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Abstract

Road damage detection is important for road safety and road maintenance planning. Road surface
anomalies, like potholes, cracks and ravelling, affect driving conditions, such as driving comfort and
safety, noise emission, load loss of trucks, increase of fuel consumption and traffic circulation. Locali-
sation of these anomalies allows for targeted road maintenance, which contributes to the improvement
of driver safety, comfort and the optimisation of road maintenance.

The current technique to detect road damage is that road inspectors determine road damage in road
images. However, the results are susceptible to human subjectivity. An improvement on image based
road damage detection is using LiDAR data, because the geometry of road damage is measured too.
To mitigate the issue of human subjectivity, an automated method for road damage detection was
developed for the profile laser scanner on the IV-Infra car. This laser scanner is mounted at the back
of the vehicle so that its profile lines are perpendicular to the driving direction. The proposed method
consists of: (I) feature extraction with a sliding window algorithm; (II) K-means clustering to create
training data; (III) Random Forest classification and (IV) morphological operations to remove noise and
identify larger damage patches.

This method was tested on an 800-meter long provincial road with different road defects and road
types. Most occurring road damages are cracks, craquel and raveling. The results of this method were
validated in two ways: using a road inspectors damage classification and a custom-made validation set
based on orthophotos. An overall accuracy of 73% is achieved for the fully automated process. When
training of the Random Forest was based on an improved, semi-automated training data, the overall
accuracy was 58%, this gives visual clear results. This is explained by more noise are presented in
the results based on the fully automatic method, which is overlapped with the coarse road inspector’s
data. Optical inspection shows that the semi-automated method identified almost all damages of the
custom-made validation set, although a shift between the point cloud and the validation is found. Still,
the method has some difficulties with detecting the transverse cracks. This problem can be solved
by integrating the two other mounted laser scanners of the Iv-Car, but pre-processing is needed to
organise the point cloud. Also, an improvement in georeferencing the validation data would help to
optimise the method and training data. Nevertheless, promising results are achieved by this method.
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1
Introduction

Road damage detection is important to determine road safety and road maintenance planning. The
damage of the road surface, like potholes, cracks and ravelling, affects driving conditions such as driv-
ing comfort and safety and increases fuel consumption, traffic circulation and noise emission. Localisa-
tion of these damages can be used for targeted road management and maintenance, which contributes
to an improvement of driver safety and comfort (Vittorio et al., 2014).

The traditional method for road condition surveying is that inspectors drive slowly on the road looking
out for road surface damages and stop the vehicle when damage is found, do measurements on the
damage and mark visually. This is dangerous, time-consuming and costly (Cheng and Miyojim, 1998;
Yu et al., 2007). To improve the safety road inspectors evaluate road images. The results are, however,
susceptible to human subjectivity.

Iv-Infra, a subsidiary of the Iv-Groep, has a mobile mapping system, shown in Figure 1.1, which is
used on roads for various applications, like lamppost and road surface marking detection. A mobile
mapping system is a (terrestrial) vehicle containing laser scanners and/or camera systems, (Vosselman
and Maas, 2010). The mobile mapping system of Iv-Infra includes 3 laser scanners, 10 cameras for
360° photos, a GPS and an Inertial Measurement Unit (IMU). This thesis is an attempt to study the
feasibility of using such a system for road damage detection. In this research amethod for road damage
detection is developed based on laser scan data of one of the three laser scanners of the car, a Z+F
PROFILER 9012A. This laser scanner is mounted at the rear of the vehicle such that its profile lines
are perpendicular to the driving direction. It measures the range and the intensity along the profile.

There are several advantages of such a system, for example no road closure for manual road inspection
is needed, which increases safety and decreases costs. In addition it is an improvement on image
base road damage detection, because with mobile laser scan (MLS) data a direct measurement of the
geometry of the road damage is measured. With automated damage detection, there are not subjective
differences in classification due to subjective judgement.

1.1. Research objectives
The main objective of this research is to use the mobile laser scanning data of the Z+F PROFILER
9012A, mounted on the rear of a car, for (automatic) road damage analysis. This leads to the research
question:

• How to use the Iv-Infra mobile laser scan data for road damage detection?

To answer this question, the following sub-objectives were formulated:

1. Describe the characteristics of point cloud data from damaged and undamaged roads;
2. Develop a method for road damage analysis using mobile laser scan data;
3. Validate the quality of this method.

1



2 1. Introduction

Figure 1.1: The mobile laser scan car of Iv-Infra include 3 laser scanners, 10 cameras for 360° photos, a GPS and an IMU
system. The Z+F PROFILER 9012A is indicated with the red circle,the green and blue square indicates the Leica’s P40 laser
scanners. The black circle designates the GPS system and the 10 cameras for 360° photos.

1.1.1. Research questions

To meet the aforementioned objectives, the following research questions are formulated:

Sub-objective 1: Data analysis

• What is the accuracy of the laser scanner?
• What are the characteristics of undamaged pavement in point cloud data?
• What types of surface pavement anomalies and road unevenness (bumpiness) do exist and what
are their characteristics in point cloud data?

Sub-objective 2: Method

• What algorithms can be used for damage detection?
– Is it possible to make this algorithm automatic?
– Is it possible to classify the different pavement anomalies?
– Is it possible to use this method on different kind of roads like asphalt and brick roads?

• Which size of damage can be detected with this method?
• Is it possible to give a certainty value to the detected damages?

There are some requirements that the method must meet.

1. The method must be applicable on large data sets.
2. Implementation in the existing processing chain should be possible.
3. The processing of a new data set can be done in one night.

Sub-objective 3 : Validation

• What is the accuracy of this method and how can it be described?
• The distance between the profiles is dependent on the velocity of the car. Does this distance
matter in the method? And can the other laser scanners which are installed on the car solve this
problem?
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1.2. Outline
The layout of this work is as follows. First, chapter 2 gives an overview of surface road damage and
which techniques are already available for road surface damage detection. Also, this chapter contains
a description about Iv’s mobile laser scan car.

A detailed overview of the used laser scan data and research area will be given in chapter 3.

Chapter 4 explains the conceptual idea of the methodology for detecting road surface damage with a
profile laser scanner. It describes in detail the different features which are used in the classification
algorithm.

The results of the methodology are given in chapter 5. Also, the results are validated based on a road
damage classification of an independent road inspector.

The conclusions of the research will be drawn in chapter 6. In this chapter recommendations for future
research will be made as well.





2
Road damage detection

Several methods have been developed to collect data of a road surface and determine damage from
such data. First, this chapter gives an overview of the types of road damage. Then, damage detection
methods are provided. These methods can be classified based on how the road surface information
is acquired. This can be vibration, image and laser scanning-based methods. As this study focuses
on investigating the feasibility of laser scanning in detecting surface damages, a characterisation of it
is presented, and then existing methods for damage detection are investigated. Further, this chapter
describes the Mobile laser scan car of Iv-Infra, and gives a description of the used laser scanner. All
this will be recapitulated in a small conclusion of this chapter.

2.1. Road anomalies
To distinguish several types of road anomalies the Long-Term Pavement Performance (LTPP) Program
is used as guideline, (Miller and Bellinger, 2003). This project defines a common language to describe
road surface damage which is widely used in different parts of the world. The LTPP categorises three
types of pavements: asphalt concrete-surface, jointed Portland cement concrete and continuously re-
inforced Portland cement concrete, (Miller and Bellinger, 2003). Dutch asphalt is closest to the asphalt
concrete-surface as defined in the LTPP Program. So the focus is on this type of asphalt.

According to the LTPP, asphalt damage is categorised into the following groups: cracking; patching;
potholes; surface deformation; surface defects and miscellaneous distresses. In more detail:

• Cracks - can be formed due to traffic load or freezing of water in asphalt. Each type of crack
is different in shape, position and origin. For this research crack shape is most relevant. The
following types of cracks are distinguished:
– Longitudinal cracks - are cracks parallel to the direction of the traffic;
– Transverse cracks - are cracks perpendicular to the pavement centre line;
– Fatigue cracks - are cracks which occur due to repeated traffic loads. They arises when
small interconnected cracks develop into many-sided, sharp-angled pieces. These cracks
are usually smaller than 30 cm on the longest side. In a later stage, they can look like a
crocodile skin or to a chicken wire pattern.

– Block cracks - are cracks that divide the pavement in an approximately rectangular pattern,
where the cracks are parallel and perpendicular to each other. The blocks have sizes be-
tween 10 cm and 10 m .

• Potholes - are bowl-shaped holes with various sizes involving one or more layers of the asphalt
pavement structure. Size and depth increase due to water accumulation in the hole (Tedeschi
and Benedetto, 2017). They arise due to freezing of water in the soil which results in expanding of
the space. Thawing of the soil can weaken the road surface while traffic can break the pavement,
which results in potholes.

• Patches - are pavement replacements after original construction greater than 10 cm . So the

5



6 2. Road damage detection

Pothole Longitudinal	crack

Raveling Boundary	damage Craquel

Transverse	crack

Figure 2.1: The six damage types in the research area found by a road inspector.

original construction is removed and replaced by new material. They can be recognised by dif-
ferent colour, texture and often have rectangular shapes.

• Rutting - is a longitudinal surface depression in the wheel path. The wheel path is lower than the
surroundings due to traffic load.

• Surface defects are
– Bleeding - is a film of bituminous material on the pavement surface that creates a shiny,
glass like, reflecting surface that usually becomes quite sticky. Bleeding occurs during hot
weather when bituminous material fills the aggregate voids and expands onto the pavement
surface, (Pavement Tools Consortium, n.d.).

– Polished aggregate - is the opposite of bleeding. It is the phenomenon where the surface
binder is worn away to expose coarse aggregate.

– Ravelling - are dislodging of aggregate particles due to influences of traffic, weather and
obsolescence of the binder, (Kneepkens and Heesbeen, 2017; Tedeschi and Benedetto,
2017).

In this research the following damages are found on an asphalt test road following a road inspector:
ravelling, potholes, boundary damage, craquel, longitudinal and transverse cracks. Craquel are cracks,
which develop into many-sided, sharp angled pieces. This damage develops at the end of the struc-
tural life of an asphalt pavement, (Bouwend Nederland, 2016). Craquel at the outer 0.25 meter of the
pavement is named as boundary damage. Examples of each type of damage can be found in Figure
2.1. Also there are road anomalies, which are no damage, like manhole covers, road marks and speed
jumps.

Next, a survey of techniques for data capture and methods for processing data to determine road
surface damage are presented.
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2.2. Road surface damage detection techniques
There are several methods to detect road anomalies from manual inspections to fully automated meth-
ods, (Gavilán et al., 2011). Different kinds of sensors are used in previous work, in this section different
techniques are described. First vibration measurement techniques are discussed, then some camera
techniques are expound, to finish with laser scanning techniques.

2.2.1. Vibration based methods
Accelerometers, microphones and tire pressure sensors are used to measure vibrations caused by
pavement elevation differences and roughness. Accelerometers in mobile phones can measure the
relative movement of the car in three dimensions. Examples are the Pothole Patrol by Eriksson et al.
(2008) and Wolfrine by Bhoraskar et al. (2012).

The Pothole Patrol by Eriksson et al. (2008) detects potholes with a simple 3-axis 380Hz accelerometer
and GPS device. This kind of data collection is also done by Perttunen et al. (2011) who used a Nokia
N95 smart phone with an embedded accelerometer and GPS. The processing approach is different
here, while Eriksson et al. (2008) used filters and a simple machine-learning approach, Perttunen et al.
(2011) combines the power spectrum and time domain data. Bhoraskar et al. (2012) used, with Wolver-
ine, a smart phone for detecting congested traffic conditions and bumps on the road. Like Eriksson
et al. (2008) they used machine leaning techniques to identify bump and breaking events, (Bhoraskar
et al., 2012).

A disadvantage of this data acquisition method is that the relative movement of the car is only influenced
by the small contact area between the road surface and the four tires. So only a small part, the wheel
path, of the road surface can be analysed.

Another vibration acquisitionmethod is the use of amicrophone. Wang et al. (2015) used amicrophone,
located near the wheel, as one sensor of their multi-channel data of the Versatile Onboard Traffic
Embedded Roaming Sensors (VOTERS). It is used as an addition to support other installed equipment,
like optical and electromagnetic sensors.

RoADS from Seraj et al. (2016), SmartRoadSense from Alessandroni et al. (2014), and the automated
sensing system of Vittorio et al. (2014) all use smart phones as well.

2.2.2. Image based methods
There are also methods collecting images from scanning, line-scan and video cameras of the road
surface, which can be used for detecting the damage. An example is the automated detection system
RoadCrack, created by the Australian Commonwealth Scientific and Industrial Research Organization
(CSIRO, ca. 2000). This system is based on high speed cameras mounted underneath the vehicle.
These cameras collect high resolution images of small patches of the pavement surface and they are
consolidated into bigger images of half-metre intervals. CSIRO (ca. 2000) stated that the system can
detect cracks in a millimetre order, while driving up to 105 kilometres per hour. This is done fully-
automated with a combination of machine vision and artificial intelligence.

Another system based on a laser based imaging sub-system for shadow-free image collection is the
Digital HighwayData Vehicle (DHDV) fromWaylink (2015). They use their Automated Distress Analyzer
(ADA) which produces crack maps in real time.

RoadCrack and DHDV are two commercial systems, which use cameras as one of their acquisition
methods. There are several more commercial systems, most of which have not published details on
their algorithm.

BAM Infra in combination with ICT Group created a technology to analyze automatic pavements. As
acquisition method they use 360°digital images, combined with machine-learning as the detection
method, (BAM Infra, 2018).
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Figure 2.2: Distance measurement principle of time-of-flight (top) laser scanners and phase based laser scanners (bottom). The
green signal is the emitted signal, while the red signal the received signal. In the time-of-flight a signal on and are emitted.
The received signal is decreased in amplitude and the and are the time deference between transmission and receiving
of the signal. With this time difference the distance to an object is determined. A phase-based laser scanner emits a continuous
amplitude modulated wave and measured the phase shift of the reflected signal, , to determine the distance to the object.
Image copied with permission from Soudarissanane (2016).

2.2.3. Laser scan based methods
Methods which use Mobile laser scanning (MLS) data exist too. Laser scanning, also called LiDAR
(Light Detection And Ranging), is an optical method to measure a 3D surface, (Vosselman and Maas,
2010). A laser scanner emits light signals and these signals are received again thanks to the reflection
of an object. There are two measurement principles: time-of-flight laser scanners and phase based
laser scanners. For time-of-flight, the time between the transmission and receiving signal is measured
and the distance is calculated given the known speed of light:

𝐷 = 0.5 ∗ Δ𝑡 ∗ 𝑐 (2.1)

where 𝐷 = the distance to an object from the laser scanner,
Δ𝑡 = the time between transmission and receiving the signal,
𝑐 = the speed of light, approximately 300 000 000 meters per second.
Phase based laser scanners emit a continuous amplitude modulated wave and determine the distance
to an object by measuring the phase shift between the emitted signal and the received signal (Soudaris-
sanane, 2016). Both principles are given in Figure 2.2.

