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Abstract

Quantum thermodynamics takes over from classical thermodynamics when systems are of the
scale of single particles and quantum fluctuations have a noticeable effect. An interesting topic of
research of this relatively new field is the quantum battery, which in this thesis consists of an array
of N identical electron spin qubits. In an article by Binder et al. [4], it is proven that in theory, an
N-times decrease in charging time of the battery is achieved when global operations on qubits are
permitted. This thesis investigates if a similar advantage can be achieved by using a local qubit-
qubit interaction operator on a one-dimensional chain of exchange-coupled electron spin qubits
that are driven by microwave radiation in the presence of decoherence. This system is described
by a density matrix in order to include the presence of external influences. The time-evolution
of the state of the system is calculated by solving the Von-Neumann equation both analytically
and numerically, which is then used to calculate the extractable work. It is shown that exchange
interaction does not have a direct effect on the extractable work, since it creates entanglement
between two states of the same energy level and the operator commutes with the Hamiltonian of
the system. The effect of the CNOT gate on the state of the system is then investigated. While it
does have an effect on the extractable work, it did not achieve a decrease in charging time. These
results are only relevant for the specific system used in this thesis. For other methods and systems,
exchange interaction could lead to faster charging.
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Chapter 1

Introduction

The theory of quantum thermodynamics is a very new and active field of research. Whereas classi-
cal thermodynamics describes macroscopic systems, quantum thermodynamics describes very small
systems where quantum effects have a noticeable influence. In the classical situation, a macroscopic
system is described by its average quantities, such as temperature or extractable work. However,
as the size of a system becomes smaller and smaller, the approximations become less accurate. The
quantities will fluctuate around the average due to thermal motion. Stochastic thermodynamics
is used to describe this behaviour. Unfortunately, even stochastic thermodynamics fails when the
fluctuations start to have a quantum origin. Consequently, the field of quantum thermodynamics
was created to investigate these developments. In an article published by Millen in 2016 [3], there
is an interesting overview of the current developments in this field and an outlook towards the
future of quantum thermodynamics.

An interesting concept of this new field is the quantum battery. The definition of a battery is
a physical system that stores energy. In a quantum system, energy can be stored in the popu-
lations and coherences of an electron qubit system. When this energy is extracted, this results
in an amount of work. Since this system has a quantum nature, there are effects that would not
be possible in a classical system and cannot be described as such. In the article by Binder [4],
a method is described to charge quantum batteries with more power when a global entangling
operator is used. In this thesis, we will look at the possibility of achieving similar advantages in
charging time and charging power when using qubit-qubit interaction operators. Specifically, we
will investigate the charging of a one-dimensional chain of exchange-coupled electron spin qubits
that are driven by microwave radiation in the presence of decoherence; dissipation and dephasing.

In this research, we will gain understanding of the behaviour of electron spin qubits by solving
the Von Neumann equation analytically and numerically under the influence of different opera-
tors. We describe the system with a density matrix to include external influences, for which the
standard wave function is not suitable. The effect of time-dependent entangling operators will be
investigated numerically. An important goal of this research is to describe the system realistically
and we make use of operators that can be created experimentally.

The theory required to describe our system is given in chapter 2, which is followed by the an-
alytical solutions in chapter 3. The numerical calculations and predictions for optimal charging
are made in chapter 4 and the results will be discussed in chapter 5. In the final chapter we draw
a conclusion and take a look at possible further research in this area.

1



Chapter 2

Theory

This chapter introduces the theory required for this thesis. It describes the mathematical represen-
tation of the electron spin qubits, including the operators acting on the system and the equations
that describe the time dependent state of the system. The power and extractable work of the
battery are defined, which can be calculated from the state of the system.

2.1 Pauli matrices

The Pauli matrices act on the 2-dimensional complex Hilbert space [2]. They represent the com-
ponent of the electron spin along the x̂, ŷ, ẑ-axis respectively.

σ̂x =

[
0 1
1 0

]
(2.1)

σ̂y =

[
0 −i
i 0

]
(2.2)

σ̂z =

[
1 0
0 −1

]
(2.3)

2.2 Density matrix

When we are dealing with an isolated quantum system, the wave function is a complete represen-
tation of the system state. In this thesis, however, the system is no longer isolated and can only
be described by a set of quantum states. Therefore, we introduce the density operator, which is
the optimal specification for the system. The density operator is defined as [2]:

ρ̂ =
∑
i

pi |ϕi〉 〈ϕi| (2.4)

where pi is the probability for the system to be in the state |ϕi〉. The states are normalised, which
means that 〈ϕi | ϕi〉 = 1. Of course, the sum of the probabilities should equal one, since the system
always has to be in one of the possible states. Mathematically this is equal to

∑
i

pi = 1. The

density operator is advantageous when calculating the expectation value of an operator. It uses
the trace (tr) operator, which sums the terms on the diagonal of a matrix. In other words, the
trace of an n-by-n square matrix Â is defined as:

tr(Â) = a11 + a22 + ...+ ann =

n∑
i=1

aii (2.5)
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with respect to an orthonormal basis. The expected value of an operator in state (2.4), is then
given by the expression:

〈Â〉 = tr(ρ̂Â) =

n∑
i=1

pi tr(|ϕi〉 〈ϕi| Â) =

n∑
i=1

pi 〈ϕi| Â |ϕi〉 (2.6)

This is just the average of the expectation values for pure quantum states |ϕi〉.

2.3 Evolution of the density matrix in time

Since we are interested in the time dependent state of the system we are investigating, we need to
find an expression that describes the time-evolution of the quantum state in terms of the density
matrix. We start with the Schrödinger equation that describes the time-evolution of the wave
function of the system [2]:

i~
∂

∂t
|ϕ(t)〉 = Ĥ |ϕ(t)〉 (2.7)

The Schrödinger equation is equivalent to the Von Neumann equation, which describes the time-
evolution of the density matrix :

i~
∂ρ̂

∂t
= [Ĥ, ρ̂] (2.8)

2.4 Electron spin qubit

In this report, we will work with arrays of electron spin qubits. This qubit consists of an electron
confined to a quantum dot, a small island in a semiconductor heterostructure, in an external
magnetic field ~Bz. The field induces Zeeman splitting, such that the two basis state of the qubit,

|0〉 = |↑〉 =

[
1
0

]
and |1〉 = |↓〉 =

[
0
1

]
, have a difference in energy level of Ez. As mentioned

earlier, the state of a system of electron spin qubits is described by a density matrix. Every system
has basis states. If we take a system of one qubit as an example, we find the basis states as
mentioned above. The diagonal elements of the density matrix describe the probability to be in
the corresponding state, which are called the populations. The off-diagonal elements describe the
coherence between two of the basis states. Accordingly, they are called the coherences.
A useful way of visualising an electron spin qubit is the Bloch sphere.
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Figure 2.1: The Bloch sphere: a 3D visualisation of the states of an electron spin qubit.

The two basis states are identified with the north and south pole. The surface of the sphere
describes the pure states of the qubit. This is seen if we decompose the density matrix ρ̂ in its
cartesian composition a = (ax, ay, az)T with respect to the Pauli matrices, such that:

ρ̂ =
1

2
(I + a · σ) (2.9)

where I is the 2×2 identity matrix. A pure density matrix is characterised by the fact that ρ̂2 = ρ̂.

ρ̂2 =
1

4
(I + 2a · σ + (a · σ)2) =

1

4
(I + 2a · σ + a2) (2.10)

This is equal to ρ̂ if a2 = 1 or in other words, if |a| = 1.

