set to Nbc = 40 per boundary, and the number
of points on the initial boundary is set to Nic = 160.

Table 1: Hyperparameter ranges explored in the experiments.

Hyperparameters Values
Warm-up period W {0, 25, 50, 100, 200, 500}
Propagation interval I {1, 10, 25, 50, 100, 200, 500}
Step size γ {10−4, 10−5, 10−6, 10−7, 10−8}
Propagation steps S {1, 5, 10, 15}

We evaluate the effect of hyperparameter selection on Burgers’ equation by varying the warm-up
period W , propagation interval T , propagation step-size γ, and the number of propagation steps S.
The values used for the four hyperparameters can be seen in Table 1.

Initially, γ = 10−6 and S = 1 are set to the default values used for the gradient ascent approach
in [2], after which these parameters are varied to determine their optimal settings for this PDE.
We further vary the number of optimizer alternations P ∈ {1, 2, 3, 4, 5}. For all values of P , the
total number of epochs trained with Adam and L-BFGS is fixed to 35,000 and 15,000, respectively.
Consequently, the per-cycle epochs are set as

EA =
35,000

P
,EL =

15,000

P
.

This allows us to analyze the effect of optimizer alternation frequency while keeping the overall
training budget constant.

Figure 2 presents the heatmap of the relative L2 norm across different combinations of W and I.
The Burgers’ equation exhibits a less smooth error landscape, and the solution accuracy is highly
sensitive to the choice of hyperparameters. In particular, frequent propagations with small values of
I result in the best performance, while the warm-up period W generally has little influence.

Figure 3 illustrates how P influences performance given I = 1 when the total training budget is
fixed at 35,000 Adam epochs and 15,000 L-BFGS epochs. The setting P = 2, W = 50, proves to
perform poorly compared to other settings, and it is unclear why this is the case. The standard
deviation for this setting is σ2 = 0.11 which suggests consistent poor performance given these
parameters across the ten independent runs. We can see that if W = 0 is selected, the number of
alterations P does not significantly impact the performance. However, it is important to note that
the selection of these two parameters can have a significant impact on the performance, making it as
much as six times better or worse.

Table 2 reports the relative L2 norm for the Burgers’ equation over ten runs. The best metrics
are highlighted in bold. While our approach achieves a very low best-case error, it also exhibits high
variance across runs. By contrast, the Adam-based propagation variant achieves both strong mean
performance and stability.

Figure 4 shows the relative L2 error obtained across different combinations of hyperparameters
γ and S. The results indicate that performance is sensitive to the choice of γ: larger step sizes
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Figure 2: Relative L2 norm for the 1D Burgers’ equation across different warm-up periods W and
propagation intervals I. Results were obtained using a step size of γ = 10−6, S = 1 propagation
steps, and Nres = 2,500 collocation points.

Figure 3: Relative L2 norm for the 1D Burgers’ equation across different warm-up periods W and
the number of optimizer alterations P . Results were obtained using a step size of γ = 10−6, S = 1
propagation steps, and Nres = 2,500 collocation points.
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Table 2: Relative L2 error on the 1D Burgers’ equation for different sampling strategies (10 runs).

Method Mean Rel. L2 Best Rel. L2 Std. Dev.
Boundary-to-Domain (Gradient Ascent) 0.73% 0.07% 0.56%
Classical PINN 0.31% 0.06% 0.18%
PACMANN (Gradient Ascent) 0.32% 0.05% 0.19%
PACMANN (Adam) 0.11% 0.04% 0.05%

(γ = 10−4) tend to destabilize training, while excessively small ones (γ = 10−7 or below) lead to
insufficient propagation and degraded accuracy. A moderate step size (γ = 10−6) provides the best
trade-off between stability and efficiency. Regarding the number of propagation steps, increasing S
diminishes the networks performance in this setting. This suggests that a small number of propagation
steps per event is sufficient to guide the collocation points towards informative regions of the domain,
while further increasing S has a detrimental effect on the network’s performance in this setting.

Figure 4: Relative L2 norm for the 1D Burgers’ equation across different step-sizes γ and different
numbers of propagation steps S. Results were obtained using warm-up W = 0, propagation interval
I = 1, P = 5, and Nres = 2,500 collocation points.

12



4.3 1D Allen-Cahn Equation

This section presents results obtained on the 1D Allen–Cahn equation on the domain x ∈ [−1, 1],
t ∈ [0, 1]:

∂u

∂t
− ν

∂2u

∂x2
+ u3 − u = 0, ν = 10−4, (9)

with boundary conditions

u(−1, t) = u(1, t) = 0,

and initial condition

u(x, 0) = x2 cos(πx).

