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Executive summary
The frequency of online banking fraud incidents has increased over the last years. A method used by different
cybercriminals is the injection of malicious code into the targeted web pages. For example, attackers might inject

an additional piece code into the webpage of a targeted bank asking users to enter extra personal information (e.g.,
the PIN of the card).

Over the years and despite the different technical solutions have developed to detect injection code attacks,
attackers continue to target different financial institutions using the web injection technique. This suggests the
presence of an environment which allows cybercriminals to evolve their code. The majority of studies related
to the evolution of malware so far are mostly focused on studying the evolution of different components of the
same malware or how similar are malware families which they are variants of the same malware family. Limited
information exists on the code similarity of the actual code used in web injected code attacks.

Having this in mind, we used a rich dataset provided by Fox-IT, to formulate the following research ques-
tion: " How do cybercriminals evolve the code injected by financial malware in MiTB attacks?". To answer this
question, we used a data sample from the Fox-IT dataset which contained injected code attacks from four different
malware families. For the extraction of the injected code we used a list of JavaScript, HTML and CSS keywords
in order to discard empty strings or string containing only English words. In addition through a literature review,
we identified MOSS, Sherlock, JSCPD as the most suitable tools to be used to detect similarity in different inject
code attack instances. However, due to their inability to scale the results for all the different attack codes, we
decided to use metrics based on string matching.

The findings of the descriptive analysis are:

 Attackers tend to reuse the same attack, all the attack instances in this research are repeated at least four
times.

* The lifespan for the majority of the attacks for all malware does not last as long as the malware’s lifespan.
This point out that attackers updated the content of the configuration file (code) more than once during the
malware lifespan, which is a sign of code evolution.

 Attacks of Ramnit and Citadel have been also used by other malware families which proves that cyber-
criminals not only use the same code in attacks of the same malware family but also in attacks of different
malware families.

» The majority of times, attackers do not target a domain more than 500 times.

The use of the Levenshtein distance for measuring the code similarity and the visualization of the results through a
self similarity matrix allowed to discover cases where attacks have high code similarity.

The results showed that while attackers are frequently changing the attacks against domains of financial in-
stitutions, they tend to develop reusable and no page-specific code which allows them to reuse it in attacks against
different targeted domains and in some cases even across different malware families.

Finally we used the findings of our analyses to provide recommendations to different financial institutions
on how to improve their current defense measures against malware families that perform web injected attacks.
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Table of Terms

A table of terms related to the topic of web injected code attacks is presented below. The definition of each term is
provided in the second column.

Term Definition

Web injected code attack A malicious technique used by cybercriminals, also known as a
Man-in-the-Browser attack (MitB). Cybercriminals are using this
technique to target specific web pages and modify their content
for the purpose of deceiving users, making them believe that the
content they are browsing is the actual content of the webpage
[13]. In this research after the second chapter, when we use the
term attack we are refereeing to web injected code attacks.

Configuration File The file which provides parameters and initial settings for the
operating system or other computer applications. It is usually
written in ASCII encoding and contains all necessary data about
the specific application, computer, user or file !. In web injected
code attacks, it is the file which contains the target web page and
the code which will be injected into that web page. It is saved
in the command and control (C&C) server of the botnet which
downloads the file in the infected computers (i.e. bots).

Injected code The code developed by cybercriminals which is injected at the
targeted web pages, in order to modify their content. It mostly
includes JavaScript code but it can also have HTML and CSS
content. It is stored in the configuration file.

Lines of code In this research lines of code is referred to as the physical lines
of code (LOC), which is the number of lines in a file, excluding
comment lines [80].

IDefinition Retrieved from: https://www.techopedia.com/definition/3339/configuration-file-config-file



Introduction

1.1. Research Problem

Since the mid-1990s, banks have introduced online banking as a new way to offer their services to their customers
[84]. Online banking services are divided into three main categories: Internet Banking, Home Banking, and
Mobile Banking. Over the years, customers have widely accepted these services [94]. However, the number of
online banking fraud incidents reported is increasing. Estimating the cost of cybercrimes has been proved to be
very challenging for researchers. Nevertheless, the majority of researchers agree that it affects everyone and that
the losses caused by cybercrimes are massive [5, 39, 46, 75, 90]. Only in 2014, 1,467 financial institutions in 86
countries reported that they were the target of financial Trojans attacks. According to a report published by the
European Central Bank in 2015, the total fraud for Single Euro Payments Area (SEPA) was around €1.44 billion
and the value of ‘card-not-present’ (CNP) fraud increased to €958 million.

Throughout the years, different methods which can detect online fraud incidents were proposed by Phua et al.
[83], van Vlasselaer et al. [113], Wei et al. [117]. Nevertheless, attackers have managed to find their weakness and
developed different types of attacks to target financial institutions. One of the most popular ways of attacking
financial institutions is phishing attacks. Phishing attacks are executed through emails containing malicious links
[101]. This type of attack can extract personal and sensitive information from users including their passwords and
credit card information. Evidence have shown that 30,000 phishing incidents are reported every month and around
900 bank accounts are victims of those attacks [4].

Hackers also commit online banking financial fraud, using financial botnets [88]. Cybercriminals utilize the
botnets to perform different illegal activities such as Distributed Denial of Service (DDoS) attacks. Using botnets,
attackers can take control and form a network of many infected computers [40]. Many financial botnets are
developed to act as Man-in-the-Browser (MitB). MitB attacks are activated through Trojan malware, which is
installed on the victim’s device and can infect Internet applications [95]. MitB attacks are designed with the ability
to "intercept and manipulate" any data a user exchanges when using an Internet application. This type of attacks is
very dagerous because they can hide their operation from anti-virus software [93]. For example, attackers can use
such Trojan malware to insert into a customer’s bank web page an additional piece of code [112]. This piece of
code can steal additional information from the user without him noticing. These attacks are called *web-injected
code’ attacks.

Over the years, law enforcement agencies around the world with the help of the financial sector and secu-
rity firms have implemented many operations to takedown botnets of different Trojan malware [34, 76, 77]. Still,
Trojan banking malware is top a threat to the financial sector. A report by Check Point [16] has listed two Trojan
malware families in the top 10 list of the “most wanted malware”. The threat of Trojan banking malware is even
more evident in the last report by Check Point [17] which recorded a 50% increase on the impact of banking
Trojans in the first months of 2018. However, we still do know why, despite those takedown operations, attackers
continue to use web injected code attacks and how they evolve the code used in the attacks.
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Relevance

The focus of our research is on financial malware that performs MitB attacks. We aim to study the evolution of the
injected code used in those attacks. This is relevant in academic terms because there is a research gap. Moreover,
the problem described is a problem that links together society, technology, institutions and in some extend policy.
For technology and institutions, the results can be used to evaluate current countermeasures and develop new
policies against different cyber attacks. For society, the results can be used to protect users against any cyber
threat.

Science

To the best of our knowledge, so far there are no studies focusing entirely on the evolution of those types of attacks.
Researchers usually focus on the current design of such malware and how they can mitigate it [86, 88, 100]. The
majority of studies, examine different variants of the malware but not the actual code that has been used in the
attacks [69]. Additionally, since it is very difficult to obtain the actual source code of such attacks very little is
known about the semantics of the attack code and what actually motivates the cybercriminals to evolve their code.

Society

Except for the possibility of filling the knowledge gap by providing insights on how cybercriminals evolve their
code in financial attacks, this research can also have a contribution to society. The possible contribution to society
is that knowledge about that behaviour can enable implementation of effective mitigation strategies and be a
reference point for a number of financial institutions against the threat of cybercrime. These strategies can help
different financial institutions to protect not only their assets but also their customer’s personal data and privacy
and to a greater extent the national security.

Technology

Finally, the understanding of financial malware functionality is also technically relevant. The results of the study
can be used to assess how effective are the current countermeasures in the different financial institutions and
facilitate the design of new ones that can minimize the threat.

1.2. Research Opportunity

1.2.1. Literature

Banking Trojan Malware

In the previous section, we mentioned that despite the efforts to take down the botnets of different Trojan malware,
the threat is still active. It is likely that the threat is active due to the existence of several malware variants. For
example, the leak of the source code of the ZeuS malware, one of the most known Trojan banking malware, lead
to the development of many variants. Ice IX, Citadel, ZeuS-P2P, and SpyEye are among the most popular and
used [32, 108].

To get a better understanding of how much connected are those variants, we briefly review the existing lit-
erature. Boutin [13] states that different malware families continue to use the same web injected tools and code
when targeting bank web pages. Tajalizadehkhoob et al. [109] studied the evolution of the injected code in the
ZeusS financial malware data files. They detected code similarity in the injected codes, which indicates code reuse
in the attacks. According to Rahimian et al. [86], the Citadel and the ZeuS malware share a significant proportion
of the same code. Their main difference is related to the injected code module: Citadel has “country-specific”
features when is targeting online banking accounts. The authors argue that this additional feature makes the
Citadel malware more sophisticated than the ZeuS. Criscione et al. [23] discovered that the SpyEye and the ZeuS
malware are using the same injected code for the targeted web pages.

Detection Methods

The methods which have been used so far for analyzing the code used in the injected code attacks are mostly
reversed engineering and clone-based analysis [12, 86]. On the other hand, Criscione et al. [23] argue that reverse
engineering technique is time-consuming and has a low response time to cyber attack incidents. Instead, they
propose an automatic method (ZARATHUSTRA) to test whether malware targets a specific web page. They tested
their method against a dataset containing ZeuS samples and the URLs of bank web pages. The ZARATHUSTRA
method was able to identify all the malicious code which injected into the web pages. Successful malware detection
methods using the Zeus and the SpyEye as malware samples have also been developed by Garcia-Cervigon and
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Llinas [41], Riccardi et al. [89]. Even though these various detection methods exist, web injected code attacks still
occur and the injected code has evolved over the years [13].

1.2.2. Knowledge Gap

In the previous subsection, we briefly describe the problem of injected code malware. Through literature, we found
that variants of banking Trojan malware tend to share and reuse the same code. The studies which have analyzed
and measure the code similarity are mostly using the binary or assembly code of the malware attacks [12, 86].
We assume that this is the result of the difficulty to obtain the actual source code of the malware. In addition, the
majority of the literature focuses on detecting the similarity between the variants of different malware families and
not the similarity in the code used in the attacks. Finally, limited information exists on how exactly cyber criminal
decide to evolve their code and what changes they perform to new attacks compare to their previous versions.

A rare and great research opportunity was created to study the evolution of the injected code by examing
the source code of the attacks. This opportunity is thanks to Fox-IT, a security company, which gave us access
to a dataset. This dataset contains a massive amount of information related to cyber attacks including their
configuration files. Having access to the configuration file enable the extraction of the source code that was
injected into the targeted web pages.

1.3. Research Question

The limitations which we already mentioned and the ability to use a very rich dataset in terms of information
provides us, the window to study even further the evolution of the injected codes. Therefore, we formulated the
following research question:

How do cybercriminals evolve the code injected by financial malware in MiTB attacks?

The objective of the research is to investigate the evolution of web injected code attacks which are target-
ing financial institutions. It is intriguing to examine how attackers adjust and evolve their code, how similar it is to
previous versions and to different malware families. Moreover, this research can give insights on why attackers
have the incentives to use the same code, whether is only related to the cost or additional motivations exist. Finally,
it can help banks and other financial institutions to evaluate if they have effective countermeasure against financial
malware attacks and propose way they can deal with malware that uses already known code.

1.3.1. Research Approach

In this section, we explain the research approach we followed for the conduction of the thesis. We use a case study
research since its aim is to answer “how” research questions and to provide insights and a better understanding
of a situation happening in the real word [124]. In this research, we use multiples case studies, with a descrip-
tive/exploratory approach. This approach is based on [124] approach. The three main parts of our research which
we used to answer our research question are:

1. Data Collection and Preparation

The conduction of our research required a dataset which contains instances of malware attacks. Fox-IT has
provided a dataset which includes raw information about different online financial fraud incidents caused by
different malware families. However, not everything in the dataset was considered relevant for this research.
Taking into consideration the size of the dataset and the limited time we had for this project, we selected a
sample of four malware families to continue our research. Next, we selected the main parameters which we
used as inputs for our analysis. In the last stage of the data preparation, we extracted and saved the injected
code for easier access in later sections of the research.

2. Data Exploration
In this step, we performed a descriptive analysis. We used our selected parameters and a series of different
analyses to discover evidence of code reuse and evolution in our sample set. In addition, we performed a
literature review to discover the most suitable tool for comparing the injected code used in the different
attacks.

3. Data Analysis
The last step of the thesis is the actual analysis of the data. In this step, we compared the injected code of
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the attacks to identify code similarity. Afterwards, we used a self similarity matrix to visualize the results
and performed code similarity analysis to draw conclusions regarding the code evolution. The tools we for
the data analysis were the programming languages Python and R.

Advantages of the multiple cases approach is that can be considered more robust compared to the single case
approach. On the other hand, limitation of the approach, it is the fact that it can be time consuming and that
requires more resources than a single case [124].

1.3.2. Sub Questions, Methods and Tools

The list of sub-question that were used to answer the main research question how cyber criminals evolve their
code in different attacks instances is provided below. For each sub-question, the tools and methods used to find
the answers are also explained.

1. What indicators of code evolution can be observed in the dataset?

We used this subquestion to describe our data and discover evidence of code evolution or reuse in our
injected code attacks samples. We conducted a series of descriptive analyses using different levels of
analysis. Our main aim was to identify if code evolution actually exists in the injected code attacks.

2a. What is the most suitable tool for detecting code similarity in different inject code attacks?

The literature review has shown that different malware shares a significant portion of the same code. In our
descriptive analysis, we identified indications of code evolution in the attacks. However, we did not actually
know how much did the code change. In this sub-question, we defined which of the available code similarity
tools is suitable for measuring the code similarity in the injected attacks. We conducted a literature review in
which we reviewed tools developed for code clone detection, plagiarism detection, and malware similarity
detection. Limitation regarding the selection of tools was the availability of the tool and its ability to detect
code similarity in JavaScript code which is the programming languages in injection code attacks.

2b. What are the possible limitations of the the tool and how can they impact the result when it is used
for injected code comparisons?

