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Abstract In this paper, we propose a new method for
topology optimization with local stress constraints. In this
method, material in which a stress constraint is violated is
considered as damaged. Since damaged material will con-
tribute less to the overall performance of the structure, the
optimizer will promote a design with a minimal amount of
damaged material. We tested the method on several bench-
mark problems, and the results show that the method is a
viable alternative for conventional stress-based approaches
based on constraint relaxation followed by constraint aggre-
gation.
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1 Introduction

Topology optimization of continuum structures has become
an increasingly popular design tool since its introduction
by Bendsøe and Kikuchi (1988). Although in the last decade
topology optimization has found its way to industry, in
most practical applications there is still a relatively big gap
between the topology optimized design and the actual man-
ufactured design. In general, a number of post-processing
steps are necessary to make the design suitable for manufac-
turing and to meet relevant structural criteria, such as stress
and buckling. Consequently, including stress constraints in
the topology optimization process would reduce the nec-
essary post-processing of the topology optimized design.
However, including local stress constraints has been a major
challenge because of several difficulties that arise.

First, the stress is a local state variable, which makes the
problem computationally expensive. Traditionally, topol-
ogy optimization has been used to solve problems of many
design variables and a few responses, such as minimiz-
ing compliance under a volume constraint. These type of
problems can be solved efficiently in an adjoint formu-
lation. However, when considering stress constraints, the
number of local constraints is of the same order as the num-
ber of design variables. Consequently, there is no benefit
in using an adjoint formulation, and solving the problem
by gradient-based optimization becomes computationally
expensive.

Secondly, so-called ‘singular optima’ arise in stress-
constrained topology optimization. Singular optima are
(local) optima that cannot be reached using ordinary
gradient-based optimization. Singular optima were first
observed in truss topology optimization by Sved and Ginos
(1968). They demonstrated on a simple three-bar truss prob-
lem under multiple loading conditions that the true global
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optimum cannot be reached by gradient-based optimization.
In their example, the true optimum can only be reached
by removing one of the members. However, the stress
constraint on that specific member prevents reducing the
cross-sectional area of that member to zero. Kirsch (1989,
1990) showed that singular optima are located in degener-
ate subspaces of the feasible domain, which are of a lower
dimension than the design space. In density-based topol-
ogy optimization (Bendsøe 1989), the presence of singular
optima prevents the optimizer to reduce densities to zero;
in general, large areas of intermediate densities will be
present in the final design (Duysinx and Bendsøe 1998). We
refer to Rozvany and Birker (1994) and Rozvany (2001) for
extensive studies on singular optima and their fundamental
characteristics.

A variety of solutions have been proposed to solve
these fundamental difficulties. Currently, the conventional
approach is to apply (i) relaxation to make singular
optima accessible, and (ii) aggregation techniques to reduce
the computational costs. Relaxation perturbs the feasible
domain of the original optimization problem by replac-
ing the original constraints by smooth approximations,
which are always satisfied when material becomes void.
Relaxation techniques that have been used are ε-relaxation
(Cheng and Guo 1997), the qp-approach (Bruggi 2008), and
defining a ‘relaxed stress’ (Le et al. 2010; Luo and Kang
2012).

Aggregation techniques reduce the number of constraints
by lumping the local function values (stresses or con-
straint function values) into a single aggregation function.
This aggregation function approximates the maximum local
function value. The accuracy of this approximation depends
on an aggregation parameter, and becomes exact in the limit
as the aggregation parameter tends to infinity. In numeri-
cal practice, a moderate value is chosen for this aggregation
parameter, which is a trade-off between two conflicting
requirements: (i) an accurate approximation, and (ii) a suf-
ficiently smooth function to prevent numerical difficulties.
Aggregation functions that have been used are the P -norm
(Duysinx and Sigmund 1998) and KS-function (Yang and
Chen 1996). This transformation greatly reduces the number
of constraints, and associated computational costs. How-
ever, since the aggregation parameter value is a trade-off,
the aggregation function may not always be a sufficiently
accurate approximation.

Recent, a lot of research has been aimed at improving
the accuracy of aggregation functions. For example, using
block constraints (Parı́s et al. 2010) in which the domain is
subdivided into physical regions/blocks. Constraint aggre-
gation is then applied on every subregion as a compromise
between considering every local stress constraint and a sin-
gle aggregation function. Le et al. (2010) and Holmberg
et al. (2013) investigated similar approaches in which the

composition of every region is based on the order of the
stress values. Le et al. (2010) also proposed an adaptive
normalization approach in which the aggregation function
is scaled such that the maximum local stress converges to
the allowable stress. Finally, Luo et al. (2013) proposed an
enhanced aggregation method in which they combine an
active set strategy with constraint aggregation. Using these
techniques, improved optimized designs were obtained in
which the maximum stress is close to the allowable stress.
Nevertheless, the optimal settings such as the optimal num-
ber of regions may be very problem dependent and difficult
to determine a priori. Furthermore, the computational costs
increases with the number of regions. These difficulties
have motivated the present work, which aims to explore
a different direction to address stress-constrained topology
optimization, thus providing an alternative approach with
characteristics that differ from existing techniques..

This paper proposes a new method for topology opti-
mization with local failure constraints. The general concept
is to penalize the presence of local failure in a mechani-
cal body by damaging material where local failure occurs.
Damaging material here means locally degrading the mate-
rial properties depending on the amount of local failure. We
degrade material in an additional, so-called, damaged model
of the same mechanical body. Assuming that the overall
performance of the structure (e.g., compliance) is a mono-
tonic function of the local material properties, degraded
material will never improve its overall performance. Conse-
quently, the damaged model will always perform worse than
(or at best equally as) the original undamaged model. Fol-
lowing this idea, we can prevent local constraint violation
indirectly by imposing a single constraint that both models
should have the same overall performance. This constraint
then prevents local failure in material regions that contribute
to the overall performance of the structure. Therefore, we
can obtain a minimum mass design that satisfies local con-
straints by minimizing mass under this condition of equal
overall performance.

The concept of damage in the proposed method
serves merely as a mechanism to penalize local con-
straint violation. We do not focus at accurately model
a physical damage process since we aim for an opti-
mized design without damage. Therefore, the proposed
method is closer related to stress-based topology opti-
mization methods, which aim at preventing yield fail-
ure than recent contributions in topology optimiza-
tion considering nonlinear continuum damage mechanics
(Amir and Sigmund 2013; James and Waisman 2014).

