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Abstract. Accurate estimation of extreme discharges in
rivers, such as the Meuse, is crucial for effective flood risk as-
sessment. However, hydrological models that estimate such
discharges often lack transparency regarding the uncertainty
in their predictions. This was evidenced by the devastating
flood that occurred in July 2021, which was not captured by
the existing model for estimating design discharges. This ar-
ticle proposes an approach to obtain uncertainty estimates for
extremes with structured expert judgment using the classical
model (CM). A simple statistical model was developed for
the river basin, consisting of correlated generalized extreme
value (GEV) distributions for discharges from upstream trib-
utaries. The model was fitted to seven experts’ estimates and
historical measurements using Bayesian inference. Results
were fitted only to the measurements were solely informa-
tive for more frequent events, while fitting only to the expert
estimates reduced uncertainty solely for extremes. Combin-
ing both historical observations and estimates of extremes
provided the most plausible results. The classical model re-
duced the uncertainty by appointing the most weight to the
two most accurate experts, based on their estimates of less
extreme discharges. The study demonstrates that with the
presented Bayesian approach that combines historical data
and expert-informed priors, a group of hydrological experts
can provide plausible estimates for discharges and potentially
also other (hydrological) extremes with relatively manage-
able effort.

1 Introduction

Estimating the magnitude of extreme flood events comes
with considerable uncertainty. This became clear once more
on 18 July 2021: a flood wave on the Meuse River, follow-
ing a few days of rain in the Eiffel and Ardennes, caused
the highest peak discharge ever measured at Borgharen. Un-
precedented rainfall volumes fell in a short period of time
(Dewals et al., 2021). These caused flash floods with a large
loss of life and extensive damage in Germany, Belgium, and,
to a lesser extent, also in the Netherlands (TFFF, 2021; Mohr
et al., 2022). The discharge at the Dutch border exceeded
the flood events of 1926, 1993, and 1995. Contrary to those
events, this flood occurred during summer, a season that is (or
was) often considered less relevant for extreme discharges on
the Meuse. A statistical analysis of annual maxima from a
fact-finding study done recently after the flood estimates the
return period to be 120 years based on annual maxima and
600 years when only summer half-years (April to September)
are considered (TFFF, 2021). These return periods were de-
rived including the July 2021 event itself. Prior to the event,
it would have been assigned higher return periods. The sea-
son and rainfall intensity made the event unprecedented with
regard to historical extremes. Given enough time, new ex-
tremes are inevitable, but with the Dutch flood safety stan-
dards being as high as once per 100 000 years (Ministry of In-
frastructure and Environment, 2016), one would have hoped
this type of event to be less surprising. The event underscores
the importance of understanding the variability and uncer-
tainty that come with estimating extreme floods.
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Extreme value analysis often involves estimating the mag-
nitude of events that are greater than the largest from his-
torical (representative) records. This requires establishing a
model that describes the probability of experiencing such
events within a specific period and subsequently extrap-
olating this to specific exceedance probabilities. For the
Meuse, the traditional approach is fitting a probability distri-
bution to periodic maxima and extrapolating from it (van de
Langemheen and Berger, 2001). However, a statistical fit to
observations is sensitive to the most extreme events in the
time series available. Additionally, the hydrological and hy-
draulic response to rainfall during extreme events might be
different for more frequently occurring events and therefore
be incorrectly described by statistical extrapolation.

GRADE (Generator of Rainfall And Discharge Extremes)
is a model-based answer to these shortcomings. It is used to
determine design conditions for the rivers Meuse and Rhine
in the Netherlands. GRADE is a variant of a conventional re-
gional flood frequency analysis. Instead of using only histor-
ical observations, it resamples these into long synthetic time
series of rainfall that express the observed spatial and tempo-
ral variation. It then uses a hydrological model to calculate
tributary flows and a hydraulic model to simulate river dis-
charges (Leander et al., 2005; Hegnauer et al., 2014). Despite
the fact that GRADE can create spatially coherent results
and can simulate changes in the catchment or climate, it is
still based on resampling available measurements or knowl-
edge. Hence, it cannot simulate all types of events that are not
present in the historical sample. This is illustrated by the fact
that the July 2021 discharge was not exceeded once in the
50 000 years of summer discharges generated by GRADE.

GRADE is an example where underestimation of uncer-
tainty is observed, but it is certainly not the only model.
For example, de Boer-Euser et al. (2017) and Bouaziz et al.
(2020) compared different hydrological modeling concepts
for the Ourthe catchment (considered in this study as well)
and showed the large differences that different models can
give when comparing more characteristics than only stream-
flow. Regardless of the conceptual choices, all models have
severe limitations when trying to extrapolate to an event that
has not occurred yet. We should be wary to disqualify a
model in hindsight after a new extreme has occurred. Alter-
natively, data-based approaches try to solve the shortcom-
ings of a short record by extending the historical records
with sources that can inform on past discharges. For ex-
ample, paleoflood hydrology uses geomorphological marks
in the landscape to estimate historical water levels (Ben-
ito and Thorndycraft, 2005). Another approach is to utilize
qualitative historical written or depicted evidence to estimate
past floods (Brázdil et al., 2012). The reliability of historical
records can be improved as well, for example by combining
this with climatological information derived from more con-
sistent sea level pressure data (De Niel et al., 2017).

In this context, structured expert judgment (SEJ) is another
data-based approach. Expert judgment (EJ) is a broad term

for gathering data from judgments based on expertise in a
knowledge area or discipline. It is indispensable in every sci-
entific application as a way of assessing the truth or value of
new information. Structured expert judgment formalizes EJ
by eliciting expert judgments in such a way that judgments
can be treated as scientific data. One structured method for
this is the classical model, also known as Cooke’s method
(Cooke and Goossens, 2008). The classical model assigns a
weight to each expert within a group (usually 5 to 10 experts)
based on their performance in estimating the uncertainty in a
number of seed questions. These weights are then applied to
the experts’ uncertainty estimates for the variables of inter-
est, with the underlying assumption that the performance for
the seed questions is representative of the performance in the
questions of interest. Cooke and Goossens (2008) show an
overview of the different fields in which the classical model
for structured expert judgment is applied. In total, data from
45 expert panels (involving, in total, 521 experts, 3688 vari-
ables, and 67 001 elicitations) are discussed along with their
applications in nuclear, chemical and gas industry, water re-
lated, aerospace sector, occupational sector, health, banking,
and volcanoes. Marti et al. (2021) used the same database of
expert judgments and observed that using performance-based
weighting gives more accurate DMs than assigning weights
at random. Regarding geophysical applications, expert elici-
tation has recently been applied in different studies aimed at
informing the uncertainty in climate model predictions (e.g.,
Oppenheimer et al., 2016; Bamber et al., 2019; Sebok et al.,
2021). More closely related to this article, Kindermann et al.
(2020) reproduced historical water levels using structured ex-
pert judgment (SEJ), and Rongen et al. (2022b) applied SEJ
to estimate the probabilities of dike failure for the Dutch part
of the Rhine River.

While examples of specifically using the classical model
in hydrology are not abundantly available, there are many ex-
amples of expert judgment as prior information meant to de-
crease uncertainty and sensitivity. Four examples in which a
Bayesian approach, similar to this study, was applied to limit
the uncertainty in extreme discharge estimates are given by
Coles and Tawn (1996), Parent and Bernier (2003), Renard
et al. (2006), and Viglione et al. (2013). The mathematical
approach varies between the different studies, but the ratio-
nale for using EJ is the same – adding uncertain prior infor-
mation to the likelihood of available measurements to help
achieve more plausible posterior estimates of extremes.