The goal of the sub-question was to identify what are the possible limitation of the tools we selected. We
answered the sub-question by exploiting the limitations of each. We also provided an alternative solutions
to serve as measure of code similarity.

3. How much code re-using, stealing or sharing does exist across different instances of inject code
attacks??

The goal of this question is to examine if attackers use the same code in different injected code attacks.
In order to answer this question, we first used the tools which we selected in the previous sub-question to
measure the code similarity between all the attack samples we extracted. Then we used the results to plot a
self similarity matrix which shows the code similarity among all codes in scale. We used the self similarity
matrix to identify cases where signs of code reuse was visible. We formulated hypotheses to explain the
code similarity. Finally we examined the code used in those cases so we can either accept or reject our
hypotheses.

Two data analysis tools were used for answering the sub-question. Python is used for extracting and preparing
the datasets for each analysis separately, while R is used for the interpretation and statistical analysis of the results.
The advantages of using these tools is their ability to handle large dataset, their flexibility and the different methods
they offered for data analysis.

1.4. Structure of the report

This thesis is structured as follows: In the second chapter, we provide background information. We start the
chapter by giving examples of malware families which perform MitB attacks, and we briefly explain how they
inject the malicious code. Then, we take a look at the literature related to web inject and malware evolution.
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In chapter three, we provide a brief overview of the dataset supplied by Fox-IT. We explain how we con-
structed a dataset which only contains injected code attacks and how we pre-process our data. In chapter fourth,
we present the results of our descriptive analysis which allowed us to discover to what extent evidence of code
evolution or reuse exist in our attacks samples.

In chapter five we review existing code similarity tools from literature. We select existing tools and we re-
view what it is their possible impact and limitation when they are used to compare the injected code. The
chapter ends with a presentation of metrics based on string matching which we used to detect code similarity in
different inject code attack instances. Chapter 6 contains all the analyses we performed to detect code similar-
ity in different injected code attacks. First, we present a self similarity matrix which show the code similarity
among all injected codes. Then we explore three cases of code similarity by examining the code used in the attacks.

Finally, in chapter seven we summarize the results and answer the main research question based on the answers of
the research sub-questions in chapters 4 - 6. Additionally, we discuss results, limitations, and recommendations
for future research.






Background

In this chapter, we provide background information related to our research problem. In the first section, we provide
examples of different banking Trojan malware families. Next, we briefly describe how an injected code attack
operates. In the final section, we shift our focus to the malware evolution.

2.1. Banking Trojan Malware Families
2.1.1. ZeuS

ZeusS or Zbot is one of the most known Trojan banking malware, it appeared first in 2017 [32]. It is responsible
for almost 90% of the global banking fraud and for the 44% of online malware infections [4]. The ZeuS kit could
be bought privately, up to the price of $4,000. However, the leak of its source code in 2011, reduced its price [89].
As we already mentioned, this leak contributed to the creation of several malware variants. In the following, we
explain some of them.

Zeus Peer-to-Peer (P2P)

Zeus peer-to-peer (P2P) or GameOver Zeus is a variant of the Zeus Trojan malware which appeared in September
2011 [32]. Unlike the other variants of Zeus, Zeus P2P uses a P2P network and a domain generation algorithm for
C&C [103]. The lack of centralized C&C servers makes taking down the Zeus P2P botnet harder, when using the
same countermeasures used against the original Zeus malware [6]. The P2P network of Zeus has two central roles:
(1) It allows the bots to exchange binary and configuration updates with each other, and (ii) Bots can share a list of
proxy bots that can be used to drop stolen data and retrieve commands [6]. The Zeus P2P malware performs its
illegal activities in real time and is usually distributed and disguised as an email invoice [103].

Citadel

Following the leak of Zeus, source code in 2011 the Citadel malware emerged as a new variant. Citadel is targeting
financial institutions and performs MitB attacks. The Citadel kit can be bought in underground Russian forums for
$3,000, compared to $100 for the SpyEye and leaked Zeus kits [102]. Citadel has kept almost all major features
of Zeus [78]. However, the authors of Citadel have added extra capabilities and expanded the abilities of the
malware. Some of the capabilities include video capture, denial of services and automated command execution
[78, 86]. Moreover, besides web injected code attacks, Citadel can also act as ransomware [32].A McAfee report,
published in 2012, reveals that cybercriminals are using Citadel to target mainly European countries, with the
United Kingdom, Germany, and the Netherlands being their main focus [99].

Other Variants

The popularity of mobile banking, lead to the development of the ZeuS-in-the-mobile (ZitMo) malware that has
targeted many customers in European countries[32]. Ice IX is a variant of ZeuS family which steals users’ bank
account details and phone numbers too [59]. The SpyEye variantis a third-generation malware, which hijacks
the user’s device’s audio and video and uses the keylogger mechanism to steal sensitive information [32]. The
Bugat malware browses and sends information from the victim’s infected machine [72]. The Shylock malware
appeared in 2011 and uses the same “configuration architecture” as the original ZeuS malware [120]. The authors
of Shylock used the injected code attacks to extract user’s bank credential for fraudulent purposes [106].

9
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2.1.2. Gozi

The Gozi malware first appeared in 2007 and was one of the first banking Trojans. It mostly targets English
speaking countries. The source code of its first variant was leaked in 2010. The second variant Gozi v2 introduced
a new mechanism which allowed the malware to perform injected code attacks when targeting different banks
[96]. According to a Kaspersky Lab report, published in 2016, during the 3rd quarter of 2016 the Gozi malware
family was the 4th most used malware against online banking users.Later reports show that the developers of Gozi
malware have updated the code of web injection mechanism to commit "form grabbing" and web injection in the
Edge browser which is the default browser of Windows 10 [96].

2.1.3. Ramnit

The Ramnit malware first appeared in 2010 and was operating as worm. In 2011, due to the leak of ZeuS
source code, Ramnit obtained some of ZeuS’ modules and started performing MitB attacks [104]. The main
difference to the ZeuS web injects module, is that Ramnit does not communicate with the C&C server directly.
The Ramnit botnet compromised approximately 350,000 computers worldwide [105]. According to the AV Test
report published in 2016, Ramnit was the 4th most used malware on the Windows platform in 2015 and the 3rd
for the 1st and 2nd quarter of 2016.

2.1.4. Dyre

The Dyre malware first appeared in 2014, it mostly targets English speaking countries and it is spread using spam
emails.[18]. The Dyre malware can execute different types of MitB attacks [107]. The first type is similar to the
attacks performed by the ZeuS malware. The Dyre malware injects malicious code to modify the appearance
of different websites and steal additional information entered by the victims. The second type of MitB attacks
redirects victims to a fake website. The fake web page steals user’s information before redirecting him back to the
original web page. In contrast with other banking Trojan malware, the Dyre malware has no connection with the
ZeuS malware family.

2.2. Injected Code Attacks

The majority of Banking Trojan malware that performs MitB attacks operates as follows. Once the malware
infects a user’s computer, it becomes a bot and is connected to the malware botnet. Then the configuration file is
downloaded to the infected machine from the command and control server (C&C). The configuration file contains
the details of the injected code attack including the target and the JavaScript code which is injected into the web
pages which are browsed by the infected computer. Any change in the content of the configuration file will only
be activated if the infected machine downloads the new version form the C&C server.

Figure 2.1 shows an example of a configuration file. As it can be seen, the set_url parameter defines the
targeted URL. The following letters are acting like flags which are used to define the action which will be executed
when the targeted URL is activated. The most common flags are displayed in Table 2.1 as reported by [13].
Following that, three tags appeared: the data_before, which is the content before the injected code, the data_inject,
which is the content injected in the web page and lastly the data_after, which is the content that comes after the
injected point.

Table 2.1: Common flags for sez_url as described by Boutin [13]

set_url flag Explanation

GET requests should be inspected for possible injection.
POST requests should be inspected for possible injection.
Used for logging purposes

Used for logging purposes

=il e s

According to Boutin [13], developers of well-known malware like ZeuS and SpyEye prefer the web inject
technique. This technique allows them full control over what they are stealing from the victim’s online transactions.
An example for such attack is the following: criminals are using this technique at the login page of a user’s
bank account and ask the user to add his PIN number or social security numbers, something which is not usually
required. Once the customer provides the additional information, the data is stolen by attackers [3, 25, 32].
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Figure 2.2 is an example of such an attack.

set_url https://

data_before

data_after
>
data_end

data_before
</body>
data_end

data_inject
<script src="https
<script>

var chBalansUsd=0;
var chBalansCad=0;

.html*command=displayAccountSummary* GP

n.js"></script>

Figure 2.1: Example of webinject configuration file format Boutin [13]

Country

First name

Last name

City
State

ZIF code

Address line 1

Address line 2 {optional)

Phone number

Card number

United States

John

Doe

Washington

[ale}
20500

The White House
1600 Pensyhvania

202-456-1111

Expiration date (mm/dyy)

CsC

4512123213213213
5

Verified by Visa Password is incorrect

Card number

Name embossed on card | jghn Doe

( Exactly as on card )

For verification purposes you must update
your card details.

Date of birth { 01 01 0001
mm/dd/yyyy)

Mother's maiden name Doehrs

Social security number 123 12 1323
Driver license number 456456456

Credit / Debit card PIN 1234

Verfied by Visa password —

Caontinue

Figure 2.2: Example of malicious code that was injected in customer’s web browser (Boutin, 2014)
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2.3. Web injects Evolution

Boutin [13] studies the evolution of web injects malware, he notes that web injects started with simple keyloggers
and form grabbing functions and have moved to more advanced techniques like web injected code and Automatic
Transfer System (ATS).

In earlier versions of the SpyEye malware, the web injected code was only used in the Internet Explorer browser.
Later versions of the malware introduced the technique to the Mozilla Firefox and Netscape browsers [100].
The authors study the evolution of 13 different versions of SpyEye malware. The first version of the malware
supported simple operations like from grabbing and auto fill. Throughout the years, the malware has evolved and
now supports more sophisticated actions including more advanced web injection and email grabber support.

Wyke [120] investigates the different strategies which are implemented by malicious software when it is in
a virtual or ’sandbox’ environment. One of his case studies is the Shylock malware. The Shylock malware is
able to identify whether it is running in a sandbox environment. In those situations, it returns a fake file which
shows that the injected code changes only a little over time. On the other hand, when the malware is running on
real conditions the file which contains the injected code looks more complicated and advanced. According to the
author, the Shylock malware makes it more difficult for financial institutions to realize that have been victims of
cyber attacks and identify how the injected code looks like.

2.4. Malware Evolution

Malware analysis as defined by Walenstein and Lakhotia [115] refers to the problem which aims to understand
and manage malicious software. They state that malware is evolving by re-using and sharing code from different
malware families. They argue that measuring the similarity between different malware can help the problem of
malware analysis. They also claim that the code re-use between different malware is similar to code similarity
problems. However, techniques like plagiarism detection were not used so far in the malware analysis problem.
Noreen et al. [81] defined malware evolution as the " process which brings a change in the behavior, functionality
or semantics of a given malware. They also state that malware developers have built "malware creation engines"
which they use to create different variations of malware, by changing the code of a given malware. However, the
authors mention that despite the variants of malware the new versions maintain the previous code semantics.

Over the years, different methods which can detect malware evolution have been developed. They are clas-
sified into two main categories: (i) static code analysis, and (ii) dynamic code analysis. Static analysis is conducted
before the execution of the code studying either the source code or the object code. On the other hand, dynamic
analysis is done after the execution of the code and where the assembly code or the binary code is studied.
Lindorfer et al. [69] developed BEAGLE, a system which can identify code evolution in different malware
components over time using different techniques. They tested their tool against 16 malware samples from 11
families, including a variant of the ZeuS malware using the binary code. They found that malware developers
reuse parts of the same code and that some malware families evolve more than others. In addition, for the specific
malware families, they identified malware components which do not change at all or they change more frequently
than others. Comparetti et al. [22] developed Reanimator which is a system cable of identifying malicious code
using dynamic analysis. Their system is also able to identify if that specific piece of code is present in other
malware samples. BinClone and ScalClone are two tools which can detect similarities in the binary files of
malware samples [35, 36]. In contrast, the NiCad tool can detect similarities in the source code of malicious files.



Dataset Description

In the following section, we provide a brief overview of the dataset. We also document our approach for selecting
a sample from the dataset. As the dataset contains traces which are not relevant to our research questions, we
construct a subset of the originally provided dataset which only contains code-injection attacks. Finally, we also
document our full pre-processing pipeline for completeness reasons.

3.1. Overview of the Dataset

In this research project we use a dataset of malware attacks provided by Fox-IT [38]. Fox-IT is a Dutch company
in the field of computer and network security. Their portfolio includes providing technical solutions in risk
mitigation against attacks on digital systems. Their clients include governmental bodies, critical infrastructure
providers and financial institutions. The dataset used in this project stems from cyberattacks monitored by the
company.