We apply the proposed damage approach to topology
optimization with local stress constraints, and use the com-
pliance as a measure of the overall performance. However,
expectations are that the general concept can be applied to a
wider range of problems with other local constraints, such as
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local temperature constraints in thermal problems. We vali-
dated the method on a three-bar truss example, and tested it
on several benchmark problems in density-based topology
optimization. Although a full comparative study with other
approaches is outside the scope of this paper, our results
show that the method is a viable alternative for conventional
methodologies using relaxation followed by aggregation.
The approach has the similar advantage that only a single
performance constraint is considered instead of local stress
constraints individually.

The remainder of this paper is structured as follows.
Section 2 describes the proposed damage approach con-
ceptually. Section 3 discusses numerical implementation
aspects. In Section 4 we validate the method on a three-
bar truss optimization problem (Kirsch 1990). In Section 5
we discuss its implementation in density-based topology
optimization, which includes the sensitivity analysis and
the associated computational costs. In Section 6 the dam-
age approach is applied on different numerical examples.
Finally, conclusions are drawn in Section 7.

2 Damage approach in stress-constrained topology
optimization

In this section, we discuss the damage approach applied
to stress-constrained topology optimization. First, we dis-
cuss the concept of degrading material in which the stress
exceeds the allowable stress. Next, we discuss how to
formulate the optimization problem.

2.1 Damaged model

Consider a mechanical body of an isotropic elastic mate-
rial that occupies the (design) domain � ∈ R

d (d = 2,
or 3) with a boundary that consists of two disjoint parts:
� = �D ∪ �N . We define a traction force t on �N , and a
prescribed displacement on �D . For simplicity, we assume
the absence of body forces. Finally, we assume that material
failure occurs once an equivalent stress criterion (e.g., Von
Mises stress) exceeds the allowable stress: |σ(x)| > σlim.

In the damage approach two different models describe
the same mechanical body: the original model and the dam-
aged model. The original model is shown in Fig. 1a in
which E(x) denotes the strictly positive Young’s modulus.
In density-based topology optimization, this is the effective
Young’s modulus that may vary locally since it depends on
an underlying density field: ρ(x) ∈ (0, 1]. We can then find
a unique displacement field u that satisfies the boundary
value problem associated with the original model. From this
displacement field, we derive an equivalent stress criterion
σ(x). The red region then denotes the subdomain where the
stress exceeds the allowable stress: �σ ⊆ �.

Fig. 1 Schematic representation: a the original undamaged model,
where the stress exceeds the allowable stress in the red subregion �σ ,
and b the damaged model with degraded material properties in �σ

The next step is to degrade material in the regions where
the stress exceeds the allowable stress. For this purpose we
introduce the damaged model in Fig. 1b. All quantities asso-
ciated with this damaged model have a tilde. In the damaged
model, we define the Young’s modulus such that it satisfies
the following condition:

{
Ẽ(x) < E(x), ∀x ∈ �σ := {x |σ(x)| > σlim},
Ẽ(x) = E(x), ∀x ∈ � \ �σ .

(1)

Here, Ẽ is strictly positive, and smaller or equal than the
Young’s modulus in the original model E. For the damaged
model we can now also set up boundary value problem and
find a unique displacement field ũ. Notice that the original
model remains undamaged; i.e., stress violation in the orig-
inal model only affects the Young’s moduli in the damaged
model.

Suppose that the overall performance of the structure can
be measured by a scalar function that depends monotoni-
cally on the local material properties. In that case, following
(1), the damaged model will never perform better than the
original model. In this purely mechanical problem, we use
the compliance as measure of the overall performance, since
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it depends monotonically on the Young’s moduli. Conse-
quently, the damaged model will be always more (or at best
equally) compliant:

C̃ =
∫

�N

t · u d� ≥ C =
∫

�N

t · ũ d�, (2)

where C and C̃ denote the compliance of the original and
damaged model, respectively. Next we use this inequality to
define the optimization problem.

2.2 Optimization problem

Our aim is to find the lightest design without violating any
local stress constraints. We have seen from (2) and (1), that
material where the stress exceeds the allowable stress, leads
to a more (or at best equally) compliant damaged model.
Consequently, we can enforce local stress constraints indi-
rectly by a single equality constraint, which states that both
models should have the same compliance. The optimization
problem is defined as

min
s∈S

V (s),

s.t. h(s) = C̃(ũ(s), s)
C(u(s), s)

− 1 = 0. (3)

Here, V is the volume objective and s are the design
variables in the design space S; e.g., densities in topology
optimization, or cross-sectional areas in truss optimization.
We assume here that the equilibrium equations are satisfied
for every state of the design variables in the design space;
therefore, (3) is written in its nested form without includ-
ing the equilibrium equations of both models as equality
constraints. Finally, h denotes the equality constraint, which
is satisfied as long as the local stress constraints are sat-
isfied in material regions that contribute to the overall
compliance.

3 Implementation

This section briefly discusses the implementation aspects
to solve the problem stated in (3) using standard gradient-
based optimization.

3.1 Material degradation

We implement material degradation in (1) by establishing a
relationship between the Young’s modulus of the damaged
model and the original undamaged model as

Ẽ = Emin + β (E − Emin) , where β(σ ; σlim) ∈ [0, 1] .

(4)

Here, Emin denotes a small positive number that acts as
a lower bound on the Young’s modulus to avoid singularity
of the global stiffness matrix. Furthermore, β is the dam-
age function introduced to degrade material as a function
of the ratio of a scalar stress criterion and allowable stress:
|σ |/σlim. For simplicity, but without loss of generality, we
assume that degradation is based on a single stress value per
element; e.g., the axial stress in a truss element, or an equiv-
alent stress criterion evaluated at the centroid in continuum
finite elements.

The damage function β should be chosen such that
(4) satisfies (1). In order to solve the problem using
gradient-based optimization additional criteria are neces-
sary. The damage function should be (i) at least first
order differentiable, (ii) bounded asymptotically from
below by zero to be consistent with physics, and (iii)
monotonically decreasing once the stress exceeds its
allowable limit. Many functions satisfy these criteria.
Figure 2 shows the damage function used in this work,
which is

β(σ ; α) =
{

1, if |σ | < σlim,

e−α(|σ |/σlim−1)2
, if |σ | ≥ σlim.