This study applies structured expert judgment to estimate
the magnitude of discharge events for the Meuse River up
to an annual exceedance probability of, on average, once per
1000 years. We aim to get uncertainty estimates for these
discharges. Their credibility is assessed by comparing them
to GRADE, the aforementioned model-based method for de-
riving the Meuse River’s design flood frequency statistics.
A statistical model is quantified with both observed annual
maxima and seven experts’ estimates for the 10- and 1000-
year discharge on the main Meuse tributaries. The 10-year
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discharges (unknown to experts at the moment of the elici-
tation) are used to derive a performance-based expert weight
that is used to inform the 1000-year discharges. Participants
use their own approach to come up with uncertainty esti-
mates. To investigate the comparison between (a) the method
that combines data and expert judgments and (b) the data-
only method or (c) the expert-estimates-only approach, we
quantify the model based on all three options. The differ-
ences show the added value of each component. This indi-
cates the method’s performance both when measurements are
available and when they are not, for example, in data scarce
areas.

2 Study area and data used

Figure 1 shows an overview of the catchment of the Meuse
River. The catchments that correspond to the main tributaries
are outlined in red. The three locations for which we are
interested in extreme discharge estimates, Borgharen, Roer-
mond, and Gennep, are colored blue. We call these “down-
stream locations” throughout this study. The river continues
further downstream until it flows into the North Sea near
Rotterdam. This part of the river becomes increasingly inter-
twined with the Rhine River and more affected by the down-
stream seawater level. Consequently, the water levels can
be decreasingly ascribed to the discharge from the upstream
catchment. For this reason, we do not assess discharges fur-
ther downstream than Gennep in this study.

The numbered dots indicate the locations along the trib-
utaries where the discharges are measured. These locations’
names and the tributaries’ names are shown in the lower left.
Elevation is shown with the grey scale. Elevation data were
obtained from European Digital Elevation Model (EU-DEM;
Copernicus Land Monitoring Service, 2017) and used to de-
rive catchment delineation and tributary steepness. These
data were provided to the experts together with other hydro-
logical characteristics, like

– catchment overview, i.e., a map with elevation, catch-
ments, tributaries, and gauging locations

– land use, i.e., a map with land use from Copernicus
Land Monitoring Service (2018)

– river profiles and time of concentration, i.e., a figure
with longitudinal river profiles and a figure with time
between the tributary peaks and the peak at Borgharen
for discharges at Borgharen greater than 750 m3 s−1

– tabular catchment characteristics, such as area per
catchment, as well as the catchment’s fraction of the
total area upstream of the downstream locations; soil
composition from Food and Agriculture Organization
of the United Nations (2003), specifying the fractions of
sand, silt, and clay in the topsoil and subsoil; and land

Figure 1. Map of the Meuse catchment considered in this study,
with main river, tributaries, streams, and catchment bounds.

use fractions (paved, agriculture, forest and grassland,
marshes, waterbodies)

– statistics of precipitation, including the daily precipita-
tion per month and catchment; sum of annual precipi-
tation per catchment; and intensity duration frequency
curves for the annual recurrence intervals of 1, 2, 5, 10,
25, 50, and the maximum, all calculated from gridded
E-OBS reanalysis data provided by Copernicus Land
Monitoring Service (2020)

– hyetographs and hydrographs, i.e., temporal rainfall pat-
terns and hydrographs for all catchments/tributaries dur-
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ing the 10 largest discharges measure at Borgharen
(sources described below).

This information, included in the Supplement, was pro-
vided to the experts to support them in making their esti-
mates. The discharge data needed to fit the model to the
observations were obtained from Service public de Wal-
lonie (2022) for the Belgian gauges, Waterschap Limburg
(2021) and Rijkswaterstaat (2022) for the Dutch gauges, and
Land NRW (2022) for the German gauge. These discharge
data are mostly derived from measured water levels and rat-
ing curves. During floods, water level measurements can be
incomplete and rating curves inaccurate. Consequently, dis-
charge data during extremes can be unreliable. Measured dis-
charge data were not provided to the experts, except in nor-
malized form as hydrograph shapes.

3 Method for estimating extreme discharges with
experts

3.1 Probabilistic model

To obtain estimates for downstream discharge extremes, ex-
perts needed to quantify individual components in a model
that gives the downstream discharge as the sum of the tribu-
tary discharges multiplied by a factor correcting for covered
area and hydrodynamics:

Qd = f1t ·
∑
u

Qu, (1)

where Qd is the peak discharge of a downstream location
during an event and Qu the peak discharge of the uth (up-
stream) tributary during that event. Location d can be any
location along the river where the discharge is assumed to
be dependent mainly on rainfall in the upstream catchment.
The random variableQu is modeled with the generalized ex-
treme value (GEV) distribution (Jenkinson, 1955). We chose
this family of distributions firstly because it is widely used
to estimate the probabilities of extreme events. Secondly, it
provides flexibility to fit different rainfall–runoff responses
by varying between Fréchet (heavy-tailed), Gumbel (expo-
nential tail), and Weibull distributions (light-tailed). We fit-
ted the GEV distributions to observations, expert estimates,
or both using Bayesian inference (described in Sect. 3.3). The
factor or ratio f1t in Eq. (1) compensates for differences be-
tween the sum of upstream discharges and the downstream
discharge. These result from, for example, hydraulic proper-
ties, such as the time difference between discharge peaks and
peak attenuation as the flood wave travels through the river
(which would individually lead to a factor of < 1.0) or rain-
fall in the Meuse catchment area that is not covered by one
of the tributaries (which would individually lead to a factor
of > 1). When combined, the factor can be lower or higher
than 1. The 1000-year discharge is meant to inform the tail
of the tributary discharge probability distributions. This tail is

represented by the GEV tail shape parameter that is the most
difficult to estimate from data. We chose to elicit discharges
rather than a more abstract parameter like the tail shape itself
such that experts make estimates of quantities that may be
observed and at “a scale on which the expert has familiarity”
(Coles and Tawn, 1996, p. 467).

The tributary peak discharge, Qu, is correlated because
a rainfall event is likely to affect an area larger than a
single tributary catchment and because nearby catchments
have similar hydrological characteristics. This dependence is
modeled with a multivariate Gaussian copula that is realized
through Bayesian networks estimated by the experts (Hanea
et al., 2015). The details of this concern the practical and the-
oretical aspects of eliciting dependence with experts and are
beyond the scope of this article. They will be presented in
a separate article that is yet to be published. We did use the
resulting correlation matrices for calculating the discharge
statistics in this study. They are presented in Appendix B.

In summary, using the method of SEJ described in
Sect. 3.2, the experts estimate

1. the tributary peak discharge, Qu, that is exceeded, on
average, once per 10 years and once per 1000 years (for
brevity called the 10-year and 1000-year discharge here-
after),

2. the factor f1t , and

3. the correlation between tributary peak discharges (as ex-
plained below).

With these, the model in Eq. (1) is quantified. The model
was deliberately kept simple to ensure that the effect of the
experts’ estimates on the result remains traceable for them.
Section 3.4 explains how downstream discharges were gen-
erated from these model components (i.e., the different terms
in Eq. 1), including uncertainty bounds. The model is also
described in more detail in Rongen et al. (2022a) as well,
where it was used in a data-driven context. All analyses in
this study were done using Python (Python Software Foun-
dation, 2024), mostly using standard modules such as numpy,
matplotlib, and scipy. Bespoke modules were used for the ex-
pert judgment and MCMC processing, as mentioned below.