3.1.1. General Info of Dataset

The dataset was collected between 21/02/2014 and 03/11/2017. It contains a total of 123,456,789 entries, of which
1,957,564 relate to injected code attacks. These entries correspond to a total of 41,481 unique attack connected
to 372 botnets and 26 different malware families. Table 3.1 provides an overview of the data set. Note that the
number of domains includes all unique domains of each malware family during the entire infection period and not
the common domains in all four years.
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Malware # of distir_ict #_of total # of botnets # of dist_inl::t # of distinct
attack_id entries attacks  per malware domains URLs

BokBot 69 276 1 3 9
Citadel 2,345 192,100 3 4,308 18,894
CoreBot 86 344 1 58
Dridex-Loader 4,834 158,752 20 2,785 17,022
Gootkit 569 6,460 21 2,784 17,020
GootkitLoader 11 84 1 2,784 17,019
Gozi-EQ 4,431 397,984 55 279 5,378
Gozi-ISFB 7,429 107,540 23 2,821 17,090
lce9 168 11,784 0 28 2,447
KINS 5,220 101,580 129 4,354 19,080
Kronos 1,309 21,304 13 4,307 18,903
Matrix 11 64 1 S 6
NuclearBot 452 1,908 16 2,512 16,436
Nymaim 157 5,104 1 22 102
Pkybot 10 40 1 5 17
Qadars 1,309 55,824 2 843 4,135
Qakbot 2 12 0 - -

Ramnit 1,658 27,388 3 131 447
Ramnit-BankerModule 351 1,716 1 46 283
ReactorBot 590 3,824 2 28 357
Tinba-v1 67 268 1 694 1,095
Tinba-v2 5,232 123,432 13 453 4,987
ZeuS 651 373,888 34 2,786 17,026
Zeus-Action 216 18,920 4 78 135
ZeuS-P2P 1,688 297,428 0 214 1,102
Zeus-Panda 2,616 49,540 26 877 2,266
Total 41,481 1,957,564 372

Table 3.1: Overview of injected-code attacks in the dataset.
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Fox-IT provided us with the dataset in a PostgreSQL database. Please see Figure 3.1 for an overview of
the Entity Relationship Diagram. We use the threat table to identify the malware family of each attack. In the
table attack, we find all the data of a configuration file. We use the field attack_type of the table to filter out the
attacks not related to injected code attacks. We select the injected code from the field attack_data which we use as
main input for our analysis. We also use the field attack_target to connect each attack with their corresponding
targeted URLs and domains. In the entry table and in the field entry_botnet, we find the unique key (usually
an RC4 key) for each botnet. We use this key to connect each attack with its associated botnet. Finally, we use
the entry_history to get the life span of the injected code attacks through field ehistory_timestamp. Table 3.2
presents these variables which are the inputs for the rest of our research.

Table 3.2: Main variables extracted from the database

Parameter Explanation

Threat Malware family responsible for the attack
Injected Code Code used in the attacks

Botnet Botnet associated with each attack
Attack Life span  Duration of the attack

Target Targeted domains and URLSs

3.1.2. Malware Family Selection

Due to the size of the dataset and the limited time available for this project, we do have to select a sample of
attacks for the remainder of this work. The four malware families we selected are ZeuS-P2P, Citadel, Gozi-EQ,
and Ramnit. We selected ZeuS-P2P and Citadel because both are variants of the ZeuS malware, so we can examine
how differently code from related families evolve. Gozi-EQ is one of the earliest malware that performs MitB
attacks which allows us to observe the earliest developments in code evolution. Finally, Ramnit was a worm
malware which only later started performing MitB attacks. Hence, we can investigate how the injected code
attacks evolve over time. Note, that this sampling may introduce a sampling bias. Nonetheless, as this study is
exploratory, we consider our sampling approach as reasonable. Nevertheless, we note that the results we obtain
should be validated in an exhaustive study as well.

3.2. Dataset Pre-processing

In this section, we briefly describe how we pre-process the raw dataset prior to our analysis. The steps are provided
in the box in the Figure 3.2.

Extract unique attacks and their code using steps of Box 2

Extract all entries attacks of all targeted URLs for all register domains
Merge the datasets returned from step 1 + step 2

Repeat steps 2-5 for all malware families

W b

Figure 3.2: Dataset Pre-processing steps

3.2.1. Code Extraction

After we selected our sample malware families, we identified unique attack for each malware family. Then we
extracted the injected code used in these attacks. Note, that we found several cases where the attack_data field was
an empty string or merely contained one or several English words, e.g., “access” without any JavaScript or HTML
content. The empty fields could be the result of a missing configuration file for the web injection attack. Another
possible explanation is that attackers are using more advanced encryption techniques or store the configuration
files in parts, making it more difficult to achieve full decryption of the file [13]. Hence, additional aggregation
of the data is required to discard these unusable samples. The steps in Figure 3.3 describe this pre-rocessing
process. In short, the process extracts only the contents of the column attack_data that are not an empty string
and which contain one of the predefined HTML and JavaScript keywords. All the returned injected codes are
saved as JavaScript files (.js). The keywords used for the extraction process are saved in a table which consists of
a collection of JavaScript reserved terms (e.g, var, function) and HTML tags (e.g, <body>, <html>). Our



3.2. Dataset Pre-processing 17

list contains all the JavaScript reserved words which they cannot be used as variables, labels, or function names.
In addition, it includes some of the most commonly used HTML Tags. Therefore, we consider our list capable of
extracting the code sample which we can use in the research. Table A.1 in Appendix A provides the exhaustive
list.

While manually inspecting the contents of column attack_data, we noticed that some instances of the attacks
linked to Ramnit contained just the word finj. Note, that we assumed that the word finj is not an actual injected
code but a simple word. The keyword list includes the JavaScript operator in which it is a substring of the word
finj. Therefore, we discarded the attacks which contained only this word, by temporally removing the keyword in
from the list. Nevertheless, we note that the presence of the word in should be examined further in future work.

Extract distinct attacks for each threat using the attack id.
Select instances where attack data is not an empty string.
Check the returned instances against the keywordList.

WL b

If the returned instance contains at least one element from the keywordList
Save the instance as .js file with the name Attack id.

Else
Move to the next instance.

where
attack _id and id, the identifier of each attack,
attack _data, the code used in the attack,
threat, one of the following: Ramnit, Zeus P2P, Citadel or Gozi-EQ

keywordList, a list of HTML and JavaScript keywords

Figure 3.3: Code Extraction Steps

We found that all malware families had entries which were either empty strings or did not contain any keyword.
The total number of attacks dropped from 10,122 to 8,484 which shows that 27% of the initial attacks were
discarded. This sample of injected code attacks is the subset used for the rest of the research. In addition, we
noticed that more than 400 of the injected code attacks of Citadel malware were empty strings, which resembles
the 18.25% of the total number of its attacks. Similarly, almost the same amount of attacks were removed from
the Ramnit subset because they did not contain any of the keywords. Discarding these attacks lead to the largest
decrease in the final result: 30% for Ramnit and 24.4% for Citadel. Table 3.3 illustrates the total number of web
injected code attacks extracted for each malware, along with the intermediate steps of the code extraction process.

Table 3.3: Code Extraction results with intermediate steps

. # of attacks after # of attacks
Malware  # of distinct attacks . . . .
discarding empty string  containing keywords
ZeuS-P2P 1,688 1,643 1,473
Citadel 2,345 1,917 1,772
Gozi-EQ 4,431 4,355 4,080
Ramnit 1,658 1,631 1,159

After we merged the two datasets as described in Figure 3.2, we created a dataset per malware family which
contains all the entries of web injection code attacks for all the targeted URLs with their associated domains. An
entry in the dataset contains the following information: (1) the attack_id which uniquely identifies the injected
code, (2) the name of the targeted domain, (3) the URL path which was the target, and (4) the timestamp when the
attack appeared in a configuration file.
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3.2.2. Multiple-steps attacks

During the examination of the datasets, we noticed cases in which a targeted URL was attacked more than once at
the same time. The atfack_ids of those entries were different, meaning that the URL was most likely injected with
different injected codes. We hypothesized that the injected codes of these different attacks are somehow linked
and act as one single attack. We defined these attacks as multi-steps attacks. In the next chapter, we provide more
information about these attacks.



Descriptive Analysis

In the previous chapter, we provided a brief overview of the research dataset. Additionally, we selected the main
parameters which we are going to use as input for the rest of our analysis. The parameters are: (1) the injected
code of the attacks, (2) the timestamp of the attack, (3) the target of the attack, and (4) the botnet associated with
each attack.

Looking back, the main objective of this study is to determine how attackers have evolved the code in the
web injected code attack. However, we still do not know if code evolution exists in our selected sample. We use a
descriptive analysis approach, and we perform a series of different analyses to answer the following subquestion:

Sub Question 1: What indicators of code evolution can be observed in the dataset?

4.1. Multi-steps attacks computation

In the previous chapter we defined the multi-steps attacks. We determined that we should recognize these at-
tacks as one single attack. However, we still need to link them so we know what is the actual number of those attack.

Once we completed the linking process, we noticed interesting observations for the four malware families.
The total number of attacks for ZeuS-P2P dropped from 85,964 to 42,967 (49.6%). Similarly, after we linked
together the attacks of the Gozi-EQ malware, we observed that the initial number of attacks (153,232) declined by
36.6% resulting to 139,864 attacks. On the other hand, the initial number of attacks of the Citadel and the Ramnit
malware was reduced by only 8.2% and 3.3% respectively. These observations indicate that malware developers
of the Citadel and the Ramnit malware have not used the mechanism of multi-steps attacks to the same extent as
the cybercriminals of the other two malware families.

The linking process also helped us to count the actual number of multi-steps attacks for each malware fam-
ily. The ZeuS-P2P attacked the targeted domains with 20,187 multi-steps attacks which resemble the 47.3% of its
total attacks. The majority of Gozi-EQ attacks, 80.87% to be exact, were developed using the multi-steps attacks
technique. In contrast, only 9.44% (13,208) of the Citadel’s attack and 2.59% (760) of the Ramnit’s attacks were
developed using the same technique. Since not all four malware families follow the same trend, it is difficult
to make a coherent conclusion. It is possible that these differences exist because different cybercriminals had
different programming skills which allowed them to develop more complex attacks. At the same time, it is also
likely that attackers did not use multi-step attacks due to the extra effort and time needed to develop such attacks.

Finally, we discovered a small number of unique attacks for all malware families: (1) ZeuS-P2P: 308 attacks,(2)
Citadel: 484 attacks,(3) Gozi-EQ: 700 attacks, and (4) Ramnit: 198 attacks. The small numbers compared to the
total number of web injected code attacks shows that cybercriminals have most likely reused the same attack more
than once. Table 4.1, displays the total number of attacks for each malware family along with the intermediates
numbers of the linking process. To sum up, through this analysis we counted the number of multi-steps attacks
for each malware family. We showed that the malware families do not follow the same pattern. Attacks of the
ZeuS-P2P and the Gozi-EQ malware used the technique of multi-steps attacks more, compared to the other two
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Table 4.1: Information about Mutli-steps attacks per malware family

Malware # of attacks # of attacks  # of multi-step # unique attacks
before linking  after linking attacks

ZeuS-P2P 85,964 42,967 20,187 308

Citadel 153,232 139,864 13,208 484

Gozi-EQ 760,597 276,376 223,515 700

Ramnit 30,267 29,290 760 198

families (Citadel and Ramnit). The small number of unique attacks for all malware families also shows the
tendency of the attackers to reuse the same injected code.

4.2. Attack Repetition

After the linking process, we computed basic statistical metrics for the attacks of the four malware families (see
Table 4.2). On average each attack was repeated more than 100 times. However, there are many cases where
the average value is affected by outliers. Hence, we also calculated the median value which is more robust to
outliers and can minimize such effect. The median amount of times an attack is repeated varies per malware
families, i.e., (i) 34 times for the ZeuS-P2P malware, (ii) 7 times for the Citadel malware, (iii) 27 times for the
Gozi-EQ malware, and (iv) 18.5 times for the Ramnit malware. We considered some attacks as outliers using two
possible explanations: (1) the longer lifetime compared to others attacks which this is why they repeated more
and (2) the attacks which were repeated multiple times at different parts (URLs) of the top attacked domains. In
any case, both median and mean suggest that attack repetition does exist among the injected code for each malware.

We also calculated the standard deviation (sd) for each malware family. We observed large standard devia-
tions for all malware families which confirms the presence of outliers and also the large variation in attack
repetition of each attack. We took a closer look at the extremes cases of the Citadel and the Gozi-EQ malware
where the sd is very high. In the Citadel’s case, we noticed that 81 attacks were repeated only one time but a
single attack was repeated 20,330 times. Similarly, in the case of Gozi-EQ, we found that 64 attacks had happened
once, but there is one attack which was repeated 66,928 times. The fact that the data is so spread out for these two
malware families explains the very large numbers of their sd value. Table 4.2 shows the main statistics.

Table 4.2: Statistical values of attack instances repetition for each threat

Malware Total Attacks Distinct Attacks Average Median Standard Deviation

ZeuS-P2P 42,697 380 138.62 34 764.41
Citadel 139,864 484 288.97 7 1,273.07
Gozi-EQ 276,376 700 394.82 27 2,976.62
Ramnit 29,290 198 147.92 18.5 345.19

We provide additional details regarding attack repetition. We found that 5 attacks (1.62%) of the Zeus-P2P
malware were used only once. Interestingly, 26% of the injected codes of the ZeuS-P2P malware were repeated
40 times. Almost 50% of the injected codes for the Ramnit malware was repeated fewer than 12 times, with 34%
of those attacks happening only once. We also observed some extreme cases, we found that 14 attacks (2.8%) of
the Citadel malware were repeated more than 3,400 times. In addition, we noticed that one attack of the Gozi-EQ
malware was repeated 66,928 times, and five attacks were repeated more than 11,000 times. These attacks are the
outliers which we identified previously. Finally, almost 30% of the Gozi-EQ attacks were repeated less than 10
times.

In short, we found that all malware families follow a pattern of attack repetition. This finding verifies the
results of existing research which states that cybercriminals repeat and reuse the same code. However, we still do
not know whether code similarity exists in the code of different attacks. Thus, we have to examine the code of
different attacks and find out how much code they share. The answer can provide recommendations on financial
institutions on how they can improve their security measures and protect their assets against web injected code
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attacks.

4.3. Malware Lifespan

Next, we extracted the lifespan of each malware family, and we compared it with the total number of attacks per
malware family (see Table 4.2). Please see Table 4.3 for an overview of the lifetime of each malware family.
Looking at Table 4.3, we noticed that the ZeuS-P2P malware was active for 11 weeks. The multinational efforts

Table 4.3: Malware Life Span

Malware First Seen Attack Last Seen Attack Lifespan (weeks)

ZeuS-P2P 2014-02-27 2014-05-15 11
Citadel 2014-02-21 2017-11-03 193
Gozi-EQ 2014-09-11 2017-01-28 124
Ramnit 2016-09-28 2017-10-26 56

to take down the ZeuS-P2P botnet is the reason why the malware has such sort lifetime. Department of Justice
[26] and the FBI [37] coordinated these efforts. The fact that a new attack does not appear after the takedown
efforts can lead to some introductory explanations regarding the code re-use in the ZeuS-P2P attacks. Since the
takedown efforts were successful, attackers might not have any incentives to improve the code or develop new
code for ZeuS-P2P attacks to overpass the newest security measures. Moreover, the fact that all attacks were
taken down at the same time could mean two things. Either that the difference between their code was minor,
which by itself is another indication of code similarity in different attacks, or that these efforts disrupted the whole
infrastructure, so no more configuration files could be captured.

