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Abstract

Transactional memory is a lock-free parallel programming model, which aims at re-
placing conventional lock-based threaded programming techniques, currently used by
multi-core systems. These techniques are difficult to implement and impose unnec-
essary overheads caused by conservative programming practices. In this thesis, the
scalability potential of a transactional memory system, called TMFab, was explored
for different numbers of processors and it was concluded that for more than 4 pro-
cessors the system presents reduced scalability, due to an increase in the validation
overhead. In response to this observation, a novel validation scheme was proposed
which reduces this overhead, first by allowing multiple transactions to perform their
validations and commit operations concurrently, and second by removing the need for
broadcasting messages between the active transactions. A distributed shared memory
scheme was used to increase the validation and memory access throughput, as well as
allow for transactions to commit concurrently on different memory partitions. The two
architectures were compared by means of SystemC simulation, and a maximum of 2.5x
validation speedup was observed for the modified design, together with a 2.7x reduction
in memory access latency. In total, the modified design achieved a maximum execution
speedup of 30% over the original, for the benchmarks that were used. Furthermore,
the modified system guarantees sequential consistency even in corner case scenarios.
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Introduction 1
1.1 Motivation

In recent years, there has been an increased interest for the use of chip multi-processors
(CMPs) in computer systems, as a means of overcoming the performance limitations
imposed by single core systems. This change of direction has been strongly encouraged
by the advances in integrated circuits (IC) lithographic techniques, which allow for tens
of processors elements (PEs) to be integrated on the same chip. In order to exploit the
increased number of resources, developers are requested to partition their programs in
a way that there are multiple parallel tasks, known as threads, that can be executed
concurrently on different PEs of the system. Conventional parallel programming models
use locking to ensure correctness of execution and consistency of shared data used by
multiple concurrently executing threads. When a thread reaches a part of the code, also
known as critical section, in which there is access to a shared variable, it needs to acquire
a lock protecting this variable in order to prevent any other thread from accessing it
at the same time. Any other thread requesting for the same lock, is blocked until the
task is finished and the lock is released, in order to be able to access its critical section
in the same way. The drawback of locks, is that they can cause a number of issues,
including the occurrence of deadlocks, convoying and priority inversion between threads
of different importance. Furthermore, the complexity of programming with lock-based
approaches is high given the need to explicitly manage accesses to shared data.

Transactional memory (TM), was originally proposed as an alternative to conven-
tional lock-based parallel systems. Systems using this concept, replace the critical
sections of a program with transactions. When a thread reaches a transaction, instead
of acquiring a lock, it executes the transactional code speculatively, retrieving all the
data it needs from the shared memory unobstructedly. The TM system keeps track of
these accesses, and in case it realizes the presence of a conflict between two transac-
tions, it forces one of the two to abort and discard the modifications it has performed
in its local memory, in order to guarantee sequential consistency. In some cases, this
execution scheme provides even better performance than the lock-based counterpart,
while avoiding all the aforementioned issues tied with the latter[2].

A common issue when using locking techniques to ensure consistency, is that devel-
opers use the locks in a conservative manner. This means that the locks enclose a large
part of a program’s execution even though the shared variables are accessed in a small
part of it. Consequently, the threads that are blocked need to wait much longer for a
lock to be released in order to enter their own critical sections. On the other hand,
in TM systems, even if the transactional part covers a large part of the total execu-
tion, the performance won’t be affected considerably, since the transactions can still
execute concurrently. The actual dependencies between these transactions are tracked
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dynamically and only in the presence of a real conflict will the affected transactions
be restarted and serialized. In this way, the task of tracking the dependencies between
the threads is assigned to the TM system instead of the developer, thus simplifying
programmability[3].

Most existing TM systems still make use of threads in order to achieve task paral-
lelization, and only use transactions to replace originally locked critical sections. The
TMFab system [1] on the other hand, considers that all the parallel tasks inside of a
program are formed into transactional blocks which are assigned by a central hardware
scheduler to different processing elements (PEs) to be executed concurrently. In this
way, the overhead tied to context switching between different threads is avoided. Fur-
thermore, TMFab provides a scalable processor independent TM framework intended
for the use in CMP systems.

Nevertheless, the validation scheme proposed in TMFab doesn’t scale well when the
number of processors increases for the following reasons:

• Upon completion of a transactions execution, there is a set of messages broad-
casted through the network, containing the addresses that have been speculatively
modified. These messages need to reach all the other active transactions in the
system. Consequently, when this number increases, the number of broadcasted
messages increases proportionally, thus imposing a larger validation overhead.

• At any given time, only one transaction is allowed to validate its write-set. This
effectively means, that any other transaction in the system needs to be stalled
until the network is clear before it is given permission to validate. The compu-
tational time wasted this way increases considerably when the number of active
transactions in the system increases.

• The increased number of validation packets causes for the interconnect to be
congested, thus increasing the memory access latency for transactions that are
still executing.

Furthermore, TMFab makes use of a compile-time prioritization scheme between
the transactions, which causes for transactions to violate the rule of serializability in
corner case scenarios, thus resulting to loss of sequential consistency.

The purpose of this thesis is to modify the original TMFab architecture in order to
achieve better scalability of the system, while guaranteeing correctness of execution.

1.2 Thesis Goals

This thesis describes the optimizations performed on the original TMFab design in
order to improve validation concurrency and scalability in general. The primary goals
of this project are to:

• Improve the system’s scalability by supporting validation and commit concur-
rency.
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• Explore different conflict detection schemes in order to guarantee sequential con-
sistency.

• Implement a banked memory system in order to better exploit the 3D stack ar-
chitecture present in TMFab.

• Create a SystemC simulator for the original TMFab design in order to measure
performance when the system scales up to more than 4 processors.

• Create a simulator of the modified design in order to compare performance with
the original.

• Integrate additional units in the system, like a supervising processor and an in-
struction cache inside of every PE, in order to be able to run more complicated
programs.

• Explore the system’s performance using commonly used benchmarks for transac-
tional memory systems.

1.3 Contribution

This work analyzed existing scalable hardware transactional memory (HTM) systems,
in order to provide a suitable alternative validation scheme for TMFab, which is able to
resolve the scalability and reliability issues of this TM system. Its major contributions
are:

• Provides a novel validation scheme which allows for validation and commit con-
currency between transactions and reduces the validation latency by a maximum
of 2.5x .

• Incorporates a banked L2 cache memory in the system taking advantage of the
stacked dice topology, reducing the memory access latency by 2.7x in the used
benchmarks .

• Increases the system’s scalability by reducing the number of validation messages
that traverse the interconnect and by allowing multiple concurrent memory ac-
cesses either for data retrieval or for validation/commit operations

• Integrates a supervisor processor in the system which is responsible for executing
the sequential code of a program, and for providing the necessary data initializa-
tion before the transactional blocks are executed by the remote processors.

• Provides a SystemC simulation framework that can be used for architectural ex-
ploration.
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1.4 Thesis Organization

This thesis is organized into the following chapters:
Chapter 2 describes the fundamental concepts of parallel computing with respect

to conventional parallel programming models and their weaknesses, which led to the
use of transactional memory systems. Various TM proposals are then examined, with
special focus being given to the ones that provide increased scalability. Furthermore, a
brief overview of the original TMFab design is provided and the limitations that led to
the modified architecture are outlined.

Chapter 3 provides an overview of the modified TMFab design. The different conflict
detection scheme and contention management policy are explained and their contribu-
tion in increasing scalability is highlighted.

Chapter 4 gives a detailed description of the architecture of the modified TMFab
design, as well as the practical decisions that were made during the development of the
system and the reasoning behind them.

Chapter 5 evaluates the performance of the original and the modified architectures
with respect to each other. Furthermore, the performance of the modified design is
explored with respect to data distribution in different L2 data cache banks of the
system.

Chapter 6 provides a summary of the work that was done and the achievements
that were made, as well as recommendations for future work.
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Background 2
This chapter presents the fundamentals of multi-processor systems and introduces the
concept of transactional memory. Different Hardware Transactional Memory (HTM)
architectures are summarized and their limitations with respect to scalability are ex-
plained. In response to these limitations, two HTM architectures, Scalable-TCC and
KILO TM, are examined more extensively and their contribution in increasing scala-
bility is highlighted. Further, the baseline design for this thesis, TMFab, is analyzed
in detail, and both its scalability and reliability limitations, that led to the need for the
current work, are listed.

2.1 Parallel Computing

Parallel computing is a programming method, in which larger tasks are divided into
smaller ones, to be executed in parallel by multiple hardware resources. There are three
main forms of parallelism :

1. Instruction Level Parallelism (ILP)

Every program is in essence a sequence of instructions. When two adjacent in-
structions are independent to each other, they can be executed in parallel by
multiple functional units when they are present. This is referred to as Instruction
Level Parallelism inside of a sequential code segment.

2. Data Level Parallelism (DLP)

Data Level Parallelism exists in computing loops, when a specific operation is
performed on a large data structure. In this case, the loop can be unrolled,
divided and distributed to multiple processors so that different parts of it are
executed in parallel.

3. Task Level Parallelism (TLP)

Task level parallelism is a characteristic of parallel programs, where the different
tasks that need to be performed are distributed into the available system resources
and executed in parallel, without them having necessarily the same instruction
code or data set.

ILP has been extensively used in the past in order to improve performance of unipro-
cessor systems, using instruction pipelining and superscalar execution among other
techniques. However, there is a limitation to the parallelism that can be achieved in
this manner. On the other hand,TLP and DLP, which is a special class of TLP, are very
promising when used in multi-processor systems, even though the task of parallelization
is shifting towards the programmer’s side rather than the compiler’s and hardware’s in
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ILP. This is the type of parallelism exploited by threaded programs. In those programs,
processes that are able to run in parallel are referred to as threads.

There are two different types of multi-processor systems with respect to the com-
munication between the different PEs:

1. Message Passing

In a message passing model, the different threads exchange data with each other
through the use of messages. Every thread is then responsible for handling input
messages and saving the enclosed data in their private memory.

2. Shared Memory

In shared memory systems, the communication between threads takes place simply
through the use of shared variables, that reside in the system’s shared memory.

The message passing model is more applicable in distributed memory systems, where
every processor has its own private memory and when it needs data residing in another
processor’s local memory, it sends a message to fetch them, or waits for them to arrive
according to the executing algorithm. The main drawback of this method is that it
increases programming complexity by forcing the programmer to ensure correct com-
munication between threads.

On the other hand, in shared memory systems there is no need for intra-processor
communication in order to achieve data sharing. Every processor element (PE) updates
its data directly to the shared memory, from where it can be accessed from any other
PE in the system. The advantage in this case is that the programmer can achieve
communication between different threads by the simple use of shared variables, thus
reducing programming complexity. Chip multi-processor systems (CMPs), make use of
this execution model, by having several processors integrated on the same chip sharing
data through the use of an on-chip cache hierarchy. Usually, every processor has a
private L1 data cache (L1D) in order to reduce data access latency and consequently
improve execution performance, while all the processors share a larger L2D located in
another block of the system. However, when using such a hierarchy, the system has to
make sure that all the local caches are updated in such a way that all the processors
have a coherent view of the shared memory.

2.2 Cache coherence

In case a specific cache line is requested by multiple PEs in a CMP, copies of it will
eventually reside in all their local caches as well as the shared memory. Cache coherence
protocols are needed, in order to guarantee that all of these copies contain the most
recent version of data.In case that one of the PEs modifies the copy located in its own
private cache, all the other copies need to be either updated or invalidated and retrieved
again from the shared memory upon request.

In order for the caches to remain updated, they need to keep track of all the memory
accesses performed by every PE in the system. In systems where the PEs communicate
through a shared bus, bus snooping is the preferred method to perform this task. In
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this case, every PE snoops on the common interconnect to see which cache lines are
accessed by other PEs and updates its private cache accordingly. Even though this
scheme is simple in its implementation, the use of a bus imposes limitations on the
system’s scalability. On the other hand, in systems where the communication is taking
place through means of a scalable Network on Chip (NoC) architecture, directory based
coherence is preferred. In this method, there is a central directory alongside the shared
memory, which keeps track of each cache line’s state inside of every PEs private cache.
In this way, when a cache line is modified by one PE, this update is registered in the
directory which in turn notifies all the other PEs to invalidate their copy.

2.3 Consistency

When multiple threads are running in different PEs of a system, it is possible that
they are operating on the same set of data simultaneously.In the absence of a protocol
that defines a way in which data are allowed to be accessed, every execution of the
code would have unpredictable result, depending on the sequence in which the data are
accessed from the threads.

In conventional lock-based systems, whenever a thread enters a section that is po-
tentially conflicting with another thread’s execution, also known as critical section, it
needs to acquire a lock. If the lock is free, i.e no other thread has acquired it, then it
is returned to the requesting transaction which is allowed to proceed further with its
execution. Every consecutive request for the same lock by another thread will result in
the requesting thread being stalled, until the thread that holds it reaches the end of the
critical section and releases it. In this way, if the programmer handles the locks cor-
rectly, he can always predict the outcome of an execution sequence, thus guaranteeing
sequential consistency.

The main problems resulting from this model are:

1. Priority inversion occurs when a process with lower priority holds a lock needed
by a transaction with higher priority, thus delaying its execution.

2. Convoying occurs when a process holding a lock is, for some reason, descheduled
without the lock being released, thus causing all the other processes in need of
that lock to be stalled indefinitely.

3. Deadlock occurs when two processes try to lock the same set of objects in different
orders and none of them manages to lock all of them so that it can enter the critical
section.

4. Reduced Scalability appears when the same data set is shared by a large number
of threads, which leads to threads being stalled for long periods while waiting to
acquire the lock and access those data. The scalability is further reduced, in case
of large critical sections, caused by conservative use of locks.

Transactional memory was proposed as a way to resolve all the above issues.
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2.4 Transactional Memory

Transactional Memory was first proposed by M. Herlihy and J.E.B Moss in 1993 as a
lock-free alternative to lock-based multiprocessor systems [2]. In this proposal, they
replaced lock-based critical sections in programs, with transactions. In this model,
conventional locks are replaced by transactional markers, signifying a transaction’s
boundaries.

When a a thread reaches a transaction during execution, it starts executing all the
instructions included in it in a speculative manner. This means that, the thread can
still retrieve data from the shared memory without acquiring a lock, but is allowed to
modify them only in its own private memory. All the addresses that are read inside
of this transaction constitute its read-set, while all the addresses that are speculatively
modified from it, form its write-set.

The two main characteristic of a transaction stated in this proposal are:

1. Serializability : Transactions appear to execute serially, meaning that the steps of
one transaction never appear to be interleaved with the steps of another, even
though the execution occurs concurrently.

2. Atomicity : Transactions perform speculative modifications only in their own pri-
vate memory during execution. Upon completion of their task, they either commit
and update the modified addresses to the shared memory, or abort and appear as
they had never executed at all.

At the end of its execution, a transaction needs to compare the addresses it has
speculatively accessed with the ones accessed by other transactions running on different
PEs. This process is referred to as validation. When there is a conflict detected between
two transactions, then one of them needs to be aborted according to a contention
management scheme, discarding all its speculative modifications to private memory.
In case the transaction manages to successfully complete the validation process, it is
allowed to commit it’s write-set, thus updating the modified data to the shared memory.

This programing model effectively guarantees serializability of execution, in the
sense that concurrently executing transactions never appear to be interleaved with
each other and the end result is the same as if they had been executed sequentially.

2.4.1 Transactional Memory Systems

Herlihy and Moss proposed a Hardware Transactional Memory (HTM) implementation,
where the transactional and non-transactional part of the program are executing using
different hardware resources. In other words, every processor has two local caches, one
for transactional operations and one for the non-transactional. In their implementation,
the non-transactional cache was a small fully-associative cache which accommodated
all the speculative writes, before they became globally visible upon a successful vali-
dation/commit operation. However, since a cache line can’t reside in both caches, this
imposes a constraint on the number of cache lines that can be speculatively modified.
This fact, limits the size of a transaction and imposes the additional task of respecting
the hardware constraints on the programmer.
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Transactional Memory Coherence and Consistency (TCC) [4], introduces an al-
ternative to conventional cache line oriented coherence protocols, which incorporates
both the reduced hardware complexity of message passing systems and the ease of
programmability present in shared memory systems. In this proposal, the processors
save all their speculative writes inside of their local cache memory and upon comple-
tion of the transaction’s execution, they broadcast their write-set addresses to all the
other active transactions in the system for validation. Upon successful validation, the
transaction commits its write-set to the shared memory. This eliminates the need for a
conventional snoopy cache coherence protocol, but increases the traffic in the intercon-
nect due to the need of message broadcasting, thus impacting the system’s scalability.

Hardware Support For Relaxed Concurrency [5] proposes a TM system, where the
transactions are serialized upon commit according to a dynamic serialization protocol,
which takes into consideration the dependencies between all executing transactions in
the system. In this way, transactions abort only if is absolutely certain that sequential
consistency will be violated otherwise. Using this scheme, the system achieved a maxi-
mum reduction in abort rate of 7.2, in comparison to other commonly used contention
management schemes. This kind of system benefits the most in applications with long
transactional sections and high contention, since in this case aborts result in more ex-
ecution time being wasted. The drawback of this system is that conflicts are detected
during a transaction’s execution through means of broadcasting messages between all
the PEs, which effectively congests the interconnect and reduces scalability.

2.4.2 Scalability

An important characteristic of CMPs is their ability to scale up their performance
when the number of PEs in the system increases. Taking into consideration the current
advances in integrated circuit technology, which make it feasible for hundreds of PEs to
be packed together on a single chip, it becomes clear that any viability for transactional
memory systems lies in improving their scalability.

