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Abstract—Current state-of-the-art electric vehicle charging is
found to have a profoundly disruptive effect on decentralised
grids, increasing prevailing peak demand and causing network
congestion. However, when charging behaviour is aligned with
the needs of the grid, the batteries of electric vehicles can be
used as a distributed resource to provide ancillary services. This
paper proposes an decentralised algorithm that is capable of
exposing the benefits of an electric vehicle fleet to grid system
operators, taking the user preferences of the individual owners
into account and keeping the application lightweight through a
decentralised architecture. The algorithm is implemented in an
agent-based model based on real Dutch smart metering data. The
architecture is shown to decrease local imbalances, offer financial
incentives to electric vehicle owners and maintain a minimum
state-of-charge at departure for individual system users.

I. INTRODUCTION

Electricity systems in the 21st century are in sharp transition.

This energy transition is fuelled by the increased anxiety

about our planet’s sustainability. Mankind’s concern with the

environment has lead to the accelerated adoption of technolo-

gies that try to mitigate the exhaust of harmful gases to the

Earth’s atmosphere. The widespread introduction of plug-in

electric vehicles (PEVs), both hybrid (PHEV) and fully electric

(BEV), is an example of those technologies, as efforts to

reduce harmful human impact can benefit from electrifying

the transportation sector, one of the most polluting sectors.

However, by introducing large numbers of PEVs into our

electricity systems, uncertainty in power management is in-

creased. Charging behaviour can have profound effects on the

quality of electricity supply, potentially doubling a household’s

need for energy [1]. The peak demands that result from the

plug-and-charge standard, still the primary charging mode,

coincides to a large extent with prevailing household peak

demand. As a result, grids suffer from increased occurrences

of congestion and frequency fluctuations [2].

PEVs are not the only distributed resources that have

seen increased usage over the last decades. Technological

advancements and incentive schemes by governments have

led to attractive investment circumstances for decentralised

renewable energy generation (REG), such as rooftop solar

panels, small wind turbines and heat pumps. While these

resources offer a more sustainable outlook for the future

of electricity consumption, their integration in existing grids

can further increase system operation complexity. Consumers

become prosumers and expect reversal of flow for any over-

production from their own generators.

Often, modern energy systems are based on the principles

of transactive energy, i.e. using market mechanisms to manage

generation and load. Market parties, such as transmission sys-

tem operators (TSOs), are tasked with keeping grids in balance

by buying ancillary services. “Ancillary services are those

services provided by generation, transmission and control

equipment which are necessary to support the transmission of

electric power from producer to purchaser. These services are

required to ensure that the system operator meets its responsi-

bilities in relation to the safe, secure and reliable operation of

the interconnected power system” [3]. As a consequence of the

energy transition, problems arise at a decentralised scale, while

our systems try to solve them centrally. With the trends of

the energy transition expected to propagate further, centralised

control will become infeasible in the future.

In this work, we propose a decentralised energy trading

architecture that can exchange the capacity of distributed

resources amongst energy peers. By interconnecting prosumers

and consumers in decentralised smart grids, the control of

ancillary services can be decentralised, leading to a more

efficient and transparent transactive framework. The algorithm

incorporates both individual user preferences and system ob-

jectives, while maintaining system security and grid quality.

In order to validate our ideas, we designed an agent-based

model to simulate patterns of generation and consumption

based on Dutch smart metering data, collected from two

hundred households in the city of Zwolle. The data set consists

of power consumption of households in 15 minute intervals

including solar energy generation pattern. Electric vehicle

agents, for home-work-home trips and at public charging

stations, are stochastically attributed energy demands. We

tested the model using the local energy trading algorithm

for its ability to minimise imbalance and minimise strain

on individual users. The algorithm incorporates both smart

charging and discharging.

To the best of our knowledge, our work is the first study that

investigates a combination of smart charging and discharging
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in smart grid environments, providing a realistic model for

local energy trade based on a decentralised architecture. As a

result of the algorithm’s distributed character, we are capable

of combining both system requirements and individual user

preferences, while maintaining computational feasibility. The

results clearly indicate that the proposed solution lowers local

imbalances, maintains a minimum state-of-charge for system

users and offers financial incentives to electric vehicle owners.