The Hamiltonian of an electron spin in a quantum dot in an external magnetic field in the ẑ-
direction is defined as:

Ĥ0 =
1

2
g∗µbBzσ̂z (2.11)

where ~Bz is defined as the magnetic field applied along the ẑ-axis, µb as the Bohr magneton, g∗

as the g-factor and σ̂z as the Pauli spin ẑ-matrix. If we now define Ez ≡ |g∗µbBz| as the Zeeman
energy splitting, then the Hamiltonian in matrix form is given by:

Ĥ0 =

[
− 1

2Ez 0
0 1

2Ez

]
(2.12)

We observe that this system has two different energy levels, in other words we are dealing with
a simple battery that is either charged or not charged. Finally, an electron spin qubit can spon-
taneously decay from an excited state to a lower state. This phenomenon is described by the
projection operator:

Ŝ↓ =

[
0 1
0 0

]
(2.13)

The effect of decay of a pure state |χ〉 to the ground state is given by:

|χ〉 → Ŝ |χ〉√
〈χ| Ŝ†Ŝ |χ〉

(2.14)
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or in the density matrix form:

ρ̂→ Ŝρ̂Ŝ†

tr(Ŝρ̂Ŝ†)
(2.15)

For one spin this implies: |χ〉 → |↑〉 or ρ̂→ |↑〉 〈↑|.

2.5 Electron spin resonance (ESR)

In order to coherently rotate the electron spin, we make use of externally applied microwave
radiation, generated by an additional time-dependent cyclic magnetic field B(t) perpendicular to
the ẑ-axis. This process is called Electron Spin Resonance (ESR). If we then take the field along
the x̂-axis, the corresponding interaction term in the Hamiltonian is given by:

V̂ (t) =
1

2
g∗µbB cos(ωt)σ̂x (2.16)

Here ω is the driving frequency.

2.6 Tensor product

The tensor product is needed for describing a system with multiple particles using product spaces.
The product U ⊗ V of two vector spaces U and V gives a new vector space and an operation ⊗.
The operation is defined as sending ordered pairs in the Cartesian product U × V into U ⊗ V [2].
Since we are only concerned with two-level systems, it suffices to introduce the tensor product for
a 2× 2 matrix. If we have two matrices A and B defined as:

A =

[
a1,1 a1,2
a2,1 a2,2

]

B =

[
b1,1 b1,2
b2,1 b2,2

]
Then we define their tensor product as:

A⊗B =


a1,1

[
b1,1 b1,2
b2,1 b2,2

]
a1,2

[
b1,1 b1,2
b2,1 b2,2

]

a2,1

[
b1,1 b1,2
b2,1 b2,2

]
a2,2

[
b1,1 b1,2
b2,1 b2,2

]
 =


a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2
a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2
a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2
a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2

 (2.17)

2.7 Two electron spin system

Most of the calculations in this report are done on a two electron spin system. The basis states
for this system are given by:

|↑↑〉 = |↑〉 ⊗ |↑〉 =


1
0
0
0

 |↓↑〉 = |↑〉 ⊗ |↓〉 =


0
1
0
0

 (2.18)

|↑↓〉 = |↓〉 ⊗ |↑〉 =


0
0
1
0

 |↓↓〉 = |↓〉 ⊗ |↓〉 =


0
0
0
1


5



Now it is straightfoward to verify that:

(A⊗B) |↑↑〉 = A |↑〉 ⊗B |↑〉

2.8 Exchange interaction

Nearby electron spins feel an effective interaction due to the Pauli exclusion principle. This states
that identical fermions cannot be in the same state at the same time. The electrons do not feel this
effect if the potential barriers separating them are high enough, however if the potential barrier is
lowered, they feel exchange interaction and the qubits become entangled.

Figure 2.2: Two electron spin qubits in neighbouring quantom dots [8]

The interaction term in the Hamiltonian for this effect is given by:

Ĥex(t) = J(t) ~σ1 ⊗ ~σ2 (2.19)

= J(t)


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

 (2.20)

with ~σ = (σ̂x, σ̂y, σ̂z) the Pauli spin matrix vector and ~σi acting on qubit i, with i = 1, 2. The
time-dependence of this operator is modelled by the function J(t). The strength of J can be
controlled by changing the height of the potential barriers. Throughout this model, we assume
that there is only nearest-neighbour interaction. In other words, there is no exchange possible
between electron spin qubits that have another spin qubit between them.

2.9 CNOT gate

The controlled NOT gate (or CNOT gate) is a unitary operation that can be used to entangle and
disentangle states of a 2 qubit system. The gate flips the target qubit if and only if the control
qubit is in the down state. It can be represented by the matrix form:

U =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.21)

The gate then has the following effect: ρ̂→ Uρ̂ U†.
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2.10 Extending operators to N electron spin qubits

In order to extend our calculations to an array of N electron spin qubits, the operators need to be
expanded so they act in the larger Hilbert space. Taking the initial 2× 2 operator P , we want to
describe the operator acting solely on the kth qubit. This is achieved by taking the tensor product
of N matrices of which the kth is the operator and the rest are simply identity matrices:

P (k) = I ⊗ I ⊗ ...⊗ P ⊗ ...⊗ I (2.22)

The operator that describes the array is then simply the sum of all the individual operators:

PN =

N∑
k=1

P (k) (2.23)

2.11 The Lindblad superoperator

In order to describe the decoherence of the electron spin qubits, we make use of the Lindblad
superoperator [2]. The projection operator Ŝi, acting on the ith electron spin qubit, is achieved by
applying the method described in section 2.10 on equation (2.13). The Lindblad operator is then
given by:

L̂[ρ̂] = Ŝiρ̂Ŝ
†
i −

1

2
Ŝ†i Ŝiρ̂−

1

2
ρ̂Ŝ†i Ŝi (2.24)

This operator describes the dissipation of energy into the surroundings. Since the system consists
of N particles, the operator acting on all particles is described by:

L̂N [ρ̂] =

N∑
i=1

Ŝiρ̂Ŝ
†
i −

1

2
Ŝ†i Ŝiρ̂−

1

2
ρ̂Ŝ†i Ŝi (2.25)

2.12 Ergotropy and power of a quantum battery

Ergotropy, W, is defined as the maximum work that can be extracted unitarily from a quantum
state ρ̂ with respect to a Hamiltonian Ĥ0 [4]. In order to express the ergotropy of a quantum
battery, the internal energy of our system is required. This is given by tr[ρ̂Ĥ0], where in this
case ρ̂ is the state of the battery and Ĥ0 its internal Hamiltonian. The lowest energy state is
called a passive state and the highest energy state a maximally active state, denoted by π̂ and ω̂.
Consequently, the ergotropy is defined as:

W = tr[ρ̂Ĥ0]− tr[π̂Ĥ0] (2.26)

The maximal ergotropy is therefore tr[ω̂Ĥ0]− tr[π̂Ĥ0]. Since we are mostly interested in charging
a battery, it is useful to consider the average power of a process, which is given by:

〈P 〉 =
〈W 〉
T

(2.27)

where T is the time for the process to take place and 〈W 〉 is the average work done in the process.