Mobile mapping systems consist of one or more laser scanners, a position (GNSS) and an orientation
(IMU) system. Frequently they carry digital cameras or other sensors as well. The photo data can
be used to add colour information to the laser point data. The position and orientation systems are
used for geo-referencing the point data, so they can be projected on the right position on a map. To
link all the systems a synchronised time reference is used, (Vosselman and Maas, 2010). One of the
advantages of using laser scanning sensors is that 3D topography of the road surface can be captured
highly accurately and quickly.

Guan et al. (2014) used MSL data to detect road markings. From MSL data, they create intensity
images, which they use in a point-density-dependent multi-threshold segmentationmethod to recognise
road markings.

Pavemetric Inc. developed the Laser Crack Measurement System (LCMS), which consists of two high
performance 3D laser profilers and a camera as detector, in cooperation with government and research
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Z+F PROFILER 9012A
Leica's P40
Leica's P40

Profile numbers

1 m

Figure 2.3: Left: the theoretic profile lines of the measurement car. In red the profile lines of the Z+F PROFILER 9012A, in blue
and green the scan lines of the two Leica’s P40.
Right: a small selection of the real profile lines of the measurement car. The points are coloured by profile number. The distance
between two profile lines are around 4-5 cm. A regular pattern of distances is visible. These distances are dependent of the cars
velocity.

partners (Laurent et al., 2014). This system measures range and intensities, and produces 2D and 3D
data.

Yu et al. (2007) developed a system using a SICK LMS 200 laser scanner for reconstructing the 3D
surface model, cracks in smaller regions can be identified from a variation of the 3D depth measure-
ment.

Mertz (2011) used a low cost “laser line striper” to evaluate the unevenness of the road with a step-
operator to detect road damage. Based on the number of the data points in one line, significant road
damages are found. However, noise data can trigger the larger number of the points in the line, which
lead to incorrect damage detection.

2.3. Iv’s MLS car
The data collection is done by the Iv-Infra car, shown in figure 1.1. This car contains three laser scan-
ners, two Leica P40’s and one Z+F PROFILER® 9012A. In Figure 2.3 the theoretical and real laser
scan profiles are given. The two Leica P40’s are fixed in profiling mode and are mounted on an angle
such that the profile lines intersect behind the measurement car. Furthermore 9 Blackfly® cameras, a
GNSS and a IMU system that are mounted on top of the laser scanners, such that they are centered
in the middle of the laser scanners. Eight of the nine Blackfly® cameras gives 360° photos of the sur-
roundings and one of the cameras is directed to zenith to make a half sphere of photos. Also 3 HR
cameras are mounted in the front bumper to make high resolution images of the road.

2.3.1. Z+F PROFILER 9012A
In this research the emphasis is on the Z+F PROFILER® 9012A, Figure 2.4. This is a profile scanner
using the phase-shift method for measuring the range. An outgoing laser beam is intensity-modulated
by a sine-wave signal. This signal is reflected by an object and the received intensity pattern is com-
pared with the original transmitted signal. A phase-shift in the modulated signal is caused by the trav-
elling time of light forth and back to the measured object. The phase measurement can be transformed
directly into a distance/range,d:

𝑑 = 𝑐
2 ∗ 𝑓 , (2.2)

where 𝑐 gives the speed of light (with atmospheric corrections) in m/s,
and 𝑓 the modulated frequency in Hz.

Accuracy of the Z+F PROFILER® 9012A

The Z+F PROFILER® 9012A has three measurement modes which differ in the spindle speed of the
laser and amount of pixels per profile. A different spindle speed results in a different amount of pix-
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Figure 2.4: Z+F PROFILER® 9012A Zoller + Fröhlich GmbH (2018)

Target distance White (80%) Gray (37%) Black (14%)
1 sigma range noise, 2 m 0.2 mm 0.3 mm 0.4 mm
1 sigma range noise, 5 m 0.2 mm 0.3 mm 0.5 mm
1 sigma range noise, 10 m 0.2 mm 0.3 mm 0.5 mm
1 sigma range noise, 25 m 0.4 mm 0.6 mm 1.1 mm

Table 2.1: The accuracy depends on the colour of the reflecting object and the distance of this object to the scanner. A larger
distance gives a larger range noise. Although the differences in range noise are minimal to ranges till 10 meter. (Zoller + Fröhlich
GmbH, 2018)

els/points in one profile and the accuracy in range. In this research the 200Hz (12.000 rotations per
minute) mode is used. This results in approximately 5120 points per profile. The corresponding noise
factor is 2.8, (Zoller + Fröhlich GmbH, 2018). This noise factor changes the range accuracy. The nom-
inal range accuracy varies with the distance and with the colour of the target, see Table 2.1. These
numbers are determined at a 127 KHz data rate. In the case of the 200Hz mode the data rate is 1016
kHz and this results in a 2.8 times lower accuracy (Zoller + Fröhlich GmbH, 2018). So with the given
values from Table 2.1 the sigma range noise varies between 0.56 mm and 3.08 mm.

Variation in angle

When the laser beam hits multiple “targets” of different heights, for example when the laser beam
partly hits the road surface and partly falling into a crack (Figure 2.5), the laser scanner will detect a
combination of multiple reflections, one for each target. Unfortunately phase-based ranging devices
can never discern all the single vectors but only measure the resultant vector; the geometrical sum
of all vectors. So the resultant range is a mixture of the distances to the surface and into the crack
(Mettenleiter, 2019).

So the laser beam width defines which sizes of damages can be measured. A large beam is more
likely to hits multiple “targets” which results in a resultant vector. The used laser scanner has a beam
divergence of 0.5 mrad and it has a beam diameter of 1.9 mm at 0.1 m distance, (Zoller + Fröhlich
GmbH, 2018).

Figure 2.5: The left side shows a laser beam hitting a flat and horizontal surface, on the right side a laser beam hit an uneven
surface (for example a part of a crack). The laser scanner detects a combination of multiple reflections in the laser beam.
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Figure 2.6: The technical shape of the laser beam.
Left: The shape of the footprint of a laser beam is circular with diameter if it hits a perpendicular surface on distance z. The
footprint change to an ellipsoidal footprint, defined by its major axis and minor axis if the beam hits a surface at an
incidence angle . Image copied with permission from Soudarissanane (2016).
Right: Increasing the angle increased the beam width on the road. This is a technical draft of the approach of the divergenting
laser beam. d1 is the beam diameter on a distance of 0.1 m, d2 is the beam diameter (the longest edge of the ellipse) on a
horizontal surface. H gives the height of the laser scanner.

Beam width calculation

To calculate the theoretic beam width the sine rule and other trigonometric properties are used. The
shape and a side view of a laser beam is given in Figure 2.6. In this Figure all the variables are given
which are used in the beam width calculations.

First the part which is added or subtracted to the range, when the outsides of the laser beam are used,
is calculated:

Δ = tan(𝛼) ∗ 12𝑑 (2.3)

Next, all the used angles, which depend on the changing angle 𝛼, are calculated:

𝛽 = 90∘ − 𝛼𝛿 = 180∘ − 𝛽 − 12𝜃𝜆 = 180
∘ − 𝛽𝜖 = 180∘ − 𝜆 − 12𝜃 (2.4)

The range, depends on the incidence angle 𝛼 as well. When 𝛼 increases the range with respect to a
horizontal surface increases as well.

𝑅 = 𝐻
cos 𝛼 (2.5)

The road distance which is captured between 𝛼 = 0 and 𝛼 can be calculated as:

road distance = 𝐻 ∗ tan𝛼 (2.6)

To calculate the beam width on the horizontal surface, the laser beam is divided in three parts 𝑎 , 𝑎 , 𝑎 ,
where 𝑎 and 𝑎 can be calculated with the sine rule and 𝑎 with trigonometry:

𝑎 = 𝑅 − Δ
sin 𝛿 ∗ sin 12𝜃 (2.7)

𝑎 = 𝑅 + Δ
sin 𝜖 ∗ sin

1
2𝜃 (2.8)

𝑎 = 𝑑1
cos 𝛼 (2.9)
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Figure 2.7: In the left top figure is seen how an increasing angle of incidence intersects with a horizontal and flat road on a larger
distance from the car. The right top figure gives the theoretic beam diameter, , when the beam hits a horizontal surface. And
the bottom plot gives the footprint of the laser beam by an increasing angle of incidence. The footprint will be more ellipsoid
increasing the angle. The diameter of the footprint is 3.2 mm on a distance of 2.6 meters (angle=0°). increase from 3.2 mm
(angle=0°) to 3.9 mm (angle=50°), while (the axis of the ellipsoid in the transverse driving direction) increased from 3.2 mm
(angle=0°) to 6.1 mm (angle=50°)

The beam width can be given by the sum of 𝑎 , 𝑎 , 𝑎 :

𝑑 = 𝑑 = 𝑎 + 𝑎 + 𝑎 (2.10)

In Figure 2.7 the effect on the beam width by the angle of incidence is given.

2.4. Conclusion
There are several types of road anomalies which can be found on an asphalt road. These are cracks,
potholes, patches, rutting and surface defects like ravelling. But not every road anomaly is damage,
like road marks, speed jumps and manhole covers. Although they have in common that they deviate
in road flatness or in other words they have irregularities in the road surface.

To detect these road surface damages several techniques already exists. These techniques are divided
by measurement technique, like vibration, image and laser scan basedmethods. An advantage of laser
based methods is that the 3D topography of the road surface can be captured highly accurately and
quickly.

In this research the Iv-Infra car is used for the road surface measurements. This car is all-round oper-
able for detailed measurements. In this research the emphasis is on one of the three laser scanners,
namely the Z+F PROFILER® 9012A. This is a profile laser scanner, which has a noise sigma that
varies between 0.56 mm and 3.08 mm. The shape of the beam varies with the angle of incidence.
An orthogonal falling laser beam gives a circular footprint, while a beam that hits the surface with an
angle gives an ellipsoidal footprint. In this ellipsoidal footprint the beam width in the transverse driving
direction varies for this mounting between 3.2 mm (0 °) and 6.1 mm (50 °). To determine road surface
damage this beam width needs to be kept in mind, because with a larger beam width there is more
change such that the laser scanner detects multiple reflections.



3
Mobile mapping data

This chapter gives an overview of the available data and the case study. It elaborates on 6 damage
types and how they looks in laser scan data.

3.1. Road R106 near Haarlem - Netherlands
A road section of the R106 near Haarlem city, the Netherlands, was selected for a case study. It
includes the Oudeweg and Penningsveer, together a length of 800 m. This is a quiet, touristic road
where the driving speed is between 30 and 50 km/h. On this road, 36 road damages were found by
a road inspector from a third party and were categorised as 2 ravelling; 7 craquelure; 2 potholes; 8
longitudinal and 11 transverse cracks and 6 boundary damages, (ARCADIS, 2019). This data is used
as validation data. This road contains also speed bumps and a small part is brick-paved. Figure 3.1
shows the damage of the road as classified by a road inspector.

The laser scan data was provided by Iv-Infra, who measured the road on 17 October 2018 with their
mobile laser scan car. It was a sunny day with a dry road.

The data was provided in 14 asc-files varying from 140 MB to 503 MB, 4.1 GB of point cloud data in
total. The total number of points of these 14 files is around 37 million points. For each file number the
amount of points are given in Table 3.1.

Craquel	[5]
Rafelling	[2]
Boundary	damage	[4]
Potholes	[2]
Craquel	[2]
Transverse	cracks	[11]
Longitudinal	cracks	[8]
Boundary	damage	[2]

Figure 3.1: Research area, around 800 meters of the R106 near Haarlem, the Netherlands. On this road 36 damages were
found by a road inspector. In this map, they are classified on damage type, and which shape (line, polygon or point) it was
saved. Back ground map is from OpenStreetMap, (OpenStreetMap contributors, 2017)

13
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File number Number of points
1 1 235 152
2 2 950 313
3 2 989 903
4 3 335 533
5 2 320 074
6 2 958 343
7 2 111 276
8 2 148 947
9 2 162 486
10 4 095 931
11 4 430 715
12 3 229 729
13 1 522 918
14 1 745 274
total 37 236 594

Table 3.1: File number with the amount of points in that file. In total all files contains more than 37 million measurement points.

3.2. Available mobile laser scan data

The profile scanner produces measurement points with x, y, z coordinates. Each measurement point
(x,y,z) is geo-referenced by the QINSy (Quality Integrated Navigation System) software (Quality Posi-
tioning Services B.V, 2018) such that the IMU, the GNSS locations, the vehicle odometer, the intensity
and range are taken into account. This is done in the Dutch coordinate system, RD-coordinates. The
z-component is given in Normaal Amsterdams Peil (NAP), the Dutch height reference. Each mea-
surement point contains the following additional data fields: intensity, range, profile number and beam
number. The intensity is the amount of reflected light, which has no clear unit. The range is the dis-
tance between the scanner and a reflection point on the object surface and is given in meters. A profile
number is given to each new line which the profiler measures. A new profile starts nadir and the laser
beam turns anticlockwise, see Figure 3.2. The beam numbers are given to each consecutive point
in each profile. In this project, the laser scanner is configured such that each profile (360°) contains
around 5100 points (beams), with a spindle speed of 200 rotations per second (profiles). When the
car is driving, a spiral pattern is formed, illustrated in Figure 3.2. The distance between each profile
depends on the car velocity and the spindle speed of the laser scanner. In this case, this results in a
distance of 4 cm between the profiles while driving 30 km/h and 14 cm at 100 km/h. The point spacing
along the profile is approximately 3 mm on the road in nadir direction and does not depend on driving
velocity, but on incidence angle.
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Figure 3.2: Scanning pattern of the laser scanner.
Left: the technical scanning pattern. Each new colour represents a new profile number. A new profile number starts nadir. The
driving direction is marked with an arrow.
Middle: this plot represent the profile numbers for the ”No Damage” area. It includes profile numbers 4480 till 4530.
Right: the beam numbers of the ”No Damage” area. Each new profile number starts with a new range of beam numbers. For
this damage set the dark blue colours represents the beam numbers from 0 till 380. The yellow colours represent the beam
numbers 4690 till 5100. Beam number 5100 is the last beam number of the profile and is next to beam number 0.
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Damage type Profile numbers Beam numbers
No damage (0) 4480 - 4531 4690 - 380
Craquel (1) 19420 - 19535 4800 - 810
Raveling (2) 18050 - 18155 4446 - 115
Boundary Damage (3) 18290 - 18435 4215 - 4900
L. Crack (4) 17960 - 18055 4470 - 340
T. Crack (5) 18055 - 18100 4625 - 830
Pothole (6) 19515 - 19540 4715 - 5075

Table 3.2: For each damage type one location is used for further research. In this table the location in beam numbers and profile
numbers are given. The number next to the damage type corresponds with the location number in Figure 3.3.