One of the most important limiting factors for scalability in TM systems is the
overhead imposed by the validation process. Even though threads are not forced to
stall their execution due to the use of locks, there is now the additional overhead of
transactions validating their read/write-sets in order to guarantee sequential consis-
tency. When this takes place through a common bus interconnect [2], the transactions
are actively tracking memory requests from other transactions during execution thus
hiding the validation overhead inside of the execution time. However, these systems
have considerable scalability limitations due to the fact that only one PE can access
the bus at any given time. On the other hand, network based architectures force the
transactions to broadcast messages to all other active transactions in the system in
order to detect if there are conflicts between them[5].

This problem is solved by directory based schemes where a central directory is used
to keep track of which private caches hold a copy of a specific cache line[4]. In this
case, when a transaction is committing, the directory sends invalidating messages to
the conflicting transactions thus causing them to abort. This way, there is no need for
additional validation messages to be sent in the network. On the other hand, the size
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of the directory increases proportionally to the number of PEs in the system, while the
complexity of accessing all the tracking bits in every cache line increases accordingly.

In the following subsections, two HTM approaches that address the issue of scal-
ability are going to be described with respect to both their achievements and their
limitations.

2.4.2.1 Scalable - TCC

Scalable - TCC [6] is a variant of the TCC proposal, which aims at addressing problems
concerning the original design’s scalability. The main contribution of the new approach
is that it allows for concurrent validation/commit operations to take place in different
memory partitions.

In order for this to be achieved, the system is using a distributed shared memory
architecture with multiple directories, one in each memory partition, to guarantee cache
coherence. Transactions read from different partitions of the memory during execution,
setting the tracking bits accordingly in the cache lines they retrieve. At the end of
execution, every transaction requests for a Transaction ID (TID) which defines its
priority in the commit sequence. Younger transactions, i.e with a higher TID number,
commit always after an older transaction, except if it is absolutely guaranteed that there
is no conflict between them, which is the case when they operate on different partitions
of the memory. If the latter is true, then the transactions are allowed to validate
and commit their write-set concurrently without violating sequential consistency, thus
reducing the overall overhead related with using a TM model.

The main drawback of this system concerns the additional hardware resources
needed to implement a directory when the number of PEs in the system increases.
The system provided good scalability, by showing a maximum speedup of 57 for a 64
processor topology.

2.4.2.2 KILO TM

KILO TM [7] is a TM system proposal, intended for use in GPU architectures where
there is a lot of inherent task parallelism and thousands of threads executing concur-
rently. The system combines aspects of value-based conflict detection, RingSTM [8] and
Scalable - TCC [6] to achieve better scalability. Distributed shared memory is used the
same way as in [6] in order to support parallelization of validation/commit operations.
The difference in this case is that, instead of using a directory based cache coherence
scheme which is not very scalable in terms of area consumption and complexity, a
value-based conflict detection protocol is used.

At the end of execution every transaction sends its read/write log, containing all the
address-value pairs of the memory locations speculatively accessed by it, to the corre-
sponding memory partition in order for conflicts to be detected on a value-comparison
basis. In order for this to be possible, the logs coming from all the transactions need to
be saved in a temporary location in the memory partition, which effectively increases
the storage requirements of the shared memory and imposes a limitation on the maxi-
mum number of transactions that are able to validate in parallel. On the other hand,
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this architecture is intended for use in GPUs, where the data set of every thread is
small, which is not the case in a GPP.

The system implements the validation scheme in a pipelined way. When a transac-
tion first enters the pipeline, it needs to validate its read-set to the shared memory in
order to detect if any addresses in its read-set where modified during execution, which
would force the transaction to abort. If there are no conflicts detected, the transaction
validates with the older transactions at later stages of the pipeline in order to detect
possible conflicts, which are referred to as hazards. If the transaction, with which their
is a hazard, manages to commit its write-set to memory, then the hazard will result
in an actual conflict since the hazardous address will be modified. In order for this
to be detected, the transactions are obliged to re-validate their hazardous addresses
before they are allowed to commit. In case there is no hazard or conflict detected, the
transaction is allowed to update the memory.

In order for this scheme to perform correctly, the transactions need to validate in the
same order in all the memory partitions. Consequently, even if a younger transaction
arrives earlier than an older in a specific partition, it needs to wait before it starts
validating, possibly wasting validation time if there is no other transaction validating
with the memory at that time. In addition to that, the value-based conflict resolution
forces every transaction to also send the read-set data through the network to be
validated with the shared memory, thus increasing the network traffic and decreasing
the system’s scalability.

2.4.3 TMFab

The baseline architecture for this work is called TMFab and was proposed by S. Kumar
& R. van Leuken in 2010 [1]. TMFab is a processor independent TM architecture in-
tended to be used for scalable shared memory CMP prototyping, ideally for technologies
that support die stacking.

In this proposal, the use of threads is completely replaced by the use of transactions
which is the basic unit of parallel work. In other words, the programmer instead of
spawning threads to divide the different tasks in the program, he simply has to include
the parallel workload inside of transactional markers, which reduces programming com-
plexity. In addition to that, the overhead related with context switching in conventional
threaded programs is avoided.

The system is based on a 3D stacked architecture where arrays of PEs can be stacked
on top of each other on different dice in the same chip. In this way, the number of
processors can be expanded in the vertical direction without increasing the chip’s area
footprint. The communication between the different PEs in the system is provided by
a scalable 3D mesh NoC interconnect, illustrated in Figure 2.2 which uses Through
Silicon Vias (TSVs) for the communication between different dice.

TMFab uses lazy version management, which means that every transaction’s specu-
lative writes are saved in an internal Speculative Write Buffer (SWB), instead of being
updated directly in the L1D, in order to be updated to the L2 data cache upon success-
ful validation, or easily discarded in case of a necessary abort. The use of such a buffer
also facilitates the creation of validation packets during the validation stage, since the
addresses to be validated lie in the SWB in consecutive locations.
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Figure 2.1: Original TMFab Design [1]

For the detection of conflicts between transactions executing on different PEs, a
lazy conflict detection scheme has been used. In other words, the transactions validate
their data-sets after they complete execution. This prevents unnecessary aborts of
lower priority transactions caused by higher priority transactions that eventually don’t
manage to commit. Additionally, a word level granularity validation scheme has been
deployed, which uses write masks to achieve cache line granularity overheads, resulting
in smaller validation packets being broadcasted through the interconnect, thus reducing
the congestion in the network and consequently the validation overhead in comparison
to word granularity validation schemes.

Furthermore, there is no conventional cache coherence protocol used requiring either
bus snooping or a directory to keep track of a cache line’s state. Common cache lines
between different transactions are invalidated according to the incoming validation
packets sent by every validating transaction before commit, while the shared L2 data
cache is updated by every transaction in the commit stage.

The contention management policy in this proposal is implemented through means
of a priority scheme defined at compile time. Every transaction is given a phase and
a sequence before it starts executing its transactional code. During validation, the
transaction sends this information along with the validating addresses to the other
active transactions in the system. These compare the incoming phase and sequence
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Figure 2.2: 3D Mesh NOC [1]

information with their own and according to whether they are younger or older, they
abort or send an abort message to the validating transaction respectively. Even though
the transactions have a predefined priority, they are allowed to commit out of order in
case a younger transaction completes execution earlier and presents no conflicts with
all the older transactions in the system. This prevents smaller transactions from being
stalled by larger ones with higher priority, which would result in PEs being unnecessarily
occupied by completed transactions for greater time periods before a new transaction
would be scheduled on them.

The system provided good scalability for a topology of up to 4 PEs, showing a
maximum speedup of 3.44x for 4 independent similar transactions with same workloads.
However, the simulations that were part of this work showed that when the number
of PEs increased in the system, the performance didn’t increase accordingly. This
happened for the following reasons:

1. At the end of execution, every transaction needs to broadcast validation packets
to all the active transactions in the system. This effectively means that when
the number of PEs increases, the number of validation packets that traverses the
network increases exponentially, thus incurring a larger validation overhead.

2. The architecture as it is, allows for a single transaction to be able to validate and
commit at any given time. In other words, even if a transaction has completed
execution, it will be stalled until it has acquired an exclusive validation token
in order to be able to start validating. When the number of PEs increases, the
amount of time wasted in stalling increases accordingly, since there are more
transactions in line to acquire the token.

3. The L2D is located only in the first die of the system, which means that when
the system is scaled up in the vertical direction, it takes more time for requests
in higher levels to reach the shared memory.
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In addition to the scalability issues of the system, there are also problems that affect
the correctness of execution. Those are:

1. The static compile time prioritization of transactions, in combination with the
out of order commit scheme, allows for some Read-after-Write (RaW) conflicts to
be disregarded in corner case scenarios. In case a younger transaction successfully
validates with an older one before the former completes execution, all the conflicts
that exist in the unexecuted part of the transaction are going to be disregarded,
since none of the transaction will abort. This will result to violation of sequential
consistency and loss of correctness.

2. The system doesn’t take into consideration race conditions in which a transaction
that has been aborted, accesses stale data in the shared memory, before they
are actually updated by the committing transaction. This task is left to the
inherent latency of the network communication. However, this latencies are not
as predictable when the system scales up to the vertical direction and the distances
between the shared memory and the PEs varies considerably.

Apart from the above problems that affect scalability and correctness of execution,
the following practical issues were observed, which limit the system’s functionality:

1. The lack of an operating system (OS), or a supervising processor (SP) make it
difficult for the sequential part of the program to be executed. In the tested bench-
marks that were small and fully transactionalized, this weakness didn’t impose a
considerable problem. However, when more complex programs are executed, the
presence of either a SP or an OS is of outmost importance.

2. The lack of an instruction cache inside of the PEs makes it impossible to service
instruction misses. For this reason, all the instruction code that could be used
by a transaction had to be transfered and stored in the L1 Instruction memory
of the PE before execution, thus increasing the communication overhead and the
L1IMem requirements, as well as limiting the maximum size of a transaction.

2.5 Summary

This chapter presented an overview of parallel computing systems in general and ex-
plained the contribution of transactional memory in resolving problems related to con-
ventional lock based parallel programming techniques. Further, some of the most in-
fluential transactional memory proposals were described with main focus being given
on their scalability. One of these proposals, TMFab, was analyzed in more detail, and
its issues concerning scalability were highlighted. Chapter 3 presents TMFv2, a new
transactional memory proposal based on TMFab, which focuses on resolving all the
aforementioned issues, by applying a novel concurrent validation scheme which reduces
the validation overhead considerably.
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TMFv2 Design Overview 3
Chapter 2 gave an overview of transactional memory, and described some influential
HTM proposals focusing on their scalability potential. Further, the TMFab[1] design was
described and its limitations were highlighted. This chapter describes a modified version
of this system, TMFv2, which targets to overcome the original design’s limitations with
respect to scalability and correctness of execution.

3.1 TMFv2 Overview

The original TMFab design provides a processor independent transactional memory
framework for CMP prototyping, which offers increased scalability, mainly in terms of
the scalable NoC interconnect that is used. However, experimental results showed that
the system’s scalability decreased for topologies using more than 4 PEs. There are two
main reasons behind this performance limitation:

• The number of validation messages every transaction sends increases proportion-
ally to the number of PEs in the system, thus increasing the validation time per
transaction.

• Only one transaction is able to validate its write-set at any given time, causing
all other transactions to stall even if they have completed execution.

In addition to that, the system is not able to guarantee sequential consistency of exe-
cution.

TMFv2 is a modified version of TMFab, which uses a new, more scalable validation
scheme which:

1. Allows for validation and commit concurrency of transactions Transac-
tions are able to validate simultaneously on the shared L2D cache. A distributed
banked L2D cache topology allows for increased validation throughput, by al-
lowing multiple validation packets to be handled concurrently by different cache
banks. Further, this topology also allows for different non-conflicting transactions
to commit their write-sets concurrently thus reducing even more the validation
overhead.

2. Makes the number of validation packets independent from the number
of PEs in the system The number of validation packets is defined only by the
size of a transaction’s read-set, and by the number of potential conflicts between
transactions. Thus, when the number of PEs is scaled up, the validation overhead
does not increase which leads to faster execution, which is limited mainly by the
available memory throughput.
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Figure 3.1: TMFv2 Design

3. Guarantees sequential consistency of execution even in corner case sce-
narios A dynamic prioritization scheme has been used which orders transaction
upon completion of their execution. This fact, together with the conflict detec-
tion scheme that has been implemented, allows for all possible conflicts between
transactions to be detected, thus providing correct execution in all cases.

TMFv2 consists of four main units appearing in Figure 3.1, the Supervising Unit
(SU), the Transactional Memory Processing Element (TMPE), the L2 Data Cache
(L2D) and the Network-on-Chip (NoC) interconnect.

At the beginning of execution, the SU reads and stores the instruction code of
the transactional program in its internal Instruction Memory(IMem). The Supervising
Processor(SP) located inside of the SU starts executing the sequential part of the code
until it encounters a transactional section, demarcated by a START TXN transactional
marker. At this point, the SP is stalled and the TMFv2 Scheduler (TMS2) takes
control of execution by scheduling all the following transactions, which precede the next
sequential section of the code, to the available TMPEs in the system to be executed in
parallel.

When a transactional instruction block, sent from the SU, is received by the TMPE,
it is stored inside of the L1 Instruction Cache (L1I). Upon arrival of a start signal
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Figure 3.2: TMFv2 Concurrent Validation/Commit example

also originating from the SU, the Processor Element (PE) inside of the TMPE starts
executing the transactional code speculatively, meaning that the transaction might be
restarted at a later stage if it is conflicting with a higher priority transaction. If there is
an instruction miss in the L1I during execution, caused by a call to a function located
outside of the original transactional block, this is serviced by the IMem of the SU. In
case of a cache miss in the local L1 Data Cache (L1D), the data are retrieved from the
shared L2D through the NoC. From now onwards the TMPE will be referred to as PE
for simplicity reasons.

All the speculative modifications performed by a transaction during execution, are
saved in a Speculative Write Buffer (SWB) inside of the PE. Upon completion of ex-
ecution, the PE on which the transaction was executing, requests for a Validation ID
(VID) from the SU (Step 1 of Figure 3.2), which defines its priority in comparison
to other validating transactions in the system. The VID is provided in a first-come
first-served basis, thus giving higher priority to smaller transactions that execute faster
or transactions with similar workloads that have smaller communication latency to the
SU.
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When a transaction acquires a VID it starts sending the cache line addresses it
has speculatively read , which form its read-set, to the L2D, to be validated with the
cache lines there. If it is concluded that the cache line has been modified by another
transaction in the system while the validating transaction was executing, the cache
line data are returned to the validating PE in order to assert that there was an actual
conflict. If the last is true, then the transaction is forced to abort, notify the TMS2
for this action, and restart. When it again reaches the end of execution, it needs to
acquire a new VID before it starts validating anew.

Unlike the original TMFab design, TMFv2 allows for multiple transactions to val-
idate their read-sets concurrently, as well as commit their write-sets concurrently if
there are no conflicts detected. In order for this scheme to provide a performance im-
provement, there is need for the shared L2D to be partitioned into banks, so that it
is possible for multiple validation packets originating from different transactions to be
handled in parallel by multiple banks in the system. TMFv2 leverages the potential of
the 3D stack topology, which is part of the original TMFab design, by placing every
L2D bank on a different level in the chip, also known as die. The benefits derived from
this placement method are:

• Transactions executing on different dice in the system, have similar latency while
retrieving data from the shared L2D, provided that data are distributed evenly
between the different banks in the stacked topology.

• Multiple validation packets can be handled in parallel by different banks in the
system, thus reducing the validation overhead.

• In case that the read-set of a lower priority transaction and the write-set of a
higher priority one are located in different banks, the transactions can potentially
commit in parallel, thus freeing the PEs in which they are executing earlier and
allowing for new transactions to be scheduled on them.

During execution, every PE keeps track of which banks it has speculatively read in
a Read Mask (RM), and speculatively written in a Write Mask(WM). When execution
completes and the PEs are assigned their VIDs, they start sending their read-sets to the
banks they have accessed for validation. This is a task that can take place concurrently
from multiple PEs irrelevant to their VID number. However, only one PE is allowed to
commit to a specific bank at any given time. This is defined by every bank’s Priority
VID (PVID) number. When a PE gets priority over all the banks it has speculatively
accessed, it is able to commit its write-set provided that no conflicts have occurred in
the meantime.

When a PE has priority over a bank and has no more need for it, either because
it is not in its read/write-set or because it has updated it already, it sends an update
message to it. At that point, the bank increases the PVID number by one and informs
the SU of this action. The SU updates its internal PVID table, and then locates the
PE which has a VID matching the PVID of the updated bank, and sends a message
to inform it that it has priority over this bank. Upon receival of this message, the PE
updates its internal PVID Mask. This procedure is illustrated in Step 2 of Figure 3.2.
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During validation, a PE receives messages from the L2D informing for potential
conflicts with transactions that have already updated the cache, or with the ones that
are still in the validation process. The last ones are called hazards. The first type of
conflicts are resolved at the time they occur. However, the hazards are resolved only
when a PE has priority over all the banks it has speculatively accessed. When this
happens, the PE sends all the hazardous cache lines for re-validation. If no conflicts
occur from this process, then the PE is allowed to commit its write-set to the L2D.
However, before it commits, it sends messages to all the banks that are not in its WM
to update their PVIDs because they are not needed. This allows for other PEs to
get priority over those banks faster and complete their re-validation process earlier, as
shown in Step 4 of Figure 3.2.

The communication between the different units in the system is serviced through
a scalable 3D mesh NoC interconnect, similar to the one used in the original TMFab
architecture. This kind of interconnect was chosen because NoCs show better scalability
in comparison to a bus or a crossbar based architecture[9], while 3D meshes show lower
cross network latency than 2D meshes of the same size [10].