We define what it means to charge and decharge a battery. Charging a battery means to change
its state from ρ̂ to a higher energetic state ρ̂′ such that tr[(ρ̂′ − ρ̂)Ĥ0] ≥ 0. On the other hand, ex-
tracting energy from a battery changes it to a lower energetic state ρ̂′′ such that tr[(ρ̂′′− ρ̂)Ĥ0] ≤ 0
[4].
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For example, if we have a qubit in a general eigenstate |ψ〉 = α |↑〉+ β |↓〉, with |α|2 + |β|2 = 1, we
can construct the density matrix as:

ρ̂ =

[
α
β

] [
α∗ β∗

]
=

[
|α|2 αβ∗

α∗β |β|2
]

(2.28)

The ergotropy is given by:
W = tr[(ρ̂− π̂)Ĥ0]

Here we take Ĥ0 as equation (2.12) and π̂ = |↑〉 〈↑| as the density matrix of the ground state of a
system with one qubit. This leads to the following ergotropy:

W =
1

2
Ez(|β|2 − |α|2 + 1) = |β|2Ez (2.29)

This result is logical since if the state is completely in the up state (β = 0), there is no extractable
work in the system. When the system is completely in the down state (β = 1), we have the
maximum amount of ergotropy in the system.

8



Chapter 3

Analytical solutions

The goal of this chapter is to gain understanding of the dynamic behaviour of electron spin qubits
by solving the Schrödinger equation and the Von Neumann equation analytically, which also shows
how quickly it becomes more difficult to solve these equations if the system is more complex. This
chapter also reproduces the optimal charging protocol as described by Binder et al. [4].

3.1 Analytical solution using ESR

We calculate the time-dependent state of an electron spin qubit, when applying the ESR operator
(2.16), without Zeeman splitting. This is equivalent to solving the Schrödinger equation (2.7) with

Hamiltonian Ĥ = V̂ for the state |ψ〉 = α |↑〉+ β |↓〉 =

[
α
β

]
:

i~
[
α̇

β̇

]
=

[
0 1

2g
∗µBB cos(ωt)

1
2g
∗µBB cos(ωt) 0

] [
α
β

]
(3.1)

which we then simplify into:[
α̇

β̇

]
=

[
0 ia cos(ωt)

ia cos(ωt) 0

] [
α
β

]
= A

[
α
β

]
with a = − g

∗µBB
2~ . We rewrite our matrix A as PDP−1, where P consists of the eigenvectors of A

and D is a diagonal matrix with the eigenvalues of A. This gives us the equation |ψ̇〉 = PDP−1 |ψ〉.
We multiply by P−1 to get P−1 |ψ̇〉 = DP−1 |ψ〉. Finally, we substitute Q = P−1 |ψ〉 to achieve

a simpler differential equation Q̇ = DQ. The eigenvectors of matrix A are given by: v1 = 1√
2

[
1
1

]
and v2 = 1√

2

[
1
−1

]
with corresponding eigenvalues λ1 = ia cos(ωt) and λ2 = −ia cos(ωt). This

leads to the following definition of P and D:

P =
1√
2

[
1 1
1 −1

]
, D =

[
ia cos(ωt) 0

0 −ia cos(ωt)

]
(3.2)

This gives us the following differential equations:

q̇1 = ia cos(ωt)q1, q̇2 = −ia cos(ωt)q2 (3.3)

which are easily solved and lead to:

q1 = c1e
ia sinωt

ω , q2 = c2e
−ia sinωt

ω (3.4)

9



We multiply equation (3.4) with matrix P to find the solution of the original equation:[
α(t)
β(t)

]
=

1√
2

[
c1e

ia sinωt
ω + c2e

− ia sinωt
ω

c1e
ia sinωt

ω − c2e−
ia sinωt

ω

]
(3.5)

The constants c1, c2 can be found by using the initial conditions of the system and are given by:

c1 =
1√
2

(α(0) + β(0)), c2 =
1√
2

(α(0)− β(0)) (3.6)

Substituting these values gives the solution:[
α(t)
β(t)

]
=

[
α(0) cos(a sinωt

ω ) + β(0)i sin(a sinωt
ω )

α(0)i sin(a sinωt
ω ) + β(0) cos(a sinωt

ω )

]
(3.7)

The solution gives the following figure:

0 0.5 1 1.5 2 2.5 3
t in µs

0
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P
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The populations of a qubit when ESR is applied

|α|2

|β|2

Figure 3.1: The absolute squared populations of a single electron spin qubit rotated by ESR, where
the initial state is the up-state.

In order to describe ESR for a system of electron spin qubits with Zeeman splitting we use numerical
methods, this can be found in chapter 4.1.

3.2 Analytical solution of the wave equation with exchange
interaction

Moving forward from the Von Neumann equations (2.8), the general form of an evolution equation
for the density operator ρ̂ is the master equation:

∂ρ̂

∂t
=
−i
~

[Ĥ, ρ̂] + ΓL̂ρ̂ (3.8)

where Ĥ is the total Hamiltonian, Γ is the decay rate and L̂ is the Lindblad superoperator as
defined in equations (3.9) and (3.10). Note that L̂ is not a matrix. In our system for N particles
Ĥ is of the form: Ĥ = Ĥ0 + V̂ + Ĥex.

In order to solve this equation, we split the master equation into the differential equations for the

10



populations and coherences respectively

d

dt
ρ̂nn(t) = − i

~
[Ĥ0 + V̂ (t) + Ĥex(t), ρ̂(t)]nn +W (L̂N [ρ̂])nn (3.9)

d

dt
ρ̂nm(t) = − i

~
[Ĥ0 + V̂ (t) + Ĥex(t), ρ̂(t)]nm +W (L̂N [ρ̂])nm − V ρ̂nm (3.10)

where W = 1/δ1 and V = 1/δ2 and δ1, δ2 are the single-spin decay time and single-spin dephasing
time, respectively. Throughout this report we will assume that the decay and dephasing time is
the same for each energy level. We will now solve the master equation for two electron spin qubits
in two situations.

3.2.1 Natural decoherence: dephasing and spontanenous emission

We solve the Von Neumann equation if there is no driving and no interaction, but only the natural
decoherence of the system. Therefore we take Ĥ = O in equation (3.8). We assume that the
dephasing rate (W ) is the same for all the populations and the emission rate (V ) is the same for
all the coherences. Furthermore, we assume only one particle may dephase at a time. We leave
out the operator sign from here on to increase the readability of this report. For two electrons, ρ
is a 4× 4 matrix. This gives the following differential equations for n 6= m:

ρ̇11 = Wρ22 +Wρ33

ρ̇22 = Wρ44 −Wρ22

ρ̇33 = Wρ44 −Wρ33

ρ̇44 = −2Wρ44

ρ̇nm = −V ρnm

The differential equation belonging to the coherences is easily solved: ρnm(t) = ρnm(0)e−V t. It
is slightly more challenging to solve the coupled system for the populations. We substitute the
solution ρ44(t) = ρ44(0)e−2Wt. Then by making use of an integrating factor we get

ρ22(t) = −ρ44(0)e−2Wt + (ρ22(0) + ρ44(0))e−Wt

ρ33(t) = −ρ44(0)e−2Wt + (ρ33(0) + ρ44(0))e−Wt

And finally we use these solutions to get:

ρ11(t) = ρ44(0)e−2Wt − (ρ22(0) + ρ33(0) + 2ρ44(0))e−Wt + ρ11(0) + ρ44(0) + ρ33(0)) + ρ22(0))

3.2.2 Natural decoherence and exchange interaction

Now we expand the system to include only exchange interaction and decay. We use equation (3.8)
with Ĥ = Ĥ0 + Ĥex. This gives us the following set of differential equations:

