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Attractive critical point from weak antilocalization on fractals
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(Received 23 November 2015; published 13 October 2016)

We report an attractive critical point occurring in the Anderson localization scaling flow of symplectic models
on fractals. The scaling theory of Anderson localization predicts that in disordered symplectic two-dimensional
systems weak-antilocalization effects lead to a metal-insulator transition. This transition is characterized by
a repulsive critical point above which the system becomes metallic. Fractals possess a noninteger scaling of
conductance in the classical limit which can be continuously tuned by changing the fractal structure. We
demonstrate that in disordered symplectic Hamiltonians defined on fractals with classical conductance scaling
g ∼ L−ε , for 0 < ε < βmax ≈ 0.15, the metallic phase is replaced by a critical phase with a scale-invariant
conductance dependent on the fractal dimensionality. Our results show that disordered fractals allow an explicit
construction and verification of the ε expansion.

DOI: 10.1103/PhysRevB.94.161115

Introduction. The one-parameter scaling hypothesis [1] is
central to the study of disordered electronic systems. The
hypothesis states that in disordered noninteracting systems the
beta function β = d log g/d log L determining the change of
conductance g with the system size L is a universal function of
g. Single-parameter scaling is known to be violated in quantum
Hall systems [2] or topological insulators [3,4], where the
topological invariant is the second scaling variable required to
capture the scaling flow, and in systems where disorder itself
is an irrelevant scaling variable [5–7]. Despite that, the scaling
flow of Anderson localization holds in an extremely broad
range of systems [8,9].

The scaling flow has two universal regimes. In the insulating
regime g � 1 the exponential localization of the wave func-
tions leads to a further decrease of conductance with the system
size leading to β ∝ log g + constant. At high conductance, the
beta function recovers the classical Ohm law, limg→∞ β ≡
β∞ = d − 2 with d the Euclidean dimension. A successful
prediction of the theory was the occurrence of a metal-insulator
transition in 3d as the flow passes between these two limits.
Later studies have refined the theory in the diffusive regime by
taking into account quantum corrections to the Ohmic conduc-
tance [8,9]. In time-reversal-invariant systems with spin-orbit
interactions, also called symplectic, the corrections to g are
positive, yielding weak-antilocalization effects [10]. Conse-
quently, these systems exhibit a metal-insulator transition even
in 2d, with logarithmic corrections to conductance g ∝ log L,
and a metallic phase at large conductance (see Fig. 1).

A successful approach in treating Anderson localization
is the ε expansion, which treats d as a continuous variable
and constructs a series expansion of the scaling flow [11–14].
The ε expansion is a mathematical construct which is not
expected to have a physical meaning when d is not integer;
nevertheless, fractals are examples of systems with noninteger
dimensionality. This motivates the main question of our work:
Does the scaling hypothesis hold on fractals? The scaling
theory of phase transitions on fractals holds for the Ising
model [15,16], the percolation transition [17], as well as the
metal-insulator transition of the Anderson model on bifractal
lattices [18,19]. Tangential to our study are the investigations
of shot noise in fractal resistor networks [20,21] and quantum
transport on clean Sierpiński gaskets [22–24] and carpets [25].

If the scaling hypothesis does hold, the simplest possible
modification of the scaling flow on the fractal would be an
overall shift of β such that β∞ matches the properties of
the Ohm law on a fractal. This leads us to the following
prediction: There exist fractals such that the scaling flow of a
symplectic model on them has a metal-insulator transition and
an attractive critical point (shown in Fig. 1). The appearance
of this type of critical point on fractals is a unique property
of Anderson scaling flow in symmetry classes allowing weak
antilocalization, and it constitutes the main focus of our study.
Until now it has not been observed, despite numerical studies
which confirmed the presence of the usual metal-insulator
transition on symplectic fractals with Hausdorff dimension
lower than two [26].

Analytical arguments for the presence of two critical
points. Physical observables obey anomalous scaling laws
in fractal systems; see Refs. [27–29] for reviews. Instead
of the Euclidean dimension d of the embedding space,
these scaling laws are governed by the Hausdorff and the
spectral dimension. The Hausdorff dimension dh determines
the scaling of the volume occupied by the fractal. The spectral
(fracton) dimension ds characterizes scaling of the low-energy
density of states of the Laplace operator on the fractal
ρ(ω) ∝ ωds/2−1 [30], and therefore is relevant to diffusion and
phonon dispersion on fractals. While for Euclidean systems
the exponents d, dh, and ds are identical, in fractals they obey
the inequality d � dh � ds [31].