The following section describes in more detail the policies used by the TMFv2
design.

3.2 Transactional Memory Policy

In this section, the different policies used by TMFv2 will be described and their differ-
ences with the original TMFab design will be highlighted.

3.2.1 Transactional Programming

Conventional TM programs follow the threaded programming approach, with the dif-
ference that they replace the locked critical sections with transactions, by including
them in transactional markers. When the PE on which the thread is running reaches a
transactional marker, it saves the state of the registers and starts executing the trans-
actional part speculatively. In case the transaction aborts, the registers are loaded with
their pre-transactional state and execution restarts. The drawback of this model is that
the programmer is still responsible for identifying the critical section and enclose it in
transactional markers.

Similarly to TMFab, TMFv2 uses a programming scheme in which the threads are
completely replaced by transactions. In this case, instead of creating a thread to execute
the parallel workload, the programmer needs to enclose it between a START TXN and
an END TXN transactional marker. All the code inside of these markers is considered
as one transaction and has to be sent to one remote PE to be executed. All the code
outside of these markers is considered sequential and is executed by the SP of the SU. In
this sense, threads turn into coarse grained transactions. The drawback of this scheme
is that in case of an abort, there is more transactional work wasted. On the other hand,
this model offers smaller programming complexity, since the programmer is not obliged
to locate the conflicting sections of the code and transactionalize them.
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When the program starts executing, the SP starts executing the initialization code
which sets the original values in registers, like pointers to addresses in memory and other
data necessary for the programs correct execution. In order to guarantee correctness of
execution, those registers are sent to all the remote PEs that are going to execute one of
the following transactions. This initialization process could also take place inside of the
remote PEs, however this poses a considerable overhead since all of these instructions
need to be sent to every single PE through the NoC.

During the SP’s execution of the code, the requested cache lines are retrieved from
the L2D through the NoC. These are temporarily stored inside of the SU’s L1D. Every
cache line that is modified inside of this cache needs to be updated in the L2D when
the sequential segment reaches the end. At the end of this process, the L1D is flash
cleared in order to guarantee that future sequential sections are not going to execute
on stale data, since the modifications made by the PEs are not updated in the SU’s
local L1D.

When the SP arrives at a transactional section, its execution is stalled by the in-
struction interface and the scheduler starts assigning the transactions that follow to
the idle PEs in the system. In order for the transactions to be executed concurrently,
they need to be positioned adjacently, without intermediate code between them. Oth-
erwise, the scheduler will consider that the transactional part is over, it will wait for the
transactions that are scheduled to complete execution and then pass again control to
the SP which will start executing the next sequential section. All the transactions that
are placed between two sequential sections are considered to belong in the same phase,
but have different sequence between them, while the transactions that are divided by
a sequential section, are considered to belong in different phases.

3.2.2 Version Management

The version management policy refers to the way in which the speculative writes of
every transaction get updated in their local L1 Data Cache. TMFv2 uses a lazy version
management policy similar to the one used in the original TMFab. In this scheme, the
speculative writes of a transaction are kept inside of a Speculative Write Buffer(SWB),
instead of being updated directly to the the L1D which is the case in an eager version
management scheme.

The advantage of this policy is that the transaction’s read-set is located already
unaltered inside of the L1D, so in case of an abort, the SWB is flash cleared and the
original data are directly accessed from the L1D, which speeds up the abort operation.
Alternatively, in the eager scheme, the transaction would update directly the L1D and
the original values would be held in an undo log from where they would be restored in
the L1D in case of an abort. The advantage of this scheme is that it allows for faster
commit operations since the modified data don’t need to get updated in the L1D as
well. However, in the TMFv2 there is no need for the data to be updated at the end
of a transaction because the L1D will be flash cleared before a new transaction arrives
as is going to be explained in subsection 3.2.5.
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Figure 3.3: TMFv2 Conflict detection example

3.2.3 Conflict Detection

The conflict detection scheme used in TMFv2 differs considerably from the one used
in the original TMFab design. Both proposals use lazy conflict detection, which means
that the transactions validate at the end of their execution, instead of doing so when-
ever a memory access occurs, which is the case in an eager conflict detection scheme.
However, unlike the original TMFab design, where every transaction validated its write-
set with every other transaction in the system, in TMFv2 transactions validate their
read-sets only with the L2D. In the first case, the number of broadcasted validation
messages increases exponentially with the increase of the PEs in the system, which
consequently reduces the system’s scalability. On the other hand, in TMFv2 the num-
ber of validation packets is independent from the number of PEs in the system, and is
defined only from the size of the read-set, as well as the number of potential conflicts
that occur during validation.

When a transaction reaches the validation stage and acquires a VID from the SU,
it starts sending the cache line addresses in its read-set to the L2D in order to check
if they were modified during execution by another transaction. In order for this to be
possible, every cache line in the L2D is enhanced with one more tag containing the
VID of the last transaction that modified it, which is called Last Commiter ID (LCID).
When a cache line is sent to a PE upon request, the LCID tag is sent alongside the data
and is stored in a similar tag inside of the L1D of the requesting PE. During validation,
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this tag is sent back to the L2D in order to be checked with the most recent LCID of the
cache line. If the two tags are different, it means that the cache line has been modified
during this transaction’s execution by another transaction, thus signifying a potential
conflict (case 1a-1b,2b-2c of Figure 3.3). However, since the comparison takes place in
a cache level granularity, it is not certain that the modified words are the same as the
ones read by the validating transaction. For this reason, the cache line data are sent
back to the validating transaction’s PE to be compared in a word level granularity with
the data there. If it is concluded that there was an actual conflict, then the transaction
aborts and restarts, notifying the SU for this action.

Furthermore, since there are multiple transactions validating concurrently, which
haven’t updated their write-sets yet, there is additional need to validate with them too.
In order for this to be possible, the L2D cache lines were augmented with one more
field called Speculative Reader VID (SRVID). When a transaction sends a validation
packet to the L2D, it sends its VID alongside the cache line addresses. If the SRVID
number is smaller that the bank’s PVID number, implying that the transaction is
no longer active, the SRVID fields of the validated cache lines are updated with the
incoming VID (case 1b,2b of Figure 3.3). If at some point, another transaction updates
this cache line during a commit operation, then the transaction whose VID is equal
to the SRVID receives a message which indicates a hazard in that specific cache line
address(case 3c of Figure 3.3). Before this transaction manages to commit, it needs
to validate all the hazardous lines again, in order to detect any possible conflicts with
transactions of higher priority, that hadn’t committed yet at the time this transaction
started validating. In case multiple transactions have read the same cache line during
execution, then only the one with the highest priority will keep its VID registered in the
SRVID field of that cache line. All the other transactions are going to receive hazard
messages, even though the cache line hasn’t been modified, in order to revalidate it
before they are allowed commit(case 1c,2c of Figure 3.3).

In order for sequential consistency to be guaranteed, before a transaction is able to
commit, it needs to have priority in all the banks that it has accessed. For this reason,
every bank has a special entry, called Priority VID (PVID), which contains the VID of
the transaction that is allowed to commit on that specific bank. When the transaction
gets priority over all the banks it has accessed, it re-validates all the hazardous lines
and upon successful validation, commits its write-set to the L2D.

The advantage of this scheme over a directory based one, is that the former uses a
predefined number of bits per cache line to save the LCID and SRVID fields, while in
the latter the number of tracking bits per cache line increases according to the number
of PEs in the system.

3.2.4 Contention Management

The contention management policy refers to the way two conflicting transactions decide
which one is going to abort. Both TMFab and TMFv2 follow the Oldest Contention
Management (Oldest CM) policy. In other words, when two transactions are conflicting,
the youngest one is forced to abort while the oldest is allowed to commit its’ write-set.
The main difference between the two designs, is that in TMFab the transactions are
assigned a predefined priority at compile time, while in TMFv2 the priority is defined
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dynamically on a first-come first-served basis inside of the TMS2. In the original
approach, the system presented two main drawbacks :

1. If a younger transaction finishes its execution earlier than an older conflicting one,
it needs to abort and restart even though the older is not even at the validation
stage yet. This causes for the younger transaction to re-execute all of its instruc-
tion code, while it could have committed and retired, releasing the PE for another
transaction to be scheduled. In some cases, this transaction might abort multiple
times before the older one has committed, resulting in an increase in the wasted
work per PE and a decrease in the overall performance. This phenomenon is
aggravated in case there is a chained dependency between multiple transactions,
in which case the oldest transaction that aborts will force all the younger ones to
also abort, thus actually serializing the code’s execution.

2. In the case that, in the previous example, the younger transaction didn’t detect
any conflicts and committed its write-set, before the older one would arrive at
the end of its execution, there is still a possibility that the older transaction
would read on data that the younger updated. This already violates the principle
of serializability because transactions appear to have executed in an interleaved
way.

TMFv2 solves the above issues, by implementing a dynamic prioritization scheme
for the transactions similar to the one proposed in [6]. In this case, transactions acquire
a VID from the TMS2 upon completion of their execution. After that, they validate
their read-set inside of the L2D together with other validating transactions. If there
is a conflict between transactions that validate in parallel, the older transaction (lower
VID) wins the conflict and the younger (higher VID) is forced to abort. However, in
this case the transactions can be aborted only by another one in the validation stage
and only if it is certain that the latter managed to commit, unlike the original TMFab
design. In other words, a transaction will abort only once due to an older conflicting
transaction, instead of multiple times in the previous TMFab design.

In addition to the reduction in the abort rate, TMFv2 is able to guarantee sequential
consistency by detecting all possible conflicts. The reason is that in this case, all
transactions participating in the validation scheme have completed execution and their
read/write-sets are complete. In other words, it is not possible that a younger validating
transaction will ignore a Read-after-Write conflict with an older executing one that has
an uncompleted write-set, which was the case in TMFab.

3.2.5 Cache Coherence Protocol

The cache coherence protocol is one more point in which TMFv2 differs from the orig-
inal TMFab proposal. In the latter, the L1D was kept coherent with the help of the
broadcasted validation messages between the active transactions in the system. How-
ever, if a PE was idle and wasn’t executing a transaction, it didn’t receive any validation
packets to guarantee its L1D coherence. Future execution of another transaction on the
same PE could potentially result in stale data being used causing incorrect execution
of the program.
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In TMFv2 there are no validation messages being broadcasted between the different
PEs which would invalidate the modified cache lines, since all the validation process is
taking place inside of the L2D. When there is a potential conflict detected inside of the
L2D, the conflicting cache line is sent back to the validating PE, both for the conflict to
be resolved in a word level granularity, and for the modified data to be updated inside
of the PE’s local L1D. This way, even if the transaction is forced to abort, it has the
updated data on its L1D and can execute on them during the second execution.

When a transaction commits and retires, the PE flash clears the L1D in order to be
ready for the next transaction which will be scheduled on it. This action is necessary,
because after a transaction retires, there is no mechanism to keep the L1D updated
when the L2D is modified. Taking this into consideration, in the alternative case where
the L1D wouldn’t be erased, the following transaction would execute on stale data.
At the time that this transaction would validate the data with the L2D it might be
concluded that the data had been modified and the transaction would be forced to
abort. By erasing the L1D the transaction will request for all the cache lines anew,
thus reducing the possibility that it will access stale data.

If two consecutive transactions that run on the same PE are not correlated, which
is usually the case in the current programming model, most of the second transaction’s
read operations would result in compulsory misses, which means that there is no benefit
in keeping the L1D coherent between two different transaction that run on the same PE.
However, if the two transactions have similar read-sets, then a directory based approach
could be a better solution to guarantee cache coherence, with all the additional memory
requirements this would imply.

3.3 Summary

This chapter presents TMFv2, a transactional memory system which applies a novel
concurrent validation scheme on the original TMFab architecture. The new scheme,
allows transactions to validate their read-sets and commit their write-sets concurrently,
thus preventing transactions from being stalled for long periods of time before they are
able to validate/commit. Furthermore, a banked L2D cache scheme has been used to
increase the memory access throughput and consequently the validation throughput.
Additionally, the number of packets needed for the validation to be performed, is inde-
pendent from the number of PEs in the system, thus allowing for better scalability. All
these factors contribute in reducing the validation/commit overhead, and improving
overall the system’s performance. Furthermore, the new system guarantees sequential
consistency in all cases. The following chapter gives a detailed architectural description
of the TMFv2 system.
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Architecture 4
Chapter 3 describes the transactional memory policies implemented by TMFv2, high-
lighting the differences with the original TMFab system. In this chapter, the detailed
architecture of TMFv2 is described with respect to the main four components : Super-
vising Unit, TM Processing Unit, L2 Data Cache and the NoC interconnect.

4.1 Supervising Unit

The Supervising Unit(SU) illustrated in Figure 4.1 is responsible for reading the input
binary file which contains the transactional program’s instruction code, execute the se-
quential part and distribute the transactional accordingly to the available PEs residing
in the CMP. The SU consists of four basic units : the TMFv2 Scheduler(TMS2), the
Supervising Processor(SP) the SU Input and the SU Output.

4.1.1 TMFv2 Scheduler

At the beginning of execution, the binary file containing the instruction code, is read
and stored inside of the SU’s instruction memory (IMem). This file contains both the
sequential code that is meant to be executed by the SP and the transactional code that
will be executed in parallel by the available PEs in the system.

The transactional code is separated by the sequential through means of two trans-
actional markers, the START TXN and END TXN, demarcating the beginning and
end of a single transaction respectively. The instruction code that is enclosed by these

Figure 4.1: Supervising Unit
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markers is meant to be executed by a single remote PE. Two consecutive transactions
that have no intermediate instruction code between them are considered to belong in
the same Transactional Section(TS) and are able to execute in parallel. If there is se-
quential code between two transactions, it means that they belong in different TS and
the second needs to wait for, both the first one and the sequential section to complete
execution, before it is able to execute.

Unlike the original TMFab design, TMFv2 integrates an additional processor inside
of the SU, the SP, which executes the sequential sections of the code. At every clock
cycle, the SP requests for the next instruction in line to be executed from the Instruction
Interface. Before providing the requested instruction, this block checks whether this is
actually a transactional marker. In case it is, the SP is stalled and the TMS2 takes
over to start the execution of the TS.

In order for this task to be achieved, the TMS2 needs to be aware of the start
and end addresses of every transaction. In the original TMFab design, the position
of the transactional markers was defining those addresses. In that case, when the
scheduler would detect a START TXN marker it would start scanning and sending
all the instructions to an idle PE until an END TXN marker would be encountered.
The drawback of this method is that all the instructions of a transaction are sent,
even if some of them are not really used due to a conditional branch operation. In big
transactions this could pose an unnecessary additional overhead. In addition to that, all
transactions will be sent to the remote PEs one by one in their whole, regardless of their
size. This effectively means, that every transaction will start executing potentially with
a large phase difference, waiting for all the transactions that precede it to be transfered
first.

For the aforementioned reasons, TMFv2 follows a slightly different approach. There
are still two markers, one at the end and one at the beginning of every transaction,
but their content is different. As illustrated in Table 4.1, the START TXN marker
comprises of 5 instructions. The first two instructions are NOPs, which are needed
for practical reasons, in order to give time to the supervising processor to finish any
pending store/load tasks. The third instruction is the actual start marker that signifies
the beginning of a new transaction. When the scheduler comes across this instruction,
it first disables the SP and then scans the following instruction which contains the end
address of the transactional block. This way, the scheduler knows immediately both
the start and end addresses of the block, and is able to send this information to the
remote PE to start execution. At that point, the PE will register an instruction miss
and will request the needed instructions from the IMem of the SU. The last instruction
in this transactional marker is actually the first instruction that will be executed by
the remote PE, and its purpose is to load the stack pointer address in the appropriate
register of the PE1.

The END TXN marker depicted in Table 4.2 contains a NOP instruction and a
branch label. The same label is used in the branch instruction of the start marker to
signify the end of the transactional block. This label will be eventually translated by
the assembler to an address, pointing at the next transactional or sequential block in

1In this system, the register r1 of the Microblaze processor is used for this purpose. This instruction is
architecture specific and should be changed in case a different processor is used
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START TXN
(sequence, phase,
txn stack size)

NOP
NOP

0xAAF87 (20bit) Sequence (8bit) Phase (4bit)
BRAI (16bit) end address (16bit)

ADDIK r1, r0 (16bit) Stack pointer (address to ded-
icated stack space) (16bit)

Table 4.1: Start transaction marker

END TXN
(sequence, phase)

NOP
end address(T sequence phase) (16bit)

Table 4.2: End transaction marker

the execution sequence.

After the SP is stalled and both the start and end addresses are extracted from
the markers, TMS2 registers the new transaction in the transaction table shown in
Table 4.3. Every transaction is defined by a phase and a sequence number. All the
transactions that belong in the same phase have different sequences and are allowed
to execute in any order. On the other hand, all the transactions that belong to an
earlier phase (smaller phase number) need to appear as if they executed before a later
phase (larger phase number). In the original TMFab design, the sequence was also
defining the execution order for the transactions of a single phase. However, in TMFv2
there is dynamic ordering of transactions at validation time, and the sequence is only
used for the identification of different transactions and to provide flexibility for future
development of the project. The phase information is still necessary as a way of syn-
chronizing transactions that belong in the same TS and is the equivalent of a barrier
in a conventional pthreaded program. The priority field, is used from the SU Output
to assign the transactions to the remote PEs in the same sequence they appear in the
program.

After the transaction has been registered in the table, the TMS2 scans the next
instructions to identify whether they are part of a new transactional marker, signifying
the start of a new transaction, or if it is plain sequential code, which means that this
is the end of a TS.