0	-	No	Damage
1	-	Craquel
2	-	Raveling
3	-	Boundary	damage
4	-	L.	crack
5	-	T.	crack
6	-	Pothole

Figure 3.3: The research area with the locations of the damage of Figure 2.1. Number 0 represent an area with no damage, 1:
craquel, 2: raveling, 3: boundary damage, 4: longitudinal crack, 5: transverse cracks and 6: potholes.

3.3. Data selection
As mentioned in Section 2.3.1 the laser beam width varies with the angle of incidence. A large beam is
more likely to hit multiple “targets” and produce false range measurements. But when taking the beam
width smaller, the scanning area decreases as well. So a comparative assessment needs to be made
between scanning area and beam width. With the knowledge that some damage is at the boundary of
the road, 800 beams on each side of the nadir are used. This corresponds with an incidence angle of
approximate 56 degrees. Then the beam width is around 7 mm at the sides of the road.

3.3.1. Cases

In Figure 2.1 six types of damage are given. Five damages are marked by a road inspector as damage.
The pothole damage area which is used was not marked as damage, but is used because the other
two potholes found by the road inspector are on the edge of the road outside the first 800 and last 800
beam numbers. In this project, these six locations are used to explore how damage looks in the input
data. Also an area without damage is used. Both damage and non damage locations are given in
Figure 3.3. Also they are given by beam numbers and profile numbers in Table 3.2.

3.4. Road damage in laser scan data
To distinguish road damage in laser scan data it is important to know what are the differences in input
data of the damaged road relative to the non damaged road. In this section the six damage locations
of Figure 2.1 it is discussed how they look in the mobile laser scan data.



16 3. Mobile mapping data

3.4.1. Height measurements
In Figure 3.4a the height values of each point of the damage locations are given.

Raveling: The raveling arises on the connecting stripe and is located around beam number 4740. It
shows up due the lower elevation, although it is difficult to see due the curved road.

Craquel: The craquel is clearly seen in the height data due the lower heights. Boundary damage (left
in the plot) is seen due lower height values than the surroundings. A pothole (marked with a circle) is
as well seen by lower elevations. Smaller cracks are visual seen, but they are not so clear.

Longitudinal crack: The longitudinal crack is located around beam number zero and from profile
number 17960 till 18000. In the height value it has a lower height than the surrounding points. Although
in this data section a curved surface is measured; on the higher beam numbers the surface is much
lower than on the lower beam numbers. This difference is around 10 cm. Also another crack is seen,
but this crack is not marked by the road inspector. In this section two asphalt sections are connected
to each other and the connection location (around beam number 4760) a lower stripe is seen as well
in the input data.

Boundary damage: The boundary damage is difficult to distinguish in the height data. This due the
large height difference of the road boundary and the road itself. The verge is visual by higher elevations.
Also a part of the data is not visible, because in pre-processing the data, the beam numbers between
800 and 4300 are removed from the data set.

Transverse crack: In the height input data the transverse crack is not clearly seen. Probably the
transverse crack is just between two profiles and the input data did not contain a measurement of this
data. Although in this section the road boundary (around beam number 700) is clearly seen due to the
higher elevation. Also the connecting stripe is seen due to the lower elevation in comparison with the
surrounding area.

Pothole: The pothole is located around profile number 19525 and has a lower height than the sur-
rounding non damaged points.

No damage: The height of the no damage area is smooth. Although there is a small curve between
the middle of the road and the boundaries. This curve in the road is made for the drainage of water.

3.4.2. Intensity measurements
In Figure 3.4b the intensity values of each point of the damage locations are given.

Raveling: The raveling is not so clearly visible in the intensity data as in the height data. Nevertheless
there is a lower intensity in comparison with the surrounding area. On the right side of this data set
(high beam numbers) the roadside is visible due a higher intensity than the road.

Craquel: The craquel in this set is clearly visible by the intensities values. The boundary of the road
is well visible due the high intensity values. Also in this area a transverse stripe is visible by a lower
intensity. This is a line where two types of asphalts meet each other.

Longitudinal crack: The longitudinal crack is not clearly visible in the intensity data. Although the
connecting stripe between the two parts of asphalt is on the other hand clearly visible due a significant
lower intensity.

Boundary damage: Although in the height value the boundary damage was not so clearly given, in
the intensity values it is. In this data, the road side gives a higher intensity, while the asphalt of the
road gives a lower intensity. It is clear that the boundary between the asphalt and the roadside is not a
straight line. Also in this data the connection stripe is also visible due the lower intensity.

Transverse crack: The transverse crack is not visible in the intensity data, just like in the height data.
In this data set the roadside has higher intensity values in comparison with the road. This is probably
caused by the colour differences of the green grass and white-yellow sand in the roadside and the dark
gray asphalt of the road.
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(a) The height measurements (b) The intensity measurements

Figure 3.4: Left the height values and right the intensity values for each damage of Figure 2.1.
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Pothole: There are less intensity changes where the pothole occurs. In this set the intensity is more
or less the same.

No damage: In the no damage area the intensity values are equally distributed with an emphasis on
the relative lower intensities values.

3.5. Conclusion
For this research mobile laser scan data of the Z+F PROFILER® 9012A laser scanner is used. This
laser scanner measured intensity and ranges. This measurements are obtained for a x,y,z point. This
point has a beam number and profile number as well.

Because of the use of a profile laser scanner, the point density in beam direction is much higher than
in profile direction (driving direction). This can be a problem in damage detection if a damage lies
between two profiles. When driving faster the gaps between each profile increase, so the possibility
that damage lies between two profiles will increase.

In this project, the emphasis is on seven smaller areas of the road. Each area includes a type of damage
found by a road inspector. Also a no damage area is used. Damage locations can be found by a
deviation in intensity and height in comparison with the surrounding road area. Undamaged pavement
is smooth and has no deviations in height or intensity.



4
Methodology for road damage detection

from profile data

To identify damage on the road surface from MLS data, the proposed workflow consists of (I) feature
creation, (II) K-means clustering to create training data, (III) Random Forest classification and (IV)
mathematical morphological operations to remove noise and identify larger damage patches.

In the first step, different features are created to characterise the road surface. Classification will be
done with the help of these features, to distinguish “damaged” surfaces from “non damaged” surfaces.
The first idea was to use Random Forest classification only and use the classification of the road in-
spector as training data. But then it was found that the road inspectors classification was too coarse to
use them for training. So K-means clustering is used to create training data for the more robust Ran-
dom Forest classification. The final steps are to remove points classified as damage but not connected
to other damage points and connect damage points to form damage patches. This last step is done
using mathematical morphological operations.

In this chapter each step will be described. The results of each step are shown in chapter 5.

4.1. Step I: Feature creation
Feature creation is done to extract the characteristics of the road surface. Road surface damage is
distinguished from non damaged surroundings based on deviations in height and intensity.

4.1.1. Sliding window algorithm
Various independent features are made with a sliding window algorithm.

In a sliding window algorithm, calculations are only applied to the points within the current window.
The window is “sliding” over the data points, see Figure 4.1. In this project, the window slides along
the profile, see Figure 3.2. A sliding window algorithm was chosen because this algorithm is fast and
scalable. Also data processing can be done in the order the data was acquired.

The window size is defined by length N, where N are the the number of points. In this project the results
of the calculation of a window are assigned to the centre point of that window. The centre point of a
window, 𝑦 , is defined as:

𝑦 = {
𝑦( + 1) if 𝑁 is even
𝑦( ( )) if 𝑁 is odd

, (4.1)

where 𝑦 = value of the centre point of the window,
𝑁 = the number of points in a window.

19
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L

Figure 4.1: Sliding window principle. The points represent the data points in a profile. A window with length L slides along the
profile in one direction (in this case L=15). In this project, the value of a feature is assigned to the centre point (red) of the window.

Note that when using this sliding window algorithm, only the centre points of a window receive a value
for this function. For a window with length L it means the first and last L/2 points in a profile do not
receive values, when evaluating one profile. When evaluating more profiles, the first L/2 points of the
first profile and the last L/2 points in the last profile get NaN-values (Not a Number) representing the
lack of values. The sequence of the points changes by pre-processing the data, such that the beam
numbers run from roadside to middle of the road to roadside. In this case, L / 2 points from the road
side mean nothing, because two road ends are connected to each other. Increasing the window length
L results in more points with NaN-values at the roadside. This is shown in Figure 4.2.

An overview of the six different features and their calculations is given:

• Absolute deviation from the mean;
• Deviation from the mean;
• Deviation from a slope line;
• Standard deviation of the deviation of expected range;
• Standard deviation of profile point density;
• Sum of different window lengths.

4.1.2. (Absolute) deviation from the mean
A damaged road surface is distinguished from a non damaged surface based on deviation in elevation
and intensity. To extract this deviation characteristics a derivative of the road surface roughness is
used. Surface roughness is defined as the irregularities in the surface texture which are inherent to
production process and wear (Taylor Hobson Limited, 2003). The arithmetic average roughness, 𝑅 ,
is the most used roughness parameter. This is defined as the average of the absolute deviation from
the mean line over a sampling length L, (Gadelmawla et al., 2002).

The surface roughness evaluates the roughness of a certain surface part with length L. In this project,
the feature values are assigned to individual points. Therefore instead of surface roughness, the ab-
solute distance from a centre point of a sliding window to the arithmetic average height of that window
is assigned to the individual centre points.

In formula:
𝑓 , =∣ 𝑦 − �̄� ∣, (4.2)

where 𝑓 , = the absolute deviation from the window mean for the ith point in a profile,
�̄� = ∑ 𝑦 , the mean value of the data within the window,
𝑦 = value of the centre point of the window.

Also the deviation from the centre point of a sliding window to the arithmetic average height of that
window is used:

𝑓 , = 𝑦 − �̄�, (4.3)

where 𝑓 , = the deviation from the mean of window length L for the ith point in a profile,
�̄� = the mean value of the data within the window,
𝑦 = value of the centre point of the window.

To estimate the mean, least-squares can be used. The least-squares principle offers a solution for a
system of observation equations. Such system is typically redundant (more equations than unknowns:
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Figure 4.2: An example of a profile with 30 points. When a window with a window length of 10 points slides over this profile the
blue first and last 5 points did not get a value, while the orange points got a value.

𝑚 > 𝑛) and inconsistent (𝑦 ≠ 𝐴𝑥 due to measurement error) (Tiberius, 2015). The inconsistent system
can be made consistent by introducing an 𝑚 × 1 error vector e :
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(4.4)

The least squares estimate minimises 𝑒 𝑒 = (𝑦 − 𝐴𝑥) (𝑦 − 𝐴𝑥), the sum of squared errors. Then the
least square estimate of 𝑥, �̂�, is computed from 𝑦 and 𝐴 as:

�̂� = (𝐴 𝐴) ⋅ 𝐴 𝑦 (4.5)

In the case of the arithmetic mean, the system is defined as:

[
𝑦
⋮
𝑦
]

⏟
= [
1
⋮
1
]

⏟
[𝑥]⏟ . (4.6)

Then the least squares solution is:

�̂� = (𝐴 𝐴) ⋅ 𝐴 𝑦 = ([1 ⋯ 1] [
1
⋮
1
]) [1 ⋯ 1] [

𝑦
⋮
𝑦
] = 1

𝑁 ∑𝑦 (4.7)

Then 𝑓 , is the absolute value of each least squares residual per measurement and 𝑓 , the least squares
residual. In this project, a built-in mean function of Python is used to make it computational efficient.

For both features the elevation of the road is irrelevant, as only the relative differences between a mea-
surement point and the mean is used. Therefore, a road on a higher altitude with the same roughness
gives the same values as a lower altitude road.

Both height and intensity values are used as input data for this feature. This results in 4 different features
for fixed length L. The mean of a smaller window length L is more dependent to larger deviations than
the mean of a larger window length. This results in that a single damage point is easier detected with
a large window, than with a shorter. In Figure 4.3 the effect of different window sizes and locations is
given.
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Figure 4.3: The effect on different window lengths on the mean.
Both plots contains the same data point, with in the centre data points which resembles to possible damage. The location and
size of the sliding window has effect on the distance to the centre point.
In the left figure the windows are taken in the centre of the damage, and than the larger windows are less influenced by the
damage points and the damage points are easier to detect.
In the right figure the window locations are shift to the non damage area. The large window are influenced by some damage
points, while the smaller windows are not. This effects in possible larger distances to the larger window, although they are relative
small.
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Figure 4.4: The features deviation from a linear least square fit and deviation from the mean. Left: An example of calculating the
deviation from the mean of profile 19500. In red the centre point of the window (size 21) is given, in green the window mean and
in orange the deviation from the mean to the centre point. Right: An example of calculating the deviation from a least square
line of profile 19500. In red the centre point of the window (size 21) is given, in green the least square line and in orange the
deviation from this line to the centre point.

4.1.3. Deviation from a (sloped) line
The idea behind this feature is very similar to the earlier described (absolute) deviation to the mean
feature. The line fitting for this feature is again done using ordinary least squares. The idea is that when
the road has a slope in the transverse driving direction (cant), the least squares line accommodates
this slope when the window length is large enough.

The system for least squares line fitting is written as:

⎡
⎢
⎢
⎣

𝑦
𝑦
⋮
𝑦

⎤
⎥
⎥
⎦⏟

= [
1 𝑏
⋮ ⋮
1 𝑏

]
⏝⎵⏟⎵⏝

[ℎ𝛼]⏟
(4.8)

where 𝑏 are the beam numbers,
𝑦 = surface value of the 𝑖 point in an evaluation length,
𝛼 = slope of line in m/beam number
ℎ = the intersection of the line with the y-axis.
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Figure 4.5: The orthogonal distance from the centre point of a window to the slope line is .

Then the shortest distance from the centre point of the window to this line is taken. To calculate the
shortest distance, which is the orthogonal to the line, of the centre point 𝑌 with coordinates (𝑏 , 𝑦 ) to a
line the following steps are used. First, the normal of the line l: 𝑦 = �̂�𝑏 + ℎ̂ through point 𝑌 is given by
line 𝑛:

𝑦 = 𝑏 − 𝑏
�̂� + 𝑦 . (4.9)

Then, the intersection of the two lines, the normal line 𝑛 and slope line 𝑙 gives intersection point 𝑃. This
point 𝑃 is the closest point on line 𝑙 to the point 𝑌.

�̂�𝑏 + ℎ̂ = 𝑏 − 𝑏
�̂� + 𝑦 . (4.10)

The b-coordinate of point 𝑃 is given by:

𝑏 = 𝑏 + �̂�𝑦 − �̂�ℎ̂
�̂� + 1 . (4.11)

The y-coordinate of point 𝑃 is found by substituting the b-coordinate of point 𝑃 in the original line 𝑙:

𝑦 = �̂�(𝑏 + �̂�𝑦 − �̂�ℎ̂
�̂� + 1 ) + ℎ̂. (4.12)

Then, the orthogonal distance between point 𝑃 and 𝑌 is calculated by:

𝑑(𝑃, 𝑌) = √(𝑏 − 𝑏 ) + (𝑦 − 𝑦 ) = ∣ ℎ̂ + �̂�𝑏 − 𝑦 ∣
√1 + �̂�

. (4.13)

where 𝑏 are the beam numbers on the x-axis,
𝑏 is b-coordinate of the centre point of the window,
𝑦 = is y-coordinate of the centre point of the window,
�̂� = the slope of the least square line,
ℎ̂ = the intersection of the line with the y-axis,
𝑏 = is the b-coordinate of the closest point on line 𝑙 yo point 𝑌,
𝑦 = is the y-coordinate of the closest point on line 𝑙 yo point 𝑌.
In Figure 4.5 a small sketch is given with an example and the variables.

