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Surrogate-guided optimization
in quantum networks

Check for updates

Luise Prielinger 1,2 , Álvaro G. Iñesta 1,2 & Gayane Vardoyan1,2,3

When physical architectures become too complex for analytical study, numerical simulation proves
essential to investigate quantum network behavior. Although highly informative, these simulations
involve intricate numerical functions without known analytical forms, making traditional optimization
techniques that assume continuity, differentiability, or convexity inapplicable. We introduce a more
efficient computational framework that employs machine learning models as surrogates for the
objective function. We demonstrate the effectiveness of our approach by applying it to three well-
known optimization problems in quantum networking: allocating quantum memory across multiple
nodes, tuning an experimental parameter in every physical link of a quantumentanglement switch, and
finding effective protocol configurations in a large asymmetric quantum network. Our algorithm
consistently outperforms Simulated Annealing and Bayesian optimization within the allotted time,
improving results by up to 29% and 28%, respectively. Our framework will thus allow for more
comprehensive quantum network studies, integrating surrogate-assisted optimization with existing
quantum network simulators.

Quantum network infrastructure has the potential to be integrated with
today’s Internet, serving entangled states to users who request them1. These
networks will enable a number of applications provably beyond the cap-
abilities of classical technologies alone. Examples include verifiably secure
communication2,3, advanced sensing tasks4,5 and blind quantum
computation6,7, among others. For quantum networks to achieve their
intended potential, diverse solutions for all layers of the system stack have
beenput forward in recent years.At the physical layer, for instance, so-called
quantum repeaters have been proposed to assist with quantum information
transport over long distances (see e.g., ref. 8 for an in-depth review on
quantumrepeaters).At the software layer, theprimary task involves creating
efficient protocols that coordinate and control the intricate physical pro-
cesseswithin thequantumnetwork systemstack9. Extensive studies10–17 have
been conducted on both software and hardware components of quantum
networks, utilizing analytical tools and numerical simulations to find fea-
sible architectures and bring quantum network technology a step closer to
the real world. These efforts include the use of optimization and machine
learning techniques, which have been used, for example, to design new
entanglement distribution protocols18–20. While these studies are greatly
informative, they generally assess only small-sized networks or operate
under simplified assumptions, such as ideal hardware models or highly
symmetric network typologies.

In this study, our primary goal is to utilize a surrogate-assisted opti-
mization workflow to discover effective protocol and hardware parameter

values under realistic conditions. To this end,we extendprevious efforts and
integrate comprehensive numerical simulators, such as NetSquid21 and
SeQUeNCe22 in our framework. In essence, a surrogate model23 is an
approximation of a given objective function, which is built using data
obtained from evaluations of the latter. Importantly, instead of directly
optimizing the computationally expensive objective function—a common
approach in global optimization techniques such as SimulatedAnnealing or
genetic algorithms (see ref. 24 for a review of numerical optimization
methods)—the surrogate model guides the iterative optimization process.

Common surrogatemodels likeGaussianprocesses25 (used inBayesian
optimization) and neural networks26 are based on complex theoretical fra-
meworks. Gaussian processes, for example, depend significantly on the
choice of a kernel function and they are known to be most effective in
smaller, continuous search spaces with fewer than 20 variables27. Neural
networks, which consist of various specialized layers28, require substantial
data for optimal performance.Additionally, the outputs from these complex
models are oftenmore difficult to interpret compared to those from simpler
models29. As a consequence, we opted for two well-known but less complex
models—Support Vector Regression (SVR)30 and Random Forest Regres-
sion (RF)31—due to their explainability, computational efficiency, and
straightforward evaluation. Surrogate models have been utilized since the
late 80s and ever since applied to various scientific domains, such as che-
mical engineering32,33 and material science34. In quantum sensing, Bayesian
optimization has been utilized for quantum detectors35 and in quantum
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networking to calibrate experimental parameters36. To the best of our
knowledge, surrogates have not yet been applied to any software component
of quantum communication.

We apply our framework to three quantum network use cases simu-
lated in NetSquid21, SeQUeNCe22 and OptimizingCD37, respectively. Our
contributions can be summarized as follows:
• Optimization integrating scientific software: We integrate detailed

simulations using established scientific software in our investigated use
cases. This approach allows us to avoid reliance on purely theoretical
predictions, which are often specific to certain architectural or software
stack characteristics like node connectivity or expected protocol
behavior13,18,22.

• Handling of many parameters: The scenarios we test involve up to 100
variables. For the largest variable set, reference methods perform
comparably to random search, whereas our approach significantly
outperforms both. This capability is largely due to the simplicity of the
SVR andRFmodels utilized, which exhibit only linear time complexity
with the number of variables38.

• Addressing multiple objectives: In a quantum network where different
parties might have their individual quality-of-service goals, our
approach allows to determine an empirical estimate of the Pareto
frontier. Using this solution set, we can assess the effectiveness of
parameter settings in the context of multi-objective optimization.

• Diverse applicability: The selected use cases present well-known
optimization challenges of distributing entangled states in quantum
networks. The solutions we find introduce competitive candidates to
existing solutions found in literature. Furthermore, we test the
applicability of our approach on a range of different entanglement
distribution protocols, including on-demand and continuous-
distribution protocols37,39.We investigate relevant problem scenarios
in quantum networking in order to showcase the versatility of our
approach, which we term simply Surrogate. For this purpose, we
evaluate the efficiency of Surrogate using different utility functions. In
these detailed problem scenarios we compare to another model-based
approach, termed Bayesian optimizer, which is developed by Meta
(Meta)40. Furthermorewe compare to a traditional global optimization
algorithm termed Simulated Annealing41 as well as to a uniform
RandomSearch as baseline. In the investigated scenarios, our approach
consistently outperforms the selected reference methods by up to 29%
within the allotted time limits.

Results
Network utility
Consider a vector function f ðxÞ : X ! Rmf of arbitrary size mf 2 N
describing a performance metric of a quantum network (e.g., the average
number of entangled states provided to a pair of nodes). The input to this
function x = {x1, x2, …, xN} is a set of network parameters, which may
include both fixed (non-configurable) as well as tunable features. A variable
xp of a network configuration x is defined on a domain Xp. Together, the
parameter domains form the input space:X =X1 ×X2 ×⋯ ×XN. A variable
xp canbeof anydatatype—for continuous anddiscrete values,Xp is confined
within some minimum-maximum bounds, xmin

p and xmax
p , respectively,

while ordinal and categorical parameters are defined as value sets.
Based on f, we can formulate an objective function U(f, x) reflecting

the way in which a quantum network perceives utility13. Essentially, while
f(x) describes some output of the network, the function Uðf ; xÞ :
Rmf ×X ! Rm,m 2 N, assesses how much utility can be derived from
this output. Although U can in principle represent any general objective,
in our analyzed use cases, one element of U, denoted U(i), consistently
represents the utility perceived by a network user i. We will explore some
relevant examples of utility functions U based on distillable
entanglement42, request completions22, and virtual neighborhood size37.