The TMS2 is also responsible for managing the PE info table, depicted in Table 4.4,
which contains information about the current state of every remote PE in the system.
The Validation ID(VID) is a number assigned by the TSM2 to every transaction that is
ready to validate its read-set. Originally, when a transaction is scheduled, this number
is set to 0 to reveal the lack of a valid VID. When a transaction reaches the validation

Valid Scheduled Phase Sequence Start address End address Priority

Txn 0

Txn 1

Table 4.3: Transaction table
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VID TTP Assign Status PE State Req Tkn Ack Tkn Address Req

PE 0

PE 1

Table 4.4: PE info table

stage, it requests a VID from the TSM2, who responds to this request in a first-come
first-served basis. This effectively means, that the older transaction that finished earlier
receives a smaller VID number than a younger one. In other words, the transactions
are assigned a priority upon completion of their execution, contrary to the original
design which dictated a priority at compile time.

The Transaction Table Pointer(TTP) field contains a pointer to an entry in the
transaction table, which holds the information related to the transaction scheduled on
that PE. In the actual implementation, there are two pointers for this purpose, one for
the current transaction executing and one for the transaction to be scheduled on the
same PE. This is needed in order to be able to overlap the commit stage of a trans-
action, with the assignment of a new transaction to the same PE. Since a committing
transaction is impossible to abort, and a committing PE is not performing any useful
operation other than updating its write-set to the L2D, it is free for a new transaction
to be transfered to it at this stage. For this reason, before the PE starts committing,
it informs the TMS2 that it can send a new transaction if there is one.

The Assign status field keeps track of whether the transactional block is actually
sent, as well as if the transaction has started execution. If not, the SU Output will
send an appropriate message for the execution to start.

The PE state contains one of the three possible states of a PE : PE IDLE, PE BUSY,
PE COMMITTING.

When a transaction needs to validate and commit, it sends a message to the sched-
uler, who in his turn informs the PE info table by updating the Request Token field.
The values in this field can be one of the following: IDLE, VALIDATE, COMMIT,
COMMITTED. When the request is handled, the Acknowledged Token field is updated
to avoid multiple responses to the same request.

The address request is needed in case of an instruction cache miss from a remote
PE.

4.1.2 Supervising Processor

In order to perform the computation of the sequential part, the SU uses a Supervising
Processor(SP), which in this system has a MicroBlaze architecture 2. This processor
is responsible for the execution of all the code that is not inside of the transactional
markers. When the processor is enabled, it requests for the next instruction to be
executed by providing the instruction’s address. At this point, the Instruction Interface
examines the requested instruction which resides in the local IMem as shown in Figure
4.1 and decides whether it is a START TXN marker or not. If yes, then it disables the

2The original MBLite instruction set simulator provided by another developer was modified, in order to
support the instruction memory interface, as well as to support floating point operations and multiplication.
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U Bank 0 U Bank 1 U Bank 2 U Bank 3

0 15 1 16 0 14 1 15

Table 4.5: PVID Table

SP by reseting the enable signal and then takes all the appropriate actions to start the
execution of a TS. If not, it returns the read instruction to the SP to be executed in
the next cycle.

When the SP starts executing, it requests for address 0 which is the correct address
to be returned. However, every time the SP resumes execution, upon completion of
a TS, it requests for the instruction address corresponding to the position of the en-
countered START TXN marker because the PC was pointing in this address before the
SP was disabled. In this case, instead of the marker, the scheduler returns a branch
operation to the correct address in the execution sequence, which corresponds to the
end of the transactional section.

Since the IMem can not be directly accessed by the SP, the executed instructions
are requested in advance, one cycle before they are needed, in order for the Instruction
Interface to be able to return the instruction. However, in case of a branch operation
the returned instruction will be incorrect. In this case the SP recognizes the mistake,
stalls execution and asks again for the new instruction.

4.1.3 SU Input

The SU Input block is responsible for receiving all the messages from the remote PEs
in the system, as well as the L2D banks, and perform the appropriate actions. Table
4.6 shows the different messages arriving to the SU, as well as their origin.

Whenever an L2D bank updates its Priority VID (PVID), signifying which trans-
action is allowed to commit on it, a message is sent to the SU. At this point, the SU
Input sets an Update bit in the PVID table (Table 4.5), informing the SU Output
that there is an updated PVID number in an L2D bank. The latter will inform the
transaction whose VID matches the PVID that it has priority over that specific bank.
Furthermore, in case an L1D miss has occurred, the SU Input receives the appropriate
cache line from the L2D and notifies the SP Data Interface to resume execution.

When the PE communicates with the SU, it’s either to request for an instruction
cache line in case of an L1I miss, request for a VID or inform it about its current state.
In case there is a VID request or a message that the PE is committing, the SU Input
sets the Request token in table 4.4 as VALIDATE or COMMIT respectively. In case
of an abort, the Request token is set to IDLE and the VID number to 0, signifying that
the active transaction does not have a valid VID anymore and will have to request for
a new one upon completion of the new execution cycle. The same steps as in abort
are followed also when a TXN COMMITTED message arrives, with the addition that
the counter keeping track of the active transactions is decreased by one. When all the
transactions have finished execution, the counter will return to 0, signifying the end of
a TS.
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Source Class Comm ID Scheduler Op

L2D
TM Communications Update Scheduler Update PVID Table
Memory Operations L2DRead NA

PE

Instruction Block Transfer Instruction Request NA

TM Communications Scheduler Com

VID request
Committing

Abort/Restart
Txn Committed

Table 4.6: SU Input Messages

4.1.4 SU Output

The SU Output is, as the name suggests, the output of the whole block, and the
connection to the interconnect network. Its purpose is to send all the necessary messages
to the PEs and the L2D banks. The possible messages are shown in Table 4.7.

Before a new TS starts executing in the remote PEs, the SU restarts all the L2D
banks. This means that every bank’s PVID number is reset to 0, as well as all the
LCID and SRVID fields of every cache line that were described in Chapter 3. This
is necessary for the correct execution of the conflict detection scheme. In addition to
that, in cases where a transaction has aborted its execution, the SU takes its place
in updating the PVID number in order for the following transactions to be able to
commit.

Additionally, the SU contacts the L2D in case of an L1D miss during the execution
of the sequential code, in order to retrieve the appropriate cache line. In case the miss
is either a capacity or a conflict one, the SU Output evicts a cache line by updating
it in the L2D in order to make space for the incoming cache line. At the end of the
sequential section, all the modified L1D cache lines are updated in the L2D in order to
be used from the transactions if they are needed.

When it comes to the PEs, the first thing that is sent to them is the instruction code
of the transaction that has been assigned to them by the TMS2. Before this is done,
the SU Output checks the assign status in Table 4.4 to see whether the transaction
has been already sent. If not, then all the instruction cache lines that contain the
transaction of interest are sent to the appropriate PE. This is not absolutely necessary
in TMFv2, but as long as the transaction size is small, there is still gain in sending the
transaction at the beginning, because it saves time from unnecessary instruction misses
in the L1I of the PE. All the instructions needed during execution of the transaction,
that are not included in the original instruction block, are sent upon request to the
remote PEs.

At this point, in order to guarantee correctness of execution of the TS, the SU
Output also sends out the content of all the registers in the SP. The reasoning behind
that, is that the transaction is embedded inside of the sequential code, without the
compiler being aware of that. In other words, the compiler will consider that the
transactional code is a continuation of the sequential one, and will use some of the
preloaded registers inside of the transaction. However, when the transaction starts
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Destination Class Comm ID Scheduler Op

L2D
TM Communications Update Bank PVID

Restart Count
No Sched

Memory Operations
L2D write

NA
L2D read

PE

TM Communications Scheduler Com
Restart Count
Assign VID

Update PVID mask

Instruction Block Transfer

Instruction Request Instruction Response
Regfile Transfer NA

TXN state transfer No Sched
TXN state transfer Start Transaction

Table 4.7: SU Output Messages

executing inside of a remote PE, the registers are all reset, which would eventually
result in wrong execution of the program. For this reason, the register values of the
SP are copied inside of the registers of the PEs, residing inside of the PEs, before a
transaction’s execution starts.

In case that the PE, where the transaction is assigned, is in the IDLE state, the SU
Output sends at this point directly a START TXN message to signal the beginning of
the new transaction’s execution. This message should also contain the start and end
addresses of the transactional block. However, in case that the PE is committing, the
scheduler waits for a TXN COMMITTED message to arrive before it sends a starting
message to the PE. This is necessary to avoid a case in which the new transaction
overwrites the SWB before it is updated in the L2D or that stale data arrive from the
L2D.

When a transaction reaches the validation stage and requests for a VID, the SU
Output provides the first available VID that hasn’t been assigned yet, starting from
1 and reaching up to 4095, which is the highest VID that can be depicted with 12
bits. If this threshold is exceeded, there are no more VIDs to be assigned. In this
case, the SU waits for all the transactions that are active and have already acquired
a VID to either commit or abort. Then, for all the banks to update their PVIDs and
restart since they have reached the limit of available VIDs. When this process is over,
the SU Output sends restarting messages to all the active transactions in the system,
forcing them to abort and restart. During the new execution cycle, the VIDs can
restart from 1 thus restarting the conflict detection process. This is actually an abort
not dictated by the contention management scheme and is caused by limited system
resources. Nevertheless, it is an abort that will rarely happen, if the available VIDs are
much more than the number of transactions in a TS.

When a bank updates its PVID and informs the SU of this change, the SU is
checking all the active transactions for one that has a VID equal to that PVID. When
it finds the PE in which this transaction is active, it sends a message containing which
bank was updated. This message indicates to the PE that it has priority over that
bank, causing it to set the corresponding bit of the PVID mask.
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Figure 4.2: L2 Data Cache

In case that the incoming PVID doesn’t have a matching VID in the PE table, this
indicates that the transaction that had acquired that VID aborted, and its VID field
was set either back to 0 or to another number in case the transaction requested for
a new VID. Since the PEs are responsible for updating the PVIDs of all banks, this
would cause for the PVIDs of all banks to be stuck in the aborted transaction’s VID
number, thus preventing any further commit operation to take place. In this case, the
SU Output takes up the task of updating the bank’s PVID, thus allowing the execution
of the TS to continue.

4.2 L2 Data Cache

TMFv2 actively involves the L2D in the conflict detection scheme, as opposed to the
original TMFab design where it was restricted to the L1D alone. Furthermore, consider-
ing the system’s 3D stack topology, a multi dice L2D banking scheme was implemented
in order to improve scalability and performance in general. For the main functionality
of the cache, the architecture described in [11] was followed.

With respect to the simulation results provided in [1], an 8-way set associative cache
was chosen, constituted from 8192 sets and 64 byte line size, resulting in a total size
of 4MB. However, since a 4-level banked topology is currently in use, the cache was
divided to 2048 sets(1MB) per bank.

The block diagram of the L2 Data Cache is illustrated in Figure 4.2. The following
sections describe the functionality of every block.

32



Figure 4.3: L2 Data Cache banks connection to the XRAM

4.2.1 Divide into banks

There are three main reasons for which a banked L2D approach was chosen over a
single memory topology:

1. Decrease memory access latency In case that the L2D resides only in one layer
of the stacked topology, all the PEs that are located closer to it will retrieve data
faster than the ones that are located in different levels of the stack. Distributing
the memory evenly on every layer results in similar access latencies, provided that
there is even data distribution between the different banks.

2. Allow for commit concurrency According to the conflict detection scheme, in
case two transactions have data sets located in completely different banks, they
are allowed to commit simultaneously, taking into consideration that there are no
conflicts with active transactions with higher priority.

3. Increase communication bandwidth By increasing the number of communi-
cation ports to the L2D (one in every level), it is possible for multiple transactions
to access data in parallel, as well as validate their read-sets in parallel, thus de-
creasing the overall execution time.

4.2.2 Message Handler

When the messages arrive in a bank’s Input block, they are inserted into a FIFO buffer
from where the Message Handler unit starts servicing them. The possible messages
arriving to the L2 can be seen in Table 4.8.

The SU communicates with the L2D for two reasons:

• To access data in case it is executing a sequential section. In this case, the
procedure is very simple inside the L2D, since it reads and writes data without
informing any other block of the unit.

• To inform the L2D to either restart the conflict detection scheme, in case that
a new TS is starting, or to update the PVID number, in case the transaction
responsible for this update has either aborted or committed and is not active
anymore.
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Source Class Comm ID Scheduler Op

SU
Memory Operations

L2D Read
NAL2D Write

Program Ended

TM Communications Update Bank PVID
No Sched

Restart Count

PE

Memory Operations
L2D Read

NA
L2D Write

TM Communications
Update Bank PVID No Sched

Validation
Read-set validation

Validation packet sent

Table 4.8: L2 Data Cache Input Messages

In order for the pessages arriving from the PEs to be explained, first the role of the
L2D in the conflict detection scheme needs to be described.

4.2.3 Conflict detection

As was already mentioned, TMFv2 actively includes the L2D in the conflict detection
scheme. In order for that to be possible, the tag unit was enhanced with two more
entries per cache line, the Last Commiter ID (LCID) number and the Speculative
Reader Validation ID (SRVID) number. Both of these entries have a size of 12 bit,
reflecting the size of the VID which is the same.

The LCID as the name implies contains the VID of the last transaction that modified
this specific cache line. When a transaction is committing a cache line to the L2D, along
with the address and the data, it also sends its VID embedded inside of the header flit.
This way, when the cache line is updated with the incoming data, the corresponding
LCID is also updated with the VID number of the committing transaction. When a
transaction reads from that specific cache line at a future point, it will also access the
LCID number. This number will be returned to the remote PE along with the data, and
will be registered inside of the L1D. When this PE validates the cache line at a later
stage, it will again transmit the formerly registered LCID along with the validating
address.

Upon receival of the address/LCID information, the L2D will compare the incoming
LCID to the most recently updated LCID residing in the L2D for that address. If the
two LCIDs have the same value, it means that no transaction modified the cache line
of interest from the time it was accessed since the time it was validated by that specific
transaction. In the opposite case that the LCID is changed, it means that there was a
transaction that committed in that specific cache line after the validating transaction
accessed it. This fact doesn’t necessarily mean that there is an actual conflict, because
there is a chance that the two transactions are accessing different words in the same
cache line.

At this point, it could be suggested a mask is used, marking the words that were
actually modified by the last commiter, in order to be able to see if there is a conflict
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at a word level granularity. However, there is no guarantee that there was only one
transaction that modified that cache line, and no realistic way to keep track of all the
transactions that modified it. For this reason, in order to decide whether there is an
actual conflict, a value-based conflict detection mechanism is used, similar to the one
used in KILO TM [7]. When there is an LCID mismatch signifying a possible conflict,
the L2D sends a message back to the validating transaction, containing all the words of
the cache line under examination. The PE where the transaction was executed receives
the message and compares the data with the ones residing inside of its L1D, in order
to decide whether there is an actual conflict, which would cause it to abort and restart
the transaction.

Apart from the possible conflicts, the idea of hazard tracking was also followed [7].
This is where the SRVID field becomes useful. As was already described in Chapter 3,
TMFv2 allows for multiple transactions to validate their read-sets in parallel indepen-
dent of their VID number. However, they are still obliged to maintain the sequential
order dictated by their VID. The SRVID field is needed in order to be able to keep track
of these validations, and be able to detect possible conflicts (hazards). This number
corresponds to the VID of the oldest speculative reader of a cache line.

When a transaction is validating a cache line, the L2D first checks the LCID number
as was explained. If the LCID numbers are matching, i.e the cache line was not updated,
the next step is to check the SRVID of that cache line.

If the SRVID is greater or equal to the PVID of the cache bank, it means that
the transaction that speculatively read this cache line is still active, either validating,
committing or has aborted without the L2D being aware of this fact. When this is
the case, the L2D compares the incoming VID (of the validating transaction) with
the SRVID. In case the first is smaller, it means that the incoming transaction has
higher priority over the one that has already validated this cache line and the SRVID is
updated with the incoming VID. When this happens, it is important for the transaction
that already validated this cache line, to be informed that there is a hazard and it needs
to revalidate the same cache line before it commits. This way, it is going to be certain
that in case this cache line is modified at a later stage, the transactions that include it
in their read-set will become aware of this fact when they re-validate.

On the other hand, if the incoming transaction has lower priority over the registered
one (meaning a higher PVID than the registered SRVID) then the L2D is responding
with a hazard message to this transaction instead. In case that the SRVID is smaller
than the bank’s PVID, there is no need for a hazard message, since the transaction
registered in the SRVID field has either committed or aborted and is not active anymore,
which implies that the SRVID can be simply replaced without further implications.

In order to be able to send hazard messages to the appropriate transactions, there
is need to keep track of the VID of the transactions that executed in every processor.
For this purpose, a VID table was used, with entry size equal to the number of PEs
in the system. Every entry contains the VID of the transaction that is active in the
corresponding PE as shown in table 4.9. Whenever there is a hazard detected, after
identifying the VID of the transaction that has to be notified, the VID is looked up in
the VID table. If the number is found there, then the L2D knows where to send the
hazard message, while if it’s not, it means that the transaction has already aborted and
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TXN VID
PE 0 100
PE 1 101
PE 2 104
PE 3 103

Table 4.9: VID Table

Valid Modified LRU tag LCID SRVID Tag Data

Table 4.10: L2 Data Cache line

has a new VID . This can be observed in the third entry of Table 4.9 where the VID
number is 104 instead of 102 as would be expected. In the event that a transactions
has aborted but hasn’t acquired a new VID, the hazards from the previous VID will
keep arriving, however they will not have any effect because the transaction is still in
the EXECUTE stage.

