
Unit test generation for common and
uncommon behaviors

Master’s Thesis

Björn Evers

Unit test generation for common and
uncommon behaviors

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Björn Evers
born in Vlaardingen, the Netherlands

Software Engineering Research Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

c©2020 Björn Evers. All rights reserved.

Unit test generation for common and
uncommon behaviors

Author: Björn Evers
Student id: 4205340
Email: b.evers@student.tudelft.nl

Abstract

Various search-based test generation techniques have been proposed to automate
the process of test generation to fulfill different criteria (e.g., line coverage, branch
coverage, mutation score, etc.). Despite these techniques’ undeniable accomplish-
ments, they still suffer from a lack of guidance coming from the data gathered from
the production phase, which makes the generation of complex test cases harder for
the search process. Hence, previous studies introduced many strategies (such as dy-
namic symbolic execution or seeding) to address this issue. However, the test cases
created by these techniques cannot assure the full coverage of the execution paths in
software under test. Therefore, this thesis introduces common and uncommon behav-
ior test generation (CUBTG) for search-based unit test generation. CUBTG uses the
concept of commonality score, which is a measure of how close an execution path of
a generated test case is from reproducing the same common and uncommon execution
patterns observed during the real-world usage of the software.

To evaluate the performance of CUBTG, we implemented it in EvoSuite and eval-
uated it on 150 classes from JabRef, an open-source application for managing bibliog-
raphy references. We found that CUBTG managed to cover more common behaviors
than plain the many-objective sorting algorithm (MOSA) in 75% of the cases, and
more uncommon behaviors in 60% of the cases. In up to 10% of the cases CUBTG
managed to find more mutants seeded by PIT by using method sequences that plain
MOSA did not find.

b.evers@student.tudelft.nl

Thesis Committee:

Chair: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
University supervisor: Prof. Dr. A. Zaidman, Faculty EEMCS, TU Delft
Committee Member: Dr. A. Panichella, Faculty EEMCS, TU Delft

Dr. C. Lofi, Faculty EEMCS, TU Delft
Dr. X.D.M. Devroey, Faculty EEMCS, TU Delft
P. Derakhshanfar, MSc, Faculty EEMCS, TU Delft

ii

Preface

This thesis represents the final part of my education at TU Delft. I have learned a lot
here throughout the years. Looking back, the version of myself that started his Bachelor’s
programme here years ago would be quite content with the knowledge and skills I have
gained, and I am thankful to all people who have played a part in that.

In relation to this final project, for their help and for their valuable advice during the
meetings we had, I would like to thank Andy Zaidman, Xavier Devroey and Pouria Der-
akhshanfar.

For always being there for me, and for helping me practically always when I ask for it,
also during this final project, I would like to thank my father Eric, my mother Anneke, my
brother Niels, and my grandmother Annie.

Even though one always keeps learning, I am now closing the education chapter of my
life. I am glad this chapter was part of it.

Björn Evers
Vlaardingen, the Netherlands

May 31, 2020

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Research questions and contributions . 2
1.2 Thesis structure . 3

2 Background and related work 5
2.1 Genetic algorithms . 5
2.2 Test case selection in the many-objective sorting algorithm (MOSA) 7
2.3 Usage-based test generation . 9

3 Defining commonality and using it in an evolutionary algorithm 11
3.1 Defining commonality . 11
3.2 Incorporating commonality in an evolutionary algorithm 16

4 Empirical evaluation - methodology 21
4.1 Research questions . 21
4.2 Subjects . 22
4.3 Obtaining execution count data . 24
4.4 EvoSuite configurations . 27
4.5 Data collection and analysis . 29

5 Empirical evaluation - results 31
5.1 RQ1: Commonality score . 31
5.2 RQ2: Fault revealing capability . 37
5.3 RQ3: Standard coverage criteria and EvoSuite runtime metrics 41
5.4 RQ4: Efficiency for standard metrics . 53

v

CONTENTS

5.5 RQ5: Efficiency for CUBTG . 55
5.6 Threats to validity . 58

6 Conclusion and future work 61
6.1 Summary . 61
6.2 Implications . 62
6.3 Future work . 63

Bibliography 65

A Results per class 69

B Additional coverage evolution figures 75

vi

List of Figures

2.1 Overview of the general steps in a genetic algorithm. Taken from [36]. 6

2.2 Categorization of test cases in non-dominated fronts for MOSA. Figure taken
from the paper which introduced MOSA [20]. 8

3.1 Example control flow graph (CFG). Each node indicates its execution count x
in the form of a label ec : x . 13

4.1 Part of an example location log file, containing the location of an executed log
statement on each line. 27

4.2 Part of an example JSON execution count file. 28

5.1 Commonality score per configuration. Each data point is a test case. 32

5.2 Effect size of commonality score difference per class, per configuration. Only
significant results are shown (p < 0.05). In each cell, data is shown for which
the column configuration resulted in a higher value than the row configuration.
The number of observations is shown in the upper-right corner of each cell. . . 33

5.3 PIT score per configuration. Each data point is a test suite. 37

5.4 Effect size of PIT score difference per class, per configuration. Only significant
results are shown (p < 0.05). In each cell, data is shown for which the column
configuration resulted in a higher value than the row configuration. The number
of observations is shown in the upper-right corner of each cell. 38

5.5 Branch coverage per configuration. Each data point is a test suite. 42

5.6 Effect size of branch coverage difference per class, per configuration. Only
significant results are shown (p < 0.05). In each cell, data is shown for which
the column configuration resulted in a higher value than the row configuration.
The number of observations is shown in the upper-right corner of each cell. . . 43

5.7 #Generations per configuration. Each data point is a test suite. 44

vii

LIST OF FIGURES

5.8 Effect size of number of EvoSuite generations difference per class, per configu-
ration. Only significant results are shown (p< 0.05). In each cell, data is shown
for which the column configuration resulted in a higher value than the row con-
figuration. The number of observations is shown in the upper-right corner of
each cell. 45

5.9 Suite size per configuration. Each data point is a test suite. 47
5.10 Effect size of suite size difference per class, per configuration. Only significant

results are shown (p < 0.05). In each cell, data is shown for which the column
configuration resulted in a higher value than the row configuration. The number
of observations is shown in the upper-right corner of each cell. 48

5.11 Test case length per configuration. Each data point is a test case. 50
5.12 Effect size of test case length difference per class, per configuration. Only

significant results are shown (p < 0.05). In each cell, data is shown for which
the column configuration resulted in a higher value than the row configuration.
The number of observations is shown in the upper-right corner of each cell. . . 51

5.13 Evolution of the median test suite output coverage value for different configu-
rations. 54

5.14 Evolution of the median test suite branch coverage value for different configu-
rations. 55

5.15 Evolution of the median test suite commonality score value for different con-
figurations. 56

B.1 Evolution of the median test suite direct branch coverage value for different
configurations. 76

B.2 Evolution of the median test suite exception coverage value for different con-
figurations. 77

B.3 Evolution of the median test suite input coverage value for different configura-
tions. 78

B.4 Evolution of the median test suite line coverage value for different configurations. 79
B.5 Evolution of the median test suite method coverage value for different configu-

rations. 80
B.6 Evolution of the median test suite method (no exception) coverage value for

different configurations. 81
B.7 Evolution of the median test suite weak mutation score for different configura-

tions. 82

viii

Chapter 1

Introduction

Software testing has been an important part of developing software for almost as long as
software has been around. At first, this was mostly a manual effort, but automated software
testing soon became a topic of research, for a large part because of the time investment
that is needed to write tests [9]. Several methods for automatic testing have been devised,
including methods for automatically generating a set of test cases based on the existing code
base.

Most of these test generation methods concern themselves with obtaining high coverage
values in certain coverage methods based solely on the source code, like number of source
code lines, or number of code branches covered. Not much research has been done on
creating test cases based on actual use of the system in practice, which may result in a more
realistic test suite, and might uncover errors that are not found by test suites generated based
on traditional coverage metrics.

To contribute to this relatively unexplored field, in this thesis we present a method for
guiding unit test generation towards generating tests for common behaviors in a software
unit (e.g., a class), or uncommon behaviors in the unit, which we call common and uncom-
mon behavior test generation (CUBTG). CUBTG is designed primarily to work with the
many-objective sorting algorithm (MOSA) [20], but may be adapted in the future to work
with other algorithms. MOSA is a genetic algorithm for generating unit tests, and searches
for solutions to multiple coverage goals (e.g., branches, lines, exceptions) at once, guided
by a fitness function (FF) for each coverage goal, and a secondary objective (SO) to decide
which test case to keep when there are multiple test cases covering the same goal.

CUBTG uses the concept of commonality score, which we define in this thesis. In
short, the commonality score describes to what extent a test exercises code branches that
are executed a lot during normal usage of the software under test (SUT), using log data from
production runs of the SUT. Based on this commonality score, we define FFs and SOs to
be used with MOSA, which favor either common execution paths or uncommon execution
paths during test generation, producing test cases and test suites that exercise more common,
or more uncommon behaviors in the SUT.

These newly devised FFs and SOs influence the search for solutions to standard cov-
erage goals in MOSA. The FFs attempt to influence the commonality score of test cases
while they are being generated to cover a standard coverage goal throughout the iterations

1

1. INTRODUCTION

of MOSA. The aim of the SOs is to keep the test with the highest or lowest commonality
score when multiple test cases are found for the same coverage goal. We hypothesize that
using these new FFs and SOs can lead to a better, or more specific guidance of the search
process, which can lead to test cases covering existing coverage goals in different ways,
increasing coverage.

1.1 Research questions and contributions

We evaluated the performance of CUBTG on 150 classes of the open-source application
JabRef1, using an implementation in EvoSuite [11], an application for generating unit tests
using genetic algorithms, and answered the following research questions:

RQ1 Do tests generated by CUBTG achieve a better commonality score compared to stan-
dard MOSA, and how do the different CUBTG methods compare?

RQ2 How do software faults revealed by CUBTG differ from standard MOSA, and how
do the different CUBTG methods compare?

RQ3 How do tests generated by CUBTG compare to standard MOSA in terms of standard
code coverage metrics, and how do the different CUBTG methods compare?

RQ4 Does the usage of the added FFs and SOs affect the efficiency of the EvoSuite test
generation?

RQ5 How much time of EvoSuite test generation does it take for commonality score to
converge?

We found that CUBTG managed to cover more common behaviors than standard MOSA
in 75% of the cases, and more uncommon behaviors in 60% of the cases. We also performed
mutation testing on the generated test suites, and found that CUBTG performed the same or
worse than standard MOSA in most cases. There were a few exceptions in which CUBTG
managed to find some mutants by using method sequences that standard MOSA did not
find.

CUBTG generally performs the same or a little bit worse in terms of standard coverage
metrics, causes EvoSuite to go through less generations, causes test suite sizes to be smaller,
and causes longer test cases to be generated. There does not appear to be a significant effect
on the efficiency of EvoSuite test generation, but at least 100 seconds were needed for the
commonality score to converge for the most part during our evaluation.

In summary, this thesis makes the following contributions to the field:

• The novel CUBTG method for test generation, which uses newly devised FFs and SOs
and the concept of commonality score to influence the unit test generation process in
MOSA towards generating tests that exercise more common or uncommon behaviors.

1https://www.jabref.org/

2

1.2. Thesis structure

• An evaluation of this CUBTG method on the JabRef application, evaluating its effect
on the commonality score, fault revealing capability, and standard coverage metrics
obtained by generated test cases, along with an evaluation of the effect of CUBTG on
the efficiency of EvoSuite and the efficiency of CUBTG itself.

1.2 Thesis structure

The remainder of this thesis is structured as follows. Chapter 2 will describe background
and related work relevant for the rest of this thesis. In Chapter 3, the concept of commonality
of test cases and test suites is defined, and based on that CUBTG is introduced to generate
tests based on execution counts of code branches from real world usage of a system. Chap-
ter 4 describes how we evaluated the CUBTG methods on the JabRef open-source project,
including among other things our research questions, how we obtained execution data, and
what data we collected for analysis. The results of this evaluation, along with a discussion
of those results and conclusions based on them, are presented in Chapter 5. Finally, we
present our overall conclusion and note our suggestions for future work in Chapter 6.

3

Chapter 2

Background and related work

The quality of a piece of software is important for ensuring that it works as intended. Soft-
ware testing is an important aspect of determining the quality of a piece of software. Its goal
generally is to run a piece of software in an effort to simulate a real execution, and verify if
the system behaves according to specification. In the early days of software testing, this was
always done by hand, manually specifying the pieces of code to run, and the expected out-
come. Writing these tests can be a tedious and time consuming task, and can even consume
as much, or even more, time than developing the software that is being tested.

It comes to no surprise that eventually, a movement towards more automatic methods of
software testing took place, and is still ongoing. In 1976, Jessop et al. published one of the
earlier papers on automatic software testing, describing a system that verifies if a software
system conforms to a formal model of how it should work [15]. Ramamoorthy et al. discuss
software testing tools available at the time, including the less formal ones [24]. Moving to
this century, we see the main rise of non-formal automatic testing tools. Several methods
for automatic testing have been devised over the years, including fuzzing [35, 13], concolic
testing [17, 30], and search-based testing [19, 25].

As a further background for this thesis, Section 2.1 discusses genetic algorithms, Sec-
tion 2.2 discusses parts of MOSA relevant for this thesis, and finally Section 2.3 discusses
usage-based test generation.

2.1 Genetic algorithms

As a subset of search-based software testing, genetic algorithms have been used widely for
software testing [31]. Genetic algorithms use the basic principles of evolution of species
in the real world to search for solutions (individuals) to a wide variety of problems that
perform well according to some set of fitness metrics. In the case of test generation, the
solutions are test cases or test suites, and the fitness metrics are some kind of measure of
how well the tests test the software under test.

Like evolution of species in the real world, genetic algorithms use the processes of
selection, crossover, and mutation to find incrementally better solution. The general process
is shown in Figure 2.1. An initial population of some defined size is first generated, more

5

2. BACKGROUND AND RELATED WORK

Figure 2.1: Overview of the general steps in a genetic algorithm. Taken from [36].

or less randomly in most cases. Then an iterative process of evolution is started. For all
individuals in the population, their fitness is calculated using one or more fitness functions.
Using some selection procedure, a subset of the individuals is chosen to be kept, using their
fitness values. Those individuals are then used in a crossover procedure to produce children.
In this procedure, pairs of individuals are mixed to produce new individuals (analogous to
producing children in the real world). In the case of test cases, the crossover operation
might consist of combining the first half of the statements of one test case with the last half
of the statements of the other, for example. Mutation is then randomly applied to some
of the individuals, changing/adding/removing a random part of an individual in a random
way. One might remove a statement from a test case, for example. The individuals are then
reinserted into the population for the next iteration of evolution. This process continues
until some constraint on the run time is met, for example an absolute amount of time, or
until a satisfactory individual is found. One or more individuals are then outputted from the
algorithm.

Genetic algorithms have been used in quite a few ways in software testing. Some re-
cent examples are Qi et al., where a parallel genetic algorithm is implemented to perform
pairwise testing [23], Rawat et al., where fuzzing is implemented using a genetic algorithm
[26], and Arcuri, where a genetic algorithm is used to generate tests on the system level for
web services [2, 3].

A fairly well-known application for software testing using genetic algorithms is Evo-
Suite [11]. It applies the methods as stated above. Originally, it used an algorithm which
considers a whole test suite as an individual, instead of a separate test case. It uses coverage
of the whole class under test (CUT) as a goal. This way the outcome does not depend on
the order or differences in difficulty of satisfying separate goals (e.g., covering branches).
However, it meant that the algorithm became less focused on specific goals that had to be

6

2.2. Test case selection in MOSA

covered.
Recently developed search-based genetic algorithms for software testing are the many-

objective sorting algorithm (MOSA) [20] and DynaMOSA [22], which are also incorporated
in the EvoSuite application. These algorithms consider test cases as individuals, and incor-
porate separate fitness functions for separate coverage goals. Using a method similar to the
non-dominated sorting genetic algorithm II (NSGA-II) [8], using non-dominated fronts, the
algorithm tries to generate test cases in the direction of multiple coverage goals in parallel,
within one evolution population. This made it possible to generate tests aiming to cover
specific goals, while not letting the test generation be stuck on covering a single goal for a
long time.

2.2 Test case selection in MOSA

To explain how we have incorporated the common and uncommon behavior test generation
(CUBTG) methods in MOSA in Section 3.2.1, we will first touch upon the parts of MOSA
that are most relevant for the discussion. As stated, MOSA is an evolutionary algorithm.
It uses the steps typical for such an algorithm. It starts with a random population of indi-
viduals, selects individuals for reproduction based on their fitness values according to some
fitness function (FF), performs crossover and mutation on those individuals, and creates the
population for the next generation. This cycle continues until the search budget has run out.
In the case of MOSA, the population consists of test cases, a subset of which is returned at
the end of the generation as a test suite. This is in contrast with whole suite algorithms (as
mentioned above), which consider a population of test suites, choosing the whole suite that
performs best at the end.

For our purpose here, it is important to understand the selection step of MOSA. Suppose
we have a population of test cases, and a set of coverage goals (e.g., branches, lines, excep-
tions). MOSA then categorizes test cases in sets that go from good to bad test cases, accord-
ing to the coverage goals. It does this by categorizing them into so-called non-dominated
fronts, in a way very similar to NSGA-II [8], but preceded by an extra categorization that
makes the selection work much more effectively using the property that the population con-
sist of test cases.

This first, extra step is to take for each goal that has not been covered yet the test case
that covers it best, and putting them into a set. In case of a tie it will take the shortest
test case. Then from the remaining test cases in the population, it creates non-dominated
fronts of test cases. Each consecutive set of test cases only contains test cases that are
not dominated by any of the other test cases, and each time the population that remains is
considered until the maximum population size for the next iteration is reached. A test case
dominates another test case if it is better in terms of all coverage goals. If the last front to
be added to the next population cannot be fully added because of the maximum population
size, the crowding distance is used to determine which test cases to add from that last front.

Example This system of categorizing the population of test cases can be more easily
understood by looking at an example used in the paper introducing MOSA [20], which is

7

2. BACKGROUND AND RELATED WORK

Figure 2.2: Categorization of test cases in non-dominated fronts for MOSA. Figure taken
from the paper which introduced MOSA [20].

shown in Figure 2.2. In this example we have two coverage goals with corresponding FFs
f1 and f2, where a goal has higher coverage if the fitness value is lower. Each of the dots
represents a test case in the population. If we follow the selection procedure of MOSA, the
test cases A and B will be put in the first front, F0, because they perform best in terms of f1
and f2, respectively. Then the test cases marked with F1 in the figure are added to the next
front, because they are the remaining non-dominated test cases in the population. From the
remaining test cases, F2 and F3 can be constructed. This procedure works the same for a
typical scenario with tens or hundreds of code branches, but with a lot more dimensions.

The aspect of this selection procedure that is important for our purpose here, and that
we will use to incorporate the CUBTG methods, is that each of the test generation goals
(through their corresponding FFs) has an effect on the direction of the search of the algo-
rithm. For each of the goals, a test case will be selected that performs best in terms of
that goal, and possibly more test cases that perform well for that goal will be kept in the
remaining non-dominated fronts. Those test cases will be used to generate new test cases in
following iterations, which means that they have an effect on what the new test cases look
like, also on test cases that are not directly related to covering that specific goal.

8

2.3. Usage-based test generation

2.3 Usage-based test generation

In most automatic test generation approaches, the aim is to achieve high values for several
coverage metrics. Often used metrics are the well-known line coverage, branch coverage,
or more recently mutation coverage, which simulates bugs in software to evaluate how good
a test suite is at finding real faults in a piece of software. These metrics do not take into
account how the execution patterns of the generated tests compare with the way software
is being executed in production use. Wang et al. looked into this and found that developer
written tests as well as automatically generated tests do not represent typical execution
patterns during execution that well [34].

One could argue that creating tests that reflect (or on the opposite, not at all reflect)
the behavior of actual users reveal faults in software that would otherwise have been left
uncovered, because of the use of certain method call sequences, for example. Additionally,
code that is not often used in practice may be left relatively untested because it is rarely
exercised in production. Recently, a method based on symbolic execution has been devised
to recreate behavior of users using log data from a system run in production [33], which
allowed finding the same faults in a system that are encountered by a user.

Generating tests based on actual usage of a system is what this thesis aims to expand
upon. As opposed to Wang et al. [33], where the aim is to more or less exactly replicate a
full behavior executed by a user using symbolic execution, the method in this thesis aims
to only guide the search of a genetic algorithm towards executing or not executing certain
branches. Like [33], log data is used to determine the execution counts of code branches.
The method in this thesis can also be used to guide the search for test cases away from user
behaviors, as opposed to guiding the search towards it.

9

Chapter 3

Defining commonality and using it in
an evolutionary algorithm

This chapter defines the concept of commonality for test cases and test suites, and describes
how to use it in an evolutionary test generation algorithm. The former is discussed in Sec-
tion 3.1, and the latter in Section 3.2.

3.1 Defining commonality

Intuitively, commonality describes to what extent a test exercises code branches that are
executed a lot during normal usage of the software under test (SUT). If a test executes a lot
of branches that are used a lot in practice, compared to branches that are executed less in
practice, it would score high in terms of commonality. If, on the other hand, it executes a
lot of branches that are executed very sparsely in practice, and not many branches that are
executed commonly, it would score low in terms of commonality.

More specifically, for one test case, commonality is defined as the average of how com-
monly a branch is executed over all branches covered by the test case. And in case of a test
suite, commonality is defined as the average commonality over all its test cases. Note that
defining the commonality in this way means that multiple executions within the test suite
are taken into account for the score.

In the remaining of this section, the following will be discussed. First, in Section 3.1.1,
the structure of the SUT as relevant for the discussion here will be described, along with
an example which will be used throughout the chapter. Then test cases and test suites
along with a definition of their commonality will be defined in Section 3.1.2, along with an
example of computing the commonality score.

3.1.1 Structure of the SUT

Since the methods presented in this thesis generate unit test cases, which exercise a single
class under test (CUT), we are only looking at the commonly and uncommonly executed
code branches within one target CUT at the same time. Let us define what a CUT consists
of. Depending on the programming language, classes could contain several constructs like

11

3. DEFINING COMMONALITY AND USING IT IN AN EVOLUTIONARY ALGORITHM

fields, methods, constructors, etc. For the discussion here, it is assumed that a class is just
a set of concrete (implemented) methods that can be executed separately by a test case.
For each of these methods, we can construct a control flow graph (CFG). CFGs were first
introduced by Allen [1]. We will describe the relevant parts here in short.