The orthogonal distance from the least square line to the centre point of that window is in fact the total
least squares error,(Van Huffel and Vandewalle, 1991). With total least squares, the error is not only
taken parallel to the y-axis (as done for ordinary least square fitting), but in b and y direction, to account
for errors in both height and beam direction. In this feature a combination of the total least squares
and ordinary least squares is taken. First an ordinary least square fitting is used, then the orthogonal
distance is calculated. When the variances in x and y are equal (when the units of the axis are the
same), this is an orthogonal line. Although it is unsure if the variances in the b and y are equal, it is
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Figure 4.6: The difference between the least square line and a mean line of theoretical data. It is seen that the deviation from
the least square line is smaller than from the mean line.

assumed that both are equal. In Figure 4.4, a draft of the orthogonal deviation is given. The difference
between the deviation from the mean line and from a least squares is given in Figure 4.6.

When the least squares equation of equation 4.5 is expressed in the Big-O-notation, to express the
running time behaviour by increase the input size, thematrix multiplication, 𝐴 𝐴, dominates with𝑂(𝑚 𝑛)
the others steps, where 𝑚 are the columns of the matrix and 𝑛 the rows.1 This feature is applied in
Python and to make the calculation of the least squares fit faster, the distance variation between beam
numbers is neglected. Then model 𝐴 is the same for each centre point. The first part of equation 4.7,
(𝐴 𝐴) ⋅𝐴 , is the same for all points with the same window length and has to be calculated only once.

4.1.4. Standard deviation of the deviation of expected range
Range is what the laser scanner measures. In this feature the variations in a measurement are used.

Even on a flat and horizontal road, the range changes for each beam number. Further away from nadir
(higher angle of incidence), the range increases, see Figure 2.7.

In this feature the range is simulated for each beam number for a horizontal and flat road. This is done
by calculating the angle which each beam number should have, by taking the fraction of the beam
number by the maximum beam number times 360°:

𝛼 = 𝐵𝑁 × 2𝜋
𝐵𝑁 (4.14)

where 𝐵𝑁 is the ith beam number in a profile,
𝐵𝑁 = number of beams within the profile,
𝛼 = the angle for each ith beam number in radians.

This angle 𝛼 is used to estimate the range for each beam number, 𝑅 , , assuming that the road is
horizontal and flat:

𝑅 , =
𝐻

cos 𝛼 (4.15)

where 𝛼 = the angle for each ith beam number in radians,
𝐻 = the height of the laser scanner above the road surface,
𝑅 , = the range for a flat and horizontal surface for the ith beam number.

1 is a matrix multiplication with as input a × and × matrices and as output a × matrix. This gives a complexity
of ( ). The next step is to get the inverse matrix ( ) , which has a complexity of ( ). The matrix multiplication
of has a complexity of ( ) and the last matrix multiplication ( ) has a complexity of ( ). The ( )
dominates ( ) and the number of rows is larger than the number of columns , which means that ( ) dominates
( ).
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This validation range for profile number 19500 is given in blue in the top figure of Figure 4.7.

With this validation range, a range difference between the range which is measured and the validation
range is calculated for each beam number:

Δ𝑅 = 𝑅 − 𝑅 , , (4.16)

where Δ𝑅 = the range difference between the measured range and the validation range for the ith beam
number,
𝑅 = the actual range for the ith beam number ,
𝑅 , = the range for a flat and horizontal surface for the ith beam number.

An example of Δ𝑅 is given in green in the middle figure of Figure 4.7.

The Δ𝑅 is not a self-contained feature to determine deviations in the road surface. So for a rolling
window with length 20 points the sample standard deviation of the Δ𝑅 is calculated:

𝑓 , = 𝑠 = √
∑ (Δ𝑅 − ̄Δ𝑅 )

𝑁 − 1 , (4.17)

where 𝑓 , = 𝑠 = the sample standard deviation,
Δ𝑅 = the range difference between the measured range and the validation range for the ith beam
number,
̄Δ𝑅 = the mean of the range difference,

𝑁 = the number of point within a window.

When a least square model is used for the arithmetic mean of the range difference between the mea-
sured range and the validation range (equation 4.7), the feature can be written as:

𝑓 , = √
𝑒 𝑒
𝑁 − 1, (4.18)

where 𝑒 𝑒 is the sum of least squares errors.

The sample standard deviation is given in sea-green, Figure 4.7. In this Figure it is clearly visible in
the range differences that the road in this profile is not horizontal and flat, but a bit curved. Also, the
Δ𝑅 deviations are clearly visible, but an independent number is not given to these deviations. That
is, a higher value of Δ𝑅 does not necessarily mean that there is damage. Using the sample standard
deviation, an independent value is given to the points. When there is a curve in the road along the
profile, the sample standard deviation will be more or less flat. Although, the deviations are then visible
due to a higher sample standard deviation, while parts with less deviations get a sample deviation
around zero.

4.1.5. Standard deviation of profile point density
In Figure 4.8 the theoretic point density over a pothole along a profile is given. It shows an approxi-
mately equal point distribution over the flat road surface, while the distance between points increases
(decrease of point density) as the angle of incidence increases. This is done gradually and is not taken
into account. In Figure 4.9 this effect is shown.

When there is a pothole/crack/hump this will disturb the equal point distribution. Generally, going down
in a pothole will give less points within a certain distance, and going up in a pothole gives a higher point
distribution along the profile.

The point density, the number of neighbouring points inside a sphere of radius R is estimated for each
point with CloudCompare (Girardeau-Montaut et al., 2017). A radius of 0.02 meters is used. In this
case, for most points only the neighbouring points in a profile are taken, because the distance between
profiles is around 4 to 5 cm. So in this case no sliding window is used for estimating the point density.

For profile 19500 the number of neighbours is given in Figure 4.9.
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Figure 4.7: From top to bottom the three steps for creating feature, . In the top plot the orange line is the measured range, ,
of profile number 19500, while in blue the validation range, , for a flat and horizontal profile is given. In the middle plot the
range difference, , is given. In the bottom plot the sample standard deviation of is given.

When the sample standard deviation is taken over a window length of 20 points (like equations 4.17 and
4.18), differences between the spacing of points (caused by potholes/cracks/humps) should appear.

Figure 4.8: The point distribution change when there is a pothole/crack/hump.
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Figure 4.9: The number of neighbour points for each beam number in profile 19500. Below the car (around beam number zero)
the point density is largest. Further away from nadir the point density decreases due the fact of that the distance between points
increased. Deviations in the number of neighbours is an indicate of road surface defects.
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4.1.6. Sum of different window lengths
For the (absolute) deviation from themean and the deviation from the least square line, different window
sizes can be used to calculate each feature. The results of different window lengths are summed and
added as a separate feature, given in Figure 4.10. The intention of this concept is to create larger
differences in values between non-damaged areas and damaged areas. Adding this features with
different window sizes improves distinction between a flat road surface and an anomaly.

Figure 4.10: The concept of the sum of different windows. In this case a feature is calculated for three different window sizes: L=3
(green), L=5 (purple) and L=7 (blue). The results of these different windows are summed and stored in a new feature (orange).

4.1.7. Window lengths
For the above described feature different window lengths can be used for calculating the feature. In
this research the following window lengths are used: 5, 21, 41 and 101 points. These correspond with
approximately 1.6 cm, 6.7 cm, 13.1 cm and 32.3 cm respectively. The choice to use these lengths is to
have a distribution of smaller window lengths to larger window lengths to fit different damage scales.

4.2. Step II: K-means clustering
For the classification of the road in damage and non damage points the robust RandomForest algorithm
is used. Random Forest algorithm is a supervised learning algorithm, which means that training data is
needed. In this project first the road inspectors classification was taken as training data. But later was
found that this data was too coarse for using them as training data. So another method was needed to
create training data for the Random Forest algorithm.

In this study, K-means clustering is used to classify a small selection of the data with known damage
into two clusters (“no damage” and “damage”). Although, K-means clustering is already a classification
method, it is here used for creating training data for the Random Forest algorithm. This step can be
removed in the long run by using (validated) outputs of this method.

K-means clustering divides M points in N dimensions into K clusters so that each point belongs to the
cluster with the closest centroid,(Hartigan and Wong, 1979). First K cluster centroids are randomly
located. Then the Euclidean distance between a point and a cluster centroid is calculated. The points
are assigned to the nearest cluster centre. New cluster centres are calculated by taking the mean of the
average coordinates of the points in each cluster. It is an iterative process to find the optimal location
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of the cluster centroid. An illustration of K-means clustering is given in Figure 4.11.

Each feature is scaled before the clustering is done. This is done by first subtracting the mean value,
and divide it by the standard deviation of the feature. Scaling is important to create equal “distances”
between feature values. Both scaling and clustering are done with the Python scikit-learn module
(Pedregosa et al., 2011). The average complexity is given by O(k n T),(Pedregosa et al., 2011),

where 𝑘 = the number of clusters
𝑛 = the number of samples
𝑇 = the number of iterations.

So increasing the numbers of samples it decreased the processing speed.

Figure 4.11: K-means clustering in steps. The first step is to chose the number of clusters, in this case 3, and give initial cluster
centres (diamond shape). Than each point is assigned to the nearest cluster centre. The new cluster centres are calculated
by taking the average coordinates of the points within each cluster. Iteratively the three clusters and their cluster centres are
calculated, (Mubaris, 2017)

4.3. Step III: Random Forest classification
K-means results are used to train a supervised classification. Random Forest is a fast classification
method and has excellent results (Belgiu and Drăguţ, 2016). Another advantage of this classifier is
that it can be used to generate feature effectiveness rank on discrimination (Belgiu and Drăguţ, 2016;
Yan and Xia, 2019). This can help to decide which features are most important and useful for the
classification (Belgiu and Drăguţ, 2016; Yan and Xia, 2019).

Random Forest Classification is a supervised classification method, based on an ensemble of decision
trees (Liaw and Wiener, 2002) that grows through training towards a best combination (Pirotti and
Tonion, 2019). A classification tree is a multistage approach which breaks up a complex decision into
a union of several simpler decisions (Safavian and Landgrebe, 1991). Each node in a tree makes a
binary decision using one feature, and subsequent decisions in a tree lead to a class label. A binary
decision can be for example if a feature value of a point is higher than a certain value. To classify a
data point, an input vector (consist of feature values) run down each decision node of the trees in the
forest, (Kulkarni and Sinha, 2012). Each tree of the forest classifies this point to a class and thereby
votes for that class. The forest determined the class for the point by the majority votes over all trees
in the forest, (Kulkarni and Sinha, 2012). For example, if a forest consists of three trees and two trees
predicts a point as damage the random forest results classifies that point as damage. An illustration of
a random forest is given in Figure 4.12.

In this project, each decision tree contains 3 decision nodes and the random forest has 100 trees.
Each tree uses only a selection of the available features to create unique trees. Per tree the number of
used features is √𝑛, where 𝑛 is the total number of features. Training the algorithm is done by dividing
the training data set and use only a small part to avoid overfitting of the system. Overfitting is “the
production of an analysis that corresponds too closely or exactly to a particular set of data, and may
therefore fail to fit additional data or predict future observations reliably”, (Lexico powered by Oxford,
n.d).

In this project, the RandomForestClassifier from the Python scikit-learn module is used (Pedregosa
et al., 2011). After training, the whole data set is classified by this random forest classifier.
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Figure 4.12: Illustration of an random forest algorithm with n decision threes. The red and green circles are the possible pre-
dictions of a decision tree. In this example this random forest has n trees. When the majority of the predictions of the decision
threes is green the Random Forest will label the point with the green class. Image based on Redesign of the original inspired
figure of Koehrsen (2017).

4.4. Step IV: Mathematical morphological operations

After classification some noisy points can occur. To filter this points out, mathematical morphological
operations are used. Also this technique is used to connect damage areas to each other when one
non-damage point are between two damage planes.

This is done by the morphology module of the Python scikit-image package, (van der Walt et al., 2014).
Mathematical morphological operations assigns pixels in an image based on the values of neighbouring
pixels. Which neighbouring pixels are used is defined by the morphological operator. In this project, a
diamond shape (+-shape) of 1 centre point is used, given in Figure 4.13. This morphological operator
is moving over the pixels of the input data, like a sliding window, and assign values to the centre point
based on the values of the input data of the shape of the operator. Here four types of mathematical
morphological operations are considered: opening, closing, dilation and erosion. Dilation is an opera-
tion, which changes a “no damage” pixel into a “damage” pixel when neighbouring pixels are classified
as “damage”. Erosion is the opposite operation of dilation. Erosion gives “damage” pixels a “no dam-
age” value when the neighbouring pixels are classified as “no damage”. Erosion decreases the size of
objects, while dilation increases the size of objects, and can merge multiple objects into one (Smith,
1997). Mathematical morphological closing is a combination of dilation followed by an erosion oper-
ation (Smith, 1997). Mathematical morphological closing removes gaps in connected damage pixels.
Examples of the different results of the mathematical morphological operations on a letter B are given
in Figure 4.13.

In this project, first objects smaller than 3 points are removed. This is done, because it is assumed
that areas smaller than 3 points (approximately 1 cm) are to small to be serious damage. The size of
objects is determined by the adjacent “damage” points, see Figure 4.14. After removing small objects,
morphological closing is used. Morphological closing is used to connect damage areas which are lying
close together. This is done by projecting the data as a matrix with the number of profiles as rows and
the number of beams as columns. An example of these steps is given in Figure 4.15.
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Figure 4.13: Mathematical morphological operations and operator. The top images give the mathematical morphological op-
erations on the letter B. The white cells are filled with ones, black cells corresponding with zeros. For neighbouring pixels a
diamond-shape around 1 centre point is used. This shape is given in the bottom figure.

Figure 4.14: Matrices with three damage pixels. The left three matrices contain connected points and will not removed, while in
the right matrix the points are not connected to each other. All these points will removed, since the objects are smaller than 3
points.

Figure 4.15: The morphological operations on a matrix with the letter B, and some noise values. The left image (1.) gives the
original data, a letter B with some random noise. In image 2 is seen that objects smaller than 3 pixels are removed. In step
3 dilation is used to make the damage areas bigger, so that image areas lying close together are connected to each other. In
the final step (4), erosion is applied to make the damaged areas smaller, so that the damaged areas get back their original
dimensions. Combining step 3 and 4 is the same as using morphological closing.
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4.5. Validation
The validation of the above described method is done with the help of damage shapefiles of a road
inspector from a third party. The shapefiles are three files with point, line and polygon data. These data
files are converted to raster data with the GDAL (GDAL/OGR contributors, 2018) tool gdal rasterize.
This tool rasterizes the shapefile (vector geometries) with a pixel size of 0.05 × 0.05 meter. Then the
three raster files are combined to one large raster file. This validation data is projected to the point
data, such that each data point gets a ground truth damage value.