The insulating limit of the scaling flow is governed by
the exponential localization of wave functions on almost
decoupled orbitals, and applies whenever the growth of the
number of nth nearest neighbors of an orbital is subexponential
with n. Therefore the scaling on fractals should hold in the
insulating limit g � 1. The classical limit g 	 1 is governed
by a diffusion equation. Diffusion on fractals is slowed down
so that the mean-square displacement of a random walker on
fractals reads 〈r2〉 ∝ tγ , with the subdiffusion exponent γ =
ds/dh < 1 [30,32]. The Einstein relation links the diffusion and
conductivity, and yields the scaling of diffusive conductance
on fractals [28,31,33]:

g0 ∝ Lβ∞ , β∞ = dh − 2dh/ds. (1)
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FIG. 1. The conductance flow (β = d log g/d log L) as a function
of dimensionless conductance g. There is a single repulsive critical
point at g = g2d

c for symplectic systems in 2d (dashed gray line). The
conjectured flow for symplectic fractals with Hausdorff dimension
lower than two (solid black line) can display an attractive critical
point ga

c , in addition to the usual repulsive point gr
c . The fractal is

insulating in the diffusive limit, with a negative offset β∞ due to the
fractal Ohm law.

In particular, Ref. [31] makes an observation that Eq. (1) agrees
with the scaling hypothesis of Anderson localization similarly
to the classical diffusive conductance on Euclidean lattices.

If the scaling conjecture holds for conductance in fractal
systems, then its asymptotic form at g 	 1 should be

β = β∞ + A/g + O(g−2), (2)

with β∞ the fractal diffusive conductance scaling exponent and
A ∼ O(1) a scale-independent constant whose sign depends
on the symmetry class of the problem. In particular, this scaling
form was postulated [34] for the orthogonal symmetry class.
We verify that the scaling hypothesis holds at least in the g 	 1
limit by using the return probability p0(t) after a time t [35–38]
and the fractal diffusion equation. In a fractal lattice the
return probability is a function of ds, p0(t) ∝ t−ds/2 [31,39].
Therefore the conductance correction δg to the fractal Ohm
law reads

δg

g0
∝

∫ ∞

0
dt p0(t)e−t/τφ ∝ τ

1−ds/2
φ , (3)

with τφ the phase-coherence time. Calculating the prefactor of
the integral is beyond the scope of our work. It depends on
fractal dimensions, but it is always positive for a Hamiltonian
in the symplectic class. Replacing τφ with the typical time
it takes a random walker to escape the system L2 ∝ τ

ds/dh

φ ,
and using the definition of the scaling exponent Eq. (1), we
conclude that the quantum correction to scaling is a scale-
independent constant gc, unlike a divergent correction δg ∝
log L in 2d. Therefore the scaling function, calculated from
the asymptotic form of conductance g(L) = g0 + gc, reads

β = β∞ − β∞gc/g. (4)

For weak antilocalization, the correction to the flow is positive;
from Eq. (2) A = −β∞gc > 0, since β∞ is negative. We
observe that indeed, the scaling of conductance is satisfied
also by the fractal diffusion equation.

FIG. 2. Fractal patterns where we observe two critical points.
(a) Sierpiński 5 × 5 pattern and (b) two-level lattice created using
the pattern. The fractal pattern is mapped to resistor networks
(black rectangles denote resistors). (c) Decimation procedure to
create statistical fractals derived from 3 × 3 Sierpiński patterns and
(d) a three-level lattice with p = 0.5. For statistical fractals, at any
decimation step, there is a probability p that a lattice block is carved
with the fractal pattern. The lattice turns from Euclidean (p = 0) to
regular fractal (p = 1) by continuous variation of p.

When β∞ is negative and close to 0, β∞ < 0 and |β∞| � 1,
the scaling function (4) vanishes at gc = −A/β∞ 	 1. Since
higher order quantum corrections to scaling δg = O(g−2)
should be negligible when g 	 1, the second critical point
must indeed appear, and it has to be attractive, as shown
in Fig. 1. In the following, numerical simulations will
support this prediction by tuning β∞ using different fractal
geometries.