3.2 Assessing uncertainties using the classical model
for expert judgments

The experts’ estimates are elicited using the classical model.
This is a structured approach to elicit uncertainty for un-
known quantities. It combines expert judgments based on
empirical control questions, with the aim to find a single
combined estimate for the variables of interest (a rational
consensus). The classical model is typically employed when
alternative approaches for quantifying uncertain variables are
lacking or unsatisfying (e.g., due to costs or ethical limi-
tations). It is extensively described in Cooke (1991) while
applications are discussed in Cooke and Goossens (2008).

Hydrol. Earth Syst. Sci., 28, 2831–2848, 2024 https://doi.org/10.5194/hess-28-2831-2024
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Here, we discuss the basic elements of the method. We ap-
plied the classical model because of its strong mathemati-
cal base, track record (Colson and Cooke, 2017), and the au-
thors’ familiarity with this method.

In the classical model, a group of participants, often re-
searchers or practitioners in the field of interest, provide un-
certainty estimates for a set of questions. These can be di-
vided into two categories; seed and target questions. Seed
questions are used to assess the participants’ ability to esti-
mate uncertainty within the context of the study. The answers
to these questions are known by the researchers but not by
the participants at the moment of the elicitation. Seed ques-
tions are often sourced from similar studies or cases and are
as close as possible to the variables of interest. In any case,
they are related to the field of expertise of the participant pool
but unknown to the participants. Target questions concern the
variables of interest, for which the answer is unknown to both
researchers and participants.

Because the goal is to elicit uncertainty, experts estimate
percentiles rather than a single value. Typically, these are
the 5th, 50th, and 95th percentile. Two scores are calcu-
lated from an expert’s three-percentile estimates; the statis-
tical accuracy (SA) and information score. The three per-
centiles create a probability vector with four inter-quantile
intervals, p = (0.05,0.45,0.45,0.05). The fraction of real-
izations within each of expert e’s inter-quantile interval also
forms a four-element vector, s(e). The vectors s(e) and p
are expected to be more similar for an expert e that correctly
estimates uncertainty in the seed questions. The statistical ac-
curacy is calculated by comparing each inter-quantile prob-
ability pi to si(e). The SA is based on the relative informa-
tion I (s(e)|p), which equals

∑
i=1,...,4si log(si/pi). Using

the chi-squared test (the quantity 2·N ·
∑
i=1,...,4si log(si/pi)

is asymptotically χ2
3 ), the goodness of fit between the vectors

p and s can be expressed as a p value. This p value is used
as SA score. The SA is the highest if the expert’s probabil-
ity vector s matches p. For 20 questions, this means the ex-
pert overestimates one seed question (i.e., the actual answer
was below the fifth percentile), underestimates one question,
and has nine questions in both the [5 %, 50 %] and [50 %,
95 %] interval. The further away the inter-quantile ratio si/pi
is from 1.0, the lower the SA. Figure 4 is presented to visu-
alize the disagreement between si and pi for this study. This
figure will be further discussed in Sect. 4.1. For now, it is
sufficient to note that the agreement between si and pi is the
highest for expert D. The statistical accuracy expresses the
ability of an expert to estimate uncertainty. Because a vari-
able of interest is uncertain, its realization is considered to be
a value sampled from the uncertainty distribution. According
to the expert, this realization corresponds to a quantile on the
expert-estimated distribution. If an expert manages to repro-
duce the ratio of realizations within the inter-quantile inter-
vals (such as in the example with 20 questions above), the
probability of the expert being statistically accurate is high;

hence, they will receive a high p value. Of course, this match
could be coincidental, like any significant p value from a sta-
tistical test. However, in general, a different sample of real-
izations (in this study, different observed 10-year discharges)
is expected to give a p value (i.e., statistical accuracy) of a
similar order.

Additionally to the SA, the information score compares
the degree of uncertainty in an expert’s answer compared
to other experts. Percentile estimates that are close together
(compared to the other participants) are more informative
and get a higher information score. The product of the sta-
tistical accuracy and information score gives the expert’s
weight, wα(e):

wα(e)= 1α × statistical accuracy(e)

× information score(e). (2)

The statistical accuracy dominates the expert weight,
where the information score modulates between experts with
a similar SA. Experts with a SA lower than α can be excluded
from the pool using a threshold, which is expressed by the
1α in Eq. (2). This threshold is usually 5 %. The (weighted)
combination of the experts’ estimates is called the decision
maker (DM). The experts contribute to the ith item’s DM es-
timate by their normalized weight:

DMα(i)=
∑
e

wα(e)fe,i

/∑
e

wα(e). (3)

This is called the global weight (GL) DM.
Alternatively, experts can be given the same weight, which

results in the equal weight (EQ) DM. This does not require
eliciting seed variables, but neither does it distinguish ex-
perts based on their performance, a key aspect of the classical
model (CM). Cooke et al. (2021) compare GL weights to EQ
weights in an “out-of-sample” cross validation and show that
using performance-based weights increased the informative-
ness of the decision maker estimates by assigning weight to a
few experts, without compromising DM statistical accuracy
(i.e., the performance of the DM in estimating uncertainty).

To construct the DM, probability density functions
(PDFs), such as fe,i in Eq. (3), need to be created from the
percentile estimates. We used a metalog distribution for this
(Keelin, 2016). This distribution is capable of exactly fitting
any three-percentile estimate. Notice that for this research,
the metalog distribution represents the uncertainty distribu-
tion of each expert over a particular discharge with a given re-
turn period. While it is related to the underlying distribution
of discharge, it does not make any assumption about this un-
derlying distribution other that the ones expressed by experts
through their percentile estimates. For symmetric estimates,
the metalog is bell-shaped. For asymmetric estimates, it be-
comes left- or right-skewed. Typically, the classical model
assumes a uniform distribution in between the percentiles
(minimum information). This leads to a stepped PDF, i.e.,
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a PDF with jumps in probability density where the metalog
gives a smooth PDF. An example of using the metalog dis-
tribution in an expert elicitation study is described by Dion
et al. (2020). All calculations related to the classical model
were performed using the open-source software ANDURYL
(Leontaris and Morales-Nápoles, 2018; ’t Hart et al., 2019;
Rongen et al., 2020).

In this study, the seed questions involve the 10-year dis-
charges for the tributaries of the river Meuse. An example of
a seed question is “what is the discharge that is exceeded
on average once per 10 years, for the Vesdre at Chaud-
fontaine?” The target questions concern the 1000-year dis-
charges as well as the ratio between the upstream sum and
downstream discharge. Discharges with a 10-year recurrence
interval are exceptional but can, in general, be reliably ap-
proximated from measured data. Seven experts participated
in the in-person elicitation that took place on the 4 July 2022.
The study and model were discussed before the assessments
to make sure that the concepts and questions were clear. After
this, an exercise for the Weser catchment was done, in which
the experts answered four questions that were subsequently
discussed. In this way, the experts could compare their an-
swers to the realizations and view the resulting scores using
the classical model.

Apart from the training exercise, the experts answered
26 questions: 10 seed questions regarding the 10-year dis-
charge (one for each tributary), 10 target questions regarding
the 1000-year discharge, and 6 target questions for the ratios
between the upstream sum and downstream discharge (10-
and 1000-year, for three locations). A list of the seven partic-
ipants’ names, their affiliations, and their field of expertise is
shown in Table 1. While the participants are pre-selected on
their expertise, experts are scored post hoc in terms of their
ability to estimate uncertainty in the context of the study. We
note that the alphabetical order of the experts in the table does
not correspond to their labels in the results. An overview of
the data provided to the participants is given in Sect. 2, while
the data itself as well as the questionnaire are presented in
the Supplement.