II. RELATED WORK

Demand responsive charging, or smart charging, is an

aggregated control scheme to limit excessive load by PEVs

at times of high network load. [4] models users’ readiness to

change loading profiles by introducing a willingness to pay

(WtP) parameter. The WtP adheres to the flexibility that PEV

owners have considering their travel plans and state of charge

(SOC). In the model user agents adapt their WtP according

to their preferences, resulting in a certain charging speed -

higher WtPs result in higher charging speeds. In [5] a charging

algorithm is constructed based on the usage constraints of

the users. The algorithm builds on [6] and features an aggre-

gated optimisation of the energy price over the day. Through

simulation the algorithm is proven to achieve valley-filling,

shifting the PEV demand peak from the evening to during

the night. [7] developed a charging algorithm that includes

the battery degradation cost. The authors show that a system-

optimal strategy can be found if PEV users make a trade-off

between their own charging costs and local generation costs.

In [8] a method is introduced where aggregators decide on

revenue-optimising energy prices. PEVs then decide on their

charging profile based on their specific charging requirements.

The proposed algorithm does not incorporate load problems,

but does show that social optimum can be achieved through the

use of PEV aggregators. According to [9] pricing algorithms

can account for the intermittent character of some renewable

energy sources (RESs), causing prices to rise in time of

shortfall and thus low PEV load. Waraich et al. show in [10]

that dual tariff pricing mechanisms, e.g. night time discounts,

might cause behavioural adaptation, but is likely to damage

the grid further. The authors conclude that communication

between vehicles and grid is required so that smarter charging

schemes can be introduced. Based on quadratic programming

[11] proposes an algorithm that can minimise power losses

and voltage fluctuations while decreasing peak power. They

acknowledge the associated costs with coordinated charging.

[12] states that smart charging solely targeting valley-filling

causes PEV owners to align their charging during the night,

resulting in additional peak loads. [13] uses load predictions

to calculate desirable charging speeds and durations. The

goals are to minimise overall peak load and to balance the

load profile. The authors show that the algorithm leads to

desirable effects, while only requiring household electricity

consumption data.

According to [14] storage capacity can effectively lower the

operational cost of distributed power systems. There are many

forms of storage capacity, but especially battery technology

seems very promising, as a result of recent technological

advances. These advances will accelerate the adoption of

distributed generation (DG) from RESs, possibly leading to

an increase in the value of renewable energy [15]. As the

value of renewable energy goes up and owners have reasonable

certainty that value is persistent, DG is incentivised. PEVs are

considered to be one of the primary sources for storage [16],

[17]. [12] shows that PEVs are unused for most of the day.

The power invested in the automotive fleet is enormous [18],

thus even when only a small proportion of parked vehicles

can be connected to the grid, they can increase the quality of

power supply, lower system costs and provide mitigation for

the intermittence of renewable energy generation (REGs) [19],

[20].

III. BACKGROUND

As a result of European Union legislation, several European

countries liberalised their electricity and gas markets. This has

lead to competitive sectors being introduced to markets where

aggregated curves for supply and demand result in market

energy prices. Demand is estimated by balance responsible

parties (BRPs) based on assumptions and generalisations.

As a result, mismatches occur between estimated and actual

consumption, causing local imbalances.

Local imbalances are increased as a result of environmental

concerns, driving society towards sustainable technologies.

Such technologies include distributed REG, commonly known

as distributed resources (DRs). The output of DRs are often

hard to predict over an aggregated control area, leading to

bigger estimation errors and thus increasing local imbalance.

With the widespread adoption of sustainable technologies

consumers become prosumers and create dynamic local over-

supply/overestimation. PEVs can be seen as another type

of DRs that can create local undersupply/underestimation,

through their unpredictable charging behaviour. With the most

commonly used charging mode being plug-and-charge, charg-

ing behaviour often increases prevailing peak load conditions.

To balance grids, TSOs are dependent on ancillary service

providers. These electricity producers have quick ramping

generators that can give a balancing supply on short notice.

Ancillary service providers are paid a fixed fee per time unit of

availability and extra for when their service is called upon. The

most interesting of ancillary services for this case is primary

frequency control: the real-time matching of local load and

supply. These services often require small amounts of energy

for brief periods of time, however with the shortest response

times, making it an ideal target service for PEVs as DRs.