A CFG is a directed graph in which the nodes represent basic blocks, and in which the
edges represent control flow paths. Basic blocks are pieces of code that are always executed
together. They will be called branches within this thesis most of the time. Suppose a branch
B is a list of statements, and that E(s) means that statement s is executed in some run of
the code represented by the CFG. Then the following holds, which intuitively says that if
one statement s in the branch B is executed (E(s)), they are all executed, and if one is not
executed, none of them are executed.

∀B : (∀s ∈ B : (E(s) ⇐⇒ ∀t ∈ B\{s} : E(t))) (3.1)

Note that this does only hold strictly in theory, because in practice there could be circum-
stances that cause the program to stop running mid-branch, like system crashes, program
exceptions, etc.

Branches can have multiple incoming edges and multiple outgoing edges. There is
always exactly one entry point in the CFG without any incoming edges, and one exit point
without any outgoing edges. It is possible for a branch to contain zero statements.

Example CFG To illustrate what a CFG looks like and how it is used with respect to the
commonality score defined in this chapter, let us look at some example pseudo code along
with its corresponding CFG. The (very abstract) code for an example method is shown in
Algorithm 1. Each statement<x> represents a single statement, and each branch in the
code has been numbered using a comment at the start of the branch. The corresponding
CFG is shown in Figure 3.1. In this figure, each node Bx corresponds to branch x in the
example method. So for example, Branch 3 in the pseudocode contains statements 3, 4
and 5, and corresponds to node B3 in the CFG. The branch can only be reached from branch
1 (the root), if condition1 is not met. Control flow can continue to either branch 4 or 5,
depending on whether condition2 is met or not. The other nodes and edges connected to
them in the CFG can be explained in a similar manner.

3.1.2 Formal definition of commonality score

For the purpose of computing the commonality score of a test case or test suite, it is neces-
sary to quantify how common the execution of a branch is during an execution of the CUT.
The method described in this thesis uses the execution weight of a branch to do that, which
is derived from the execution count. They are defined as follows.

Definition 1 The execution count of a branch is the number of times a branch has been
executed during some usage session.

Definition 2 The execution weight of a branch is an integer number specifying the number
of times a branch has been executed relatively according to some set of execution data,

12

3.1. Defining commonality

Algorithm 1: Example method

/* Branch 1 */
if condition1 then

/* Branch 2 */
statement1;
statement2;

else
/* Branch 3 */
statement3;
statement4;
statement5;
if condition2 then

/* Branch 4 */
statement6;

/* Branch 5 */
statement7;

/* Branch 6 */
statement8;

B1

ec: 10

B2

ec: 3

B3

ec: 7

B4

ec: 1

B5

ec: 7

B6

ec: 10

Figure 3.1: Example CFG. Each node indicates its execution count x in the form of a label
ec : x

13

3. DEFINING COMMONALITY AND USING IT IN AN EVOLUTIONARY ALGORITHM

compared to other branches in the same CUT. The execution weight can be the same as, or
can be derived from, the execution count defined in Definition 1.

For example, if one branch has an execution weight of 2, and another branch has an
execution weight of 1, it means that the first branch is executed twice as often in a typical
execution scenario. These execution weights can represents actual execution counts origi-
nating from one or more specific usage sessions, but this is not required. For example, one
might want to scale down the execution counts that have been collected during an execution
to keep them within reasonable size, which makes them easier to understand and possibly
take up less space. One might replace counts for two branches 1005 and 493 with 2 and 1,
for example. This leads to the same result in terms of commonality of test cases and suites,
besides some minor loss of precision. Also, one might want to estimate weights, based on
personal knowledge about the system, if obtaining execution counts is not feasible. Alter-
natively, one could choose to only use execution counts from one specific group of users. A
situation may also occur where only part of the branches have known execution weights. In
that case, it may be possible to infer weights for those branches using other weights in the
CFG.

Now let us define the commonality score of a test case and test suite. For a test case, its
commonality score depends only on the branches it covers (i.e., on the branches it executes),
and on the execution weights of the branches in the whole CUT that have the highest and
lowest execution weights. This leads to a value between 0 and 1, with a higher value indi-
cating a test case executing a higher amount of common behaviours in the CUT. Branches
without execution weights (actual or inferred) are ignored when computing the commonal-
ity score. Suppose we have the following:

• a test case t

• n branches in the CUT, covered by t, and having an execution weight: Bx with 0 ≤
x≤ n−1

• execution weight of branch Bx: w(Bx)

• execution weight of the branch with the highest execution weight in the CUT: H

• execution weight of the branch with the lowest execution weight in the CUT: L

Then the commonality score for test case t can be denoted as in Equation (3.2) below.

c(t) =
∑

n−1
x=0 (w(Bx)−L)

n · (H−L)
(3.2)

The commonality score for a test suite is defined as the average of the commonality
scores of all test cases in the suite.

It may be important to emphasize that the commonality score is computed over the
whole CUT. In the example here only one method with its CFG is shown, but in practice a
class will have multiple methods, each with its own CFG. The highest execution weight H
and the lowest execution weight L are defined for the whole CUT, not just for the method

14

3.1. Defining commonality

condition1 condition2
t1 false true
t2 true N/A
t3 false false

Table 3.1: Truth values for branching conditions in algorithm 1, for test cases t1, t2, and t3

that the branch happens to be part of. This allows the commonality score to reflect how
likely a part of the CUT is to be executed in practice compared to other parts of the class,
as opposed to only within a single method.

Commonality score example

Some example execution weights are shown in the example CFG in fig. 3.1. Let us assume
that in this case the execution weights represent actual execution counts from some usage
session of the example method, and that no errors occurred during execution. The weights
of the root and exit nodes show us that the method has been executed 10 times in total. B2
has been executed 3 times, while B3 has been executed 7 times. Note that it makes sense
that the counts for theses branches add up to 10, because that is the total number of times the
method has been executed, and in the corresponding if-else statement (see algorithm 1),
either the if or else branch has to be taken. Additionally, we see that condition2 was
satisfied in 1 of the 10 runs of the method.

Let us now illustrate the definition of the commonality score using three example test
cases t1, t2, and t3. Pseudo-code will not be given for them. It will only be stated whether
condition1 and condition2 are true for them, as those expressions determine the control
flow. We will assume here that the example method in algorithm 1 is the only method in the
CUT, and that the two condition expressions just mentioned can somehow be influenced by
the test cases to make them either true or false.

The values for condition1 and condition2 for the test cases are as shown in table 3.1.
Let us compute the commonality score for the simplest test case (which covers the least
branches), t2. By having a value of true for condition1, it branches left at B1 (see fig. 3.1).
It then reaches B2, and goes on to the last branch it covers, B6. Using eq. (3.2) to compute
the commonality score c(t2), we get the following computation and result.

c(t2) =
∑x∈{1,2,6} (w(Bx)−L)

n(H−L)

=
∑x∈{1,2,6} (w(Bx)−1)

3 · (10−1)

=
(10−1)+(3−1)+(10−1)

27

=
20
27
≈ 0.741

15

3. DEFINING COMMONALITY AND USING IT IN AN EVOLUTIONARY ALGORITHM

Using an analogous computation for c(t1) and c(t3), we get the following commonality
scores.

c(t1) =
2
3
≈ 0.667

c(t3) =
5
6
≈ 0.833

Going by these commonality scores, t3 exercises the most common behaviors of the
CUT, followed by t2, with t1 exercising the most uncommon behaviors. This seems intuitive,
because t1 takes a path through the method that is executed only 1 out of 10 times, t2 takes a
path that is executed 3 out of 10 times, and t3 takes a path that is executed 7 out of 10 times.
Note that t3 and t1 have respectively the highest and lowest commonality score that can be
obtained by test cases with a single call to this method. Note that this shows that the highest
and lowest obtainable scores are not necessarily 1 and 0. In fact, most of the time they are
not, because it would require covering only branches with the highest and lowest execution
weight, which is often not possible to do.

Now suppose we have two test suites s1 and s2. s1 consists of only t1 and s2 consists of
t2 and t3. We can compute their commonality scores, as defined, by taking the average of all
commonality scores of the test cases they contain. In this simple example, s1 only contains
t1, and hence its commonality score is that of t1, which is 2

3 ≈ 0.667. For s2, we take the
average of the commonality scores of t2 and t3, which is

(20
27 +

5
6

)
/2 = 85

108 ≈ 0.787. Going
by these numbers, s2 covers more common parts of the code than s1.

3.2 Incorporating commonality in an evolutionary algorithm

This section describes how the commonality score defined in Section 3.1 can be used to
influence the search direction of an evolutionary unit test generation algorithm. The search
can be steered in the direction of covering more common behaviors, more uncommon be-
haviors, or both, in the CUT. We call the resulting method of test generation common and
uncommon behavior test generation (CUBTG).

During regular test generation, when not using CUBTG, the goal is solely to obtain the
highest possible coverage values for the metrics that are being used (e.g., branch coverage).
It generally does not matter what the test cases used to obtain coverage look like, as long
as they contribute towards raising the coverage value. When using CUBTG methods, on
the other hand, the goal changes somewhat. In addition to obtaining high coverage values,
which still remains an important objective, we also value the commonality score of the
test cases and test suites that are generated. The aim is to satisfy coverage goals for test
generation using test cases that exercise the commonly or uncommonly executed parts of
the code.

There are several algorithms available for evolutionary test generation. The current state
of the art algorithm is the many-objective sorting algorithm (MOSA) [20]. Another, older
relevant algorithm is the algorithm for whole test suite optimization introduced with Evo-
Suite [11], and variants thereof. Also relevant is the more novel algortihm is DynaMOSA

16

3.2. Incorporating commonality in an evolutionary algorithm

[22]. This is a refined version of MOSA that works more efficiently and somewhat more
effectively, especially when using smaller search budgets. According to two recent stud-
ies [21, 6], both MOSA and DynaMOSA outperform whole suite approaches and other
many-objective algorithms. For DynaMOSA it is necessary to order the search objectives,
while MOSA considers them all at the same time. The lattter fits best with how we want to
incororate CUBTG. For these reasons, we chose to build upon MOSA for this study.

In the remaining of this section, relevant parts of the test case selection procedure in
MOSA will be explained in Section 2.2, and our additions to MOSA for CUBTG will be
discussed in Section 3.2.1.

3.2.1 Additions to MOSA

We made two modifications to MOSA to incorporate CUBTG in the algorithm. Note the
discussion of test case selection in MOSA in Section 2.2 for a discussion of the parts of
MOSA relevant for the discussion here.

Fitness functions

First, we created two fitness functions (FFs) from the commonality score defined in sec-
tion 3.1: one of them to steer the search process to test cases with high commonality score
(covering more common behaviors), and the other to steer the search process to test cases
with low commonality score (covering more uncommon behaviors). For the former, we
want the FF value to get lower once the commonality score for the test case gets higher
(because a lower FF value means performing better in terms of the corresponding coverage
goal). And for the latter, we want this value to get lower once the commonality score gets
lower. We define these two FFs as in Definitions 3 and 4. Note that the values for these two
FFs will always be between 0 and 1 (both inclusive), because that is the case for c(t) too.

Definition 3 (Common behavior fitness function) For a test case t and its commonality
score c(t), the fitness function value fcommon(t) is defined as follows.

fcommon(t) = 1− c(t)

Definition 4 (Uncommon behavior fitness function) For a test case t and its commonal-
ity score c(t), the fitness function value funcommon(t) is defined as follows.

funcommon(t) = c(t)

One can use one, both, or none of the above FFs depending on the goal of the test
generation. For both of the FFs, the intention is for them to steer the direction of the search
in a specific direction, not to cover a specific goal. By adding an additional dimension to the
search space, the MOSA algorithm will look for test cases performing well in that direction,

17

3. DEFINING COMMONALITY AND USING IT IN AN EVOLUTIONARY ALGORITHM

in this case test cases with high or low commonality scores. The goal is to influence the
test cases that will cover other goals (e.g., branches) to have higher or lower commonality
scores.

Secondary objectives

Second, we modified the criterion that is used to choose which test case to keep in case of a
tie, for the situation where two or more test cases have the same fitness value for a coverage
goal. This is called the secondary objective (SO). By default, as mentioned above, MOSA
uses the length of the test case (number of statements) as a SO, and keeps the shorter one.
We added two additional SOs to this based on the commonality score of the test case. One
that keeps the test case with the higher commonality score, and another that keeps the test
case with the lower commonality score.

We still kept the test case length as an aspect for deciding which test case to keep,
because we would still like the test case length to be limited. To combine the two types of
SO, we used the following method. For two tied test cases, we used their relative difference
in terms of length and commonality in two new secondary objectives. A value < 1 means
that the first test case is better and a value > 1 means that the second test case is better.
A value equal to 1 means that both test cases perform the same in terms of the secondary
objective. In that case, we arbitrarily choose to keep the first test case. So for example, if
the first test case is twice as good as the second, the SO value would be 0.5. If the situation
would be reversed, the value would be 2. Let us state this more formally.

Definition 5 (Common behavior secondary objective) For two test cases t1, t2 with lengths
l1, l2, and configurable weights α and β, the comparison between the two test cases is done
using the following formula:

common(t1, t2) =
α

(
l1
l2

)
+β

(
1−c(t1)
1−c(t2)

)
α+β

If common(t1, t2)≤ 1, then t1 is kept, otherwise t2 is kept.

Definition 6 (Uncommon behavior secondary objective) For two test cases t1, t2 with lengths
l1, l2, and configurable weights α and β, the comparison between the two test cases is done
using the following formula:

uncommon(t1, t2) =
α

(
l1
l2

)
+β

(
c(t1)
c(t2)

)
α+β

If uncommon(t1, t2)≤ 1, then t1 is kept, otherwise t2 is kept.

Example To illustrate this method of combining secondary objectives, let us revisit the
example from Section 3.1.2. Remember that the commonality score for t1 was 2/3 and that
the commonality score for t3 was 5/6. Suppose for these test cases that l1 = 2 and l3 = 3,
and that we are using the common behavior secondary objective defined in Definition 5

18

3.2. Incorporating commonality in an evolutionary algorithm

above to decide which test case to keep, because they cover the same goal (e.g., they both
cover B3, see table 3.1). Let us use weights α = 1 and β = 2. Then we can calculate the
secondary objective value as follows:

common(t1, t3) =
α

(
l1
l3

)
+β

(
1−c(t1)
1−c(t3)

)
α+β

=
1 · 2

3 +2 · 1−2/3
1−5/6

1+2

=
2
3 +4

3
=

14
3
3

=
14
9

As 14/9 > 1, we will choose to keep t3 in favor of t1 in this case.

Summary

This section defined the FFs and SOs for incorporating CUBTG in MOSA. Using them
allows unit tests generation aiming to cover traditional coverage goals, while steering the
generation towards common or uncommon behaviors in the CUT. The FFs aim to influence
the commonality score of a test while it is still being generated throughout the iterations of
MOSA. The aim of the SOs is to keep the test with the highest or lowest commonality score
when multiple test cases are found for the same coverage goal.

19

Chapter 4

Empirical evaluation - methodology

This chapter describes the methods used to evaluate the performance of common and un-
common behavior test generation (CUBTG) described in Chapter 3. The main goal of the
evaluation is to compare the performance of CUBTG with the performance of the many-
objective sorting algorithm (MOSA) [20] as implemented in EvoSuite. Because we are not
sure of any additional effects of adding the CUBTG fitness functions (FFs) and secondary
objectives (SOs) to the many-objective MOSA algorithm, we also compare against the non-
dominated sorting genetic algorithm II (NSGA-II) algorithm (which is a multi-objective
algorithm) supplemented with the CUBTG FFs and SOs.

For the purpose of this evaluation, we implemented the CUBTG methods described in
Chapter 3 in EvoSuite. The implementation is available at https://github.com/STAMP-
-project/evosuite-ramp/tree/cub-test-gen. A replication package for this evalua-
tion is available at https://github.com/Bjorn48/cubtg-es-evaluation, and a docker
version of this replication package can be found at https://github.com/Bjorn48/cubtg-
-es-evaluation-docker.

We executed the implementation on a server with two Intel Xeon E5-2660 v3 CPUs
(running at 2.60 GHz). Each CPU has 10 cores and can run 20 threads at once. The server
has about 378 GiB of RAM.

We will start this chapter with stating and clarifying our research questions in Sec-
tion 4.1. Second, we will discuss the subject for this evaluation in Section 4.2. Third, in
Section 4.3 we will discuss the method we used to obtain execution data. Fourth, we will
discuss the EvoSuite configurations we used in Section 4.4. And last in Section 4.5, we will
describe what result data we collected and how we analyzed it.

4.1 Research questions

In this evaluation, we aim to address the overall question of how effective and efficient test
generation using CUBTG methods is compared to standard MOSA, and compared amongst
themselves. The following research questions are addressed for that purpose.

RQ1 Do tests generated by CUBTG achieve a better commonality score compared to stan-
dard MOSA, and how do the different CUBTG methods compare?

21

4. EMPIRICAL EVALUATION - METHODOLOGY

RQ2 How do software faults revealed by CUBTG differ from standard MOSA, and how
do the different CUBTG methods compare?

RQ3 How do tests generated by CUBTG compare to standard MOSA in terms of standard
code coverage metrics, and how do the different CUBTG methods compare?

RQ4 Does the usage of the added FFs and SOs affect the efficiency of the EvoSuite test
generation?

RQ5 How much time of EvoSuite test generation does it take for commonality score to
converge?

The purpose of RQ1 is to verify the effect of the FFs and SOs added in CUBTG. If
they work as intended, the maximum commonality score FF and SO cause generated tests
to have a higher commonality score, while the minimum variants cause them to have lower
commonality score.

With RQ2 we try to find out whether using CUBTG makes generated tests find different
kind of faults than when using standard MOSA. This may equate to a better fault revealing
potential in terms of number of covered bugs, for example, but this does not need to be the
case.

RQ3 is meant to check whether the additional search criteria that are added in CUBTG
affect the performance of standard coverage metrics, like branch coverage. One could imag-
ine standard coverage metrics to be negatively impacted, simply because more criteria are
added, but also because the search through the solution space is steered in a certain direc-
tion. It is possible that this causes a global optimum for standard goals to be more difficult
to find.

RQ4 focuses mainly on comparing the time EvoSuite needs for converging to stable
coverage values when using the various CUBTG methods and standard MOSA. Because
extra, and maybe relatively expensive, calculations are done to compute commonality score,
convergence of coverage metrics to a stable value might take longer. For this RQ we look
at the default EvoSuite coverage criteria as specified in Section 4.4.

Finally RQ5 looks at the convergence pattern of standard MOSA and the CUBTG meth-
ods in terms of the newly implemented commonality score. As for RQ4, it looks at the
convergence time for the fitness value.

4.2 Subjects

Software that could potentially used as a subject for this evaluation has to conform to the
following requirements:

R1 It has to be written in Java, because EvoSuite and the infrastructure described in
section 4.3.2 work with Java classes.

R2 It has to be runnable on a Windows laptop (corresponding to the system available for
executing the gathering of execution data), possibly by running a virtual machine.

22

4.2. Subjects

R3 It has to be executable on a personal computer to allow us to collect execution data,
without needing server-like hardware.

R4 It has to allow user interactions, by using either a command-line interface or a GUI
to allow enough variability between the different executions. Concretely, that means
libraries or frameworks are ruled out.

It turns out that the first, second and last requirements together rule out a lot of options.
Almost all open-source Java software are either libraries or frameworks, or applications to
be run on servers. Taking the various requirements into account, we decided to focus on
JabRef1, “an open source bibliography reference manager”. It can work with BibTeX and
biblatex files, and features a GUI created using JavaFX2.

We sampled a subset of 150 classes, including classes of varying nature to prevent
biasing results (for example, by choosing classes that are too easy to cover with EvoSuite).
The following three sets of classes have been selected. The cyclomatic complexity (i.e.,
McCabe’s complexity) [18] and lines of code metrics have been computed using CK3.

• The 75 classes with the highest cyclomatic complexity.

• The 38 classes with the largest number of lines of code, excluding all classes from
the category above.

• The 37 classes that were executed the most according to the execution data, exclud-
ing all classes from the categories above. How often a class has been executed was
determined by taking the execution weight of the branch with the highest execution
weight.

Note that some classes were excluded because they did not work well with EvoSuite af-
ter initial tests. The excluded classes were those in the org.jabref.gui and org.jabref.-
logic.importer.fileformat package. The reason was that EvoSuite does not work well
with JavaFX, used by JabRef, and with classes performing I/O operations.

Also, note that only a subset of these 150 classes are used when comparing EvoSuite
configurations (which are described below). This has two reasons. First, some combina-
tions of EvoSuite options and specific classes led to runtime errors in EvoSuite. To compare
EvoSuite configurations reliably, enough successful runs are needed. And second, for com-
paring commonality scores, sometimes the branches executed by a generated test case or
test suite did only exercise a part of the class under test (CUT) for which not enough exe-
cution data was available. The results corresponding to those test cases and test suites have
not been considered.

1https://www.jabref.org/
2https://openjfx.io/
3https://github.com/mauricioaniche/ck

23

4. EMPIRICAL EVALUATION - METHODOLOGY

4.3 Obtaining execution count data

For computing the commonality score of a test case or test suite as defined in Section 3.1,
and consequently for the application of the CUBTG methods as described in Section 3.2,
execution count data is needed for the CUT. More specifically, the execution counts (see
definition 1) of the basic blocks, or branches, in the control flow graph (CFG) of the CUT
(see section 3.1.1) are needed. To obtain the most accurate results, these execution counts
will have to be obtained from one or more usage sessions of the system that the CUT is part
of.

In this section will first describe three methods to obtain execution count data we have
considered in Section 4.3.1, and will describe in a bit more detail how we implemented our
chosen method in Section 4.3.2.

4.3.1 Approaches for gathering execution data

This subsection will briefly describe the methods we considered for obtaining execution
count data. First, one can use regular, existing log statements to obtain execution counts
for the branches in the CUT. This approach consists of matching log messages to the log
statement that outputted the message. One way to do this is using static analysis [37, 10],
which has been shown to work well in practice [29]. In short, this method consists of
creating templates from the log statements in the source code. It uses the observation that
most log statements are built from a static part and a dynamic part. Log messages from a log
file that has been outputted are then matched against those templates, using their static part,
to determine which log statement they most likely originate from. For our purpose here,
this can be used to determine how often the branch containing each log statement has been
executed during a usage session. We did not use this method for our evaluation, because
there is no implementation readily available (there is an implementation by Schipper et al.
[29], but it has not been published).

The second approach one can take is to adjust the configuration of the logging frame-
work that is being used to include the location in the source code of the log statement with
each log message that is outputted. This is a straightforward approach requiring no ad-
ditional software, but it causes significant performance loss at runtime. For example, the
Log4j 4 framework throws an exception when the log statement is executed and retrieves
location information from the stack trace. According to the developers, this is 1.3 to 5
times slower for synchronous loggers, and 30 to 100 times slower for asynchronous log-
gers, compared to not outputting location information 5. This makes it infeasible to use in
most systems, especially in production. We tried out this approach, but the application we
used for our evaluation (JabRef) became too slow to use. Hence, we decided not to use this
approach.