ρ̇11 ρ̇12 ρ̇13 ρ̇14
ρ̇21 ρ̇22 ρ̇23 ρ̇24
ρ̇31 ρ̇32 ρ̇33 ρ̇34
ρ̇41 ρ̇42 ρ̇43 ρ̇44

 = −iκ


0 2ρ12 − 2ρ13 2ρ13 − 2ρ12 0

2ρ31 − 2ρ21 2ρ32 − 2ρ23 2ρ33 − 2ρ22 2ρ34 − 2ρ24
2ρ21 − 2ρ31 2ρ22 − 2ρ33 2ρ23 − 2ρ32 2ρ24 − 2ρ34

0 2ρ42 − 2ρ43 2ρ43 − 2ρ42 0



−


−Wρ22 −Wρ33 V ρ12 V ρ13 V ρ14

V ρ21 −Wρ44 +Wρ22 V ρ23 V ρ24
V ρ31 V ρ32 −Wρ44 +Wρ33 V ρ34
V ρ41 V ρ42 V ρ43 2Wρ44

 (3.11)
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where J(t) is taken to be constant in time as J = ~κ. V and W are assumed to be the same for
all n,m. We observe that most of these equations do not depend on more than one other equation.
There is a large amount of symmetry in the system, which significantly simplifies the solution. We
start by solving one of the smaller sets of differential equations:[

ρ̇12
ρ̇13

]
=

[
−2iκ− V 2iκ

2iκ −2iκ− V

] [
ρ12
ρ13

]
(3.12)

This system is solved by finding the eigenfunctions and eigenvalues of the matrix: v1 =

[
−1
1

]
,

v2 =

[
1
1

]
, with corresponding eigenvalues λ1 = −V − 4iκ, λ2 = −V . The solution is then equal to:

[
ρ12(t)
ρ13(t)

]
=

[
c1(V + 4iκ)e−(V+4iκ)t −c2V e−V t
−c1(V + 4iκ)e−(V+4iκ)t −c2V e−V t

]
(3.13)

The constants are solved by making use of the initial conditions of the density matrix:

c1 =
ρ12(0)− ρ13(0)

2V + 8iκ
(3.14)

c2 =
ρ12(0)− ρ13(0)

2V
(3.15)

The solutions for equations ρ21 and ρ31, ρ24 and ρ34 and ρ42 and ρ43 are similar. The differential
equations for ρ41, ρ14 and ρ44 have already been solved in the previous situation and are given by:

ρ14(t) = ρ14(0)e−V t, ρ41(t) = ρ41(0)e−V t (3.16)

Finally, we need to solve the more intricate system of six coupled differential equations. Since none
of these are time independent, we only need to determine the eigenvectors and eigenvalues of the
following matrix: 

˙ρ11
˙ρ22
˙ρ23
˙ρ32
˙ρ33
˙ρ44

 =


0 W 0 0 W 0
0 −W 2iκ −2iκ 0 W
0 2iκ −V 0 −2iκ 0
0 −2iκ 0 −V 2iκ 0
0 0 −2iκ 2iκ −W W
0 0 0 0 0 −2W




ρ11
ρ22
ρ23
ρ32
ρ33
ρ44

 (3.17)

This gives the following eigenvectors:

v1 =


1
0
0
0
0
0

 v2 =


1
−1
0
0
−1
1

 v3 =


−2
1
0
0
1
0

 (3.18)

v4 =


0
0
1
1
0
0

 v5 =



0
−1
8iκ

W−V+
√
W 2+(8iκ)2−2WV+V 2

− 8iκ

W−V+
√
W 2+(8iκ)2−2WV+V 2

1
0


v6 =



0
−1
8iκ

−W+V+
√
W 2+(8iκ)2−2WV+V 2

− 8iκ

−W+V+
√
W 2+(8iκ)2−2WV+V 2

1
0


12



And the corresponding eigenvalues:

λ1 = 0, λ2 = −2W,λ3 = −W,λ4 = −V,

λ5 =
1

2
(−
√
W 2 − 2WV + (8iκ)2 + V 2 −W − V )

λ6 =
1

2
(
√
W 2 − 2WV + (8iκ)2 + V 2 −W − V )

We can then construct the solution as:
ρ11(t)
ρ22(t)
ρ23(t)
ρ32(t)
ρ33(t)
ρ44(t)

 = c1e
−λ1tv1 + ...+ c6e

−λ6tv6 (3.19)

Where c1, ..., c6 are given by the initial conditions of the system.

3.3 Optimal charging of a single electron spin qubit

It is important to define our view of optimal charging. In this report, we will look at charging the
battery in the least amount of time. Ideally, this would mean the time to charge from the ground
state to the maximally excited state. This is not so simple, however, since it can be difficult to
charge the battery completely. Therefore, we will also investigate charging with maximal power as
defined in equation (2.27).

The optimal charging of a quantised particle is described in [4]. Take note, that while this is
similar to our system of electron spin qubits, we only work with particles at T = 0. This means
that thermodynamic constraints are less relevant to investigate as they are in the article. The
Hamiltonian we use is shifted such that the ground state has negative energy and the excited state
has positive energy compared to the article. It still has the same difference between the levels, up
to the constants. We perform similar calculations to see whether we get the same result. If we
then ignore the decoherence of the system, the Von Neumann equation for this system is given by:

i~
∂

∂t
ρ̂(t) = [Ĥ0 + V̂ (t), ρ̂(t)] (3.20)

If we parametrise ρ̂(t) by its Cartesian decomposition as in section 2.4 and rewrite the Hamiltonian
for a single electron spin qubit as Ĥ0 = − 1

2Ezσ̂z, we can rewrite this into the simpler form:

i~
∂

∂t
ρ̂(t) =

1

2
[v(t) · σ̂, (I + a(t) · σ̂)] (3.21)

Optimal charging is achieved by optimising the derivative of the ergotropy, since this leads to the
largest increase in ergotropy and therefore the shortest charging time:

∂

∂t
tr[ρ̂(t)Ĥ0] = tr[

∂

∂t
ρ̂(t)Ĥ0] = tr[(

∂

∂t
ρ̂(t))Ĥ0] (3.22)

Therefore, our aim is to find v(t) such that equation (3.22) is maximal. We achieve this by rewriting
the differential equation into two different forms:

∂

∂t
ρ̂(t) =

1

2

∂

∂t
(I + a(t) · σ̂) =

1

2
(
∂

∂t
a(t)) · σ̂ (3.23)
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We also know that:

i~
∂

∂t
ρ̂(t) =

1

2
[v(t) · σ̂, (I + a(t) · σ̂)] = i(v(t)× a(t)) · σ̂ (3.24)

due to the commutation relations of the Pauli matrices. We then compare equations (3.23) and
(3.24) and conclude that:

∂

∂t
a(t) =

2

~
(v(t)× a(t)) (3.25)

We substitute this information into equation (3.22):

tr[(
∂

∂t
ρ̂(t))Ĥ0] =

1

~
(v(t)×a(t)·tr[σ̂Ĥ0] =

1

~
(v(t)×a(t))·tr

 O
O

− 1
2EzI

 =
Ez
~

(v(t)ya(t)x−v(t)xa(t)y)

(3.26)
This is the same result as described by [4]. If we now rewrite our Cartesian decomposition of ρ̂(t)
into polar coordinates we achieve a(t) = r sin θ(t)(sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t)), such
that:

tr[(
∂

∂t
ρ̂(t))Ĥ0] =

Ez
~

(v(t)y cosφ(t)− v(t)x sinφ(t)) r sin θ(t) (3.27)

We conclude that the optimal charging conditions are indeed:

v(t)x = −Emax sinφ(t), v(t)y = Emax cosφ(t), v(t)z = 0 (3.28)

with Emax = 1
2g
∗µBB the driving constraint. It is logical that this result corresponds to driving

directly along the outside of the Bloch sphere, with constant φ(t) = φ0. This gives us the optimal
charging operator:

V̂opt = Emax(cosφ0 − sinφ0) (3.29)

Another result of equation (3.25) is that a pure state remains pure when applying the operators
mentioned above. Since any evolution is perpendicular to a(t), any pure state remains on the
Bloch sphere and therefore remains pure.
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Chapter 4

Numerical approach

This chapter uses a numerical approach to overcome the issue of increasing complexity in solving
the Von Neumann equation. It investigates the general behaviour of electron spin qubits and the
effect the exchange operator has on them. After finding that the exchange operator does not have
a direct effect on the ergotropy of the system, the CNOT gate is investigated. As seen in the
previous chapter, it is possible to solve the Von Neumann equation if our system is simple and
small, but it becomes very difficult to solve if it is more complex.