In a quantum network, many processes are inherently probabilistic.
For example, creating entanglement between nodes often requires multiple
attempts following a geometric distribution8. As a consequence, we assume f

and thus also the utility U(f, x) to be stochastic functions. We denote the
utility perceived by user i with a random variable U(i)(f, x) with expectation
valueE½U ðiÞ�. As f(x) is evaluated numerically, we retrieve a sample fuðiÞj gn

j¼1
vian simulation runs to estimate the expectedbehaviorE½U ðiÞ� for eachuser
iwith the samplemeanE½U ðiÞ� � �U ðiÞðf ; xÞ ¼ 1

n

Pn
j¼1 u

ðiÞ
j . In thiswork, our

optimization objective is to maximize the aggregated utility of the network,
i.e., the sum of all individual user utilities.

Definition I.1. (Utility maximization over configurable variables).We aim
to maximize the aggregated utility over all users by configuring variable
values within the tunable portion Xconf of the domain X, Xconf ⊆ X. This
results in the objective maxs

Pm
i¼1

�U ðiÞðf ; sÞ; where s∈Xconf. Here, the set
X⧹Xconf denotes all parameters which are fixed.

Surrogate-assisted search
We present our optimization framework depicted in Fig. 1, which pro-
gresses through successive cycles t∈ {0, …, T}. It begins by randomly
generating k0 initial input sets fs1; s2; . . . ; sk0 g from the search domain
Xconf,where each set is a unique configurationof parameter values.Then, for
each input set si, a quantum network simulation is run n times to produce
mean utility outputs ½�U ð1Þðf ; siÞ; � � � ; �U ðmÞðf ; siÞ�. Each of the n runs lasts
Tsim simulation time units. The input configurations together with the
associated utility outputs form the initial dataset, concluding the first
cycle, t = 0.

In the subsequent cycle, t = 1, the algorithm undertakes the first
acquisition process which involves two stages: model training and model
evaluation. Initially, the two machine learning models (SVR, RF) are eval-
uatedusingfive-fold cross validation; thereby themodels are trainedon80%
of the dataset (the training set) and evaluated on the remaining data (the test
set). Their performance is measured using themean absolute error between
predicted and actual values in the test set. The model with the lower error
progresses to the next phase: model evaluation. To this end, for eachstopi of l

so far best performing configurations fstopi gli¼1, a numberNt of points in the

neighborhood fstopi;v g
Nt

v¼1
are selected. The latter is achieved via sampling

from truncated normal distributions centered around each parameter value
in xp 2 stopi . Formally, parameter values are sampled from

N truncðμp; σpðt; dÞÞ. These distributions have mean μp≡ xp, standard

deviation σpðt; dÞ ¼ γðt; dÞðxmax
p � xmin

p Þ=2, and are truncated at the

bounds xmin
p and xmax

p (see Section “Network utility”). We gradually shift

from exploration towards exploitation by progressively narrowing the
standard deviation using a monotonically-decreasing transition function
γ(t, d) depending on the elapsed cycles t and an exploitation degree d ≥ 1.
This adjustment ensures that as eachcycle progresses, the focuson exploring
unknown points inXconf turns to exploiting known good areas of the search
space. Furthermore, the number of sampling points increases incrementally
with each cycle t. This approach allows for less costly computation during
early cycles, when the models’ performance is lower, and progressively
dedicatingmore timeas themodels improve andaccumulate knowledge; see
Supplementary Note 1 and Supplementary Note 2 for further details on
exploration and acquisition strategies, respectively.

Once thepoints fstopi;v g
Nt

v¼1
are passed to amodel, it predicts utility values

based on its current knowledge, and the configuration associated with the
highest utility is returned. This leads to l new configurations fsnext1 ; :::; snextl g
to be evaluated by the simulation. Finally these parameter sets and asso-
ciated simulation outputs are added to the dataset, k1 = k0+ l, which
completes the first optimization cycle t = 1. This cycle repeats until a time
limit ormaximumnumber of iterations, t = T is reached. By default, k0 and l
are chosen according to the number of compute resources available for
parallel execution. Table 1 summarizes the framework parameters used.

Every algorithm comes with its limitations: heuristic approaches, like
the one described, do not guarantee a globally optimal solution but instead
provide approximations once a termination criterion ismet24. This criterion
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is primarily dictated by the available computational resources. For example,
considering the computationally demanding nature of our simulation
functions, we set the termination criterion to not exceed T = 100 optimi-
zation cycles. Further, wemust rely on seeds to guarantee reproducibility as
both the simulation as well as the machine learning models used in the
acquisition process are inherently stochastic. In addition, selecting settings
for workflow parameters like the degree of exploitation d is crucial and
requires understanding their specific function (see Supplementary Note 1).
Finally, the numerical effort to train and evaluate machine learning models
makes our approach naturally less suitable for problem instances that are
analytically tractable.

In the following section we will investigate different optimization use
cases in quantumnetworking and show applicability as well as demonstrate
efficiency of the described approach.

Use cases
A quantum entanglement switch. A quantum entanglement switch
(QES) is a canonical example of a simple quantum network11,13,21 where a
set of user nodes is connected to a central hub that distributes entan-
glement among them. We assume that each node is equipped with
memory qubits and is connected to the QES via a fiber optic link to
generate so-called link-level entangled states, henceforth referred to
simply as links. In our setup, one node is designated as a server, while the
remaining nodes operate as users, see Fig. 2. TheQES’ purpose is to create

a direct entangled connection between the server and each of the users,
which we term end-to-end link, in the form of bipartite entanglement.
The QES accomplishes this using a process called entanglement
swapping8, during which quantum operations at the switch transform
two links between a user and the server into an end-to-end link. After
generation, the state is transferred to available memory qubits in each
node’s buffer of sizeB.When the buffer is full, the oldest state is discarded.
The switch generates end-to-end links in this manner for five simulated
seconds Tsim = 5s.

We assume that link-level entanglement generation uses the single-
click scheme43, wherein each physical link l has a midpoint station with a
beamsplitter and two photon detectors. Nodes contain a communication
qubit entangled with an emitted photon. When these photons arrive at the
midpoint station, they are measured to generate an entangled state between
the communication qubits. Under high photon losses, this scheme shows a
known tradeoff between entanglement generation rate and the quality of the
generated state (fidelity). This tradeoff stems from an experimental para-
meter, the so-called bright-state population αl. A higher αl increases photon
emission but at the same time degrades entanglement fidelity. Conse-
quently, the success probability pgen,l of entanglement generation on link l
grows with αl, while the fidelity Fl decreases as Fl = 1− αl. We approximate
this physical behavior at each physical link using NetSquid’s depolarizing-
error model. A depolarizing error is a type of quantum error that, with a
certain probability pdepol,l∝ αl, transforms the photon’s polarization state
into a completely mixed state. For further details on how we model the
physical quantum states based on ref. 13 and ref. 21 we refer the reader to
Supplementary Note 4.

Our goal is to balance the rate-fidelity tradeoff across all N physical
links sα ¼ fαigNi¼1, in order tomaximize utility served to all users. Following
the approach of ref. 13, utility is assessed based on distillable entanglement,
which quantifies how many degraded entangled pairs can be restored to a
state useful for quantum communication tasks.