On the other hand, the Citadel, and the Gozi-EQ malware are active almost throughout the entire infection
time period which suggests that any effort to take down the botnets of the two malware families has proven
insufficient. Also, it could mean that the code of their attacks have changed over the time period and hence, the
threat is still active. Therefore, it is important to measure and identify those changes. Finally, Ramnit only appears
in 2016 and 2017. The reason behind this might be the takedown operations which took place in 2015 [110]. The
comeback of this threat indicates that attackers have developed new attacks which have evolved comparing to the
previous ones.

The analysis regarding the lifetime of each of the four malware families has shown evidence of code reuse
and evolution for all of them. However, it is interesting to examine why the attacks of Gozi-EQ and Citadel lasted
longer compared to ZeuS-P2P and Ramnit.

4.4. Attack Duration

Following the analysis we explained in the previous subsection, here we carried out a more in-depth analysis to
estimate the weeks an attack was alive during the infection period. The top plot in Figure 4.1 presents the analysis
results. It is intriguing that most of the attacks do not last more than 50 weeks. If we take into consideration that
the infection period is 193 weeks in total (21/02/2014 - 03/11/2017), we can hypothesize that attackers change the
code of their attacks frequently. We also noticed that for all malware families there is a large number of attacks
which lasts less than one week. The ZeuS-P2P’s attacks are the ones which last the shortest. This is consistent
with the previous analysis which has shown that the ZeuS-P2P malware lasted only 11 weeks during the entire
time. The Gozi-EQ’s attacks did not last for more than 50 weeks.

On the other hand, the Citadel’s and the Ramnit’s attacks lasted the longest; in some cases more than 150
weeks. This behavior of Ramnit attacks raised some questions since we previously discovered that its lifetime
to be only 56 weeks. We used this finding to perform a more detailed analysis which has shown that different
malware families used some of the same attacks. For example, attacks which have been used by Ramnit malware
had previously been used by Tinba-v2, Qadars, and Kronos malware families. This behavior is a clear indication
that attackers actually reuse the same code in different attacks, even attacks coming from different malware families.

The bottom plot in Figure 4.1 displays once again the duration of the attacks. However this time we dis-
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played only attacks of the ZeuS-P2P, the Citadel, the Gozi-EQ, and the Ramnit botnets. We can see the changes
through the arrows. Besides the case of Ramnit’s attacks, the differences between the two plots are extremely small.
In any case, both iterations of the analysis have shown that attacks do not last long. Each malware has average
attack duration less than 20 weeks: ZeuS-P2P 8 weeks, Citadel 17 weeks, Gozi-EQ 16 weeks, and Ramnit 3 weeks.

The lower duration compared to the entire infection period indicates once again the attackers’ incentives to
change the code of their attacks. Either due to low success rate or due to their efforts to improve the attacks in an
attempt to achieve better results.

4.5. Attacks by different malware families

In the previous analysis, we identified attacks which have been used by different malware families. In this analysis
we want to see t what extent this happens for the four malware families we used in this research. Our findings
revealed that none of the attacks of the Zeus-P2P and the Gozi-EQ malware were used by other malware families.
In contrast, attacks of the Citadel and the Ramnit malware are also used by different malware families. Before we
explain in more detail the cases of the Citadel and the Ramnit malware, it is worth mentioning that 790 of the
attacks of the complete dataset were used by more than one malware family.

The number of Citadel attacks which used by different malware families is 82. All the attacks were used
by the KINS malware, which is also a Banking Trojan malware. Its architecture is similar to the ZeuS and the
Citadel malware. In addition, its source code has been linked with the source code of the Citadel malware [79].
Sixty-three attacks are used by the ZeuS and the Ice9 malware. As we already mentioned, the Citadel and the Ice
malware families are variants of the ZeuS malware. Therefore, it is possible that these attacks were first developed
for the ZeuS malware and later were reused by cybercriminals for the Citadel and the Ice9 malware families. Table
4.4 displays the break down of the Citadel’s attacks which used by different malware families.

We found that thirty-seven of the Ramnit malware attacks were also used by the Ramnit-BankerModule which

Table 4.4: Citadel’s attacks used by different malware families

Malware Family # of Attacks

Citadel 82
KINS 82
Ice9 63
ZeuS 63

is directly linked with the Ramnit malware. A C&C server responsible for stealing user’s data was shared by
different banking Trojan malware including Ramnit, Tinba, and GootKit [114]. This fact can explain the number
of attacks which were used by these three malware families. Finally, the reuse of attacks among Kronos, Qadars,
Gootkit, and Ramnit malware can be explained by the fact that those malware families were part of ElTest, a
malware distribution network [58, 111]. Table 4.5 shows the number of the Ramnit’s attacks which used by
different malware families. Through this analysis, we obtained evidence which shows that cybercriminals not only

Table 4.5: Ramnit’s attacks used by different malware families

Malware Family # of Attacks
Kronos 7
Qadars 1
Ramnit 71
Timba-v2 36
Ramnit-BankerModule 37
GootKit 2

use the same code of attacks of the same malware family but they also reuse attacks which have been used by
different malware families. The majority of the attacks are coming from the malware families which are variants of
each other. Other examples have shown that malware families which are linked in the same malware distribution
network or sharing the same C&C server, are more likely to share the same attacks as well.
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4.6. Attacks per Botnet

Having in mind the fact that the configuration file(s) of any attack can be linked back to the botnet, we conducted
an analysis to connect all attacks with their associated botnet. This analysis can give us an idea of how frequently
the configuration files were updated. Note, that we discovered some of the dataset limitations. First, with the
current information of FOX-IT dataset, it was impossible to link back any configuration file to the ZeuS-P2P
botnets. Regarding the rest of the attacks, still, it was not possible to link all of them with a botnet. For the Citadel
and the Ramnit malware, only 2 botnets were captured. In contrast, for the Gozi-EQ malware, we extracted more
than 40 samples, linked with 47,528 attacks (with a standard deviation of 208,28 and coefficient of variation of
35,096.37). We made the following assumption to explain why we did not to link all attacks with their associated
botnets. It is possible that the decryption of the configuration files was not successful and thus, some attacks are
missing their associated botnet. We also extracted the number of unique attacks per botnet. The different numbers
reveal the number of times attackers updated the content of the configurations files. Updates in configuration files
mean that either the attackers have changed the targeted URL or the code. Regardless, these updates are another
indication of code evolution in web injected code attacks. In the following chapter, we provide a more detailed
analysis regarding the number of attacks per botnet. In the upcoming analysis, we examined whether different
botnets of the same malware family have the same target and how much code similarity exists among their code in
such case. The tables in Appendix B break down the exact number of attacks per botnet per malware family.

Table 4.6: Number of Attacks per Botnet for each threat

Malware # of botnets (RC4 keys) # of total attacks # of unique attacks

ZeuS-P2P n/a n/a n/a

Citadel 2 47,528 552

Gozi-EQ 40 9,410 1,527

Ramnit 2 7,946 1,002
4.7. Attacked Domains

In this analysis, we grouped together attacks based on their targeted domains. Note, that it was not possible to link
all attacks with a domain. We explain that using the following reasons. Either the configuration file does not contain
a targeted URL or the URLs included in the configuration files are not linked to a domain, due to attackers actions
(e.g., use of regular expressions). However, our aim was not to determine the attractiveness of each domain based
on the total number of attacks, but rather to discover evidence of code evolution or reuse in the attacks against them.

The four plots in Figures 4.2 and 4.3 display the number of attacked domains for the four malware families. We dis-
tributed the domains based on the total number of times which were attacked. Looking at the numbers, we observed
that the majority of the domains were attacked less than 500 times during the entire infection time period. The list
of those domains includes mostly banks worldwide. The domains which were attacked more than 1,000 times in-
clude domains which are among the top financial services sites according to Alexa rating !. Therefore, it is possible
that attackers are insisting to attack those specific domains due to their popularity and traffic they receive every day.

1 https://www.alexa.com/topsites/category/Top/Business/Financial_Services
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Figure 4.3: Attacked domains for Gozi-EQ and Ramnit malware

In addition, the average time a new attack appears are: for the Zeus-P2P 2 times, for the Citadel 2 times,
for the Gozi-EQ 5 times, and for the Ramnit 4 times. We provide two possible scenarios which can explain the
numbers: (1) the attacks were successful so attackers did not have any reason to change the injected code, and (2)
the attacks were not successful and attackers changed their targets, instead of developing a new attack to overpass
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the security measures of the domain. We also noticed cases where domains were attacked with more than 20
unique attacks. From this, we can conclude that attackers frequently change the way (code) they attacked those
specific domains. The changes might happen because attackers found those domains extremely attractive and
they continued to target them no matter what security measures were taken by the defender side. In any case, the
injected code used for these domains have changed over time. Therefore, it is important to identify how much the
code has changed and if the different attacks share a portion of the same code.

To summarize, in this section we grouped the targeted domain of each malware family. We showed that the
majority of times, attackers do not target a domain more than 500 times. We determined that the top-attacked
domains are among the top financial services sites.

4.8. Summary of Findings
In this chapter, we conducted a series of descriptive analyses to describe the data and find indications of code
reused or evolution in the injected code of the attacks. We summarized our results as follows:

* The ZeuS-P2P and the Gozi-EQ malware used the technique of multi-steps attacks more, compared to the
other two families (Citadel and Ramnit).

 Attackers tend to reuse the same attack; the majority of attacks in this research were used more than once
during the time period in which the malware was active.

* The lifespan for the majority of the attacks for all malware does not last as long as the malware’s lifespan.
This point out that attackers updated the content of the configuration file (code) more than once during the
malware lifespan, which is a sign of code evolution.

¢ Attacks of Ramnit and Citadel have been also used by other malware families which proves that cyber-
criminals not only use the same code in attacks of the same malware family but also in attacks of different
malware families. The majority of those attacks are from malware families which are variants of each
other. Other examples have shown that malware families which are linked in the same malware distribution
network or share the same C&C server, are more likely to share the same attacks as well.

» The different numbers of attacks per malware botnet, reveal the number of times attackers updated the
content of the configurations files which can be used as another indication of code evolution in web injected
code attacks.

* The majority of times, attackers do not target a domain more than 500 times.

Following the sub-question mentioned in the introduction of the chapter, we extracted enough pieces of evidence
regarding code evolution and reuse. It is clear that all attacks have either changed or reused over time. However,
it is still unknown to what extent they have changed and how similar they are to previous versions. In the next
chapter, we conduct a literature review to identify which is the most suitable tool for measuring the code similarity
among these attacks.






Code Similarity Tools

Recalling the literature review, different banking malware reuse a significant portion of the same code. However,
variations are also introduced. In this chapter, we aim at assessing different tools that allow to quantify to what
extent attackers recycle code, i.e., tools to measure the similarity among different attack codes. To reach this goal,
first we start by identifying which of the existing tools can detect better the similarity among the injected code. In
order to address this, we formulate the following sub-questions in the chapter:

Sub Question 2a: How can we measure code similarity among different injected code attacks?
Sub Question 2b: What are the limitations of the available similarity tools and how do they impact the
similarity metrics?

The task of detecting code similarity in software programs is a problem that has been the subject of research for
many years. Researchers have developed many tools that can detect code similarity. Walenstein and Lakhotia
[115] argue that malware is just software that contains malicious code. Therefore, they claim that methods used
for comparing software similarity can also apply to malware code. In the following sections, we compare and
review existing code similarity tools from existing literature. The review will determine the sensitivity of the
resulting similarity metric to the tool. We limited our measurement to those tool that were available at the time of
this research and were able to measure similarity of JavaScript code.

5.1. Clone Detection

Cloned or duplicated code is defined as the code which is copied and probably modified in a new file. The
process of finding such code is called clone detection. In the survey of Koschke [63] on software clones and in the
literature review by Djuri¢ and GaSevié [27], different types of code clones and code modification techniques are
reviewed. In Table 5.1, we present the three types of code clones based on the work of Koschke [63].

29
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Table 5.1: Type of clones by Koschke (2007)

Type 1: exact copy without modifications (except for white-spaces and comments)
Type 2: syntactically identical copy (changes to variables, types or function identifiers)
Type 3: copy with further modifications (statements modifications, additions, deletions)

Djuri¢ and Gasevié [27] use the same concepts as in Ciere et al. [21], Jones [50], Joy and Luck [51], Kustanto
and Liem [66], Liu et al. [70], Roy and R. Cordy [92] to classify source code modifications in two main categories:
(1) lexical and (2) structural. They also provide examples for each category. In the current research, we merge the
three types of code clones and the classification of source code modifications in one taxonomy which is visible in
Table 5.2. We extracted the following conclusions:

* Type 1 clones are all lexical modifications and require less knowledge and programming skills compare to

the other two types.

» Type 2 clones are a mix of lexical and structural modifications.

» The majority of the examples for type 3 clones are structural modifications with more advance changes

which will probably be more difficult to detect.

Table 5.2: Source Code Changes Classification

Clone Type Example Modification

modification of source code formatting
addition, modification or deletion of comments .

Type 1 . Lexical
language translations
modification of program output
renaming of identifier .

Lexical

Type 2 modification of constant values

changing of data types and modification of data structures Structural

addition, modification or deletion of modifier

split or merge of variable declarations

changing the order of variables in statements

changing the order of statements within code block

reordering of code blocks

addition of redundant statements or variables

Type 3 . . Structural
modification of control structures

method inlining and method re-factoring

redundancy

temporary variables and sub-expressions

structural redesign of code

modification of scope

Lexical

5.1.1. Clone Detection Methods

Koschke [63] and Roy and R. Cordy [92] in their research surveys on Software Clones define five main clone
detection methods that have been used to detect code clones.