Choice of the fractal. The parameters of a fractal with
two critical points are limited by two considerations. On
the one hand, if |β∞| is too large, the quantum corrections
to scaling become insufficiently strong to create a zero
of the β function. Assuming that the main effect of changing
the fractal exponents is an overall shift of the β function
provides the requirement |β∞| < βmax, with βmax ≈ 0.15, the
maximum [40] of the β function in a symplectic 2d model.
On the other hand, β∞ must be negative for the second critical
point to appear. If β∞ approaches either of the limiting values,
the scaling flow near the attractive critical point slows down,
complicating the observation of criticality. Additionally, when
β∞ is close to zero, the attractive critical point occurs at
large conductance g, requiring large system sizes, which are
impractical for numerical simulations. We therefore choose to
use a fractal with β∞ ≈ −0.1.

In order to tune β∞, we consider two generalizations
of Sierpiński carpets. In the first case, the fractal remains
regular, with a number of subdivisions, larger than 3 × 3 [see
Figs. 2(a) and 2(b)]. In the second case, statistical fractals
are generated using a probabilistic subdivision rule, where the
central subblock is removed with a probability p [see Figs. 2(c)
and 2(d)].

Varying the number and position of removed cells in each
subdivision or changing p allows us to control dh and ds .
In order to compute β∞, we construct finite-size versions
of each fractal, replace the centers of each cell with nodes
of a resistor network, and connect neighboring nodes with
equal resistors, as shown in Fig. 2(a). We set the potential of
the leftmost modes to 0, and that of the rightmost to 1, and
numerically solve the resulting Kirchhoff equations for several
system sizes and geometric disorder realizations in the case of
statistical fractals [41]. The Kirchoff system of equations is
defined and solved using the Kwant package [42]. Finally, the
length-independent β∞ follows by fitting the finite-size fractal
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results dependent on average g(L) to

βclassical(L) ≡ logb

〈g(L)〉
〈g(L/b)〉 = β∞ + cL−μ, (5)

with b, the pattern magnification factor, and c and μ constants.
This procedure yields results which agree with the exact

value of β∞ for a Sierpiński gasket [41]. For the classical 3 × 3
Sierpiński carpets, which lacks exact analytic results [43],
we determine numerically β∞ ≈ −0.2, which lies within
the bounds provided by the approximate renormalization
group analysis [44–46]. This result also means that classical
Sierpiński fractals will not host two critical points, which was
a reason to search for alternative patterns. We find that the
suitable value β∞ ≈ −0.1 is reached by the recursion pattern
shown in Fig. 2(a) and statistical Sierpiński carpets with p =
0.5. From resistor network simulations [41], we extract the
classical conductance exponent in the 5 × 5 pattern with dh =
log5(23): β∞ ≈ −0.1055. In the p = 0.5 statistical fractal
with Hausdorff dimension d̄h = log3(8.5), after averaging
conductance for an ensemble of 104 geometrically disordered
lattices at each L, we find β∞ ≈ −0.1063 [41].

Quantum simulations of symplectic fractals. We investigate
the scaling flow on fractals using the tight-binding Ando
Hamiltonian [47,48]

H =
∑

r

[
Vrc

†
rσ0cr − t

∑
r ′∈nn

c
†
r ′e

iθ(r ′−r)·σ cr

]
, (6)

defined on sites r of a finite-order fractal cut out of a square
lattice with unit lattice constant, with c

†
r and cr the electron

creation and annihilation operators. Here σ are the Pauli
matrices acting in spin space, and θ = π/6 is the spin-orbit
coupling parameter. The hoppings with amplitude t = 1
are connecting the sites with their nearest neighbors on a
square lattice, if those are present in the fractal. The random
uncorrelated on-site potential Vr is uniformly distributed in the
interval [−V/2,V/2], with V the disorder strength. We attach
leads to the leftmost and rightmost sites present in the system,
and compute conductance using the Kwant package [42,43].