4.1 Numerical solution of realistic system

We will show that applying microwave radiation rotates the spin of the electron spin qubit. We
no longer solve this system analytically since the coefficients in the differential equation are time-
dependent and the differential equation is too complex. We simulate the time-evolution of equation
(3.8) with Ĥ = Ĥ0 + V̂ .

As seen in figure 4.1, when the system is started in its ground state, the electron spin starts
rotating in a cyclic manner from the up-state to the down-state. This confirms what we expected.
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Figure 4.1: The populations of a single electron spin qubit rotated by ESR, where the initial state
is the up-state.

4.2 Entanglement caused by exchange interaction

We now check that applying the Hamiltonian (2.19) to the basis states of the two-spin Hilbert
space creates entanglement. We solve equation (3.8) for this system with Ĥ = Ĥ0,2spins+ Ĥex and
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Γ = 0, where Ĥ0,2spins = Ĥ0 ⊗ I2 + I2 ⊗ Ĥ0 and I2 is the 2 × 2 identity matrix. Filling in the
known values, gives:

i~
∂ρ̂

∂t
= [


−EZ 0 0 0

0 0 0 0
0 0 0 0
0 0 0 Ez

+ J(t)


1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 −1

 , ρ̂] (4.1)

We apply this to the basis state |↑↓〉 and show that the state will start rotating to and from the
state |↓↑〉. In this calculation, J is set to be constantly 1 meV.
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Figure 4.2: The populations of a two electron spin qubit system under the influence of the exchange
operator where J = 1 meV . When started in the |↑↓〉 state, the system starts rotating from ρ22 = 1
to ρ22 = 0.

From figure 4.2, we can conclude that the exchange operator rotates the populations such that
both states are occupied at the same time and causes exchange between the two population.
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4.3 Realistic values of parameters

An important goal for this research is to find charging conditions that could be used, at least
partially, in a real experiment. For this reason, we take realistic values for parameters, as observed
experimentally in articles [5] and [6].

Table 4.1: Experimental values of relevant parameters.
Parameter Value Unit
g∗ 0.35 -
µB 5.78 ∗ 10−2 meV/T
J 0.1 meV
δ1 5 µs
δ2 0.5 µs
B 0.050 T
Bz 1 T

4.4 Optimal charging for N electron spin qubits

We investigate the optimal charging for an array of N qubits. The first logical option would be
to charge each qubit individually and simultaneously as in the manner described in section 3.3.
This is described in [4] as parallel driving with the Hamiltonian V̂opt,N , the expanded version of
equation (3.29). According to [4], if we apply an entangling, global operator, this leads to an
N-times decrease of the process duration. This interaction operator is given by:

V̂global = NEmax(|1(N)〉 〈0(N)|+ |0(N)〉 〈1(N)|) (4.2)

where |0(N)〉 and |1(N)〉 are the basis states for the ground state and maximally excited state
respectively, for N particles. The charging from |0(N)〉 to |1(N)〉 is evaluated for both operators.
This gives the following results:

Table 4.2: Overview of process duration and average power for global charging compared to parallel
charging.

N 1 2 3 4
Tglobal in µs 0.0020 0.0010 6.8037*10−4 5.1028*10−4

Tglobal/Tparallel 1 0.4995 0.3324 0.2507

〈P 〉 in meV
µs 9.9250 39.6999 89.3247 158.7995

We observe the N -times decrease in process duration as prescribed, as well as an N -times increase
in average power per particle. This leads to some interesting questions: if we take a very large
number of particles, could we make the charging time arbitrarily small? It is outside the scope of
this research to put a restraint on this development. Intuitively one can argue that the cost would
be a longer process duration in total and that any gain found in the charging process is correlated
to the power needed to create the entanglement, as stated in [4]. Nevertheless, this is an extremely
interesting result on its own and deserves further research.

4.5 Analysis of simulation for two electrons

In the previous sections, we have seen that the charging time can be decreased by making use
of a global operator. We investigate if exchange interaction, which is a qubit-qubit interaction
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operator, can speed up the charging process of a two electron spin qubit array from the ground
state to the state in which all the qubits are in the fully excited state. Initially, the simulation is
started in the ground state and electron spin resonance is applied to both qubits. The evolution
of the populations is plotted in figure 4.3. The resulting ergotropy is plotted in figure 4.4.
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Figure 4.3: The populations of two exchange-coupled electron spin qubits while being rotated
simultaneously.
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Figure 4.4: The ergotropy of two exchange-coupled electron spin qubits while being rotated simul-
taneously. In 0.0041 µs the battery is charged.

It takes 0.0041 µs to charge the system completely. The timescale of the rotation is determined by
the energy E = |g∗µBBx|. It is useful to note that the timescale of emission and dephasing is small
compared to the timescale of ESR, such that the battery remains relatively stable after turning off
the ESR. We observe that turning on the exchange operator would give the same behaviour, since
both qubits are rotated equally. This implies that the coupled states are equally occupied and the
exchange would be equally fast in both directions. The smaller oscillation that can be seen is a
numerical artefact and shall be discussed later.

In order to let exchange interaction play a role, we only rotate one qubit and turn the exchange
interaction on. The following figure shows the ergotropy for different values of J :
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Figure 4.5: The ergotropy of a two spin qubit system for different constant values of j. ESR is
applied on only one electron spin qubit.

We observe that when exchange is turned off the maximum ergotropy is 1Ez as expected. The
charging process slows down when exchange is turned on, but reaches a larger amount of ergotropy.
Once J reaches approximately 0.040 meV the increase no longer makes a difference. The time
required to reach maximum ergotropy is then 0.0082 µs, which is twice as long as with ESR acting
on two qubits. This is as expected, since ESR is only applied on one qubit. Our expectation
that the power with which the qubits are charged does not increase is confirmed when the average
power for different strengths of the entanglement operator is calculated:

Table 4.3: Average power while charging two electron spin qubits compared to different values of
the exchange strength.

j in meV 0 0.01 0.02 0.03 0.04
〈P 〉in meV/s 4.9478 3.7597 4.8684 4.9370 4.8857

Note that although j = 0.03 meV for the exchange strength gives a higher average power than
j = 0.04 meV , this situation does not reach the maximally active state as required. While it
is interesting to investigate which exact strength the qubit for the entangling operator gives the
perfect charging process, this situation is not beneficial to our goal of decreasing the charging time
in general.