IV. OUR PROPOSAL FOR DECENTRALISED ENERGY TRADE

We present an agent-based model (ABM) that can analyse

the effects of PEV charging behaviour when introduced in

a smart microgrid environment. Modelling agents that can

interact with the environment following a set of elementary

rules, can help in understanding emergent behaviour in various

social contexts [21]. By using agent technology, simple car

battery models, grid conditions and social trends can be used



TABLE I: Parameter values for the base, short term and long

term future scenario

Parameter Base scenario Short term Long term

Car owners fraction 0.72 0.72 0.72
PEV owners fraction 0.01 0.25 0.80
REG owners fraction 0.06 0.17 0.57

BEV fraction 0.01 0.80 0.90
Public charging stations 5 15 50

Average occupancy 0.134 0.134 0.134
Number of households 107 107 107
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Fig. 1: Probability distribution of charging amounts in The

Netherlands [22].

to examine the applicability of a PEV fleet as grid support.

This will be tested in the current, a short term future and a

long term future scenario.

A. Data

The base of the ABM is formed by a Dutch neighbourhood.

The ABM features 107 agents simulating households. The

input database was taken from the central energy management

system (CEMS), a tool developed by CGI Nederland B.V. to

balance decentralised grids. The database contained data of

a pilot project (name omitted due to confidentially), where

quarter-hourly smart metering data was collected of household

energy consumption and generation. The simulation span cov-

ers a week, from 5-9-2016 through 11-9-2016. The database’s

historic consumption patterns are compared to the expected

consumption patterns based on electricity load profiles of

2016. Electricity profiles define, for each 15-minute interval,

a fraction of the yearly estimated consumption (YEC). Thus,

each household’s 2015 consumption is summed up. The profile

category E1B was used because the participating households

had different tariffs for day and night consumption. The dataset

also featured generation data from rooftop solar panels, which

was also added to the model.

B. Input parameters and scenarios

To simulate accurate representations of the system in its

current and future states, input parameters and their pro-

gression through scenarios was based on Dutch policies and

governmental plans. Moreover, technological advancements,

such as the introduction of the Tesla Model 3 and battery

technology improvements, were also taken into account. The

parameters are given in Table I.

C. Agents

AnyLogic [23] was chosen as software tool, as it offers

a direct connection with MSSQL server instances, offering a

direct link with the dataset. The model contained four types of

agents as sub-agents of the model’s Main agent. What follows

is a brief explanation of the four agents and their relationships.

a) Household: agents form the backbone of the smart

grid model. Households are generated based on the input data

stored in the CEMS database, thus owning an Id and YEC.

Based on the Id, energy patterns are queried from the database

for every 15 minute interval, i.e. period, of the simulation time

span. The YEC was used to calculate estimated consumption

patterns, that were stored with the amount of consumed and

generated electricity data in watt-hours. In the base situation

107 agents are modelled, but this number can be decreased by

removing households from the back of the list, or increased by

duplicating database entries. Household agents can own a PEV

agent, stochastically assigned by drawing from a Bernoulli

experiment, using the PEV owners fraction as success rate.

Another Bernoulli experiment, based on the REG owners

fraction, is used to model the appropriate REG penetration.

If a household does not have REG, its patterns of generated

electricity are not included in the aggregated curves or trading

algorithms.

b) Charging station: agents simulate the public charging

infrastructure in the grid. Charging stations have a statechart

with two states: unoccupied and occupied. Each agent is

created in the unoccupied state and gets a power output by

drawing from a uniform distribution of 3.7, 7.4, 11 or 22

kW. These outlet powers were based on Dutch infrastructure,

excluding fast chargers [24]. Charging stations can transition

from the unoccupied to the occupied state when a PEV

agent arrives. PEVs arrive at charging stations following an

expression based on the average occupancy. When a connected

PEV’s sojourn time has passed it is removed and the charging

station agent transitions back to the unoccupied state.

c) PEV: agents can either be owned by a household or

connected to a charging station agent. PEVs are either fully,

or hybrid electric, assigned through Bernoulli draw based

on the BEV fraction. PEV models are assigned according

to Dutch penetration [25]. Charging behaviour is modelled

stochastically (see Figure 1) and sojourn times are taken

from [26] for publicly charging vehicles or based on normal

distributions.

d) The aggregator: agent executes the trading algorithm.

It takes all households and connected PEVs into account and

spreads charging or discharging allocation equally, following

a set of logical operators.

