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Abstract 
 

The material point method (MPM) has the potential to simulate the onset, the full evolution and 
the final condition of a slope failure. It is a variant of the finite element method (FEM), where the 
material is able to move through the mesh, thereby solving one of the major problems in FEM of 
mesh tangling. The post-peak material behaviour is shown here to be of importance to characterise the 
failure, with an exploratory sensitivity analysis being presented highlighting the differences in the 
simulations. Realistic failure modes can be observed. 
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1. Introduction 
 
Typical slope stability analyses, using, for example, the finite element method (FEM) or the limit 

equilibrium method (LEM), focus on the initiation of slope failure. However, in general an initial 
failure tells us little about the risk of failure. For example, a very large failure volume which only 
causes minor deformations (e.g. 10s of cm or less) may not cause significant damage or threat to life, 
whereas an initially small slope failure volume, or a superficial slide, may trigger a series of slides due 
to changes in geometry or stress level, and pose a much greater risk. Standard FEM is often unable to 
simulate the full failure behavior due to mesh tangling during large deformations, causing the 
Jacobian matrix to become indeterminant and the calculation to fail. The material point method (MPM) 
[1], which is based on FEM, addresses this issue by allowing points of material to move through a 
background mesh which is periodically reset and therefore does not tangle. 

By extending simulations from only failure initiation to full failure evolution, the modelled 
material behavior also needs to reflect post-failure behaviour. This paper explores the use of a simple 
material model, which explicitly includes post-failure (or post-peak) material behaviour, to investigate 
how slope failure evolution is influenced by this behaviour. It is based on a series of papers where the 
formulation has been presented [2] and slope failures have been investigated [3] including the 
influence of spatial heterogeneity [4] and unsaturated hydro-mechanical behavior [5]. It has also 
formed the basis of a PhD thesis [6].  

 
2. Theoretical formulation 

 
2.1 Methodology 

 
The governing equations within the model are the same as for slope stability calculations using 

FEM, or more generally the conservation of momentum. Dynamic effects, which are often eliminated 
in FEM to give a set of governing equilibrium equations, are included, as momentum is not 
insignificant during the post-failure motion. Both total stress (single phase) and effective stress (two 
phase) formulations have been implemented. The formulation given herein is for the two phase 
formulation, which gives the single phase formulation by considering the degree of saturation to be 
zero, although the solution algorithm is different [2,5].  
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The conservation of momentum for the water and the mixture are, respectively, 
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where  is the density, a is the acceleration, pw is the pore water pressure, n is the porosity, Sw is the 
degree of water saturation, µw is the water viscosity, k is the soil permeability, v is the velocity, t is 
time, σ is the Cauchy stress, b is the body force due to, for example, gravity, and subscripts s and w 
indicate the solid and liquid phases, respectively. 

Bishop’s stress is used for the stress on the soil skeleton, with the effective stress parameter 
selected to be the degree of saturation. Hence, 

 
  ( )w wS p  σ σ m  (3) 

 
where m is a vector allowing the pore pressure to act only isotropically and is [1 1 1 0]T for 2D 
analyses. 

The conservation of solid mass is automatic as the solid mass of particles does not change. The 
mass conservation of the water is utilised to calculate the pore water pressure and, via Darcy’s law, 
the velocity of water. The pore water pressure is given as 
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where λ is the rate of change of saturation with change in suction and Kw is the bulk modulus of water. 

The discretisation of Eqs. (1) and (2) is undertaken via typical finite element procedures, with the 
exception of utilising material point locations and properties to perform numerical integration. 

 
2.2 Solution algorithm 
 

Either explicit or implicit solution methods can be used to solve the governing equations, with 
different advantages and disadvantages [6]. For implicit forms, displacement is generally calculated as 
the primary variable and for explicit forms acceleration is calculated. Once the nodal solutions are 
calculated, the displacements and accelerations at the material points are calculated (mapped), the 
material points are moved and the background mesh is reset into its original position. To prepare for 
the next calculation step, the nodal values are mapped from the material points. 

In general, shape functions are used to map various quantities, and in most cases the conservation 
of momentum is used for kinematic mapping, such that 
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where p is a material point counter, i is a node counter, Nn is the number of nodes, mi is the mass 
associated with a node i, F is the total nodal force, Ni is the nodal shape function and x is the position 
of the material point.  

Again using the conservation of momentum, velocity is mapped back from the material points to 
the reset nodes by 
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where Np is the number of material points and mp is the mass of a material point. 
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2.3 Material model 
 
A simple material model has been utilised here to explore the impact of simple post-peak material 

behaviour. The model is linear elastic prior to peak and cohesion strain-softening post-peak. The von 
Mises yield/failure surface has been adopted. 