3.3 Determining model coefficients with Bayesian
inference

The model for downstream discharges (Eq. 1) consists of
generalized extreme value (GEV) distributions per tributary.
The GEV distribution has three parameters, the location (µ),
scale (σ ), and shape parameter (ξ ). Consider z= (x−µ)/σ .
The probability density function (PDF) of the GEV is then

f (x)=


1
σ exp(−exp(−z))exp(−z), if ξ = 0
1
σ exp(−(1− ξz)1/ξ )(1− ξz)1/ξ−1, if z ≤ 1/ξ

and ξ > 0
. (4)

For each tributary, a (joint) distribution of the model pa-
rameters was determined using Bayesian inference based on
expert estimates and observed tributary discharge peaks dur-

ing annual maxima at Borgharen. Bayesian methods explic-
itly incorporate uncertainty, a key aspect of this study, and
provide a natural way to integrate expert judgment with ob-
served data.

Bayes’ theorem gives the posterior distribution, p(θ |q), of
the (hypothesized) GEV parameter combination, θ , given the
observed peak, q, as a function of the likelihood, p(q|θ), and
the prior distribution, π(θ):

p(θ |q)=
p(q|θ)π(θ)

p(q)
. (5)

The likelihood can be calculated using Eq. (4) from the
product of the probability density of all (independent) an-
nual maxima: p(q|θ)=

∏
i(f (qi |θ)). The calculation of the

prior is discussed below. That leaves p(q), which is not
straightforward to calculate. However, the posterior distri-
bution can still be estimated using the Bayesian sampling
technique Markov chain Monte Carlo (MCMC). MCMC al-
gorithms compare different propositions of the numerator in
Eq. (5), leaving the denominator as a normalization factor
that crosses out. In this study, we used the affine invariant
MCMC ensemble sampler as described by Goodman and
Weare (2010), available through the Python module “em-
cee” (Foreman-Mackey et al., 2013). This sampler generates
a trace of distribution parameters that forms the empirical
joint probability distribution of, in our case, the three GEV
parameters for each tributary. These are subsequently used
to calculate the downstream discharges (see Sect. 3.4).

The prior consists of two parts, the expert estimates for
the 10- and 1000-year discharge and a prior for the GEV tail
shape parameter ξ . Since the experts do not know the values
of the discharges they are estimating, their estimates can be
considered prior information. The prior probability π(θ) of
the expert’s estimates is calculated in a similar way as de-
scribed by Viglione et al. (2013); given a GEV distribution
f (Q|θ), the discharge q for a specific annual exceedance
probability p is calculated from the quantile function or in-
verse CDF (F−1):

qpj = F
−1(1−pj |θ), (6)

with pj being the j th elicited exceedance probability. This
discharge is compared to the expert’s or DM’s estimate for
this 10- or 1000-year discharge, g(qpj ). Figure 2 illustrates
this procedure. The top curve f (Q|θ) represents a proposed
GEV distribution for the random variable, Q (tributary peak
discharge), with parameter vector θ . This GEV gives dis-
charges corresponding to the 0.9th and 0.999th quantile (i.e.,
the 10- and 1000-year discharge). These discharges can then
be compared to the expert estimates, illustrated by the two
bottom graphs. Additionally, the figure shows the likelihood
of observations with the vertical arrows (p(q|θ) in Eq. 5).

Apart from the expert estimates, we prefer a weakly infor-
mative prior for θ (i.e., uninformative but within bounds that
ensure a stable simulation) such that only the data and ex-
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Table 1. List of experts with their affiliations and professional interests.

Name Affiliation Field of expertise

Alexander Bakker Rijkswaterstaat and Delft
University of Technology

Risk analysis for storm surge barriers, extreme value analyses, climate
change and climate scenarios

Eric Sprokkereef Rijkswaterstaat Coordinator of the river crisis advisory group, operational forecaster for
Rhine and Meuse

Ferdinand Diermanse Deltares Expert advisor and researcher flood risk

Helena Pavelková Waterschap Limburg Hydrologist

Jerom Aerts Delft University of Technology Hydrologist focused on hydrologic modeling on a global scale. PhD can-
didate

Nicole Jungermann HKV consultants Advisor water and climate

Siebolt Folkertsma Rijkswaterstaat Advisor in the expert team for the River Meuse

Figure 2. Conceptual visualization of elements in the likelihood
function of a tributary GEV distribution.

pert estimates inform the final result. However, an informa-
tive prior was added to the shape parameter, ξ , because with
only expert estimates and no data, two discharge estimates
are not sufficient for fitting the three parameters of the GEV
distribution. Additionally, the variance in the shape param-
eter decreases with an increasing number of years (or other
block maxima) in a time series (Papalexiou and Koutsoyian-
nis, 2013). The 30 to 70 annual maxima per tributary in this
study are not sufficient to reach convergence. Similar obser-
vations have been presented before for extreme precipitation
in Koutsoyiannis (2004a, b) Therefore, we employ the geo-
physical prior as presented by Martins and Stedinger (2000);
a beta distribution with hyperparameters α = 6 and β = 9 for
x ∈ [−0.5,0.5], for which the PDF is

h(x)=
0(α+β)

0(α)0(β)
xα−1(1− x)β−1, (7)

with x = ξ+0.5 and 0 being the gamma function. This PDF
is slightly skewed towards negative values of the shape pa-
rameter, preferring the heavy-tailed Fréchet distribution over
the light-tailed reversed Weibull. In their analysis of a very
large number of rainfall records worldwide, Papalexiou and
Koutsoyiannis (2013) came to a similar distribution for the
GEV shape parameter. For µ and σ , we assigned equal prob-
ability to all values greater than 0. This corresponds to a
weakly informative prior for µ (positive discharges) and an
uninformative prior for σ (only positive values are mathe-
matically feasible).

With both experts’ estimate g and the constrained tail
shape, the prior distribution becomes

π(θ)=
∏
j

(
gj
(
F−1
θ (1−pj )

))
·h(ξ + 0.5), (8)

for −0.5< ξ < 0.5, σ > 0, and µ > 0. π(θ)= 0 for any
other combination. This gives all the components to calcu-
late the posterior distribution in Eq. (5) using MCMC.

The posterior distribution comprises the prior tail shape
distribution, the prior expert estimates of the 10- and 1000-
year discharges, and the likelihood of the observations. As
described in Sect. 1, we compare the performance of using
data, EJ, and the combination of the two. If only data are
used, the expert estimates drop out. If only expert judgments
are used, the likelihood drops out and both expert estimates
are used. If both data and expert judgment are used, only the
1000-year expert estimate is used.

With the just-described procedure, the (posterior) distribu-
tions for the tributary discharge (Qu in Eq. 1) are quantified.
This leaves the ratio between the upstream sum and down-
stream discharge (f1t ) and the correlations between the trib-
utary discharges to be estimated. For the ratios, we distin-
guished between observations and expert estimates as well.
A log-normal distribution was fitted to the observations. This
corresponds to a practical choice for a distribution of pos-
itive values with sufficient shape flexibility. The ratio itself
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does not represent streamflow, so there is no need to assume
a heavy-tailed distribution as would be expected for stream-
flow (Dimitriadis et al., 2021). The experts estimated a distri-
bution for the factor as well, which was used directly for the
experts-only fit. For the combined model fit, the observation-
fitted log-normal distribution was used up to the 10-year
range and the expert estimate (fitted with a metalog distri-
bution) for the 1000-year factor. Values of f1t for return pe-
riod T greater than 10 were interpolated (up to 1000 years)
or extrapolated,

f1t |T = f1t |10 year+
log(T )− log(10)

log(1000)− log(10)

× (f1t |1000 year− f1t |10 year), (9)

with f1t |10y being sampled from the log-normal and
f1t |1000y from the expert-estimated metalog distribution.
During the expert session, one participant requested to make
different estimates for the factor at the 10-year event and
1000-year event, a distinction that was initially not planned.
Following this request, we changed the questionnaire so that
a factor could be specified at both return periods. One ex-
pert used the option to make two different estimates for the
factors.