(5)

Here, α > 0 is the degradation parameter which controls
the steepness of the damage function; i.e., the amount of
damage relative to the stress level.

We emphasize that we do not intent to accurately model
a physical damage process since we aim for a design
without damage. In the present context, the damage func-
tion should be regarded rather as a penalty function to
drive the solution towards a design without stress constraint
violation.

3.2 Modified optimization problem

To solve the optimization problem in (3) numerically, we
consider a slightly modified optimization problem. In gen-

Fig. 2 Damage function for increasing values of α > 0
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eral, topology optimization problems can be solved effi-
ciently using sequential convex programming algorithms,
such as MMA (Svanberg 1987) and CONLIN (Fleury
1989). The standard forms of these algorithms do not sup-
port nonlinear equality constraints directly. A solution is to
replace the equality constraint in (3) by a pair of inequali-
ties: h ≤ 0 and h ≥ 0. Since, the second inequality is true
by definition (see (2)), the following equivalent problem can
be formulated:

min
s∈S

V (s),

s.t. g(s) = C̃(ũ(s), s)
C(u(s), s)

− 1 ≤ δ. (6)

Here, we have also introduced a small positive parame-
ter δ to relax this inequality. By relaxing the constraint,
the constraint is made less strict and inactive when there
is no local stress constraint violation. Without relaxation,
the constraint g(s) would be always active or violated.
In Section 4, we will show that this relaxation is neces-
sary to make the optimum accessible for gradient-based
optimization.

4 Validation on three-bar truss example

Before discussing the implementation of the method in
density-based topology optimization, we consider the three-
bar truss problem shown in Fig. 3 (Kirsch 1990). We assume
linear elasticity and small displacements. The general objec-
tive is to find the lightest structure in which the stress in
none of the members exceeds the allowable stress. This
example is a well-known benchmark in stress-constrained
optimization since the true optimal solution is a so-called
singular optimum, which cannot be accessed by gradient-
based optimization.

First, we consider the design space with the stress con-
straints as a reference, and show the effect of constraint
relaxation on the feasible domain. Next, we investigate
the feasible domain for the damage approach. Details
on the calculation of stress and compliance are given
in Appendix A.

Fig. 3 Three-bar truss introduced by Kirsch (1990) to demonstrate the
existence of singular optima

4.1 Stress-constrained topology optimization

The objective is to minimize the mass m subject to the stress
constraints gj :

min
A

m =
∑
e∈�d

ρeAeLe,

s.t. gj = |σj |
σlim

− 1 ≤ 0, ∀j ∈ K(A) := {j |Aj > 0},
A ≥ 0. (7)

Here, �d , denotes the set of all structural members
in the discretized design domain. For every member, ρe

denotes the material density, Ae the cross-sectional area
and Le the length. The design variable vector A =
(A1, A2) contains the cross-sectional areas. Here, the cross-
sectional area of the third member and second member
are the same: A3 = A2. Finally, stress constraints gj

are imposed only on the subset K ⊆ �d of mem-
bers with a strictly positive cross-sectional area. Since
this subset depends on the current design A, the stress-
constrained problem is known as an optimization prob-
lem with ‘design-dependent constraints’ (Rozvany 2001),
also called ‘vanishing constraints’ (Achtziger and Kanzow
2008). In Fig. 3 the values are listed for the three-bar
truss problem along with the Young’s modulus Ei for each
member.

4.1.1 A singular optimum

Figure 4a shows the design space for the three-bar truss.
The grey lines are the contour lines of the mass objec-
tive. The red, blue and green line are associated with the
stress constraints in (7). The dashed lines indicate which
side corresponds to constraint violation.

Starting from an arbitrary point in the ‘main’ body of the
feasible domain (the region above the first constraint g1) a
gradient-based optimizer typically converges to point D at
AD = (0, 3/2), for which the mass is mD = 3/2. However,
g1 does not apply at this point since the cross-section A1

becomes zero and the first member vanishes. In fact, the true
optimum is found at point B located at AB = (0,

√
2/2),

for which mB = √
2/2. Point B is an example of what is

known as a ‘singular optimum’ (Kirsch 1989, 1990). There-
fore, the feasible domain for this problem consists of the
region above the red line and the line segment B − D, as
shown in Fig. 4b.

The difficulty of singular optima is that they are located
in a degenerate subdomain of the feasible domain, such as
line segment B − D in this example. These degenerate sub-
domains are of a lower dimension than the main body of
the feasible domain, which makes them inaccessible using
standard gradient-based optimization.
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Fig. 4 Design space three bar truss: a design space with stress constraints and b the corresponding feasible domain. The true optimum is located
in B

4.1.2 Stress constraint relaxation

The common way to handle singular optima is by constraint
relaxation, e.g., ε-relaxation (Cheng and Guo 1997) and
qp-relaxation (Bruggi 2008). The original stress constraints
are replaced by approximations that are always satisfied
for zero cross-section. The design space for such a relaxed
problem does not contain any degenerate subdomains. Next,
we will demonstrate the effect of ε−relaxation on the design
space and the accessibility of the true optimum B in Fig. 4a.

For problems with vanishing constraints, one can refor-
mulate the design-dependent set of stress constraints in (7)
into the equivalent design-independent set of constraints
(Cheng and Jiang 1992; Achtziger and Kanzow 2008):

gi = Ai

( |σi |
σlim

− 1

)
≤ 0, ∀i ∈ �d. (8)

Here, the subset K has been eliminated and the new
constraints gi are imposed on the entire set of struc-
tural members �d . Every constraint gi is automatically

Fig. 5 Design space with ε−relaxed constraints represented by the
solid lines using ε = 0.01. The dotted lines denote the original unre-
laxed constraints. For clarity, the objective function isocontours are
omitted

satisfied when Ai = 0. The feasible domain for this
reformulation is equivalent to that of the original problem
in Fig. 4b. Therefore, the true optimum is still inaccessi-
ble to gradient-based optimization. However, now we can
relax the constraints in (8) by introducing a positive relax-
ation parameter ε, which yields the ε−relaxed optimization
problem:

min
A

m =
∑
e∈�d

ρeAeLe,

s.t. gε
j = Aj

( |σj |
σlim

− 1

)
− ε ≤ 0, ∀j ∈ �d,

A ≥ 0. (9)

Notice that for every ε > 0, the constraint gε
j is always

satisfied for a sufficiently small Aj . The effect of relaxation
is ‘widening’ the degenerate subdomains to the dimension
of the design space. Figure 5 shows this effect for ε =
0.01 on the original constraints. The global optimum of
the relaxed problem is close to the true optimum B and is
accessible to gradient-based optimization.