In case there is a cache line eviction due to a capacity or a conflict miss, the LCID
and SRVID information of the evicted cache line are going to be erased completely.
If the transaction registered in the SRVID is still active, it will be informed for a
hazard in this address. If there was a transaction that read this cache line and hasn’t
validated it yet, this will create a problem since during validation there will be no
LCID to compare the original LCID value with. When the address of the evicted cache
line will arrive for validation, the cache line will be retrieved from the external RAM
(XRAM) and its LCID and SRVID fields will be set to 0. This implies that there is
no information about which was the last transaction to update this cache line or which
speculatively read from it. In this case, the cache line data will be returned to the
validating transaction for their value to be compared, the same as if a potential conflict
had occurred. Furthermore, the incoming VID would become the new SRVID of the
cache line since this is the oldest transaction at this point that speculatively read from
this cache line. The LCID will remain 0 until the next commit operation that will be
performed on this cache line. The above process guarantees that in case of cache line
eviction, only the performance will be affected and not the correctness of execution.

4.2.4 Cache access

In order for the L2 to be accessed, there are two blocks, one for writing to the cache and
one that reads from it. The former is responsible for getting the data from the Input
block, in case of a commit operation, and register them in the L2D, together with the
VID of the commiter which is register in the LCID field. In case either the read block
or the write block encounter a cache miss, they inform the miss handle block, which, in
case of an eviction, updates the evicted cache line to the XRAM implementing thus a
write back memory update policy and notifies the cache line of the requested memory
address. After that, the XRAM returns the cache line containing this address back
to the L2. Since there are multiple cache banks accessing the same XRAM through a
single port, there is need for an arbiter who, according to a round-robin policy scheme,
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Destination Class Comm ID Scheduler Op

SU
Memory Operations L2D Read NA
TM Communications Update Scheduler No Sched

PE

Memory Operations L2D Read NA

TM Communications Validation Response
Hazard Detected
Conflict Detected
Validation Done

Table 4.11: L2 Data Cache Output Messages

gives XRAM access privileges to one bank at a time.

Least Recently Used (LRU) was chosen as the cache line replacement policy, in case
that a capacity or conflict miss occurs. In order for this policy to be implemented,
there is an additional number tagged on each cache line ranging from 0 to N-1, where
N is the cache’s associativity 3. For this number to be stored, the tag size has to be
log2(associativity) bits long, which means that in an 8-way associative cache there is
need for 3 bits per cache line to keep track of which way is used less often in a set.
In case this imposes a large storage overhead, or increases the hardware complexity,
thus reducing the achieved clock frequency, a cache with lower associativity could be
used or a pseudo LRU scheme scheme implemented, potentially without important
performance deterioration.

The read cache/conflict detection block is responsible for sending the output mes-
sages to the PEs through the NoC as well as the SU. The possible messages are presented
in Table 4.8, where the three main categories can be seen:

1. Response to a cache line request In this case, the requested cache line’s data
are returned to the either a PE or the SU. In case of the first,the LCID of the cache
line is sent alongside the data, in accordance to the conflict detection scheme.

2. Update message to the scheduler In case the PVID of a bank is updated
either from a committing transaction, or the scheduler itself, the updated bank
sends a message to the TMFv2 scheduler to confirm this update and inform the
PVID table located inside of the SU.

3. Respond to a validation request When a transaction is validating, there are
three possible responses from the accessed banks. The one is to notify a hazard
with the validated cache line, the other to notify a possible conflict and the last
one to signify the end of the validation process. In case of a possible conflict, the
data are returned as was already explained, in order for their value to be examined
and to be concluded whether there is an actual conflict.

3When a cache line is accessed, its LRU tag is set to N-1, and all the other tags that originally had a higher
value, are decreased by 1. The cache line whose tag is 0, is the one that is evicted in case there is a capacity
or a conflict cache miss

37



Figure 4.4: TM Processing Unit

4.3 TM Processing Element

At this point, the Transactional Memory Processing Element (TMPE) will be described.
This is the unit that is responsible for executing the transactional code provided by the
TMFv2 Scheduler. The TMPE comprises of four main parts: the Processor Element
(PE), the TMPE State Machine , the internal memory and the IO units. Figure 4.4
illustrates the internal structure of the TMPE. From now onwards the TMPE will be
just referred to as PE for simplicity reasons.

4.3.1 PE State Machine

In order for the functionality of the PE to be better described, one of the most important
parts of the design, the FSM, will be analyzed. Figure 4.5 illustrates the eight possible
states in which the PE can be found: Idle, Execute, Wait VID, Read-set Validation,
Wait Response, Wait PVID, Abort, Commit.

1. Idle State

When the state of the PE is Idle, this means that there is no active transaction
executing, and the block is ready to service any incoming transaction provided by
the SU. In order for the PE to leave this state, the SU has to send a state trans-
fer message which signals the beginning of execution and provides the necessary
initialization information. When this message is received, the state changes to
Execute.

2. Execution
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Figure 4.5: PE State Machine

During execution, the PE enables the PE to start executing the assigned transac-
tion’s instruction code. During execution, the PE keeps track of the instruction
addresses requested from the PE and when it encounters the end address it dis-
ables the PE and signals the end of execution. After that, the FSM sends a
validation request message to the SU in order to acquire a Validation ID (VID)
and then goes to the Wait VID state to wait for it.

One of the advantages of TMFv2 over the original TMFab design, is that during
the execution state there is no way for an abort to take place. The abort occurs
only as a result of the validation process, and can not be forced by the validation
of another transaction as was the case in the previous design, thus simplifying
the design’s complexity. On the other hand, because of this scheme, conflicting
transactions are delayed in aborting which increases the wasted execution time.
However, this also protects transactions from unnecessary aborts in case that older
conflicting transactions don’t manage to commit.

In case of cache overflow the execution needs to be split into two parts for se-
quential consistence to be guaranteed. There are two kinds of overflow that can
occur during execution, the L1D overflow and the SWB overflow. In the first
case, the L1D has to evict a cache line which has already been speculatively read
and contains transactional information, while in the second case the SWB is full
with speculative writes and there is no space for additional modified cache lines
to be stored. In both cases, the execution needs to be stalled and data to be
evicted to make space for new data. This will cause for transactional information
to be lost, and consequently for the evicted cache lines to be excluded from future
validation. For this reason, it needs to be certain that the overflowing transaction
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is going to definitely commit in the end.

In order for this to be done, first the transaction is stalled and then the validation
process described in the coming paragraphs is followed, until the transaction has
exclusive commit rights in the system, i.e. no other transaction can modify the
read-set of the transaction under consideration before it commits. The transaction
can then resume execution and evict any cache line it needs, without the danger
of any conflict being overseen. Upon completion of execution, the PE’s state will
go directly to Commit since there is no need for validation.

3. Wait VID

As was already mentioned, when a transaction’s execution phase is complete, the
PE has to validate its read-set in the L2D. In order for this to be done, the PE
requests and waits for a Validation ID (VID) to arrive from the SU, which will also
define the transaction’s priority in comparison to the other active transactions.
If the SU has available VIDs to provide to the PE, a message will be returned
containing the assigned VID and the PE will go over to the Read-set Validation
state.

In case there is a shortage of VIDs, because either there are too many transactions
inside of a TS, or because too many aborts have occurred4. In the current design
where the VID is 12bit long, the maximum number of VIDs that can be assigned
is 40955 which means that it is quite unlikely that the VID limit will be reached.
However, in case it does so, the SU can not assign any more VIDs and has to wait
for all the validating and committing transactions to finish before it restarts the
counter. This action will cause any transactions that have not yet acquired a VID
to abort and restart, while their L1D cache lines are flushed, and all the LCID
and SRVID fields of the L2D banks are reset. In this case, the next state will be
Abort as depicted in Figure 4.5.

4. Read-set Validation

In the most common case that the PE acquires a VID, it will start validating its
read-set with the L2D. When all the validation packets have been sent, the PE
goes to the Wait Response state.

5. Wait Response

In this state, the PE waits for all the responses from the different banks that
have been accessed. This happens twice during a transactional cycle, once after
the read-set is sent for validation, and once after the hazards are sent. When all
the responses have arrived, the Input Handler notifies the FSM about this event.
In case there is a conflict detected, the next state will be Abort. If there is no
conflict, in case of a read-set validation the next state will be Wait PVID, while
in case of a hazard validation it will be the Commit state.

6. Wait PVID
4after every abort a new VID has to be assigned for the transaction that aborted in order to validate anew
54096 -1 because 0 depicts the lack of a VID
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When the PE is in this state, it means that it has finished execution, has validated
successfully its read-set and has received responses from all the L2D banks in the
system. The only thing remaining to be done is to wait for the PVID mask to be
set. This means that the PE will get priority over all the banks that it has accessed
during execution. In other words, all the older transactions have either finished
committing in those banks, or they don’t have them in their read-set/write-set.
After the PVID mask is set, all the hazardous lines are sent for re-validation to
the L2D and the state changes once more to Wait Response.

7. Abort

In case that there is an actual conflict between the transaction running on a PE
and an older transaction that has already committed, the PE forces the trans-
action to abort and restart. Before this is done, it must first reset all the read
and modified bits in the L1D as well as invalidate all the hazardous lines that
have appeared so far in the validation process. This is not necessary to guarantee
correctness, because the LCID will be checked anyway in the second execution
cycle and any potential conflicts will be detected. However, the hazardous lines
are more likely to actually by modified by an older transaction, in which case the
aborting transaction will need the new data for the second execution cycle. If the
hazardous cache lines are no invalidated, stale copies will be use leading to further
aborts which could have been avoided.

8. Commit

The last stage of a complete execution cycle is the Commit state. At this point
the PE commits its write-set to the L2D, erases the whole L1D for the reasons
described in Chapter 3, and resets the system to its initial values (e.g. Read/Write
masks, PVID mask, SWB pointer). After these operations the system goes back
to the Idle state from where it is able to start executing a new transaction.

4.3.2 Internal Memory

The internal memory of the PE is divided into two parts in order to implement the lazy
version management policy. This means that the speculative writes of a transaction
are kept in a Speculative Write Buffer (SWB) instead of being directly updated in the
L1D. This way, in case of abort it is much easier to just erase the SWB and keep the
L1D intact, except for the hazardous cache lines that are invalidated.

4.3.2.1 L1 Data Cache

For the L1D, a 4-way set associative topology was chosen as proposed in [1]. However,
higher associativity could prove beneficial in reducing the overflow rate of the system.
This is something that wasn’t examined in the current thesis. Nevertheless, smaller
associativity results in lower hardware complexity and better performance.

In order to implement the validation protocol, the standard cache architecture pro-
posed by Hennessy and Patterson [11] was enhanced with some more fields shown in
table 4.12. The R and M bits are needed to mark a cache line as Read and Modified
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1bit 1bit 1bit 1bit 12bit 18bit 16words 16bits 9bits

V R M RH LCID Tag Data Read Mask Rel Addr

Table 4.12: L1 Data Cache line

respectively. When a cache line is marked as Read, it means that it has been spec-
ulatively read from the active transaction executing on the PE. Depending on which
word of the cache line has been read, an additional Read Mask bit is set. This mask
is comprised of 16 bits, one for each word of the cache line, and is needed during the
validation process.

As we described earlier, when there is a possible conflict detected in a cache line
of the L2D, the whole cache line is returned back to the validating transaction to be
examined by value. The validating PE receives this cache line and starts comparing all
the words, with the ones registered in its local copy of the same cache line. If there is a
mismatch between two words, then the L1D is updated with the fresh incoming data.
In case, the modified word has been speculatively read by the current transaction, i.e.
the mask bit for that word is set, it means that there is an actual conflict and the
transaction needs to abort and restart. Without this mask, conflicts wouldn’t be able
to be detected in a word level granularity, leading to unnecessary aborts.

When the PE needs to modify a word in a cache line, it first goes to the L1D and
checks if the modified bit has been set. This would mean that the cache line of interest
has been already speculatively modified and the latest data version is located inside of
the SWB. If not, then the whole cache line is copied in the first available entry of the
SWB, and its address is returned to the L1D to be registered in the Relocation Address
(Rel Addr) field of the original cache line. Afterwards, the data coming from the PE
are written on the appropriate word of the SWB cache line and the corresponding bit
of the Write Mask field is set. Any consecutive accesses to the modified cache line will
be diverted from the L1DCache to the SWB using the Relocation Address.

When a cache line has been either speculatively read or written, it contains transac-
tional information and can not be evicted from the memory. In case there is a shortage
in memory and an eviction is necessary to continue execution, then exclusive commit
rights are needed in all the L2D banks of the system for the execution to resume.

In order for the proposed validation scheme to be implemented, there is need for two
more fields per cache line, the Last Commiter ID(LCID) and the Read Hazard(RH)
fields. The first one contains the VID of the last transaction that had modified that
specific cache line before it was accessed by the executing transaction. The RH bit is
necessary to keep track of the hazardous cache lines.

Unlike the L2D, the L1D does not have a cache line replacement policy, because the
chance of eviction is very small, and all the cache lines are erased in any case after a
transaction’s execution. Flushing the cache should not affect the system’s performance
considerably, since in most cases different transactions will work on different data sets
on the same PE.
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4.3.2.2 Speculative Write Buffer (SWB)

The SWB is the place where all the speculative writes are stored. Similarly to [1], this
memory contains 512 cache lines, having thus half the size of the L1D. This decision
was made under the assumption that that the read-set and write-set of a transaction
are of approximately the same size. However this depends greatly on the nature of the
benchmarks, so it is possible that this ratio should be changed to serve a larger range
of applications.

As was already mentioned, when a cache line is modified for the first time, the
original data are copied from the L1D to the SWB in the first available entry. This
entry is defined by the SWB pointer which always shows at the next available entry of
the SWB. The advantages of using such a pointer are two:

1. It is easy to erase the SWB by just reseting this pointer to 0. This is necessary
because actually erasing all the cache lines would take many cycles.

2. This way, the cache lines are written in consecutive spaces in memory, thus making
it easier and faster to commit them to the L2D at the Commit stage.

It could be argued that for the above reason, the Valid (V) bit is not necessary, since
whatever is located between the first location of the SWB array and the SWB pointer
is considered valid. However, this is not the case when an overflow has occurred. If
a modified cache line needs to be evicted from the L1D, the PE needs to update the
modified data to the L2D after acquiring exclusive commit rights. In this case, the
location in the SWB needs to be invalidated in order for the line not to be committed
again at the Commit stage, since those data could be stale at that point.

The Tag and Index fields actually define the cache line’s address, while the Write
Mask reveals which words in a cache line have been modified. These are needed during
the Commit operation, where the address of the cache line to be updated is sent to the
L2D together with the Write Mask and the modified data.

At this point, it is important to explain a case in which the system could update the
L2D with wrong data. Since the write mask refers to the words inside of a cache line
and not the bytes, there is no way to define whether a single byte inside of the word was
modified or the whole word. In case two transactions are modifying two adjacent bytes
inside of the same word, they will both show this word in their write mask. However, if
this word is not also in the read-set, there will be no conflict detected between the two
transactions, because the Write-after-Write conflict is not affecting the execution of a
transaction and thus is not considered as a conflict. The result will be that the two
transactions will commit the same word with three stale bits and one updated, thus
providing the wrong word to the memory, no matter in what order they commit.In
other words, if the original word was 0xffff, T1 will write 0xfff1, T2 will write 0xff2f
and the result will be one of the two, instead of 0xff21 as it should be. The best way to
avoid this problem would be through the compiler, so that two different transactions
can’t access different bytes of the same word.
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1bit 18bit 8bit 16bit 16Words

V Tag Index Write Mask Data

Table 4.13: SWB Cache line

4.3.3 TMPE Output

The TMPE Output unit is accessed by the different units of the system whenever
they need to communicate with the SU or the L2D through the network interconnect.
There are eight possible reasons for this unit to be accessed, which are presented in the
following paragraphs.

1. Read Instruction Memory When the instruction interface encounters an in-
struction miss, it sends a message to the SU that contains the whole executable
code in order to retrieve the appropriate instruction cache line.

2. Read Data Memory When there is a data miss registered by the data interface,
there is a message sent to the L2D in order to retrieve the cache line containing
the requested address.

3. Write Data Memory In general, during execution there is no need to write an
individual cache line back to the L2D so this choice is not necessary in most cases.
However, it is needed in case of an L1D overflow where there is need for only the
evicted cache line to be updated in the shared L2D in case it has been previously
modified.

4. Validation Token Request When a transaction reaches the end of execution it
sends a VID request message to the SU in order to acquire a Validation ID

5. Update Bank PVID Every transaction that has a valid VID, will get priority
in all of the L2D banks at some point. If the transaction is still active at that
point, it needs to update the banks’ PVIDs after it is done accessing them, either
for hazard validation or commit operation. If a bank hasn’t been accessed during
execution it can directly be updated from the PE without any validation or commit
operation first taking place. This way, transactions with datasets residing in
different banks are not stalled and can directly commit in parallel, thus reducing
the validation/commit overhead.

6. Validate When a transaction reaches the end of execution and acquires a VID,
it has to start validating its read-set. This means that all the read cache line
addresses will be sent to the L2D, together with the LCID information which was
registered at the time that the cache line was first accessed.

In the original TMFab design, every transaction would send its write-set to every
other active transaction in the system, in order to be compared with the local
speculative read-set and write-set and detect any potential conflicts. Since the
write-set is located in consecutive entries in the SWB, it was easy for the validation
packets to be formed and sent out.
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Index
Read line 1
Read line 2

Table 4.14: Read Table

On the other hand, in TMFv2 the read-set is sent to the L2D for validation instead
of the write-set. Since the read cache lines are randomly distributed inside of the
L1D, in order for the read-set addresses to be retrieved and gathered into packets,
the whole L1D would need to be scanned. In order for this unnecessary overhead
to be avoided, a Read Table depicted in figure 4.14 was used. Whenever a cache
line is marked as read, its index is stored inside of this table and the read pointer is
incremented similarly to the SWB pointer. This way, when the read-set needs to
be validated, this buffer is scanned and one index is retrieved per cycle. This index
is afterwards used in order for the actual address that was read to be retrieved
from the L1D. However, since there is no information about which of the ways in
a cache line have been read, the R bits in all of them need to be scanned in order
to retrieve all the addresses that need to be validated.