Regarding the correlation matrix that describes the depen-
dence between tributary extremes, the observed correlations
were used for the data-only option and the expert-estimated
correlations for the expert-only option. For the combined op-
tion, we took the average of the observed correlation matrix
and the expert-estimated correlation matrix. Other possibili-
ties for combining correlation matrices are available (see, for
example, Al-Awadhi and Garthwaite, 1998, for a Bayesian
approach); however, in-depth research of these options is be-
yond the scope of this study.

3.4 Calculating the downstream discharges

The three components from Eq. (1) needed to calculate the
downstream discharges are

– tributary (marginal) discharges, represented by the GEV
distributions from the Bayesian inference,

– the interdependence between tributaries, represented by
a multivariate normal copula, and

– the ratio between the upstream sum and downstream
discharges (f1t ).

In line with the objective of this article, an uncertainty es-
timate is derived for the downstream discharges. This section
describes the method in a conceptual way. Appendix A con-
tains a formal step-by-step description.

To calculate a single exceedance frequency curve for a
downstream location, 10 000 events (annual discharge max-
ima) are drawn from the 9 tributaries’ GEV distributions.
Note that 10 tributaries are displayed in Fig. 1. The Semois

Figure 3. Individual exceedance frequency curves for each GEV
realization or downstream discharge and the different percentiles
derived from these.

catchment is, however, part of the French Meuse catchment
and therefore only used to assess expert performance. The
9 tributary peak discharges are summed per event and mul-
tiplied by 10 000 factors (one per event) for the ratio be-
tween upstream sum and downstream discharge. The 10 000
resulting downstream discharges are assigned an annual ex-
ceedance probability through empirical plot positions, result-
ing in an exceedance frequency curve. This process is re-
peated 10 000 times with different GEV realizations from
the MCMC trace, resulting in 10 000 curves (each based on
10 000 discharges), from which the uncertainty bandwidth
is determined. This is illustrated in Fig. 3. The grey lines
depict 50 of the 10 000 curves (these can be both tributary
GEV curves or downstream discharge curves). The (blue)
histogram gives the distribution of the 1000-year discharges.
The colored dots indicate the 2.5th, 50th, and 97.5th per-
centiles in this histogram. Calculating these percentiles for
all annual exceedance probabilities results in the black per-
centile curves, creating the uncertainty interval.

The dependence between tributaries is incorporated in two
ways. First, the 10 000 events underlying each downstream
discharge curve are correlated. This is achieved by drawing
the 9× 10 000 sample from the (multivariate normal) corre-
lation model, transforming these samples to uniform space
(with the normal CDF) and then to each tributary’s GEV dis-
tribution space (with the GEV’s quantile function). This is
the usual approach when working with a multivariate normal
copula. The second way to incorporate the tributary depen-
dence is by choosing GEV combinations from the MCMC
results while considering the dependence between tributaries
(i.e., picking high or low curves from the uncertainty band-
width for multiple tributaries). As illustrated in Fig. 3, a trib-
utary’s GEV distribution can lead to relatively low or high
discharges. This uncertainty is largely caused by a lack of
realizations in the tail (i.e., not having thousands of years
of independent and identically distributed discharges). If one
tributary does fit a GEV distribution resulting in a curve on
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Table 2. Scores for the classical model for the experts (top 7 rows)
and decision makers (bottom 3 rows).

Statistical Information score Comb. score

accuracy All Seed

Expert A 0.000799 1.605 1.533 0.00123
Expert B 0.000456 1.576 1.633 0.000745
Expert C 2.3× 10−8 1.900 1.868 4.4× 10−8

Expert D 0.683 0.711 0.626 0.427
Expert E 0.192 1.395 1.263 0.242
Expert F 0.000456 1.419 1.300 0.000593
Expert G 0.00629 1.302 1.232 0.00775

GL (opt) 0.683 0.659 0.670 0.458
GL 0.683 0.648 0.661 0.452
EQ 0.493 0.537 0.551 0.271

the upper end of the bandwidth, it is likely because it expe-
rienced a “high-discharge” event that affected its neighbor-
ing tributary as well. Consequently, the neighboring tributary
is more likely to also have a high-discharge GEV combina-
tion. To account for this, we first sort the GEV combinations
based on their 1000-year discharge (i.e., the curves’ intersec-
tions with the dashed blue line) and draw nine numbers from
the dependence model, one for each tributary. Transforming
these to uniform space gives values in between 0 and 1 that
are used as ranks to select (correlated) GEV combinations for
all tributaries. Doing this increases the likeliness that differ-
ent tributaries will have relatively high or low sampled dis-
charges.

4 Experts’ performance and resulting discharge
statistics

This result section first presents the experts’ scores for the
classical model (Sect. 4.1) and the experts’ rationale for an-
swering the questions (Sect. 4.2). After this, the extreme
value results for the tributaries (Sect. 4.3) and downstream
locations (Sect. 4.4) are presented.

4.1 Results for the classical model

The experts estimated three percentiles (5th, 50th, and 95th)
for the 10- and 1000-year discharge for all larger tributaries
in the Meuse catchment. An overview of the answers is given
in the Supplement. Based on these estimates, the scores for
the classical model are calculated as described in Sect. 3.2.
The resulting statistical accuracy, information score, and
combined score (which, after normalizing, become weights)
are shown in Table 2.

The statistical accuracy varies between 2.3× 10−8 for ex-
pert C and 0.683 for expert D. Two experts have a score
above a significance level of 0.05. Figure 4 shows the po-
sition of each realization (answer) within the experts’ three-

Figure 4. Seed question realizations compared to each expert’s es-
timates. The position of each realization is displayed as a percentile
point in the expert’s distribution estimate.

percentile estimate for each of the 10-year discharges. A high
statistical accuracy means realizations to these seed variables
are distributed accordingly to (or as close to) the mass in each
inter-quantile bin: one realization below the 5th percentile,
four in between the 5th and the median, four between the
median and the 95th, and one above the 95th. Expert D’s es-
timates closely resemble this distribution ( 1

10 ,
5

10 ,
4

10 , and 0
10

for each inter-quantile, respectively), hence the high statis-
tical accuracy score. A concentration of dots on both ends
indicates overconfidence (too close together estimates, re-
sulting in realizations outside of the 90 % bound). We ob-
serve that most experts tend to underestimate the measured
discharges, since most realizations are higher than their esti-
mated 95th percentile. Note that the highest score is not re-
ceived for the (median) estimates closest to the realization
but to evenly distributed quantiles, as the goal is estimat-
ing uncertainty rather than estimating the observation (see
Sect. 3.2).

The information scores show, as usual, less variation. The
expert with the highest statistical accuracy (expert D) also
has the lowest information score. Expert E, who has a high
statistical accuracy as well, estimated more concentrated per-
centiles, resulting in a higher information score.

The variation between the three decision makers (DMs) in
the table is limited. Optimizing the DM (i.e., excluding ex-
perts based on statistical accuracy to improve the DM score)
has a limited effect. In this case, only experts D and E would
have a non-zero weight, resulting in more or less the same
results compared to including all experts, even when some of
them contribute with marginal weights. The equal-weights
DM in this case results in an outcome that is comparable to
that of the performance-based DM, i.e., a high statistical ac-
curacy with a slightly lower information score compared to
the other two DMs.