This example demonstrates that constraint relaxation
makes singular optima accessible. Cheng and Guo (1997)
have demonstrated that the global optimum of the relaxed
problem converges to the global optimum of the origi-
nal problem (7) as ε approaches zero. However, Stolpe
and Svanberg (2001) have shown that the trajectory of
the global solution might be discontinuous. This trajec-
tory is defined as the path of the global optimum to
the relaxation parameter. As a consequence, finding the
global optimum of the relaxed problem does not guaran-
tee finding the global optimum of the original problem
by following the path of this optimum as ε is decreased
to zero.
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4.2 Damage approach

Next, we apply the damage approach on this three-bar truss
problem. Instead of three stress constraints, we only impose
a single performance constraint:

min
A

m =
∑
i∈�d

ρeAeLe

s.t. g̃ = C̃

C
− 1 ≤ δ,

A ≥ 0. (10)

After substitution of the structural parameters listed
in Fig. 3, the compliance of the original model and the
damaged model are given by

C = Pv = 300

3A1 + A2
, (11)

and

C̃ = P ṽ =
(

2Ẽ3 + Ẽ2

)
100(

2Ẽ1Ẽ3 + Ẽ1Ẽ2

)
A1 + Ẽ2Ẽ3A2

. (12)

respectively (see Appendix A). Here, the Young’s moduli Ẽi

are damaged according to the damage function β defined in
(5).

In the damage approach we can vary two parameters: the
degradation parameter α > 0 and the relaxation parameter
δ ≥ 0. Next, we investigate the effect of α and δ on the
feasible domain and associated optima.

4.2.1 Design space of the unrelaxed problem: δ = 0

First, we consider the optimization problem in (10) with-
out relaxation; i.e., δ = 0 for any α > 0. Figure 6 shows
the design space for the damage approach. For δ = 0, the
feasible domain and corresponding optima are independent
of the value of α > 0 since no damage is allowed. The
cyan color represents the region where the constraint g̃ is
active. Since there is no part of the design space where

Fig. 6 Design space for three-bar truss problem for δ = 0 for any
α > 0

the constraint is inactive, the cyan colored region represents
the entire feasible domain. The former stress constraints are
shown as dashed lines to indicate that they are not imposed
directly in the problem formulation.

We observe that the feasible domain in the damage
approach coincides with the feasible domain of the orig-
inal optimization problem with local stress constraints
(cf. Fig. 4b). However, here we only considered a single
constraint. The feasible domain includes the line-segment
B − D since stress violation there occurs in a ‘vanished’
member, and therefore, does not violate the constraint in
(10). Since both feasible domains coincide, also in the dam-
age approach, the optimum in general is a singular optimum
(Kirsch 1989) inaccessible to standard gradient-based opti-
mizers. Next, we demonstrate that relaxing the constraint by
choosing δ > 0 makes singular optima accessible.

4.2.2 Constraint relaxation: δ > 0

Figure 7a shows the effect of the relaxation parameter on
the original constraint. The cyan colored lines represent
the relaxed constraints for different values of δ > 0, and
a fixed value of α = 1. The gray region represents the
original feasible domain. We observe that relaxing the con-
straint widens subdomain B − D, and makes it accessible
to gradient-based optimization. In contrast to the unrelaxed
problem where the constraint surface (g̃ = 0) occupies the
entire feasible domain, the constraint surface is now a line
(cf. Fig. 6), and all points above this line are feasible points
where the constraint is inactive. As δ → 0, the perturbed
feasible domain converges to the original feasible domain,
which is true for any α > 0.

For the relaxed problem the found solution will contain
a certain amount of damage since at the active constraint:
C̃ = C(1 + δ). This can observed in Fig. 7a as the relaxed
constraints lie outside the original feasible domain. Conse-
quently, optima for the relaxed problem will always violate
a local stress constraint in at least one of the non-zero
members. The amount of stress constraint violation depends
on the degradation parameter α. For increasing values of
α, material is damaged more rapidly once the stress con-
straint is violated. As a consequence, less stress violation is
allowed. Figure 7b shows this effect for δ = 1 and increas-
ing values of the degradation parameter α. We observe that
the perturbed constraint becomes more conservative; i.e.,
less stress violation will be present in the optimized design.

4.2.3 A proper choice for α and δ

Our study on the effect of α and δ on the feasible domain
and associated optima, demonstrated two effects: (i) the fea-
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Fig. 7 Design space for three-bar truss using the damage approach
shows the relaxed constraints represented by the cyan solid lines for
different parameter values: a for a fixed value of α = 1, and differ-
ent values of δ, and for a fixed value of the relaxation parameter δ and

different values of α. The arrow shows the effect on the relaxed con-
straint for a decreasing values of δ, and b increasing values of α.
The grey region represents the original feasible domain of the stress-
constrained optimization problem, and B denotes the true optimum

sible domain of the relaxed optimization problem converges
to the original feasible domain as δ → 0 for any fixed
α > 0, and (ii) the relaxed constraint becomes more con-
servative as α increases for a fixed δ, which results in less
stress constraint violation in the optimized design.

In this work, we exploit the first effect, and choose a
small value of α. The reason is that for large values of α

numerical instabilities may arise caused by large gradients
along the constraint surface.

5 Density-based topology optimization

In this section, we present the method in the context of
density-based topology optimization. First, we discuss the
microscopic stress definition we have used. Finally, we dis-
cuss the sensitivity analysis and associated computational
costs.

5.1 Density-based topology optimization

First, we establish a relationship between the stiffness of
the discretized versions of the original model and the dam-
aged model. For the original model in Fig. 1a, we adopt the
modified SIMP interpolation scheme (Sigmund 2007). The
design domain � is discretized into finite elements and a
density variable is assigned to each element, which can con-
tinuously vary between zero and one, representing ‘void’
and ‘solid’ material, respectively. The effective Young’s
modulus for each element in the original model is defined as

Ee = Emin + ρ
p
e (E0 − Emin) , where ρe ∈ [0, 1] . (13)

Here, E0 denotes the Young’s modulus associated with solid
material (ρ = 1), and Emin is a small positive number that
acts as a lower bound on the Young’s modulus to avoid sin-
gularity of the global stiffness matrix. Finally, p > 1 is

a penalization exponent introduced to penalize intermedi-
ate densities and promote a zero-one solution. The linear
structural problem is then defined as

Ku = f, where K =
∑
e∈�d

Ee(ρe)K(1)
e . (14)

Here, K denotes the global stiffness matrix, K(1)
e the ele-

ment stiffness matrix associated with a Young’s modulus of
unity, and f the nodal load vector. One can now solve this
problem for nodal displacements and calculate the stress.