The advantage of this methodology is that, one address can be sent for validation
in every cycle, with very small area overhead for the implementation of the Read
Table which needs to have entries equal to the number of sets in the L1DCache
(which is 256 in our case).

One additional problem encountered in the new design is that since the data
are located now in different banks, separate messages need to be sent to every
bank according to where the validating addresses belong to. However, since data
from different banks can be interleaved during execution, every few cache lines, the
destination bank will be changing thus forcing the system to start a new validation
message with the overhead of a new headerflit. Nevertheless, the smaller validation
packets lead to better resource distribution since more processors can validate the
L2D in parallel.

At the end of the validation, since there is no prior knowledge of which address
is the last one in the read-set, an additional empty message is needed to notify
the banks that the validation from this PE has finished. Upon receival of this
message from the banks, they will notify the PE with a return message that all
the addresses have been taken into consideration in the validation process.

When it comes to the hazard validation process, the steps are similar. The only
difference is that in this case, a Hazard Table is used to keep track of where the
hazardous cache lines are located inside of the L1D. The hazard table contains
two fields instead of one, keeping also the information of the way in which the
cache line is located. This increases the speed in which the cache line address
can be found and does not pose a significant area overhead because the hazard
table is considered generally small6. Nevertheless, the case in which the hazard

6Around 64 lines in the current system. However more simulations are needed to conclude what is an
appropriate size for the hazard table
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Index Way
Hazard 1
Hazard 2

Table 4.15: Hazard Table

Destination Class Comm ID Scheduler Op

SU
Instr Blk Transfer Instr Request No Sched

TM Communications Scheduler Com
Validation Tkn Req

Abort/Restart

L2 Data Cache
TM Communications

Update Bank PVID No Sched
Validation Read-set Validation

Memory Operations
L2D Read

No Sched
L2D Write

Table 4.16: PE Output Messages

table is not big enough to accommodate all the hazards needs to be taken into
consideration. For this reason, when a hazard occurs, instead of just registering
it in the Hazard Table, an additional Read Hazard(RH) bit is set in the cache
line. In case that the table is overflown, all of the L1D is scanned for possible
hazards for re-validation. In this case, it is possible that simple re-validation of
the read-set would result in reduced validation overhead.

7. Abort In case of an abort, the only thing sent by the Output unit, is a message
to the SU to notify it of this event and register it in the PE Table located there.

8. Commit The last thing that the PE Output unit is responsible of, is sending the
commit messages upon successful validation of the read-set. When the transaction
gets priority over the banks that it has speculatively accessed, and assuming that
there are no conflicts detected, it starts sending all the cache lines registered in the
SWB buffer to the L2D banks, together with its VID,in order to be registered in
the LCID field of the cache lines that will be modified. This operation is straight
forward since all the cache lines are saved in consecutive locations inside of the
SWB. The only that needs to be taken into account is whether the cache lines are
valid7.

4.3.4 Input Handler

The Input Handler is responsible for receiving the messages coming from the L2D and
service them accordingly. Before a transaction starts executing, the transactional block
needs to be received and saved inside of the L1 Instruction Cache located inside of the
PE. Even then, the transaction is not allowed to start executing before the start message
is received, containing information about the phase and sequence of the transaction,
as well as its start and end address. These informations are saved in special registers

7meaning that they weren’t updated earlier to memory due to an overflow as explained in subsection 4.3.2.2
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Source Class Comm ID Scheduler Op

SU

TM Communications Scheduler Com
Restart Count
Assign VID

Update PVID mask

Instruction Block Transfer

Instruction Request Instruction Response
Regfile Transfer NA

TXN state transfer No Sched
TXN state transfer Start Transaction

L2D Cache

Memory Operations L2D Read NA

TM Communications Validation Response
Hazard Detected
Conflict Detected
Validation Done

Table 4.17: PE Input Messages

which will be needed for the control of the transaction’s execution. However, as was
already mentioned in subsection 4.1.4, before execution starts, the register file of the
SP needs to be transfered and copied inside of the PE of the PE in order to guarantee
correctness of execution.

After the transaction’s execution, the PE sends a request for a VID, which results
in a return message with the assigned VID, or a restart signal in case there are no
more VIDs to be assigned. When the VID returns, the Input Handler notifies the state
machine to resume execution and start validating the read-set.

During validation, there are three possible messages returning from the L2D, one
to signal a hazard, one to signal a possible conflict and one to mark the end of the
validation process. In case of a possible conflict, the incoming cache line is compared
with the local cache line to decide whether the conflict is actual, while the hazards are
just registered inside of the Hazard Table for re-validation at a later stage. When the
done messages from all the banks have arrived, the Input Handler gives a signal to the
state machine to go to the Wait PVID state and wait until the PVID mask is set.

The PVID mask is considered to be set when the transaction gets priority over all
the banks it has accessed. In order to be able to understand that, during execution the
PE keeps track of the banks that are speculatively read by setting the bits of a Read
Mask(RM) and the banks that are speculatively modified, using a Write Mask(WM) 8.
When the logic OR of these two masks coincide with the PVID mask, the transaction
has priority over the banks that it has speculatively accessed and is able to re-validate
the hazardous lines and then commit if there is no conflict detected.

In order for the PVID mask to be set, the SU sends a message to update it according
to the changes in the its PVID table, as explained in subsection 4.1.4.

The rest of the messages concern incoming data or instruction cache lines coming
from the L2D or the SU respectfully.

8every bit of this masks corresponds to a bank in the L2D
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4.3.5 Processing Element (PE)

The processing element is responsible for the execution of the transactional code. In the
current design a MicroBlaze processor architecture was used, similar to the one used
as a Supervising Processor in the SU. The only difference in this case is that whenever
the processor is restarted, either because of an abort operation or because of a new
transaction starting, at the moment address 0 is requested, a branch instruction to the
start address of the active transaction is provided instead.

Furthermore, one of the basic differences between the original TMFab design and
TMFv2, is that the latter has a 2-way set associative L1I implemented inside of the
PE, instead of a simple Instruction memory. This decision helps in three ways:

1. The presence of an instruction cache lifts any previous limitations on the size of
the transaction’s instruction code, since cache lines can be evicted and replaced
in case of an instruction miss.

2. Furthermore, the instruction memory space is common for all the PEs in the
system9.

3. It is possible to fetch instructions from the IMem of the SU upon request and not
preload them before the transaction starts, as was the case before. This means,
that if two transactions that use the same functions run on the same PE, the
instructions will be already there the second time, thus reducing the overhead
caused by fetching the instruction code of the function.

4.4 Network on Chip

An important aspect of every multi-core system is the interconnect between the dif-
ferent functional units. Finding a suitable interconnect is a cumbersome task in every
design, because all the possible options need to be weighted to find a network that
best fits the system’s needs with respect to throughput, scalability, complexity among
other characteristics. In this design, the NoC architecture described in [12][1] was used
without any modifications on it, since it was out of the current thesis’ scope. Further-
more, the proposed NoC still fits the needs of the TMFv2 design. In this section the
architecture of the NoC will be described, without emphasizing on the reasoning behind
the choices that were made. For more detailed explanation, the reader is referred to
the TMFab original design [1].

4.4.1 3D Mesh Topology

One of the most important attributes of a multi-core system is its scalability. Over the
last years, the integration technologies have allowed for the number of transistors that
fit in a single die to increase, as Moore’s law predicted. Furthermore, the upcoming 3D
stacking technologies allow the system to be expanded also in the vertical direction by

9There is no need for the memories used in the program to be translated into physical addresses used in
the IMem
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placing the functional units the one on top of the other in different dice inside of the
same chip. These two facts contribute in having the ability to have hundreds of PEs
on the same chip.

Since TMFv2 considers a 3D stacked topology, there is need for an interconnect
suitable for this environment. A 3D mesh topology was preferred over a bus or a
crossbar based interconnect for the following reasons:

1. A bus based interconnect has limited scalability, because when the number of
processors increases, the arbitration time needed to decide which unit will take
hold of the bus also increases. Furthermore, the use of a bus doesn’t permit
parallel network accesses from different blocks in the system, thus decreasing task
parallelization, in case that the different units use different resources.

2. A crossbar based interconnect where all the units are connected with each other
through a central switch, although it offers increased scalability, it is more difficult
to be implemented efficiently for a 3D interconnect. Furthermore, the complexity
of the network increases with the addition of extra components in the system.

3. The 3D Mesh topology is highly structured, which simplifies place and route, as
well as timing closure and is easy to expand with simply reusing more of the
network routers, without needed to modify any of the structure blocks.

4.4.2 Message Passing

The communication between the different functional units of the systems is done
through the transmission of packets. Every packet consists of a header flit, a maxi-
mum of 16 body flits and a tail flit as shown in figure 4.6. Those packets are routed
through the NoC using wormhole routing. This means that the flits are routed through
the network whenever the resources are available, without waiting for the whole packet
to be stored inside of a node before it is forwarded. The destination of the packet is
located inside of the header flit which sets the path to be followed by the rest of the
flits.

The maximum size of a packet is 18 flits long and is used in case of a cache line
transfer: 1 header flit, 1 flit for the address and 16 flits that contain the words of a
cache line10.

The minimum packet size in 1 flit long. In case a single flit message is sent, both
the MSB and the LSB of the flit have to be set to signify that this is both a header
and a tail flit. In all other cases, the header flit has the MSB set and the tailflit has
the LSB set as shown in figure 4.6.

The packets are routed through the network according the the value in the destina-
tion field of the header flit. The other fields are used to define the source of the packet
and its nature. The Communication ID and the Scheduler Operation used for every
different message are included in the Input/Output tables included in the previous
sections.

10the cache line size both for the instruction and the data cache is 16 words
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Figure 4.6: Packet Structure

Figure 4.7: NoC router

The field originally used to transfer the sequence-phase of a transaction, now is used
to transfer the VID of a validating/committing transaction, as well as the LCID of a
cache line when the L2D returns it to a PE either because there was an L1D cache
miss, or because there is need to resolve a potential conflict inside of the PE itself. In
the future, it is possible that there will be need to transfer the phase - sequence of a
transaction as well.

4.4.3 Router

Every node of the 3D Mesh is a 7-bidirectional port router. One port of every router
is dedicated for the communication with the local functional unit (SU, L2D Bank or
PE in the current system), while the others are needed for the communication with the
adjacent nodes in the network. There are 6 directions apart from the local one, North,
South, East, West, Up and Down, each of which have an input port and an output
port. Furthermore, every router has a hardwired network address which is dependent
on its position in the 3D Mesh.

When a flit comes through an input port, it is first saved inside of the corresponding
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input buffer as shown in figure 4.7, before it is processed. If this flit is a header flit, the
routing logic unit extracts the destination field from it and compares it to the routers
hardwired network address. According to the difference between the two, the router
decides what is the appropriate output port for this packet. The packets are routed
always with priority to the z axis, then the y and then the x, which implies that there is
only one path connecting two different units in the system. It is important to mention
that a packet can’t go out from the same direction they came in, thus preventing the
occurrence of deadlock.

When the output port for a specific packet is decided, the packet waits until it
gets priority over that port. This is decided from a dedicated arbiter located at every
output which is responsible of providing fair access to the output port from all the
input buffers except from the one that is located in the same direction. This is done
following a Round Robin arbitration scheme.

In case that the input buffers get full, a backwards flow control signal is set in order
to notify the previous nodes to stall the packet’s forwarding, in order to avoid a case
that flits get lost and packets corrupted and in need to be re-transmitted.

4.5 Summary

The current chapter gives a detailed description of the architecture of TMFv2, and
explains all the choices that were made during the system’s development. In Chap-
ter 5, the results from the simulated benchmarks are presented, and the performance
improvements of the modified design over the original are highlighted.

51



52



Results 5
This chapter, evaluates the performance of TMFv2 in comparison to the original TMFab
design. First, a brief description of the simulation environment will be given, while
afterwards the benchmarks that were chosen for the characterization of those systems
are going to be explained. Further, the experimental results will be analyzed and the
advantages and shortcomings of each design will be identified.

5.1 SystemC Simulators

In order for the performance, of both the original TMFab and the modified TMFv2
design, to be evaluated, two simulators were built using the SystemC programing lan-
guage. This language is actually a superset of C++ enriched with classes and methods
to simulate the actual hardware’s behavior. One of the most important advantages
of using such a language in comparison to VHDL is that it can be used in order to
simulate hardware together with software. Furthermore, it offers flexibility as far as
memory handling is concerned, communication between different modules and general
architectural exploration.

At the beginning, the original TMFab design was implemented, and scaled up to 16
PEs instead of 4 that were used in [1]. Using the same benchmarks, it was observed
that the speedup was flatlining at approximately 4x even after using more than 4 PEs.
The reasons for that were the following three:

1. The validation overhead increased dramatically when the number of processors
increased, because every active transaction had to validate with every other active
transactions in the system, causing a dramatic increase in the number of validation
packets.

2. Every transaction had to acquire exclusive validation and commit rights in the
system, meaning than no other transaction could validate and commit its write
set at the same time, causing for long stalling periods in every PE.

3. When the system was tested with multiple transactions being able to validate
simultaneously, the NoC was congested from the increased network traffic resulting
again in a performance flatlining.

In order for the above problems to be resolved, a new validation scheme was envis-
aged, which allowed for reduced validation overhead, improved scalability and better
exploitation of the 3D architecture, leading to the creation of the TMFv2 design.

In both designs, the system was scaled up to 16 processors, in order for the simu-
lation time to remain reasonable. However, this increase is indicative of the system’s
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performance and scalability and outlines a lot of the advantages and possible problems
in both designs.

5.2 Choosing a benchmark

In order to compare the performance of the two designs with each other, as well as with
other transactional memory systems, several transactional memory benchmarks were
investigated. However, since both systems deviate from the conventional transactional
memory practices, it was difficult to find an appropriate benchmark to suit the systems’
needs.

One of the most common benchmarks used to characterize transactional memory
systems’ performance is the STAMP benchmark suite [13]. This package contains
applications with different transactional length sizes, Read/Write set sizes, time spend
executing transactions and contention magnitude. These applications are meant to
cover a big range of realistic applications with different needs.

The problem with using these applications was that the transactions are integrated
inside of the threaded code, in the places that normally conventional locks would be
used. However, neither TMFab nor TMFv2 have support for threads, because the
concept is that the transactions are spawn from the scheduler, and sent to the remote
PEs to be executed individually, without being part of a thread in which they need to
return control to.

In order for these benchmarks to be tailored for these systems, the threads had to be
converted into transactions. This action lead to the transactional part becoming too big,
which resulted in a lot of time being wasted in case of an abort operation for any benefit
to be observed. This fact lead to the examination of benchmarks which use coarse
grained transactions. In this case, a large part of the thread’s execution was spent inside
of the transaction, meaning that converting a thread into a transaction wouldn’t affect
the performance significantly. The STAMP benchmark suite includes some applications
with this characteristics, however converting them wasn’t that straight forward and
presented many problems.

For this reason, another set of benchmarks, the RMS-TM Benchmark Suite [14],
was also investigated. In this benchmark suite, there were two potential candidates
that fitted the requirements. However, there were again problems in converting them
for the two architectures under examination.

Even though converting these applications for the use in TMFv2 is an ongoing
project which will show the benefits of this system in comparison to other transactional
memory implementations, the used approach and as well as the simulator are still not
mature enough to achieve this goal at the moment.

However, since the goal of this thesis was to improve the original TMFab design,
another set of benchmarks was created, based on common algorithms found on the
internet, in order for them to correspond to realistic applications.
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5.3 Hash Table Benchmark

As was already mentioned, in order to explore the performance characteristics of the two
systems, there is need for coarse grained benchmarks, i.e. benchmarks that have large
critical sections. This requirement is satisfied by applications that perform operations
on hash tables.

A hash table is a data structure, which is used to save information in a way that
it can be easily located afterwards. Data are organized in the hash table according
to their value, following a hash function which assigns them to the correct slot in an
array. These data can be easily retrieved at a later point, by following the same hash
function1. However, there is a big chance, that two values belong to the same slot in
the array according to the hash function. When this happens, there are ways to resolve
the issue such as using a list, or by just placing the data in the next available slot in
the array.

However, using a hash table in a multi-core system is quite inefficient with current
locking techniques, because a big part of the execution needs to be locked in order to
prevent two threads from accessing the same position of the hash table simultaneously.
If this happens for a read only operation there is no danger for the data consistence,
however when the entries are modified the use of locks is necessary.

By using transactional memory, there is no longer need for locks to be used in order
to protect the critical section, since the conflict detection takes place in the hardware
level. This way, more transactions are able to operate on the table simultaneously, and
since the chances that two keys are going to be hashed on the same table slot are small,
the abort rate will also be relatively small.

The hash table benchmark that was used, is a transactionalized version of [15]. In
the program there are 32 concurrent transactions, each of which is responsible for taking
a keyword from a 32 entry table and installing it inside of the hash table. From the
32 keywords, there are 4 conflicting pairs and one conflicting triplet, which means that
they need to be associated with the same entry in the hash table. When the keywords
collide, then they are connected in a single linked list starting from the hash table entry.