We present the model results as discussed earlier through
three cases: (a) only data, (b) only expert estimates, and
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(c) the two combined as described in Sect. 3.3. We used
the global-weights DM for the option with data and experts
combined, option c. This means the experts’ estimates for
the 10-year discharges were used to assess the value of the
1000-year answer. For the experts-only option, we used the
equal-weights DM because using the global weights empha-
sizes estimates matching the measured data in the 10-year
range. This would indirectly lead to including the measured
data in the fit. Using equal weights, we ignore the relevant
seed questions and the corresponding differential weights.

4.2 Rationale for estimating tributary discharges

We requested the experts to briefly describe the procedure
they followed for making their estimates. Overall, three ap-
proaches were distinguished between. The first was using
a simple conceptual hydrological model, in which the dis-
charge follows from catchment characteristics like (a sub-
set of) area, rainfall, evaporation and transpiration, rainfall-
runoff response, land-use, subsoil, slope, or the presence of
reservoirs. Most of this information was provided to the ex-
perts, and if not, they made estimates for it themselves. A
second approach was to compare the catchments to other
catchments known by the expert and possibly adjust the out-
comes based on specific differences. A third approach was
using rules of thumb, such as the expected discharge per
square kilometer of catchment or a “known” factor between
an upstream tributary discharge and a downstream discharge
(of which the statistics are better known). For estimating the
1000-year discharge, the experts had to do some kind of ex-
trapolation. Some experts scaled with a fixed factor, while
others tried to extrapolate the rainfall, for which empirical
statistics where provided. The hydrological data (described
in Sect. 2) were provided to the experts in spreadsheets as
well, making it easier for them to do computations. How-
ever, the time frame of 1 d (for the full elicitation) limited the
possibilities for making detailed model simulations.

Figure 5 shows how the different approaches led to differ-
ent answers per tributary. It compares the 50th percentile of
the discharge estimates per tributary of each expert by divid-
ing them through the catchment area. The 10- and 1000-year
discharges from fitting the observations (i.e., the data-only
approach) are indicated with the starts. The figure shows that
most experts estimated higher discharges for the steeper trib-
utaries (Ambleve, Vesdre, and Lesse). The experts estimated
the median 1000-year discharges to be 1.7 to 3.8 times as
high as the median 10-year discharge, with an average of 2.3
for all experts and tributaries. The statistically most accurate
expert, expert D, estimated factors in between 1.6 and 7.0.
Contrarily, expert E, with the second-highest score, estimated
a ratio of 2.0 for all tributaries. For estimating the factor
between the tributaries’ sum and the downstream discharge
(f1t in Eq. 1), experts mainly took into consideration that not
100 % of the area is covered by the tributary catchments for
which the discharge estimates were made and that the trib-

Figure 5. Discharge per area for each tributary and experts, based
on the estimate for the 50th percentile (a) for the 10-year and (b) for
the 1000-year discharge. Observed or fitted discharges are indicated
with stars. The lines are displayed to help distinguish overlapping
markers.

utary hydrograph peaks have different lag times. Additional
aspects noted by the experts were the effects of flood peak
attenuation and spatial dependence between tributaries and
rainfall.

4.3 Extreme discharges for tributaries

We calculated the extreme discharge statistics for each of the
tributaries based on the procedures described in Sect. 3.3.
Figure 6 shows the results for Chooz and Chaudfontaine
(left and middle column). Chooz is a larger, not too steep
of a tributary, while Chaudfontaine is a smaller, steep trib-
utary (see Fig. 1). The right column shows the discharges
for Borgharen, the location where we want to estimate the
discharges through Eq. (1), which is further discussed in
Sect. 4.4. The results for the other tributaries are shown in
the Supplement for all experts and DMs.

Figure 6a, d, and g shows the uncertainty interval of these
distributions when fitted only to the discharge measurements.
The outer colored area is the 95 % interval, the opaquer inner
area the 50 % interval, and the thick line the median value.
Figure 6b, e, and h shows the fitted distributions when only
expert estimates are used. Figure 6c, f, and i shows the com-
bination of expert estimates and data. The data-only option
closely matches the data in the return period range where
data are available, but the uncertainty interval grows for re-
turn periods further outside sample. Contrarily, the expert-
only option shows much more variation in the “in-sample”
range, while the out-of-sample return periods are more con-
strained. The combined option is accurate in the in-sample
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Figure 6. Extreme discharge statistics for Chooz (a–c), Chaudfontaine (d–f), and Borgharen (g–i). Panels a, d, and g represent data only;
panels b, e, and h expert judgment only; and panels c, f, and i the data and expert judgment combined.

range, while the influence of the DM estimates is visible in
the 1000-year return period range.

4.4 Extreme discharges for Borgharen

Combining all the marginal (tributary) statistics with the fac-
tor for downstream discharges and the correlation models
estimated by the experts, we get the discharge statistics for
Borgharen. The results for this are shown in Fig. 6g, h, and i.

As with the statistics of the tributaries, we observe high
accuracy for the data-only estimates in the in-sample range,
constrained uncertainty bounds for EJ-only in the range with
higher return periods and both when combined. The com-
bined results match the historical observations well. Note
that this is not self-evident as the distributions were not fitted
directly to the observed discharges at Borgharen but rather
obtained through the dependence model for individual catch-
ments and Eq. (1). Contrarily, the data-only results devi-
ate from the observations in the 10-to-100-year range. Sam-
pling from the fitted model components (GEVs, dependence
model, and factors) does not accurately reproduce the down-
stream discharges in this range because they were individ-
ually fitted and not as a whole. We do not consider this a

problem as the study is oriented towards showing the effects
of expert quantification in combination with more traditional
hydrological modeling. The EJ-only estimates give a much
wider uncertainty estimate. The experts’ combined median
matches the observations surprisingly well, but the large un-
certainty within the observed range cautions against drawing
general conclusions on this.

Zooming in on the discharge statistics for the downstream
location of Borgharen, we consider the 10-, 100-, and 1000-
year discharge. Figure 7 shows the (conditional) probability
distributions (smoothed with a kernel density estimate) for
these discharges at the location of interest.

Comparing the three modeling options discussed thus far,
we see that the data-only option is very uncertain, with a
95 % uncertainty interval of 4000 to around 9000 m3 s−1 for
the 1000-year discharge. A Meuse discharge of 4000 m3 s−1

will likely flood large stretches along the Meuse in the Dutch
province of Limburg, while a discharge of 5000 m3 s−1

also floods large areas further downstream (Rongen, 2016).
For discharges higher than 6000 m3 s−1, the applied model
(Eq. 1) should be reconsidered as the hydrodynamic proper-
ties of the system change due to upstream flooding.
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Figure 7. Kernel density estimates for the 10-year (a), 100-year (b),
and 1000-year (c) discharge for Borgharen. The dots indicate the
5th, 50th, and 95th percentile.

The combined results are surprisingly close to the cur-
rently used GRADE statistics for dike assessment; the un-
certainty is slightly larger, but the median is very similar.
The EJ-only results are less precise, but the median values
are similar to the combined results and GRADE statistics.
The large uncertainty is mainly the result of equally weight-
ing all experts instead of assigning most weight to experts D
and E (as done for the global-weight DM). For the combined
data and EJ approach, the results for the tributary discharges
roughly cover the intersection of the EJ-only and data-only
results (see Fig. 6a–f). Figure 7 does not show this pattern,
with the EJ-only results positioned in between the data-only
and combined results. This is mainly due to equal-weight
DM used for the EJ-only results, which gives a higher factor
between upstream and downstream discharges (f1t in Eq. 1)
and therefore higher resulting downstream discharges. Over-
all, the combined effect of data and EJ is more difficult to
identify in the downstream discharges (Fig. 6g–i) than it is
in the tributary discharge GEVs (Fig. 6a–f). This is due to
the additional model components (i.e., the factor between up-
stream and downstream and the correlation model) affecting
the results. Additional plots similar to Fig. 6 that illustrate
this are presented in the Supplement. There, the results for
the other two downstream locations, Roermond and Gennep,
are presented as well. These results behave similarly to those
for Borgharen and are therefore not presented here.