5.2 Stress definition

A difficulty in density-based topology optimization is
that the stress is non-uniquely defined for intermedi-
ate densities. Assuming that the density design variable
in SIMP represents the effective stiffness of a porous
microstructure (Bendsøe and Sigmund 2003), one can dis-
tinguish the stress at a macroscopic- and microscopic level
(Duysinx and Bendsøe 1998). The macroscopic stress
is based on the homogenized material properties of the
microstructure:

〈σ e〉 = C(E∗
e )εe (15)

Here, εe denotes the strain vector and C(E∗
e ) denotes

the elasticity matrix based on the effective (homogenized)
Young’s modulus. For simplicity, we assume that the effec-
tive Young’s modulus is defined following the traditional
SIMP model: E∗ = ρpE0. It turns out that the macroscopic
stress is not suitable for stress-constrained topology opti-
mization, since it cannot be used to predict failure at the
microscopic level for intermediate densities (Duysinx and
Bendsøe 1998). Furthermore, Le et al. (2010) demonstrated
that using the macroscopic stress leads to an all-void design.

Duysinx and Bendsøe (1998) have proposed a stress
model that circumvents these problems that arise when
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using the macroscopic stress. Their stress model mimics
the behavior of the microscopic stress (or “local” stress)
in a layered composite, which is the stress experienced at
the microscopic level. They have shown that in accordance
with the stress behavior in such material, the microscopic
stress in density-based topology optimization should be: (i)
inversely proportional to the density and (ii) attain a finite
value at zero density. This last condition follows from study-
ing the asymptotic behavior of the microscopic stress in
porous material as the density goes to zero. A definition
consistent with condition (i) is

σ e = 〈σ e〉
ρ

q
e

= ρp−qC(E0)εe. (16)

Here, the value of the exponent q is chosen to satisfy the
second condition (ii), which is only possible for q = p.
Hence, the microscopic stress is defined as

σ e = C(E0)εe. (17)

This definition of the microscopic stress is physically con-
sistent for non-zero densities. However, since the micro-
scopic stress remains finite at zero density, the feasible
region contains degenerate subdomains, which causes sin-
gularity problems as discussed in truss topology optimiza-
tion in Section 4.

In the conventional approach in which stress constraints
are considered directly, one typically overcomes these prob-
lems by relaxing the individual constraints; using for exam-
ple, qp-relaxation (Bruggi 2008) or ε-relaxation (Duysinx
and Bendsøe 1998). Another common approach, which has
the same effect, is to consider a relaxed stress measure in
which one enforces zero stress at zero density. For exam-
ple, following (Le et al. 2010), the relaxed stress is based on
the stress in (16) with the condition q < p. One can con-
sider the difference between the exponents, εqp = p − q as
a measure of the amount of stress relaxation. For εqp = 0,
the relaxed stress becomes the microscopic stress. Unfortu-
nately, the relaxed stress lacks a physical interpretation for
intermediate densities.

In the damage approach, we use the physically consis-
tent microscopic stress in (17) directly, and we only relax
the constraint that states that the compliance of the dam-
aged model should be less or equal to that of the original
model. For clarity, we only plot this microscopic stress in
‘material elements’, defined as ρ ≥ 1/2. The reason is
that the microscopic stress model, although physically con-
sistent for intermediate densities, is non-zero in the voids.
This difficulty is equivalent to the non-zero ‘limiting stress’
in truss optimization (Cheng and Jiang 1992); i.e., in truss
optimization the stress converges to a finite value at zero
cross-sectional area, which correspond to a member with a
infinitesimal cross-sectional area. Consequently, the stress
values are neglected in members that are (almost) vanished.

5.3 Damage model

The next step is to degrade material in the regions where
the stress exceeds the allowable stress. We use the same dis-
cretization for both models. The Young’s modulus for an
element in the damaged model is defined as

Ẽe = Emin + βe (Ee − Emin) , where βe ∈ [0, 1] . (18)

Here, the damage function βe(σe) is defined as in (5), and
σe is an equivalent stress criterion per element, based on the
microscopic stress in (17).

Following (18) we construct the global stiffness matrix
of the damaged model as

K̃ =
∑
e∈�d

Ẽe(βe, Ee)K(1)
e , (19)

and define the structural problem as

K̃ũ = f, (20)

where ũ denotes the vector of nodal displacements of the
damaged model.

5.4 Sensitivity analysis

In the discrete density-based setting, the topology optimiza-
tion problem is now defined as

min
ρ

V = 1

V0

∑
e∈�d

ρeve,

s.t. g̃ = C̃(ũ)

C(u)
− 1 ≤ δ,

0 ≤ ρ ≤ 1, (21)

where V denotes the relative volume, V0 the total volume of
the design domain, and ve the volume of a finite element.
The compliances of the original model and the damaged
model are defined as C = fTu, and C̃ = fTũ, respectively.
The sensitivity of the constraint with respect to a density
design variable ρe, is given by

dg̃

dρe

= 1

C

dC̃

dρe

− C̃

C2

dC

dρe

. (22)

The second term in this equation contains the total derivative
of the compliance of the original model. The compliance
problem is self-adjoint (Bendsøe and Sigmund 2003), and
the derivative is defined as

dC

dρe

= −pρ
p−1
e (E0 − Emin)uT

eK
(1)
e ue, (23)

where ue is the vector with the nodal displacements of
element e in the original model.