Third, one can add new log statements at specific locations in the code (source code,
compiled code, or anything in between) specifically for tracing the execution during a usage
session. Each tracing log statement can be configured to print an identifier unique to that

4https://logging.apache.org/log4j/2.x/
5https://logging.apache.org/log4j/2.x/manual/layouts.html#LocationInformation

24

4.3. Obtaining execution count data

statement, so that it can be easily inferred from the resulting log file which log statement
has been executed, including its location. In essence, this is a simplified version of the first
method requiring additional log statements. We used this method for the evaluation because
it was relatively easy to implement and it did not impact the responsibility of JabRef too
much. One of the main downsides of this method is that it requires modification of the code.

4.3.2 Implementation of our approach

This subsection describes the way we implemented the third method from the last subsection
for obtaining execution data for our evaluation. The approach we took consists of three steps
which we will describe here in order.

Step 1: inserting tracing log statements

The first step is the addition of log statements to the CUT. JabRef uses Log4j itself, so
we decided to use it for the tracing log statements too. We decided to insert the new log
statements directly into the source code, as opposed to the bytecode, because we had full
control over this experiment, and inserting the new log statements into source code makes
it easier for us to comprehend the resulting source code including the new log statements.

To insert the new log statements, we used the Spoon6 library. Quoting its website’s front
page, “Spoon is an open-source library to analyze, rewrite, transform, transpile Java source
code”. Because we wanted the execution data to be as accurate as possible, we decided to
take the somewhat rigorous approach of adding a log statement in almost every code branch.
To be explicit, these are the locations in which log statements were added:

1. At the start of the then part of every if-statement.

2. At the start of the else part of every if-statement.

3. At the start of the body of every catch-block in a try-catch-statement.

4. At the start of the body of every method.

5. At the start of the body of every constructor.

There were some parts of the code in which log statements were not added for technical
or practical reasons, even if they qualified as one of the above locations:

1. If the statement would be inserted in a default method7. Code in a default method
cannot reference class fields, which we used to implement the trace logging in JabRef.

2. If a method does not have an existing body. This is the case for unimplemented
interface methods and abstract methods in abstract classes. Adding a log statement
here would mean breaking binary compatibility with the original version, and we
want the execution data to represent an execution of the original software without the
added log statements.

6http://spoon.gforge.inria.fr/
7https://docs.oracle.com/javase/tutorial/java/IandI/defaultmethods.html

25

4. EMPIRICAL EVALUATION - METHODOLOGY

Each added log statement simply prints an identifier (we used a long value) unique
for that log statement. This led to a modified JabRef version with the only difference in
behavior being that an extra log file was outputted containing one of these unique identifiers
on each line.

Note that the tracing log statements can be enabled and disabled using the Log4j con-
figuration files. Suppose that one would want to use this method in production, one could
enable and disable these tracing log statements at runtime whenever one wants to turn trac-
ing on and off.

Our goal was to obtain execution data that was representative for a typical execution
of JabRef. To reasonably closely approximate this, we decided to let four people plus the
author of the thesis use JabRef for some predefined random task, as described below, for
approximately 5 minutes. Before the start of the short usage session, we made sure that
it was clear for the person how to use JabRef, by giving a short explanation (obviously
this was not needed for the author). We collected the trace logs resulting from these usage
sessions, and used them as an input for step 2.

JabRef task This is the task we asked the participants to perform for collecting execution
data. Note that we allowed the participants to perform any secondary actions which they
felt were natural during the task.

1. Start the JabRef application.

2. Create a new bibliography database.

3. Add approximately 3 entries (e.g., articles) to the database corresponding to some-
thing you are currently working with, or are interested in.

4. Modify one or more of the added entries.

5. Save the bibliography database to disk.

6. Close the JabRef application.

Step 2: converting log statement identifiers to source code locations

In this step we convert the file with an identifier on each line, outputted from Step 1, to a
file with on each line the code location of the log statement corresponding to the identifier.
We again used Spoon for that purpose. We let Spoon output the location in the software un-
der test (SUT) in the following format: <class-name>|<method-name>|<line-number>,
where:

• <class-name> is the fully qualified name of the class in which the log statement
resides. This needs to be included, because we may be collecting execution data for
multiple classes at once (which we were in this case).

• <method-name> is the name of the method in which the log statement resides, without
a parameter list and without parentheses after the name.

26

4.4. EvoSuite configurations

Figure 4.1: Part of an example location log file, containing the location of an executed log
statement on each line.

• <line-number> is the line number of the log statement.

A part of an example of such a file is shown in Figure 4.1. One may wonder why we
did not write the location of the log statement directly to the log file in step 1, instead of
an identifier, by inserting it directly in the message to be logged. The reason for this was
that writing only a identifier to the file costed much less time and disk space at runtime
compared to writing the whole location at runtime. JabRef became a lot less responsive
when writing the full location to the log file at runtime.

Step 3: creating an aggregated JSON count file

We inputted the file ouputted from Step 2 into a Kotlin script. This script combines the loca-
tion data into a hierarchical JSON file, going from class, to method, to line, and then stating
the execution count for each separate line. This file can be used by EvoSuite to extract
execution count data to apply CUBTG methods. An example file is shown in Figure 4.2.

4.4 EvoSuite configurations

The configurations used to run EvoSuite are listed in Table 4.1 with an identifier, and the
search algorithm, the coverage criteria, and the SOs used. Note that the default set of
coverage criteria and default test case length SO are referred to in table 4.1 using the ab-
breviation “def.”. They are described below. Similarly, the maximum and minimum com-
monality score variants of the FFs and SOs are referred to using the abbreviations “max.”
and “min.”. For a more detailed explanation of these commonality related FFs and SOs, see
Section 3.2.1. A search budget of 180 seconds was used for all configurations. According
to related literature [12, 21], three minutes is a good compromise between run time and
coverage.

In the following, the terms maximum configuration variants and minimum configuration
variants will sometimes be used. The former refers to the configurations fit max sec max
and fit def sec max, and the latter refers to the configurations fit min sec min and

27

4. EMPIRICAL EVALUATION - METHODOLOGY

Figure 4.2: Part of an example JSON execution count file.

Configuration identifier Search algorithm Coverage criteria SOs
fit def sec def MOSA def. def.
fit max sec max MOSA def. + max. def. + max.
fit min sec min MOSA def. + min. def. + min.
fit def sec max MOSA def. def. + max.
fit def sec min MOSA def. def. + min.
fit max min sec def MOSA def. + max. + min. def.
nsgaii max NSGA-II def. + max. def. + max.
nsgaii min NSGA-II def. + min. def. + min.

Table 4.1: EvoSuite configurations

fit def sec min. This corresponds to the type of FFs and SOs are used in those con-
figurations.

EvoSuite default coverage criteria We decided to use the following set of standard cov-
erage criteria for EvoSuite: line, branch, exception, weak mutation, input, output, method,
method (without exceptions), context branch.

Default SO Note that, as described in Section 2.2, the default SO used by EvoSuite favors
test cases and suites that are shorter in terms of number of statements. If a default SO is
referred to, it is this one.

28

4.5. Data collection and analysis

The configurations in table 4.1 were included in the evaluation for the following rea-
sons. The fit def sec def configuration was included as a baseline. It does not use any
of the functionality added to EvoSuite, and hence represents EvoSuite as it is used in a state-
of-the art fashion. The fit max sec max and fit min sec min configurations are meant
to look at the effect of the newly implemented FFs and SOs while steering the search in
one specific direction. The fit def sec max and fit def sec min configurations have
the same purpose, but only look at the effect of the added SOs, while using the default set
of coverage criteria. The fit max min sec def configuration is meant to look at the effect
of using both the minimum and maximum variants of the added FFs. Using this configura-
tion, the added FFs steer the search towards common behaviors and uncommon behaviors
simultaneously. Finally, the nsgaii max and nsgaii min configurations are added to com-
pare the results to runs using a classical multi-objective search algorithm. They are meant
to detect any patterns in the results that might be caused by using MOSA, with the newly
implemented functionality, which might not occur using a multi-objective search algorithm.

Note finally that for the MOSA configurations, EvoSuite has been configured to not
discard search goals once they are covered by some test case. The purpose of disabling
this (default) behavior is to allow the search to find test cases that are better in terms of the
minimum and maximum commonality score SOs, even if they have already been covered
before. This might slow down the search, but it allows the result to improve in terms of
commonality score.

4.5 Data collection and analysis

Let us now look at what data has been collected to answer the research questions, and how it
has been collected. This will be stated for each research question separately. Each research
question will first be repeated for ease of reading, in the format “Q: 〈 RQ 〉”, where “〈 RQ
〉” is the actual research question.

RQ1 Q: “Do tests generated by CUBTG achieve a better commonality score compared to
standard MOSA, and how do the different CUBTG methods compare?” To compute
the commonality score of an individual test case, we need to know which branches
it covers. We configured EvoSuite to output this information for each generated test
case.

RQ2 Q: “How do software faults revealed by CUBTG differ from standard MOSA, and
how do the different CUBTG methods compare?” To answer this question, we would
need known faults (i.e., bugs) in JabRef to check whether CUBTG methods uncov-
ers them better than standard MOSA. There is no dataset of real bugs available for
JabRef (in a format that is easily usable). As has been researched before, strong
mutation testing can be a good simulation of real faults in software [16]. We used
PIT8 for mutation testing, and ran it separately on each generated test suite, for each
configuration, resulting in a mutation score for each generated test suite.

8https://pitest.org/

29

4. EMPIRICAL EVALUATION - METHODOLOGY

RQ3 Q: “How do tests generated by CUBTG compare to standard MOSA in terms of stan-
dard code coverage metrics, and how do the different CUBTG methods compare?”
Information about standard coverage metrics on the test suite level can be outputted
by EvoSuite in its statistics file. We configured EvoSuite to output the data we needed
for standard coverage metrics to that file. In addition, we added code to EvoSuite to
output to a file the length of each generated test case.

RQ4 Q: “Does the usage of the added FFs and SOs affect the efficiency of the EvoSuite
test generation?” We need FF values for different points in time during the runtime of
EvoSuite to observe convergence patterns of those FF values. To obtain this data, we
modified EvoSuite to output intermediate FF coverage values to its log file.

RQ5 Q: “How much time of EvoSuite test generation does it take for commonality score
to converge?” Like for the previous research question, intermediate values for com-
monality score are needed to answer this question. It would take very large amounts
of space to store these intermediate values for every test case, so we only stored them
per test suite, in the same way as for the other FFs.

For determining the statistical significance and magnitude of the obtained results, we
have compared them using the Mann–Whitney–Wilcoxon (MWW) test [14] and the Cliff’s
delta measure [7], respectively. For both of these, we have grouped the results by class in
order to obtain a fair comparison between test cases, as suggested by [16]. For significance,
we have taken a p value of 0.05 resulting from the MWW test to be significant result. The
Cliff’s delta measure is a value between -1 and 1, where a value > 0 means that the first
configuration is higher, while a value < 0 means that the configuration it is compared against
gives a higher result. The absolute value indicates the magnitude of the result. When talking
about effect sizes below, we mean the absolute value, unless stated otherwise. Romano [27]
suggested the following qualitative assessments for the effect size e, which are used in this
chapter:

• e < 0.147: negligible

• 0.147 <= e < 0.33: small

• 0.33 <= e < 0.474: medium

• e >= 0.474: large

To obtain statistically relevant data, we repeated the evaluation 30 times for each of the
selected classes. Taking into account that we used 8 different EvoSuite configurations, the
total amount of EvoSuite executions (and hence generated test suites) is 36,000.

30

Chapter 5

Empirical evaluation - results

This chapter shows the results of evaluating the common and uncommon behavior test
generation (CUBTG) implementation on JabRef, using the setup described in the previ-
ous chapter. The results relevant for each research question will be shown separately, each
in their own section. At the end of this chapter, possible threats to the validity of this eval-
uation will be discussed. In this chapter, the standard the many-objective sorting algorithm
(MOSA) configuration, fit def sec def, will often be referred to as the “default con-
figuration” or “standard MOSA”, because it is the main existing configuration the newly
implemented configurations are compared to.

Note that results for the EvoSuite configurations using the the non-dominated sorting
genetic algorithm II (NSGA-II) algorithm are mostly not discussed in this section, because
they were added to detect any (odd) patterns caused by using them in MOSA versus a multi-
objective algorithms, as discussed in the previous section, not for comparing effectiveness
or efficiency as is done here. The results are still shown for completeness.

5.1 RQ1: Commonality score

This section presents the results, discussion and conclusion for RQ1, which was “Do tests
generated by CUBTG achieve a better commonality score compared to standard MOSA,
and how do the different CUBTG methods compare?”

5.1.1 Results

For answering this question, let us take a look at the commonality score per test case. Over-
all coverage per configuration is shown in Figure 5.1. Additionally, all configurations have
been compared pairwise. For all classes for which there were statistically significant dif-
ferences (p < 0.05) in commonality score between configurations, effect sizes are shown in
Figure 5.2. The total number of classes that were compared pairwise, per pair of configura-
tions, is shown in Table 5.1. Note that results have not been grouped by class. This means
that test suites with higher number of test cases in the suite have a higher weight than those
with lower number of test cases in the suite. This is intended, because this figure is only
meant to compare results on the test case level. It gives us more information than the suite

31

5. EMPIRICAL EVALUATION - RESULTS

●●

●●●

●●

●●●

●

●

●

●●

●

●●

●

●●●

●●

●●

●●

●●●●

●●

●●●

●●

●●●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●●

●●●

●●

●●

●

●

●

●●●

●●

●●

●

●

●

●●●

●

●●

●

●●

●

●

●

●●●●

●●

●

●

●●

●

●●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●●

●●●

●

●

●

●●●

●

●

●

●●●

●●

●●●●

●

●

●

●●●

●●

●●●

●●

●●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●

●
●
●

●
●

●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●

●

●●

●

●

●●●●●

●

●

●
●●

●●●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●

●

●

●

●

●●●●●

●
●

●
●●

●●●●●

●

●●●●●●

●

●●●●●●●

●

●●●

●●

●

●

●

●

●●

●

●●●

●●

●
●

●●●●

●

●●●●●●

●

●●●●●●●●●●●

●

●

●

●●

●

●●

●
●●

●
●

●●●

●

●●●●●●●●

●

●●●●●●

●

●●●●●

●

●

●

●

●●

●
●
●

●
●●

●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●

●

●●●

●

●

●

●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●

●

●●●

●

●●

●
●

●
●●

●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●●●

●

●●

●

●●●

●
●

●
●●

●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●

●

●

●●

●

●●

●
●
●

●
●●

●

●●●●

●

●●●●●

●

●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●
●●

●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●

●

●

●

●●

●

●●

●
●

●
●●

●●●

●

●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●

●●●●●

●
●

●
●●

●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●

●

●

●

●

●

●

●●

●
●

●●●●●●●

●

●●●●●●●

●

●●●●●●

●

●●●●

●

●

●

●●●●

●

●

●

●
●

●
●

●●●●

●

●●●●●●

●

●●●●●●●

●

●●●●

●●

●

●

●●●●

●
●

●
●●

●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●

●

●●●●

●
●

●
●●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●

●

●●

●

●

●●●

●

●
●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●●

●

●

●●

●

●●

●
●●

●
●●

●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●

●

●

●

●

●

●
●●

●●●●

●

●●●●●●

●

●●●●●●●

●

●●●

●

●●

●

●●●●●

●
●
●

●
●

●●●●

●

●●●●●●●

●

●●●●●●

●

●●●

●

●●

●

●●●●●

●
●

●
●●

●●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●

●

●●●●

●

●

●

●●

●
●

●

●●●●●

●

●●●●●●

●

●●●●●●●●●

●

●

●

●●

●

●●

●

●

●

●●

●●●●

●

●●●●●●●●●

●

●●●●●

●

●●

●

●●

●

●●

●

●●●●

●
●
●

●
●

●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●

●●

●

●●

●
●
●

●
●●

●●●

●

●●●●●●

●

●●●●●●●●●

●

●●●●

●

●

●●●●

●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●●●

●

●●●

●

●

●

●

●

●●●

●

●●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●●

●

●●●●●●●●●

●

●●

●

●●

●

●●
●

●●

●

●

●●●
●
●●

●

●●●
●●

●●●

●●

●

●●
●
●●

●

●

●

●
●

●

●

●

●●
●●●●

●

●

●

●●●

●

●
●

●

●●●●

●

●

●●

●

●

●

●
●
●●

●

●

●

●●
●

●●

●●

●

●

●
●

●
●

●

●

●

●●
●

●

●●

●
●

●

●

●●
●
●●●●

●

●●

●

●●
●

●
●

●

●●

●●●●

●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●

●
●
●

●

●
●●

●

●●

●●

●

●

●

●●

●

●

●

●●
●

●●

●●

●

●●
●

●
●

●●

●

●●
●

●

●

●

●●●●
●

●

●●

●

●●

●

●●●
●

●

●

●

●●

●

●●●
●

●
●
●

●●

●

●
●

●

●●

●

●●●●

●●

●
●

●●

●

●
●

●

●
●●●●

●

●●

●

●

●●
●

●

●●

●

●●●

●

●

●
●
●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●

●

●●●●●●●●●●●

●●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●●

●

●●●

●●

●●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●●

●

●●●

●●

●●●●

●

●

●

●●●

●

●●

●

●

●

●●●

●●

●●●●

●

●

●

●●

●

●●

●

●●

●

●●

●

●

●●

●●●

●●● ●●●●●●●

●

●●

●●

●

●

●

●●

●

●

●

●

●●●●●

●

●

●

●

●

●

●●●

●

●●●

●

●●

●

●

●

●●●

●

●●●●

●

●●

●

●●●●

●

●●●

●

●●

●

●

●

●

●

●●●●

●●

●●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●●

●●●●●

●

●

●

●●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●●●

●

●●●●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●●●

●
●

●
●●

●

●●●

●

●

●

●●●●●●●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●●●●

●

●●

●●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●●

●

●●●

●
●

●
●

●●

●

●

●

●●●

●

●●●

●

●

●
●

●

●●●●

●

●

●

●

●●

●
●●

●●

●●

●
●

●

●

●

●●●

●

●●

●

●●●●

●

●

●●●●

●

●
●

●

●

●

●●●

●

●
●

●●

●

●

●●●

●

●
●

●

●

●

●

●

●●●

●
●●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●●

●

●
●

●

●●●●●

●

●

●

●●●●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●●

●

●●●●●

●

●

●

●

●

●●

●

●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●

●

●●●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●●●

●

●●●●

●

●●

●
●
●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●●●

●

●●●●●

●

●●●

●●●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●●●●

●

●●

●

●

●●

●

●

●●

●

●●●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●

●●●

●●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●●●

●
●

●●

●

●

●

●

●●●

●

●●●

●

●●●

●

●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●

●

●

●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●
●

●

●●

●

●●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●
●

●

●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●
●
●●

●●●

●●●●●

●●

●●●●

●

●

●●

●●●

●●

●●●

●

●

●

●

●●

●●

●

●●

●●

●

●
●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●●

●●

●●
●
●

●

●

●

●

●●

●●●●●

●
●
●●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●●

●●

●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●●

●

●●●

●

●●●●●●

●●

●●●●●●●

●

●●●

●

●●●

●●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●

●

●●●●

●

●●●●●●●●

●

●●●●●●●

●

●

●

●

●

●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●●● ●●

●●●●●

●●●

●●

●●●●

●●

●●●

●●

●●●●

●

●

●

●●●

●

●

●

●●●

●●

●

●

●

●

●●●●●

●●

●●●

●

●

●

●●

●

●

●

●●●●

●●

●●●

●●

●●●

●

●

●

●●●

●●

●●●

●●

●●●

●●

●●

●

●

●

●●

●

●

●

●●●

●

●

●

●●●

●●

●●●

●●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●●

●●

●

●

●

●●

●

●

●

●●●

●●

●●●

●

●

●

●●●●

●

●

●●●

●

●●

●

●

●●●

●
●

●
●

●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●

●

●●

●

●

●
●

●
●●

●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●

●

●

●

●●●●●

●

●

●

●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●

●

●

●

●

●

●●

●
●●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●

●

●●

●

●

●
●

●
●●

●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●

●

●

●

●

●

●●

●
●●

●
●

●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●

●

●●●●

●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●●

●
●

●

●

●

●

●●●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●

●

●●

●

●●

●
●

●
●●

●●●●●●●●●●

●

●●●●●●●●

●

●●●

●

●

●●

●

●●

●
●
●

●
●●

●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●

●

●

●

●

●●●●

●

●

●●

●

●
●

●●●●●●●●●●●

●

●●●●●●●

●

●●

●

●

●

●●●

●

●●

●

●

●
●●

●●●●

●

●●●●●●●●●

●

●●●●●

●

●●

●

●●

●

●●●

●

●
●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●

●

●

●

●●

●

●●

●
●

●
●●

●●●●

●

●●●●●●●●

●

●●●●●●

●

●●●●

●

●●

●

●●●●●

●
●

●
●●

●●●

●

●●●●●●●

●

●●●●●●

●

●●●●

●

●

●●●●

●

●

●

●
●

●●●●

●

●●●●●●●●

●

●

●●●●●●

●
●

●●●●●

●

●●

●

●●●

●
●

●
●●

●●●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●

●●

●

●

●

●

●●

●

●

●●

●
●

●●●

●

●●●●●●●

●

●●●●●●●●●●●

●●

●

●●●

●
●
●

●
●●

●●●

●

●●●●●●●●

●

●●●●●●●

●

●●●●●

●

●

●●

●

●
●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●●●

●
●

●
●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●●

●●

●

●

●●●●●

●
●

●
●●

●●●●●

●

●●●●●●

●

●●●●●●

●

●●●

●

●●

●

●●●●●

●
●

●
●●

●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●

●

●

●●●

●

●

●
●●

●
●●

●●●●

●

●●●●●●

●

●●●●●●

●

●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●●

●

●●

●
●
●●●

●

●

●

●●

●

●

●

●
●

●

●

●●●

●

●●

●

●
●●

●

●●

●

●

●●

●

●●

●

●

●
●
●

●

●●●●

●●

●

●
●●●●

●

●
●●●

●

●

●●●

●

●
●

●●

●

●●

●

●

●

●●

●

●●●

●

●
●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●
●
●

●

●●

●

●

●

●

●

●●●●●●
●

●
●

●●●

●●

●●

●

●●

●

●

●

●●

●

●●●
●

●
●

●

●

●●
●
●●

●
●

●

●

●●●
●
●

●

●

●●●

●

●●

●

●●

●
●

●●●●

●●
●

●●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●●

●●●

●

●●
●

●

●

●

●●

●

●●

●
●

●●

●

●●●
●●
●●●●●●●

●

●●●

●

●

●●●
●
●

●

●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●

●

●

●

●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●●

●

●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●●

●●●●●●●●●●

●

●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●●●●

●

●●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●

●

●●●

●

●

●

●

●●

●●●

●● ●●●●●●●●●●●●●●

●●

●

●●●●●●●●●●●●

●●●

●

●

●●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●●●●●●●●●

●

●●

●

●

●

●●●●●

●●

●

●●●●●

●

●●●

●

●

●

●

●●

●

●●

●

●●●●

●

●●●

●

●●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

●●

●

●

●

●

●●

●
●●

●

●●●

●

●●

●

●●

●

●

●●●●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●
●

●●

●

●

●
●●

●

●

●

●●●●●●

●

●●

●

●

●●●●

●

●
●

●

●

●

●●

●
●

●
●●

●

●●●●

●

●●●●●

●

●

●
●
●

●

●●●●●

●

●

●
●●

●

●

●

●

●

●

●●

●
●●

●

●●●

●

●●

●

●●●

●

●●●●●

●

●

●

●●●●

●

●●

●●

●●

●

●

●

●●

●

●

●

●●

●

●●●●●●●

●

●
●

●●

●

●●●

●

●

●

●

●●

●●●

●

●●●●

●

●●

●

●

●●●●

●

●

●●

●

●

●

●

●●●●

●●
●

●

●

●

●●●●

●

●●

●
●

●

●

●

●

●

●●●●●

●
●
●

●

●

●

●●●

●
●

●
●●

●●●●●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●●

●

●●●

●

●●●●●●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●●●

●

●●●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●●●

●

●●●

●
●

●

●

●

●

●

●●●●

●

●●
●

●

●

●●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●●

●

●●●●●●●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●
●●

●●●●

●

●●●●●●●

●

●

●●●

●

●

●

●
●

●

●

●●

●

●●

●

●
●●

●

●

●

●●●

●

●●●●●

●

●

●●●●

●
●

●●

●

●●

●●●●

●

●
●

●

●

●●●

●

●●●●

●
●
●

●

●●●●●●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●●●●●●●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●
●