5 Discussion

This study proposed a method to estimate credible discharge
extremes for the Meuse River (1000-year discharges in the
case of this research). Observed discharges were combined
with expert estimates through the GEV distribution using
Bayesian inference. The GEV distribution has typically less
predictive power in the extrapolated range. Including expert
estimates, weighted by their ability to estimate the 10-year
discharges, improved the precision in this range of extremes.

Several model choices were made to obtain these results.
Their implications warrant further discussion and substanti-
ation. This section addresses the choice of the elicited vari-
ables, the predictive power of 10-year discharge estimates for
1000-year discharges, the overall credibility of the results,
and, finally, some comments on model choices and uncer-
tainty.

5.1 Method and model choices

We chose to elicit tributary discharges rather than the down-
stream discharges (our ultimate variable of interest) them-
selves. We believe that experts’ estimates for tributary dis-
charges correspond better to catchment hydrology (rainfall-
runoff response). Additionally, this choice enables us to val-
idate the final result with the downstream discharges. With
the chosen setup we thus test the experts’ capabilities for es-
timating system discharge extremes from tributary compo-
nents while still considering the catchment hydrology rather
than just informing us with their estimates for the end re-
sults. However, this does not guarantee that the downstream
discharges calculated from the experts’ answers match the
discharges they would have given if elicited directly.

We fitted the GEV distribution based on the elicited 10-
and 1000-year discharges. In particular, the GEV’s uncertain
tail shape parameter is informed through this, as the loca-
tion and scale parameter can be estimated from data with
relative certainty. Alternatively, we could have estimated the
tail shape parameter directly or estimated a related parame-
ter, such as the ratio or difference between discharges. The
latter was done by Renard et al. (2006), who elicited the
10-year discharge and the differences between the 10- and
100-year and 100- and 1000-year discharges. This approach
reduces the dependence between expert estimates for differ-
ent quantiles and, therefore, between the priors (when more
than one quantile is used) (Coles and Tawn, 1996). Addition-
ally, it shifts the experts’ focus to assessing how surprising
or extreme rare events can be. Because we were ultimately
interested in the 1000-year discharges, we chose to elicit this
discharge directly. This gives a more accurate representation
of this specific value than composing it of two random vari-
ables with a dependence that is unknown to us. We appre-
ciate, however, that if experts would have estimated ratios
or differences and been evaluated by this, different weights
would have resulted than the ones presented in this research
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(refer to the markedly different ratios between the 10- and
1000-year discharge for the two best experts, D and E, in
Fig. 5). A study focusing on how surprising large events can
be and whether one method renders consistently larger esti-
mates than the other, would make an interesting comparison.
Finally, we note that Renard et al. (2006) combine different
extreme value distributions with non-stationary parameters
in a single Bayesian analysis, which makes their method a
good example of incorporate climate change effects (often
considered a driver of for new extremes) in the method as
well. This was, however, out of the scope of our research,
which shows that extreme discharge statistics can be im-
proved when combining them with structured expert judg-
ment procedures.

Regarding the goodness of fit of the chosen GEV distribu-
tion, we note that some of the experts estimated 1000-year
discharges much higher or lower than would be expected
from observations. This might indicate that the GEV dis-
tribution is not the right model for observations and expert
estimates. However, a significantly lower estimate indicates
that the estimated discharge is wrong, as it is unlikely that
the 1000-year discharge is lower than the highest on record.
A significantly higher estimate, on the other hand, might be
valid due to a belief in a change in catchment response under
extreme rainfall (e.g., due to a failing dam). This would vio-
late the GEV distribution’s “identically distributed” assump-
tion. However, the GEV has sufficient shape flexibility to fa-
cilitate substantially higher 1000-year discharges, so we do
not consider this a realistic shortcoming. Accordingly, rather
than viewing the GEV as a limiting factor for fitting the data,
we use it as a validation for the classical model scores, as
described in Sect. 5.2.

Finally, we note the model’s omission of seasonality. The
July 2021 event was mainly extraordinary because of its
magnitude in combination with the fact that it happened dur-
ing summer. Including seasonality would have been a valu-
able addition to the model, but it would also have (at least)
doubled the number of estimates provided by each expert,
which was not feasible for this study. The exclusion of sea-
sonality from our research does not alter our main conclu-
sion, which is the possibility of enhancing the estimation of
extreme discharges through structured expert judgments.

5.2 Validity of the results

The experts participating in this study were asked to estimate
10- and 1000-year discharges. While both discharges are un-
known to the expert, the underlying processes leading to the
different return period estimates can be different. An implicit
assumption is that the experts’ ability to estimate the seed
variables (a 10-year discharge) reflects their ability to esti-
mate the target variables (a 1000-year discharge). This as-
sumption is in fact one of the most crucial assumptions in
the classical model. The objective of this research is not to
investigate this assumption. For an example of a recent dis-

cussion on the effect of seed variables on the performance of
the classical model, the reader is referred to Eggstaff et al.
(2014). The representativeness of the seed variables for cal-
ibration variables has been extensively discussed in, for ex-
ample, Cooke (1991). Seed questions have to be as close as
possible to the variables of interest and mostly concern sim-
ilar questions from different cases or studies. Precise 1000-
year discharge estimates are, however, unknown for any river
system, making this option infeasible for this study. In com-
parison, with a conventional model-based approach, the abil-
ity of a model to predict extremes is also estimated from
(and tailored to) the ability to estimate historical observa-
tions (through calibration). Advantages of relying in the ex-
trapolation of a group of experts are that they can explicitly
consider uncertainty and are assessed on their ability to do so
through the classical model. In Sect. 5.1, we describe how in-
consistencies between the observations and expert estimates
can lead to a sub-optimal GEV fit. The fact that this is most
prevalent in the low-scoring experts and least for experts D
and E supports the credibility of the results. Moreover, this
means that the “bad” fits have little weight in the final global-
weight DM results and, secondly, that the GEV is considered
a suitable statistical distribution to fit observations and expert
estimates.

The GRADE results from (Hegnauer and Van den
Boogaard, 2016) were used to validate the 1000-year
downstream discharge results. These GRADE statistics at
Borgharen (currently used for dike assessment) give a lower
and less uncertain range for the 1000-year discharge than the
estimates obtained through our methodology. The estimates
obtained in this study present larger uncertainty bands and
indicate higher extreme discharges. This might be a conse-
quence of the fact that we did not show the measured tribu-
tary discharges to the experts so that we could clearly distin-
guish the effect of observations and prior expert judgments.
Moreover, GRADE (at the time) did not include the July
2021 event. If the GRADE statistics were derived with the
inclusion of the July 2021 event, it would likely assign more
probability to higher discharges. The experts’ estimates, on
the contrary, were elicited after the July 2021 event, which
likely did affect their estimates. Therefore, the comparison
between GRADE and the expert estimates should not be
used to assess correctness but as an indication of whether
the results are in the right range. Finally, note that the full
GRADE method is not published in a peer-reviewed journal
(the weather generator is from Leander et al. (2005)). How-
ever, because the results are widely used in the Dutch practice
of flood risk assessment (and known to the experts as well),
we considered them the best source for comparing the results
in the present study.