Next, we derive the total derivative of the compliance
of the damaged model C̃ in first term of (22). Here, we
must take into account the relation between the material
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properties of the damaged model and the stresses in the orig-
inal model. We consider an equivalent stress criterion based
on the microscopic stress σ(u(ρ)), which only depends
implicitly on the densities. We switch to index notation
and summation convention. The indices run over the num-
ber of degrees of freedom. We calculate the sensitivities
using the adjoint method. The first step is to add the
equilibrium equations multiplied by an adjoint vector to
the compliance:

C̃ = fiũi + μi(K̃ij ũj − fi) + λi

(
Kijuj − fi

)
. (24)

Next, we take the derivative with respect to a density
design variable ρe, and collect the terms containing the
displacement sensitivities, which gives

dC̃

dρe

= μi

∂K̃ij

∂ρe

ũj + λi

∂Kij

∂ρe

uj +
(
fj + μiK̃ij

) dũj

dρe

+
(

λiKik + μi

∂K̃ij

∂uk

ũj

)
duk

dρe

. (25)

Next, the adjoints are chosen to eliminate the displacement
sensitivities; i.e., the last two terms in (25) should become
zero, which gives

dC̃

dρe

= −ũi

∂K̃ij

∂ρe

ũj + λi

∂Kij

∂ρe

uj . (26)

In the first term we made use of the fact that the first
adjoint problem in (25) is self-adjoint: μ = −ũ. The
second adjoint λ can be obtained by solving the adjoint
problem:

Kλ = z. (27)

Here, symmetry of the global stiffness matrix is used, and
z is the pseudo-load vector in which every component
zk can be constructed as a summation over the elemental
contributions:

zk = ũi

∂K̃ij

∂uk

ũj =
∑
e∈�d

∂βe

∂σe

∂σe

∂uk

Ee(ρe)ũT
eK

(1)
e ũe. (28)

In this paper, we consider the Von Mises stress, based
on the microscopic stress tensor in (17) evaluated at

the centroid of each finite element. For a derivation of
∂σe/∂uk we refer to Duysinx and Bendsøe (1998). In
summary, the total derivative of the constraint function
in (22) only requires the solution of the adjoint prob-
lem in (27). The two other adjoint problems are self-
adjoint. Thus, the total computational costs are domi-
nated by solving three systems of equations of the same
size: the equilibrium equations of the original model and
damaged model, and a single adjoint problem. The com-
putational costs are comparable to conventional method-
ologies applying constraint aggregation over two regions
assuming that no information is re-used of the factorized
matrices.

6 Results and discussion

This section discusses the results obtained by testing the
damage approach on different design cases shown in Fig. 8.
First, we investigated the effect of the parameter settings
on the optimized designs considering the cantilever in
Section 6.1. Afterwards, the performance of the method
under mesh refinement was investigated considering the
L-bracket (Duysinx and Bendsøe 1998) in Section 6.2.
Subsequently, Section 6.3 discusses the results obtained
for a multiple load case (Le et al. 2010). Finally,
Section 6.4 briefly discusses similarities and differences
of the proposed method with conventional methodologies
using relaxation and aggregation. Table 1 lists the gen-
eral settings that apply to every example unless stated
otherwise.

6.1 Cantilever

We investigated the parameter dependency of the opti-
mized designs considering the cantilever shown in Fig. 8a.
The design domain was discretized into a fixed finite ele-
ment mesh of 100 by 50 equally sized quadrilaterals. The
optimization problem was to minimize volume under an
allowable stress of σlim = 0.5.

Fig. 8 Design cases
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Table 1 General settings

Option Setting/Value (All values are in SI units)

Model

Model Plane stress
Element type Q4
Mesh Fixed regular mesh in which every element has the same dimension: 1 × 1
Thickness 1
Young’s Modulus E0 = 1
Young’s Modulus voids Emin = 10−9E0

Poisson’s ratio ν = 0.3
Equivalent stress criterion Von Mises stress based on the microscopic stress in (17) evaluated at the centroid
Distributed loads All loads are distributed over a length of 5

Optimization parameters
Density filter Linear hat filter (Bruns and Tortorelli 2001) with radius r = 2 (absolute value)
Initial density distribution Uniform density field: ρ = 1

Optimizer settings
Optimizer MMA (Svanberg 1987): default settings (asyincr = 1.2,asydecr = 0.7) and an

external move limit of 0.1, which bounds the maximum absolute distance between
an asymptote and the design variable.

Stop criteria ‖�ρ‖∞ < 10−3 ∨ iter > 2000

6.1.1 The effect of varying the relaxation parameter δ

First, the problem was solved for a fixed value of the
degradation parameter α = 5, and different values of
the relaxation parameter δ. Figure 9 shows all optimized
designs, and the associated Von Mises stress distribution in
the material elements.

We observe that initially as the relaxation parame-
ter decreases better performing stress-based designs are
obtained in which the stress distributions are more uniform,
and the maximum stress exceeds the allowable stress less.
The reason is that lower values of δ allow less overstressed
material in the optimized design because of the constraint
C̃ ≤ (1 + δ)C. However, decreasing the relaxation param-
eter also tends to lead to an increased number of iterations,
and eventually the optimization process failed to converge
to a black and white design (see Fig. 9f). Therefore, ide-
ally, the relaxation parameter should be small, but provide
sufficient relaxation to facilitate convergence.

6.1.2 Scaling both parameters by the same scaling factor

We investigated the effect on the optimized designs when
scaling both the degradation- and relaxation parameter by
the same scaling factor. It turns out that scaling both param-
eters by the same scaling factor gives equivalent designs
over a large range of scaling factor values. To demonstrate
this invariance we used the optimized design for (α0, δ0) =
(5, 1/64) in Fig. 9d as a reference, and solved the optimiza-
tion problem again scaling both parameters by the scaling
factor values a = 10−2, 10−3, and 10−4.

Figure 10 shows that for a = 10−2, and 10−3 equiva-
lent designs were obtained as the reference design in Fig.
9d. For a = 10−4 the optimized design performs less well,
which indicates that this invariance under scaling in compu-
tational practice is limited to a certain range of scaling factor
values. Nevertheless, these results indicate that one mainly
searches a for a suitable ratio between the degradation- and
relaxation parameter, rather than searching for suitable val-
ues for both parameters individually. The next subsection
demonstrates that this invariance under scaling can be
exploited to accelerate convergence by adjusting the opti-
mizer settings.

6.1.3 Accelerate convergence

Given a certain ratio between both parameters that results
in well-performing stress-based designs, it is advisable to
choose the value of α small, and choose δ accordingly. The
reason is that for lower values of α the constraint function
is smoother (i.e., smaller gradients along the constraint sur-
face), and one can accelerate convergence more by adjusting
the optimizer settings, whereas for larger values of α this
leads more quickly to numerical instabilities.