For training, we use Nbc = 40 static boundary points per boundary and Nic = 160 points on the
initial temporal boundary. The experiments are set up in the same way as for the Burgers’ equation:
we first vary the warm-up period W and the propagation interval I, as shown in Figure 5. In this
stage, the step size is fixed to γ = 10−8 and the number of propagation steps to S = 5.

To ensure consistency with the benchmarks, we fix the number of optimizer alternations to P = 5,
following [2], so that the results are directly comparable. Table 3 summarizes the performance
across different sampling strategies when using 2,500 collocation points. Interestingly, the classical
PINN achieves strong performance at very low cost, since it requires no propagation of points. More
generally, under this configuration, all methods perform competitively on the Allen–Cahn equation.

Figure 5 depicts the optimal setting of W and I for the Allen-Cahn equation, when setting
γ = 10−8 and S = 5, as done for the gradient ascent approach in [2]. We notice that for smaller values
of W and I the network seems to perform well on average, whilst there is a drop in performance as
both values of W and I tend to increase.

Figure 6 presents the relative L2 error for different combinations of hyperparameters γ and S. The
results show that the network is highly sensitive to γ: large values such as γ = 10−4 hinder training,
while very small values (γ ≤ 10−8) limit the propagation effect and lead to higher errors. The best
performance is achieved at a moderate step size of γ = 10−6, in line with the trends observed for the
Burgers’ equation.

With respect to the number of propagation steps S, the overall pattern indicates that a small
number of steps is sufficient. Increasing S beyond 5 does not improve performance and in some
cases even leads to deterioration, suggesting that additional propagation steps may move points
too aggressively, away from informative regions. This again highlights the importance of balancing
stability and adaptivity in the propagation process.

An important observation is that there seems to be a pattern where the network performs well
when the sizes of the parameters are inversely proportional. For large values of γ, lower values of S
result in significantly better performance. Conversely, for large values of S, the network prefers a
smaller step size γ. This is not completely in line with the findings made on the 1D Burgers’ equation,
where the network appeared to be much more sensitive to the step size γ, while the number of steps
S had little impact provided that γ was set appropriately.
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Table 3: Relative L2 error on the 1D Allen-Cahn equation for different sampling strategies (10 runs).

Method Mean Rel. L2 Best Rel. L2 Std. Dev.
Boundary-to-Domain (Gradient Ascent) 0.41% 0.13% 0.29%
Classical PINN 0.35% 0.08% 0.23%
PACMANN (Gradient Ascent) 0.50% 0.25% 0.14%
PACMANN (Adam) 0.29% 0.08% 0.15%

Figure 5: Relative L2 norm for the 1D Allen-Cahn equation across different warm-up periods W
and propagation intervals I. Results were obtained using a step size of γ = 10−8, S = 5 propagation
steps, and Nres = 2,500 collocation points.
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Figure 6: Relative L2 norm for the 1D Allen-Cahn equation across different step-sizes γ and different
numbers of propagation steps S. Results were obtained using warm-up W = 100, propagation interval
I = 25, P = 5, and Nres = 2,500 collocation points.

4.4 5D Poisson Equation

This section presents results obtained on the 5D Poisson equation on the domain x ∈ [−1, 1]5:

−∆v(x) = f(x), (10)

with Dirichlet boundary conditions

v(x) = 0, x ∈ ∂Ω,

where Ω = [−1, 1]5. The exact analytical solution is given by

v(x) =

5∏
i=1

sin(πxi).

The Poisson equation in higher dimensions is a widely used benchmark for evaluating PINN
methods, including [2], and is particularly well suited to test the scalability of sampling strategies.
Its high dimensionality makes it challenging for PINNs, since the curse of dimensionality significantly
increases the difficulty of covering the solution space with collocation points.

For this experiment, the step size is fixed at γ = 10−2 and the number of propagation steps at
S = 5. These values are based on the optimal parameters reported in [2], specifically for the case
where collocation points are propagated using the Adam algorithm. The warm-up period is set to
W = 100 and the propagation interval to I = 10, chosen as reasonable defaults. The motivation for
W = 100 is to allow the network sufficient time to learn the boundary behavior before propagation
begins. In addition, setting I = 10 encourages more frequent propagation in order to better explore
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the high-dimensional domain. A total of 750 collocation points and 750 fixed boundary points are
used, consistent with the setup in [2].

Table 4: Relative L2 error on the 5D Poisson equation for different sampling strategies (10 runs).