We try implementing the exchange at different time points and observe the behaviour of the
two qubits. The following figure shows the time-evolution of two qubits, one rotated at half the
ESR strength of the second one. We briefly apply exchange, until they are fully entangled. We
then continue to charge both particles individually at full strength.
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Figure 4.6: Time-evolution of the populations of two qubits: one particle rotated at full speed, one
at half, then fully entangled at t = 0.0041 µs, J = 0.1 meV . Finally, both particles are rotated
individually at full speed.
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Figure 4.7: Ergotropy corresponding to figure 4.6.

There are two things to note in these figures; Firstly, the steepness of the maximally excited
state ρ44 is higher after the entangling operation has been switched on, which we also see in the
ergotropy. Secondly, the battery is no longer able to be fully charged after the entanglement. For
this specific situation, we investigate what happens during the charging process. The scheme below
is a representation, which does not account for any phase factors:

|↑↑〉 ⇒ |↓→〉 ⇒ 1√
2

(|↓→〉+ |→↓〉)

The |→〉 state is meant to show that the second particle is rotated halfway down on the Bloch
sphere. Since ESR is a linear operator, this means that we are constantly rotating a particle down
as well as up, such that it will never reach its maximum.
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We now investigate if the exchange operator has any influence on the ergotropy. For simple
states, such as the ground state and the maximal state, we already know that this will not have an
influence, because they are eigenstates of the operator. However, for other two qubit basis states
such as |↑↓〉 or |↓↑〉, we also observe that ∂

∂t tr(H0ρ) = 0. In other words, while the density matrix
is certainly influenced by the operator, it seems it does not affect the ergotropy. The following
figure further supports this conclusion:
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Figure 4.8: Two spin qubit system while being charged, exchange is then applied and ESR turned
off. Afterwards charging is continued and exchange is turned on during rotation. J = 0.01 meV .
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Figure 4.9: Ergotropy corresponding to figure 4.8.

Figure 4.8 shows a two spin qubit system being charged in a similar manner as in figure 4.6. The
exchange operator is then applied to the system for 0.0003 µs at 0.002 µs and the rotation is
stopped. In order to make the visualisation better, the strength of the exchange operator is 1

10 of
the realistic parameter value given in section 4.3. When this simulation is repeated with the origi-
nal value, we achieve the same result, only with faster oscillations. We observe that the ergotropy
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does not increase during this first time period. The rotation is continued without exchange. The
exchange operator is turned on again at 0.004 µs, but the rotation is continued. We observe that
while the populations (and coherences) are certainly influenced, the ergotropy continues as before.

After having applied the exchange operator in many possible ways, including for shorter and longer
periods, as well as in subsequent bursts, we want to examine the direct effect of Hex. This was
done by calculating if the expected value of the ergotropy increases when applying the exchange
operator. In other words, if

∂

∂t
W =

∂

∂t
tr(H0ρ) = tr(H0

∂

∂t
ρ) = tr(H0

−i
~

[Hex, ρ]) (4.3)

is larger than 0. This equation was evaluated and tunrned the exchange operator off on all occasions
that were implemented, indicating that we might be able to prove that in our simulation there is
no direct consequence on the ergotropy due to the exchange operator. In the following section we
show this mathematically.

4.6 Indication that the exchange operator does not affect
ergotropy

In the previous section, the simulations have shown that in many situations, the exchange operator
does not affect the ergotropy of a two electron spin qubit system. In fact, this has been the case as
well in every simulation which has not been included in this report. We prove that the derivative of
the ergotropy of a two electron spin qubit system is 0 when applying only the exchange operator. In
other words, the ergotropy is constant. We derive the useful equivalence that the derivative of the
ergotropy is equal to zero if the operator Â applied to the system commutes with the Hamiltonian
of an electron spin qubit:

tr[H0[A, ρ]] = tr[H0Aρ]− tr[H0ρA] = tr[H0Aρ]− tr[AH0ρ] = tr[[H0, A]ρ] (4.4)

If we compare this to equation (4.3), it is easily verified that the derivative of the ergotropy is 0 if
the operator commutes with the Hamiltonian of the system. A simple calculation shows that Hex

commutes with H0 and therefore does not have a direct influence on the ergotropy. However, this
does not describe the system of electorn spin qubits completely. We now look at ∂

∂tW when the
full electron spin Hamiltonian is included.

∂

∂t
W = tr[H0

∂

∂t
ρ] =

−i
~
tr[H0[H0 +Hex, ρ]]

Then by the properties of the trace operator and the result in equation (4.4), we get the following
equation:

∂

∂t
W =

−i
~
tr[H0H0ρ−H0ρH0] +

−i
~
tr[H0[Hex, ρ]] =

−i
~
tr[H0H0ρ−H0H0ρ] + 0 = 0

This result again indicates that we cannot influence the ergotropy by using only the exchange
operator. However, we have only looked at systems consisting of two particles, when perhaps the
advantage is to be had in larger systems. The original derivation of this result can be found in
appendix C.

4.7 Using a CNOT gate to assist charging

While we did not prove that the exchange operator could not benefit the ergotropy in any possible
situation, the evidence provided by the simulations and the simple proof were enough reason to

22



look into other operations that might be helpful. As the theory prescribes, the CNOT gate is
most effective if the control qubit is completely in the down state and the target qubit is left in
the up state. If we then apply the operator, this should result in the maximally excited state for
this system. This should obviously have an effect on the ergotropy of the system. The simulation
shows the following result:
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Figure 4.10: Two spin qubit system where control qubit is charged, CNOT is then applied and
ESR turned off.
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Figure 4.11: Evolution of the ergotropy of two CNOT-coupled electron spin qubits as a function
of time.

The ergotropy shows an almost instantaneous increase to maximum ergotropy. This complies with
what we expected, but please note that this is only an artificial view of the situation. In order
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to describe the CNOT gate accurately, the program should be adapted. This is explained in the
discussion. The result does not give an overall decrease in charging time, since only one qubit is
being rotated. If we were to rotate both qubits, this would give the same end state in the same
amount of time. This means that it does not decrease the charging time of the electron spin qubits,
but it may have other useful applications. It would simplify the charging process if only one qubit
needs to be rotated by ESR, but the maximum ergotropy for the system can still be reached. This
would also decrease the amount of variables in the experiment.

4.8 Numerical methods

In order to investigate the different effects operators can have on the state of our qubit system,
we need to solve the Von Neumann equation. As mentioned before, it is much more efficient to
do this numerically. This also gives a large array of options on how to apply the operators on our
system. Consequently, a large part of the work put into this research has been programming and
finding more efficient ways to describe our system numerically.

The basis of the script that was used can be found in the appendices, but this has been adapted
to over 30 versions to look into specific situations. The script consists of a general part and a
master equation that solves the differential equation. The programming work to solve a differen-
tial equations is quite simple, but what made this script far more complex is the fact that all the
operators and calculations had to be dependent on the amount of qubits you wanted to include in
your calculation. Therefore all the operators had to be generalised. It also had to be possible to
turn on any operator on any qubit, while leaving the others unaffected.

When all the variables and initial conditions have been set, the time development of the den-
sity matrices is calculated with a simple ode solver. The output is then reshaped into matrices,
such that the ergotropy can be calculated and the results can be plotted and analysed. The script
has been left as general as possible such that any operator can be inserted instead of the exchange
operator, which leaves it open for future research.
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Chapter 5

Discussion

Although we have not observed a direct effect on the charging time of the qubit systems caused
by a qubit-qubit interaction operator, this is no reason to conclude that a decrease in the charging
time of a quantum battery cannot be achieved. There may be other ways of implementing the ex-
change operator and CNOT gate. In this section, we will discuss the limitations of the simulations
that have been performed and the suggestions made to improve on them.