To describe the quality of this method the overall classification accuracy is used. The overall accuracy
is defined as the total number of correctly classified points divided by the total number of points:

overall accuracy = correct classified points
total points (4.19)

Also a confusion matrix will be made. A confusion matrix is a visualisation of the performance of a
classification algorithm, (Brownlee, 2016). The columns of the matrix represent the true values, while
the rows represent the predictions by the classification algorithm. The diagonal (from upper left to lower-
right) elements in the confusion matrix represent the number of correctly classified points. The other
values in the matrix are points mislabelled by the classification algorithm. The commission error is the
fraction of points which is predicted to be in a class but does not belong to that class. They are falsely
attributed to a class and are given in the rows of the confusion matrix (except for the correctly classified
points). The omission errors are the fraction of points that belongs to a class but were predicted to
be in a different class. They are falsely omitted from a class and they are given in the columns of
the confusion matrix (except for the correct classified points). Higher diagonal values indicate a better
classification algorithm.

In this project, a confusion matrix with the types of damage will be made. Than it will become clear
which types of damage are better classified than other types. Although the confusion matrices give a
good indication of the method’s performance, there is also a drawback of this validation method. The
drawback is that the validation data are shape files. The damage shapes are projected to the points
and only the points in the origin data get validated values. So damage which fall between two profiles
are not counted in with this validation method.

4.6. Conclusion
In this chapter the proposed methodology was given. It is based on the fact that damage has devia-
tions in height and/or intensity in comparison to the surrounding pavement without damage. To detect
damage several features based on a sliding window algorithm were made. A comparison of the centre
point and surrounding points (in a profile) in a window was made.

After feature extraction K-means clustering is used to create a training data set. This is done to make
the whole classification method automatic. In this case, K-means clustering is done for two clusters,
“damage” and “no damage”. It is also possible to make multiple clusters, one for each type of damage.
But this will have to be investigated. In the future this K-means clustering can be removed from the
workflow and already classified damages can be used as training data for the Random Forest classifi-
cation.

The following step is to use a quarter of K-means clusters to train the Random Forest classification
algorithm. This is done to give the possibility to make a decision on different features, while in K-means
clustering all features in the clustering process are used. Also, when the RandomForest algorithm gives
good results no further training is needed, and only classification can be done.

The last step of the method is to remove single, noise, points and connect “damage” pixels to each
other.

Validation is based on damage classification shapefiles of a road inspector that is transferred to the
individual points. With confusion matrices and the overall accuracy the accuracy of this method is
described.
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With this workflow it is not yet possible to give a “damage” value to a point. To make this possible, an
addition of additional classes is needed. Then each class represents a “damage” value e.g. from small
to large damage and for each type of damage.



5
Road damage classification results

The results of the proposed method are presented in this chapter based on the craquel introduced in
Figure 2.1. First the features will be described. Second, the results of the K-means clustering and
Random Forest will be given. Next, the results will be validated with data of a road inspector from a
third party. Finally, a discussion on the results is given.

5.1. Features
For this research 32 features are calculated as described in Section 4.1. Four different window sizes
(5, 21, 41, 101 points) are used for the features “(absolute) deviation from the mean” and “the deviation
from a line”. The results of each feature will be discussed.

5.1.1. Deviation from the mean
The deviation from the mean is calculated for 4 different window sizes (L=5, L=21, L= 41 and L=101
points), and the height or intensity are used as input data. First the results made with the height values
will be given and next the results made with intensity values are described.

Height values

The results of the 4 different windows of the height values shown in Figure 5.1. With the small window
size of 5 points, damage is invisible, although in the centre of the image, there are deviations between
positive and negative values. In the lower left corner, higher values are visible. This corresponds to
the road boundary. By increasing the window size the craquel appears The boundaries of the craquel
appear as positive deviations from the mean, while the core of the craquel has negative values. The
window size with 41 point shows the best results, as even the smaller longitudinal cracks are visual on
the left of the plot.

Intensity values

The same procedure is used with the intensity values as input to calculate the deviations from the
mean. The results for different window lengths are given in Figure 5.2. The road boundary is in all
figures visible as a negative deviation. But with a larger window it is more pronounced. The craquel is
not visible in the results of all window sizes, although the two different asphalt types (the boundary can
be found around profile number 19450) are detectable. This difference is visible due to the smoothness
of the values. The newer asphalt (the top of the figure) is more homogeneous, while the older asphalt
(lower part) is more heterogeneous.

33
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Figure 5.1: The deviation from the mean of elevation values for the damage type craquel. From left to right the window size
increases: 5, 21, 41 and 101 points. With the smallest window the craquel is not visible, while with the other three window length
the craquel appears due the lower feature values.
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Figure 5.2: The deviation from the mean with the intensity values as input for the damage type craquel. From left to right the
window size increases: 5, 21, 41 and 101 points. The difference in homogeneity corresponds to two different asphalt layers (on
top of the image a newer one). The boundary of the road is clearly visible (left of each plot) due to a change of sign at the road
boundary.

5.1.2. Absolute deviation from the mean
As with the deviations from the mean the absolute deviation from the mean is calculated for 4 window
lengths (5, 21, 41, 101 points) for both height and intensity values.

Height values

The results of the absolute deviation from the mean of the height values are given in Figure 5.3. They
resemble to the deviation from the mean, although there is no difference in sign for the core and the
boundary of the craquel. Again, the smallest windows give no clear distinction between damage and
no damage points. But by using the largest window size, some details disappear which are found in
other results. The craquel with some details is best visible with window length 41.

Intensity values

In Figure 5.4 the absolute deviation from the mean is given when using intensity values. The difference
between the two asphalt types is more clear in the absolute deviation from the mean than the deviation
from the mean. But the craquel is not well detectable.

So to detect craquel the intensity-values are not useful, while the height values give good visible results
for both (absolute) deviation from the mean.

5.1.3. Deviation from a line
The results are given for the height and intensity values respectively in Figures 5.5 and 5.6. These
results are similar to the results of the deviations to the mean. The calculation of the deviation to a line
takes more time than for the deviation from a mean. The calculation for the deviation to a mean takes
around 7 seconds, while the calculations for the deviation to a line takes around 25 minutes on a laptop
with a 2.4 GHz Intel Core i5 and 8 GB RAM for a 120 meter road section (around 350 0000 points).
This can probably be explained by inefficient programming. There is a limited theoretical difference
between the two features in computational complexity.

This feature does not provide the expected additional value with respect to the deviation from the mean.
So with a view to the processing speed, the advice is not to use this feature.
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Figure 5.3: The absolute deviation from the mean with elevation values as input. From left to right the window size increases:
5, 21, 41 and 101 points. The craquel is distinguishable by the higher values. The craquel with some details is best visible with
window length 41.
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Figure 5.4: The absolute deviation from the mean of intensity values for the damage type craquel. From left to right the window
size increases: 5, 21, 41 and 101 points. The difference in asphalt is clearly distinguishable by the difference values between
the two asphalts. The boundary is visible due the higher feature values, but the craquel is not detectable.
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Figure 5.5: The deviation from a linear least square line of the elevation values for the damage type craquel. From left to right
the window size increases: 5, 21, 41 and 101 points. The smallest window size gives no clear damage. Increasing the window,
the damage is visible due the negative values.
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Figure 5.6: The feature deviation from a linear least square line of the intensity-values for the damage type craquel. From left to
right the window size increases: 5, 21, 41 and 101 points.
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Figure 5.7: Left: The standard deviation of the range difference of the area of the craquel. The higher values of the standard
deviation represent the craquel, while standards deviations close to zero represent undamaged road.
Right: The standard deviation of the point density. A higher deviation corresponds to the craquel. This result is more rough than
the standard deviation of the range difference. Vertical stripes with lower feature values appear in the data. The source of this
vertical stripes is unknown.

5.1.4. Standard deviation of range
The left-side of Figure 5.7 shows the results of the standard deviation of the range for a window lengths
of 20 points. The window length of 20 points is empirically defined. The higher standard deviations
represent the craquel and the boundary of the road. With this feature, smaller details of the craquel are
visible as well.

5.1.5. Standard deviation of point density
The standard deviation of the point density shows notable results, given in the right pane of Figure
5.7. Again the window size is 20 points. The craquel appears in these results via a higher standard
deviation. But regular low deviations are also visible as stripes. Probably this is an artefact of the laser
scanner.

Although the craquel is visible, the details which are visible in the standard deviation of the range are
not visible in this feature.

5.1.6. Sum of different windows
The idea of the sum of the different windows is that the values are increasing and that in this way the
difference between damage and undamaged pavement is more visible. The results of the sum of the
different window of the (absolute) deviation to the mean (height and intensity input) and the deviation
to the line (height and intensity input) are given in Figure 5.8 and 5.9. The craquel is clearly visible
in the summed features based on heights. The craquel, boundary of the road and the pothole are
distinguished due the lower values relative to the surroundings. Also just next to the damage higher
values are seen.

For the sum of the different windows of the features “the deviation to the mean” and “the deviation to
the line” with the intensity values as input, only the boundary of the road is clearly visible. Also in this
section two types of asphalt are visible due the homogeneity of the values. On top of the images the
feature values are smooth and homogeneous, while the bottom section is heterogeneous.

5.1.7. Correlation
The correlation between the described features is given in Figure 5.10. A high correlation between
different window lengths for the same feature is indicated. There is also a high correlation between
the deviation to the mean and the least squares line. So an advice is not to use the deviation to the
least square line, because the calculation for this feature is more computationally demanding than the
deviation to the mean. However, the “standard deviation of the range” and the “standard deviation of
the point density” are uncorrelated.
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Figure 5.9: The sum of the different windows of the three features intensity based. The different types of asphalt can distinguished
by the homogeneity of the road surface. This surface difference is best visible in the absolute deviation to the mean clearest
visible.

As there is strong correlation between the window lengths of each feature, it is the question if the
different window sizes have an added value for the classification. To make the algorithm more efficient
only the essential window length of a feature could be used. Identifying the essential window length of a
feature can be done visually or to make a very detailed damage validation set and the overall accuracy
and a confusion matrix.

5.2. K-means clustering
K-means clustering (K=2) is done on a known damaged area to create training data for the Random
Forest classification algorithm. The training area is from profile number 19400 till 19550 and includes
a pothole and craquel.

The results of the K-means clustering, done with all features, are given in the left plot of Figure 5.11.
Here it can be seen, that the K-means clustering, did not make clear distinction between damage and
non-damage. It gives a more or less uniform distribution of damage points. Although after profile
number 19480 there are less points belongs to the class “damage”. This corresponds to newer asphalt
type and associated colour difference.

These results are disappointing. It would be expected that the craquel would become clearly visible.
For example, when setting a threshold for the 𝜎Δ𝑅 on 0.003 meters and all points above this threshold
get the class damage, the training data would be much better - based on a single feature only. This is
given in the right plot of Figure 5.11.

Although K-means clustering returns disappointing results for this section, the advantage of using K-
means clustering is that it can be used automatically on different sets of road data, while a hand-made
threshold it needs to be set for every section again. Because, although for this set (Fig. 5.11 right)
these boundary values give better training data, this does not mean that this will also be the case for
another damage type on another road. Varying with the features where K-means clustering is applied
on, makes for different results.

The processing time for K-means clustering was around 40 seconds for 241696 points. So this is a
relatively fast process.
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5.3. Random Forest Classification
Now training data is available from the K-means clustering and is used to train the Random Forest.
To avoid overfitting a subset of 25% of the K-means clustered data set is used in the Random Forest
training. It takes 1 minutes and 2 seconds CPU time on 241 696 points to train the Random Forest on
the damage set. This training was done with a 2.4 GHz Intel Core i5 and 8 GB RAM.

The results after training and the morphological operations are given in Figure 5.12a. The damage
outline are not clearly distinguished in these results. Boundary damages (left in transverse crack plot,
right in the raveling plot, right in the boundary damage plot and left in the craquel plot of Figure 5.12a)
are marked as damage.

When training the Random Forest algorithm with the training data using a threshold (the right plot in
Figure 5.11), the results are much clearer than using the K-means training data. It shows less noisy
results. When the results of Random forest trained with the K-means data set (Fig 5.12a) are compared
with the results of Random forest trained with the “threshold” data set similarities of damage locations
can be seen (5.12b). For example for raveling, these are clearly found in the middle of the image in
Figure 5.12b and this vertical stripe is found in Figure 5.12a, but then not so thick and clear. These
examples using two different training data sets show the importance of good training data. Good training
data will show better and clearer results (with less noise).

5.3.1. Feature relevance
The feature relevance is calculated for the above two Random Forest algorithms and is given in Figure
5.13. When training is done with the K-means training data set, classification is predominately based
on the features with intensity values as input data, given in Figure 5.13a. While classification is based
on elevation values features, point density and the range, the threshold data set is used for training
the Random Forest, Figure 5.13b. The effect of training with the threshold data set is that the feature
where the threshold was set has the largest influence on the classification as well. Also, the features
with intensity values as input are not part of the classification decisions. Probably this can described
by that the range is more correlated with the Z-values than with the intensity values.

Also, it should be noted that another ranking is applied after every new training.

5.4. Validation with a road inspectors classification
A road inspector marked road damage on the 360°photos. This was done in ESRI shapefiles. These
shapefiles (point, line, polygons) are converted to a raster of 5 by 5 cm. Through rasterising the shape-
files, some pixels are no longer connected, therefore the number of damage segments is increased.
The raster data is projected to the point data, such that a point to point comparison can be made. A
problem with this method is that not all damage is projected to the point data, for example damage
between two profiles is omitted. Therefore only damage that could have been detected is validated.

In Figure 5.14a, the road inspectors damage classification is given for each damage type of Figure 2.1.
Here it is seen that the craquel is rough and the pothole is classified as craquel as well. Also a custom
detailed damage classification is made based on the road inspectors classification and orthophotos.
This is done for a small section, profile numbers 13480-19700, where all different damage types are
present. This gives a much more detailed classification, especially for the craquel, given in Figure
5.14b. This detailed classification is used for an optical validation.

5.4.1. Overall accuracy
The overall accuracy is calculated for two combinations: the road inspectors validation versus the
Random Forest classification based on K-means clustered data and the road inspectors validation
versus the Random Forest classification based on a threshold for clustering the data. The detailed
validation is leaving aside in calculating the overall accuracy and the confusion matrix, as the validation
data is misaligned with the point cloud data.
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are visible when is known where the damage is lo-
cated.
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Figure 5.12: Damage classification done by Random Forest.
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(a) Training with K-means clustered data

St
d.

 o
f r

an
ge

St
d.

 p
oi

nt
 d

en
sit

y
Su

m
 o

f t
he

 a
bs

. m
ea

n 
of

 Z
Ab

s. 
m

ea
n 

Z 
L=

10
1

Ab
s. 

m
ea

n 
Z 

L=
41

Ab
s. 

m
ea

n 
Z 

L=
21

M
ea

n 
Z 

L=
10

1
Ls

t.s
q.