Methods based on text comparison

The code similarity result is dependent completely on the comparison of the text and strings in the code files.
These methods do not take into consideration any structural changes in the code which is their main weakness.
Using the classification (see Table 5.2), we hypothesized that these methods are detecting better the Type 1 clones.
Johnson [48] and Johnson [49] use the Karp-Rapin fingerprint algorithm [55, 56] to detect similar substrings of the
code. Manber [73] also uses fingerprints to detect similarity. Ducasse et al. [29] and Ducasse et al. [30] develop a
language-independent simple line-based string matching approach to detect duplicate code. Their approaches
use dot-plots to visualize the results of the duplicated code. Wettel and Marinescu [118] also use the dot-plots
approach. Baker [8] compares the code, line by line but he also uses tokens which is a different method which we
explain below.
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Methods based on token comparison

In this method first, the code is converted to sequences of tokens. Then, the sequences are checked to identify
the same sub-sequences of tokens. These sub-sequences represent the cloned code. As we mentioned earlier,
the Baker [8] approach is a combination of text and token based comparison. The code is firstly tokenized and
then is compared line by line using a suffix tree. Kamiya et al. [53] use the same approach. They use a suffix
tree matching algorithm to find and return the sub-sequences of tokens that are more likely to be the duplicated
code. Before the comparisons, the tokens are normalized. Basit et al. [9] develop an approach which uses a suffix
array instead of a suffix tree. They perform experiments and according to their results, their approach has more
flexibility, precision and perform better than Kamiya et al. [53] approach.

Methods based on tree comparison

Tree-based methods first convert the code into a parse tree or an abstract syntax tree (AST). Then tree matching
algorithms are applied in order to find similar sub-trees. The similar sub-trees correspond to the cloned code.
Baxter et al. [10] use annotate parse tree and hash function to find and return similar sub-trees. A similar approach
is also developed by Raza et al. [87]. Koschke [63] develop an approach in which first the AST sub-trees are
serialized, and then a suffix tree is created to compare these AST sub-trees. This approach enables finding
code clones more quickly by avoiding comparing all sub-trees. On the other hand, Yang [123] uses a dynamic
programming approach for comparing and detecting the most similar sub-trees.

Methods based on program dependency graph comparison

Graph-based methods are using a higher level of abstraction to represent the code using its semantic information.
The code is presented as graph taking in consideration control flow and data dependencies. Then using algorithms
developed for finding isomorphic sub-graphs, the most similar sub-graphs are returned which correspond to the
cloned code. Komondoor and Horwitz [61] use program slicing to find isomorphic sub-graphs. Krinke [65]
propose an approach to find the maximal similar sub-graphs using the k-limiting technique.

Methods based on metric comparison

Metrics-based methods are using different metrics for code fragment to detect code similarity instead of comparing
the code itself. Mayrand et al. [74] use metrics like the number of lines of the code to measure the functions that
have similar metric values, these functions are considered cloned code. Metrics such as the number of variables is
used by Patenaude et al. [82] to detect similar methods. Kontogiannis et al. [62] measure the similarity of the code
by using a pattern matching tool that uses Markov models. Metrics-based methods have also been proposed to
detect duplicated web pages by Lucca et al. [71] and Lanubile and Mallardo [67].

5.1.2. Clone Detection Tools

Different tools have been developed using the aforementioned methods. The survey by Roy and R. Cordy [92]
presents an extensive comparison and evaluation of these tools. We present some of the tools in Table 5.3 using
the same information as Roy and R. Cordy [92]. In subsection 5.1.2, we summarize the main findings of the
survey. The authors evaluate the tools using existing literature and their own experimental evaluation.
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Table 5.3: Clone Detection Tools by Roy and R. Cordy (2007)

Tool Proposed by Supported Approach Use
Languages
DupLooc Ducasse et al. [30, 31] Language In- | Line / Exact | Academic
dependent string match-
ing
Dup Baker [8] C, C++, Java Line-based/ Academic
text-based
CCFinder Kamiya et al. [53] C, C++, Java | Token compar- | Academic
and others ison with suf-
fix tree
RTF Basit et al. [9] C Token with | Academic
suffix array
CloneDr Baxter et al. [10] C, C++, Java | AST/Tree Commercial
and others matching
ccdmil [87] C, C++ AST/Tree Academic
(Bauhaus) matching
PDG-DUP Komondoor and Horwitz | C, C++ PDG/Slicing Academic
[61]
Duplix Krinke [65] C PDG, graph | Academic
matching
Covet Mayrand et al. [74] C and others Metrics Academic

Tools Evaluation

As we mentioned earlier, in this research we use information from Roy and R. Cordy [92] regarding the evaluation
of the different clone detection tools. In their survey they provide different ways and level of comparison to
evaluate the different approaches and tools. They characterize their first comparison approach as a high-level
comparison and use different parameters. The findings of this first approach can be summarized as follows:

» Text-based approaches are easily adaptable to new programming languages. They cannot detect many
clones because they find only duplicated code. On the other hand, they have high precision due to the textual
similarity. Their scalability level depends on the comparison algorithm they use.

» Token-based approaches are language dependent. They can detect many clones, but their precision is low
due to the transformation process to tokens. Their scalability level can be high when they combined with
suffix tree algorithms.

* Tree-based approaches cannot support different programming languages. In general, they cannot detect
many clones because they take into consideration the structure of the code, but they have high precision.
Their scalability level depends on the comparison algorithm they use.

» Graph-based approaches have the same characteristics as the tree-based approach, but their scalability is
very low.

* Metrics-based are language dependent, cannot detect many clones but they have a good precision level with
high scalability.

For the evaluation of the tools Roy and R. Cordy [92] use existing literature. In this research, we present a
summary of their findings. The authors present the experiment conducted by Bellon [11]. The author compares
the tools in terms of precision, recall and on how well they detect the three types of clones. Bellon [11] uses an
interval scale (++ is the best and — the worst) to measure and rank the different tools. The results show the same
behavior as the high-level comparison provided by Roy and R. Cordy [92] which conclude that if a tool has good
precision, its recall is not very good and vice versa. However, this is not the case for the PDG approach where
both precision and recall are bad. In terms of detecting the clone types, it seems that the token-based approach
has better results, but none of the tools examined in the experiment can detect clones type 3. We summarize the
results in the Table 5.4.

Koschke et al. [64] use the same approach to compare their tool, cpdetector. They develop the tool using an
abstract syntax suffix tree approach (ASST). Roy and R. Cordy [92] presents the results of Koschke et al., in
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Table 5.4: Summary of comparison experiment by Bellon (2002) as presented by Roy & R. Cordy (2007)

Tool Approach | Precision | Recall Clone Type
Type 1 | Type 2 | Type 3
Duploc Text - + + - _
Dup Token - + ++ + _
CCFinder Token - + ++ ++ -
CloneDr AST + - + - no
Duplix PDG - - - _ -
CLAN Metrics + - + _ _

terms of precision, recall, and clone types using an interval scale (- is the worst and +++ the best). The results
are similar to the results of Bellon. It seems that token based tools have on average better recall overall, but their
precision is not as good as AST and metrics tools. Text-based and token-based tools can detect better clone types 1
and 2, than type 3. The PDG tool is the only one that can detect well the clone type 3 but it not good for detecting
type 1 and 2 and again its precision and recall are bad. We summarize the results in Table 5.5.

Table 5.5: Summary of comparison experiment by Koschke et al. (2006) as presented by Roy & R. Cordy (2007)

Tool Approach | Precision | Recall Clone Type
Type 1 | Type 2 | Type 3

Duploc Text + - ++ - _
Dup Token + +- ++ + _
CCFinder Token + ++ ++ ++ -
CloneDr AST ++ - ++ - no
Duplix PDG - — — — ++
CLAN Metrics +++ - ++ + -
cpdetector ASST + +- ++ + _

5.1.3. Other clone detection tools

Kim et al. [57] design the VUDDY tool which detects code clones Type 1 and Type 2. The authors develop
abstraction rules that are using along with normalization before creating the fingerprint dictionary of the code
file. Due to the abstraction rules, the VUDDY is able to detect all Type 2 clones. According to the authors, the
fingerprint dictionary is important for the development of VUDDY because it reduces the comparisons between
files during the clone detection phase. They evaluate the tool’s efficacy and effectiveness in terms of scalability
and accuracy. They compare VUDDY with other code clone detection tools, and they find that VUDDY has better
results. VUDDY is available for use !, so far it only supports the C/C++ programming languages. ReDeBug is
one of the tools has worse performance than VUDDY. ReDeBug is a syntax based clone detection tool which is
able to detect unpatched clones [47]. The files before the comparison are normalized (e.g., remove white-spaces)
and tokenized. The evaluation of the tool shows that ReDeBug has good results in terms of scale, speed and false
detection rate, but detects fewer code clones compare to other tools.

Sajnani et al. [97] develop SourcererCC 2, which follows a token-based approach for clone detection. Ac-
cording to the authors, the tool can detect Type 3 code clones which most of the tools are unable to do it. The
SourcererCC tool divides the code to code blocks and then uses a bag-of-token technique for the code blocks
comparison. This technique is the reason that is able to detect Type 3 clones. The code similarity is measured by
comparing the different code blocks. The authors evaluate the tool in terms of scalability, execution time, recall,
and precision. They use two clone benchmarks tools, the Mutation Framework and BigCloneBench to measure the
recall rate of the tool. They find that it has good recall rate and compare to the Mutation Framework has perfect
recall even for Type 3 clones. They measure the precision manually and the results show good precision rate.
The authors make the tool available, but users have to implement their own parser to run successfully the clone
detection process.

In summary, we reviewed different clone detection methods and tools. The information from existing literature

1 https://iotcube.net/
2http://mondego.ics.uci.edu/proj ects/SourcererCC/
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proves that there is no tool that can outperform the others. On average token based approaches have better
precision and recall rate. They can detect very well Type 1 and Type 2 clones, but they are unable to detect
well Type 3. However, no tool can support JavaScript language which is the one used in injected code attacks.
Therefore, we did not select any of those tools.

5.2. Plagiarism Detection

Plagiarism detection is similar to clone detection. The main difference is that in plagiarism detection the duplicated
code is deliberately added in a way that is more difficult to detect. The code used in different malware is probably
modified so it cannot be detected easily. Thus, it is possible that a tool developed for plagiarism detection is able
to detect better any changes in injected code. In this section, we review existing plagiarism detection tools.

5.2.1. Plagiarism Detection Techniques
Several tools have already been developed which can detect plagiarism between code files. The tools are developed
based on three approaches.

Text-Based

The text-based approach is similar to the text-based approach for clone detection in the sense that it does not take
into consideration the syntax of the code when calculating the similarity. It just compares the code based only on
the use of the English language.

Attribute-Based
The attribute-based approach uses the properties of the code (e.g., the number of unique operators [28]) when
comparing two code files. The values of those properties determine the similarity between the two files.

Structure-Based

The structure-based approach uses the structure of the code when comparing code files. Tokenization and string
matching algorithms are also used to determine the similarity between code files. Two of the most known and
used plagiarism detection tools: JPlag [85] and MOSS [98] are structure-based.

5.2.2. Tools Comparison

Hage et al. [44] compare the performance of five plagiarism detection tools: JPlag, MOSS, Marble [43], Plagie
[1], and SIM [42]. They perform a sensitivity analysis to examine which tool performs better when different
plagiarism techniques applied to the code. Moreover, they examine the precision of each tool by comparing their
results in a top-n comparison. Their results show that no tool outperform the other, but all of them have strong and
weak points. Heres and Hage [45] compared the performance of 9 plagiarism detection tools, including JPlag
and MOSS, using quantitative metrics: the F-measures and the area under the precision-recall curve. They find
that overall all the tools show similar results but MOSS have on average the best performance on both metrics.
Chen et al. [20] used SID (Software Integrity Diagnosis system) and showed that it performs better over other
plagiarism detection tools including MOSS.

Burd and Bailey [14] evaluates three clone detection tools and two plagiarism detection tools in terms of precision
and recall. The CloneDr, an AST based approach tool has the best results in terms of precision (100%) meaning
that does not return any false positives. However, the tool has the worst recall rate (9%) meaning that the tool
cannot find correctly all clones. Moreover, CloneDr cannot detect clone Types 2 and 3. It is only able to detect
Type 1. On the other hand CCFinder, a token-based approach has the best recall rate (72%) indication that can
find a good percentage of the clones. The two plagiarism detection tools have similar precision and recall rates as
the clone detection tools. We present the results in Table 5.6.

In summary, we presented different code plagiarism tools. The information from existing literature proves that
similar to clone detection tools there is no tool that can outperform the others. A study has shown that plagiarism
detection tools have pretty similar precision and recall rates compare to the clone detection tools. From the tools
analyzed in that research, only MOSS can support JavaScript language. Therefore we selected the MOSS tools as
one of the tools that we will use for comparing the code similarity. We also selected the Sherlock tool which is a
language-independent plagiarism tool. We provide more information regarding the two tools in a later section of
this chapter.
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Table 5.6: Summary of comparison experiment by Burd and Bailey (2000)

Tool Precision | Recall
CCFinder 72% 72%
CloneDr 100% 9%

Covet 63% 19%

JPlag 82% 12%

Moss 73% 10%

5.3. Malware Similarity Detection

Karim et al. [54] use techniques from bioinformatics to build malware phylogeny models which can be used to
measure the evolution and similarity of malware. They have n-grams and n-perms as similarity measures and they
use the code assembly opcode sequences form. They find that n-perms have better similarity scores. Limitation of
their work is the fact that the model measures evolution relate only with the order of the code. In their white paper,
Walenstein et al. [116] adapt techniques from text-based search to develop the Vilo tool. Vilo is a method which
searches and returns from a database, malware which has similar code as the malware used in the search query.
They also use n-grams and n-perms features to compare the disassembled code of the malware.

BinClone is a clone detection tools which can detect code clones in malware binaries files developed by Farhadi
et al. [35]. The same authors also develop ScalClone which is based on their previous work. ScalClone also
detects code clone in the assembly form of the code with high recall rate and can support large-scale assembly
code [36]. The work by Charland et al. [15] is also a clone detection tool which detects similarities in the binary
form of the code.