●

●●

●
●

●
●

●

●●●

●

●

●

●●●●

●

●
●

●

●

●●

●

●

●

●

●

●●●

●

●●

●●

●
●

●

●●●

●

●

●

●●●●

●

●

●●

●

●●●

●

●
●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●●●●●●●

●

●

●
●

●

●

●

●●●

●
●

●
●

●●

●

●●●

●

●●●

●

●

●

●

●

●●●●●●

●
●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●●●

●

●●

●

●●●

●

●●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●●●

●

●

●

●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●

●

●●●●●

●●

●●●●●●●●●●●

●

●●●●●

●

●●●●

●

●

●

●

●●●

●

●●●●●●●●●●●

●

●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●

●

●●●

●

●

●

●

●

●●●●●●

●

●

●

●●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●●

●

●●●

●
●

●

●

●●●

●●●

●

●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●●

●●●

●

●

●

●●

●

●

●●●

●
●
●

●
●

●

●

●●

●●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●●

●●

●

●

●

●

●●●

●

●

●●
●
●●

●
●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●

●●

●●●

●

●

●
●

●

●

●

●●●

●
●
●●

●●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●●
●

●

●●

●

●●

●●

●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●●

●
●

●

●

●

●

●●●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●

●

●●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●●●●

●

●

●●

●

●●●

●

●●●●●

●

●●●●

●●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●

●

●●●●●

●●

●●●

●

●

●●

●

●

●●●●●●

●

●

●

●●

●

●

●●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●

●

●●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●●●●●●●●●●

●●

●●●

●

●

●

●●●●●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●

●

●●●●

●

●●

●

●

●

●

●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●●●●●

●

●● ●●

●●

●

●●●●

●

●●●

●

●●●●●

●

●

●

●●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●

●

●●●

●

●

●

●●●

●

●●●

●

●

●●

●●

●

●●●

●

●●●

●

●●

●●

●

●

●●

●

●●●●●●

●●

●

●

●

●●

●●●

●

●●

●

●●●

●

●●●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●●●●●●●●

●

●●●

●

●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●●●

●

●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●

●

●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●●

●

●●●

●

●●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●

●

●●●

●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●●●●●●●●●

●

●
●

●

●●●●●●●●●●●●●

●

●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●

●●●●

●

●●●●●●●●●●●●

●

●●●

●

●●

●

●●
●

●●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●
●
●

●●

●●

●

●●

●
●

●

●

●

●

●
●

●●

●
●
●

●

●

●

●

●

●
●

●●

●

●

●●
●
●

●
●

●●

●

●

●

●

●

●
●

●
●●
●

●
●

●

●

●●

●
●

●

●

●●
●
●●●

●

●●

●

●●
●

●

●
●
●●●

●

●●
●

●

●●
●
●

●

●

●
●

●●
●
●

●

●●
●

●

●●●
●

●●●●

●

●

●●●●●

●●

●

●

●●

●

●
●●
●

●

●

●

●

●

●●

●●

●

●●

●

●●

●

●●

●

●

●

●

●

●●●●

●

●●●

●

●●

●

●●●

●

●

●

●●●

●

●●

●

●●●

●

●

●

●●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●● ●●●

●●

●

●●

●

●

●

●●

●●

●●

●

●

●

●●

●

●●●

●

●

●●

●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●●

●

●●

●●

●●

●

●●

●

●●●

●

●●

●

●●

●

●●

●

●●●

●

●●●●●

●

●

●

●●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●●

●

●●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●●●●

●

●

●●

●

●●●

●

●
●

●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●

●

●●●●●●●●●

●
●

●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●

●

●

●●●●●●●●●●●●●

●

●●

●

●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●

●

●●

●

●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●●●●●●●●●

●

●●●

●

●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●

●

●●●

●

●●

●

●●●●

●

●●●●●●●●●●●

●

●●●●●●

●

●●
●

●

●●
●
●●
●
●

●
●

●
●

●

●●
●

●●

●●

●

●

●

●
●

●●●●

●

●●

●

●●

●
●

●
●
●

●

●

●
●
●

●
●
●●

●●

●
●

●●
●
●

●●
●

●

●

●●●
●
●

●

●

●●

●

●
●
●

●●

●

●
●
●

●
●●

●●
●

●

●

●

●

●
●

●

●

●

●
●●
●
●●

●

●
●

●●

●

●

●

●

●●●

●●

●

●
●●

●

●
●

●●

●●
●
●●

●
●

●
●

●

●●●
●

●●
●
●

●●
●

●

●

●

●

●

●
●

●

●
●

●
●●

●●●

●

●●●

●

●●●

●

●●

●

●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●●●●

●

●●●●●●●

●

●

●

●●●●●

●

●●●

●

●●

●

●●●

●

●●

●●●

0.00

0.25

0.50

0.75

1.00

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min
Configuration

C
ov

er
ag

e
va

lu
e

Test case commonality coverage, per configuration

Figure 5.1: Commonality score per configuration. Each data point is a test case.

level, because instances of common or uncommon behaviors being covered multiple times
by different test cases are hidden by looking at the results for test suites as a whole.

Conf. name 1 2 3 4 5 6 7 8
1 fit def sec def 81 81 80 81 80 81 81
2 fit def sec max 81 82 82 82 82 82 82
3 fit def sec min 81 82 82 82 81 82 81
4 fit max min sec def 80 82 82 82 81 83 83
5 fit max sec max 81 82 82 82 82 83 83
6 fit min sec min 80 82 81 81 82 82 81
7 nsgaii max 81 82 82 83 83 82 83
8 nsgaii min 81 82 81 83 83 81 83

Table 5.1: Number of classes for which data is available for comparing two configurations
for comparing commonality coverage.

These are the most important things to observe from this data:

• The configurations using the maximum commonality secondary objectives (SOs) and
fitness functions (FFs) achieve a higher commonality score than the default configu-
ration for a large part of the tested classes (58/81 for fit def sec max and 65/81 for
fit max sec max). For both of these configurations there is a small to medium ef-
fect size for a lot of classes. For fit max sec max in particular one can notice (from
fig. 5.2) that a large part of the classes have a large effect size, a pattern that is much
less present for fit def sec max versus standard MOSA.

32

5.1. RQ1: Commonality score

n
=

 1

n
=

 4
8

n
=

 1

n
=

 4
7

n
=

 1
3

n
=

 1
5

n
=

 5
8

n
=

 7
2

n
=

 5
8

n
=

 2

n
=

 7
2

n
=

 5
8

n
=

 6
1

n
=

 1

n
=

 1

n
=

 4

n
=

 3

n
=

 4

n
=

 3

n
=

 2

n
=

 4
9

n
=

 5
0

n
=

 1
6

n
=

 1
5

n
=

 6
5

n
=

 3
0

n
=

 7
8

n
=

 6
5

n
=

 7
9

n
=

 6
4

n
=

 6
5

n
=

 4

n
=

 2

n
=

 2

n
=

 1
8

n
=

 2

n
=

 4
7

n
=

 1
7

n
=

 2

n
=

 4
8

n
=

 1

n
=

 1
7

n
=

 3

n
=

 4
6

n
=

 1
7

n
=

 2

n
=

 4
9

n
=

 1

fit
_d

ef
_s

ec
_d

ef
fit

_d
ef

_s
ec

_m
ax

fit
_d

ef
_s

ec
_m

in
fit

_m
ax

_m
in

_s
ec

_d
ef

fit
_m

ax
_s

ec
_m

ax
fit

_m
in

_s
ec

_m
in

ns
ga

ii_
m

ax
ns

ga
ii_

m
in

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min

01 01 01 01 01 01 01 01Effect size

C
om

m
on

al
ity

 s
co

re
 p

er
 te

st
 c

as
e,

 d
iff

er
en

ce
 in

 e
ffe

ct
 s

iz
e

ac
ro

ss
 c

on
fig

ur
at

io
ns

Fi
gu

re
5.

2:
E

ff
ec

ts
iz

e
of

co
m

m
on

al
ity

sc
or

e
di

ff
er

en
ce

pe
rc

la
ss

,p
er

co
nfi

gu
ra

tio
n.

O
nl

y
si

gn
ifi

ca
nt

re
su

lts
ar

e
sh

ow
n

(p
<

0.
05

).
In

ea
ch

ce
ll,

da
ta

is
sh

ow
n

fo
rw

hi
ch

th
e

co
lu

m
n

co
nfi

gu
ra

tio
n

re
su

lte
d

in
a

hi
gh

er
va

lu
e

th
an

th
e

ro
w

co
nfi

gu
ra

tio
n.

T
he

nu
m

be
ro

fo
bs

er
va

tio
ns

is
sh

ow
n

in
th

e
up

pe
r-

ri
gh

tc
or

ne
ro

fe
ac

h
ce

ll.

33

5. EMPIRICAL EVALUATION - RESULTS

• For 30/82 classes, the fit max sec max configuration gives a somewhat higher re-
sult than the fit def sec max configuration. For most of these classes the differ-
ence is small (effect size around 0.25, see fig. 5.2), and for a few the difference is
somewhat larger. Also, fit max sec max never gives a lower coverage result than
fit def sec max.

• The configurations using the minimum commonality SOs and FFs achieve a little
lower commonality score than the default configuration for a bit more than half of the
classes in the test set (48/81 for fit def sec min and 47/81 for fit min sec min).
The effect size is mostly small, with some classes having a medium to large effect
size.

• For 4/81 classes fit min sec min has a lower commonality score than fit def sec-
min, and for another 4/81 classes this is the other way around. In both cases the effect

sizes are small, although they are a bit larger when fit min sec min has lower cov-
erage.

• For 79/82 classes, fit max sec max has a higher result than fit min sec min, and
the former never has a lower result than the latter (as was intended). Similar patterns
can be seen in the pairwise comparisons when comparing the other minimum and
maximum configuration variants. The effect sizes of the differences are mostly large
or medium, with median values close to 0.5, as can be seen in fig. 5.2.

• For the fit max min sec def configuration, there are only 4/80 classes for which
there is a significant difference in coverage compared to standard MOSA. If there is
a difference, it is negligible except for 1 class.

• The commonality score is not particularly high on average. As can be seen in fig. 5.1,
the median is about 0.3 for fit max sec max, the configuration with the highest me-
dian.

It is worth noting that the results for most classes are much more significant than
the p < 0.05 threshold as used in this section. For example, if we take a p < 0.001 in-
stead, fit max sec max is still significantly higher for 58/81 classes compared to standard
MOSA, and fit min sec min is still significantly lower for 39/80 classes. In other words,
the results are very significant for most classes, and they are closer to the p < 0.05 threshold
only for a smaller number of classes. For the exact significance values and effect sizes per
class for the two configurations just mentioned, see Tables A.1 and A.2 in the appendix.

We have also checked the results for a possible correlation of the effect size and class
complexity, lines of code, or how often a class has been executed. There does not seem to
be such a correlation.

5.1.2 Discussion

Overall, the results for this research question show that the maximum CUBTG configuration
variants achieve a higher commonality score for about 75% of the classes, compared to the

34

5.1. RQ1: Commonality score

standard MOSA configuration, and that the minimum configuration variants achieve a lower
commonality score for about 60% of the classes. This allows us to conclude that the addition
of the FFs and SOs achieves the goal of increasing or decreasing the commonality score in
most of the cases. Also the fit max min sec def configuration does not cause a significant
difference in commonality score overall, as was intended. For only 4/80 classes there is a
significant difference.

Looking a little bit closer at the results, the first thing to notice is that the maximum
configuration variants often have a larger and more significant effect on the commonality
score than the minimum configuration variants. In other words the commonality score that
the minimum variants achieve is relatively closer to the coverage the standard MOSA con-
figuration achieves, compared to the difference in achieved coverage between the maximum
variants and standard MOSA. For example, fit max sec max achieves a higher common-
ality score than standard MOSA for 65/81 (80%) of the classes, while fit min sec min
achieves a lower commonality score for 47/80 (59%) of the classes. Also, one can see in
Figure 5.2 that the effect of the maximum configuration variants is generally greater than
the minimum configuration variants.

A reason for this could be that there are relatively few branches with a high execution
weight. This means that if you do not pay attention to commonality score (like the default
configuration), you would not reach them as often as the branches with a lower execution
weight. The maximum configuration variants give extra weight to reaching those branches,
possibly causing longer test cases, for example, but would be able to make a relatively
large difference in commonality score in this way. The minimum configuration variants
would still be able focus on taking branches that have a lower execution weight, but because
standard MOSA already chooses mostly branches with a relatively low execution weight,
there would not be that much of an improvement.

Another possible explanation for this observation is that branches with a really low ex-
ecution weight are very difficult to reach by the test generation algorithm. If we assume
that, then it makes sense that the minimum configuration variants manage to cover some
more of them than the default configuration, but not nearly all of them, causing only a small
difference in commonality score between those configurations. The maximum configura-
tions would then be looking to cover more easily accessible branches with higher execution
weight, causing a larger difference in coverage. If the execution weights come from real
executions of the software under test (SUT) (which is the case for this evaluation), then this
explanation assumes that difficult to reach branches in the code are not executed often in
those real executions. Intuitively, this sounds reasonable.

Something else that could have an effect on the minimum configuration variants being
less pronounced is the way the commonality score is calculated (see Section 3.1). It takes
into account the whole set of branches that are covered by the test case (i.e., the path it
takes through the code). If we assume, like in the previous explanation, that branches with
less execution weight are more difficult to reach, reaching them might require also covering
branches that are higher in execution weight. Using the way of calculating commonality
score outlined in section 3.1, the effect of covering the difficult to reach branch with low
execution weight on the coverage value would be partly undone by covering the branches
required to reach it. Looking at it this way, the effect of the minimum commonality score

35

5. EMPIRICAL EVALUATION - RESULTS

FF and SO could actually be greater than is shown in the coverage value.

A second observation that needs discussion is that the addition of the maximum and
minimum CUBTG SOs have a greater effect on commonality score than the corresponding
FFs. For a possible explanation for this we have to think of how MOSA uses the FFs and
SOs. This is discussed in more detail in Section 2.2. In short, search goals are created
for all FFs (e.g., for all branches, lines, exceptions). A single search goal is also created
for the minimum and maximum FFs. During each evolution generation, MOSA keeps the
generated test cases that are not worse in terms of all search goals compared to any of
the other test cases (i.e., if it is non-dominated, see section 2.2). Using the minimum and
maximum FFs causes MOSA to look for test cases in the direction of covering more or less
execution weight. Secondary objectives, on the other hand, are used when two test cases are
found that cover the same goal (e.g., branch). The test case that has either the highest or the
lowest commonality score is then kept. Test cases are found that cover the same goal, and
even more often because we disabled removal of satisfied goals for the evaluation. Each
time this occurs, the SO is used to decide which test case to keep, increasing or decreasing
the commonality score of the test case satisfying that goal. The corresponding FFs, on the
other hand, only help steer the search process in the direction of covering more commonly
or uncommonly executed branches. They are only one search goal among the many other
search goals. This probably causes the effect to be much less pronounced than for the SOs.

Third, using the minimum commonality score FF in addition to the corresponding SO
has a lesser effect than for their maximum counterparts. This can be attributed to the same
reason as outlined above for the performance of the minimum variants being lesser than for
the maximum variants. Because it is already difficult to achieve less commonality score, it
will also be difficult to realize the extra bit of effectiveness of the minimum FF.

Fourth, the commonality score is not particularly high or low overall, for none of the
tested configurations. One possible reason for this is that, like discussed above, in most
cases it is not possible to cover only a specific branch (with for example particularly high
or low execution weight). Most of the time a test has to execute other code to reach a
branch, which somewhat averages out the commonality score. Another possible reason
is that achieving a high or low commonality score is not the main objective of the test
generation. The main objective stays covering the main goals (covering branches, lines,
exceptions, etc.). The goal is to do that in a way that covers more or less execution weight.

Fifth and last, the fit max min sec def configuration makes commonality score a lit-
tle bit higher than standard MOSA. This can be most clearly seen from the effect size as
shown in Figure 5.2, although there are only a small number of significant results. A pos-
sible reason for the small shift towards more commonality score is because the maximum
commonality FF has more effect than the minimum one, as discussed above. In this config-
uration they are used both, but if the maximum FF causes more tests to be generated with
higher commonality score than the minimum FF for low commonality score, there will be
a small shift towards higher coverage.

36

5.2. RQ2: Fault revealing capability

0.00

0.25

0.50

0.75

1.00

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min
Configuration

S
co

re
Test suite PIT score, per configuration

Figure 5.3: PIT score per configuration. Each data point is a test suite.

5.1.3 Conclusion

Tests generated using CUBTG FFs and SOs achieve better commonality score most of the
time, and almost never achieve worse commonality score, compared to a standard MOSA
configuration. For the maximum configuration variants, coverage is significantly higher in
about 75% of the cases, and for minimum variants it is lower in about 60% of the cases.
The effect of the maximum variants is higher. The CUBTG configuration including the
maximum commonality score FF often performs significantly better than the configuration
using only the SO. For the minimum CUBTG variants this difference cannot be observed.

5.2 RQ2: Fault revealing capability

This section presents the results, discussion and conclusion for RQ2, which was “How do
software faults revealed by CUBTG differ from standard MOSA, and how do the different
CUBTG methods compare?”

5.2.1 Results

Like for the previous research question, the PIT score distribution per configuration is shown
in Figure 5.3, pairwise comparison of the effect size across configurations is shown in Fig-
ure 5.2, and the total number of classes used for these pairwise comparisons is shown in
Table 5.2. Note that unlike for commonality score in the previous research question, these
results are per test suite, not per test case.

These are the most important things to observe from this data:

37

5. EMPIRICAL EVALUATION - RESULTS

n =
 12

n =
 20

n =
 8

n =
 14

n =
 18

n =
 57

n =
 55

n =
 7

n =
 11

n =
 10

n =
 3

n =
 14

n =
 53

n =
 54

n =
 4

n =
 7

n =
 8

n =
 9

n =
 5

n =
 50

n =
 53

n =
 2

n =
 9

n =
 15

n =
 13

n =
 17

n =
 51

n =
 52

n =
 5

n =
 2

n =
 11

n =
 3

n =
 11

n =
 53

n =
 54

n =
 5

n =
 5

n =
 3

n =
 6

n =
 5

n =
 47

n =
 48

n =
 2

n =
 5

n =
 7

n =
 2

n =
 5

n =
 5

n =
 2

n =
 2

n =
 5

n =
 6

n =
 1

n =
 4

n =
 5

n =
 1

fit_def_sec_def
fit_def_sec_m

ax
fit_def_sec_m

in
fit_m

ax_m
in_sec_def

fit_m
ax_sec_m

ax
fit_m

in_sec_m
in

nsgaii_m
ax

nsgaii_m
in

fit_def_sec_deffit_def_sec_maxfit_def_sec_minfit_max_min_sec_deffit_max_sec_maxfit_min_sec_minnsgaii_maxnsgaii_min

0 10 10 10 10 10 10 10 1 Effect size

P
IT

 score per test suite, difference in effect size across configurations

Figure
5.4:

E
ffectsize

of
PIT

score
difference

per
class,per

configuration.
O

nly
significantresults

are
show

n
(p

<
0.05).

In
each

cell,
data

is
show

n
for

w
hich

the
colum

n
configuration

resulted
in

a
higher

value
than

the
row

configuration.
T

he
num

ber
of

observations
is

show
n

in
the

upper-rightcornerofeach
cell.

38

5.2. RQ2: Fault revealing capability

Conf. name 1 2 3 4 5 6 7 8
1 fit def sec def 70 74 60 71 74 79 79
2 fit def sec max 70 75 71 72 76 83 82
3 fit def sec min 74 75 75 76 76 84 83
4 fit max min sec def 60 71 75 71 75 80 80
5 fit max sec max 71 72 76 71 76 83 83
6 fit min sec min 74 76 76 75 76 84 83
7 nsgaii max 79 83 84 80 83 84 82
8 nsgaii min 79 82 83 80 83 83 82

Table 5.2: Number of classes for which data is available for comparing two configurations
for comparing PIT score.

• The differences in PIT score between configurations are not large in general (that is,
between the MOSA configurations). The largest number of classes for which the PIT
score is significantly better is for fit def sec def compared to fit def sec min
(for 20/74 classes).

• The maximum configuration variants give slightly higher PIT scores compared to the
default configuration, in terms of the median (0.922 and 0.917 versus 0.913), but the
differences are very small. On the other hand, the mean for the max configurations is
slightly lower compared to the default configuration.