Method Mean Rel. L2 Best Rel. L2 Std. Dev.
Boundary-to-Domain (Gradient Ascent) 8.99% 7.00% 1.11%
Classical PINN 80.98% 67.93% 2.59%
PACMANN (Gradient Ascent) 15.09% 12.05% 1.93%
PACMANN (Adam) 9.02% 7.70% 0.96%

Table 4 summarizes the results across different sampling strategies. The classical PINN baseline
performs very poorly, with a mean relative L2 error of nearly 81%. PACMANN with gradient ascent
achieves significantly better performance at around 15%, but still lags behind the other methods.
Our approach and PACMANN with Adam-based propagation achieve the lowest relative L2 norms,
both around 9%, with our method producing the overall best result in terms of performance.

4.5 1D Non-Linear Schrödinger Equation

This section presents results obtained on the nonlinear Schrödinger equation as defined in [1] on the
domain x ∈ [−5, 5], t ∈ [0, π/2]:

i
∂h

∂t
+ 0.5

∂2h

∂x2
+ |h|2h = 0, (11)

with the initial condition

h(0, x) = 2 sech(x),

and periodic boundary conditions

h(t,−5) = h(t, 5),
∂h

∂x
(t,−5) =

∂h

∂x
(t, 5),

where h(t, x) is the complex-valued solution. Following [1], we define the nonlinear operator

f(t, x) := i
∂h

∂t
+ 0.5

∂2h

∂x2
+ |h|2h.

This equation is a standard benchmark for PINNs as it involves a complex-valued solution,
nonlinear interactions, and periodic boundary conditions. It allows us to test whether the proposed
propagation strategy can capture oscillatory and nonlinear behavior in time-dependent PDEs.

We use Nres = 7000 collocation points, Nbc = 800 fixed points on the spatial periodic boundaries,
and Nic = 160 points on the initial temporal boundary. For the PACMANN baselines we follow
the propagation settings with step size γ = 10−8 and number of propagation steps S = 5. For our
approach, we adopt a more balanced configuration, in line with the Allen-Cahn experiments, using
γ = 10−8 and S = 5. For fair comparison, we opt out of using a warm-up period, hence W = 0, and
our propagation interval I is set to I = 50, since both Adam, and gradient ascent in [2] use the said
interval.

Table 5 reports the relative L2 error over ten runs for the classical PINN and PACMANN with
gradient ascent (GA). The classical approach achieves the best performance across all three metrics
using 7800 points overall, while PACMANN Adam has comparable performance in terms of relative
L2 error, as highlighted.
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Table 5: Relative L2 error on the nonlinear Schrödinger equation (10 runs).

Method Mean Rel. L2 Best Rel. L2 Std. Dev.
Boundary-to-Domain (Gradient Ascent) 0.21% 0.19% 0.019%
Classical PINN 0.18% 0.16% 0.009%
PACMANN (Gradient Ascent) 0.19% 0.17% 0.014%
PACMANN (Adam) 0.18% 0.17% 0.006%

5 Discussion

The results presented in Section 4 highlight both the advantages and limitations of boundary-to-
domain collocation point propagation. By initially sampling points at the domain boundaries, the
method is designed to first learn the behavior on the domain boundaries, allowing information from
the initial and boundary conditions to flow naturally toward the interior solution. This stands in
contrast to uniform initialization, where collocation points placed in the interior may fall in regions
where the residual signal is not yet informative. Anchoring the training process at the boundaries
encourages the network to first learn parameters θ that faithfully capture the governing constraints
of the PDE, which in turn provides a stronger foundation for making meaningful predictions once
propagation into the domain begins.

Our approach struggles on the 1D Burgers’ equation compared to others. The performance on the
1D Burgers’ equation is also noticeably impacted by parameter P , where in Figure 3 we can see that
for P = 1, W = 200, our approach performs significantly better, and achieves somewhat comparable
results to other approaches. Additionally, due to limitations in time and computing power, we made
the strong assumption that W and I are independent of γ and S, thus they were optimized separately.
In order to remain consistent with the work done in [2], we selected an alteration period of P = 5,
despite showing that for our case P = 1 would have been more beneficial for this PDE.