Chen et al. [19] use the NiCad clone detection tool to find malware code clone which is used in Android
applications and uses a text-based approach. NiCad applies static analysis, so the comparison uses the source code
of the Java applications. The authors use training and test set of applications which contain malicious code. The
evaluation of their work shows that the tool can detect 95% of already known malware, with low false positive and
accuracy rate of 96.88%. NiCad so far doesn’t support JavaScript source code files by default. If a user wishes to
use the tool with JavaScript it is necessary to develop TXL parser for the JavaScript language and the granularity
file for the language.

5.4. Selected tools

In this section, we explain in detail how the selected tools work, and we also use the JSCPD tool. In Appendix C
we provide the steps which are required for running each tool.

MOSS

MOSS or Measure Of Software Similarity is the work by Schleimer et al. [98]. The tool is mainly used by teachers
for detecting plagiarism in programming courses. MOSS is offered as web-service and can be used for free by
everyone who wishes to obtain a MOSS account®. The MOSS subscription script is running on Linux platform,
and with Cygwin, it may work for Windows too.

Currently, MOSS supports 25 programming languages, but it is extensible only by the authors. Addition-
ally, MOSS supports file to file comparison and submission comparison. It also allows the use of a base file
code which is ignored during the comparison. MOSS compares the standardized version of the document when
measuring their similarity by using winnowing, a fingerprint algorithm [98]. The fingerprinting algorithm firstly
divides the document into k-grams and then hashes each k-gram. k is selected by the user. After the hashing
of the k-grams, a subset is selected as the document’s fingerprints. The difference between MOSS and other
fingerprints applications is the use of the winnowing algorithm which selects with an efficient and more robust
way the k-gram subsets.

3http://theory.stanford.edu/ aiken/moss/
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Sherlock

Sherlock® is a plagiarism detection tool developed by the University of Warwick and available for use by everyone.
Sherlock is language independent, can detect plagiarism in source code files and natural language documents [119].
The tool performs pairwise incremental comparisons. It compares each pair of files three times: (1) in the original
form of the files, (2) by removing the white-spaces and all comments of the files and (3) by transforming the files
in a sequence of tokens [52]. Then it summarizes the results in a list, which contains all the pair comparisons
along with their similarity percentage. Moreover, Sherlock can visualize the similarity results in the form of a
Kohonen-self-organizing map [60]. In the map, nodes are the code files, a line between two nodes exist only if the
two file are similar. The length of the line is based on the length of similarity (short line — strong similarity). In the
cases where a similar pair of files do not share any similarity with the rest of the files, a separate cluster is created
[52].

SourcererCC

The SourcererCC tool is not designed to detect code clones in the source code of JavaScript files. However, it can
be extended to this goal with an external parser and a tokenizer. The output of the tokenizer has to follow a specific
form so not every JavaScript tokenizer which is publicly available is suitable. In his thesis Zitny [125], studies
JavaScript files which are hosted in Github repositories to identify possible duplicates. He uses the SourcererCC
and a tokenizer which he developed. This tokenizer is publicly available in the author’s repository>. We conducted
tests to investigate if the tokenizer can successfully be used for the JavaScript code of the web injected code
attacks. The tokenizer is unable to successfully tokenize all the injected codes, due to the different level complexity.
Therefore, we decided to do not use SourcererCC for the code comparisons.

JSCPD

JSCPD © is an open source tool under the MIT license, which is used to detect duplicate lines in the source code.
It supports 28 programming languages and it is extensible only by the author upon a request. JSCPD is executed
through the terminal by a command client line and offers some options for the users. Some of its options, it is
to set the minimum size of the duplication in tokens(or lines) or to ignore the comments in the code during the

comparison. The output of the comparison is offered to the users with two options, either as an XML report or as
a JSON file.

Tools Limitations
Unfortunately, the selected tools have some limitations that could potentially impact the final results. This
subsection explains these limitations.

Moss does not perform the pairwise comparison for all the possible pairs available in the subset. Studies showed
that this lead to low recall rate which is one of the tool limitations. The file to file comparison option, instead of
submission comparison can solve this problem. However, the file to file comparison can be very time consuming
when the number of code files is very large. Moreover, in the cases of the file to file comparison the extraction of
the results requires extra effort. We have to create a pipeline which (1) creates and executes the command for
the Moss script for all available file pairs, (2) receives the URL which gives access to the comparison results,
and (3) parses the result page and saves the percentage of similarity. At the same time, there are cases where the
injected code includes not only JavaScript code but also HTML or CSS content. Moss supports comparisons using
one programming language each time. Hence, the similarity percentage of those case is impacted by this limitation.

Even though JSCPD scan all code files submitted for comparison, it only performs comparisons to the code
files which have duplicate lines. Hence, the final results are based only on the degree of duplication exist in the
files. This weakness of the tool to overlook popular code modification methods like variables renaming or code
reordering makes its result less accurate compared to the other selected tools.

The main limitation of the Sherlock tool is its inability to extract or parse the final results which contain
the similarity of all pairs. This forces to a manual interpretation of the results which makes the automation of the
whole process impossible. In the cases where the number of code file is relatively large, the calculation of the
similarity for all the returned pairs is notably time-consuming. Another limitation of Sherlock is its dependency

4https :/Iwarwick.ac.uk/fac/sci/dcs/research/ias/software/sherlock/
5 https://github.com/jakubzitny/SourcererCC
6https://Www.npmjs.corn/pacl«ag:{e/jscpd
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on the length of the string used for the comparison. However, since it is almost impossible to predict beforehand
the correct value of the string length for the different comparisons, the final percentage can be easily influenced by
this option.

To conclude, the main weakness of all selected tools is their inability to be used in an automated fashion.
Considering the large number of code files per malware family which are compared, the use of these tools would
make the calculation, extraction, and interpretation of the similarity results extremely time-consuming. As a result,
this limitation can decrease the scalability of our research.

5.5. Scalable Similarity Metrics

In the previous section, we determined that the selected tools are unable to scale which can limit the external
validity of our results. To overcome this scenario, we decided to use metrics based on string matching as
a replacement for the tools. We decided to use the Levenshtein distance and the diff ’% command. The
Levenshtein distance measures the distance between two strings [68]. The distance between two strings is defined
as the minimum number of steps required per character (insertions, character substitutions, or deletions) to change
one string into the other. The di f £ command compares two files and returns the lines which are different.

5.5.1. Similarity tools comparison

The examination of the selected tools identified their main weakness to be their inability to automate the process
of code comparison. Having in mind the large number of code files per malware family, the use of the selected
tools would make the calculation, extraction, and interpretation of the similarity results extremely time-consuming.
Therefore, and to overcome this scenario, this thesis examines if the already implemented Levenshtein can be
used as a replacement of the tools®.

For the evaluation of DL we compare DL’s results against the three tools we selected earlier. We used in-
jected code samples for two domains in these tests. Moss and DL follow the same trend. Once the code of the
following attack changes, either by increasing or reducing the percentage of similarity the two tools are capable to
identify it with very similar results in 80% of the cases. At the same time, Sherlock is not able to detect such
changes.JSCPD has mixed results. First, its results are completely different from the other tools in 70% of the
cases. Furthermore, there are cases where the tool was not able to detect changes in the code. You can find an
overview of our results in Table 5.7 and 5.8.

Table 5.7: Domain 1: Code Similarity Metrics Evaluation

AttackID MOSS Sherlock JSCPD Damerau-Levenshtein

7026 - - - -
7434 0 0 14.63 0
10528 0 0 27.9 30
13352 0 0 0 0
13353 96 0 0 100
17636 0 0 29.06 0
17774 0 0 29.06 0
216922 0 0 0 0
228386 0 0 0 0
228387 0 0 0 0
228397 0 0 14.71 0
232968 0.5 0 5.76 2
232969 5 0 0.41 0
243591 0 0 0 0

Looking at the two tables, there are some examples which are worth examining in more detail, since the behavior

7http://savannah.gnu.org/projects/diffutils/

8htts://www.computerhopc:.com/unix/udiff.htm

9While in the rest of the thesis we will use the Levenshtein distance (LD) to measure the distance between two strings, in this section we will
use the Damerau—Levenshtein (DL) which is like the Levenshtein distance, but transposition of adjacent symbols is allowed. [24, 68]
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of the tools is completely different. In Table 1 for the first domain, the code comparison between the code of the
attack_13352 and attack_13353 returns 96% similar for Moss and 100% for DL which means the DL distance is 0.
In contrast, Sherlock and JSCP show that the code is completely different. We examined the code manually, and
found that it is indeed exactly the same source code. In this specific case Moss and DL estimated the similarity
correctly, and DL even more accurately. The code of those files contains only commands with the script tag
(i.e. <script>). JavaScript code uses these command by default, and this is why JSCPD ignored the duplication.
Sherlock fails to detect the similarity, due to the default length used for the string comparison. In this specific
case Sherlock’s dependency on the string length lead to misleading results. Other examples worth mentioning
are the code comparison between the code of the (1) attack_13353 and attack_17636 and (2) attack_17636 and
attack_17774 where JSCPD returned a percentage of duplication, and the three tools return zero similarity. Again,
we manually validated these results, and found that the code was indeed completely different. The reason why
JSCPD detected a difference is that it found duplication in the same file, but not between the two files. These
examples show that JSCPD and Sherlock are not suitable tools for code comparison among different web injected
code attacks. The analysis shows that Moss and DL follow the same trend which is also visible in Figures 5.1 and
5.2.

Table 5.8: Domain 2: Code Similarity Metrics Evaluation

AttackID MOSS Sherlock JSCPD Damerau-Levenshtein

15545 - - - -
218458 0 0 0 0
221268 96 99 47 96
221284 96 99 47 96
221724 96 99 47 97
227192 99 100 69 99
227207 96 99 47 97
230295 96 99 47 96
231775 4 0 0 37
238832 99 100 32 99
238936 0 0 0 0
240366 0 0 0 0
240374 99 99 38 99
243300 99 98 26 99
258413 99 99 38 99
259326 4 0 0 36
295836 99 99 64 99

To summarize, the aim of this section was to determine if a traditional distance metric such as the Levenshtein
distance can be used as a similarity metric instead of the three aforementioned selected tools. The reason behind
the decision to find an alternative tool, is the fact that the three tools do not offer the ability to automate the code
comparison process. The implementation of the DL distance can enable such automation. In order to determine if
the use of the DL distance has good enough results to be the one used for the code comparisons, experiments were
conducted in which the performance of DL was compared against the three other tools. The injected code used in
the attacks against two domains was used as a test sample. The results show that Moss and DL follow the same
trend and are able to detect changes in the code. On the other hand, Sherlock and JSCPD have mostly negative
results and thus are not suitable to be used for the injected code comparisons. Based on these findings it can be
concluded that Moss is the most suitable tool among the original three, and since Moss and DL followed the same
trend, DL can replace the Moss tool since it offers the ability to automate the comparison process.

Summary of Findings

In this chapter first, we introduced the notion of clone detection, including methods and tools which have been
developed for this task. The literature did not provide a definite answer on which tool is the most suitable for
malware code comparison. We reviewed the state-of-the-art tools for clone detection. The tools have very good
results in terms of accuracy and efficiency, but they don’t support JavaScript code by default. We introduced the



5.5. Scalable Similarity Metrics

Evaluation: Moss, Sherlock, JSCPD, and DL

100 3 @® Moss
@ Sherlock
@ JSCPD
75

@ Damerau-Levenshtein

50

Similarity

25

Attack_ID(s)

Figure 5.1: Domain 1: Code Similarity Metrics Evaluation

Evaluation: Moss, Sherlock, JSCPD, and DL
@ Sherlock
® JSCPD
75 @ Damerau—Levenshtein
L]
®
=
©
= 50
E e o o o o
=
g Y L J L] Py
=3 ®
© 25 .
O P D g QA b AL ‘o o L SN o o
& f{l'@‘ N /\\D’W P & L q?’%q, & &S S F P
SRR AR A A A S S S S R
Attack_ID(s)

Figure 5.2: Domain 2: Code Similarity Metrics Evaluation



40 5. Code Similarity Tools

plagiarism detection problem. The literature review showed that there is not a plagiarism tool which outperforms
all the others. Their performance depends heavily on the comparison experiments. However, from all the available
tools only MOSS and Sherlock support the JavaScript language. We also reviewed methods for detecting code
similarity among different malware. We selected the MOSS, the Sherlock, and the SourcererCC as the most
suitable tools to use to detect similarity among different attack instance of injected code. Finally, we also presented
simple metrics based on string matching that can serve as measures of code similarity while being scalable.



Code Similarity Analysis

In this chapter, we answered the following research question: Sub Question 3: How much does code re-using,
stealing or sharing exist across different instances of injected code attacks?

We started our analysis by comparing all pairwise combinations of our code samples using the Levenshtein
distance. We visualized the resulting similarity in a self-similarity matrix. We sorted all attacks in the horizontal
and vertical axis according to the first time they targeted a domain. The main diagonal of the matrix indicates
where the self-similarity between the same code samples.

6.1. Overall Injected Code Similarity

Figure 6.1 shows the similarity matrix computed from all the injected codes in our sample. Each pixel corresponds
to the normalized Levenshtein between 2 attacks. The pixels get brighter as the code similarity increases. Therefore,
yellow pixels in the matrix represent attacks with similar code. We used labels to divide the horizontal and vertical
axis of the matrix into four segments. Each segment represents one of the four malware families we used in this
research, i.e., from top-bottom/left-right Citadel, Gozi, Ramnit and ZeuS.

Figure 6.1: Self-similarity matrix computed from all attacks

41
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A visual inspection of the self-similarity matrix as seen in Figure 6.1 already shows different levels of code
similarity among inject codes. For instance, within the Citadel malware family we can observe a cluster of code
reuse as well as within the attack codes of Ramnit. To gain further insights into code reuse, we further investigate
the similarity of three different cases.

6.2. Case studies on Code similarity

The overall self-similarity matrix as shown in Figure 6.1 evidenced the existence of code similarity across different
attacks. We selected 3 different study cases based on the clusters of high similarity.

6.2.1. Code similarity between Citadel and Ramnit attacks

From Figure 6.1 we observed clusters of code similarity between attacks of Citadel and Ramnit. This high
similarity appeared just at the same time of the creation of the Ramnit family. This seems to indicate that the
criminals behind each malware family reuse the code from the other family. Thus, we formulate the following two
hypotheses.