• When comparing to standard MOSA, fit def sec max gives a higher PIT score for
7/70 classes, and a lower score for 12/7 classes. For the classes for which it performs
better, the effect size is mostly small to medium, and large for two of the classes.
For the classes where the PIT score is better for standard MOSA, the effect sizes are
fairly evenly distributed from 0 to 1. We have taken a closer look at the classes for
which the PIT score turned out to be significantly better for fit def sec max. 6 of
those 7 classes have been executed relatively often according to the execution counts
generated during the collection of execution data (see Chapter 4). The classes have
a medium or low complexity compared to other classes in the test set. One of the
classes, org.jabref.logic.util.StandardFileType (an enum class), achieves a
result that is a lot better, with an effect size of 1 and a p-value of 1.18e-13 (i.e., there
can be almost no doubt that the result is valid in a statistical sense). The average PIT
score for this class when using fit def sec def is 0.556, while it is 0.963 when
using fit def sec max. There is one other class for which there is a large effect size
in terms of PIT score. For four of the classes there is a small effect size, and for one
there is a negligible effect size. For more details about the results per class in terms of
average PIT score, significance of the result and effect size, see Tables A.3 and A.4
in the appendix, comparing fit def sec max and fit max sec max to the default
configuration, respectively.

• fit def sec max gives a higher PIT score for some of the classes compared to the
other CUBTG configurations, but it also performs worse than them for a not much

39

5. EMPIRICAL EVALUATION - RESULTS

smaller number of classes. For the latter case, the effect sizes can also be reasonably
high. See for example the comparisons with fit def sec min, fit max min sec def,
and fit min sec min in fig. 5.4, where the effect size is 0.5 or higher (i.e., large),
for a large part of the classes.

• fit min sec min performs better than fit def sec def for 5/74 classes. The effect
sizes here are small for one class, medium for 2, and large for one. It performs worse
for 18/74 classes, with a fairly evenly distributed effect size. Also, it performs pretty
bad compared to other CUBTG configurations, in terms of number of classes and
effect size.

5.2.2 Discussion

Let us start the discussion of this research question with a discussion about the consequences
of using mutation testing, using PIT, to answer it. As noted in Chapter 4, we can use mu-
tation testing only to simulate real faults in software. Unlike databases of real bugs, the
locations where mutations are introduced in the code do not depend on how often that piece
of code has been executed during normal usage. That is, one can imagine bug databases
from real world scenarios to contain relatively more bugs in pieces of the software that end-
users use a lot, while this is not the case for mutation testing. Of course it would be possible
theoretically, but that is not how mutation testing is implemented by mutation testing soft-
ware (like PIT) that is used today. Because the CUBTG methods of test generation rely on
execution data from real world usage, results in finding bugs might be different for faults
seeded by PIT, real world bug databases, or even yet to be uncovered bugs.

With that in mind, let us discuss the overall results with respect to the obtained PIT
scores. As was shown in the results, there is no significant difference for by far the most
classes (at most in 32% of the cases), and if there is a significant difference, it is almost
always in favor of standard MOSA. Apparently, the addition of CUBTG does not help that
much in improving PIT scores in general, besides in case of a small number of classes.
However, as was shown in Figure 5.4, the fit def sec max configuration does relatively
well, compared to the other configurations (better for 10% of classes).

In general, one can imagine why using CUBTG methods would decrease the PIT score
in some cases. Using the FFs for commonality score slightly steers the search process away
from the other (main) goals of covering branches, lines, exceptions, etc. If less of those
goals are eventually covered, one can imagine the amount of mutants being detected getting
lower too.

The results show that adding the maximum commonality score FF makes the perfor-
mance in terms of PIT score worse, compared to using only the corresponding SO. One
possible reason for this could be that it would steer the test generation away too much from
less executed branches, leaving mutants in those parts of the code alive.

As shown in the results, the classes on which fit def sec max performs relatively well
are classes that are executed often. This supports the point above that mutations might often
be placed in pieces of the code that are executed often. The class on which the perfor-

40

5.3. RQ3: Standard coverage criteria and EvoSuite runtime metrics

mance was especially good compared to standard MOSA was a really small enum class
(org.jabref.logic.util.StandardFileType).

After taking a closer look at the class, it appears that in a large majority of the cases
(25/30), the tests generated using the fit def sec max configuration contain a method
sequence that is not present in the tests generated by fit def sec def. From inspection
of the execution counts that have been gathered, it turns out that there is only one branch,
the single branch of a method, that has been executed by the data collection participants.
This method is consistently involved in the test cases that kill the mutants which the tests
generated by standard MOSA fail to kill most of the time. The fact that the method that
is executed a lot is also involved in the method call sequence needed to kill the mutants
seems to be coincidental. However, this observation is evidence for the theory that using
CUBTG can generate method sequences in tests to satisfy the traditional coverage goals in
different ways than standard MOSA, possibly finding faults in the class under test (CUT)
of a different kind (like in this case). In either case, the behavior of generating a different
method sequence is unlikely to be coincidental, evidenced by the p-value of 1.18e-13.

5.2.3 Conclusion

Tests generated using CUBTG FFs and SOs are not significantly better or worse in terms of
achieved PIT score compared to standard MOSA, for most classes. If there is a significant
difference, it is most of the time in favor of standard MOSA, and only in a few cases in favor
of the CUBTG configuration. The fit def sec max configuration stands out, performing
better than standard MOSA for 10% of the classes, which are mostly executed often by
the people who provided the execution data. It appears that using CUBTG can result in
satisfying existing coverage goals (like) branches in different ways, which may result in
finding faults in the CUT of a different nature than standard MOSA is able to. The minimum
configuration variants perform relatively bad compared to other CUBTG configurations and
standard MOSA.

5.3 RQ3: Standard coverage criteria and EvoSuite runtime
metrics

This section presents the results, discussion and conclusion for RQ3, which was “How do
tests generated by CUBTG compare to standard MOSA in terms of standard code coverage
metrics, and how do the different CUBTG methods compare?”

5.3.1 Results

For all standard coverage metrics the newly added configurations performed mostly the
same or somewhat worse than the default configuration. The differences between CUBTG
configurations were not large, in general. We will not go into the details of each standard
coverage metric. To illustrate the results, we will look at branch coverage as an example.
As for the EvoSuite runtime metrics, the results for number of EvoSuite generations, test
suite size, and test case length will be stated.

41

5. EMPIRICAL EVALUATION - RESULTS

0.00

0.25

0.50

0.75

1.00

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min
Configuration

C
ov

er
ag

e
va

lu
e

Test suite branch coverage, per configuration

Figure 5.5: Branch coverage per configuration. Each data point is a test suite.

Branch coverage

Like for the previous research question, the branch coverage distribution per configura-
tion is shown in Figure 5.5, pairwise comparison of the effect size across configurations is
shown in Figure 5.6, and the total number of classes used for these pairwise comparisons is
shown in Table 5.3. Indeed, almost no difference can be noticed between the configurations,
save for a small number of classes for which some configurations perform better or worse.
Two small observations that can be made are that fit min sec min performs worse than
the other MOSA configurations for a few classes (with mostly a medium effect size), and
that fit max min sec max performs similar to fit def sec def when compared to other
MOSA configurations. When the latter two configurations perform better, it is mostly with a
medium effect size, and with a large effect size for some classes. Apparently, the maximum
and minimum commonality score SOs have the largest negative effect on branch coverage,
when compared to the corresponding FFs.

#Generations

Let us now discuss the number of EvoSuite evolution generations. Again, the distribution
of number of generations per configuration is shown in Figure 5.7, pairwise comparison of
the effect size across configurations is shown in Figure 5.8, and the total number of classes
used for these pairwise comparisons is shown in Table 5.4. Note that outliers have been
omitted from fig. 5.7 for readability.

For all CUBTG configurations, the mean and median lie lower than for the default con-
figuration, although this is less pronounced for fit max min sec def. If we look at the
number of classes with significant differences, and the effect size of those differences, com-
pared to standard MOSA, we see a lot more pronounced results. Compared to each of the

42

5.3. RQ3: Standard coverage criteria and EvoSuite runtime metrics

n
=

 1
0

n
=

 1
2

n
=

 7

n
=

 1
4

n
=

 1
5

n
=

 5
3

n
=

 5
1

n
=

 1

n
=

 1

n
=

 5

n
=

 2

n
=

 5

n
=

 5
0

n
=

 5
1

n
=

 2

n
=

 9

n
=

 5

n
=

 5

n
=

 5
2

n
=

 4
9

n
=

 2

n
=

 1
1

n
=

 1
1

n
=

 1
0

n
=

 1
2

n
=

 5
2

n
=

 5
0

n
=

 1

n
=

 2

n
=

 3

n
=

 4

n
=

 5

n
=

 5
0

n
=

 4
9

n
=

 1

n
=

 1

n
=

 3

n
=

 1

n
=

 4
7

n
=

 5
0

n
=

 1

n
=

 1

n
=

 1

n
=

 1

fit
_d

ef
_s

ec
_d

ef
fit

_d
ef

_s
ec

_m
ax

fit
_d

ef
_s

ec
_m

in
fit

_m
ax

_m
in

_s
ec

_d
ef

fit
_m

ax
_s

ec
_m

ax
fit

_m
in

_s
ec

_m
in

ns
ga

ii_
m

ax
ns

ga
ii_

m
in

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min

01 01 01 01 01 01 01 01Effect size

B
ra

nc
h

co
ve

ra
ge

 p
er

 te
st

 s
ui

te
, d

iff
er

en
ce

 in
 e

ffe
ct

 s
iz

e
ac

ro
ss

 c
on

fig
ur

at
io

ns

Fi
gu

re
5.

6:
E

ff
ec

ts
iz

e
of

br
an

ch
co

ve
ra

ge
di

ff
er

en
ce

pe
rc

la
ss

,p
er

co
nfi

gu
ra

tio
n.

O
nl

y
si

gn
ifi

ca
nt

re
su

lts
ar

e
sh

ow
n

(p
<

0.
05

).
In

ea
ch

ce
ll,

da
ta

is
sh

ow
n

fo
rw

hi
ch

th
e

co
lu

m
n

co
nfi

gu
ra

tio
n

re
su

lte
d

in
a

hi
gh

er
va

lu
e

th
an

th
e

ro
w

co
nfi

gu
ra

tio
n.

T
he

nu
m

be
ro

fo
bs

er
va

tio
ns

is
sh

ow
n

in
th

e
up

pe
r-

ri
gh

tc
or

ne
ro

fe
ac

h
ce

ll.

43

5. EMPIRICAL EVALUATION - RESULTS

Conf. name 1 2 3 4 5 6 7 8
1 fit def sec def 60 61 57 60 59 61 65
2 fit def sec max 60 62 61 62 63 62 67
3 fit def sec min 61 62 60 63 61 62 66
4 fit max min sec def 57 61 60 59 58 60 64
5 fit max sec max 60 62 63 59 62 61 66
6 fit min sec min 59 63 61 58 62 62 65
7 nsgaii max 61 62 62 60 61 62 64
8 nsgaii min 65 67 66 64 66 65 64

Table 5.3: Number of classes for which data is available for comparing two configurations
for comparing branch coverage.

0

200

400

600

800

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min
Configuration

#G
en

er
at

io
ns

Test suite #search generations, per configuration

Figure 5.7: #Generations per configuration. Each data point is a test suite.

CUBTG configurations, standard MOSA goes through more generations for more than half
of the classes in the test set. This is the most extreme when comparing to fit min sec min,
where fit def sec def goes through more generations for 72/94 classes. When looking
at the effect sizes for the classes where fit def sec def goes through more generations
than the CUBTG configurations, we see that they dominantly lie above 0.5 (i.e., large effect
size), and that the effect size is close to or equal to 1 for a significant number of classes.

For the configurations including the maximum and minimum FFs, there are also quite
some classes for which the CUBTG configuration goes through more generations. This
ranges between 9 and 14 classes, 14 being for fit max min sec def. We have taken a
closer look at the classes for which the number of generations is higher for fit max min sec-
def. It turns out that the classes for which is the case are classes that are very low in com-

plexity, and they generally have been executed a lot according to the execution data. Also,
the effect size compared to standard MOSA is pretty high (large in most cases). For the

44

5.3. RQ3: Standard coverage criteria and EvoSuite runtime metrics

n
=

 5
8

n
=

 6
0

n
=

 5
1

n
=

 5
8

n
=

 7
2

n
=

 5
7

n
=

 5
9

n
=

 2

n
=

 7

n
=

 1
9

n
=

 1
2

n
=

 3
3

n
=

 4
7

n
=

 4
7

n
=

 1

n
=

 9

n
=

 1
6

n
=

 1
3

n
=

 2
9

n
=

 5
1

n
=

 4
9

n
=

 1
4

n
=

 4
7

n
=

 4
6

n
=

 5
0

n
=

 5
2

n
=

 5
4

n
=

 5
5

n
=

 1
0

n
=

 1
9

n
=

 2
2

n
=

 1
9

n
=

 3
2

n
=

 5
1

n
=

 4
8

n
=

 9

n
=

 1
4

n
=

 1
4

n
=

 6

n
=

 1
4

n
=

 4
5

n
=

 4
6

n
=

 1
5

n
=

 2
2

n
=

 2
5

n
=

 1
8

n
=

 1
9

n
=

 2
7

n
=

 5

n
=

 1
4

n
=

 1
9

n
=

 2
3

n
=

 1
9

n
=

 1
8

n
=

 2
7

n
=

 2

fit
_d

ef
_s

ec
_d

ef
fit

_d
ef

_s
ec

_m
ax

fit
_d

ef
_s

ec
_m

in
fit

_m
ax

_m
in

_s
ec

_d
ef

fit
_m

ax
_s

ec
_m

ax
fit

_m
in

_s
ec

_m
in

ns
ga

ii_
m

ax
ns

ga
ii_

m
in

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min

01 01 01 01 01 01 01 01Effect size

N
um

be
r

of
 E

vo
S

ui
te

 g
en

er
at

io
ns

, d
iff

er
en

ce
 in

 e
ffe

ct
 s

iz
e

ac
ro

ss
 c

on
fig

ur
at

io
ns

Fi
gu

re
5.

8:
E

ff
ec

t
si

ze
of

nu
m

be
r

of
E

vo
Su

ite
ge

ne
ra

tio
ns

di
ff

er
en

ce
pe

r
cl

as
s,

pe
r

co
nfi

gu
ra

tio
n.

O
nl

y
si

gn
ifi

ca
nt

re
su

lts
ar

e
sh

ow
n

(p
<

0.
05

).
In

ea
ch

ce
ll,

da
ta

is
sh

ow
n

fo
r

w
hi

ch
th

e
co

lu
m

n
co

nfi
gu

ra
tio

n
re

su
lte

d
in

a
hi

gh
er

va
lu

e
th

an
th

e
ro

w
co

nfi
gu

ra
tio

n.
T

he
nu

m
be

ro
fo

bs
er

va
tio

ns
is

sh
ow

n
in

th
e

up
pe

r-
ri

gh
tc

or
ne

ro
fe

ac
h

ce
ll.

45

5. EMPIRICAL EVALUATION - RESULTS

Conf. name 1 2 3 4 5 6 7 8
1 fit def sec def 94 94 94 94 94 90 90
2 fit def sec max 94 94 95 94 95 91 91
3 fit def sec min 94 94 95 94 95 91 91
4 fit max min sec def 94 95 95 96 95 92 92
5 fit max sec max 94 94 94 96 95 92 92
6 fit min sec min 94 95 95 95 95 91 91
7 nsgaii max 90 91 91 92 92 91 92
8 nsgaii min 90 91 91 92 92 91 92

Table 5.4: Number of classes for which data is available for comparing two configurations
for comparing the number of EvoSuite generations.

CUBTG configurations including the added SOs, the effect sizes are also almost all large.
When comparing the CUBTG configurations pairwise, for about 25% (with small dif-

ferences between configurations) of the classes the evolution goes through more genera-
tions than for the other configuration, in both directions. Between fit def sec max and
fit def sec min, the number of classes for which there is a difference is the least (7/94
and 9/94), while it is the greatest where fit max min sec def has a higher number of
generations (52/95, at most). For all of the pairwise comparisons among CUBTG config-
urations effect sizes are, again, predominantly large. When fit max min sec def has a
higher number of generations, there are also some classes for which the effect size is close
to 1. The results suggest that the maximum and minimum commonality score SOs have a
larger effect on the number of generations than the corresponding FFs.

Suite size

Now let us take a look at the suite size metric. The suite size distribution per configuration is
shown in Figure 5.9, pairwise comparison of the effect size across configurations is shown
in Figure 5.10, and the total number of classes used for these pairwise comparisons is shown
in Table 5.5. Outliers have been omitted from fig. 5.9 for readability.

These are the most important things to notice:

• fit max min sec def results in a higher suite size for about 75% of the classes, com-
pared to the other CUBTG configurations (70/86 at most, compared to fit max sec-
max). For most classes the effect size is large, and the distribution graph widens to-

wards an effect size of 1. Compared to standard MOSA there are only a handful of
classes with a significant difference.

• A similar statement can be made for fit def sec def. It results in higher suite sizes
for about (75%) of the classes compared to the CUBTG configurations, except for
fit max min sec def, with a similar effect size pattern.

• All CUBTG configurations besides fit max min sec def result in lower suite sizes
for a lot of classes compared to other MOSA configurations, particularly compared to

46

5.3. RQ3: Standard coverage criteria and EvoSuite runtime metrics

0

20

40

60

80

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min
Configuration

S
iz

e
Test suite size, per configuration

Figure 5.9: Suite size per configuration. Each data point is a test suite.

fit max min sec def and fit def sec def (the effect size pattern was mentioned
above). From this and the above points, it appears that the maximum and minimum
commonality score SOs have a larger effect on the suite size than the corresponding
FFs, like for the number of generations. For comparisons among these configurations,
the effect size is around 0.5 for a lot of the classes, and the distribution gets smaller
when going towards a larger effect size. Still, the effect size does not get lower than
0.25, which means it is still non-negligible in all cases.

Conf. name 1 2 3 4 5 6 7 8
1 fit def sec def 86 86 81 84 88 86 86
2 fit def sec max 86 88 88 86 90 89 89
3 fit def sec min 86 88 89 87 90 90 90
4 fit max min sec def 81 88 89 86 88 88 88
5 fit max sec max 84 86 87 86 90 90 90
6 fit min sec min 88 90 90 88 90 90 90
7 nsgaii max 86 89 90 88 90 90 82
8 nsgaii min 86 89 90 88 90 90 82

Table 5.5: Number of classes for which data is available for comparing two configurations
for comparing suite size.

Test case length

Finally, we will show the results for the test case length metric. The test case length dis-
tribution per configuration is shown in Figure 5.11, pairwise comparison of the effect size

47

5. EMPIRICAL EVALUATION - RESULTS

n =
 76

n =
 62

n =
 7

n =
 75

n =
 66

n =
 84

n =
 83

n =
 2

n =
 30

n =
 2

n =
 4

n =
 32

n =
 68

n =
 67

n =
 1

n =
 34

n =
 2

n =
 32

n =
 9

n =
 66

n =
 65

n =
 4

n =
 69

n =
 61

n =
 70

n =
 65

n =
 85

n =
 85

n =
 3

n =
 3

n =
 29

n =
 32

n =
 68

n =
 70

n =
 3

n =
 28

n =
 8

n =
 1

n =
 30

n =
 65

n =
 65

n =
 7

n =
 12

n =
 6

n =
 13

n =
 1

n =
 5

n =
 11

n =
 7

n =
 12

n =
 2

fit_def_sec_def
fit_def_sec_m

ax
fit_def_sec_m

in
fit_m

ax_m
in_sec_def

fit_m
ax_sec_m

ax
fit_m

in_sec_m
in

nsgaii_m
ax

nsgaii_m
in

fit_def_sec_deffit_def_sec_maxfit_def_sec_minfit_max_min_sec_deffit_max_sec_maxfit_min_sec_minnsgaii_maxnsgaii_min

0 10 10 10 10 10 10 10 1 Effect size

Test suite size, difference in effect size across configurations

Figure
5.10:

E
ffectsize

of
suite

size
difference

per
class,per

configuration.
O

nly
significantresults

are
show

n
(p

<
0
.05).

In
each

cell,
data

is
show

n
for

w
hich

the
colum

n
configuration

resulted
in

a
higher

value
than

the
row

configuration.
T

he
num

ber
of

observations
is

show
n

in
the

upper-rightcornerofeach
cell.

48

5.3. RQ3: Standard coverage criteria and EvoSuite runtime metrics

across configurations is shown in Figure 5.12, and the total number of classes used for these
pairwise comparisons is shown in Table 5.6. Outliers have been omitted from fig. 5.11 for
readability.

The following are the most important observations that can be made from these:

• For almost all classes in the test set, standard MOSA (fit def sec def) and fit max-
min sec def produce shorter test cases than all other MOSA configurations. The

most extreme case in this sense is fit max min sec def compared to fit def sec max,
with 81/85 classes. The effect size of the difference is mostly medium, with some
classes having a small, negligible, and large effect size. Note also that there are almost
no classes for which these two configurations produce longer test cases compared
to other MOSA configurations (at most 2/85 when comparing fit def sec def to
fit max sec max). When comparing these configurations to each other, we see that
fit max min sec def produces shorter test cases for 9/80 classes, and fit def sec def
for 4/80 classes, and the effect size is negligible for almost all of those.

• When comparing the remaining CUBTG configurations (fit def sec max, fit def-
sec min, fit max sec max, fit min sec min), there are the most and the largest

differences in test case length between the maximum configuration variants and the
minimum configuration variants. In the largest cases, there are 40/88 classes for
which fit def sec min produces shorter test cases than fit def sec max, and also
40/88 classes for which it produces shorter test cases than fit max sec max. Effect
sizes are mostly small and negligible, but there are some classes with larger effect
sizes (as can be seen from fig. 5.10). From this it appears that the minimum config-
uration variants tend to produce shorter test cases than the maximum configuration
variants, in a large part of the cases. When comparing the maximum or minimum
configurations amongst themselves, the number of classes for which there is a sig-
nificant difference is a lot smaller, with the largest case being 18/86 classes where
fit def sec max produces shorter test case than fit max sec max. The effect sizes
are small or negligible, save for a few exceptions.

Conf. name 1 2 3 4 5 6 7 8
1 fit def sec def 84 87 80 85 87 81 82
2 fit def sec max 84 88 85 86 88 85 86
3 fit def sec min 87 88 88 88 89 87 87
4 fit max min sec def 80 85 88 86 88 83 84
5 fit max sec max 85 86 88 86 88 87 87
6 fit min sec min 87 88 89 88 88 88 88
7 nsgaii max 81 85 87 83 87 88 81
8 nsgaii min 82 86 87 84 87 88 81

Table 5.6: Number of classes for which data is available for comparing two configurations
for comparing test case length.