To demonstrate that convergence can be accelerated
more for smaller values of α we considered the follow-
ing parameter settings: (α, δ) = (α0, δ0) = (5, 1/64), and
(α, δ) = 10−3 × (α0, δ0). Previously, these settings resulted
in equivalent cantilever designs for the conservative opti-
mizer settings in Table 1 (compare Figs. 9d and 10c). The
default settings of MMA were changed to ayincr = 1.8,
asydecr = 0.9. In addition, the external move limit was
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Fig. 9 Optimized designs for α = 5, and different values of the relaxation parameter δ. On top the density distribution, and below the Von Mises
stress plotted only for material elements which density is: ρ ≥ 1/2

changed to 0.15, and the convergence criterion relaxed to
‖�ρ‖∞ < 0.01. Figure 11 shows the results. We observe
that for (α, δ) = (α0, δ0) the optimization process diverged,
whereas for (α, δ) = 10−3 × (α0, δ0) an optimized design
was obtained in only 104 iterations that outperforms the
optimized designs in Fig. 10.

In conclusion, we have found that the relaxation param-
eter should be chosen as small as possible with respect
to the degradation parameter, but provide sufficient relax-
ation to facilitate convergence. Furthermore, we have found
scaling the degradation- and relaxation parameter by the
same constant gives equivalent designs over a large range

Fig. 10 Optimized designs for parameter values (α, δ) = a × (α0, δ0), with (α0, δ0) = (5, 1/65)
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Fig. 11 Cantilever optimized with relaxed optimizer settings to accelerate convergence: asyincr = 1.8, asydecr = 0.9, and an external
move limit of 0.15.

of scaling factor values. Consequently, for a given problem
one searches for a suitable ratio between both param-
eters rather than searching for the best values of both
parameters individually. Finally, for a certain ratio con-
vergence can be accelerated by choosing α small and
δ accordingly.

6.2 L-bracket: mesh refinement

The effect of mesh refinement was investigated using the L-
bracket (Duysinx and Bendsøe 1998) in Fig. 8b. The design
domain was discretized into a regular mesh of equally
sized quadrilaterals. We used the conservative optimizer set-
tings in Table 1, and the reference parameter settings are:
(α0, δ0) = (5, 1/64). The number of elements is defined
as N = 14/25n2, where n denotes the number of elements
along the longest edge in both vertical and horizontal direc-
tion. Starting from a reference mesh with n0 = 100 (i.e.,
N0 = 6400 elements), mesh refinement was applied con-
sidering multiples of n0; i.e., n = 2n0, 3n0, and 4n0, which
in terms of elements is a refinement of N = 4N0, 9N0, and
16N0. The allowable stress was set to σlim = 1.

Figure 12 shows the optimized designs and the associ-
ated stress distributions. The reference design in Fig. 12a
for N0 = 6400 has a rounded shape near the reentrant
corner, which prevents a stress peak to occur as can be
seen from the uniform stress distribution. It is observed that
under mesh refinement, while using the same values for α

and δ, the optimized design perform less well. Although the
stress is mostly uniform distributed with a value close to
the allowable stress, the optimized designs have a less or no
rounded shape near the reentrant corner. Consequently, the
maximum stress level increases under mesh refinement.

Our hypothesis is that this increased stress violation is
caused by the necessary constraint relaxation. Because of
constraint relaxation, the compliance of the damaged model
is restricted by the following inequality: C̃ ≤ (1 + δ)C. In
other words, constraint relaxation allows the compliance of
the damaged model to exceed the compliance of the original
model by a maximum of δ × C. According to this fraction
of the compliance of the original model a certain amount
of degraded material (i.e., stress violation) is allowed in
the optimized design. The contribution of the local stiffness
of a single element to the overall stiffness decreases with
mesh refinement. Therefore, for a finer mesh more stress
violation is allowed in the same amount of elements, or
alternatively, the same amount of stress violation is allowed
in more elements. Therefore, it is expected that by decreas-
ing δ inversely proportional to the increase in number of
elements, the maximum stress should remain more or less
constant.

We tested the aforementioned hypothesis by again apply-
ing mesh refinement, but now decreasing δ inversely propor-
tional to the increase in the number of elements. Figure 13
shows the results under the same mesh refinement. In this
case, the maximum stress increased less when refining the
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Fig. 12 Mesh refinement applied to the L-bracket under constant parameter settings: (α0, δ0) = (5, 1/64)

original mesh to 4N0, and is indeed nearly constant when
refining the mesh from 4N0 to 9N0, and 16N0. We observe
that decreasing δ goes at the expense of an increased number
of iterations. Slower convergence is caused by the fact that
for smaller values of δ, the original feasible domain contain-
ing singular optima is perturbed less (see Fig. 7 for the truss

example). This makes it more difficult for the optimizer to
access correct optima and converge to a black and white
design as was shown in Section 6.1.1.

In conclusion, the best ratio between the degradation
and relaxation parameter is found to be mesh-dependent.
The reason for this mesh dependency is that degradation

Fig. 13 Mesh refinement applied to the L-bracket result in Fig. 12a while simultaneously decreasing δ. The parameter settings for the reference
design are (α0, δ0) = (5, 1/64), and N0 = 6400
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of a single element has less effect on the overall stiffness
under mesh refinement. Therefore, under the same param-
eter settings, a finer mesh leads to an increased local stress
violation. It was demonstrated that decreasing the relaxation
parameter along with mesh refinement helps to maintain
control over the maximum stress level. However, decreas-
ing the relaxation parameter with respect to the degradation
parameter also leads to an increased number of iterations.

6.3 Multiple load case

The optimization problem for multiple load cases is stated as

min
ρ

V = 1

V0

∑
e∈�d

ρeve,

s.t. g̃i = C̃i(ũi )

Ci(ui )
− 1 ≤ δ, for i = 1, ..,M,

0 ≤ ρ ≤ 1, (29)

where M is the number of constraints, which corresponds to
the number of load cases.

We solved the multiple load case in Fig. 8c (Le et al.
2010) for an allowable stress is σlim = 1. The parameter set-
tings were set to (α, δ) = 10−3×(5, 1/64), and to accelerate
convergence, the default optimizer settings were changed to

asyincr = 1.8,asydecr = 0.9. In addition, the exter-
nal move limit was changed to 0.15, and the convergence
criterion was relaxed to: ‖�ρ‖∞ < 0.05. Furthermore, the
initial density field was set to ρ = 0.3 such that the initial
design is infeasible.