While we have shown that the exchange operator does not affect the ergotropy in our simula-
tion by our specific standard that ∂W

∂t should be larger than zero, we cannot conclude that there is
no possible decrease in charging time due to the exchange operator. In figure 4.7, there is a slight
peak after we entangled the qubits. This gives a battery that does not charge to its full capacity,
but is quicker to charge to 80% which might be interesting for other purposes. We know that the
mathematical reason that ∂W

∂t = 0 is that the exchange operator commutes with the Hamiltonian,
but what does this mean for the qubits? If we look at the matrix form of ρ while exchange is
turned on during the simulation for two electrons, we see that only the population terms ρ22 and
ρ33 change. The coherences are affected as well, but they are not relevant for the trace operator
in ergotropy. Any increase in ρ22 is directly opposite to the decrease in ρ33 and vice versa. Since
these populations have the same energy level, as can be seen in the Hamiltonian for two electron
spin qubits, it is logical that this does not give an increase in ergotropy.

Almost all research in this paper has been done for two electrons. While larger arrays of elec-
trons have been simulated, they gave the same result as with two electrons. Intuitively, this seems
logical since the exchange operator only works on two neighbouring electrons, but it is entirely pos-
sible that if implemented in another way this can still have an influence on the ergotropy. Further
research could be done on sequences of rotations and applying the exchange operator. It would
be interesting to look into larger arrays where there is more than only nearest neighbour interaction.

Since our results were found indepent of the assumptions we have made, it is not very relevant
to discuss their validity. For example, the dissipation time has been set the same for each energy
level, while this is not necessarily true for an experiment. We have also assumed that there is
only nearest neighbour interaction and that any operator can be turned on in any way possible.
If we did observe an effect on the charging of the qubits, it would be relevant to investigate the
maximum possible increase and the validity of these assumptions. However, since this is not the
case, it is reasonable to leave them in place. Finally, we need to address the slight oscillation in the
simulated results, as can be seen in the figures 4.3 until 4.11. This ’wiggle’ shows up independent
of the constants and applied operators and therefore it is assumed that this is a numerical error.
Changing the time step of the ODE-solver does not affect the oscillation, so it might be useful to
look into other ODE-solvers to solve this problem.
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The main research goal of this thesis is to investigate the effects of the exchange operator, but
when this did not give a decrease in charging time, the CNOT gate was taken into consideration.
Due to the different nature of these operations it is not fair to compare them directly. In fact, we
cannot represent the CNOT gate as a term in the Hamiltonian as it is. For any proper compar-
ison the CNOT operator should be written as a sequence of Hamiltonians that are subsequently
applied to the system. In figure 4.10, it seems strange that an instantaneous jump can be the
result of a differential equation. We saw in the simulation that if the CNOT operator was applied
continuously, the state jumped back and forth during every time step. If the time steps are made
smaller, the jumps start going faster. This means that our simulation can not describe this process
accurately. The program should be adapted in order to include the effect of a gate on the system.
Further research should be done on this topic in order to draw a conclusion, but for now we leave
it as an indication that the CNOT gate can have an effect on the ergotropy of a quantum battery,
but when applied with a single ESR rotation it does not give a decrease in charging time for our
system.
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Chapter 6

Conclusion

In this thesis, research was done on the effects of entanglement on the charging of electron spin
qubits. The goal was to find a decrease in charging time i.e. an increase in power per qubit by
using an entangling qubit-qubit interaction operator on an array of electron spin qubits. The time
evolution of the state was calculated by solving the Von Neumann equation both analytically and
numerically and then calculating the extractable work of the system.

6.1 The effect of exchange interaction

The exchange operator has been applied extensively in our simulation, although none of the meth-
ods have given a decrease in charging time. Although we did observe the entanglement of the
qubits, this did not have influence on the ergotropy of our system. We found that when we rotated
only one qubit of our two qubit system and applied the exchange operator, we could still fully
charge our battery if the strength of the exchange operator was high enough. This did however
double the charging time compared to simply rotating both qubits simultaneously. After observing
the lack of effect of the exchange operator on the ergotropy, we optimised the simulation such that
it evaluated in each time step if it should apply the exchange operator or not, which constantly
turned the operator off. This was evaluated by calculating the time derivative of the ergotropy.
This led to an analytical calculation that showed that in our system the derivative would always
be zero, due to the commutation of the exchange operator with the Hamiltonian of the qubits.
Although the exchange operator did influence the states, it entangled the qubits between two states
of the same energy. Further research could look into the effect of also allowing next-nearest neigh-
bour interaction and using sequences of rotations and entangling operators. The code written for
this thesis can be used to include these suggestions as well as extending the calculations to larger
arrays.

6.2 Alternatives to the exchange operator

We have reproduced the increase in power due to a global entangling operator as described by
Binder et al. [4] numerically for our system. Since it is currently not possible to carry out
this experiment, we looked into other operations. The matrix representing the CNOT gate was
promising, since it did not commute with the Hamiltonian of the qubits. When one qubit is
rotated to a maximally energetic state, it almost instantaneously flips the second qubit such that
the system is fully charged. This does not give an increase in charging time due to the rotation
time of the first qubit. Since the CNOT gate is a different form of operator, we do not know
enough to compare it to exchange interaction. This result is left as an indication that the CNOT
gate does have an effect on the ergotropy of a quantum battery and needs further research.
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Appendices

A: Main program

% #quantum dots

N=2;

% initial conditions

state = [1; 0; 0; 0];

%constants

g = 0.35; %GaAs quantum dots

mu = 5.788*10^( -2); %Bohrmagneton meV/T

Bx = 0.050; %T

hbar = 6.582*10^( -7); % meV*micros

delta1 = 5; %microseconds

delta2 = 0.5; %microseconds

%parameters

Bz = 1; % Tesla

j = 0.1; %meV , if j = 0, exchange interaction is off

esrswitch = 1; % if 0, esr is off

Tstart = 0;

Tend = pi;

TVstart = 0;

TVend = 5*pi;

T = 0.01;

Pot = ones(N);

Ex = ones(N-1);

%definining constants

Ez = abs(g*mu*Bz);

omega = Ez/hbar;

a = 1/2*g*mu*Bx;

%defining the basis for the operators

ground = zeros (2^N,2^N);

ground (1,1) = 1;

E = [ -1/2*Ez 0; 0, 1/2*Ez];

H0 = zeros (2^N,2^N);

%expanding the hamiltonian for N particles
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for kk = 1:N;

part = zeros(N,1);

part(kk) =1;

for ll = 1:N;

H(:,:,ll) = part(ll)*E + (1-part(ll))*eye(2);

end

Hfinal = H(:,:,1);

for qq = 1:(N-1)

Hfinal = kron(Hfinal ,H(:,:,qq+1));

end

H0part(:,:,kk)=Hfinal;

H0 = H0 + H0part(:,:,kk);

end

%making the start density matrix and reshaping

rhostart = state*state ';

rhostart = reshape(rhostart ,[2^(2*N) ,1]);

%defining the options for the ODE solver

options= odeset('Reltol ' ,0.000001 ,'Stats ','on');

% calculating differential equation

[t,rho] = ode45 (@(t,rho)Master_equation_final(t,rho ,g,mu,Bx,Bz,

Tstart ,Tend ,TVstart ,TVend ,j,N,hbar ,delta1 ,delta2 ,esrswitch ,Pot ,

Ex) ,[0 T],rhostart ,options);