The reason for which there were 32 transactions used, although there are only 16
PEs in the system, is to be able to show the system’s performance when there are more
transactions to be assigned than the number of PEs. Because of the nature of the
system, the execution time of the second group of transactions, that is assigned on the
same PEs, is hidden inside of the validation and commit time of the transactions that
are still active from the first group. For this reason, if only 16 transactions would be
used, the observed performance would be almost the same for both 8 and 16 PEs in
the system.

The benchmark was executed for topologies using 1,2,4,8,12 and 16 PEs.

1e.g when we want to retrieve information about someone inside of a database and we search him by his
name, the hash function will use his name and find his position in the hash table database where his name is
located
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5.3.1 Results

As can be observed in Figure 5.1, the modified design shows better performance when
the number of PEs is above 4, while the original design shows slightly better results
for a 4 PE system. The reason for that is that for a small number of processors,
the validation overhead of TMFab is also small since there are not so many active
transactions to validate with. On the other hand, in TMFv2, the transactions need to
validate with all the banks that they read from, which imposes already a considerable
overhead. However, when the number of processors increases, this overhead remains
within the same order of magnitude, unlike the overhead of the inter-transactional
validation that was used in the original TMFab system.
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Figure 5.1: Overall speedup of TMFv2 over TMFab
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Figure 5.2: Scalability of both designs
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Figure 5.3: Validation speedup

This effect is also shown in Figure 5.2 where the scalability of the two designs can
be observed, by calculating the speedup in comparison to the single PE performance for
each design. The graph shows that TMFv2 is more scalable, however when the number
of processors is increased above 12, the performance starts deteriorating. This is caused
by an increase in validation overhead, and thus a reduction in validation speedup in
comparison to the original TMFab design, which can be seen in Figure 5.3. The reason
for that is, that by increasing the number of transactions that are able to execute in
parallel, also the number of hazards increases, since more transactions are trying to
validate the same cache lines at the same time. This causes for the transactions that
are not able to register their VIDs in the SRVID field to receive hazard messages as
shown in Figure 5.4. The effect this phenomenon has on the increase of the total
validation packets sent to the L2D banks is presented in Figure 5.5. Furthermore, the
additional level of PEs that is needed for a 16 PE topology causes the transactions to
be more spread inside of the network interconnect, and thus the memory access latency
to increase.

Even though the validation overhead of TMFv2 increases considerably when the
design is scaled up, still it is smaller than that of the original TMFab design as can
be seen in Figures 5.6 and 5.7. The reason is that in TMFab there is no validation
concurrency, which implies that the average validation time also includes the time for
which a transaction is stalled until it acquires the validation token. On the other
hand, in TMFv2 shows a dramatic increase in the hazards, resulting in a consequent
increase in address re-validation and of the validation overhead in total. Even though
this has also to do with the current benchmark and the way that possible conflicts
are distributed in the program, it already highlights on of the main disadvantages of
TMFv2, which is that the number of potential conflicts and hazards greatly affects the
system’s performance.

As far as the execution time is concerned, the benefit of using a banked L2D is clear
comparing the two designs, since the execution time drops considerably, because of the

57



0 2 4 6 8 10 12 14 16 18
0

20

40

60

80

100

120

Number of possible conflicts
Number of ev icted SRVIDs
Number of hazards

Number of PEs
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Figure 5.5: Number of validation packets received by all the banks for different number of
PEs

decrease in the read latency as is shown in Figure 5.8

Finally, it was observed that there was a difference in the occurrence of real con-
flicts between the two designs. As can be seen in Figure 5.9 both designs wasted time
because of aborts, however this happened in different topologies for each one. In the
original design, fewer conflicts were observed in the presence of fewer PEs, because the
conflicting transactions were not executing in parallel due to the limited PE resources.
In TMFv2 the number of aborts, and consequently of wasted time was smaller when
16 PEs were active. This phenomenon is related to the dynamic ordering of transac-
tions, which changes depending on the topology and on the way the transactions are
distributed in the system. For the above reason, no direct conclusion can be derived
about the abort rate of the two systems only by the results of the current benchmark.
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Figure 5.6: Distribution of execution time in transactional stages for TMFab
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Figure 5.7: Distribution of execution time in transactional stages for TMFv2

5.4 Load-Store Benchmark

In the previous benchmark, the purpose was to characterize the systems’ performance
for realistic applications. In this section, a less realistic, worst case scenario application
will be used to derive more conclusions about the performance of the two designs. The
used benchmark is a variant of the load-store benchmark2 used in [1] for a medium
data size.

The benchmark comprises of 16 transactions with ranging number of dependencies
between them as shown in Figure 5.10. The operations they have to perform are simple
load-modify-store operations on the elements of an array. The dependencies, when

2coded in C instead of assembly
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Figure 5.8: Speedup of the memory access
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Figure 5.9: Execution time wasted

they exist, are located in the beginning and end of every individual array chunk, which
reflects directly to their placement at the beginning and the end of every transactional
block.

In the original TMFab, this placement of dependencies corresponded to worst case
scenario execution because it forced all the transactions to abort and serialize their
execution, causing a speedup of less than 1x in comparison to single core execution.
However, this is not the case in TMFv2 as is going to be explained in the following
paragraphs.
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Figure 5.10: Varying number of conflicts distribution

5.4.1 Results

In Figures 5.11 and 5.12 the respective performance speedup of TMFab and TMFv2
can be seen, for different number of PEs and dependencies. The speedup was measured
for 2,4,8 and 16 PE topologies in comparison to single PE execution. It must be taken
into consideration that the range of the two plots is different in order for the results
to be more legible, and that the TMFv2 design shows overall better performance than
the original TMFab.
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Figure 5.11: Speedup over single PE execution for original design

From the aforementioned plots, it can be observed that TMFv2 is more scalable
than TMFab in all cases. As far as the independent execution is concerned, the reason
for the speedup is the reduction of the validation overhead. As explained also in the

61



2 4 8 16
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

Independent
1 dependency
2 dependencies
4 dependencies
8 dependencies
15 dependencies

Number of PEs

S
p
e
e
d

u
p

 o
ve

r 
si

n
g
le

 P
E

 e
xe

cu
tio

n
 fo

r 
1

6
 T

X
N

s

Figure 5.12: Speedup over single PE execution for modified design
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Figure 5.13: Speedup of Modified design over Original

hash table benchmark, the transactions need to validate only with the L2D instead of
each other, which leads to reduction in network traffic because of the decrease in the
number of validation packets that are injected in the network. In addition to that, the
concurrent validation and commit scheme proves as expected more efficient than the
alternative of exclusive validation/commit operations.

It is important to mention at this point, that since the original TMFab design vali-
dated the write-set, while TMFv2 validates the read-set, the difference in performance
between the two systems greatly depends on the nature of the benchmarks that are
used. In the current benchmark, the read-set and the write-set have exactly the same
size so the improvements observed are independent of their sizes.

As far as the performance in the presence of dependencies is concerned, TMFv2
proves again more efficient. The main reason for that is that, as explained in the
previous chapters, the original TMFab system assumed a predefined at compile time
priority of transactions, while TMFv2 orders the transactions dynamically. In the first
case, because of the chained dependency between the transactions, and the predefined
priority between them, the transactions are going to be serialized because the older
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transactions will force the younger ones continuously to abort. On the other hand, in
TMFv2 the transactions acquire a VID dynamically at the end of execution and be
prioritized in a first-come first-served basis. Following this scheme, when a transaction
aborts, it will execute again and be re-scheduled at the end of all the transactions
that are already validating, thus not affecting their validation process any longer. For
example, in the first case of Figure 5.10, in TMFab the execution sequence would
be T1, T2, T3, T4, while in TMFv2 the most probable execution pattern would be
T1,T3,T2(previously aborted),T4(previously aborted).

Furthermore, the static priority scheme can potentially result in incorrect execution
in TMFab, if for example a transaction with lower priority validates with a transaction
of higher priority before the latter finishes execution. Even if there is no conflict
detected, this doesn’t guarantee that the conflict wouldn’t have risen at the end of
execution of the older transaction. The younger transaction will eventually commit
and retire and not abort as it should.

A direct comparison between the two designs can be seen in Figure 5.13 where
the speedup of TMFv2 over TMFab is presented, for different number of dependencies
and PEs. As was also observed in the previous plots, the original design has better
performance when fewer processors are used, while the modified shows its potential
when the system uses more PEs.
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Figure 5.14: Speedup of both designs over single PE execution for 32 independent transactions

The performance of the two systems was also tested with 32 transactions inside
of a single transactional section. As can be observed in Figure 5.14, in the absence
of dependencies, the modified design shows better results even when the number of
transactions increases. On the other hand, when the number of dependencies increases,
the original TMFab shows better performance. The reason for that is, that the increased
number of dependencies between transactions, causes for more hazard and potential
conflict messages being sent through the network for their resolution.
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Figure 5.15: Total Execution Time in clock cycles for 32 transactions with 31 dependencies

5.5 Matrix multiplication Benchmark

The systems’ performance was tested also with a transactionalized version of a
pthreaded matrix multiplication program found on the internet. The characteristic
of such a program is that the data workload of every transaction is partitioned very
neatly between them and there is are no conflicts between transactions. Again the
computation was divided between 32 transactions, which executed on the system’s PE
resources whenever they became available. The main difference of this benchmark in
comparison to the Load-Store one is that in this case the computation time is much
greater than the time needed for the validation/commit operations. The results that
are going to be presented, show that both the system’s performed well in terms of
scalability, with the original TMFab design showing slightly lower performance, mainly
because the lower memory access throughput.

5.5.1 Results

In Figure 5.16 it can be observed that TMFv2 shows a performance improvement of
12% in comparison to the original TMFab design. The main reason for this improve-
ment in this case, is the memory access speedup appearing in Figure 5.17. Since
the throughput increased 4x because of the banked memory topology, PEs are able to
retrieve data faster, affecting this load intensive benchmark’s execution considerably.

The validation speedup shown in Figure 5.18 is still important and is indicative of
the system’s scalability. s it can be observed, the speedup increases with the number
of PEs in the system, confirming the original statement made in Chapter 3 that the
validation overhead in TMFab increases according to the number of PEs, while in
TMFv2 the validation time is independent of this parameter.

The overall speedup of both designs in comparison to single core execution, is de-
picted in Figure 5.19 and is compared to the ideal speedup of a perfectly scalable
system. It is observed that the scalability of TMFv2 is better than that of TMFab.
However, as was explained, this is mainly a result of the increased memory access
throughput offered by the banked memory topology. In other words, if a banked mem-
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Figure 5.16: Execution speedup of TMFv2 over TMFab
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Figure 5.17: Memory access speedup of banked over non banked approach

ory system would be implemented in the original TMFab design, there would be an
improvement in scalability as well.

In this benchmark, the performance improvement of TMFv2 is not as clear as in
the previous designs, because the validation time in both cases is much smaller than
the execution time. However, if this wouldn’t be the case, or if there were few conflicts
between the transactions, TMFv2 would probably show better performance than the
original TMFab design.

5.6 Banked L2 Data Cache performance

One important difference between TMFab and TMFv2 is that the latter makes use of
a stacked 3D banked L2D topology. There are two reasons for which a banked cache
was used:

1. In order to decrease cache access latency by using the NoC more efficiently and

65



0 2 4 6 8 10 12 14 16 18
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

Number of PEs

V
a
lid

a
tio

n
 S

p
e

e
d
u
p

 o
f T

M
F

v2

Figure 5.18: Validation speedup of TMFv2 over TMFab
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Figure 5.19: Scalability of TMFv2 and TMFab

being able to access multiple data in parallel.

2. In order to support validation and commit concurrency, by sending validation and
commit packets to multiple transactions to different banks at the same time.

In this scope, a very important characteristic of the system that needs to be ex-
plored, is what is the effect of data distribution in the different banks, on the system’s
performance. The hash table benchmark was used once more for this purpose. The
parameter that was changed in this case was the size of a memory block containing
consecutive addresses, called Contiguous Section(CS). The way these sections are dis-
tributed in the different banks is illustrated in Figure 5.20.

The following subsection discribes the effect of the different CS size on the data
distribution, and consequently on the performance of the system.
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Figure 5.20: Contiguous Section distribution in the different banks
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Figure 5.21: Total Execution Time in clock cycles

5.6.1 Results

In Figure 5.21 it can be observed that the total execution time increases proportionaly
to the increase in the size of a CS. The reason is that when the size of a CS increases,
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Figure 5.22: Standard deviation of memory accesses per bank
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Figure 5.23: Read latency
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Figure 5.24: Average Execution Time in clock cycles

the data are concentrating in some of the banks, resulting in all of the transactions
retrieving data from the same banks. This lead in a decrease in the memory access
throughput, and thus in performance deterioration. The change in data distribution
can be seen in Figure 5.22 which shows the standard daviation of the memory accesses
per bank. For larger CS sizes, the deviation increases indicating that the data are
distributed unevenly between the different banks.

This observation is asserted also by Figure 5.23, where it is shown that the read
latency increase for larger CS, leading in an increase in the average execution time
shown in Figure 5.24. Furthermore, the average validation time in Figure 5.25 and
commit time in Figure 5.26 increase as a result of the decreased validation/commit
throughput, since most of the validation/commit packets target few of the memory
banks.

From the above results it is concluded that when the dataset distribution between
the different banks is even, the system shows better performance. The reason for that
is that the memory accesses are serviced in parallel by more resources, the validation
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Figure 5.25: Average Validation Time in clock cycles
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Figure 5.26: Average Commit Time in clock cycles

packets are divided more evenly into the different banks, which results in better use of
both the NoC and the banks. Furthermore, when the dataset is well spread between
the different banks the validation and commit concurrency improves.

In order to avoid performance deterioration because of uneven data distribution in
the different banks, the size of the contiguous blocks should be set according to the needs
of the most common applications. If the blocks are very small, then all the transactions
need to validate with all the banks and the data are going to be interleaved between
the banks for a single transaction. This will cause for transactions to need priority in
all the banks in order to be able to commit, thus reducing the commit concurrency. On
the other hand, if the blocks are very big, this could result in the dataset residing in the
same bank thus excluding any real validation and commit parallelism. The validation
packets are still going to be interleaved between the different validating transactions,
but there will be only one reaching the L2D at any given point.

In other words, if the dataset that corresponds to every transaction is carefully
divided by the compiler between different banks, this could result in higher validation
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and commit concurrency which would lead to a more scalable system.

5.7 Limitations

After the results were analyzed, it was concluded that TMFv2 has three main limita-
tions:

1. The scalability of the system is limited by the available memory throughput The
number of memory accesses or validation packets that can be handled in parallel
is related to the number of ports to the L2D. In the current architecture, since
there were 4 banks in the system, the maximum throughput was 4x32 = 128
bits/cycle. The throughput increases with every additional die that is added in
the system because one additional memory bank is in use. However, if the system
is expanded in the lateral dimension, the only ways to increase the throughput is
either to add memory banks at other points in the network, or replace the current
banks with multiport banks which can service several requests simultaneously.

2. The validation overhead is affected by the number of conflicts When the number
of potential conflicts increases, the data needed to by transfered through the
interconnect network to resolve those conflicts, increase accordingly. Furthermore,
when the number of hazards increases, the number of re-validations increases
too. Both of those facts increase the network traffic and increase the validation
overhead. This phenomenon is aggravated if the transactions are closely related,
meaning that they have common read-sets even if they are not conflicting.

3. Uneven data distribution can deteriorate performance When the data are accu-
mulated in few of the memory banks, the actual memory throughput decreases
considerably. Consequently the memory access latency increases, and the valida-
tion/commit concurrency reduces, thus increasing the validation overhead.
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Conclusion 6
This chapter summarizes the work done in the course of this MSc thesis project focusing
on the achieved goals, as well as the conclusions derived from the experimental results.
Furthermore, insight is given about future work needed to be done in order for the
current system to be improved with respect to performance and functionality.

6.1 Summary

The primary goals of this thesis project was to improve the scalability of the TMFab
transactional memory system, as well as guarantee sequential consistency even in cor-
ner cases where the original design couldn’t. In order to do that, a SystemC simulator
was built to test the performance of the original TMFab design. Based on the simula-
tions it was concluded that when the system scaled up to more than 4 processors, the
validation overhead increased considerably, due to the increased amount of time needed
for every transaction to acquire validation privileges. When tha validation process was
parallelized for the original validation scheme, the interconnect network was congested
by all the messages sent from all the PEs in the system to all the other PEs. In order
for the above issues to be tackled, the validation and commit process were altered using
similar techniques as the ones proposed in [6] and [7].

TMFv2, the modified version of TMFab, parallelizes the validation and commit
operations of transactions that have finished their execution. In order for this to be
possible, the shared memory was divided into banks, each of which was placed on a
different level inside of the NoC. This decision reduced the memory access overhead
during execution, by allowing for multiple memory accesses to be serviced in parallel.
These modifications resulted in a maximum speedup of 2.7x in comparison to the
baseline design.

TMFv2 keeps the lazy version management and optimistic conflict detection policies
used in the original TMFab design, however every transaction validates now only with
the shared memory instead of each other. This choice reduces the network traffic since
the transactions need to send validating packets to only one recipient, instead of all the
active transactions. Additionally, the transactions are not able to abort before they
finish execution which simplifies the design and protects from race conditions in which
restarting transactions access stale data in the shared memory before they are updated
by the commiting transaction.

Furthermore, TMFv2 uses dynamic ordering of transactions instead of compile-time
ordering that was previously used, in order to guarantee sequential consistency and
thus correctness of execution. The transactions request for a Validation ID from the
scheduler, who provides this VID on a first-come first-served basis. All the transactions
are allowed to validate their read-set if they acquire a VID, however they can not
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commit their write-set until it is certain that there is no conflict with a higher-priority
transaction. Nevertheless, they are allowed to commit in parallel if the write-set of the
older transaction does not conflict with the read-set of the younger one.