Definition I.2. (Utility based on distillable entanglement). A user’s utility
U(i) is based on the average end-to-end entanglement rateR(i) and fidelity F(i)

of end-to-end states established with the server. To calculate a user’s utility,
the fidelity F(i) is passed to the so-called “yield of the hashing protocol" DH

Table 1 | Parameters used in surrogate-assisted search

Symbol Description

T Optimization limit, can be specified as wall-clock time limit or
maximum number of optimization cycles

t Elapsed time t ∈ [0, T] or cycle t ∈ {0, …, T}

n Number of simulation evaluations used to compute �U

l Number of points explored in an optimization cycle

d Exploitation degree (see Supplementary Note 1)

kt Number of points in the dataset at cycle t, where kt+1 = kt+ l and k0 = l

Tsim Simulation time of the quantum network model (specific to use case)

Fig. 1 | Simplified surrogate-assisted workflow. After importing the quantum
network simulation, we generate k0 different network configurations fs1; . . . ; sk0 g
from the search domain. Execution of the quantum network simulation using the
latter yields the initial training data of parameter sets {si} along with their objective
means ½�U ð1Þðf ; siÞ; � � � ; �U ðmÞðf ; siÞ�. Machine learning models train on the dataset

and their performance is evaluated. In the acquisition process, the best model in the
cycle predicts utility values for sampled configurations. Then, the parameter set
associatedwith the highest predicted utility is passed to the simulation, executed, and
the outcome appended to the training data. This cycle repeats until the optimization
concludes upon reaching a wall-clock time or number of cycles T.
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which serves as a lower bound on distillable entanglement2:

U ðiÞðsαÞ :¼ log RðiÞðsαÞ � DHðFðiÞðsαÞÞ
� �

;

with DHðFÞ :¼ max 1þ F log2F þ ð1� FÞlog2 1�F
3 ; 0

� �
:

ð1Þ

Using this definition, we can write our objective to maximize the sum
of all user utility values U(i) as

max
sα

Pm
i¼1

U ðiÞðsαÞ; ð2Þ

where m denotes the number of users.
Although this problem can be solved analytically for a small number of

users13, the objective function can be non-convex, complicating the appli-
cation of analytical or even algorithmic optimization techniques, such as
gradient ascent. Using simulation in combination with surrogate optimi-
zation might thus provide a meaningful solution while mitigating these

difficulties. We approximate average end-to-end fidelities �FðiÞðf ; sαÞ as well
as average rates �RðiÞðf ; sαÞ using n runs of our simulation f(sα) implemented
with NetSquid. We then use these quantities to compute sample means of

user utilities �U ðiÞðf ; sαÞ.

First, we apply our surrogate workflow to a small QES network serving
two users and a server; we thereby recover a selection of results from the
analytical study in ref. 13, described in Supplementary Note 4.

Next, we extend the setup to one involving five users located at dif-
ferent distances from the switch: 10, 20, 30, 40, and 50 km. The server is
located close to the switch, at a fixed distance of 5 km. We conduct a
comparison to reference methods (Section “Baselines”) involving ten
independent repetitions for each optimization method. From these repe-
titions,we select the solution that exhibits the best performanceaccording to
the objective function. A subsequent simulation of these solutions is then
carried out with nexec = 103 runs each. These additional runs ensure that the
collected statistics (e.g., mean of aggregated utility) are sufficiently repre-
sentative of the distributions that give rise to them. Figure 3a depicts the
resulting fidelity �FðiÞ as well as the average rate �RðiÞ of end-to-end links per
user i during the simulated time Tsim. Simulated Annealing and random
search tend to find solutionswith either relatively high rates but low fidelity,
or low rates but high fidelity for each user. For example, consider the
solution of simulated annealing: user 0 receives on average 42.6 links
per second (link-generation rate) which sums up to 42.6[1/s] × 5[s] ≈ 213
links in total per simulation execution.These states are generatedonaverage

Fig. 2 | Quantum Entanglement Switch (QES) serving two users and a server.
Each fiber link is equipped with a midpoint station (drawn as orange diamond) that
measures photons entangled with communication qubits located at nodes. After an
entangled state is generated, it is immediately transferred to a free memory qubit in

the buffer (shown with brown arrows) along with a time stamp (small blue clocks).
Should the buffer be full, the oldest state is discarded, and the memory receives the
fresh link. The switch can only execute one entanglement swap at a time. By default,
the userwhoholds the oldest link (smallest time stamp) is given priority for the swap.

Fig. 3 | Utility maximization results for five users at varying distances from the
switch. The left two panels show the average rate and fidelity at which each user
receives end-to-end links with the server, as well as the resulting utility values based
on distillable entanglement. Each marker presents the mean (and standard error) of

nexec = 103 simulation evaluations (standard error is smaller than marker size). The
bars on the right present the aggregated utility over all users. Parameters used in the
surrogate workflow: exploitation degree d = 4,maximumexecution timeT = 30min,
n = 20 simulation runs.
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with a fidelity of 0.88, resulting in a utility of 2.5 for user zero. Doing the
same computation for users 1–4 and aggregating results gives 10.9 overall
utility, which is the lowest outcome of all methods. In contrast, both the
Bayesian optimizer developed by Meta (Meta) and our surrogate-assisted
approach (Surrogate) strike a more meaningful balance between rate and
fidelity, resulting in higher aggregatedutility, depicted in Fig. 3b.Overall,we
observe slightly higher utility outcomes of the surrogate workflow com-
pared to the reference methods: 0.5%, 4.3%, and 3.3% for Meta, Simulated
Annealing, and random search, respectively. As expected, Meta and sur-
rogate optimization show similar performance. This similarity arises
because Bayesian optimization is a method well-suited for problems
involving only continuous variables and fewer than 20 variables27.

While here our algorithm does not provide a drastic improvement
compared to baselines, the goal of this use case is to show that our surrogate
workflow enables a straightforward transition from a simple and highly
symmetric configuration to amore complex setup, whichmay no longer be
amenable to analytical or exact solutions. In the next use case, we investigate
a metropolitan-area quantum network involving a more comprehensive
system stack and nine discrete hardware parameters to configure; this leads
to a significant divergence between the Meta algorithm and our surrogate
approach.

Memory allocation in a metropolitan quantum network. We study
another previously investigated quantum network setup: a metropolitan
network under construction in Chicago (United States), depicted in Fig. 4.
The network we simulate is modeled using the software package
SeQUeNCe22. All m = 9 nodes of the quantum network are users, each
possessing at least ten memory qubits qi≥ 10, which are modeled based on
single erbium (Er) ions in crystal44. Nodes are capable of generating
entanglement with their immediate neighbors using dedicated midpoint
stations at each optical link. Nodes also have the ability to perform
entanglement swapping and execute the BBPSSWpurification protocol45 to
enhancefidelity. In this scenario, utility ismeasured by the network’s ability
to meet entanglement requests issued by user pairs. One user at a time
selects another user uniformly at random and submits a request to its
network manager. The network manager identifies the shortest route and
announces the request to the nodes’ network managers on the route. Each
request specifies three key requirements: (1) the desired targetfidelity of the
end-to-end entangled state chosen uniformly at randombetween 0.8 and 1;
(2) a number of memory qubits q in all nodes along the path, selected
uniformly at random from f10; . . . ;minðqinit2 ; qrespÞg, where qinit and qresp

are the number of qubits at the initiating and responding node, respectively,
and (3) a required period between 1 and 2 s to consume the entangled state.
If a request fails (for example, due to insufficient end-to-end fidelity) the
request is attempted requesting a different randomly selected number of
memories until success. Note, that even if all requests failed during simu-
lation time Tsim, the outcome still provides valuable information to the
optimization process. This outcome indicates that the chosen allocation is
poor; and it naturally prompts the algorithm to explore more promising
memory allocations.Nevertheless, allocating e.g., zeromemories to all users
is not meaningful as we already know the number of completed requests
will be zero. To prevent such trivial cases, we impose theminimumnumber
of memories per user (qi≥ 10), as stated above. This initial condition
ensures that the algorithm starts from a more realistic baseline.