%reshaping the solution into matrices

[m,n] = size(rho);

for i= 1: m

rhom(:,:,i) = reshape(rho(i,:) ,[2^N,2^N]);

end

%calculating the ergotropy

for dt = 1: length(t)

ergotropy(dt) = trace(rhom(:,:,dt)*H0-ground*H0);

end

30



B: Master equation

function rhop = Master_equation_final(t,rho ,g,mu,Bx,Bz,Tstart ,Tend ,

TVstart ,TVend ,j,N,hbar ,delta1 ,delta2 ,esrswitch ,Pot ,Ex ,H0)

J = j*( heaviside(t-Tstart) - heaviside(t-Tend));

Ez = abs(g*mu*Bz);

omega = Ez/hbar;

a = 1/2*g*mu*Bx;

gamma1 = 1/ delta1;

gamma2 = 1/ delta2;

sigma1 = [0 ,1;1 ,0];

sigma2 = [0,-1i;1i,0];

sigma3 = [1,0;0,-1];

E = [ -1/2*Ez, 0; 0, 1/2*Ez];

H0 = E;

Hex1 = sigma1;

Hex2 = sigma2;

Hex3 = sigma3;

I = eye(2);

V = (heaviside(t-TVstart) - heaviside(t-TVend))*a*cos(omega*t)*

sigma1;

%ESR

for i =1:N

Vf = zeros (2^N,2^N);

c = zeros(1,N);

c(i) = 1;

for s =1:N

Vs(:,:,s) = c(s)*V + (1-c(s))*I;

Vf= Vs(:,:,1);

end

for k = 1:N-1

Vf = kron(Vf ,Vs(:,:,k+1));

end

Vfinal(:,:,i) = Vf;

end

%exchange interaction

for l =1:(N-1)

d = zeros(N);

d(l) = 1;

d(l+1)= 1;

for s = 1:N

h1(:,:,s) = d(s)*sigma1 + (1-d(s))*I;
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h2(:,:,s) = d(s)*sigma2 + (1-d(s))*I;

h3(:,:,s) = d(s)*sigma3 + (1-d(s))*I;

end

Hf1 = h1(:,:,1);

Hf2 = h2(:,:,1);

Hf3 = h3(:,:,1);

for s=1:N-1

Hf1 = kron(Hf1 ,h1(:,:,s+1));

Hf2 = kron(Hf2 ,h2(:,:,s+1));

Hf3 = kron(Hf3 ,h3(:,:,s+1));

end

H1(:,:,l) = Hf1;

H2(:,:,l) = Hf2;

H3(:,:,l) = Hf3;

HEX(:,:,l) = J*(Hf1 + Hf2 + Hf3);

end

rhomatrix = reshape(rho ,[2^N,2^N]);

Comex = zeros (2^N,2^N);

Compot = zeros (2^N,2^N);

H0 = zeros (2^N,2^N);

for kk = 1:N;

part = zeros(N,1);

part(kk) =1;

for ll = 1:N;

H(:,:,ll) = part(ll)*E + (1-part(ll))*eye(2);

end

Hfinal = H(:,:,1);

for qq = 1:(N-1)

Hfinal = kron(Hfinal ,H(:,:,qq+1));

end

H0part(:,:,kk)=Hfinal;

H0 = H0 + H0part(:,:,kk);

end

for m = 1:(N-1);

Comex = Comex + Ex(m)*HEX(:,:,m);

end

for q = 1:(N);

Compot = Compot + Pot(q)*Vfinal(:,:,q);

end

if trace(-i*hbar(H0(HEX(:,:,1)*rho - rho*HEX(:,:,1))))> 0;

j = 1;

else j = 0;

end

Comex = J*j*Comex ; %time dependence of exchange

Compot = esrswitch*Compot;

%spontaneous emission
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Semis = [0 ,1;0 ,0];

for q = 1:N;

Sf = zeros (2^N,2^N);

part = zeros(N);

part(q)=1;

for r = 1:N;

Stemp(:,:,r) = part(r)*Semis + (1-part(r))*eye(2);

Sf = Stemp (:,:,1);

end

for u = 1:(N-1);

Sf = kron(Sf ,Stemp(:,:,u+1));

end

Sfinal(:,:,q) = Sf;

end

emission = zeros (2^N,2^N);

commutator = (Comex + Compot + H0)*rhomatrix - rhomatrix *(Comex +

Compot + H0);

commutator = reshape(commutator ,[2^(2*N) ,1]);

rhop = zeros (2^(2*N) ,1);

for i = 1:2^(2*N);

rhop(i) = -1i/(hbar)*commutator(i);

end

rho = reshape(rho ,[2^N,2^N]);

rhop = reshape(rhop ,[2^N,2^N]);

temp = ones (2^N,2^N)-eye (2^N);

rhop = rhop - gamma2*temp.*rho;

for y = 1:N;

emission = emission + Sfinal(:,:,y)*rho*Sfinal(:,:,y)' -0.5*

Sfinal(:,:,y)'*Sfinal(:,:,y)*rho -0.5*rho*Sfinal(:,:,y) '*

Sfinal(:,:,y);

end

rhop = rhop + gamma1*emission;

rhop = reshape(rhop ,[2^(2*N) ,1]);
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C: Original derivation that the exchange operator does not
influence ergotropy directly

∂

∂t
W = tr[H0

∂

∂t
ρ] = tr[H0

−i
~

(Hexρ− ρHex)]

= tr
[−i
~
H0J(t)

(
1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1



ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44

−

ρ11 ρ12 ρ13 ρ14
ρ21 ρ22 ρ23 ρ24
ρ31 ρ32 ρ33 ρ34
ρ41 ρ42 ρ43 ρ44




1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

)]

=
−i
~
EzJ(t) tr[


−1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1




0 2ρ12 − 2ρ13 −2ρ12 + 2ρ13 0
−2ρ21 + 2ρ31 −2ρ23 + 2ρ32 2ρ33 − 2ρ22 −2ρ24 + 2ρ34
2ρ21 − 2ρ31 2ρ22 − 2ρ33 2ρ23 − 2ρ32 2ρ24 − 2ρ34

0 2ρ42 − 2ρ43 −2ρ42 + 2ρ43 0

]

=
−i
~
EzJ(t) tr


0 −2ρ12 + 2ρ13 2ρ12 − 2ρ13 0
0 0 0 0
0 0 0 0
0 2ρ42 − 2ρ43 −2ρ42 + 2ρ43 0

 = 0
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[3] James Millen and André Xuereb, Perspective on quantum thermodynamics, New Journal of
Physics 18 011002 (2016)

[4] Felix C. Binder, Sai Vinjanampathy, Kavan Modi and John Goold, Quantacell: powerful
charging of quantum batteries, New Journal of Physics 17 075015 (2015)

[5] F.H.L Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack,. T. Meunier, L.P. Kouwen-
hoven and L.M. Vandersypen, Driven coherent oscillations of single electron spin in a quantum
dot, Nature 442, 766-771 (2006)

[6] D. M. Zumbhl, C. M. Marcus, M. P. Hanson, and A. C. Gossard, Cotunneling Spectroscopy
in Few-Electron Quantum Dots, Phys. Rev. Lett. 93, 256801 (2014)

[7] Francesco Campaioli, Felix A. Pollock, Felix C. Binder, Lucas Cleri, John Goold, Sai Vin-
janampathy and Kavan Modi, Enhancing the Charging Power of Quantum Batteries, Phys.
Rev. Lett. 118, 150601 (2017)

[8] W.A. Coish, Daniel Loss, Quantum computing with spins in solids, Department of Physics
and Astronomy, University of Basel (2008)

35