 Z
 L

=w
10

1
M

ea
n 

Z 
L=

41
Ab

s. 
m

ea
n 

Z 
L=

5
Su

m
 o

f t
he

 m
ea

n 
of

 Z
Su

m
 o

f t
he

 ls
t.s

q.
 o

f Z
Ls

t.s
q.

 Z
 L

=4
1

Ab
s. 

m
ea

n 
I L

=4
1

Ls
t.s

q.
 I 

L=
10

1
Ls

t.s
q.

 Z
 L

=2
1

Su
m

 o
f t

he
 a

bs
. m

ea
n 

of
 I

Ls
t.s

q.
 Z

 L
=5

Ab
s. 

m
ea

n 
I L

=1
01

M
ea

n 
I L

=1
01

M
ea

n 
Z 

L=
21

Ls
t.s

q.
 I 

L=
41

M
ea

n 
I L

=2
1

Ls
t.s

q.
 I 

L=
21

Su
m

 o
f t

he
 m

ea
n 

of
 I

Su
m

 o
f t

he
 ls

t.s
q.

 o
f Z

 
M

ea
n 

Z 
L=

5
Ab

s. 
m

ea
n 

I L
=2

1
Ab

s. 
m

ea
n 

I L
=5

M
ea

n 
I L

=5
Ls

t.s
q.

 I 
L=

5
M

ea
n 

I L
=4

1

0.0

0.1

0.2

0.3

Feature importances - boundary

(b) Training with setting a threshold clustered data

Figure 5.13: The features ranked on importance in the Random Forest classification. Here is seen that with the K-means training
data of Figure 5.11 the classification is based on the intensity values. Using the threshold data set for training the Random Forest
classification the features based on elevation values are more important in the classification. The threshold on the standard
deviation of the range has most influence on the classification.

The overall accuracy is for the Road inspector validation - K-means combination 73 % and for the Road
inspector validation - boundary combination 58%, although the data trained with the boundary clustered
data shows less noise and clearer results it has a lower overall accuracy. This can explained by the
noisy damage classification based on K-means clustered data, where the overlap with the rough and
large damage patches is larger.

5.4.2. Confusion matrices
For each method results (with K-means clustered data and the threshold clustered data) a confusion
matrix is made with respect to the road inspectors validation data Figure 5.15. In these confusion
matrices the normalised values are used. This is done by dividing the number of points in the confusion
matrix by the total number of points. The numbers in a confusion matrix are than between zero and
one and a higher number corresponds to a better match. These confusion matrices shows that craquel
and boundary damage is more easily found with the threshold training data. Then 32 % of the craquel
is found and for boundary damage it is 28%. While for the K-means clustered data it is around 10 %
and 4 % for craquel and boundary damage respectively. Also with the threshold clustered data more
non-damaged area is classified as damage. This can be explained by the fact that the road verges are
also classified as damage, see Figure 5.16.

5.4.3. Optical validation
When the clear results of the Random Forest trained by the threshold data is compared with the custom
validation data it is clear that these two data sets are not overlapping each other, Figure 5.14c. There
is a shift between the detailed validation and the point data. For example, the pothole is shift in beam
and profile direction.

This offset between the validation data and the point cloud data can have multiple reasons:

• The camera distortions are not correctly accounted for.
• The accurate camera height is needed to generate orthophotos. The exact camera height was
unknown, and with trial-and-error, the best fit was created. An erroneously high camera loca-
tion gives wider orthophotos, while a lower camera height gives smaller orthophotos. A small
difference in camera height could be the cause of the offset in the orthophotos.

• Another option could be that the camera and the point cloud data are not exactly georeferenced
when the data acquisition was done.

To cirumvent the offset a manual, optical validation is done with help of Figure 5.14c. Each damage
set is described below.

Raveling: Some parts of the raveling are detected by the method. Also the longitudinal cracks are
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(a) The road inspectors damage
classification.
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Figure 5.14: Left: the rough road inspectors damage classification. Middle: the custom refined damage classification based on
photos and the classification of the road inspector. Right: the damage classification and the detailed validation data. Here it can
be seen that there is an offset between these two data sets, what make validation of the method difficult.
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Figure 5.15: The confusion matrices for the two different training data sets and the road inspectors validation. The most overlap
with damage found by the road inspector and the method is when the Random Forest is trained on data refined by a threshold.
However, more non-damaged area is misclassified as damage in this case.

clearly seen. The whole transverse cracks are not seen, only small parts of them. The road verge is
classified as damage on the right side of the plot. Also, a vertical line is seen on the right side of the
plot. This damage is not visible in the orthophoto, but when looking for it is present in the intensity data.
This part has a slightly lower intensity than the surrounding points.

Craquel: In the craquel plot the large and longitudinal cracks are detected by the method. The trans-
verse cracks of the craquel are not clearly visible. Also the road verge (left in the plot) is detected as
damage.

Longitudinal crack: Both longitudinal cracks are classified as damage. The boundary damage (right
lower corner) is detected as well. Only small parts of the transverse cracks (left) are detected.

Boundary damage: The boundary damage is detected and the whole road verge as well. The longi-
tudinal crack is clearly visible with the method.

Transverse crack: The transverse cracks are difficult to detect with the method. Only small parts of
the crack are detected. The road verge (left) is classified as damage.

Pothole: The pothole is recognised by the method, but in two parts. The road boundary on the right
side of the plot is detected as well as damage.

No damage: In the no damage area only small locations are detected by the method as damage. It is
difficult to validate with the photos if these small areas are damage or not.

Overall damage is detected where damage is found by the road inspector. The road verges and lon-
gitudinal cracks are detected as damage. Only small parts of the transverse cracks are distinguished
by the method. With the current data it is impossible to verify if the small regions identified as damage
by the method are in fact small damages or are misclassified.

5.4.4. Detectable damage size

It is important to know which sizes of damage can be detected with this method. Cloud Compare
(Girardeau-Montaut et al., 2017) is used to measure the sizes of the damage found. This is done for
the Random Forest classification trained with the boundary clustered data. Some parts of a longitudinal
crack of 1 cm width are found. Smaller damages are not found with this method, because it is assumed
that 3 points or less connected pints are noise.

The pothole, with a diameter of 10 cm, is detected as well. Remarkable is that not the entire hole is
found as one damage area, but in two, see Figure 5.12b. This is probably due to the window lengths
used. A shorter window length can “fall” completely in the pothole and no large deviations to the mean
are found at the centre of the pothole/damage.
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Figure 5.16: The small section of the road where the the classification is done with the K-means clustered data. Here is seen
that the road markings (left) are marked as damage.

5.4.5. Unexpexted results

When the classification is done with the K-means clustered data, Figure 5.16, the road markings of
the speed bump are marked as damage. This could be explained by the high intensity of the road
markings and that the Random Forest used mainly intensity based features to do the classification.
Pre-processing the point cloud data to remove high intensity values should reduce this effect.

5.5. Discussion
First, validation data is discussed. Second, the pros and cons of adding two available laser scanners
are given. Third, the K-means clustered training data is reviewed. Next, the relevance of different
features and the use of different window sizes are discussed as well. And the use on other road types
are discussed. Finally, the accuracy of the point cloud is reviewed.

5.5.1. Validation

Validation data

When the results are validated with the validation data from the road inspector, the results are disap-
pointing. For the road inspectors validation data it can be explained by the rough polygons marking
the damage locations. To give a better validation of the method the point cloud and orthophotos need
to be georeferenced exactly such that each point corresponds to the same location in the point cloud
as well as on the photo. The use of orthophotos instead of the 360∘ photos is, in my opinion, easier
to select damage and to draw them. A disadvantage of using orthophotos for selecting damage is that
they are in 2D, while the point cloud is in 3D. Projecting the selected damage onto the point cloud is an
extra error possibility.

An addition to the validation data would add depth and width of the damage. But this require fieldwork.
In this way the sizes of possible detectable damage can be defined. When knowing this, the necessary
beam width can be determined. For example, when smaller damage sizes can be detected right below
the car (where the beam width is minimal) and not 𝑥 meters next to the car, this may be due to the fact
of the beam size or the incidence angle.

Other validation methods

In this project, validation is done point by point. Another method could be to count the amount of large
damage. Another option could be to create a bounding box around each damage in the validation data
and each detected damage. The intersection of union of each damage could used to evaluating the
classification algorithm.
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5.5.2. Improvement of spatial resolution
With this single scanner acquisition method (scanning in profiles perpendicular to the driving direction),
the possibility that a transverse crack falls between two profiles is large, and increases further when
driving faster. On the mobile mapping car two additional laser scanners are mounted, such that the
profiles intersect each other behind the car, Figure 2.3. By adding these scanners to the point data,
the spatial resolution will increase. The disadvantage of adding these two laser scanners is that they
are of a different type (with another accuracy) and the orientations are different (relative to each other
and the profile laser scanner) so a sliding window can not be implemented concurrently for all three
scanners. Also it is important that all three laser scanners are georeferenced exactly the same. The
advantage of using these two extra laser scanners is that the spatial resolution increases. This makes
it logical to use the sliding window algorithm in different directions, such as horizontal, vertical and
diagonal. Transverse cracks and bumps created by tree roots are then theoretically easier to detect.
With a single scanner, data in driving direction is too sparse for the application of a sliding window, as
the distances between the profiles are too large.

5.5.3. Training data
The automated way to create training data in this project was with K-means clustering. K-means clus-
tering is not a robust clustering method. A single outlier may spoil the classification results an give
different clusters. To optimise this step, the input features should only include the most relevant fea-
tures. Also, initial and predefined cluster centres can be supplied to the K-means algorithm to speed up
clustering and to create a higher possibility on more of the same clusters. When distinguishing different
types of damage, K-means clustering did not give the best training data. K-means clustering “chooses”
the clusters automatically, and it is not sure that these will exactly match the different types of damage.
For example, it could also subdivide the core of craquel and the border of craquel.

Hand-made training data makes it possible to distinguish different damage types. This can be done
for the initial training of the Random Forest Algorithm. When the Random Forest Algorithm is used on
a next road, the classification can be checked and new training data extracted for a next survey. In
this case, the training database will grow with multiple detailed damages. A possible problem of this
could be that the different road types are given different feature values. This requires a lot of training
to mitigate effect of different road surfaces. which result finally in a Random Forest algorithm that does
not distinguish damage.

5.5.4. Feature relevance
This project focused on detecting all types of damage on a test road. But no distinction was made be-
tween different types of damage. The confusion matrices of Figure 5.15 shows that boundary damage
and craquel are detected best by this method. Other damage types are more difficult to detect. For
example for rutting another window length is needed to detect deviations with the surrounding area.

To make a detection algorithm for a specific damage type, more training data is needed (with a specific
damage type) on different roads. A specific window length of a feature can be useful to detect one type
of damage, but for another type it is useless. Despite the fact of the high correlation between window
sizes, these different sizes are useful. For example, larger window lengths are useful to detect wide
cracks, while smaller window lengths can be used for detecting small cracks. To increase the efficiency
only the features and window lengths relevant to the damage of interest have to be evaluated. This
decreases the calculation time.

5.5.5. Different road types
Brick roads have lower heights between the bricks at regular intervals. These lower heights can be
seen as damages due the deviations of the surface height in comparison with the bricks. However, no
problems are to be expected on asphalt with different colours.

The test road contained a part of brick road as well. Due the noncontinuous data there, some profiles
where missing (Figure 5.17). Using the workflow on this part give problems.
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Figure 5.17: For a section of the point cloud (profile numbers: 11450-11460) profile numbers missing. The sliding window
algorithm does not work on these sections.

5.5.6. Accuracy of point cloud
As mentioned in Chapter 2 the accuracy of the laser scanner varies between 0.56 mm and 3.08 mm.
But in this project inaccuracies of the IMU and GPS accuracy are neglected. The empirical user range
error of a single receiver GPS system depends for example on the satellite clock, the atmospheric
propagation model and the receiver noise, (van der Marel, 2017). But actual values depend on the
receiver, atmosphere models, time and location. When precise orbits and clocks are used from a
GNSS Service or a differential GNSS set-up are used, cm level accuracy is obtained. This is much
larger than the mm level of the laser scanner. For inside a measurement the errors would be correlated,
but between measurements (for example driving another day) these can not combined only on the GPS
locations.

Also the measurement accuracy decreases with a larger beam width due to interference of multiple
object in the beam footprint. It is needed to define an optimum distribution between the beam size and
the measured area.

5.6. Summary
In this chapter, the results of the method were given. First, the features were described. Here was
seen that the smallest window length of 4 points, has no added value for all features. Overall with
larger window lengths the craquel appears.

The standard deviation of the point density had remarkable results. Lanes with low feature values
appear regularly.

Using the intensity as input gives a different feature values for two asphalt sections.

Creating training data was done in two ways: using K-means clustering as an automatic method and
using a boundary value for a specific feature. With K-means clustering a noisy training set was created,
while using a threshold it gave a clear training data set. Training the Random Forest with the K-means
clustering resulted in decision trees based on features with intensity values as input. While a Random
Forest trained with the boundary training data set created decision trees based on height values and
the standard deviations of the range and point density.

Although the Random Forest classification trained with the K-means clustered data was noisy, damage
locations was detected. This noise was not present when the Random Forest was trained with the
boundary value clustered data. The damage locations were more clear than using the automatic K-
means clustering.

Validation was attempted based on a damage classification by a road inspector, but this was too rough.
So a custom validation data set was made based on the orthophotos and the classification of the road
inspector. With this detailed classification it became clear that the location of the validation data did not
match the point cloud data. Probably this offset has been caused by creating the orthophotos with the
incorrect camera height. This resulted in very low validation values.



6
Conclusion and Recommendations

In this project a method was developed to detect road surface damage with the mobile laser scanner
of IV-Infra. The emphasis of this project was on the profile laser scanner, mounted on the rear of the
car. To answer the main question “How to use the Iv-Infra mobile laser scan data for road damage
detection?” this final chapter will be divided in three parts: data analysis, method and validation.

6.1. Conclusion
6.1.1. Data analysis
In this project the Iv-Infra car was used for the road surface measurements. This car is all-round opera-
ble for detailed measurements. The emphasis was on one of the three laser scanners, namely the Z+F
PROFILER® 9012A. This profile laser scanner measures the intensity and range. This measurements
were converted to x,y,z points, but had the original beam number and profile number as well. The laser
scanner range noise varied between 0.56 mm and 3.08 mm. For darker colours the noise is larger than
for brighter colours. So for asphalt measurements, the noise will be larger.

The distance between profiles depends on the driving velocity of the car. When driving faster the
distances will increase. Driving 30 km/h the profile spacing is around 4 cm while driving 100 km/h the
spacing is already 14 cm. This can be a problem for damage detection if a damage lie between two
profiles. The point density along the profile does not change when the range is constant and the points
lies around 3 mm with respect to each other.