To evaluate the value of the applied approach that uses
data combined with expert estimates, we compared the re-
sults that were fitted to only data or only expert judgment to
the results of the combination. For the last option, we used
an equal-weight decision maker, a conservative choice as the
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experts’ statistical accuracy could potentially still be deter-
mined based on a different river where data for seed ques-
tions are available. While the marginal distributions of the
EJ-only case present wide bandwidths (see Fig. 6b and e),
the final results for Borgharen still gave a statistically accu-
rate result but with a few caveats, namely that the uncertainty
is very large and that the 10- and 1000-year estimates in it-
self are insufficient to inform the GEV without adding prior
information (otherwise we have two estimates for three pa-
rameters). Consequently, when only using expert estimates,
eliciting the random variable (discharges) directly through a
number of quantiles of interest, might be a suitable alterna-
tive.

5.3 Final remarks on model choices

Finally, we note that using expert judgment to estimates dis-
charges through a model (like we did) still gives the analyst a
large influence on the results. We try to keep the model trans-
parent and provide the experts with unbiased information, but
by defining the model on beforehand and providing specific
information, we steer the participants towards a specific way
of reasoning. Every step in the method, such as the choice for
a GEV distribution, the dependence model, or the choice for
the classical model, affects the end result. By presenting the
method and explicitly providing background information, we
hope to have made this transparent and shown the usefulness
of the method for similar applications.

6 Conclusions

This study sets out to establish a method for estimation of
statistical extremes through structured expert judgment and
Bayesian inference, in a case study for extreme river dis-
charges on the Meuse River. Experts’ estimates of tribu-
tary discharges that are exceeded in a once-per-10-year and
once-per-1000-year event are combined with high river dis-
charges measured over the past 30–70 years. We combine
the discharges from different tributaries with a multivariate
correlation model describing their dependence and compare
the results for three approaches: (a) data-only, (b) expert-
judgment-only, and (c) them combined. The expert elicita-
tion is formalized with the classical model for structured ex-
pert judgment.

The results of applying our method show credible extreme
river discharges resulting from the combined expert-and-data
approach. In comparison to GRADE, the prevailing method
for estimating discharge extremes on the Meuse, our ap-
proach gives similar ranges for the 10-, 100-, 1000-year dis-
charges. Moreover, the two experts with the highest scores
from the classical model had discharge estimates that cor-
respond well with those discharges that might be expected
from the observations. This indicates that using the classical
model to assess expert performance is a suitable way of using

expert judgment to limit the uncertainty in the out-of-sample
range of extremes. The experts-only approach performs satis-
factory as well, albeit with a considerably larger uncertainty
than the EJ-data option. The method may also be applied to
river systems where measurement data are scarce or absent,
but adding information on less extreme events is desirable to
increase the precision of the estimates.

On a broader level, this study has demonstrated the poten-
tial of combining structured expert judgment and Bayesian
analysis in informing priors and reducing uncertainty in
statistical models. When estimates on uncertain extremes,
which cannot satisfactorily be derived (exclusively) from a
(limited) data record, are needed, the presented approach pro-
vides a means (not the only mean) of supplementing this in-
formation. Structured expert judgment provides an approach
of deriving defensible priors, while the Bayesian framework
offers flexibility in incorporating these into probabilistic re-
sults by adjusting the likelihood of input or output parame-
ters. In our application to the Meuse River, we successfully
elicited credible extreme discharges. However, case studies
for different rivers should verify these findings. Our research
does not discourage the use of more traditional approaches
such as rainfall–runoff or other hydrodynamic or statistical
models. Considering the credible results and the relatively
manageable effort required, the approach (when well imple-
mented) can present an attractive alternative to models that
approach uncertainty in extremes in a less transparent way.

Appendix A: Calculation of downstream discharges

Section 3.4 explains the method applied and choices made
for calculating downstream discharges. This appendix ex-
plains this in more detail, including the mathematical equa-
tions.

Three model components are elicited from the experts and
data:

– marginal tributary discharges in the form of a MCMC
GEV parameter trace, where each combination θ con-
sists of a location (µ), scale (σ ), and tail shape parame-
ter (ξ )

– a ratio between the sum of upstream peak discharges
and the downstream peak discharge, represented by a
single probability distribution

– the interdependence between tributary discharges in the
form of a multivariate normal distribution.

The exceedance frequency curves for the downstream dis-
charges are calculated based on nine tributaries (NT), a trace
of 10 000 MCMC parameter combinations (NM), and 10 000
discharge events (NQ) per curve.

The NM parameter combinations for each tributary are
sorted based on the (1000-year) discharge with an ex-
ceedance probability of 0.001: F−1

GEV(1− 0.001|θ), in which

Hydrol. Earth Syst. Sci., 28, 2831–2848, 2024 https://doi.org/10.5194/hess-28-2831-2024



G. Rongen et al.: Extreme river discharges from structured expert judgment 2845

F−1
GEV is the inverse cumulative density function or percentile

point function of the tributary GEV. Sorting the discharges
like this enables us to select parameter combinations that
lead to low or high discharges in multiple tributaries and in
this way express the tributary correlations. The sorting order
might be different for the 10-year discharge than it is for the
1000-year discharge. The latter is, however, chosen as it is
most interesting for this study.

For calculating a single curve, NT realizations are drawn
from the dependence model. This normally distributed real-
ization (x) is transformed to the [1,NM] interval and is then
used as index j to select a GEV parameter combination for
each of the NT tributaries:

j = Round(Fnorm(x) · (NM− 1)+ 1)). (A1)

This is the first of two ways in which the interdependence
between tributary discharges is expressed. The second is the
next step, drawing a (NT×NQ) sample Y from the depen-
dence model. These events (on a standard normal scale) are
transformed to the discharge realization Q for each tribu-
tary’s GEV parameter combination:

Q= F−1
GEV,j (Fnorm(Y)). (A2)

An NQ-sized sample for the ratio between upstream sum
and downstream discharges (f ) is drawn as well. The val-
ues of NT×NQ discharge Q are summed per event (for all
tributaries) and multiplied by the factor f

q = f ·
∑

(Q). (A3)

Note that this notation corresponds to Eq. (1). TheNQ dis-
charge q is subsequently sorted and assigned a plot position:

p =
k− a

NQ+ b
, (A4)

with a and b being the plot positions, 0.3 and 0.4, respec-
tively (from Bernard and Bos-Levenbach, 1955). k indicates
the order of the events in the set (1 being the largest, NQ the
smallest). The plot position (p) is the empirical exceedance
probability of the model. With 10 000 discharges and our ex-
ceedance probability of interest of 1/1000, the results are in-
sensitive to the choice of plot positions.

This procedure results in one exceedance frequency curve
for the downstream discharge. The procedure is repeated
10 000 times to generate an uncertainty interval for the dis-
charge estimate. Note that the full Monte Carlo simula-
tion comprises 10000× 10000= 100000000 events for the
nine tributaries.

Appendix B: Expert and DM correlation matrices

Figure B1 shows the correlation matrices estimated by the
experts. The DM correlation matrices are weighted combi-
nations of the expert matrices based on the weights from Ta-
ble 2. See Sect. 3.2 and Eq. (3).

Figure B1. Correlation matrices estimated by the experts.

Code and data availability. This research is part of a PhD
project. The full dataset related to that project contains the
data from this research as well and has the following DOI:
https://doi.org/10.4121/a6333b17-bab2-476f-a636-61244b5c6f9e
(Rongen, 2024).
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