On the other hand, our approach has proven to work well on the Allen–Cahn equation, where it
achieved performance comparable to the PACMANN approach, and in some cases obtained lower
best-case relative errors. In this setting, it is interesting to see that our method outperformed
the classical gradient ascent approach, despite using the same parameters. This suggests that
propagating points from boundaries towards the domain might be more beneficial in some settings,
as opposed to sampling them randomly from within the domain. It is also interesting that for the
boundary-to-domain approach, a larger step size γ = 10−6 is preferential, in contrast to γ = 10−8

which is reported to perform best for the gradient ascent approach in [2].
However, in general, these improvements came at the cost of much higher variance across runs,

which is seen on both Burgers’ and the Allen–Cahn equations. A likely explanation for this is that,
depending on the weight initialization, fewer or more points might move outside of the domain when
propagation starts. This would cause them to be uniformly resampled within the domain, leading to
an increase in variance.

Another conclusion which can be drawn, is the network’s high sensitivity to the propagation step
size γ, and a somewhat lower sensitivity towards the number propagation steps S. As suggested in
Figure 4, we can see that when selecting γ = 10−6, selecting a different value for S does not lead to
significant improvements or deterioration in performance.

On the other hand, for the 1D Allen–Cahn equation, setting both γ and S proved to be very
important, as suggested in Figure 6. Here, we see that there appears to be an inversely proportional
relationship between the two parameters, which yields the best performance. This also shows us that
when using boundary-to-domain propagation, the impact of hyperparameters plays an important
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role and is problem specific.
The advantage of the proposed approach comes to light on high-dimensional PDEs, as demon-

strated on the 5D Poisson equation. Here, classical PINNs performed poorly due to the curse of
dimensionality, while boundary-to-domain propagation and PACMANN-based strategies performed
much better. In this setting, our approach has a slight advantage over both the gradient ascent and
the Adam variation of PACMANN [2]. Given that all three adaptive approaches share the same
hyperparameter values, the most likely explanation for the difference in performance between the
PACMANN gradient ascent approach, and our boundary-to-domain approach, is that in this setting,
the distribution of points has a significant impact on the performance. Although the BTD approach
resamples points that are propagated outside of the domain boundaries, some points will still remain
near the boundaries, thus, the network will be given time to learn the parameters which allow it to
make sufficiently good predictions for that region, before propagating the points inward. On the
other hand, when using the PACMANN gradient ascent approach [2], one relies on the uniform
sampling to position points near the boundaries initially; otherwise, they need to be propagated
towards those regions. In case very few points are initially sampled in regions near boundaries, and
given that the residual inside the domain is high at the start of the network training, most points
will remain in the inner regions of the domain until the network adjusts its parameters. Since the
dimensionality is high, it will take longer for points to move towards the boundaries, and along the
way some point’s direction of propagation might change. Essentially, the results suggest that taking
a boundary-to-domain approach is more beneficial than taking a domain-to-boundary, raising an
important question of whether this is a general occurrence in higher-dimensional PDEs, and it opens
up avenues for further research.

Lastly, when considering the 1D non-linear Schrödinger equation, all approaches perform similarly
well as shown in Table 5. In this setting, a simpler approach such as non-adaptive uniform sampling
appears to be sufficient, and performing collocation point propagation does not yield any improvements
in performance. This might also suggest that in certain settings, a simpler approach is more beneficial,
as using adaptive sampling approaches might not lead to an improvement in performance, while still
incurring higher computational costs.

At the same time, several limitations of the boundary-to-domain method must be acknowledged.
First, the approach introduces a number of hyperparameters: warm-up period, propagation interval,
step size, number of alterations, and number of steps, all of which interact in nontrivial ways.
This increases the burden of hyperparameter tuning, which is already a major challenge in PINN
training [33]. Further findings presented in Appendix B show that the previously made assumption of
optimizing W and I first independently of γ and S does not always hold and portrays the sensitivity
of our BTD approach to hyperparameter settings. Second, while the method reduces the need for
repeated global resampling, it does not eliminate the overhead associated with updating collocation
points; particularly in higher dimensions, the cost of computing residual gradients can become
significant. An important observation is that the boundary-to-domain approach still depends on
uniformly resampling points that have been propagated outside the domain, indicating that boundary
propagation alone is insufficient. Indeed, propagating points exclusively from the boundaries performs
worse than uniform resampling, as demonstrated in Appendix A, where both methods were evaluated
on the 1D Burgers’ equation. Nevertheless, results on the 5D Poisson equation suggest that restricting
propagation to the boundary-to-domain scheme, while resampling around the boundaries, may be
advantageous for training in higher-dimensional PDEs. Finally, the scope of the evaluation was
limited to a small set of benchmark PDEs. While these are widely used in the literature, they may not
capture the full range of difficulties encountered in real-world scientific and engineering applications.
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6 Conclusion

This study introduced a boundary-to-domain (BTD) propagation strategy for sampling collocation
points in Physics-Informed Neural Networks. Unlike existing approaches such as PACMANN, which
begin from uniform sampling across the domain, our method samples collocation points at the initial
and boundary conditions and propagates inward. This perspective emphasizes the fundamental role
of boundaries in determining PDE solutions and provides a more intuitive progression of sampling.