Should a request complete successfully, another user submits. If all
users have submitted and completed a request, the process starts anew. For a
detailed explanation of the model used and its parameters, we direct the
reader to the comprehensive description provided in ref. 22 and Supple-
mentary Note 5. We simulate this process of submitting and fulfilling
requests over Tsim ¼ 20 s. Crucially, the number of requested memory
qubits directly influences the potential for multiple rounds of entanglement
purification, thereby increasing the likelihood of achieving the desired
fidelity. Thus, similar to ref. 22, we aim tomaximize the number of requests
the network can serve by distributing a given memory budget of b = 450
memory qubits across the network’s nodes.

Definition I.3. (MemoryAllocationProblem). Letbbe a budget ofmemory
qubits and ci the maximum number of memories node i can hold. The
problem is to determine a memory allocation q = {q1,…, qm} across all m
nodes that maximizes the number of completed requests U(i) aggregated
over all users i∈ {1,…,m}.We define the followingmaximization problem:

max
q

Xm
i¼1

U ðiÞðq; bÞ � Pðq; bÞ; ð3Þ

where Pðq; bÞ :¼ max 0;
Xm
i¼1

qi � b

 !
with 0≤ qi ≤ ci 8i 2 f1; . . . ;mg;

ð4Þ

such that for memories exceeding the budget b, the function P ≥ 0 adds a
scalar penalty.

Fig. 4 | Illustration of the metropolitan quantum
network studied in ref. 22. Each node i receives a
number of memory qubits qi according to an allo-
cation q (example values in orange). All nodes, one
after the other, request to share entanglement with a
randomly chosen other node. The network system
stack fulfills the requests sequentially until the
simulation time limit Tsim is reached.
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As a remark, Definition I.3 is not unique, but one of several possible
formulations. It presents a less restrictive optimization problem than the
problem solved exhaustively in ref. 22. There, a fixed budget of 450 qubits in
total is distributed across network nodes (

Pm
i¼1 qi ¼ b), while we only

induce a penalty if
Pm

i¼1 qi > b. Relaxing the fixed budget constraint to the
penalty P is a different problem statement than the one solved in ref. 22.
However, comparison to solutions of the fixed-budget problem remains
valuable, as found solutions can provide insight into the tradeoff between
resource (quantum memory) usage and gain in utility.

We utilize the surrogate workflow as well as reference methods (see
Section “Baselines” for details), to find solutions to the memory allocation
problem, where we compute �U ðiÞðf ðqÞ; bÞ using the adapted network
simulation f(q) of ref. 22. Note that the execution time depends on the input
values and takes onaverage 9minonour systemusingn = 5 simulation runs
to calculate sample averages. This leads to long execution times, bringing
about T = 25 h to be a reasonable time limit for the optimization process.
The best found solution from ten independent repetitions per method is
presented in Supplementary Table III. Figure 5 displays the associated
results: the average number of requests fulfilled, calculated from nexec = 103

simulation runs, versus the total number of memories allocated. The solu-
tion found by our approach outperforms solutions found by Meta and
Simulated Annealing by completing, on average, five additional requests
(totaling 37.5). Further, it completes only 0.2 requests less when compared
to the allocation derived from an exhaustive graph traversal algorithm, as
detailed in ref. 22. Notably, the surrogate optimizer’s solution conserves 27
memory qubits compared to this exhaustive method, amounting to 6%
resource saving with a minor performance decrease of only 0.5%. The
baseline from ref. 22, employing the Even allocation where each node
possesses 50 memory qubits, exhibits the poorest performance. Using the
Even allocation, the network completes 24.2 requests, three requests less on
average than the solution found by searching uniformly at random.

With these results,wedemonstrate that even thoughquantumnetwork
simulation can come with a heavy computational overhead, surrogates
enable the discovery of solutions that are competitive to exhaustive search
approaches, e.g., as used in ref. 22.

Continuous distribution of entanglement. Our final use case explores
protocols for continuous entanglement distribution in quantum net-
works. Unlike on-demand protocols that require specific scheduling
policies to coordinate node operations based on user demands,
continuous-distribution protocols distribute entanglement nonstop
throughout the network. This allows for immediate use of entanglement
by anynode as needed, supporting applications that continuously operate
and consume entanglement in the background. In certain scenarios,

continuous distribution protocols may be able to allocate resources faster
and prevent traffic congestion, especially when it comes to large quantum
networks39. Here, we consider a continuous-distribution protocol
introduced in ref. 37, and we aim to find parameter values that optimize
its performance with respect to a measure of network utility. Before
introducing this utility function, we first describe the protocol in detail.

The protocol in ref. 37 is carried out in multiple cycles Γ∈ {1, 2,… },
where each cycle is discretized into non-overlapping time slots τ∈ {0, 1,…,
nΓ}. We assume as in ref. 37 that each node i holds a number of memory
qubits proportional to the number of physical neighbors: r ⋅ di, where r 2 N
is a given hardware parameter and di is the vertex degree of node i. In each
cycle, the protocol carries out the following actions consecutively:
(1) Entangled links that have been existing longer than Γcut cycles are

removed to exclude low-quality entanglement from the network8. It
takes one time slot to execute this step.

(2) Next, entanglement generation is attempted on each physical link
whose end nodes have available (vacant) memories. The attempt takes
one time slot to complete, and an entangled link is generated with
probability pgen. This process is repeated sequentially (i.e., one physical
link at a time, one time slot allocation each) for each physical link with
access to vacant memories.

(3) Then, each node i chooses two entangled links i− j and i− k uni-
formly at random (if they exist), where j and k are non-neighboring
nodes. Swap operations are executed on the corresponding memories
with probability qswap,i∈ [0, 1]. A swap succeeds deterministically,
consumesboth links andproduces a j−k link.All swaps are carriedout
in parallel, and the process takes one time slot to complete. As every
swapdecreases thequality of the entanglement8, limiting thenumberof
consecutive swaps to M presents a practical measure to prevent
excessive decoherence.

(4) Every node gains information about its own qubits: for each entangled
qubit, the age and the number of swaps it took to create the corre-
sponding entangled link are updated. This step is assumed to be
instantaneous.

(5) Lastly, pairs of nodes sequentially consume an existing entangled link
with probability pcons, with each consumption operation taking up one
time slot. This concludes the first cycle Γ = 1.