49

5. EMPIRICAL EVALUATION - RESULTS

0

5

10

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min
Configuration

Le
ng

th

Test case length, per configuration

Figure 5.11: Test case length per configuration. Each data point is a test case.

5.3.2 Discussion

We saw that the CUBTG configurations generally performed the same or somewhat worse
than the standard MOSA configuration for all of the standard metrics that were evaluated.
A possible explanation for this is that covering the standard goals (branches, lines, etc.)
becomes a bit less important when adding the CUBTG FFs and SOs. Using those distracts
the search from covering some of the goals, leading to a lower coverage. One can imagine
this could have an impact on the coverage of branches that require several steps of evolution
to reach, for example.

This observation can also be related to the execution speed of the test generation. When
using the CUBTG FFs and SOs, the time spent per evolution generation will be larger,
because fitness values have to be computed for the CUBTG FFs and SOs. The fitness values
are not easy to compute, because computing them requires looping through all branches in
the class and retrieving the execution weight for those branches. This leads to the algorithm
getting not as far through the search process when the search budget runs out (after 180s in
this experiment).

The largest differences were observed in not the standard coverage metrics, but in prop-
erties of the EvoSuite search process: number of processed generations, the resulting size of
the test suite, and generated test case size. For the number of generations, it was observed
that it is generally less for the CUBTG generations compared to standard MOSA, although
this difference was smaller for the fit max min sec def configuration. This observation
is probably related to the efficiency argument above. If the search process takes longer to
complete an evolution generation, less generations will be completed in total by the end of
the search process.

The effect on number of generations seems to be larger for CUBTG SOs than for FFs.
This could be caused by the fact that SOs are invoked every time a test case is found that

50

5.3. RQ3: Standard coverage criteria and EvoSuite runtime metrics

n
=

 9

n
=

 2

n
=

 1

n
=

 9

n
=

 7

n
=

 7
8

n
=

 4
0

n
=

 8
1

n
=

 8

n
=

 3
7

n
=

 5
6

n
=

 5
9

n
=

 7
5

n
=

 2
7

n
=

 7
3

n
=

 2
6

n
=

 1
2

n
=

 4
9

n
=

 5
0

n
=

 4

n
=

 8

n
=

 7

n
=

 7
8

n
=

 1
8

n
=

 4
0

n
=

 8
0

n
=

 3
9

n
=

 6
2

n
=

 6
4

n
=

 6
8

n
=

 2
8

n
=

 1
0

n
=

 7
3

n
=

 2
9

n
=

 4
9

n
=

 5
0

n
=

 4
1

n
=

 1
4

n
=

 1
6

n
=

 4
3

n
=

 1
2

n
=

 1
8

n
=

 2

n
=

 4
2

n
=

 1
3

n
=

 1
6

n
=

 4
4

n
=

 1
4

n
=

 1
5

n
=

 5

fit
_d

ef
_s

ec
_d

ef
fit

_d
ef

_s
ec

_m
ax

fit
_d

ef
_s

ec
_m

in
fit

_m
ax

_m
in

_s
ec

_d
ef

fit
_m

ax
_s

ec
_m

ax
fit

_m
in

_s
ec

_m
in

ns
ga

ii_
m

ax
ns

ga
ii_

m
in

fit_def_sec_def fit_def_sec_max fit_def_sec_min fit_max_min_sec_def fit_max_sec_max fit_min_sec_min nsgaii_max nsgaii_min

01 01 01 01 01 01 01 01Effect size

Te
st

 c
as

e
le

ng
th

, d
iff

er
en

ce
 in

 e
ffe

ct
 s

iz
e

ac
ro

ss
 c

on
fig

ur
at

io
ns

Fi
gu

re
5.

12
:

E
ff

ec
ts

iz
e

of
te

st
ca

se
le

ng
th

di
ff

er
en

ce
pe

rc
la

ss
,p

er
co

nfi
gu

ra
tio

n.
O

nl
y

si
gn

ifi
ca

nt
re

su
lts

ar
e

sh
ow

n
(p

<
0.

05
).

In
ea

ch
ce

ll,
da

ta
is

sh
ow

n
fo

rw
hi

ch
th

e
co

lu
m

n
co

nfi
gu

ra
tio

n
re

su
lte

d
in

a
hi

gh
er

va
lu

e
th

an
th

e
ro

w
co

nfi
gu

ra
tio

n.
T

he
nu

m
be

ro
fo

bs
er

va
tio

ns
is

sh
ow

n
in

th
e

up
pe

r-
ri

gh
tc

or
ne

ro
fe

ac
h

ce
ll.

51

5. EMPIRICAL EVALUATION - RESULTS

covers the same goal (e.g., branch) as another test case already covers. Because we have
disabled the EvoSuite option to remove a goal from the set of goals to be covered once it
has been covered by one test case, the number of times two test cases have to be compared
on the basis of the SO increases. On top of that, the SO value has to be computed for both
test cases that are compared, so the total time needed to do the computation can add up fast.
The FF values also have to be computed for each test case, but this computation is not being
repeated, as opposed to the current implementation for SOs.

An observation that needs discussion is that when using the CUBTG FFs, there are
some classes for which the number of generations processed gets a lot higher. We have
looked at the class for which this was the most extreme, org.jabref.model.strings.-
LatexToUnicodeAdapter. For this class, the Cliff’s delta effect size of fit max min sec-
def compared to standard MOSA was 0.982 (213 on average versus 385). It is a class with

some static fields and 1 static method with a single branch (i.e., no branching statements).
From the EvoSuite log files it is unclear where the large difference in number of generations
processed comes from. There is no apparent difference during the evolution process, and
the total time taken for the search is not different (as one would expect when setting a search
budget limit). It could be that the generation process for these classes occurred when there
was less load on the server on which the generation was done, although this seems unlikely
because we tried to make sure to not use more resources than available. We are not aware of
any other processes running on the server at the time of test generation. Another explanation
could be that test cases that cause exceptions are generated during a lot of generations. One
could imagine a generation ending quicker if this would be the case. But again, we have no
direct reason to believe this is the case.

For suite size, one observation was that standard MOSA for a large majority of classes
resulted in larger suite sizes than configurations using the CUBTG SOs. One reason for this
could be the decreased efficiency when using those SOs, causing less goals to be covered,
and in turn causing less test cases to be needed for covering them.

For test case length, the main observation is that the test case length is almost always
higher for configurations where the CUBTG SOs were used, and that the effect is the largest
for the minimum commonality score variants. The explanation for the general pattern is
that the length SO, which is the only SO used by default in EvoSuite and prefers shorter
test cases, is given a much smaller weight than the commonality score SOs during the
experiment, as described in Section 3.2.1. This means a test case that is at least as long as
the shortest one of the two is chosen, and hence the average will always be at least as high
as when using the default length SO, and higher in almost all cases.

The reason for the effect being larger for the minimum configuration variants means that
covering the branches with least execution weight requires taking longer paths through the
tested classes on average, compared with paths for covering branches with higher execution
weight. In other words, there are probably less cases in which the test case taking the path
with least commonality score is also the test case that has the fewest statements.

52

5.4. RQ4: Efficiency for standard metrics

5.3.3 Conclusion

The CUBTG configurations generally performed the same or somewhat worse than the
standard MOSA configuration for all of the standard coverage metrics that were evaluated.
As for the EvoSuite runtime metrics, using the CUBTG configurations generally causes
EvoSuite to go through less evolution generations (for up to 72/94 classes), causes test suite
size to be smaller, and causes longer test cases to be generated (for up to 81/85 classes).

5.4 RQ4: Efficiency for standard metrics

This section presents the results, discussion and conclusion for RQ4, which was “Does the
usage of the added FFs and SOs affect the efficiency of the EvoSuite test generation?”

5.4.1 Results

To answer this question we looked at the evolution of the fitness value for the several stan-
dard fitness metrics over time. For only one of the metrics there seems to be a significant
difference in the time it takes to converge to a stable value when comparing standard MOSA
to the CUBTG configurations. The one metric for which a slight difference can be seen is
output coverage. Of course, in several cases there is a difference in the final obtained value,
as discussed for RQ3, but the way in which the value converges to that final value is not
different, apart from very slight differences.

The evolution of output coverage during test generation is shown in Figure 5.13. Note
that for all plots showing the evolution of the fitness values, there is a data point for every 5
seconds from the start. The value shown is the median of the best coverage value available
during the generation over all generated test suites (i.e., for all classes and all experiment
repetitions). The vertical black line indicates the point of 180 seconds from the start of
the test generation, which is the configured search budget. For output coverage, all con-
figurations evolve the same way, until the point at about 150 seconds into the generation.
At that point, the fit def sec def configuration still manages to increase the coverage
somewhat until the end of the configuration. At approximately the end of the configuration,
the fit def sec max and fit def sec min configurations manage to achieve a little bit
of extra coverage. Each of those three configurations might not have converged to a final
value at the point where the search budget runs out, while the other configurations seem to
be converged.

For all other standard metrics, no significant differences between the configurations
seem to be present. To illustrate this, let us look at the evolution of the branch coverage
metric, as an example, in Figure 5.14. Indeed there seem to be no apparent differences
between configurations for this metric in terms of time until convergence. Other differences
in the evolution pattern are also not present. It seems that for all configurations, they are not
finished converging after the search budget has run out. The evolution of the other standard
metrics will not be discussed further here. Plots analogous to the one shown here for those
other metrics can be found in Appendix B.

53

5. EMPIRICAL EVALUATION - RESULTS

0.0

0.2

0.4

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for output coverage

Figure 5.13: Evolution of the median test suite output coverage value for different configu-
rations.

5.4.2 Discussion

It was observed that for the output coverage, the configurations that do not include the
CUBTG FFs manage to improve coverage a little bit towards the end of the search process.
This can be caused by the maximum and minimum commonality FFs steering the genera-
tion in those two specific directions, which makes it less likely for test generation to cover
situations that require more specific sequences of method calls or method argument values
in the generated test cases. As for why there only seems to be a somewhat significant differ-
ence in the evolution for output coverage: one can imagine that by steering the search in the
specific direction covering often or not often executed branches, the code will be executed
in similar ways multiple times, causing the same kinds of output for the code. On the other
hand, if this would be the case, one would also expect to see a difference with respect to
input coverage, which does not seem to be there (see Figure B.3).

5.4.3 Conclusion

There is no apparent difference in the evolution of fitness values during test generation
between standard MOSA and configurations using the CUBTG methods. Only a small

54

5.5. RQ5: Efficiency for CUBTG

0.00

0.25

0.50

0.75

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for branch coverage

Figure 5.14: Evolution of the median test suite branch coverage value for different configu-
rations.

difference for output coverage can be observed. Hence, there is no apparent significant
performance difference from that perspective.

5.5 RQ5: Efficiency for CUBTG

This section presents the results, discussion and conclusion for RQ5, which was “How
much time of EvoSuite test generation does it take for commonality score to converge?”

5.5.1 Results

As stated before, this question is very similar in nature to the previous one, but now we only
look at the new commonality score metric. The evolution of the commonality score for the
different configurations is shown in Figure 5.15. A few things can be noted from this figure.

• For the maximum configuration variants it seems like they have not necessarily con-
verged to a final value after the search budget has been used up. This does not seem
to be the case for the minimum configuration variants, for which the commonality
score seems to have converged after about 140 seconds. For the default configuration

55

5. EMPIRICAL EVALUATION - RESULTS

0.0

0.1

0.2

0.3

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for commonality coverage

Figure 5.15: Evolution of the median test suite commonality score value for different con-
figurations.

and fit max min sec def, it is unclear from the data whether they were finished
converging.

• After about 100 seconds, the largest part of converging seems to have been done.
The curve still rises a bit for maximum configuration variants and lowers a bit for the
minimum variants, mixed, and default variants.

• After about 60 seconds, all configuration variants have risen to a point that is not too
far apart for the different configurations. Only after that the maximum and minimum
variants really start to diverge.

5.5.2 Discussion

Let us discuss two observations done in the results section. First, the maximum configura-
tion variants require more time to converge to a stable commonality score value. As noted
in the discussion for RQ3, it looks like shorter test cases often lie closer to covering less
execution weight than more, and longer ones seem to be required to cover more execution
weight. One can imagine that it takes more time for EvoSuite to generate a suitable longer

56

5.5. RQ5: Efficiency for CUBTG

test case to cover goal branches than to do the same for goals that require fewer statements
in the test case. Then it makes sense that converging to a stable commonality score value
takes more time for the maximum variants.

And second, there is the pattern that can be seen from Figure 5.15 where the coverage
values for the 6 configurations stay relatively close together until about 1 minute into the
search process, after which they diverge more. This pattern makes sense if we follow how
MOSA works and what has been discussed above for RQ3 and RQ4. In the first part of the
test generation by MOSA, a lot of new test cases will be found to cover the set of goals,
because no test cases are yet present that cover those goals. It does not matter as much for
MOSA at that point how well the test case performs in terms of the SOs, because there are
no or very few alternatives at that point of the search process. There are still differences
between the configurations. If we look at the maximum configuration variants, for example,
they end up with a slightly higher commonality score at about 1 minute into the search
process. This is explainable by noticing that if multiple test cases covering the same goal are
still found in this short period, the one with the highest commonality score will still be kept,
and the maximum commonality FF will also exercise some influence on the direction the
search goes. An analogous argument can be made for the minimum coverage variants. We
see that the fit max min sec def configuration ends up a bit higher in coverage compared
to standard MOSA (and it also stays that way throughout the search process). This has been
discussed in the discussion for RQ1.

Then if we continue the search process, the focus shifts more to finding better solu-
tions for the goals that are already covered. Of course, new solutions are still found, but
the largest part of goals that will eventually be covered is already covered. If we take as
an example again the maximum configuration variants, test cases already found will con-
tinuously be replaced by test cases covering the same goal, but having a higher execution
count. The rate at which test cases are replaced will slowly dampen, because it becomes in-
creasingly difficult to find test cases with a higher commonality score. Again, an analogous
explanation can be given for the minimum configuration variants. We see that the coverage
values for fit def sec def and fit max min sec def also drop a bit going forward from
the 1 minute mark. This can again be attributed to the theory that test cases with lower
commonality score generally contain less statements. Because these two configurations use
the default SO, which favors test cases with fewer statements, commonality score will drop
a bit as shorter test cases are found.

5.5.3 Conclusion

The maximum commonality score configuration variants take longest to converge, as com-
monality score is still converging for them when the search budget of 180 seconds has run
out. The minimum configuration variants are done converging after about 140 seconds.
This is also the case for the configurations using the default SO, but the pattern is less clear
there. After about 100 seconds, most of the convergence has been done for all configura-
tions, except for smaller improvements. 60 seconds is a too short time to use the CUBTG
FFs and SOs, because they comparatively do not affect the search process that much until
after that point.

57

5. EMPIRICAL EVALUATION - RESULTS

5.6 Threats to validity

Internal validity EvoSuite test generation is inherently based on randomness (as are all
techniques based on evolution). To make the effect of this randomness on the results rea-
sonably small, we repeated the test suite generation 30 times, per configuration, per class.

Characteristics of the server on which the experiments have been performed have in-
fluenced the results of the experiment. For example, a faster or slower CPU would have
probably caused higher and lower resulting coverage values, respectively. Also, because
the server was not being used exclusively for this experiment, other processes may have
been going on during the test generation or PIT score computation, leading to unfair com-
parisons between results.

We tried to use parameters for EvoSuite that were as close as possible to the defaults
used in practice and in other research. Previous research suggests that this is a good compro-
mise between optimality of the parameters and time spent looking for optimal parameters,
although it may lead to poor results in some cases [5, 28]. For the added parameters re-
lated to CUBTG test generation, we tried to use values that would be reasonable to use in
practice. However, note that as this was the first experiment using the newly implemented
additions to EvoSuite, there was no baseline configuration to go from, and the parameters
chosen were based on the limited experience of running the tool on small examples.

One other aspect to consider is the correctness of the implementation of the CUBTG
methods as described in Chapter 3. As goes for all software, the implementation is likely
not bug-free. To reduce the chance of bugs influencing the evaluation results, we have
tested the implemented FFs and SOs to confirm they work as intended. Results that were
obviously invalid (e.g., a negative FF value) were removed from the data set.

External validity The execution data needed for the experiment was gathered from a
small number of people in a relatively structured manner, as opposed to from actual real-life
executions of JabRef. As described in Chapter 4, the test participants were briefly told how
to use JabRef, and were given approximately 5 minutes to use it on some task they might
perform with it. The given explanation and the relatively structured and time limited way
in which this was executed may have significantly influenced the execution data on which
test generation was based. Additionally, only a small number of people (5) participated in
the collection of execution data, and one of them was the author. That said, we think that
given the setup used to gather execution data, using a larger group would not have made
a significant difference because of the structured and time limited nature of the method of
gathering the data.

Perhaps more importantly, the experiment was executed only on JabRef, which means
the results are probably biased towards JabRef. To offset this, we used a large number of
classes in the test set, and tried to include a reasonable variety of classes (see Chapter 4).
Though of course, the classes that we were able to test on were only the ones for which
execution data was available, which is still a more limited number of classes than all classes
available in JabRef. To confirm the results presented here, a repetition of the evaluation on
other projects have to be done.

58

5.6. Threats to validity

Construct validity For measuring the effect of using the CUBTG test generation methods
on standard coverage metrics, we used metrics that are used as defaults in other research
and in practice, as recommended in [4]. The goal of this is for results to be representative
for comparing to other research and executions in practice.

For commonality score, the same metric was used to compute coverage during the eval-
uation as for computing coverage within the FFs and SOs during EvoSuite test generation.
The metric itself was invented during this study, so there are no other sources stating its
usefulness that we can compare against.

As for measuring ability of finding faults in software, PIT was used as described in
Chapter 4. The main concern here is that errors seeded by PIT (or any other mutation tool
that could have been used) are not real world errors, although they should be able to quite
closely represent them [16].

Conclusion validity To ensure conclusion were only drawn based on statistically signifi-
cant results, the Mann–Whitney–Wilcoxon (MWW) test was used to determine significance
of the results. We decided to view a result as significant if p < 0.05, a value that is deemed
appropriate in other research [16]. To determine the magnitude of results, we used the
Cliff’s delta measure. This measure can be computed directly from the Vargha and Delaney
A (VD.A) measure [32], which is another often used metric [16].

For answering research questions RQ4 and RQ5 we did not make use of statistical tests,
because the answers were based on subjective observation of graphs showing the evolution
of fitness values. A more detailed observation would be necessary for more quantitative
answers.

59

Chapter 6

Conclusion and future work

This chapter will conclude the thesis. A summary of the methods introduced and of our
findings is given in Section 6.1. Section 6.2 described the implications of the findings from
the evaluation. Finally, Section 6.3 suggests possible future work that may be interesting to
perform.

6.1 Summary

In this thesis we have described common and uncommon behavior test generation (CUBTG)
methods for generating tests for common and uncommon behaviors in the class under test
(CUT), based on the execution counts of code branches extracted from real world log data.
CUBTG as described here is to be used in a genetic algorithm, and has primarily been
designed for use with the many-objective sorting algorithm (MOSA) in this work.

The aim of CUBTG is to guide the search for tests in the direction of more commonly
or uncommonly executed code branches, while still trying to satisfy traditional coverage
goals, like line or branch coverage. In other words, the aim is not to satisfy a new goal, or to
exactly replicate user behavior, but instead to influence the method call sequences that are
used in the tests generated for existing goals.

For this purpose, we defined the concept of commonality score for test cases and test
suites, which intuitively describes how commonly used in practice (according to log data)
the branches are that are being executed by the test case or test suite, relative to other
branches in the CUT.

We created fitness functions (FFs) for use in MOSA that use this commonality score to
quantify how commonly or uncommonly executed the code branches that generated tests
execute are. These aim to influence the search direction of MOSA, using the way that
algorithm uses non-dominated fronts to determine the search direction for new test cases.

Additionally, we defined two new secondary objectives (SOs), which are used in MOSA
to decide which test case to keep if multiple test cases satisfy the same goal, or otherwise
have the same sub-optimal FF value for the goal. They use the commonality score to keep
the test case or suite that executes either the most common or most uncommon behaviors.
To be able to use these new SOs along with the existing SO (which prefers shorter test

61

6. CONCLUSION AND FUTURE WORK

cases), we devised a method to combine them by allowing weights to be configured when
multiple SOs are used at once.

We implemented these FFs and SOs, and the method to combine SOs, in EvoSuite,
and used this implementation to evaluate the CUBTG methods. We obtained execution
counts from a small group of people using the open-source Java application JabRef for about
5 minutes, and executed EvoSuite with 8 different configurations, each using a different
combination of FFs and SOs.

We found that CUBTG managed to cover more common behaviors than plain MOSA
in 75% of the cases, and more uncommon behaviors in 60% of the cases (RQ1). We also
performed mutation testing on the generated test suites, and found that CUBTG performed
the same or worse than plain MOSA in most cases. Though, there were a few exceptions in
which CUBTG managed to find some mutants by using method sequences that plain MOSA
did not find (RQ2).

CUBTG generally performs the same or a little bit worse in terms of standard coverage
metrics, causes EvoSuite to go through less generations, causes test suite sizes to be smaller,
and causes longer test cases to be generated (RQ3). There does not appear to be a signif-
icant effect on the efficiency of EvoSuite test generation (RQ4), but at least 100 seconds
were needed for the commonality score to converge for the most part during our evaluation
(RQ5).

In summary, this thesis makes the following contributions to the field:

• The novel CUBTG method for test generation, which uses newly devised FFs and SOs
and the concept of commonality score to influence the unit test generation process in
MOSA towards generating tests that exercise more common or uncommon behaviors.

• An evaluation of this CUBTG method on the JabRef application, evaluating its effect
on the commonality score, fault revealing capability, and standard coverage metrics
obtained by generated test cases, along with an evaluation of the effect of CUBTG on
the efficiency of EvoSuite and the efficiency of CUBTG itself.

6.2 Implications

Our results show that in a large majority of the cases, using CUBTG does not have a large
negative (nor positive) effect on standard coverage metrics, like branch coverage, and us-
ing it does not impact efficiency. The degree to which common or uncommon behaviors
(depending on the configuration) are used increases by a large amount in most cases. This
means that using CUBTG is a good idea in most cases if one wants to generate test cases that
exercise parts of the CUT that are commonly or uncommonly executed in practice, with-
out having to worry about performance declining in terms of traditional metrics. Note that
CUBTG is not designed to replicate exact user behavior. Other methods are better suited
for that, like the one introduced by Wang et al. [33]. CUBTG can only be used to steer test
generation towards common behaviors, not to replicate them.