Across benchmark problems, the results highlight both the strengths and limitations of the
approach. On the 1D Allen–Cahn and 5D Poisson equations, BTD propagation achieved competitive
performance compared to the classical, and PACMANN [2] strategies, suggesting particular benefits
in higher-dimensional or more complex PDEs. For the 1D Burgers’ equation, however, performance
was more sensitive to hyperparameters and showed higher variance across runs. In the case of the
nonlinear Schrödinger equation, adaptive propagation provided little benefit over classical PINNs,
indicating that the utility of propagation is problem dependent.

A key finding is the method’s strong sensitivity to the propagation hyperparameters, especially the
step size γ, and number of propagation steps S. While this highlights the flexibility of the approach,
it also increases the burden of tuning, which remains a significant challenge in training PINNs.
Moreover, although sampling collocation points at the boundaries appears to improve training in
some settings, it is not universally advantageous.

In summary, boundary-to-domain propagation offers a promising alternative to existing adaptive
sampling strategies, particularly for high-dimensional PDEs where traditional PINNs struggle. At
the same time, it introduces open questions regarding variance reduction, automatic hyperparameter
selection, and the necessity of fixed boundary points. These findings open up several avenues for
future work, for example, developing adaptive schedules for γ and S by decreasing the step size
as training progresses, analogous to learning rate decay used in different optimization algorithms.
Another interesting question is whether propagating points using the Adam algorithm instead of
gradient ascent yields better performance when taking the boundary-to-domain approach. Lastly,
it remains an open question whether strictly following the boundary-to-domain scheme—without
uniform resampling and instead resampling only around the boundaries—constitutes a generally
better strategy for higher-dimensional PDEs.

To conclude, this work shows that while boundary-to-domain propagation does not universally
outperform existing strategies, it offers meaningful improvements in settings where residuals are
difficult to approximate or where dimensionality poses a major challenge.
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A Resampling Strategies

Figures 7 and 8 depict the relative L2 norm for the 1D Burgers’ equation using two different resampling
strategies, uniform and Gaussian, respectively. In Gaussian resampling, points that exit the domain
are relocated to a region just inside the boundary they have crossed. This is achieved by centering a
half-Gaussian distribution at the boundary and sampling new points from it, ensuring they remain
within the domain. However, as the figures indicate, this method performs worse than uniform
resampling and additionally introduces a hyperparameter, σ2, which serves as the variance of the
half-Gaussian distribution. This further complicates the already difficult process of hyperparameter
optimization without any apparent improvement.

Figure 7: Relative L2 norm for the 1D Burgers’ equation for different combinations of warm-up W
and propagation periods I. Results were obtained using warm-up γ = 1e−5, P = 5, and Nres = 1,000
with uniform resampling.
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Figure 8: Relative L2 norm for the 1D Burgers’ equation for different combinations of warm-up W
and propagation periods I. Results were obtained using warm-up γ = 1e−5, P = 5, and Nres = 1,000
with Gaussian resampling (σ2 = 0.75).

B Hyperparameter Optimization

To obtain the results in Section 4, a strong assumption is made that warm-up W and propagation
I can be optimized independently of hyperparameters γ and S. To outline the limitations of this
approach, and further stress the importance of hyperparameter optimization when relying on the
BTD approach, Figure 10 displays a setting where – despite using suboptimal W and I according
to Figure 5 – better performance is achieved. On the other hand, Figure 9 suggests that in this
setting – where again W and I are suboptimal according to the findings depicted in Figure 2 – a
somewhat more stable performance is achieved for γ = 10−6, and the network is less sensitive to
hyperparameter S. This further displays the sensitivity of the BTD approach to hyperparameter
settings and presents an important consideration when training the network.
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Figure 9: Relative L2 norm for the 1D Burgers’ equation across different step-sizes γ and different
numbers of propagation steps S. Results were obtained using warm-up W = 200, propagation interval
I = 1, P = 5, and Nres = 2,500 collocation points.

Figure 10: Relative L2 norm for the 1D Allen-Cahn equation across different step-sizes γ and different
numbers of propagation steps S. Results were obtained using warm-up W = 25, propagation interval
I = 100, P = 5, and Nres = 2,500 collocation points.
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