Eventually, a SystemC simulator was built also for TMFv2, which allowed for the
performance of the two designs to be compared. The derived experimental results show
a validation speedup of up to 2.5x, of TMFv2 over TMFab, for a hash table benchmark.
In total, a maximum of 30% speedup in comparison to the original design was observed.

Finally, the system’s performance was evaluated for different data distribution pat-
terns in the L2D banks, and it was concluded that the performace increases when the
data are evenly distributed between the different banks as expected.

In spite of all the performance improvement, it was observed that when the number
of dependencies increased considerably, performance scalability was seriously impacted.
This indicates that there is need, for at least some of the dependencies, to be found
and resolved in compile-time.

6.2 Future Work

The aforementioned problems, as well as other problems encountered throughout this
project’s development, motivate the need for future work. The exploration of the
following are areas could lead to further system improvements:

1. In order to decrease the validation overhead in case of multiple conflicts, a scalable
directory based scheme like the ones proposed in [16], [17] and [18] could be
explored, which overcomes problems tied to conventional directory scalability.

2. Another possible solution to reduce the validation overhead is to leave transac-
tional signatures in every cacheline in the shared memory during execution. This
signature will contain the last transaction that accessed this cacheline, while upon
eviction of a previous signature, the transaction that left it would be notified for
a hazard. This method could potentially reduce the number of validation packets
after execution since only the hazardous lines would need to be re-validated.

3. In the current design, there is no real need for a cache coherency scheme, because
threads are replaced by transactions, and two consecutive transaction running on
the same processinng unit are unlikely to have the same data-set. However, this
reduces the advantage of having a local L1 data cache. For this reason, there
might be a need in the future for thread support by the remote PEs. If this is the
case, a cache coherence scheme needs to be implemented to support them.

4. In order to increase validation concurrency, there is need for even data distribution
between the different units, which could be satisfied by an appropriate compiler.

5. The number of dependencies between transactions greatly affects the performance
of the system. For this reason, a software toolchain is needed, to track the
static and dynamic dependencies in compile-time. Using this information, a new
scheduling scheme could be devised, which orders transactions in a way that
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aborts are avoided, or stalls transactions before speculatively accessing conflicting
addresses in the shared L2D.

6. The scheduler could provide the VIDs according to a scheme which takes into
consideration which banks have been accessed by every transaction. This way,
the transactions that have accessed fewer banks will acquire higher priority since
they will finish their validation cycle faster and retire.

7. The support for different phases running simultaneously should be implemented,
and the way in which transactions from different phases are allowed to validate,
should be explored.

8. The system’s performance should be evaluated for topologies using more than 16
processing units.
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SystemC Simulators A
During the making of this thesis, two cycle accurate simulators were created in the
SystemC programming language (a superset of C++). One is describing the original
TMFab design, while the second describes TMFv2, which is the newer version of TM-
Fab. The simulators are similar in most aspects, apart from the validation scheme that
was implemented in each case. TMFv2 simulator implements the design described in
the current thesis, while TMFab simulator implements the one described in [1]. The
current appendix is dedicated to the documentation of those designs.

A.1 Simulator Topology

Figure A.1 illustrates the block diagram of the the two designs.I the following para-
graphs, a brief description of the content of every file will be given.

Figure A.1: Block diagram showing the relation between the files of the simulator

A.1.1 Description of files

• TMlib.h

This file contains all the parameters pf both designs. The parameters that are
meant for both TMFab and TMFv2 are shown in Table A.1, while Table A.2
contains additional parameters that are meant only for TMFv2.

• main.cpp(29 lines)
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Figure A.2: 3D stacked architecture of TMFv2

Figure A.3: NoC 3D mesh architecture

Is the file that is being compiled. In this file it is possible to set a predefined
execution time. If not, the simulator executes until the program that is running
on it completes execution. If for some reason the program doesn’t complete, the
simulator will keep running indefinitely.

• utils.h(74 code lines)

Contains useful functions for compiler preprocessing and for data alignment
needed for the communication with the PEs.

• NOC TB.h(352 code lines)

Contains the module that connects all the different tiles in the system with the
NoC, as shown in Figure A.2.

• NOC 3x2.h(303 code lines)
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Contains a module comprised of 6 routers which is located on a single die in the
stacked topology. Four of these modules are connected in the NOC TB.h file
together with the functional units to create the whole architecture.

• L2cache.h(1045 code lines)

Contains a single bank of the L2D in the TMFv2 design, while it contains the
complete L2D in the original TMFab simulator. The methods used are:

– network input

– header handle

– read cache

– write cache

– miss handle

– reset methods

Their architecture is analyzed in detail in Chapter 4.

• types.h(82 code lines)

Header file which contains structures necessary for the Supervising Unit.

• scheduler.h(1184 code lines)

Contains all the logic for the Supervising Unit.The methods used are:

– read program

– MBSuper connect

– MBSuper data connect

– Schedule

– Network in

– Network out

Their architecture is analyzed in detail in Chapter 4.

• controller types.h(52 code lines)

Contains necessary structures for the TMPE.

• TM Cache Control.h(1834 code lines)

Contains all the logic for the TMPE.The methods used are:

– Reset

– NW input

– NW ouput

– cache access

– input handle
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– state handle

– MBLite connect

– MBLite instr interface

Their architecture is analyzed in detail in Chapter 4.

• router.h(182 code lines)

This is the basic unit of the NoC 3D Mesh architecture illustrated in Figure A.3.
The number of the router defines its location inside of the network and is the
reference point with which the routing is taking place. So the number has to be
correct when every router is instantiated.

• cache.h(72 code lines)

A header file containing necessary structures for the L2D cache.

• XRAM.h(230 code lines)

This is the XRAM of the system. In the TMFv2 design, it has four ports and
performs also the arbitration between the different banks in the L2D. In reality
this arbiter would be located on the same chip as the banks and not inside of the
XRAM.

• mbl1c.h(1294 code lines)

An additional Floating Point Unit(FPU) has been added in the Microblaze simu-
lator, together with the support for hardware multiplication and division, in order
to allow for faster simulations. However, for the time being this instructions are
executed in one cycle, which doesn’t correspond with the real execution time in
a Microblaze processor. If there is need for accuracy, either the FPU needs to be
modified to allow for stalling, or the

The two designs have a lot of similarities. However, since a new validation scheme
had to be implemented, the TM Cache Control.h, the L2cache.h and the sched-
uler.h had to be modified in a great extend.

A.2 Output Files

The following output files contain information about execution. Some of them need to
be specified in compile flags in order to be created. These are the ones that are used
for debugging purposes. The ones that are used for statistics are always created.

A.2.1 scheduler.h

Overview file : execution files/execution overview (PE NUMBER)procs.txt
This file contains information about the time at which a transactional section starts

being executed and its duration, the time when the transactions are spawned to the
available PEs in the system, and the total parallel execution time. The messages
appearing in the file are:
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Param. Name Default Val. Description

BUF DEPTH 100 Buffer depth of the L2D buffer

Param. Name Default Value Description

ADDR SIZE 32 Address length

DATA SIZE 32 Data word length

INSTR LENGTH 32 Instruction length

NUMBER OF SETS 8192(/4 in TMFv2) Number of sets per bank in TMFv2 -
Number of total sets in TMFab

ASSOCIATIVITY 8 Associativity of L2D cache

WORDS PER LINE 16 Number of words per cacheline (CACHE-
LINE SIZE in some places)

FLITWIDTH 36 Size of single flit

FIFO DEPTH 12 Buffer depth for NoC routers

PORTS 7 Number of NoC router ports

XRAM SIZE DEF 4194304 XRAM size in Bytes

IMEM SIZE 8192 Instruction memory size in words (4
Bytes)

INS L1 ASSOC 2 L1I cache associativity

INS L1 LINE ADDR 13 Number bits needed to address an L2D set
(13 bits for cacheline addressing for 8192
sets)

DMEM SIZE 256 Number of L1 Data cache sets

DAT L1 ASSOC 4 L1 Data cache associativity

DAT L1 LINE ADDR 8 Number bits needed to address an L2D
set (8 bits for cacheline addressing for 256
sets)

SWB SIZE 512 Number of SWB cacheline entries

PROG SIZE 131072 Max number of 32bit instructions in the
program

SEQ PHASE LEN 12 Sequence - Phase bit length

INSTR MASK 0xFFFF7000 Instruction mask to detect a START TNX
instruction

START TNX 0xAAF87000 Instruction defining a new transaction
(END TNX is the same but has 0 as a
parameter)

MAX TNX 16 Maximum number of concurrent transac-
tions

PE NUMBER 16 Number of PEs in the system

Table A.1: Table of parameters for both designs

• @Timestamp: I start parallel part

• @Timestamp: I start sequential part

• @Timestamp: I sent transaction (transaction number)
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Param. Name Default Val. Description

ID SIZE 12 VID size

MAX VID 4096 Maximum number of VIDs depicted with
12 bits

NUMBER OF BANKS 4 Number of L2D Banks

LSB DEFINING BANK 10 LSB in address for bank select

BITS FOR BANKS 2 Number of bank select bits

HAZARD TBL SIZE 128 Size of the Hazard table

READ BUF SIZE 256 Size of the Read table

Table A.2: Table of additional parameters for TMFv2

NAME ACTUAL VALUE

SCHEDULER NW ADDR ”010100”

Communication Class options

INSTR BLOCK TRANSFER ”00”

TM COMMUNICATIONS ”01”

MEMORY OPERATIONS ”10”

Communication ID options

for INSTR BLOCK TRANSFER

TNX STATE TRANSFER ”001”

REGFILE TRANSFER ”010”

INSTRUCTION REQUEST ”011”

for MEMORY OPERATIONS

from PE/SCHEDULER to L2DCache

L2D WRITE ”001”

from PE/SCHEDULER to L2DCache and back

L2D READ ”010”

from SCHEDULER to L2DCache

PROGRAM ENDED ”111”

for TM COMMUNICATIONS

SCHEDULER COM ”000”

from PE/SCHEDULER to L2DCache

UPDATE BANK PVID ”001”

from PE to L2DCache

VALIDATION ”010”

from L2DCache to SCHEDULER

UPDATE SCHEDULER ”011”

from L2DCache to PE

VALIDATION RESPONSE ”100”

COMMIT RESPONSE ”101”

Table A.3: Network Signals and their actual values (a)
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NAME ACTUAL VALUE

Scheduler Operation options

for VALIDATION

READSET VALIDATION ”0001”

VALIDATION PACKET SENT ”0011”

for UPDATE SCHEDULER

from L2DCache to SCHEDULER

UPDATE PVID TABLE ”0101”

for VALIDATION RESPONSE

from L2DCache to PE
CONFLICT DETECTED ”0001”

HAZARD DETECTED ”0010”

VALIDATION DONE ”0011”

COMMIT DONE ”0100”

for SCHEDULER COM

from SCHEDULER to PE

NO SCHED ”0000”

START TRANSACTION ”0001”

INSTRUCTION RESPONSE ”0010”

ASSIGN VID ”0100”

UPDATE PVID MASK ”0101”

RESTART COUNT ”1000”

from PE to SCHEDULER
VALIDATION TKN REQUEST ”0011”

COMMITING ”0110”

ABORT RESTART ”0111”

TNX COMMITED ”1001”

Table A.4: Network Signals and their actual values (b)

• Total parallel execution time: (parallel time)

• Time needed for parallel part: (parallel duration)

Memory file : execution files/scheduler mem access.txt
This file contains the memory operations of the Supervising Processor (SP) and is

meant for debugging purposes. In order for this file to be created, it is necessary to add
the -DSAVE SU MEM during compilation of the simulator. The messages appearing
in this file are:

• @Timestamp: I read from XRAM[(address)] = (data)

• @Timestamp: I wrote to XRAM[(address)] = (data)

A.2.2 L2cache.h

Memory operations files : mem operations/write sequence bank (Bank id).txt
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This file contains the commit operations in the L2D cache banks and is meant for
debugging purposes. In order for this file to be created, it is necessary to add the
-DSAVE L2D COMMIT during compilation of the simulator. The messages appearing
in this file are:

• Scheduler is committing a cacheline

• Proc (PE id) with VID (input VID) is commiting a cacheline

• @Timestamp: XRAM[(address)] = (data)

Bank statistics files : cache stats/Cache stats (Bank id).txt
This file usage statistics for every L2D cache bank. The statistics shown at the end

of execution are:

• Number of reads

• Number of write packets

• Number of PVID updates

• Number of invoked restarts

• Number of validation packets

• Number of transactions validating

• Number of read misses

• Number of read misses while validating

• Number of possible conflicts

• Number of evicted SRVIDs

• Number of hazards

• Number of evictions

A.2.3 TM Cache Control.h

Log file : logfiles/PE(proc id) log file.txt
This is a log file of what is happening inside of every TMPU. In order for it to ap-

pear, the -DSAVE LOGFILE flag has to be included during compilation. The possible
messages are:

• @Timestamp: NW READ IMEM :(proc id) (OUTPUT FLIT)

• @Timestamp: NW READ DMEM :(proc id) (OUTPUT FLIT)

• @Timestamp: NW WRITE DMEM :(proc id) (OUTPUT FLIT)
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• @Timestamp: NW VAL TKN RQST :(proc id) (OUTPUT FLIT)

• @Timestamp: NW UPDATE BANK :(proc id) (OUTPUT FLIT)

• @Timestamp: NW VALIDATE HAZARD :(proc id) (OUTPUT FLIT)

• @Timestamp: NW VALIDATE :(proc id) (OUTPUT FLIT)

• @Timestamp: NW ABORT :(proc id) (OUTPUT FLIT)

• @Timestamp: NW COMMIT :(proc id) (OUTPUT FLIT)

• There are also other messages that are meant mainly for debugging purposes and
if the user wants to see the execution steps.

Statistics file: exec stats/PE(proc id) stats file.txt
This file contains information about TMPU statistics. The information is written

only at the end of a successful execution that completed and contain:

• The execution time is:

• The validation time was:

• The commit time is:

• The average read latency is:

A.2.4 mbl1c.h

Instruction files : execution files/mblite instructions(proc id)run(restart times).txt
This file is also for debuging purposes and contains the instruction file of every PE

in the system. In order for it to be saved, the -DSHOW INSTRUCTIONS flag must
be set. The only message contained is the one below:

• @Timestamp: (Intsruction)

This file becomes very big and is difficult to open, and it also slows down execution
considerably. So it should be used only if absolutely necessary.

A.2.5 XRAM.h

Memory file : mem operations/memory file.txt
At the end of execution the XRAM prints the content of all the modified addresses

in the file above, in order for the outcome of execution to be obvious. In order for this
file to be saved, the -DSAVE XRAM MODIF must be set during compilation.

The only message appearing is:

• XRAM[(address)] = (data)
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A.3 Makefile

A.3.1 Simulator

The source file of the simulator is the main.cpp, while the executable is called main sim.
The SystemC libraries need to be installed in a folder in order for the compilation
to work. This is the folder that is currently set as the library directory : SYS-
TEMC HOME = /usr/local/systemc-2.2

The possible flags that have to be set during compilation are:

• -DSHOW INSTRUCTIONS

• -DSHOW MEM ACCESS

• -DSAVE SU MEM

• -DSAVE L2D COMMIT

• -DSAVE LOGFILE

• -DSAVE XRAM MODIF

A.3.2 Executable

In order to compile a program for the current system, the Makefile in the sw stuff
folder needs to be set correctly. The output of the compilation will be a binary file
named imem.bin. This file needs to be in the same directory as the simulator when the
simulator is executed. By default, if the directories are not changed, the imem.bin will
be automatically copied in that directory from the sw stuff directory.

In order for the compilation to work, there is need for the mb-gcc compiler provided
by Xilinx. The path to this compiler has to be set in the Makefile in the MBPATH.
The name of the source file has to be set in the SRCS variable.

There are some more parameters and flags that need to be set inside of the Makefile.
Xilinx flags:

• -mxl-float-sqrt : allows for floating point squared root(faster simulations)

• -mhard-float : allows for hardware floating point operations(faster simulations)

• -mxl-soft-div : hardware division(faster simulations)

• -mno-xl-soft-mul : hardware multiplication(faster simulations)

• -mxl-soft-div :software division

• -msoft-float :software floating point operations

• -mxl-soft-mul : software multiplication

Other parameters:

• STACK SIZE : max stack size needed for sequential section
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• HEAP SIZE : heap size

• STACK TXN SIZE : max stack size needed for transactional section

85



86



Abreviations B
BRAI : Branch to Immediate
CM : Contention Management
CMP : Chip multi-processor
CS: Contiguous Section
DLP : Data Level Parallelism
GPP : General Purpose Processor
GPU : Graphic Processor Unit
HTM : Hardware Transactional Memory
IC : Integrated Circuit
ILP : Intstruction Level Parallelism
IMem : Instruction Memory
L1D : L1 Data Cache
L1I : L1 Instruction Cache
L2D : L2 Data Cache
LCID : Last Committer ID
NoC : Network-on-Chip
NOP : No Operation
OS : Operating System
PE : Processing Element
PVID : Priority VID
Raw : Read-after-Write
RM : Read Mask
SP : Supervising Processor
SRVID : Speculative Reader VID
SU : Supervising Unit
SWB : Speculative Write Buffer
TID : Transaction ID
TLP : Task Level Parallelism
TM : Transactional Memory
TMPE : Transactional Memory Processing Element
TMS2 : TMFv2 Scheduler
TS : Transactional Section
TTP : Transaction Table Pointer
TXN : Transaction
VID : Validation ID
WM : Write Mask
XRAM : External RAM
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