HO: Citadel malware borrowed code from Ramnit.
H1: Ramnit malware borrowed code from Citadel.

First, we identified and plotted in full scale the clusters containing the attacks with high similarity (see
Figure 6.2). Afterwards we used the attack labels to create the subset of the attacks which were part of the clusters.
Then, we used the first attack of each malware family in the cluster to find the first time it attacked a domain
during the entire time the malware families were active. We found that the first attack of the Citadel malware was
used on 18-10-2016, while the one of the Ramnit malware was used on 21-11-2016. Since the Citadel’s attacks
appeared first, we rejected HO.

Figure 6.2: Self-similarity matrix computed from comparing Citadel and Ramnit Attacks

However, we still need to verify HI. We tested the hypothesis by comparing the code used in Ramnit attacks
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against the code used in Citadel attacks. Using the results of the Levenshtein distance, we computed the similarity
of all attacks in the clusters. The resulting similarity is more than 90% for all the attacks. We then manually
examined the injected code in each attack to identify differences and the reason why it was possible to be reused
by Ramnit attacks.

Our findings showed that the code of all Ramnit attacks is almost identical to the code used in the Citadel
attacks. Their main differences are related to the URLs which are injected for the URL redirection mechanism.
We also found cases were additional code was included (e.g., injection of unknown function calls). Nevertheless
and despite those minor modifications, the semantics and the main functionality of the code were the same across
all attacks. Finally, we noticed that the codes were not developed to modify the targeted web pages but mostly to
redirect the users to either another part of the targeted domain or to unknown web pages.

In sum, the examination of the code showed that Ramnit attacks were similar to Citadel attacks. The code
used in the attacks was not developed to be page specific, which makes it easier to reuse. Thus, we can conclude
that attackers of Ramnit have borrowed code used in Citadel attacks. As a result, H1 is accepted.

6.2.2. Self-similarity matrix inside the self-similarity matrix

During the examination of the overall self-similarity matrix, we noticed cases where self-similarity matrixes were
formed inside the global self-similarity matrix in the attacks of the Citadel and the ZeuS-P2P malware families.
Using the self similarity matrix, we identified those cases. We found 5 different cases for the Citadel malware
family and only one for the ZeuS-P2P. Figure 6.3 illustrates an example of such case (see Appendix D for other
examples). Since we used each attack only once, those cases indicate the reuse of the same code in different attack
files. In order to examine if this is actually true we introduce the following hypothesis:

H3: Attackers reused the same exact code in different attacks of Citadel and ZeuS-P2P malware families.

Figure 6.3: Self-similarity matrix inside the self similarity matrix from Citadel attacks
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We tested our hypothesis by comparing the injected code of those attacks and their targeted domains. First, we
discovered that all attacks which had high code similarity in the self-similarity matrix inside the self-similarity
matrix had the same targeted domains and URLs. The “newest” attacks were used to replace the old ones which
in some cases lasted only one day. Also for the attacks in which it was possible to link with their botnets, we
identified that they belonged to the same botnet. We examined the injected code of the attacks with high similarity
and identified two cases: (1) cases where the exact same code was reused in different attacks and (2) cases where
the code was almost identical. The differences in the injected codes of the second case were: (i) the use of an IP
address instead of a domain name when a URL was assigned as a value of a variable and (ii) minor differences in
the eval () function which is used for data encryption.

Next, we examined the injected code of the preceding and succeeding attacks to check what has changed
in the code. We identified two different cases: (1) attacks targeting the same domains but different URLs and (2)
different targeted domains and URLs. When the preceding or succeeding attack is targeting the same domain, the
main differences in the code are related to the injection of HTML and CSS elements while the JavaScript code
which is injected has similar semantics. In the case where the injected code includes only JavaScript, the similarity
is higher within the same domain. On the other hand, when the attacks targeted different domains, we noticed
higher similarity in preceding and succeeding attacks when attacks are linked with the same botnet or the injection
code it includes only JavaScript. We discovered that the similarity drops in preceding and succeeding attacks of
different domains when the injected code contains HTML and CSS elements which have to be page specific.

To conclude, the examination of the code of the attacks which formed a self-similarity matrix inside the self-
similarity matrix proved that attackers have developed reusable code which they used in different attacks in the
same targeted domain. Thus H3 is accepted.

6.2.3. Code similarity in domains belonging to the same banking group

We also computed the self-similarity matrixes for the top-attacked domains based on the amount of unique attacks
per malware family. We observed high code similarity in different domains within the same malware family.
We extracted those domains and observed that all of them are part of the Lloyds' banking group which we
hypothesized it allowed attackers to reuse similar code. Thus, we formulated the following hypothesis:

H4: Attackers have used similar code within the same malware family when they targeted domains of the
Lloyds banking group.

To test our hypothesis, we first created a list which contains 8 domains which are part of the Lloyds banking
group (lloydstsb.co.uk, halifax-online.co.uk,lloydstsb.com, lloydsbank.co.uk, bankofscotlandhalifax-online.co.uk,
bankofscotland.co.uk, bankofscotlandbusiness.co.uk, lloydsbank.com). We used the list to filter out all the attacks
per malware family which did not target domains of our list. Next, we plotted all the remaining unique attacks
per domain ordered by the first time an attack was used at the domain. We used the attack id as the label in the
horizontal and vertical axes of the matrix. Figure 6.4 illustrated the self similarity matrix for the Lloyds domains
for the Gozi-EQ attacks (see Appendix D for the cases of ZeuS and Ramnit).

The first thing we discovered just by examining the self similarity matrix was the use of the same exact attack
against different domains within the same malware family. Using the self-similarity matrix as a reference point,
we also extracted the different attacks with high similarity used against different domains within the same malware
family. Our comparisons have found that those attacks used have more than 90% similar code. Next, we manually
examined the code of the attacks to discover why it was possible for the attacker to reuse it in attacks against
different domains.

First we examined the code which was possible to be reused in attacks against different domains. We dis-
covered that the code was either injecting URL for redirection or it had only JavaScript commands alerting
messages to extract additional information from the users. When there were differences in the injected code
between attacks of different targeted domains, then most changes in the code are related to : (1) the use of the
name of the targeted domain as variable when they alerted messages for extracting additional information from
the users (2) the URL used for the URL redirection mechanism. However and despite those small changes, the
semantics of the code still remain the same. In any case, we can conclude that the code was not developed to be

1 https://www.lloydsbankinggroup.com/
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Figure 6.4: Self-similarity matrix of the domains part of Lloyd banking group from Gozi-EQ attacks

page specific which allowed the attackers to reused it in attacks against different targeted domains within the same
financial group. Thus H4 is accepted.






Conclusions and Discussion

In this section, we use the results of the analyses to answer our overarching research question. We also provide
recommendations, limitations, and suggestions for future research.

7.1. Conclusions

In this thesis, we investigated the evolution of web injected code attacks which are targeting financial institutions.
Previous studies mostly focused on studying the evolution of the malware components code through different
variant and not the evolution of the actual injected code. Those studies mainly analyzed and measured the code
similarity in the binary or assembly form of the code due to the difficulty to obtain the actual source code. For this
thesis, we obtained access to the source code used in web injected code attacks. This lead to the formulation of
the following research question to investigate the evolution of injected code:

RQ. How do cybercriminals evolve the code injected by financial malware in MiTB attacks?

Overall we found evidence that cybercriminals develop their inject code to make it reusable across targets.
To reach this conclusion we conducted our analyses using a subset of the most prevalent malware families, i.e.,
(1) ZeuS-P2P, (2) Citadel, (3) Gozi-EQ and (4) Ramnit malware. We provide an answer to the research question
through the following research sub-questions:

RQ1. What indicators of code evolution can be observed in the dataset?

We performed a descriptive analysis to discover indications of code reuse or evolution during the infection
time period in which our malware families were active. Here we summarize the findings of our analysis.

* Frequent attack repetition. We found that attackers tend to reuse the same attack; the majority of attacks
in this research were used more than once during the time period in which the malware was active.

* Short lifetime of attack instances. The lifespan for the majority of the attacks for all malware families
does not last as long as the malware’s lifespan. This indicates that attackers updated the content of the
configuration file (code) more than once during the malware lifespan, which in turn evidences code evolution.

* Attack reuse by different malware families. We found that attacks related to Ramnit and Citadel have
been also used by other malware families. This finding demonstrates that cybercriminals not only use the
same code in attacks of the same malware family but also in attacks of different malware families.

¢ Attacked reuse across different targets. We found that identical injected code was used to target different
financial institutions.
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RQ2a. What is the most suitable tool for detecting code similarity in different inject code attacks?

Through a comprehensive scientific literature review, we identified multiple code similarity tools that can be used
for code comparison. Some of these were language-independent tools (or not suitable for comparing JavaScript
code) and presented poor precision and recall results. As the injected code was mainly developed in JavaScript,
MOSS and Sherlock plagiarism tools were the only ones that had native support to run JavaScript-specific
comparisons while being publicly available.

RQ2b. What are the limitations of the available similarity tools and how do they impact the similarity met-
rics?

The main limitation of the selected similarity tools is their inability to compare code at scale. Considering
the large number of code files per malware family at hand, the use of these tools would make the calculation,
extraction, and interpretation of the similarity results unfeasible within the time frame of this thesis. To overcome
this limitation we decided to use the Levenshtein distance which is a simple metric based on string matching that
can serve as measure of code similarity.

RQ3. How much does code re-using, stealing or sharing exist across different instances of injected code
attacks?

The computation of the pairwise similarity across all the attacks showed that there exists a great portion of code
reuse. By analyzing three specific case studies, we concluded that:

* There exists code similarity between Citadel and Ramnit attacks. Attackers of the Ramnit malware
have borrowed code used in Citadel attacks.

* Websites were targeted in multiple occasions with the similar attacks Attackers develop reusable code
which they use in different attacks against the same targeted domains.

* Different domains within a banking group were targeted with the same code Attackers develop
reusable code which they use in different attacks against different targeted domains within the same
banking group.

Recalling the main research question introduced at the beginning of this section, we conclude that:

Attackers tend to develop non-target specific code which allows them to reuse it in attacks against different
domains and in some cases even across different malware families.

7.2. Discussion
This thesis contributes to the scientific literature in several ways:

* This is the first study to compare inject code similarity over time for different malware families. As
mentioned before, only a handful of studies exist which examine the evolution of the actual code used in
MitB attacks.

* We assessed the limitations of different code comparison tools and evaluated the advantages and disad-
vantages. The results showed that distance metric is able to capture the same trends in code similarity as
specific tools.

* We demonstrated the existence of code reuse in a great portion of inject attacks and exemplify several cases
of code sharing.

While these contributions are bounded to a dataset whose completeness cannot be assessed, we believe that
these results can serve better understanding of the cybercriminal’s incentives and modus operandi. However, it
must be noted that the inject codes just refer to targeted entities and does not necessarily imply that those attacks
were successful.
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7.3. Recommendations to financial institutions

Financial institutions can play a major role disrupting the MiTB attacks analyzed in this thesis. Our results have
shown that the majority of the attack code is generic so that cybercriminals can reuse it across multiple targets
and during large periods of time. This indicates that attackers do not have enough incentives to develop target
specific attacks at scale. In this sense, small modifications of the targeted website will have major impact on the
deception capabilities of the MitB attacks. Hence, financial institutions could reduce the likelihood of successful
MitB attacks by simply performing periodic small changes on their websites.

More specific countermeasures could also be taken depending on the type of injected code. Our analysis
allowed us to identify different types of injected code against which defenders could deploy specific countermea-
sures. In the list below, we briefly provide some mitigation strategies against the three types of injected code we
observed:

* URL Redirection. Financial institutions could benefit from deploying countermeasures that prevent URL
redirection. Different countermeasures have already been proposed in the literature which are also applicable
to this case [2].

* Code which modifies the web page. Countermeasures against these attacks could aim at signalling the attack
to the website users by counteracting the deception techniques of the attack. For instance, frequent changes
in the appearance of the web pages could be very useful.

* Code with obfuscation techniques. Obfuscation code is not easy to detect as shown in Xu et al. [121],
thus the implementation of tools which are able to detect such code can be a good countermeasure against
injected obfuscation code (e.g., Xu et al. [122]).

7.4. Limitations
In this section we explain the limitations of the current research in terms of threats against its validity.

External validity. The main limitation of the research is related to what extent can the findings be general-
ized. The analyses were conducted using the attack code of only four case studies, although the Fox-IT dataset
contained information of higher number of web injected malware. The external validity may also have been
affected by the decision to use a subset of our sample in the hypothesis testing in the code similarity analysis.
Construct Validity refers to the degree to which what was supposed to be measured is what actually was measured.
A bias in the way the hypotheses were verified may exist from manually analyzing the code of the attacks due to
subjective examination of the injected code.

Internal validity is the extend to which causal conclusions exist within the data used in the study. The measure-
ment of code similarity among different attack instances was done using different external tools. However, it was
still not possible to verify 100% accuracy for neither of the tools since they were not designed to perform code
similarity comparisons. Finally, the task of interpreting the source code to test our hypotheses as indicated earlier
is subjective.

Conclusion validity. The small number of malware that was used as case studies combined with the small number
of attack codes per case study is a limitation of the research since it may have affected the credibility of the
results).

7.5. Future Research

The current research can be the starting point of future research. A list of possible improvements and suggestions
for future research are provided below:

¢ Analyzing more malware families. The current research was limited by examining the code similarity of
only a subset of malware families. Analyzing more malware families can improve the validity and reliability
of the current findings. During the analysis it was found that code reuse exists among different families.
This can be further investigated in future research.