D. Algorithm

The core of the model is formed by the trading algorithm

that enables local exchange of energy between EVs and

households. At every time step t, the grid’s conditions are

analysed by looking at the actual and estimated consumption

and the generation of each household i ∈ I , respectively Ea
i,t,

Ee
i,t and Eg

i,t:



T∑
i=0

[
Ee

i,t − Ea
i,t +max

(
0, Eg

i,t − Ea
i,t

)]
. (1)

The algorithm checks whether the grid is in under- ((1)

<0) or overestimation (v.v.) and if household agents are

either supplier or consumer of additional energy. In case of

underestimation, at each t, for every PEV that has an active

grid connection j ∈ Ja it is tested if a full battery is achievable

considering its remaining sojourn time tsojj,t , its SOCj,t, max

capacity Cmax
j and outlet capacity Pj . If so, the PEV is added

to the discharging set Jd:

{j ∈ Jd | j ∈ Ja and (1−SOCj,t)∗Cmax
j < Pj ∗tsojj,t }. (2)

The available energy for grid compensation is then:

Jd∑
j=0

min(Pj ∗ tstep, (SOCj,t − SOCj,min) ∗ Cmax
j ), (3)

where SOCj,min is the minimal desired SOC of the respec-

tive owner. The result of (3) is then allocated equally amongst

the consuming households. In case over overestimation, a

similar calculation is done based on the available energy from

REG and the charging requirements of Ja.

E. Criteria

There is a clear distinction between performance on a

system level and on the individual user level. From a system’s

perspective the main purpose of local trading is to match

estimated and actual demand, thus avoiding local imbalances

and the need for expensive intra-day market trading. This

is measured using the deviance between estimation pattern

and emerging total consumption. The algorithm requires input

from its users. Thus, an important barrier for the technology’s

success is the willingness of users to adopt the system and

adapt their energy consumption routines. Based on these

considerations, charging sessions costs will be used as a

means to test performance from a user’s perspective. It is

likely that during times of underestimation the system would

benefit from discharging PEVs, which introduces the risk of

empty batteries. If this would be the case at PEV departure,

users might become reluctant to partake in local trading.

Therefore, the performance from a user’s perspective will also

be measured using the SOC at PEV departure.

V. SIMULATION RESULTS

Figure 2 shows a single run of the base scenario. It is

evident from the shaded area in the figure that, in this specific

run, PEV demand increases imbalance during periods of

underestimation and has the potential to change situations of

overestimation into conditions of underestimation. To test the

influence of stochastic variables in the model on simulation

behaviour Monte Carlo experiments were conducted with 30

runs using unique simulation seeds. Over all runs, for each

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Simulation time [min]

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

El
ec

tri
ci

ty
 [W

h]

EV Charging
Estimated consumption
Generated
Household consumption
Total consumption

Fig. 2: Output of a single run of the ABM in the base scenario

(6% REG penetration, 1% PEVs).
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Fig. 3: Simulation results of the Monte Carlo experiment in

the base scenario with local trade.

15 minute interval, the minimum, mean and maximum total

consumption is collected (see Figure 3).

When the local trading algorithm is activated (Figure 3), it

is shown that using local energy trading can help in balancing

decentralised grids. When the minimum consumption equals

the estimated consumption the algorithm is able to perfectly

match the grid’s consumption to what was expected by a

BRP, thus ruling out the need for intra-day trading. Moreover,

by looking at the mean total consumption one can see that

by local energy trading, shown by the shaded red areas, the

grid’s consumption more closely matches the BRP’s estimation

than the household consumption. However, the effects are only

minor.

By looking at the results of the Monte Carlo experiments for

the short and long term future, we can conclude the aforemen-

tioned positive effect increases with growing numbers of PEVs

and increasing shares of REG. For each of the three scenarios

two samples were collected: the mean deviance of 30 runs

for the non-trading and trading case. Using an independent

samples t-test the significance of the reduction in estimation

deviance was shown, see Table II.

Moreover, it was found that not only does the deviance

decrease under the influence of the trading algorithm, but

also that PEV demand peaks shift to fixed periods during

the day, namely 8:00 in the morning. The periodicity of this

pattern shift is examined using a cross correlation analysis.

From Figure 4 it can be concluded that there is a strong

autocorrelation when the deviance is shifted 96 time steps,

corresponding with a one-day shift. Moreover, correlation is

slightly higher in the trading scenario, depicted in black, and



TABLE II: Mean deviance taken from Monte Carlo experi-

ments.

Scenario Trade [Y/N] Mean [Wh] Reduction Significant

Base
No 7376

1.4% Yes
Yes 7272

Short term
No 9698

4.1% Yes
Yes 9298

Long term
No 15214

10.2% Yes
Yes 13660

TABLE III: Financials taken from short term future scenario

(N = 50).