It was also shown that CUBTG does not work particularly well (nor particularly bad) for
generating tests that perform well during mutation testing. There are cases in which CUBTG

62

6.3. Future work

generates method sequences in test cases that are not generated when using standard MOSA.
Those test cases can be valuable for covering code in ways that are not found during standard
test generation, and our results show that it can increase mutation coverage. There are cases,
though, in which CUBTG performs quite bad in terms of finding mutants. In those cases it
would not be advisable to use CUBTG for test generation, or at least not solely.

6.3 Future work

These are some suggestions we have for future work:

• The fault finding capability of CUBTG has only been tested here in terms of mutation
testing using PIT. It may be interesting to see how CUBTG performs for finding real
world faults. This could be evaluated, for example, by using a database like Defects4J
1.

• Related to the previous point, one could also expect more bugs to be present in un-
commonly used parts of a system. It would be interesting to see if test generated using
CUBTG would be able to uncover those more effectively than other test generation
approaches.

• An evaluation on more, and a wider variety of, applications would be beneficial. The
evaluation in this thesis used JabRef as the only subject. Even though we tried to
choose a wide variety of classes, stronger conclusions could be drawn from a larger
evaluation.

• Similarly to the previous point, an evaluation using more, and more realistic log data
would improve the external validity of the results. For the evaluation in this thesis,
log data was obtained from a fairly restricted test and from a small group of people.
Log data obtained from a larger group of people and from real world executions over
a longer period of time would make the results stronger.

• We saw in our results that there are some cases in which CUBTG produces method se-
quences in test case which are not generated using standard MOSA (see section 5.2.2).
It may be interesting to further research the differences in method sequences, for ex-
ample if any patterns can be found in it when looking at a larger number of cases
in which this happens, and if there is a general difference in the generated method
sequences at all.

• The current computation of commonality score treats all branches as separate units
and does not consider the connections between branches and their position in the
control flow graph (CFG). Basing the computation of commonality score based on
paths through the CFG instead of on branches might improve the accuracy of the
commonality score. It might make the computation more complex and less efficient,
however.

1https://github.com/rjust/defects4j

63

6. CONCLUSION AND FUTURE WORK

• The results show a small, though non-negligible amount of cases in which CUBTG
performs worse than standard MOSA in terms of standard metrics, like line or branch
coverage, or mutation score. It might be interesting to look at the characteristics of
the classes for which this is the case, and at methods that may be used to mitigate
this. For example, one may look at ways to dynamically disable CUBTG if it appears
that it significantly, negatively affects generated tests.

64

Bibliography

[1] Frances E. Allen. Control flow analysis. ACM SIGPLAN Notices, 5(7):1–19, jul 1970.
doi: 10.1145/390013.808479.

[2] Andrea Arcuri. EvoMaster: Evolutionary multi-context automated system test gener-
ation. In 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST). IEEE, apr 2018. doi: 10.1109/icst.2018.00046.

[3] Andrea Arcuri. RESTful API automated test case generation with EvoMaster. ACM
Transactions on Software Engineering and Methodology, 28(1):1–37, feb 2019. doi:
10.1145/3293455.

[4] Andrea Arcuri and Lionel Briand. A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering. Software Testing, Verification and
Reliability, 24(3):219–250, nov 2012. doi: 10.1002/stvr.1486.

[5] Andrea Arcuri and Gordon Fraser. Parameter tuning or default values? an empirical
investigation in search-based software engineering. Empirical Software Engineering,
18(3):594–623, feb 2013. doi: 10.1007/s10664-013-9249-9.

[6] José Campos, Yan Ge, Nasser Albunian, Gordon Fraser, Marcelo Eler, and An-
drea Arcuri. An empirical evaluation of evolutionary algorithms for unit test suite
generation. Information and Software Technology, 104:207–235, dec 2018. doi:
10.1016/j.infsof.2018.08.010.

[7] Norman Cliff. Ordinal Methods for Behavioral Data Analysis. Taylor & Francis
Ltd., 2014. ISBN 9781317781431. URL https://www.ebook.de/de/product/
22385281/norman_cliff_ordinal_methods_for_behavioral_data_analysis.
html.

[8] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary
computation, 6(2):182–197, 2002.

65

https://www.ebook.de/de/product/22385281/norman_cliff_ordinal_methods_for_behavioral_data_analysis.html
https://www.ebook.de/de/product/22385281/norman_cliff_ordinal_methods_for_behavioral_data_analysis.html
https://www.ebook.de/de/product/22385281/norman_cliff_ordinal_methods_for_behavioral_data_analysis.html

BIBLIOGRAPHY

[9] Chartchai Doungsa-ard, Keshav P Dahal, M Alamgir Hossain, and Taratip Suwan-
nasart. An automatic test data generation from uml state diagram using genetic algo-
rithm. Proceedings of the Second International Conference on Software Engineering
Advances (ICSEA 2007), 2007.

[10] Jason Flinn. lprof: A non-intrusive request flow profiler for distributed systems. In
Proceedings of the 11th USENIX Conference on Operating Systems Design and Imple-
mentation, pages 629–644, Berkeley, CA , USA, 2014. USENIX Association. ISBN
9781931971164.

[11] Gordon Fraser and Andrea Arcuri. Evolutionary generation of whole test suites. In
2011 11th International Conference on Quality Software. IEEE, jul 2011. doi: 10.
1109/qsic.2011.19.

[12] Gordon Fraser and Andrea Arcuri. A large-scale evaluation of automated unit test
generation using evosuite. ACM Trans. Softw. Eng. Methodol., 24(2), December
2014. ISSN 1049-331X. doi: 10.1145/2685612. URL https://doi.org/10.1145/
2685612.

[13] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. Grammar-based whitebox
fuzzing. In Proceedings of the 2008 ACM SIGPLAN conference on Programming
language design and implementation - PLDI ’08. ACM Press, 2008. doi: 10.1145/
1375581.1375607.

[14] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. Nonparametric Statistical
Methods. John Wiley & Sons, 2013. URL https://www.ebook.de/de/product/
21853168/myles_hollander_douglas_a_wolfe_eric_chicken_nonparametric
_statistical_methods.html.

[15] WH Jessop, J Richard Kane, S Roy, and JM Scanlon. Atlas-an automated software
testing system. In Proceedings of the 2nd international conference on Software engi-
neering, pages 629–635. IEEE Computer Society Press, 1976.

[16] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. Are mutants a valid substitute for real faults in software testing? In
Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering - FSE 2014. ACM Press, 2014. doi: 10.1145/2635868.2635929.

[17] Rupak Majumdar and Koushik Sen. Hybrid concolic testing. In 29th International
Conference on Software Engineering (ICSE’07). IEEE, may 2007. doi: 10.1109/icse
.2007.41.

[18] T.J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,
SE-2(4):308–320, dec 1976. doi: 10.1109/tse.1976.233837.

[19] Phil McMinn. Search-based software testing: Past, present and future. In 2011
IEEE Fourth International Conference on Software Testing, Verification and Valida-
tion Workshops. IEEE, mar 2011. doi: 10.1109/icstw.2011.100.

66

https://doi.org/10.1145/2685612
https://doi.org/10.1145/2685612
https://www.ebook.de/de/product/21853168/myles_hollander_douglas_a_wolfe_eric_chicken_nonparametric_statistical_methods.html
https://www.ebook.de/de/product/21853168/myles_hollander_douglas_a_wolfe_eric_chicken_nonparametric_statistical_methods.html
https://www.ebook.de/de/product/21853168/myles_hollander_douglas_a_wolfe_eric_chicken_nonparametric_statistical_methods.html

Bibliography

[20] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Reformulating
branch coverage as a many-objective optimization problem. In 2015 IEEE 8th in-
ternational conference on software testing, verification and validation (ICST), pages
1–10. IEEE, 2015.

[21] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. A large scale em-
pirical comparison of state-of-the-art search-based test case generators. Information
and Software Technology, 104:236–256, dec 2018. doi: 10.1016/j.infsof.2018.08.009.

[22] Annibale Panichella, Fitsum Meshesha Kifetew, and Paolo Tonella. Automated test
case generation as a many-objective optimisation problem with dynamic selection of
the targets. IEEE Transactions on Software Engineering, 44(2):122–158, feb 2018.
doi: 10.1109/tse.2017.2663435.

[23] Rong-Zhi Qi, Zhi-Jian Wang, and Shui-Yan Li. A parallel genetic algorithm based on
spark for pairwise test suite generation. Journal of Computer Science and Technology,
31(2):417–427, mar 2016. doi: 10.1007/s11390-016-1635-5.

[24] C. V. Ramamoorthy and S. F. Ho. Testing large software with automated software eval-
uation systems. In Proceedings of the international conference on Reliable software
-. ACM Press, 1975. doi: 10.1145/800027.808461.

[25] Aurora Ramı́rez, José Raúl Romero, and Sebastián Ventura. A survey of many-
objective optimisation in search-based software engineering. Journal of Systems and
Software, 149:382–395, mar 2019. doi: 10.1016/j.jss.2018.12.015.

[26] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and
Herbert Bos. VUzzer: Application-aware evolutionary fuzzing. In Proceedings 2017
Network and Distributed System Security Symposium. Internet Society, 2017. doi:
10.14722/ndss.2017.23404.

[27] Romano, Jeffrey D. Kromrey, Jesse Coraggio, and Jeff Skowronek. Appropriate statis-
tics for ordinal level data: Should we really be using t-test and cohen’sd for evaluating
group differences on the nsse and other surveys. In annual meeting of the Florida
Association of Institutional Research, pages 1–33, 2006.

[28] Abdel Salam Sayyad, Katerina Goseva-Popstojanova, Tim Menzies, and Hany Am-
mar. On parameter tuning in search based software engineering: A replicated empir-
ical study. In 2013 3rd International Workshop on Replication in Empirical Software
Engineering Research. IEEE, oct 2013. doi: 10.1109/reser.2013.6.

[29] Daan Schipper, Maurı́cio Aniche, and Arie van Deursen. Tracing back log data to
its log statement: from research to practice. In 2019 IEEE/ACM 16th International
Conference on Mining Software Repositories (MSR), pages 545–549. IEEE, 2019.

[30] Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic unit testing and explicit
path model-checking tools. In Computer Aided Verification, pages 419–423. Springer
Berlin Heidelberg, 2006. doi: 10.1007/11817963 38.

67

BIBLIOGRAPHY

[31] Chayanika Sharma, Sangeeta Sabharwal, and Ritu Sibal. A survey on software testing
techniques using genetic algorithm. International Journal of Computer Science, 2014.

[32] András Vargha and Harold D. Delaney. A critique and improvement of the CL com-
mon language effect size statistics of McGraw and wong. Journal of Educational and
Behavioral Statistics, 25(2):101–132, jun 2000. doi: 10.3102/10769986025002101.

[33] Qianqian Wang and Alessandro Orso. Mimicking user behavior to improve in-
house test suites. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). IEEE, may 2019. doi:
10.1109/icse-companion.2019.00133.

[34] Qianqian Wang, Yuriy Brun, and Alessandro Orso. Behavioral execution comparison:
Are tests representative of field behavior? In 2017 IEEE International Conference on
Software Testing, Verification and Validation (ICST). IEEE, mar 2017. doi: 10.1109/
icst.2017.36.

[35] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. TaintScope: A checksum-aware
directed fuzzing tool for automatic software vulnerability detection. In 2010 IEEE
Symposium on Security and Privacy. IEEE, 2010. doi: 10.1109/sp.2010.37.

[36] Shang Xiang. Fit2crash: Specialising fitness functions for crash reproduction. Mas-
ter’s thesis, TU Delft, 2020. URL http://resolver.tudelft.nl/uuid:26da088e
-25e1-4de4-bfc2-6935e32646ab.

[37] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. Detect-
ing large-scale system problems by mining console logs. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles - SOSP ’09. ACM Press,
2009. doi: 10.1145/1629575.1629587.

68

http://resolver.tudelft.nl/uuid:26da088e-25e1-4de4-bfc2-6935e32646ab
http://resolver.tudelft.nl/uuid:26da088e-25e1-4de4-bfc2-6935e32646ab

Appendix A

Results per class

This appendix contains detailed results per class for a few cases corresponding to results
shown in Chapter 5.

69

A. RESULTS PER CLASS

class complexity loc max. exec. count fit def sec def fit max sec max significance effect size magnitude
1 org.jabref.cli.JabRefCLI 36 146 56 0.00798 0.129 3.55e-177 0.806 large
2 org.jabref.Globals 14 77 2614 0.0786 0.112 0.048 0.559 negligible
3 org.jabref.JabRefGUI 43 183 574 0.239 0.374 0.000541 0.606 small
4 org.jabref.logic.autosaveandbackup.BackupManager 21 117 153 0.208 0.221 0.289 0.523 negligible
5 org.jabref.logic.bibtex.BibEntryWriter 28 124 8691 0.0952 0.133 8.07e-08 0.596 small
6 org.jabref.logic.bibtex.comparator.BibDatabaseDiff 23 94 23 0.0381 0.0759 0.000621 0.565 negligible
7 org.jabref.logic.bibtex.comparator.EntryComparator 28 103 60 0.516 0.529 0.0248 0.544 negligible
8 org.jabref.logic.bibtex.comparator.FieldComparator 29 119 808 0.247 0.307 1.58e-20 0.684 medium
9 org.jabref.logic.bibtex.DuplicateCheck 55 245 7599 0.201 0.296 2.76e-14 0.637 small

10 org.jabref.logic.bibtex.FieldContentParser 4 31 3201 0.427 0.472 1.61e-05 0.612 small
11 org.jabref.logic.bibtex.LatexFieldFormatter 67 206 50661 0.154 0.186 8.32e-11 0.618 small
12 org.jabref.logic.bibtex.LatexFieldFormatterPreferences 6 27 2183 0.152 0.372 1.01e-20 0.756 large
13 org.jabref.logic.bibtexkeypattern.BibtexKeyGenerator 31 140 341 0.142 0.19 1.04e-30 0.666 medium
14 org.jabref.logic.bibtexkeypattern.BracketedPattern 245 1016 1605 0.0518 0.122 1.06e-77 0.665 small
15 org.jabref.logic.citationstyle.CitationStyle 32 148 39564 0.0509 0.101 4.15e-53 0.778 large
16 org.jabref.logic.exporter.BibDatabaseWriter 42 175 145 0.0619 0.087 8.87e-07 0.555 negligible
17 org.jabref.logic.exporter.BibtexDatabaseWriter 27 127 145 0.274 0.302 0.0919 0.525 negligible
18 org.jabref.logic.exporter.TemplateExporter 36 235 105 0.919 0.919 0.956 0.499 negligible
19 org.jabref.logic.exporter.VerifyingWriter 8 34 1762 0.322 0.457 2.35e-05 0.615 small
20 org.jabref.logic.importer.fetcher.ArXiv 33 264 87 0.163 0.391 1e-51 0.762 large
21 org.jabref.logic.importer.fetcher.AstrophysicsDataSystem 15 99 132 0.128 0.284 2.74e-66 0.788 large
22 org.jabref.logic.importer.fetcher.CrossRef 21 110 129 0.5 0.833 5.98e-08 0.666 medium
23 org.jabref.logic.importer.fetcher.GoogleScholar 26 126 117 0.13 0.263 7.62e-21 0.729 medium
24 org.jabref.logic.importer.fetcher.IacrEprintFetcher 29 145 20 0.124 0.237 0.000617 0.613 small
25 org.jabref.logic.importer.Importer 21 122 497 0.191 0.311 4.3e-13 0.598 small
26 org.jabref.logic.importer.ParserResult 33 138 130 0.223 0.306 4.89e-55 0.668 medium
27 org.jabref.logic.importer.util.MetaDataParser 29 128 193 0.311 0.318 0.00279 0.547 negligible
28 org.jabref.logic.importer.WebFetchers 14 96 13 0.562 0.679 3.76e-05 0.585 small
29 org.jabref.logic.integrity.AbbreviationChecker 4 16 2295 0.445 0.483 0.167 0.535 negligible
30 org.jabref.logic.integrity.BracketChecker 7 26 1205 0.353 0.458 0.0747 0.55 negligible
31 org.jabref.logic.integrity.PersonNamesChecker 9 25 4590 0.432 0.432 1 0.5 negligible
32 org.jabref.logic.journals.Abbreviation 19 69 556488 0.376 0.495 1.25e-103 0.775 large
33 org.jabref.logic.journals.AbbreviationParser 17 72 92754 0.198 0.221 0.297 0.52 negligible
34 org.jabref.logic.journals.JournalAbbreviationRepository 15 58 139122 0.265 0.336 2.16e-47 0.693 medium
35 org.jabref.logic.layout.AbstractParamLayoutFormatter 12 54 4502 0.384 0.513 0.0094 0.582 small
36 org.jabref.logic.layout.format.Authors 63 280 1792 0.252 0.28 6.6e-17 0.605 small
37 org.jabref.logic.layout.format.HTMLChars 44 176 87993 0.417 0.551 1.86e-05 0.623 small
38 org.jabref.logic.layout.Layout 24 93 4283 0.198 0.273 2.05e-13 0.632 small
39 org.jabref.logic.layout.LayoutEntry 169 497 35976 0.155 0.239 7.61e-17 0.618 small
40 org.jabref.logic.layout.LayoutHelper 82 266 74500 0.118 0.131 0.0979 0.548 negligible
41 org.jabref.logic.net.ProxyPreferences 29 96 16 0.266 0.362 2.13e-37 0.663 small
42 org.jabref.logic.net.URLDownload 40 206 82 0.925 0.94 0.965 0.5 negligible
43 org.jabref.logic.openoffice.OOBibStyle 142 696 672 0.0449 0.0464 0.353 0.508 negligible
44 org.jabref.logic.protectedterms.ProtectedTermsLoader 31 124 21 0.419 0.431 7.83e-09 0.576 small
45 org.jabref.logic.protectedterms.ProtectedTermsParser 14 72 6615 0.101 0.118 0.139 0.524 negligible
46 org.jabref.logic.TypedBibEntry 7 44 1047 0.618 0.679 0.0288 0.571 negligible
47 org.jabref.logic.util.io.FileBasedLock 17 97 73 0.576 0.576 1 0.5 negligible
48 org.jabref.logic.util.io.FileUtil 42 239 591 0.294 0.424 0.00186 0.553 negligible
49 org.jabref.logic.util.strings.StringLengthComparator 3 12 102578 0.736 0.741 0.846 0.506 negligible
50 org.jabref.logic.util.UpdateField 20 107 93 0.471 0.674 6.86e-17 0.606 small
51 org.jabref.logic.util.Version 47 215 622 0.254 0.336 1.87e-33 0.642 small
52 org.jabref.model.bibtexkeypattern.AbstractBibtexKeyPattern 21 97 167 0.743 0.78 0.00084 0.54 negligible
53 org.jabref.model.ChainNode 15 111 274 0.0398 0.268 5.35e-49 0.729 medium
54 org.jabref.model.database.BibDatabase 83 443 11410 0.0676 0.28 4.05e-306 0.789 large
55 org.jabref.model.database.BibDatabaseContext 45 193 7652 0.034 0.119 1.91e-128 0.765 large
56 org.jabref.model.entry.Author 60 270 1191 0.227 0.346 2.94e-138 0.821 large
57 org.jabref.model.entry.AuthorList 77 371 4717 0.459 0.535 4.44e-22 0.583 small
58 org.jabref.model.entry.AuthorListParser 84 328 496 0.351 0.373 0.0103 0.544 negligible
59 org.jabref.model.entry.BibEntry 128 618 103656 0.185 0.189 4.23e-07 0.529 negligible
60 org.jabref.model.entry.BiblatexEntryTypes 2 492 510 0.298 0.358 5.6e-05 0.583 small
61 org.jabref.model.entry.BibtexEntryTypes 2 193 133 0.361 0.37 0.0959 0.522 negligible
62 org.jabref.model.entry.BibtexSingleField 21 98 94328 0.0368 0.317 2.7e-178 0.928 large
63 org.jabref.model.entry.Date 26 101 187 0.0451 0.22 3.59e-113 0.775 large
64 org.jabref.model.entry.event.EntryEvent 4 28 2837 0.418 0.538 6.47e-08 0.778 large
65 org.jabref.model.entry.event.FieldChangedEvent 14 78 2601 0.489 0.564 1.32e-28 0.74 large
66 org.jabref.model.entry.FieldName 8 171 423 0.466 0.64 1.01e-18 0.708 medium
67 org.jabref.model.entry.InternalBibtexFields 52 321 29207 0.484 0.59 1.65e-21 0.621 small
68 org.jabref.model.entry.KeywordList 37 137 301 0.32 0.434 1.4e-54 0.658 small
69 org.jabref.model.entry.Month 23 120 216 0.0752 0.438 5.38e-56 0.769 large
70 org.jabref.model.entry.specialfields.SpecialField 15 57 1112 0.206 0.706 6.04e-59 0.858 large
71 org.jabref.model.EntryTypes 36 182 2368 0.267 0.583 2.36e-68 0.754 large
72 org.jabref.model.FieldChange 22 75 1932 0.446 0.632 2.26e-37 0.676 medium
73 org.jabref.model.groups.AbstractGroup 31 129 1476 0.0417 0.288 1.14e-216 0.821 large
74 org.jabref.model.groups.AllEntriesGroup 6 24 1476 0.112 0.339 3.37e-27 0.767 large
75 org.jabref.model.groups.GroupTreeNode 54 229 1476 0.0714 0.22 4.78e-179 0.77 large
76 org.jabref.model.metadata.MetaData 50 232 7679 0.0256 0.145 1.48e-148 0.726 medium
77 org.jabref.model.metadata.SaveOrderConfig 19 142 16 0.567 0.683 4.51e-09 0.59 small
78 org.jabref.model.search.rules.SentenceAnalyzer 12 43 6256 0.359 0.388 0.124 0.546 negligible
79 org.jabref.model.strings.StringUtil 154 547 2183 0.284 0.426 2.6e-113 0.667 medium
80 org.jabref.preferences.JabRefPreferences 168 1368 16694 0.119 0.119 0.716 0.496 negligible
81 org.jabref.preferences.PreviewPreferences 8 81 2110 0.122 0.278 8.1e-99 0.832 large

Table A.1: Commonality coverage for fit def sec def and fit max sec max compared
per class