We calculate the average conductance as a function of
disorder strength and fractal size. Our results for the fractal
of Fig. 2(a) are shown in Fig. 3(a) for the sizes L = 125 and
L = 625. The corresponding data for the fractal of Fig. 2(c)
with p = 0.5 and fractal sizes 81, 243, and 729 are presented
in the Supplemental Material [41] and exhibit the same trends.
We find that the conductance grows with size for intermediate
disorder strengths, and drops both for high and low disorder.
The crossing of the curves at large disorder strength is the
usual repulsive critical point marking the transition towards
the strongly localized phase at g < gr

c [26]. The crossing
of conductance curves at lower disorder strength realizes the
attractive critical point ga

c . We fit the g(L) in the vicinity of
the attractive critical point with g(L) = ga

c + c(V − Vc)L1/νa ,
with Vc, the critical disorder, νa , the critical exponent, and
c a constant. The resulting values are 1/νa = −0.0668 ±
0.00006, ga

c = 3.811 ± 0.002 for the deterministic fractals,
while for the statistical ones [41], 1/νa = −0.0847 ± 0.0005
and ga

c = 3.598 ± 0.026 (for L = 243,729 lattices). There
are several sources of error which account for observed
deviation of νa from the prediction given in Eq. (4) 1/νa = β∞.

2 3 4

V/t

1

2

3

4

5

6

〈g
〉

(a)

L = 125

L = 625

0.5 1.0 1.5 2.0

ln〈g〉

−0.2

−0.1

0.0

β̃

(b)

5 × 5 fractal

statistical fractals

2.4 2.5 2.6 2.7

V/t

3.6

3.8

4.0

4.2

〈g
〉

FIG. 3. (a) Quantum transport results for a 5 × 5 pattern
Sierpiński carpet. Average dimensionless conductance g as a function
of disorder strength. There are two critical points (encircled) and
an intermediate metallic scaling regime. There are 104 disorder
realizations for L = 125 lattice, and 103, for L = 625. The lines
represent a cubic interpolation of experimental points (markers) to
guide the eye. The inset shows a zoom at ga

c , where there are 105

disorder realization for L = 125 and 5 × 103, for L = 625. The
critical exponent is extracted from a linear fit of conductance curves
near ga

c (inset lines). The error bars represent the root-mean-square
deviation. (b) Approximate scaling function β̃ for 5 × 5 fractals (red)
and for the largest lattice sizes in statistical fractals L = 243,729
(blue). The green dashed line is the prediction of Eq. (4) with ga

c from
5 × 5 pattern simulations. The dashed black line denotes β∞.

Specifically, the O(g−2) corrections to the scaling function
due to strong localization should make |νa| larger, while the
finite-size corrections due to a finite mean free path may affect
the obtained value of νa either way.

Since the numerics limits the system sizes to only two
or three values, we calculate the approximate β function
β̃ = log[g(L2)/g(L1)]/ log(L2/L1), with L2 the largest
available system size, and L1 = L2/b. This approximation is
appropriate despite b not being infinitesimally small since the
conductance only changes slowly with length. On the other
hand, separating the finite-size corrections to the β function
requires more system sizes and larger computational resources.
The dependence of β̃ on [g(L2) + g(L1)]/2 is shown in
Fig. 3(b) for both fractal types that we study. We observe that
both curves agree with the predicted qualitative scaling flow,
and show a clear presence of two critical points. Also in agree-
ment with our expectations, the deviations from the predictions
of weak antilocalization become significant not only at small
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conductance, due to strong localization, but also at large con-
ductance, due to the increase of mean free path and finite-size
effects.

Summary. We presented analytical arguments for the
scaling hypothesis validity on fractals, and showed that the
competition between the positive quantum corrections to
conductance and the diffusive conductance scaling can lead
to the occurrence of an additional attractive critical point.
By tuning the fractal dimensions to the optimal regime with
β∞ ≈ −0.1, we have also observed this critical point using
numerical simulations. Our findings are an example of the
appearance of phases on fractals that cannot be observed in
integer dimensions.

While the main relevance of our work is theoretical, the
scaling of conductance can be observed experimentally using
a patterned low effect mass quantum well with high spin-orbit
coupling such as InAs or InSb at ultralow temperatures. With
spin-orbit length lSO ≈ 100 nm at these structures, it becomes
possible to aim for a 30 nm feature size, while the dephasing

length can be on the order of microns at the lowest accessible
temperatures. A natural further question to investigate is how
the multifractal properties of the wave functions at the critical
point are tied to the fractal dimensions dh and ds of the parent
fractal. Our work can be straightforwardly adapted to other
symmetry classes supporting weak antilocalization, such as
the thermal metal phase characterized by the presence of
particle-hole symmetry and absence of time reversal. Finally,
we expect that further analytical progress is possible using d-
dimensional Sierpiński gaskets due to their finite ramification.
When d → ∞, the conductance scaling β∞ of Sierpiński
gaskets asymptotically approaches 0, offering a way to analyze
localization in regular 2d lattices.
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