For this use case, we consider as in ref. 37 a utility based on each
network node’s virtual neighborhood. This metric provides information
about the number of nodes that are able to continuously run background
applications.Thevirtual neighborhoodV(i)(Γ) is the set ofnodes that share at
least one entangled link with node i at the end of cycle Γ. The objective is to
maximize the virtual neighborhood size ∣V(i)(Γ)∣ for all nodes, which can be
accomplished by tuning the swap probability qswap,i at each node i. We use
the vector qswap = [qswap,0, qswap,1, …, qswap,N−1] to represent all N nodes’
swap probabilities.

Definition I.4. (Utility based on virtual neighborhood size). The virtual
neighborhood size U(i)(qswap, Γ) of a node i at cycle Γ is denoted as

U ðiÞðqswap; ΓÞ ¼ jV ðiÞðqswap; ΓÞj: ð5Þ

We evaluate the performance of the protocol by studying the expected
size of each node’s virtual neighborhood at the steady state,
U ðiÞðqswapÞ � limΓ!1 EðU ðiÞðqswap; ΓÞÞ. We take the average at the end of
the final simulation cycle Γ = Tsim as an estimate for the expected steady-
state value U ðiÞðqswapÞ � �U ðiÞðf ðqswap;TsimÞÞ, see Supplementary Note 6.

In contrast to previous use cases, our analysis of continuous-
distribution protocols goes beyond aggregating objectives: it includes
examining the individual node’s goal to increase their ownnumber of virtual
neighbors. This approach is based on the Pareto frontier, a method of
assessing multi-objective optimality. As outlined in Section “Surrogate-
assisted Search”, the surrogate optimization process naturally collects
instances of {qswap} and their simulation outcomes (objective values) as

Fig. 5 | Sumof all completed requests over the total number of allocated quantum
memories for solutions found by different methods. For the surrogate workflow,
we use the following parameter settings: T = 25 h, d = 6, n = 5. Each marker repre-
sents the average of nexec = 103 simulation runs with standard errors smaller than
marker size.
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training data. We will refer to the former as the collected setS of solutions.
From this data, we can find the dominating set Sdom � S, which functions
as an empirical estimate of thePareto optimal set. It is important to note that
this analysis of the collected solutions is not exclusive to this use case but
could be applied to the other presented use cases as well. For clarity and
illustrative purposes, however, we include this analysis only as part of this
last use case.

Definition I.5. (Dominating Set Sdom). Let S represent the set of all solu-
tions collected during the surrogate optimization process, and let Sdom
denote the subset of these solutions that form the dominating set. A solution
q�swap 2 S belongs toSdom if and only if there does not exist another solution
qswap 2 S such thatqswap dominatesq�swap. A solutionqswap dominatesq�swap
if:

8i 2 f1; . . . ;mg;U ðiÞðqswapÞ≥U ðiÞðq�swapÞ and 9j 2 f1; . . . ;mg :
U ðjÞðqswapÞ >U ðjÞðq�swapÞ:

ð6Þ

Thus, each solution inSdom is non-dominatedwith respect to the objectives
{U(1), …, U(m)}, and any solution in S n Sdom is dominated by at least one
solution in Sdom.

For an intuitive explanation, see supplementary Figure 9.
First, we investigate a simple three-node quantum network.

Next, we extend our study to two larger asymmetric topologies
involving 10 and 100 nodes, respectively. All three layouts are
depicted in Fig. 6. We explore the different setups by analyzing the
dominating set of the collected solutions. We will also demonstrate
that as the number of objective functions (i.e., the number of nodes)
increases, a larger proportion of solutions is non-dominated, which is
a well-known consequence of multi-objective optimization in high
dimensional spaces46. Lastly, we conduct the already familiar com-
parison of aggregated objectives found by surrogate optimization to
the referencemethods in the largest network topology. The parameter
settings used in the numerical experiments are based on the previous
study37: pgen = 0.9, Tsim ¼ 1000, r = 5, M = 10, pcons = pgen/4, Γcut = 28
cycles.

a) b)

c)

Fig. 6 | Quantum network topologies considered in the continuous distribution
use case. a In the three-node network, Node 1 shares entangled links with both other
nodes, while Node 0 and 2 each have only one virtual neighbor. An upcoming swap
at Node 1 will allow all nodes to reach their maximum of two virtual neighbors.

b, c illustrate larger networks. In all cases, the number of qubits per node is set by
multiplying the node degree by r = 5. (Note: link lengths are visually scaled for clarity
and do not represent actual distances between nodes).
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Three-node network. Using our surrogate framework, we simulate the
continuous-distribution protocol from ref. 37 on a simple three-node net-
work (see Fig. 6a). We aim to optimize the network’s virtual neighborhood
by tuning swap parameters qswap,i for each node i, where we let
qswap,1 = qswap,2 due to the network’s symmetry. Post-optimization, we
compute the dominating set47. The latter reflects the expected system
behavior: we observe a wide-spread distribution at the leaf nodes while the
swap probabilities at the central node (qswap,0) are concentrated around a
low swap probability of 0.2 (see supplementary Fig. 10). These findings can
be explained as follows: entanglement swapping at Nodes 1 and 2 only
establishes virtual connections that are also directly generated over the
physical links. This lessens the impact of such swaps, resulting in a wide-
spread distribution of swap probability values for qswap,1. Entanglement
swapping is indeedonly crucial for the entangled link sharedbetweenNodes
1 and 2 (as there is no physical connection). A low swap probability around
0.2 atNode 0 proves effective, while a high swap probabilitywould diminish
the overall virtual neighborhood size. Through this case study, we see that
even in small networks the dominating set offers non-trivial insights into the
performance of continuous-distribution protocols across multiple
objectives.

Random tree networks. When scaling to larger networks, the number of
node interactions increases, but our objective remains the same. As in the
previous setup, we evaluate the dominating set as a post-processing step. In
comparison, while the three-node network has 3.5% solutions dominating,
in the 10-node network (Fig. 6b) 99% solutions are in Sdom. In addition to
the standard deviation, we evaluate variation in the collected swap values
using the Kolmogorov-Smirnov (KS) statistic48, which measures the dis-
tance between two distributions.With the latter, we determine if a collected
sample of swap values is closer to a uniform or normal distribution.

Figure 7 shows the swap probability values in Sdom across nodes
obtained from our surrogate workflow. Swap probabilities at leaf nodes
exhibit a larger standard deviation (>0.1) compared to all other nodes.
Additionally, the distributions of nodes 4, 7 and 9 more closely align with a
uniform distribution than with a normal distribution according to the
evaluated KS measure. These metrics indicate that we should not draw a
preference for the swapparameter settings at thesenodes.Conversely, nodes
with a higher vertex degree—such as nodes 1 and 5—show a more biased
distribution with values clustering around a mean of ~0.6. This pattern is
anticipated, as swapping at well-connected nodes is vital for enhancing the
virtual connectivity of other nodes.

Next, we examine the largest network in this study, depicted in Fig. 6c,
involving 100 configurable swap probabilities. We apply our workflow
under three different time constraints—1, 5, and 10 h.All solutions are non-
dominated, reflecting the already anticipated curse of dimensionality46.
Furthermore, all collected data in the dominating sets reflect more closely a
uniform than a normal distribution, with a standard deviation greater than

0.1, meaning that we should refrain from drawing generalized conclusions
in this scenario.