The plastic part of the material model is presented in Fig. 1. The material yields when the von 
Mises equivalent stress (ඥ3ܬଶ, where J2 is the second shear stress invariant), equals the peak cohesion, 
cp. After initial yield, the material softens at the rate of H per unit of the plastic shear strain invariant 
௣̅ߝ ௣̅, until reaching the residual cohesion, cr, whereuponߝ ൌ  ௣̅௥ߝ

 

 
 

Fig. 1. Schematic of the strain-softening constitutive model [2]. 
 
 

3. Numerical modelling investigation 
 

A typical cutting was investigated in this section as outlined in Fig. 2. The 45° cutting was 5 m 
deep, and founded on a strong bedrock. The bedrock was represented via a frictional boundary 
condition at the base, with a friction coefficient of 0.3. The lateral extent of the initial slope was 15 m 
and, at the lateral boundary, roller boundary conditions were imposed. The background grid, indicated 
in Fig. 2. by the grey squares, was 20 elements vertically and 80 horizontally. There were 4040 
material points, with initially 4 material points per full element. The timestep was fixed at 5 x 10-3 s 
and the analysis was run until quasi-static conditions prevailed. 

A total stress analysis was undertaken in this investigation and the material properties are given in 
Table 1. The first four properties were fixed in each analysis, whereas the residual cohesion and 
softening modulus were varied. The factor of safety of the slope is 0.96, based on peak cohesion, so 
that it fails under its self-weight. 
 

 

Fig. 2. Initial geometry, discretisation and boundary conditions [6]. 
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Table 1 Material properties used in the simulations 

Parameters Values 

Young’s modulus 1 000 kPa 
Poisson’s ratio 0.33 

Volumetric weight 20.0 kN/m3 
Peak cohesion 20.0 kPa 

Residual cohesion 4, 8, 12 kPa 
Softening modulus 25, 50, 75 kPa 

 

 
Fig. 3 presents the final positions of the slopes for a variety of residual cohesions (12, 8 and 4 kPa), 

with the softening modulus fixed at 50 kPa. It is seen in Fig. 3(a) that, while a complete shear band is 
shown, only very limited slumping is exhibited at the slope crest. In this case, while slope 
maintenance may be required, only limited damage would most likely occur. In Fig. 3(b) a single 
complete slip circle is exhibited, along with additional minor failures at the back scarp. Looking down 
on the slope surface this would give the appearance of a single slip surface with slumping a short 
distance back from the rear scarp. The final analysis, with the lowest residual cohesion, gives a failure 
which retrogresses until the boundary condition gives support. Graben and horst features typical of 
spreads [7,8] are observed. In this case, any structure on top of the cutting or in front of the slope 
would most likely be damaged. 

 

 
 

Fig. 3. Final positions of slope failure simulations, with differing residual cohesions.  
 
 

The influence of the softening modulus on the final slope position is presented in Fig. 4, in which 
the lowest residual cohesion (4 kPa) is used in all of the simulations. Very clear shear bands and slip 
circles are shown in all of the simulations. As the softening modulus increases (Fig. 4(a) to 4(c)) the 
amount of retrogression increases. In all cases, spread type features are observed, albeit significantly 
limited in Fig. 4(a). In Fig. 4(c) the majority of the material exhibits a significant amount of plastic 
shear straining, with only a limited amount of material exhibiting elastic behaviour. In this case, the 
slope failure reaches the end of the domain. 
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Fig. 4. Final positions of slope failure simulations, with differing softening moduli. 
 

To explore how the constitutive model is behaving spatially, the controlling parts of the model 
have been spatially plotted for a single simulation (cr = 4 kPa, H = 50 kPa) in Fig. 5. From Fig. 5(a) 
the first shear band can be seen progressing from the toe to the surface, with only a small part of the 
band having more than the residual strength remaining. The second shear band is also seen to be 
forming (softening), although almost no surface deformation is yet associated with it. In Fig. 5(b) the 
second shear band has completely formed, but the failure volume associated with the first slip is still 
in motion and only limited unloading has occurred. In Fig. 5(c) the first two failure volumes have 
finished their relative motion (they are still sliding along the bottom boundary) and unloading in the 
vicinity of the shear failures has occurred. A final shear band is formed near the vertical boundary. 

While the performance of slope failure simulations has been seen to be governed by post-peak or 
post-failure behaviour, there is only very limited experimental or conceptual characterisation of such 
behaviour.  

 
Fig. 5. Constitutive model stress regions at various times for a single simulation. 
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4. Conclusions 

 
The ability of the material point method to simulate the entire failure process of slopes has been 

demonstrated. The importance of considering the post-failure behaviour in failure simulations has also 
been highlighted, with the risk associated with failure being strongly linked to post-peak shear 
strengths. To fully exploit such contemporary numerical modelling techniques, further developments 
in estimating or characterising post-failure material behaviour are needed.  
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