In this project an 800-meter long road section of the R106 near Haarlem, the Netherlands was used as
a case study. Cracks (longitudinal and transverse), raveling, craquel, boundary damages and potholes
have been found by a road inspector on this road section. In total 36 damages were marked. But on
this road other road anomalies have been found as well, like road marks, speed bumps and manhole
covers.

In this study, one damage was used for every damage type (found on the test road). In general,
damage causes deviations in road flatness. In other words they have irregularities in road surface. In
point cloud data the damages can be distinguished by higher deviations in height and intensity relative
to non-damaged road surfaces. A non-damaged area is relative flat in height and has a homogeneous
distribution of intensity values.

6.1.2. Method
To detect road surface damage several techniques already exist. These techniques can be categorised
by the measurement technique, like vibration, image and laser scan based methods. An advantage of
laser based methods is that 3D topography of the road surface can be accurately and quickly captured.
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In this project profile data was used. An advantage is that the data is already organised in profile and
beam numbers. This will be an advantage to the data processing speed, as no sorting is needed.
That is why a sliding window is so efficient for creating the features. In this project, 6 different types of
features are used:

• Absolute deviation from the mean;
• Deviation from the mean;
• Deviation from a line;
• Standard deviation of the deviation of expected range;
• Standard deviation of profile point density;
• Sum of different window lengths.

For the first three features, four different window lengths are used for the sliding window: 5, 21, 41
and 101 points. These correspond with approximately 1.6, 6.7, 13.1 and 32.3 cm. For the standard
deviations a fixed window length of 20 points (6.4 cm) is used. When the height and the intensity were
used as input for the first three features, this resulted in a total of 32 features.

For training the Random Forest algorithm training data is needed. The road inspectors validation data
was not detailed enough, so training data was made by K-means clustering. A disadvantage of K-
means clustering is that every time different training data is generated. This has an effect on the final
results. Also training data was made on a non-automatic way; selecting a threshold value of a feature
based on visual observations.

For the Random Forest algorithm 100 trees were used and each tree had 3 layers. To create indepen-
dent trees, for each tree only a section of the features was used. After classification noise was filtered
out with morphological operations and nearby damage areas were connected to each other. Using
K-means clustered data for training the Random Forest, the workflow is fully automatic.

At this moment there is no distinction between different types of road damages. A possibility would
be to create training data which distinguished the different types of damage and having a severity of
the damage. With this training data the random forest algorithm can be trained to distinguish multiple
damage types and give a value to the damage (for example low, moderate and high). But then the
workflow is no longer fully automatic.

Each road type, such as asphalt road and brick roads, has its own properties. The sliding window can
be used on all road types. But damage classification will be different. For example, on brick roads there
are regular height deviations between the bricks. These regular deviations may have characteristics
similar to damage, introducing problems in the classifications.

6.1.3. Validation
Validation of the method was done with help of the road inspectors damage classification. But when the
overall accuracy and the confusion matrix were calculated, the numbers where low for a classification
method, namely 73%. This was explained by the coarse validation data. The damages detected by
the method are smaller than the validation data. A lot of damage from the road inspector data was not
identified by the method. Also small, new damages were found by the method while the road inspector
did not mentioned them. So another custom, more detailed validation set was made with orthophotos
and the damage locations of the road inspector. But here was the problem that the validation data did
not exactly overlapped the point cloud data due a offset between the data sets. This can explained
by the used orthophotos. The orthophotos were not made with the exact camera height. But it was
used for an optical validation. Visual inspection shows that the 6 damage cases were detected, but
transverse cracks were difficult to detect, due to the low profile density. The space between profiles
is around 4 cm while driving 30 km/h, while the point density in beam direction is around 3 mm. A
transverse crack can easily fall between two adjacent profiles. Adding the two other laser scanners
mounted on the rear will reduce these gaps. But these laser scanners have a different orientation and
other accuracies. The georeferencing needs to be exactly the same for all scanners.

Different sizes of damage where detected with this method. These where measured in Cloud Compare
(Girardeau-Montaut et al., 2017) and the smallest width was 1 cm for a longitudinal crack. Smaller
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Figure 6.1: Left the current situation where a new profile is starting nadir. One colour corresponds with the same profile number.
For using a sliding window, one half of the profiles is shifted one profile number. Right the recommend situation. No shift in
profile numbers is needed due the fact that a profile number on the ground is connected to each other.

damages are not found with this method due the filtering after classification. Another problem occurred
when the damage width is larger, then the detected damage was divided in multiple parts. It would also
be interesting to know to what depth detected damage can be.

6.2. General Conclusions
Using the profile scanner of the Iv-Inframobile laser scanner for road damage detection a sliding window
algorithm is used to extract features. Then K-means clustering was used to create training data for the
Random Forest classification. This is a fully automated and efficient workflow that shows promising
results, but the quantitative validation of this workflow remains difficult due the offset in the validation
data.

6.3. Recommendations
The proposed workflow can be used for damage detection. Although there are some recommendations
apart from the topics discussed in the discussion (section 5.5).

First, an improvement on the validation data is suggested, such that the validation data is aligned
with the point cloud. Then a meaningful point to point confusion matrix and overall accuracy can be
calculated.

Secondly, the accuracy of the point data should be validated. This can be done by taking an exactly flat
road surface and verify flatness of a known flat surface. Also different types of asphalts can be used
to see the differences between them. When the noise is known, test data can be simulated and there
can be experimented with the depth and width of the damage.

Finally, a small recommendation. At this moment the scanner starts a new profile nadir, while there
road is located. Now half of the profiles are shifted one profile. When starting the profile zenith, the
connected profiles on the road have the same number, see Figure 6.1. This can be achieved by turning
the scanner 180∘.
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ABSTRACT:

Road surface anomalies affect driving conditions, such as driving comfort and safety. Examples for such anomalies are potholes,
cracks and ravelling. Automatic detection and localisation of these anomalies can be used for targeted road maintenance. Currently
road damage is detected by road inspectors who drive slowly on the road to look out for surface anomalies, which can be dangerous.
For improving the safety road inspectors can evaluate road images. However, results may be different as this evaluation is subjective.
In this research a method is created for detecting road damage by using mobile profile laser scan data. First features are created,
based on a sliding window. Then K-means clustering is used to create training data for a Random Forest algorithm. Finally,
mathematical morphological operations are used to clean the data and connect the damage points. The result is an objective and
detailed damage classification. The method is tested on a 120 meters long road data set that includes different types of damage.
Validation is done by comparing the results to a classification of a human road inspector. However, the damage classification of
the proposed method contains more details which makes validation difficult. Nevertheless does this method result in 79% overlap
with the validation data. Although the results are already promising, developments such as pre-processing the data could lead to
improvements.

1. INTRODUCTION

Road damage detection is important to determine road safety
and road maintenance planning. The damage of the road sur-
face, like potholes, cracks and ravelling, affects driving con-
ditions such as driving comfort and safety and increases fuel
consumption, traffic circulation and noise emission. Localisa-
tion of these damage can be used for targeted road manage-
ment and maintenance, which contributes to an improvement
of driver safety and comfort (Vittorio et al., 2014).

The traditional method for road condition surveying is that in-
spectors drive slowly on the road looking out for road surface
damages and stop the vehicle when damage is found, do mea-
surements on the damage and mark visually. This is dangerous,
time-consuming and costly (Cheng & Miyojim, 1998; Yu et
al., 2007). For improving the safety road inspectors can evalu-
ate road images. The results are, however, susceptible to human
subjectivity.

Iv-Infra has a mobile mapping car, shown in Figure 2, includ-
ing 3 laser scanners, 10 cameras for 360° photos, a GPS and an
Inertial Measurement Unit. This system has been implemented
successfully for lamp post identification. This paper is an at-
tempt to study the feasibility of using such a system for road
damage detection. In this research a method for road damage
detection is developed using laser scan data of one of the three
laser scanners of the car, a Z+F PROFILER 9012A. This laser
scanner is mounted at the rear of the vehicle such that its profile
lines are perpendicular to the driving direction. It measures the
range and the intensity, along the profile.

There are several advantages of such a system, for example no
road closure is needed for manual road inspection, which in-
creases safety and decreases costs. When the damage detec-

tion can be done automatically no differences due to subjective
judgement are obtained.

This paper is structured as follows. In the following section ad-
vantages and disadvantages of some of the popular alternatives
to manual road condition survey will be discussed. Some de-
tails about the measurement car and research area will be given
in section 3. The methodology will be explained in section 4.
In section 5, results of this method will be given and finally the
conclusion is presented in the last section.

2. BACKGROUND

Several methods have been developed to collect data of a road
surface and determine damage from such data. The methods
can be classified based on how the road surface information
is acquired. This can be vibration, image and laser scanning-
based methods. As this study focuses on investigating the fea-
sibility of laser scanning in detecting potholes, ravelling, crack
and craquelure (Fig. 1), these definitions of these damage are
first presented, and then existing methods for damage detection
are investigated.

Potholes are bowl-shaped holes with various sizes involving
one or more layers of the asphalt pavement structure. Size and
depth can increased whenever water accumulates in the hole
(Tedeschi & Benedetto, 2017). They arise due to freezing of
water in a soil, which results in expanding of the space. Thaw-
ing of the soil can weaken the road surface while traffic can
break the pavement resulting in potholes.

Ravelling is dislodging of aggregate particles due to influences
of traffic, weather and obsolescence of the binder (Kneepens &
Heesbeen, 2017; Tedeschi & Benedetto, 2017)
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Due to traffic load, freezing and expanding of water in asphalt,
cracks can be formed. Two types of cracks (longitudinal and
transverse cracks) were considered in this study. Longitudinal
cracks are cracks parallel to the road, while transverse cracks
are perpendicular to the road.

Craquelure are cracks, which develop into many-sided, sharp
angled pieces. This damage develops at the end of the structural
life of an asphalt pavement, (Bouwend Nederland and emulsie
asfaltbeton, n.d.). Craquelure at the outer 0.25 m of the pave-
ment is named as boundary damage.

Figure 1. Examples of road surface damage.

Next, a survey of techniques for data capture and methods for
processing data to determine road surface damage are present.

2.1 Vibration based methods

Accelerometers, microphones and tire pressure sensors are used
to measure vibrations caused by pavement elevation differences
and roughness. Accelerometers in mobile phones can measure
the relative movement of the car in three dimensions. Exam-
ples are the Pothole Patrol by Eriksson et al. (2008) and Wol-
frine by Bhoraskar et al. (2012). Filters and machine-learning
approaches are used to detect road damages. A disadvantage
of this data acquisition method is that the relative movement of
the car is only influenced by the small contact area between the
road surface and the four tires. So only a small parts of the road
surface along the wheel paths can be analysed.

2.2 Image based methods

There are also methods collecting images from scanning, line-
scan and video cameras of the road surface, which can be used
for detecting the damage. An example is the automated de-
tection system RoadCrack, created by the Australian Common-
wealth Scientific and Industrial Research Organization (CSIRO,
n.d.). This system is based on high speed cameras mounted
underneath the vehicle. These cameras collect high resolution
images of small patches of the pavement surface and they are
consolidated into bigger images of half-metre intervals. CSIRO
(n.d.) stated that the system can detect cracks in a millimetre
order, while driving up to 105 kilometres per hour. This is done

fully-automated with a combination of machine vision and arti-
ficial intelligence (CSIRO, n.d.). Another system based on laser
based imaging is the Digital Highway Data Vehicle (DHDV)
from Waylink (n.d.). They use their Automated Distress Ana-
lyzer (ADA) which produces crack maps in real time.

RoadCrack and DHDV are two commercial systems, which use
cameras as one of their acquisition methods. There are several
more commercial systems, most of which have not published
details on their algorithm.

2.3 Laser scan based methods

One of the advantages of using laser scanning sensors is that
3D topographic of the road surface can be captured highly ac-
curately and quickly. Guan et al. (2014) used mobile laser scan-
ning (MSL) data to detect road markings. From MSL data, they
create intensity images, which they used in a point-density-
dependent multi-threshold segmentation method to recognise
road markings.

Pavemetric inc. developed the Laser Crack Measurement Sys-
tem (LCMS), which consists of two high performance 3D laser
profilers and a camera as detector, in cooperation with govern-
ment and research partners (Laurent et al., 2014). This system
measured range and intensities, and produced 2D and 3D data.

Yu et al. (2007) developed a system using a SICK LMS 200
laser scanner for reconstructing the 3D surface model, cracks
in smaller regions can be identified from a variation of the 3D
depth measurement.

Mertz (2011) used a low cost “laser line striper” to evaluate
the unevenness of the road with a step-operator to detect road
damage. Based on the number of the data points in one line,
significant road damage is found. However, noise data can trig-
ger the larger number of the points in the line, which lead to
incorrect damage to be detected.

3. DATA

3.1 Data acquisition system

As mentioned in section 1, Iv-Infra has a measurement car with
3 laser scanners, 10 cameras for 360° photos, 3 HR cameras in
the bumper, a GPS and a IMU system (Fig. 2).

Figure 2. Measurement car
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In this research, the data from one scanner, the Z+F PROFILER
9012A is used. This is a profile scanner using the the phase-
shift method for measuring the range. An outgoing laser beam
is intensity-modulated by a sine-wave signal. This signal is re-
flected back from an object and the received intensity pattern
is compared with the original transmitted signal. A phase-shift
in the modulated signal is caused by the travelling time of light
forth and back to the measured object. The phase measurement
can be transformed directly into a distance/range: d = c

2∗f ,
with c the speed of light (with atmospheric corrections) in m/s,
f the modulated frequency in Hz.

The profile scanner produces measurement points with x, y, z
coordinates. Each measurement point (x,y,z) is geo-referenced
by the QINSy (Quality Integrated Navigation System) software
(Quality Positioning Services B.V, 2018) such that the IMU,
the GNSS locations, the vehicle odometer, the intensity and
range are taken into account. This is done in the Dutch co-
ordinate system, RD-coordinates. The z component is given in
Normaal Amsterdams Peil (NAP), the Dutch height reference.
Each measurement point contains the following data fields: in-
tensity, range, profile number and beam number. The intensity
is the amount of reflected light, which has no clear unit. The
range is the distance between the scanner and a hit point on the
object surface and it is given in meters. When the laser beam
hits multiple “targets” of different heights, for example when
the laser beam partly hits the road surface and partly falling
into a crack, the laser scanner will detect a combination of mul-
tiple reflections, one for each target. Unfortunately phase-based
ranging devices can never discern all the single vectors but only
measure the resultant vector; the geometrical sum of all vectors.
So the resultant range is a mixture of the distances to the surface
and into the crack (Mettenleiter, M. (Zoller + Fröhlich GmbH),
2019).

A profile number is given to each new line which the profiler
measures. A new profile starts nadir and the laser beam turns
anticlockwise, see Figure 3. The beam numbers are given to
each consecutive point in each profile. In this project, the laser
scanner is configured such that each profile (360°) contains 5100
points (beams), with a spindle speed of 200 rotations per second
(profiles). When the car is driving, a spiral pattern is formed,
illustrated in Figure 3. The distance between each profile de-
pends on the car velocity and the spindle speed of the laser
scanner. In this case, this results in a distance of 4 cm between
the profiles while driving 30 km/h and 14 cm at 100 km/h. The
point spacing along the profile is approximately 3 mm on the
road in nadir direction and does not depend on driving velocity,
but on range.