In all previous results the maximum stress exceeded the
allowable stress. In the next example, we applied an adap-
tive normalization strategy similar to Le et al. (2010) to
converge closer to the allowable stress. Instead of degrad-
ing material where the stress exceeds the allowable stress a
scaled version of the allowable stress is considered:

ci+1σlim, where ci+1 = ci + �ci, (30)

Here, c is a scaling factor which is updated every x iterations
by an increment �c ∈ [−�cmax, �cmax], which is defined as

�ci = ci

(
σlim

σ i
max

− 1

)
. (31)

The increment is bounded from above and below by �cmax

to avoid too large oscillations caused by changing the
optimization problem.

For the multiple load case, we consider one scale fac-
tor for each load case. The initial scale factors were set to
c0 = 0.75, with a move limit of �cmax = 0.01. Adaptive
scaling was initiated after first time convergence, and then

Fig. 14 Multiple load case. Optimized design and corresponding Von Mises stress distribution for an allowable stress limit of σlim = 1
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the scale factors were changed adaptively every x = 3 itera-
tions. Finally, to reduce oscillations a scale factor ci is only
updated when |σ i

max − σlim|/σlim > 10−2 for that particular
load case.

Figure 14 shows the optimized design, and associ-
ated stress distribution for every load case. The optimized
design has a rounded shape in both reentrant corners
that prevent stress peaks to occur. For both load cases
a uniform stress distribution was obtained. The maxi-
mum stress for both loading conditions was within 0.5 %
of the allowable stress, which demonstrates that adap-
tive scaling strategies can be applied to converge close to
the allowable stress. First time convergence was obtained
after 103 iterations, and the total number of iterations
was 117.

6.4 Damage approach vs. conventional approach

Although a detailed comparison with conventional method-
ologies is beyond the scope of this paper, we can discuss
some similarities and differences between the proposed
method and previously proposed methodologies based on
constraint relaxation followed by constraint aggregation
(e.g., Duysinx and Sigmund 1998; Le et al. 2010).

A similarity is that both approaches only consider a lim-
ited number of performance constraints, which drastically
reduces the computational costs as opposed to considering
every local stress constraint separately. The computational
costs of the proposed approach are comparable to conven-
tional methodologies applying constraint aggregation over
two regions assuming that no information is re-used of the
factorized matrices. In the proposed approach, constraint
violation affects the compliance of the damaged model.
Therefore, the compliance of the damaged model has a simi-
lar aggregation effect as conventional aggregation functions.
A difficulty that arises in both methods is a loss of con-
trol over the maximum stress level as the number of local
constraints increases.

As in previously proposed methodologies, constraint
relaxation is necessary to make singular optima accessible.
A difference is that in the damage approach constraint relax-
ation is a strictly mathematical procedure applied as a last
step to be able to use gradient-based optimization. In con-
ventional methodologies, relaxation is generally applied on
the local constraints (or stresses) before applying constraint
aggregation. For example, it has become common practice
to consider a relaxed stress (Le et al. 2010; Luo and Kang
2012). In that case, relaxation is no longer a strictly math-
ematical procedure, but (slightly) alters the physics of the
problem.

7 Conclusions

This paper presents a new method for topology opti-
mization with local stress constraints. This method penal-
izes local stress constraint violation by degrading mate-
rial where the stress exceeds the allowable stress. Since
degraded material affects the overall compliance the opti-
mizer promotes a design with a minimal amount of mate-
rial degradation caused by local stress constraint violation.
In this method, a limited number of performance con-
straints controls indirectly a large number of local stress
constraints. Its behavior is controlled by two parame-
ters that have a predictable effect on convergence and
accuracy.

We validated the damage approach on an elemen-
tary truss example. It was demonstrated that the feasi-
ble domain of the damage approach coincides with that
of the original stress-constrained topology optimization
problem. Subsequently, the effectiveness of the method
was demonstrated on several test problems in density-
based topology optimization, and results were obtained
corresponding well with previously published stress-based
results.

Optimized designs proved invariant to simultaneous scal-
ing of the relaxation- and degradation parameter. Conse-
quently, for a given problem, an optimal ratio of both
parameters is sought rather than optimal values for both
parameters individually. We demonstrated that this fact can
be used to accelerate convergence. However, the optimal
ratio of both parameters was found to be mesh dependent.
For a finer mesh, decreasing the relaxation parameter is
necessary to maintain control over the local stress level,
however, this also leads to an increased number of itera-
tions. How to maintain a high convergence rate and accurate
control of local stresses under mesh refinement is a topic of
future research.

Finally, in this paper we have applied the method to
topology optimization problems with stress constraints, but
we expect that the approach can be applied to a wider
range of problems. In general, the concept should be
applicable to problems with local constraints imposed on
the material domain in which the overall performance of
the design depends monotonically on some local material
property.
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Appendix

A Kirsch’ three-bar truss

Using static equilibrium and the compatibility conditions at
the joint, the internal forces are derived as

N1 = (2E1E3 + E1E2) A1P

(2E1E3 + E1E2) A1 + E2E3A2
(32)

N2 =
√

2E2E3A2P

(2E1E3 + E1E2) A1 + E2E3A2
(33)

N3 = − E2E3A2P

(2E1E3 + E1E2) A1 + E2E3A2
(34)

Here, we already made use of the fact that the length of
all members are equal (Li = L). The stresses in the origi-
nal model, with substitution of the structural parameters, are
then defined as

σ1 = 30

3A1 + A2
, σ2 = 10

√
2

3A1 + A2
, σ3 = − 10

3A1 + A2
.

(35)

Depending on these stresses, we degrade the Young’s mod-
uli in the damaged model: Ẽi .

The next step is compute the compliances for both mod-
els. We first derive the downward displacement v at the
joint:

v = N1L1

E1A1
= (2E3 + E2) PL

(2E1E3 + E1E2) A1 + E2E3A2
. (36)

With substitution of the structural parameters, the compli-
ance of the original model is then

C = Pv = 300

3A1 + A2
, (37)

and the compliance of the damaged model is

C̃ = P ṽ =
(

2Ẽ3 + Ẽ2

)
100(

2Ẽ1Ẽ3 + Ẽ1Ẽ2

)
A1 + Ẽ2Ẽ3A2

. (38)

Here, ṽ is the vertical displacement of the damaged model.
The Young’s moduli are degraded according to the stress
state in the original model: Ẽi = β(σi)Ei , where, β ∈
[0, 1].
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