In addition to examining the dominating set, we compare the max-
imum aggregated neighborhood size

max
qswap

XN
i¼1

U ðiÞðqswapÞ; ð7Þ

to the reference methods (Section “Baselines”) under said constraints.
Furthermore, we compare the solutions found via numerical methods
against four distinct protocol settings that serve as additional baselines: (1)
setting all swap probabilities to zero, qswap ¼ 0

!
; (2) setting all swap

probabilities to one, qswap ¼ 1
!

; and (3) setting swap probabilities of leaf
nodes to zerowhile others are set to one.Note that in our configuration the
meanvirtual connectivity in the steady state of the basic solution (1) results
into the sum of all node degrees, U ð1Þ ¼

P
iU

ðiÞðqswap ¼ 0
!Þ ¼ 198. The

latter thus serves as reference point for comparing the optimization
methods, representing the baseline quantity of link-level entangled states
without swapping. We summarize the optimization results for all
algorithms in Fig. 8. The Bayesian optimizer developed by Meta only
outperforms random search in the largest time limit, while our workflow
performs significantly better in all scenarios, achieving as much as 29.4%
and 28.2% more virtual neighbors than Simulated Annealing and Meta,
respectively, using U(1) as baseline quantity. Meta only outperforms
Simulated Annealing in the largest time limit; this is likely because the 100
variables present in this network are far beyond the recommended limit of
2027. Conversely, the models used by our surrogate optimizer are less
impacted by the increase in variables, showing significant improvement
with larger execution times. Note that even though Meta identifies a
solution within a 5-h limit—using n = 20 simulation runs—that exhibits
the same virtual neighborhood size as the solution found in the 1-h limit,
the use of nexec = 1000 simulation runs of the result depicted in Fig. 8
provides a more accurate estimate of the average, albeit a smaller one.

To conclude this section, we summarize the most relevant findings:
across different quantum network sizes, the collected dominating set can
provide relevant insights to the behavior of parameters in continuous-
distribution protocols whenmultiple objectives are to bemet. Even for a 10-

Fig. 7 | Swap probabilities of dominating solutions Sdom. Distributions of swap
values across nodes ordered by node degree. Each boxplot represents the solution
values present in the dominating set. Execution parameters used in the surrogate
workflow: T = 100 optimization cycles, d = 4, n = 1000.

Fig. 8 | Aggregated number of virtual neighbors for best found solution. Light-
colored markers (connected with dashed lines) indicate mean values found by the
respective optimization methods including standard error bars. Once the best out-
come permethod is identified, we execute the simulation nexec = 1000 times resulting
in more accurate estimate of the mean presented by markers with standard error
smaller than marker size. The black dashed line refers to the outcome of the basic
solution (1) described in the main text. Parameters used in the optimization: d = 4,
n = 20, T = 1, T = 5 and T = 10 h.
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node setup, swap probability distributions are biased at some nodes, which
can guide the configuration of these parameters in a protocol. However, the
ratio of non-dominated to dominated solutions increases significantly with
the number of objectives; in the largest network studied, this leads to all
parameter distributions being closer to a uniform than to a normal dis-
tribution. Although the dominating set provided limited insights in the
largest setup, we could still find a promising solution to the single-objective
case, i.e., maximizing the sum over all objectives. The latter comprises 286.2
virtual neighbors on average achieving 28% larger virtual neighborhood size
than the solution found by Meta using U(1) as reference point.

Further benchmarking
We conduct further benchmarking on 54 standardized test functions for
global optimization (Rastrigin, Rosenbrock, Schaffer, etc.), provided by the
benchmarking platform COCO49. In these experiments, we compare our
surrogate framework to additional global solvers, such as MIDACO
(unlimited version)50, BFGSN51, EDA-PSO52, GA53, DASA54 and POEMS55.
We include the benchmarking results involving up to 20 variables and
further details in SupplementaryNote 3. From these detailed results, we can
conclude that for most of the test functions in the noisy testbed, our
approach is competitive with other global optimizers, up to the limit of 20
variables in the considered regime of up to 104 function evaluations.
However, all test functions provided are single-valued, which prevents our
method from exploiting one of its key advantages–namely, learning mul-
tiple competing objectives simultaneously and optimizing a composite cost
function that depends on all of them.

Discussion
We introduced a surrogate-based optimization workflow that integrates
detailed quantumnetwork simulations. Through threedistinct use cases, we
demonstrated the workflow’s broad applicability to practical optimization
problems and its effectiveness in enhancing the performance of both on-
demandand continuous entanglement distributionprotocols across various
network topologies. Particularly, the application to a five-user quantum
entanglement switch and a metropolitan network performing purification
protocols, showed our method’s efficacy to handle complex and highly
asymmetric quantum networking scenarios. Our workflow efficiently
handled up to 100 network parameters and achieved approximate solutions
that significantly outperformed optimization techniques such as Simulated
Annealing (up to 29%) and Bayesian optimization (up to 28%) in tested
scenarios. Moreover, finding the dominating set of collected solutions
allowed us to derive insights from a multi-objective perspective.

Due to the potentially large computational costs of numerical simu-
lation, our approach is suitable for scenarioswhere the simulationmodels an
analytically intractable problem, i.e., a problem scenario in which it is jus-
tified to invest additional time in numerical optimization.

We note that in addition to the work discussed in the above scenarios,
relevant prior studies were carried out by Ferreira da Silva et al.17, Wall-
nhöfer et al.18, Khatri et al.19 and Haldar et al.20. Ref. 17 utilized genetic
algorithms combined with simulation of repeater chains in NetSquid. In
contrast to genetic algorithms, our approach utilized simple machine
learning models to save on extensive evaluation of the expensive objective
function,whichhelped to traverse the search spacemore efficiently. Further,
ref. 17 focused on optimizing for minimum requirements to satisfy target
benchmarks, while we investigated diverse utility functions based on dif-
ferent use cases. Similar to our approach, the other studies18–20 usedmachine
learning techniques to find optimal quantum network protocols. These
studies were based on the theoretical framework of decision processes.
Ref. 18 introduced for the first time learning agents for quantum networks,
which by trial and error manipulate quantum states and thereby construct
communicationprotocols. Refs. 19,20devisedamathematical framework to
optimize link-level entanglement generation in general networks allowing
for said learning agents to discover policies. In contrast to our approach,
learning agents are able discover complete protocols (devising optimal
sequences of actions), while surrogate optimization is limited to finding

improved parameter settings within protocols. However, our approach
offers two distinct advantages: (1) It is applicable to enhancing hardware
configurations, such as the allocation of memory qubits per node. In con-
trast, learning agents operate within a static architectural environment,
limiting them to discover only quantum network protocols; (2)We employ
detailed quantum network simulations, in contrast to the purely mathe-
matical or overly simplified models used in other studies. This allows us to
address complex network topologies beyond, e.g., simple linear repeater
chains typically considered in prior work.