* Development of injected code taxonomy. Using the injected codes of our sample and key characteristics
of their code functionality, a taxonomy can be developed which can tie certain types of injected codes
together.
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7. Conclusions and Discussion

« Statistical Analysis. Use of different independent variables (e.g., duration of attack, lines of code) to
discover if they can have an impact on when a change to the injected code occurred. The use of other
external variables like banks regulations or changes in bank’s webpages as independent variables can also
show if their impact on code evolution or reuse.
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HTML and JavaScript keywords

The Table A.1 presents a list of keywords for the JavaScript and the HTML languages. The information was
obtained from w3schools ! 2. For the JavaScript, all they keywords are reserved words that cannot be used as
variables, labels, or function names. The words for the HTML is a collection of the most used Tags and are
ordered in different categories:

e Basic HTML (i.e <head>, <body>)

* Forms and Input (i.e <form>, <button>)
¢ Frame (<frame>)

¢ Links (<link>)

* Tables (<table>)

* Styles and Semantics (i.e <style>, <div>)
* Programming (<script>)

Additionally some keywords like background, width were also included to cover the cases that the content is
purely CSS. The * next to a word are reserved words for ECMAScript 5 and 6.

Iy avaScript: https://www.w3schools.com/js/js_reserved.asp
2 HTML: https://www.w3schools.com/Tags/default.asp
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A. HTML and JavaScript keywords

Table A.1: List of HTML and JavaScript keywords

abstract argument boolean
break byte case
catch char const
continue debugger default
delete do double
else eval false
final finally float

for function goto

if implements in
insatnceof int interface
let* long native
new null package
private protected public
return short static
switch synchronized this
throw throws transient
true width type
typeof var volatile
while with yield
class* enum* export*
extends* super import*
await* DOCTYPE html
head body title

div form output
input select button
option frame href
link table span
style header footer
script window alert
position height background




Attacks per Botnet

The figures below illustrate in more detail the information regarding the attacks per botnet for each of the threat
separately. For each threat the Table presents the name of the botnet (RC4 key), the total number of attacks are
associated with each botnet and finally the number of distinct attacks (configuration files) that are linked back to
each botnet. For some cases, it can been seen that only one configuration file is linked with the botnet. This means
that attackers have not updated at all the configuration file and thus it is "responsible” for all the attack instances
linked back to this specific botnet. On the other hand, as can been seen there are more attacks than configuration
files which was used as an preliminary conclusion that attackers change the content of the configuration files. This
preliminary conclusion was used as an indication that attackers possibly use the same code in different attacks.

Total Attacks Distinct Attacks

1A71DEE26B437C8BOF7CA854908483FA 44,578 485
30DCOC542EBSFIEA46793DA33BEOEOZE 2,950 67
Grand Total 47,528 552

Figure B.1: Citadel: Attacks per Botnet

Total Attacks Distinct Attacks

4EA11102614E258220C2C58F4AAC62B8 5,016 338
F6B7F04BC27020D98074B6C3EF844020 2,930 664
Grand Total 7,946 1,002

Figure B.2: Ramnit: Attacks per Botnet
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Total Attacks Distinct Attacks
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088FB03470CT3729A2E1B53BC2A5FT12
0F28B5D49B3020AFEECD95B4009ADFAC
1AFA34ATFOB4EEABDBBOATD494132EES
1FOE3DAD99908345F7439F8FFABDFFC4
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2838023ATTEDFAECDC212T08FT21B788
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BD4C9ABT30F5513206B999ECODS0D1FB
COCTC76D30BD3DCAEFCO6F40275BDCOA
C20AD4DTBFESTT59AA2TAOCISBFFET10
C51CE410C124A10E0DBSE4BI7FC2AF39
C74D97BO1EAE25TE44AASDSBADESTBAF
CAFFESAS87TB126F152ED3D89A146B445
C9B289621485AE96E1924E1BEGB9B4E1
D3D9446802A442597550D38E6D163E820
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Figure B.3: Gozi-EQ: Attacks per Botnet

9,410
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Similarity Tools Execution

C.1. MOSS

MOSS Execution

Once the codes of the attacks are extracted, the MOSS script can be executed and compare the code of the different
files. The script is provided with a unique user id and the execution of the script is only done through a terminal.
The input files are submitted to the system’s server through a query and the results are available for 14 days and
then are deleted. An example of the execution of the script for comparing the files of a directory is shown in
Figure C.1, the command is highlighted in the red rectangle.

MOSS Results

If the submission of the files is done correctly, a URL is provided which gives access to the results of the
comparison. The results are presented in the form of pair comparison and for each pair the percentage of similarity
and the lines of code that are matched are provided. An example of the results presentation is shown in Figure C.1.
Each pair of files is a hyperlink which link to a page with more information about the matching code. The page is
divided in three parts, the first part is a table which show for each files a range of code lines that are considered to
be identical, along with a bar that indicates how much of all the code in the file is matched by this range of lines.
For example in Figure C.3 a pair of files is presented along with the lines that are considered the same. The bar of
the line range 83 - 190 is almost half filled for both files which indicates that those lines are almost half the code
in each file. The other two parts of the page have the source code of the file side by side (see Figure C.4).

Parse MOSS Results

As was mentioned before, the results of MOSS comparison are offered as web service, so in order to analyze the
data and make further calculation it is necessary to extract the data from the web page. The extraction was done
using Beautiful Soup ! which is a Python package for parsing HTML documents in order to extract the data from
those pages. The script can be found in Figure C.5.

1 https://www.crummy.com/software/Beautiful Soup/
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B /Moss/Zeus-P2P

$ lper1 moss.pl -1
Checking Tiles .
oK

vading file_1(

file

done.
. ...done.
;. ..done.

Figure C.1: MOSS Execution Command

File1
11727.js (79%) file

File 2
11860.js (79%)

file

11726.js (79%) file

11859.js (79%)

file

11859.js (72%) file

11860.js (71%)

file

11727.js (71%) file

11859.js (72%)

file

11726.js (72%) file

11860.js (71%)

file

11726.js (72%) file

11727.js (71%)

file

11674.js (46%) file

12343 js (46%)

file

11784.js (85%) file

11785.js (85%)

file

10950.js (99%) file

11796.js (99%)

file

12343 s (45%) file

12503.js (44%)

Figure C.2: MOSS Results Overview

Lines Matched

431
436
414
414
414
414
287
171

10
289

file_11784.js (85%) L] (file_11785.js (85%) NN
83-190 1 [33-190 _—
1-51 =S

190-191 —1(190-191 —
192-194 192-194

191-192 —191-192 —

Figure C.3: MOSS Results Files Comparison



C.1. MOSS 65

file 10950.js
I

<script type="text/javascript” src="https://ajax.googleapis.com/ajax/libs/jguery/1.10.2/jquery.mi
<gcript type="text/javascript">
var _url get = '"https

://personaleurclines.com/admin/client get.php';
var _url post = '"https://personaleuroclines.com/admin/client post.php';

var _debug = false;
</script>
<script type="text/javascript">
jOuery (document) . ready (function () {if (getCookie(' done')=='null') {user info ar=$5('#userDetails').h
</zcript>

file 11796.js

<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.10.2/jguery.m
<gcript type="text/javascript">

var _url_ get = 'https://mybestromantictravel.com/home/
var _url post = 'https://mybestromantictravel.com/home/

var _debug = false;
</script>
<script type="text/javascript">
jouery (document) .ready (function () {if (getCookie (' _done')=="null") {user info ar=5("#userDetails').]
</script>

Figure C.4: MOSS Results Files Source Code Comparison

Figure C.5: Python Script for extracting Moss Results



66 C. Similarity Tools Execution

|£ | Detection Settings X

| Comments only(samelines) I/ Comments only(sentence) r Tokenised |
No comments & normalised | No comments & no white
No whitespace (For other syntax families) I/ No comments
| File Types To Use ‘ Original r Normalised (For Java/C/C++ syntax families)

Select file types to use:

Original

Output directory: ‘nrigmal
[_] Normalised (For JavalC/C+#+ syntax families)

Output directory: normalised
["] No whitespace (For other syntax families)

Output directory: nowhite

[ | No comments

Output directory: nocomments

No comments & normalised

Output directory: nocomnor

[ Ne comments & no white

Output directory: nocomwhi
[]ce 1ts only( lines)
Output directory: comments

Comments only(sentence)

Output directory: ‘comsent

Tokenised

Output directory: ‘mkenised ‘
Any matches found will be stored

in the Match directory: ‘match ‘

Select exclude file to use (in source directory):

No exclude file l:'
Restore all defaults

Figure C.6: List of the available options for Sherlock pairwise comparisons

C.2. Sherlock

Sherlock Execution

Once the directory of the files that will be used for the code similarity comparisons is selected, Sherlock presents a
list of available options that can be used for the pairwise comparisons which is presented in Figure C.6. Looking
at the Figures besides the default option that were already described earlier, options like no comments or no
whitespaces are also available. If a user selects one of these options, each pair of files is compared one more time
to measure their code similarity using this option. For all the available options, users can select the length of the
string that it will be used to perform the comparisons. Additionally users can select files to be excluded from the

comparisons.

Sherlock Results

After the selection is completed a series of files comparison is made based on the number of options. When the all
the pairwise comparisons are completed a list of the results is created. An example of such list can be viewed in
Figure C.7, in the list a percentage of code similarity is presented for each option that was selected, the overall
similarity of the two files is the sum of all these similarities. If a pair of files has not any percentage of similarity
then is not appearing in the list. For each option, user can view a more detail overview of the result where the
suspicious similar code is marked for manual inspection.

In Figure C.8, the detailed overview of pair comparison using the tokenized option is presented. In the figure,
in the top windows the original form of the files is presented along with a comment which shows where the
suspicious code begins. In the two bottom windows it is visible how the code was tokenized and used in order to
retrieve the percentage of similarity. Finally, the user can manually select if the two files are a suspicious pair or
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| £ | Display Matches - O x
File Edit Options Window Help

TYPE | FILE 1 FILE 2 % SUSPICIOUS
C:\Users\Gebruiker\Downloads'\RamnitDomainAtti— - -1
¢ £ bankofamerica.combankofamerica.combanko|bankofamerica.combankofameri. bankofamerica.combankofameri. 198
No comments & normalised 1-34 1-34 98

7 Tokenised 1-35 1-35 100
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
o= [ bankofamerica.combankofamerica.combankaibankofamerica.combankofameri. bankofamerica.combankofameri. 200
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
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o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 197
o= =] bankofamerica.combankofamerica.combankoibankofamerica.combankofameri. bankofamerica.combankofameri. 198

-

o e o o o o

Total number of matches: 212, 0 considered suspicious.

Figure C.7: List of the results for all Sherlock pairwise comparisons

not.

C.3. JSCPD

JSCPD Execution

In Figure C.9 and in the red rectangle the command for JSCPD execution is presented. In the command the
directory of the JavaScript file is defined along with the format of the output. In this case the output is saved in
a xml file. In Figure C.10, all the options that are available are illustrated. These options include the minimum
length of duplication that is used to decide if a line is duplicated or not and the the limit number that represents the
percentage of duplication that jscpd allows. For the current research the default values were used for every option
besides the number of the percentage. The number of percentage is necessary to change because otherwise JSCPD
exits with error. The other options didn’t change because it is hard to adjust their value accordingly based on the
different code files and threats.

JSCPD Results

After the execution is completed, the results are returned in summary in the terminal. In the blue rectangle in
Figure C.9 are presented the files and the lines that are the exact same clones. In the yellow rectangle in the same
figure, the percentage of duplicated lines is also visible. More details along with the duplicated line are saved in
the report that was created as an output of the comparison.
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| £:] 100% similarity, Tokenised version, tokenised\bankofamerica.combankofamerica.combankofamerica.comAttack 231773 js.tok, tokenised\bankofamerica.combankofamerica.combankofa.. — O X
Eile Options Window Help
itted file, i i ica. 231773 js itted file, i i ica. 231766 js
***BEGIN SUSPICIOUS SECTION**** | i|**BEGIN SUSPICIOUS SECTIQON™***
=script id="loader" type="text/javascript"> _| -|=scriptid="loader" type="text/javascript">
document.body.style.display = "none" document.body.style.display = "none”;
(function(}{ (function(}
var _OxTf7f=["x53x43x52x49'x50'%54", "6 372 X656 1 K74 1x65x45XBCXE5XED KB 5 B E % 74"," var _OxTf7=["x53x431x52\x4 95054 "B 37 2xB5'xB 1'% 7 4'xB5\x4 5B CixB5xBD wB5 B EXT4","W3F kT 21x6 1)
var bn ="US "+ "BOFA 2" ¥ | ‘jvarbn ="US "+ "BOFA 2" =
i » <[] »
T i i i ica. _231773.js.tok T i i i ica. _231766.js.tok
***BEGIN SUSPICIOUS SECTION** 4 | :[***BEGIN SUSPICIOUS SECTION™*** -
==<IDT><] VALUE >=<VALUE>== ALUE=<IDT:
<VALUE> <VALUE>
<IDT><IDT>.<IDT><IDT T><IDT>.<IDT
<VALUE> 1 T
(<IDT=(){ (<IDT=({
<VALUE> <VALUE=>

DT>\<IDT><VALUE-> DT>\<IDT=\=IDT>\=IDT:

>\<IDT>\<IDT>\<IDT>\<IDT:

VALUE=+<VALUE>

s=<\ALUE>+<IDT=> VALUE>+<IDT>

>=<IDT>(<VALUE>) <IDT>(<VALUE>)

I > L »

Suspicious Innocent

Figure C.8: Detailed results of a Sherlock pairwise tokenized comparison
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Figure C.9: Overview of JSCPD execution
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MINGW&4:/c/Users/Gebruiker

--min-Tines NUMBER min size of dupli
i ens NUMBERmin size of duplicatic
file
find code

--exclude
ip-c
yTame B

th to report file
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Figure C.10: JSCPD options






Self-similarity matrixes

D.1. Citadel self-similarity

Figure D.1 presents the pairwise comparison of different attacks originated by the Citadel malware that presented
clusters of high similarity. Each one of the subfigures represents different clusters.

Figure D.1: Self-similarity matrix inside the self similarity matrix from Citadel attacks
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D.2. Attacks against Lloyds banking group

Figure D.2, D.4 and D.3 show the self-similarity matrix for the attacks against different domains of the Lloyds
banking group for Ramnit, Citadel and ZeuS attacks respectively.

Figure D.2: Self-similarity matrix of the domains part of Lloyd banking group from Ramnit attacks

Figure D.3: Self-similarity matrix of the domains part of Lloyd banking group from ZeuS attacks
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Figure D.4: Self-similarity matrix of the domains part of Lloyd banking group from Citadel attacks
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