3.2 Research area

A road section of the R106 near Haarlem city, the Netherlands,
is selected for a pilot survey. This is a touristic and quiet road
where the driving speed is between 30 and 50 km/h. On this
road, 36 road damages are found by a road inspector from a
third party and are categorised as 2 ravelling, 7 craquelure, 2
potholes, 8 longitudinal and 11 transverse cracks and 6 bound-
ary damage, (van den Assem, 2019). Figure 4 shows the dam-
age of the road as classified by a road inspector. For this paper
a subset of around 120 meters of road is used, which includes
6 million points, given in Figure 4. Road sections 1 and 2 are
evaluated extensively in Section 5.5.

L

Figure 3. Scanning pattern of the profile. Each new colour
represents a new profile number. The driving direction is
marked with an arrow. The zoomed in section gives how

the sliding window algorithm is used.

Figure 4. Part of the research area with locations of
damages found by a road inspector. The black squares
show the locations which are discussed in more detail.

3.3 Data selection

The laser beam width defines which sizes of damages can be
measured. A large beam is more likely to hits multiple “targets”
which results in a resultant vector. Therefore, it was decided to
use only beam widths smaller than 5 mm for this research. To
avoid that the beam widths are larger than 5 mm, the theoretic
intersection of the laser beam with a horizontal was calculated
based on trigonometric properties. For this laser scanner the
beam divergence is 0.5 mrad and it has a beam diameter of 1.9
mm (at 0.1 m distance) (Zoller + Fröhlich GmbH, n.d.). In
Figure 5 it can be seen that at 42 degrees the beam width is
below 5 mm, so this is taken as the boundary angle. This results
in around 600 beam numbers on each side of the nadir, when
there are 5100 in one profile.

4. METHODOLOGY

To identify damage of the road surface from MLS data, the pro-
posed workflow includes (I) feature creation, (II) K-means clus-
tering to create training data set, (III) Random Forest classifica-
tion and (IV) Mathematical morphological operations to reduce
small damage points and connect larger damage points.
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Figure 5. Effect of the angle of the beam on the beam
width. A larger angle causes a larger beam width.

4.1 Step I: Feature creation

Various independent features are made with a sliding window
algorithm. A sliding window algorithm means that a window
with size L is moving along the points, in this case along the
profile, see figure 3. In this research the results of the calcu-
lation of a window are given to the centre point of that win-
dow. Notably, feature values of the points strongly depend on
the window size. An overview of the six different features and
their calculations is given.

4.1.1 Deviation from the mean The first feature is to cal-
culate the absolute elevation deviation of the centre point from
the mean of a window of length L. This can also be written as:

∆Z =| ZL+1
2
− 1

L

L∑
i=1

Zi |, (1)

where Z = the point data
and L = the number of the points within the window.

This can be interpreted as the surface roughness, which can be
defined as the irregularities in the surface texture which are in-
herent in the production process and wear (Taylor Hobson Lim-
ited, 2011).

This feature can also be calculated for height values as well as
with the intensity values.

4.1.2 Difference to the surrounding points Another meth-
od is to take the difference with the centre point of a window
and the neighbouring points along the profile. This can written
as:

(ZL+1
2
· L)−

L∑
i=1

Zi. (2)

This feature can be used with the height values as well with the
intensity values.

4.1.3 Standard deviation of range In this feature the range
is calculated for each beam number when the road would be
horizontal and flat. This is done by calculating the angle which
each beam number should have, by taking the fraction of the
beam number by the maximum beam number times 360°. The
range is then calculated by the height of the scanner divided by
the cosine of the above calculated angle. This calculated range
is subtracted from the measured range. This is done because the
range may vary with the angle. Over a window with length 20
points the standard deviation is taken over the range difference.

4.1.4 Standard deviation of number of points With Cloud-
Compare (Girardeau-Montaut et al., 2017) the number of neigh-
bours inside a sphere of radius R are calculated for each point.
In this case a radius of 0.02 metre is taken. Here the standard
deviation is also taken over a window of length 20 points.

4.1.5 Sum of different windows For the deviation from the
mean and difference with surrounding points different window
sizes can be used to calculate the feature. The results of dif-
ferent window lengths are added as a separate feature a new
feature is created.

4.2 Step II: K-means clustering

In this step K-means clustering is used to create a training data
set for the Random Forest classification. K-means clustering,
(Hartigan & Wong, 1979), divides M points in N dimensions
into K clusters so that each point belongs to the cluster with the
closest centroid.

In this study, K-means clustering is used to classify a small se-
lection of the data with known damage into two clusters (“no
damage” and “damage”).

But before the clustering is done, each feature is scaled. This
is done by first subtracting the mean value, and scale it by the
standard deviation of the feature.

Both scaling and clustering are done with the python scikit-
learn module (Pedregosa et al., 2011).

4.3 Step III: Random Forest classification

After clustering, the small training data set can be used for
training the Random Forest algorithm. Random Forest Clas-
sification is a supervised classification method, based on clas-
sification trees (Liaw et al., 2002). A classification tree is a
multistage approach which breaks up a complex decision into
a union of several simpler decisions (Safavian & Landgrebe,
1991). Each node in a tree makes a binary decision, and mul-
tiple decisions in a tree lead to a class label. This is done by
dividing the small training data set in 3 parts, and use 1 part for
training the algorithm.

In this research, the RandomForestClassifier from the scikit-
learn module is used (Pedregosa et al., 2011). After training, the
whole data set is classified by using this random forest classifier.

4.4 Step IV: Mathematical morphological operations

With the Python scikit-image (van der Walt et al., 2014) mor-
phology module, objects smaller than 3 points are removed as
a first step. This is done by projecting the data as a matrix
with the number of profiles as rows and the number of beams as
columns. After the small objects are removed, morphological
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closing is used. Mathematical morphological operations assign
pixels in an image based on the values of neighbouring pixels.
Mathematical morphological closing is a combination of dila-
tion followed by an erosion operation (Smith, 1997). Dilation is
an operation, which changes a “no damage” pixel into a “dam-
age” pixel when a neighbouring pixel is classified as “damage”.
Erosion is the opposite operation of dilation. Erosion gives
“damage” pixels a “no damage” value when the neighbouring
pixels are classified as “no damage”. Erosion decreases objects,
while dilation increases objects, and can merge multiple objects
into one (Smith, 1997). Mathematical morphological closing
removes gaps in connected damage pixels. As neighbouring
pixels a + shape of 1 centre point is used.

5. RESULTS

In this section, results from the proposed method are presented.
Furthermore were the results validated based on the classifica-
tion of a road inspector from a third party with no connection
to this project.

5.1 Features

For this research 22 features are calculated as described above.
For the deviation from the mean and difference to the surround-
ing points four different window sizes (5, 21, 41, 101) are used.
Figure 6 illustrates the correlation between the features. It is
clear that there is a large correlation between different window
sizes of the same feature.

Examples of different features for road section 1, can be found
in Figure 8.

Figure 6. Correlation matrix of the features. L gives the
window size which is used for calculating the feature.

5.2 K-means clustering

K-means clustering is done on road section 1. Results for this
road section are given in Figure 9. From this figure it can be
seen that large longitudinal cracks are classified as damage,
while the transverse cracks are not detected.

5.3 Random Forest

The centre figure of Figure 9 gives the results of the Random
Forest classification and morphological operations for road sec-
tion 1, and Figure 10 gives the road damage classification for
the whole research area. Figure 9 shows that less small objects
are present in compare with the K-means clustering result. The
transverse crack is as well not detected as damage.

5.4 Validation

The validation of the above described method is done with the
help of damage shapefiles of a road inspector from a third party.
The shapefiles are three files with point, line and polygon data.
These data files are converted to raster data with the GDAL
(GDAL/OGR contributors, 2018) tool gdal rasterize. This tool
rasterizes the shapefile (vector geometries) with a pixel size of
0.05 × 0.05 meter. Then the three raster files are combined to
one large raster file.

This validation data is projected to the point data, such that each
point gets a damage value. The areas of connected damage
points are calculated, such that orthogonal and diagonal point
neighbours are included. This is also done for the method data.
Through rasterising the shapefiles, some pixels are no longer
connected to each other, such that the number of damage areas
are increased. This results in 153 connected road damages in-
stead of 20 damages. The results of the method contains 3512
damage areas, most of them are smaller than 30 points. The
distribution of the damage areas (below 30 points) for the vali-
dation data and the method are given in Figure 12. Here it can
be seen that there is a large amount smaller damages detected
for the described method, and less for the road inspector. When
the larger areas (>30 points) are compared, there are 139 dam-
age areas for the method and 62 validation damage areas.

When the intersection of union should be calculated, this would
result in a low number. The intersection of union can be calcu-
lated by the area of overlap divided by the area of union. This
can explained by the large and rough damage areas of the road
inspector. The area of union is large, while the classified dam-
age of the method are detailed and relative small. So for calcu-
lating the intersection of union another more detailed validation
data is needed. This can be done by taking orthogonal photos
of the road and take the road inspector’s classification as guide.

When only method damage points are compared with validation
method points, 79% of the method points are right classified as
damage. However, the question is whether the false positives
really are false positives.

5.5 Cases

In this section, two cases are discussed in detail, road sections
1 and 2 in Figure 4.

In road section 1 (Fig. 10, between profile numbers 19360 and
19600), the proposed method classified only parts as damage,
while the road inspector (Fig. 11) the whole area classified as
damage.

Road section 2 (Fig. 10, between profile numbers 17500 and
17800) contains road markings classified as damage by the pro-
posed method. This can be explained by the higher elevation
of road markings and the higher intensity compared to the sur-
rounding points. Therefore it is important to pre-process the
point data, for example filter out high intensities.
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Also transverse cracks are difficult to detect with this method.
The change that they are not detected is large, because the spac-
ing between profiles is relative large, especially when the driv-
ing speed is high.

6. CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

This paper presented a possible technique for detecting road
damages with a Z+F PROFILER 9012A laser scanner mounted
on a mobile mapping system. This is done by making fea-
tures with a moving window method. Then K-means cluster-
ing is applied to create training data for a Random Forest al-
gorithm. After that classification mathematical morphological
operations are used to remove small objects and connect points
which are close to each other. Validation is done with the help
of a road inspector’s classification. Although this validation
data is too rough to calculate the intersection of union on areas,
when points are compared to each other 79% of the points are
correct classified as damage. However, more research is needed
for analysing the false positives.

Also road markings are classified as damages, probably due to
the high reflectivity and due the fact that road markings are ele-
vated with respect to the road which results in a deviation when
compared to the surrounding road surface.

Due to the spacing between profile lines, the probability is large
that transverse cracks are not detected.

6.2 Recommendations

To create a higher level of accuracy for this method pre-process-
ing of the point data is needed in order to remove road markings
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for example. To remove the K-means classification for extract-
ing training data for the Random Forest algorithm self made
training data can be used. Also a new and more detailed road
classification can be used for validation. This can be done by
making a detailed road damage classification by help of orthog-
onal road photos. Further, a look at the false positives is needed
and a confusion matrix can be used to distinguish which dam-
ages types can and can not be recognised well. A next step in
this research could be to identify different types of damages.
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MOBILE LASER SCAN DATA FOR ROAD SURFACE DAMAGE DETECTION
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Examples	of	damages

An automatic method for road damage
detection is developed using mobile
laser scan data of a Z+F PROFILER
9012A.

Goal

• Subset of regional road, R106
• Near Haarlem, the Netherlands

• 20 damages classified by independent
road inspector.

Test	road
I) feature creation with sliding windows
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∆𝑍 = 𝑍$%&
'
. 𝐿 −+𝑍,

$

,-&
C. Standard deviation of the range
D. Standard deviation of the # of neighbours
E. Sum of different window sizes

II) K-means clustering to create training 
data set,

III) Random Forest classification, 
IV)Mathematical morphological operations 

to reduce small damage points and 
connect larger damage points

Methodology	

• Road surface damage detection is
important to determine road safety and
road maintenance planning.

• It affects driving conditions such as
driving comfort, safety, increases fuel
consumption, traffic circulation and
noise emission.

• Traditional method of of road inspectors
is driving and stop on the road. This is
dangerous, time-consuming and
costly.

• Image based detection is susceptible to
human subjectivity.

Introduction

• Promising results
• Specific maintenance
• Insensitive to human subjectivity
• No road block
• Safety
• Automatic 

Conclusion

• x, y, z locations
• intensity,
• range,
• profile number,
• beam number.

• each profile (360º) contains 5100 points
(beams), with a spindle speed of 200
rotations per second (profiles).

Data

Iv-Infra has a measurement car with 
• 3 laser scanners, 
• 10 cameras for 360° photos, 
• 3 HR cameras in the bumper,
• a GPS and 
• a IMU system 

Car

Features:

Classification:

Results

STD	Number	of	
Neighbours STD	of	range

Mean	of	intensity	
L=41

Sum	of	windows	 Z-
differences

Correlation	between	features

Method	classification:

Section	1:

Validation	set	by	a	human	road	inspector:
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Automatic detection of road damage
from mobile laser scan data.

Goal
• Road surface damage detection is

important to determine road safety and
roadmaintenance planning.

• It affects driving conditions such as
driving comfort, safety, increases fuel
consumption, traffic circulation and
noise emission.

• Traditionally, road inspectors stop on the
road to inspect possible damage. This is
dangerous, time-consuming, costly
and susceptible to human subjectivity.

• Image based detection is

Introduction IV’s		mobile	mapping	system

Results Conclusion

Test	road
0	-	No	Damage

1	-	Craquel

2	-	Raveling

3	-	Boundary	damage

4	-	L.	crack

5	-	T.	crack

6	-	Pothole

• Near	Haarlem,	The	Netherlands
• 20	damages
• 6	cases

Example: craquel

LiDAR DataDamage	types
Pothole Longitudinal	crack Raveling Boundary	damage CraquelTransverse	crack

Method

• 100 trees, 3 layers per tree

• 𝑁	features per tree for independent
trees

III)	Random	Forest	Classification

• Traditional classification is not
detailed enough

• Kmeans Clustering, two clusters

II)	Trainings	Data	Refinement IV)	Morphological	Filtering

• Efficient sliding window approach:

1. Absolute deviation to the mean
2. Deviation to the mean
3. Ort. deviation to the linear least square
4. Std. of the deviation of expected range
5. Std. of the point density
6. Sum of different window lengths

I)	Feature	Extraction	using	sliding	window

L

• Different window lengths to detect
different damage sizes

1.

2.

3.

4.

5.

6.

• New	very	detailed	validation	data	is	necessary

• Promising results

• Targeted	maintenance	planning

• Insensitive	to	human	subjectivity

• No	road	block	necessary

• Fully	Automated

• Computationally efficient

Traffic	sign:	https://www.pngfly.com/png-zx9hdw/
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