Methods
Baselines
In order to evaluate our approach, we utilize the following baselines: (1)
Uniform random search: this method chooses sets of parameter values uni-
formly at random from Xconf to execute the simulation. We employ this
method as our foundational baseline because its constraints are easily man-
aged through time or iteration limits. Uniform sampling prevents being
constrained to a specific area of the search domain, a limitation thatmight be
encountered by a time- or iteration-limited exhaustive grid search. (2)
Simulated Annealing41: this conventional global optimization method starts
by accepting less optimal solutions with high probability, thus enabling
exploration of the search space and escaping from local optima using the so-
called Metropolis criterion. We implemented the algorithm using the fast
annealing schedule24 and found objective values of various benchmark
functions56 comparable to the L-BFGS-B method. (3) Bayesian optimization
API byMeta: Bayesian optimization is a surrogatemethodbased onGaussian
processes, which is mostly used to optimize unknown but continuous func-
tions; empirical studies suggest optimal performance below 20 variables27.
The Service/Loop API, developed by Meta, incorporates a Bayesian optimi-
zation algorithm40, where we adhere to the default configuration settings
recommended in the official documentation (https://ax.dev/docs/bayesopt).

Simulation experiments
For each use case scenario, we compared optimization methods by con-
ducting ten independent repetitions, each with an allotted time limit of T
hours. To compute averages �U ðiÞðf ; :Þ we used n = 20 simulation runs by
default. We report on the distribution of the ten repetitions in Supple-
mentary Note 7. From all repetitions, the solution that performed best
according to the objective function is selected, and a subsequent simulation
involving nexec = 103 simulation runs were executed. This approach leads to
statistically robust solutions, characterized by small standard errors (explicit
values given in captions of respective result figures). In the scenarios, where
we did not compare to referencemethods,T is a set number of optimization
cycles and n = 1000. Note that in scenarios involving time constraints for
comparison between reference methods, the outcomes are specific to our
computing system. For instance, let us assume a simulation takes 9 s to
execute on our system but 10 s on another system. If we impose a time limit
that permits ten executions on our system, the same time limit would only
allow nine executions on the slower system, resulting in different outcomes.
Since execution times depend on multiple aspects of a computing node
(processor speed, RAM, operating system), to ensure exact reproducibility
of output data, it is advisable to use afixed number of iterations; we diverged
from this to enable fair comparison between used optimization methods.
Each optimization method was allocated ten cores on an Intel(R) Xeon(R)
CPU E5-2620 v2 @ 2.10GHz and 64 GB of memory.

Data availability
Source data, as well as well as generated machine learning models and time
profiling data is available at https://doi.org/10.4121/a07a9e97-f34c-4e7f-
9f68-1010bfb857d0.

Code availability
The code used to generate reported data, as well as usage guidelines can be
found in the Git repository https://github.com/Luisenden/qnetsur and
corresponding documentation https://qnetsur.readthedocs.io.

https://doi.org/10.1038/s41534-025-01048-3 Article

npj Quantum Information |           (2025) 11:89 9

https://ax.dev/docs/bayesopt
https://doi.org/10.4121/a07a9e97-f34c-4e7f-9f68-1010bfb857d0
https://doi.org/10.4121/a07a9e97-f34c-4e7f-9f68-1010bfb857d0
https://github.com/Luisenden/qnetsur
https://qnetsur.readthedocs.io
www.nature.com/npjqi


Received: 13 September 2024; Accepted: 7 May 2025;

References
1. Wehner, S., Elkouss, D. & Hanson, R. Quantum internet: a vision for

the road ahead. Science 362, eaam9288 (2018).
2. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K.

Mixed-state entanglement and quantum error correction. Phys. Rev.
A 54, 3824 (1996).

3. Ekert, A. K. Quantum cryptography and Bell’s theorem. Quantum
Measurements in Optics Vol. 413 (Springer, 1992).

4. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced
measurements: beating the standard quantum limit. Science 306,
1330 (2004).

5. Jozsa, R., Abrams, D. S., Dowling, J. P. & Williams, C. P. Quantum
clock synchronization based on shared prior entanglement. Phys.
Rev. Lett. 85, 2010 (2000).

6. Broadbent, A., Fitzsimons, J., andKashefi, E. Universal blindquantum
computation, in Proc. 50th Annual IEEE Symposium on Foundations
of Computer Science 517–526 (IEEE, 2009).

7. Fitzsimons, J. F. &Kashefi, E.Unconditionally verifiableblindquantum
computation. Phys. Rev. A 96, 012303 (2017).

8. Azuma, K. et al. Quantum repeaters: from quantum networks to the
quantum internet. Rev. Mod. Phys. 95, 045006 (2023).

9. Dahlberg, A. et al. A link layer protocol for quantum networks, in
Proceedings of the ACM Special Interest Group on Data
Communication, Series and Number SIGCOMM ’19 159–173
(Association for Computing Machinery, 2019).

10. VanMeter, R., Ladd, T. D. & Nemoto, K. System design for a long-line
quantum repeater. IEEE/ACM Trans. Netw. 17, 1002 (2008).

11. Vardoyan, G., Guha, S., Nain, P. & Towsley, D. On the stochastic
analysis of a quantum entanglement switch. ACM SIGMETRICS
Perform. Eval. Rev. 47, 27 (2019).

12. Iñesta, A. G., Vardoyan, G., Scavuzzo, L. & Wehner, S. Optimal
entanglement distribution policies in homogeneous repeater chains
with cutoffs. npj Quantum Inform. 9, 46 (2023).

13. Vardoyan, G. & Wehner, S. Quantum network utility maximization. In
Proc. IEEE International Conference on Quantum Computing and
Engineering (QCE), Vol. 1, 1238–1248 (IEEE, 2023).

14. Liao, C.-T., Bahrani, S., da Silva, F. F. & Kashefi, E. Benchmarking of
quantum protocols. Sci. Rep. 12, 5298 (2022).

15. Avis, G. et al. Requirements for a processing-node quantum repeater
on a real-world fiber grid. NPJ Quantum Inf. 9, 100 (2023).

16. Kozlowski, W., Dahlberg, A. & Wehner, S. Designing a quantum
network protocol. InProc. 16th International Conference on Emerging
Networking Experiments and Technologies 1–16 (IEEE, 2020).

17. Da Silva, F. F., Torres-Knoop, A., Coopmans, T., Maier, D. & Wehner,
S. Optimizing entanglement generation and distribution using genetic
algorithms. Quantum Sci. Technol. 6, 035007 (2021).

18. Wallnöfer, J.,Melnikov, A. A., Dür,W. &Briegel, H. J.Machine learning
for long-distance quantum communication. PRX Quantum. https://
doi.org/10.1103/prxquantum.1.010301 (2020).

19. Khatri, S. Policies for elementary links in aquantumnetwork.Quantum
5, 537 (2021).

20. Haldar, S., Barge, P. J., Khatri, S. & Lee, H. Fast and reliable
entanglement distribution with quantum repeaters: principles for
improving protocols using reinforcement learning. Phys. Rev. Appl.
21, 024041 (2024).

21. Coopmans, T. et al. Netsquid, a network simulator for quantum
information using discrete events. Commun. Phys. 4, 164 (2021).

22. Wu, X. et al. Sequence: a customizable discrete-event simulator of
quantum networks. Quantum Sci. Technol. 6, 045027 (2021).