Scenario Trade [Y/N] Mean [] Difference Significant

Mean costs
No 1.45

12% Yes
Yes 1.63

Max costs
No 9.73

11% No
Yes 10.83

Mean earn
No 0.00

N.A. Yes
Yes 0.69

Mean net
No 1.45

-34.5% Yes
Yes 0.95
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Fig. 4: Cross correlation plots of the base scenario with and

without local trading.

there is less noise between one-day shifts. Therefore, it is

concluded that predictable periodicity is more significantly

present as a consequence of the algorithm, allowing grid

operators and BRPs to more accurately estimate the PEV peak

load.

Through an independent samples t-test the effect of trading

on financial indicators is tested (see Table III). 30 runs of

the short term future scenario are performed with and without

trading, creating the two samples. The test is performed for

the mean and max charging sessions cost and mean charging

session earnings and net costs. The costs per charging sessions

increase as a result of the algorithm. However, because the

trading algorithm not only imposes smart charging, but also

discharging, PEV owners can benefit from selling energy from

their batteries back to the grid. As a result, the net costs show a

statistically significant decrease. There is no significant effect

on the maximum charging sessions costs, thus extreme costs

are a result of stochastic energy demand of individual users,

rather than of local trading.

Considering the nature of the input data this could be

explained by the assumption of fixed tariff. The households

participating in the JEM demo were incentivised to move their

generation from periods with high prices to time spans with

low prices. This leads to underestimation at low prices and

overestimation at high prices. Due to the trading algorithm

this results in PEVs charging at high prices and discharging

at low prices, resulting in underestimated financial incentives

for individual system users.

Figure 5 shows three battery curves, one for each of

the three simulation scenarios. The curves show a recurring

pattern of maximum charge in the disconnected state, a sharp

decrease at arrival and between arrival and departure charging

and discharging occurs interchangeably. While in the base

scenario the battery is fully emptied and recharged several

times overnight, the curves in the future scenarios show much

milder behaviour. This is a direct result of the number of PEVs

available to the grid for balancing efforts. Spread out over a

larger number of batteries, the impact per individual battery

is less severe. This also indicates that with an implementation

in the current system, or sub-systems with low penetration

of PEVs, an absolute minimum battery level should be main-

tained, so batteries are never empty in case of emergency trips.

However, the effects on battery degradation should be explored

further. Overall, the algorithm is capable of maintaining a

high SOC at departure, which is shown by the following very

narrow 95% confidence interval: 0.998 < μSOC < 0.999. This

interval was generated from 30 runs in the short term future

scenario.

VI. DISCUSSION AND FUTURE WORK

We proposed a decentralised architecture that can enable

local energy trade. The algorithm is able to decrease the

deviance between estimation and actual consumption and thus

help with load balancing in smart grids. Considering that the

ABM shows that balancing efforts can amount to 25% of

initial estimation, a reduction of 4.1% will have a large im-

pact. Furthermore, the algorithm can successfully incorporate

individual user preferences, such as PEV minimum SOC and

financial incentives, in the allocation. This could improve the

effective integration of DRs such as REG and PEVs, possibly

leading to increased adoption of such technologies. In other

words, the energy transition is accelerated.

The ABM covers only home-work-home trips in the case of

household-owned PEVs. By stochastically assigning departure

and arrival times accordingly, the resulting charging behaviour

offers a good start for scenario analysis, however does not fully

capture real-life charging behaviour. In future work the ABM

can be expanded to cover for instance trips made by stay-at-

home parents, another large PEV user group. The availability

of more local storage during the day could further enhance the

benefits. Moreover, it is assumed that all PEV owners partake

in the system, resulting in an underestimation of the amount

of PEVs that would be required for the benefits we found.

A user participation questionnaire, much like those conducted

for the JEM project, could provide more certainty.
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term future scenarios.

For simplification reasons only rooftop solar panels were

included as sources of REG. In the smart grid of the future

other sources, such as wind and geothermal, will make up

a significant share of the total sustainable generation profile.

Their output patterns are different from that of solar energy

and can therefore have different effect on the performance

of the proposed solution. For example, the highly variable

nature of wind energy causes even more uncertainty in power

management, something the local storage offered by PEVs

could mitigate.

Typically, state-of-the-art energy markets do not allow for

direct sales between consumers, but are only open to aggrega-

tor parties, such as BRPs, that represent them. The distributed

character of the work we propose is one of its unique selling

points. Therefore, future effort should focus on how a technical

implementation could be achieved. At the moment we are

working on an implementation of the design using blockchain

technology, which promises both the required decentralised,

distributed computation, as well as security of transaction

validity.
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