23. Box, G. E. & Draper, N. R. Empirical Model-building and Response
Surfaces (John Wiley & Sons, 1987).

24. Kochenderfer, M. J. &Wheeler, T. A. Algorithms for Optimization (MIT
Press, 2019).

25. Shahriari, B., Swersky, K., Wang, Z., Adams, R. P. & de Freitas, N.
Taking the human out of the loop: a review of bayesian optimization.
Proc. IEEE 104, 148 (2016).

26. Tripathy, R. K. & Bilionis, I. Deep UQ: learning deep neural network
surrogate models for high dimensional uncertainty quantification. J.
Comput. Phys. 375, 565 (2018).

27. Frazier, P. I. Bayesian optimization, in Recent Advances in
Optimization and Modeling of Contemporary Problems 255–278
(Informs, 2018).

28. Weiss, S. M. & Kulikowski, C. A. Computer Systems that Learn:
Classification and Prediction Methods from Statistics, Neural Nets,
MachineLearning, andExpertSystems (MorganKaufmannPublishers
Inc., 1991).

29. Carvalho, D. V., Pereira, E. M. & Cardoso, J. S. Machine learning
interpretability: a survey on methods and metrics. Electronics 8, 832
(2019).

30. Gunn, S. R. et al. Support vector machines for classification and
regression. ISIS Tech. Rep. 14, 5 (1998).

31. Breiman, L. Random forests.Mach. Learn. 45, 5 (2001).
32. Bhosekar, A. & Ierapetritou, M. Advances in surrogate based

modeling, feasibility analysis, and optimization: a review. Comput.
Chem. Eng. 108, 250 (2018).

33. Wang, J. Y. et al. Identifying general reaction conditions by bandit
optimization. Nature 626, 1025 (2024).

34. Kusne, A. G. et al. On-the-fly closed-loop materials discovery via
Bayesian active learning. Nat. Commun. 11, 5966 (2020).

35. Popp, J., Haider, M., Franckié, M., Faist, J. & Jirauschek, C. Bayesian
optimization of quantum cascade detectors. Opt. Quantum Electron.
53, 287 (2021).

36. Cortes, C. L. et al. Sample-efficient adaptive calibration of quantum
networks using Bayesian optimization. Phys. Rev. Appl. 17, 034067
(2022).

37. Iñesta, Á. G. & Wehner, S. Performance metrics for the continuous
distribution of entanglement in multiuser quantum networks. Phys.
Rev. A 108, 052615 (2023).

38. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach.
Learn. Res. 12, 2825 (2011).

39. Chakraborty, K., Dahlberg, A., Rozpedek, F., &Wehner, S. Distributed
Routing in a Quantum Internet. APS March Meeting Abstracts 28
(2019)

40. Balandat, M. et al. Botorch: a framework for efficient Monte-Carlo
Bayesian optimization. Adv. neural Inf. Process. Syst. 33, 21524
(2020).

41. Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. Optimization by
simulated annealing. Science 220, 671 (1983).

42. Rains, E. M. A semidefinite program for distillable entanglement. IEEE
Trans. Inf. Theory 47, 2921 (2001).

43. Humphreys, P. C. et al. Deterministic delivery of remote entanglement
on a quantum network. Nature 558, 268 (2018).

44. Rančić, M., Hedges, M. P., Ahlefeldt, R. L. & Sellars, M. J. Coherence
time of over a second in a telecom-compatible quantum memory
storage material. Nat. Phys. 14, 50 (2018).

45. Bennett, C. H. et al. Purification of noisy entanglement and
faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722
(1996).

46. Kukkonen, S. & Lampinen, J. Ranking-dominance and many-
objective optimization. In Proc. IEEE Congress on Evolutionary
Computation 3983–3990 (IEEE, 2007).

47. Kung, H.-T., Luccio, F. & Preparata, F. P. On finding the maxima of a
set of vectors. J. ACM 22, 469 (1975).

48. Lilliefors, H. W. On the Kolmogorov-Smirnov test for normality with
mean and variance unknown. J. Am. Stat. Assoc. 62, 399 (1967).

https://doi.org/10.1038/s41534-025-01048-3 Article

npj Quantum Information |           (2025) 11:89 10

https://doi.org/10.1103/prxquantum.1.010301
https://doi.org/10.1103/prxquantum.1.010301
https://doi.org/10.1103/prxquantum.1.010301
www.nature.com/npjqi


49. Hansen, N. et al. COCO: A platform for comparing continuous
optimizers inablack-boxsetting.Optim.MethodsSoftw.36, 114 (2021).

50. Schlüter, M., Gerdts, M. & Rückmann, J.-J. A numerical study of
midaco on 100 minlp benchmarks. Optimization 61, 873 (2012).

51. Ros, R. Benchmarking the BFGS algorithm on the BBOB-2009
function testbed. Association for Computing Machinery, 2409–2414
(2009).

52. El-Abd, M. & Kamel, M. S. Black-box optimization benchmarking for
noiseless function testbed using an EDAandPSOhybrid.Association
for Computing Machinery 2263–2268 (2009).

53. Ryan, C., Nicolau, M. & O’Neill, M. Genetic algorithms using
grammatical evolution. Springer Berlin Heidelberg (2002).

54. Korošec, P., Šilc, J. & Filipič, B. The differential ant-stigmergy
algorithm. Inf. Sci. 192, 82 (2012).

55. Kubalik, J. and Faigl, J. Iterative prototype optimisation with evolved
improvement steps. In European Conference on Genetic
Programming 154–165 (Springer, 2006).

56. Jamil, M. & Yang, X.-S. A literature survey of benchmark functions for
global optimisation problems. Int. J. Math. Model. Numer. Optim. 4,
150 (2013).

Acknowledgements
This work is supported by QuTech NWO funding 2020-2024 Part I “Fun-
damental Research”, Project Number 601.QT.001-1, financed by the Dutch
Research Council (NWO).We further acknowledge support fromNWOQSC
grant BGR2 17.269. Á.G.I. acknowledges financial support from the Neth-
erlands Organisation for Scientific Research (NWO/OCW), as part of the
Frontiers of Nanoscience program.

Author contributions
L.P. and A.G.I. conceived the project. L.P. developed the theory, the
algorithm and performed the computations. A.G.I. proposed investigating
continuous distribution protocols and G.V. proposed investigating utility
maximizationof a quantumentanglement switch. A.G.I. andG.V. verified the

analytical methods. L.P. wrote the manuscript with input from all authors.
G.V. supervised the project.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41534-025-01048-3.

Correspondence and requests for materials should be addressed to
Luise Prielinger.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the
article’sCreativeCommons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2025

https://doi.org/10.1038/s41534-025-01048-3 Article

npj Quantum Information |           (2025) 11:89 11

https://doi.org/10.1038/s41534-025-01048-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/npjqi

	Surrogate-guided optimization in quantum networks
	Results
	Network utility
	Surrogate-assisted search
	Use cases
	A quantum entanglement switch
	Memory allocation in a metropolitan quantum network
	Continuous distribution of entanglement
	Three-node network
	Random tree networks


	Further benchmarking

	Discussion
	Methods
	Baselines
	Simulation experiments

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