70

class complexity loc max. exec. count fit def sec def fit min sec min significance effect size magnitude
1 org.jabref.cli.JabRefCLI 36 146 56 0.00798 0.00621 0.4 0.505 negligible
2 org.jabref.Globals 14 77 2614 0.0786 0.0855 0.884 0.496 negligible
3 org.jabref.JabRefGUI 43 183 574 0.239 0.183 0.877 0.496 negligible
4 org.jabref.logic.autosaveandbackup.BackupManager 21 117 153 0.208 0.18 0.00629 0.442 negligible
5 org.jabref.logic.bibtex.BibEntryWriter 28 124 8691 0.0952 0.0793 0.000186 0.431 negligible
6 org.jabref.logic.bibtex.comparator.BibDatabaseDiff 23 94 23 0.0381 0.0337 0.702 0.494 negligible
7 org.jabref.logic.bibtex.comparator.EntryComparator 28 103 60 0.516 0.504 0.0555 0.461 negligible
8 org.jabref.logic.bibtex.comparator.FieldComparator 29 119 808 0.247 0.247 0.922 0.498 negligible
9 org.jabref.logic.bibtex.DuplicateCheck 55 245 7599 0.201 0.161 0.222 0.479 negligible

10 org.jabref.logic.bibtex.FieldContentParser 4 31 3201 0.427 0.416 0.229 0.469 negligible
11 org.jabref.logic.bibtex.LatexFieldFormatter 67 206 50661 0.154 0.129 5.79e-09 0.392 small
12 org.jabref.logic.bibtex.LatexFieldFormatterPreferences 6 27 2183 0.152 0.121 0.00868 0.427 negligible
13 org.jabref.logic.bibtexkeypattern.BibtexKeyGenerator 31 140 341 0.142 0.121 3.86e-05 0.442 negligible
14 org.jabref.logic.bibtexkeypattern.BracketedPattern 245 1016 1605 0.0518 0.0466 0.00303 0.469 negligible
15 org.jabref.logic.citationstyle.CitationStyle 32 148 39564 0.0509 0.0486 6.6e-30 0.296 medium
16 org.jabref.logic.exporter.BibDatabaseWriter 42 175 145 0.0619 0.0478 0.137 0.485 negligible
17 org.jabref.logic.exporter.BibtexDatabaseWriter 27 127 145 0.274 0.271 0.631 0.493 negligible
18 org.jabref.logic.exporter.TemplateExporter 36 235 105 0.919 0.749 3.45e-23 0.33 medium
19 org.jabref.logic.exporter.VerifyingWriter 8 34 1762 0.322 0.318 0.0745 0.446 negligible
20 org.jabref.logic.importer.fetcher.ArXiv 33 264 87 0.163 0.15 1.37e-06 0.43 negligible
21 org.jabref.logic.importer.fetcher.AstrophysicsDataSystem 15 99 132 0.128 0.099 2.65e-08 0.4 small
22 org.jabref.logic.importer.fetcher.CrossRef 21 110 129 0.5 0.5 1 0.5 negligible
23 org.jabref.logic.importer.fetcher.GoogleScholar 26 126 117 0.13 0.12 0.64 0.489 negligible
24 org.jabref.logic.importer.fetcher.IacrEprintFetcher 29 145 20 0.124 0.125 0.971 0.501 negligible
25 org.jabref.logic.importer.Importer 21 122 497 0.191 0.163 0.448 0.489 negligible
26 org.jabref.logic.importer.ParserResult 33 138 130 0.223 0.186 6.4e-69 0.299 medium
27 org.jabref.logic.importer.util.MetaDataParser 29 128 193 0.311 0.306 0.0109 0.461 negligible
28 org.jabref.logic.importer.WebFetchers 14 96 13 0.562 0.56 0.941 0.498 negligible
29 org.jabref.logic.integrity.AbbreviationChecker 4 16 2295 0.445 0.427 0.0412 0.445 negligible
30 org.jabref.logic.integrity.BracketChecker 7 26 1205 0.353 0.32 0.000714 0.394 small
31 org.jabref.logic.integrity.PersonNamesChecker 9 25 4590 0.432 0.374 8.33e-21 0.268 medium
32 org.jabref.logic.journals.Abbreviation 19 69 556488 0.376 0.353 6.76e-05 0.451 negligible
33 org.jabref.logic.journals.AbbreviationParser 17 72 92754 0.198 0.21 0.534 0.513 negligible
34 org.jabref.logic.journals.JournalAbbreviationRepository 15 58 139122 0.265 0.213 3.89e-16 0.39 small
35 org.jabref.logic.layout.AbstractParamLayoutFormatter 12 54 4502 0.384 0.302 0.000146 0.377 small
36 org.jabref.logic.layout.format.Authors 63 280 1792 0.252 0.238 1.6e-06 0.44 negligible
37 org.jabref.logic.layout.format.HTMLChars 44 176 87993 0.417 0.392 0.0564 0.446 negligible
38 org.jabref.logic.layout.Layout 24 93 4283 0.198 0.162 1.64e-06 0.411 small
39 org.jabref.logic.layout.LayoutEntry 169 497 35976 0.155 0.116 0.000866 0.451 negligible
40 org.jabref.logic.layout.LayoutHelper 82 266 74500 0.118 0.109 0.306 0.467 negligible
41 org.jabref.logic.net.ProxyPreferences 29 96 16 0.266 0.148 1.14e-51 0.285 medium
42 org.jabref.logic.net.URLDownload 40 206 82 0.925 0.894 7.83e-19 0.396 small
43 org.jabref.logic.openoffice.OOBibStyle 142 696 672 0.0449 0.0363 1.22e-29 0.387 small
44 org.jabref.logic.protectedterms.ProtectedTermsLoader 31 124 21 0.419 0.356 4.18e-09 0.421 small
45 org.jabref.logic.protectedterms.ProtectedTermsParser 14 72 6615 0.101 0.0822 0.313 0.484 negligible
46 org.jabref.logic.TypedBibEntry 7 44 1047 0.618 0.598 0.436 0.475 negligible
47 org.jabref.logic.util.io.FileBasedLock 17 97 73 0.576 0.481 1.01e-08 0.36 small
48 org.jabref.logic.util.io.FileUtil 42 239 591 0.294 0.281 0.79 0.494 negligible
49 org.jabref.logic.util.strings.StringLengthComparator 3 12 102578 0.736 0.605 5.4e-08 0.298 medium
50 org.jabref.logic.util.UpdateField 20 107 93 0.471 0.407 5.42e-05 0.447 negligible
51 org.jabref.logic.util.Version 47 215 622 0.254 0.208 8.76e-15 0.407 small
52 org.jabref.model.bibtexkeypattern.AbstractBibtexKeyPattern 21 97 167 0.743 0.472 1.35e-110 0.194 large
53 org.jabref.model.ChainNode 15 111 274 0.0398 0.0385 0.881 0.499 negligible
54 org.jabref.model.database.BibDatabase 83 443 11410 0.0676 0.0506 1.68e-79 0.349 small
55 org.jabref.model.database.BibDatabaseContext 45 193 7652 0.034 0.0299 0.0857 0.481 negligible
56 org.jabref.model.entry.Author 60 270 1191 0.227 0.215 0.0084 0.467 negligible
57 org.jabref.model.entry.AuthorList 77 371 4717 0.459 0.257 1.62e-48 0.367 small
58 org.jabref.model.entry.AuthorListParser 84 328 496 0.351 0.294 2.79e-48 0.231 large
59 org.jabref.model.entry.BibEntry 128 618 103656 0.185 0.13 0 0.177 large
60 org.jabref.model.entry.BibtexEntryTypes 2 193 133 0.361 0.359 0.331 0.494 negligible
61 org.jabref.model.entry.BibtexSingleField 21 98 94328 0.0368 0.0316 0.00127 0.446 negligible
62 org.jabref.model.entry.Date 26 101 187 0.0451 0.0374 0.384 0.491 negligible
63 org.jabref.model.entry.event.EntryEvent 4 28 2837 0.418 0.472 0.0807 0.594 small
64 org.jabref.model.entry.event.FieldChangedEvent 14 78 2601 0.489 0.42 5.1e-18 0.292 medium
65 org.jabref.model.entry.FieldName 8 171 423 0.466 0.389 1.1e-05 0.393 small
66 org.jabref.model.entry.InternalBibtexFields 52 321 29207 0.484 0.241 6.4e-45 0.287 medium
67 org.jabref.model.entry.KeywordList 37 137 301 0.32 0.231 9.34e-40 0.352 small
68 org.jabref.model.entry.Month 23 120 216 0.0752 0.0268 0.302 0.487 negligible
69 org.jabref.model.entry.specialfields.SpecialField 15 57 1112 0.206 0.159 0.741 0.51 negligible
70 org.jabref.model.EntryTypes 36 182 2368 0.267 0.223 0.178 0.477 negligible
71 org.jabref.model.FieldChange 22 75 1932 0.446 0.323 1.67e-13 0.408 small
72 org.jabref.model.groups.AbstractGroup 31 129 1476 0.0417 0.0347 0.35 0.493 negligible
73 org.jabref.model.groups.AllEntriesGroup 6 24 1476 0.112 0.116 0.00222 0.428 negligible
74 org.jabref.model.groups.GroupTreeNode 54 229 1476 0.0714 0.0691 0.196 0.488 negligible
75 org.jabref.model.metadata.MetaData 50 232 7679 0.0256 0.0172 1.4e-172 0.234 large
76 org.jabref.model.metadata.SaveOrderConfig 19 142 16 0.567 0.391 3.56e-17 0.366 small
77 org.jabref.model.search.rules.SentenceAnalyzer 12 43 6256 0.359 0.381 0.41 0.526 negligible
78 org.jabref.model.strings.StringUtil 154 547 2183 0.284 0.221 1.6e-05 0.463 negligible
79 org.jabref.preferences.JabRefPreferences 168 1368 16694 0.119 0.108 4.98e-13 0.422 small
80 org.jabref.preferences.PreviewPreferences 8 81 2110 0.122 0.0761 2.88e-07 0.41 small

Table A.2: Commonality coverage for fit def sec def and fit min sec min compared
per class

71

A. RESULTS PER CLASS

class complexity loc max. exec. count fit def sec def fit def sec max significance effect size magnitude
1 org.jabref.cli.JabRefCLI 36 146 56 0.487 0.526 0.118 0.618 small
2 org.jabref.Globals 14 77 2614 0.092 0.139 0.81 0.517 negligible
3 org.jabref.JabRefGUI 43 183 574 0.0982 0.0944 0.154 0.466 negligible
4 org.jabref.logic.autosaveandbackup.BackupManager 21 117 153 0.418 0.32 0.0107 0.309 medium
5 org.jabref.logic.bibtex.BibEntryWriter 28 124 8691 0.92 0.923 0.793 0.48 negligible
6 org.jabref.logic.bibtex.comparator.BibDatabaseDiff 23 94 23 0.489 0.491 0.116 0.616 small
7 org.jabref.logic.bibtex.comparator.EntryComparator 28 103 60 0.772 0.8 0.0286 0.664 small
8 org.jabref.logic.bibtex.comparator.FieldComparator 29 119 808 0.496 0.544 0.722 0.527 negligible
9 org.jabref.logic.bibtex.DuplicateCheck 55 245 7599 0.639 0.632 0.958 0.504 negligible

10 org.jabref.logic.bibtex.FieldContentParser 4 31 3201 0.948 0.969 0.452 0.534 negligible
11 org.jabref.logic.bibtex.LatexFieldFormatter 67 206 50661 0.811 0.789 0.592 0.459 negligible
12 org.jabref.logic.bibtexkeypattern.BracketedPattern 245 1016 1605 0.629 0.573 3.83e-06 0.152 large
13 org.jabref.logic.citationstyle.CitationStyle 32 148 39564 0.663 0.663 0.168 0.467 negligible
14 org.jabref.logic.exporter.BibDatabaseWriter 42 175 145 0.76 0.742 0.552 0.456 negligible
15 org.jabref.logic.exporter.BibtexDatabaseWriter 27 127 145 0.791 0.807 0.643 0.468 negligible
16 org.jabref.logic.exporter.TemplateExporter 36 235 105 0.121 0.12 0.57 0.483 negligible
17 org.jabref.logic.exporter.VerifyingWriter 8 34 1762 0.692 0.675 0.799 0.483 negligible
18 org.jabref.logic.importer.fetcher.ArXiv 33 264 87 0.189 0.189 1 0.5 negligible
19 org.jabref.logic.importer.fetcher.CrossRef 21 110 129 0.208 0.178 1.06e-09 0.0776 large
20 org.jabref.logic.importer.fetcher.GoogleScholar 26 126 117 0.108 0.0917 2.07e-08 0.138 large
21 org.jabref.logic.importer.fetcher.IacrEprintFetcher 29 145 20 0.0825 0.0796 0.161 0.467 negligible
22 org.jabref.logic.importer.Importer 21 122 497 1 0.948 0.00031 0.317 medium
23 org.jabref.logic.importer.ParserResult 33 138 130 0.971 0.937 0.577 0.464 negligible
24 org.jabref.logic.importer.util.MetaDataParser 29 128 193 0.953 0.962 0.112 0.563 negligible
25 org.jabref.logic.importer.WebFetchers 14 96 13 1 1 1 0.501 negligible
26 org.jabref.logic.integrity.BracketChecker 7 26 1205 1 0.96 0.0419 0.433 negligible
27 org.jabref.logic.journals.Abbreviation 19 69 556488 0.923 0.981 2.5e-05 0.789 large
28 org.jabref.logic.journals.AbbreviationParser 17 72 92754 0.517 0.508 0.334 0.483 negligible
29 org.jabref.logic.layout.AbstractParamLayoutFormatter 12 54 4502 0.692 0.72 0.627 0.534 negligible
30 org.jabref.logic.layout.format.Authors 63 280 1792 0.985 0.896 2.42e-06 0.168 large
31 org.jabref.logic.layout.format.HTMLChars 44 176 87993 0.481 0.449 0.384 0.434 negligible
32 org.jabref.logic.layout.format.NameFormatter 22 95 752 0.835 0.852 0.0834 0.628 small
33 org.jabref.logic.layout.Layout 24 93 4283 0.773 0.838 0.189 0.58 small
34 org.jabref.logic.layout.LayoutEntry 169 497 35976 0.262 0.228 0.000366 0.232 large
35 org.jabref.logic.layout.LayoutHelper 82 266 74500 0.228 0.258 0.0933 0.579 small
36 org.jabref.logic.net.ProxyPreferences 29 96 16 0.999 0.999 0.597 0.484 negligible
37 org.jabref.logic.net.URLDownload 40 206 82 0.517 0.581 0.21 0.598 small
38 org.jabref.logic.openoffice.OOBibStyle 142 696 672 0.353 0.311 0.259 0.414 small
39 org.jabref.logic.protectedterms.ProtectedTermsLoader 31 124 21 0.986 0.985 0.334 0.483 negligible
40 org.jabref.logic.protectedterms.ProtectedTermsParser 14 72 6615 0.773 0.773 1 0.5 negligible
41 org.jabref.logic.TypedBibEntry 7 44 1047 0.947 0.891 0.286 0.433 negligible
42 org.jabref.logic.util.io.FileUtil 42 239 591 0.847 0.882 0.0495 0.652 small
43 org.jabref.logic.util.StandardFileType 3 15 2113 0.556 0.963 1.18e-13 1 large
44 org.jabref.logic.util.strings.StringLengthComparator 3 12 102578 0.991 0.991 0.75 0.514 negligible
45 org.jabref.logic.util.Version 47 215 622 0.86 0.854 0.17 0.45 negligible
46 org.jabref.model.bibtexkeypattern.AbstractBibtexKeyPattern 21 97 167 0.999 1 0.161 0.533 negligible
47 org.jabref.model.ChainNode 15 111 274 0.878 0.892 0.0419 0.567 negligible
48 org.jabref.model.database.BibDatabase 83 443 11410 0.847 0.8 0.0698 0.362 small
49 org.jabref.model.database.BibDatabaseContext 45 193 7652 0.959 0.921 0.126 0.384 small
50 org.jabref.model.entry.Author 60 270 1191 0.995 0.999 0.723 0.487 negligible
51 org.jabref.model.entry.AuthorList 77 371 4717 0.805 0.787 0.848 0.485 negligible
52 org.jabref.model.entry.AuthorListParser 84 328 496 0.964 0.966 0.283 0.563 negligible
53 org.jabref.model.entry.BibEntry 128 618 103656 0.803 0.829 0.254 0.406 small
54 org.jabref.model.entry.Date 26 101 187 0.968 0.956 0.703 0.472 negligible
55 org.jabref.model.entry.event.EntryEvent 4 28 2837 0.8 0.821 0.039 0.638 small
56 org.jabref.model.entry.event.FieldChangedEvent 14 78 2601 0.985 0.986 1 0.501 negligible
57 org.jabref.model.entry.FieldName 8 171 423 0.953 0.892 0.806 0.483 negligible
58 org.jabref.model.entry.InternalBibtexFields 52 321 29207 0.988 0.993 0.0966 0.623 small
59 org.jabref.model.entry.KeywordList 37 137 301 0.966 0.979 0.227 0.573 negligible
60 org.jabref.model.entry.Month 23 120 216 0.542 0.551 0.0765 0.368 small
61 org.jabref.model.entry.specialfields.SpecialField 15 57 1112 0.573 0.352 1.18e-12 0 large
62 org.jabref.model.EntryTypes 36 182 2368 0.9 0.945 0.0417 0.639 small
63 org.jabref.model.FieldChange 22 75 1932 0.997 0.986 0.0227 0.384 small
64 org.jabref.model.groups.AbstractGroup 31 129 1476 0.885 0.884 0.925 0.507 negligible
65 org.jabref.model.groups.GroupTreeNode 54 229 1476 0.98 0.97 0.468 0.467 negligible
66 org.jabref.model.metadata.MetaData 50 232 7679 0.984 0.976 0.633 0.482 negligible
67 org.jabref.model.metadata.SaveOrderConfig 19 142 16 0.961 0.983 0.277 0.548 negligible
68 org.jabref.model.search.rules.SentenceAnalyzer 12 43 6256 0.984 0.956 0.0419 0.433 negligible
69 org.jabref.model.strings.StringUtil 154 547 2183 0.943 0.934 0.0552 0.356 small
70 org.jabref.preferences.JabRefPreferences 168 1368 16694 0.0215 0.0178 0.0358 0.414 small

Table A.3: PIT score for fit def sec def and fit def sec max compared per class

72

class complexity loc max. exec. count fit def sec def fit max sec max significance effect size magnitude
1 org.jabref.cli.JabRefCLI 36 146 56 0.487 0.528 0.332 0.573 negligible
2 org.jabref.Globals 14 77 2614 0.092 0.122 0.602 0.467 negligible
3 org.jabref.logic.autosaveandbackup.BackupManager 21 117 153 0.418 0.322 0.0338 0.33 medium
4 org.jabref.logic.bibtex.BibEntryWriter 28 124 8691 0.92 0.874 0.272 0.418 small
5 org.jabref.logic.bibtex.comparator.BibDatabaseDiff 23 94 23 0.489 0.577 0.0169 0.672 medium
6 org.jabref.logic.bibtex.comparator.EntryComparator 28 103 60 0.772 0.779 0.234 0.589 small
7 org.jabref.logic.bibtex.comparator.FieldComparator 29 119 808 0.496 0.494 0.7 0.529 negligible
8 org.jabref.logic.bibtex.DuplicateCheck 55 245 7599 0.639 0.581 0.00525 0.293 medium
9 org.jabref.logic.bibtex.FieldContentParser 4 31 3201 0.948 0.98 0.217 0.552 negligible

10 org.jabref.logic.bibtex.LatexFieldFormatter 67 206 50661 0.811 0.809 0.829 0.517 negligible
11 org.jabref.logic.bibtexkeypattern.BracketedPattern 245 1016 1605 0.629 0.574 5.02e-06 0.153 large
12 org.jabref.logic.citationstyle.CitationStyle 32 148 39564 0.663 0.663 0.342 0.483 negligible
13 org.jabref.logic.exporter.BibDatabaseWriter 42 175 145 0.76 0.757 0.772 0.522 negligible
14 org.jabref.logic.exporter.BibtexDatabaseWriter 27 127 145 0.791 0.717 0.676 0.47 negligible
15 org.jabref.logic.exporter.TemplateExporter 36 235 105 0.121 0.121 1 0.5 negligible
16 org.jabref.logic.exporter.VerifyingWriter 8 34 1762 0.692 0.692 1 0.5 negligible
17 org.jabref.logic.importer.fetcher.ArXiv 33 264 87 0.189 0.189 0.334 0.517 negligible
18 org.jabref.logic.importer.fetcher.CrossRef 21 110 129 0.208 0.2 6.9e-05 0.23 large
19 org.jabref.logic.importer.fetcher.GoogleScholar 26 126 117 0.108 0.0978 6.26e-05 0.283 medium
20 org.jabref.logic.importer.fetcher.IacrEprintFetcher 29 145 20 0.0825 0.0778 0.0419 0.433 negligible
21 org.jabref.logic.importer.Importer 21 122 497 1 0.965 0.00557 0.383 small
22 org.jabref.logic.importer.ParserResult 33 138 130 0.971 0.969 0.516 0.54 negligible
23 org.jabref.logic.importer.util.MetaDataParser 29 128 193 0.953 0.926 0.151 0.429 negligible
24 org.jabref.logic.importer.WebFetchers 14 96 13 1 1 1 0.501 negligible
25 org.jabref.logic.integrity.AbbreviationChecker 4 16 2295 1 0.991 0.334 0.483 negligible
26 org.jabref.logic.integrity.BracketChecker 7 26 1205 1 0.988 0.161 0.467 negligible
27 org.jabref.logic.journals.Abbreviation 19 69 556488 0.923 0.95 0.0117 0.679 medium
28 org.jabref.logic.journals.AbbreviationParser 17 72 92754 0.517 0.508 0.0419 0.433 negligible
29 org.jabref.logic.layout.AbstractParamLayoutFormatter 12 54 4502 0.692 0.686 0.722 0.475 negligible
30 org.jabref.logic.layout.format.Authors 63 280 1792 0.985 0.933 6.2e-07 0.149 large
31 org.jabref.logic.layout.format.HTMLChars 44 176 87993 0.481 0.395 0.00598 0.294 medium
32 org.jabref.logic.layout.format.NameFormatter 22 95 752 0.835 0.854 0.497 0.551 negligible
33 org.jabref.logic.layout.Layout 24 93 4283 0.773 0.83 0.284 0.567 negligible
34 org.jabref.logic.layout.LayoutEntry 169 497 35976 0.262 0.234 0.0183 0.322 medium
35 org.jabref.logic.layout.LayoutHelper 82 266 74500 0.228 0.239 0.952 0.504 negligible
36 org.jabref.logic.net.ProxyPreferences 29 96 16 0.999 0.99 0.0881 0.433 negligible
37 org.jabref.logic.net.URLDownload 40 206 82 0.517 0.507 0.609 0.541 negligible
38 org.jabref.logic.openoffice.OOBibStyle 142 696 672 0.353 0.336 0.744 0.475 negligible
39 org.jabref.logic.protectedterms.ProtectedTermsLoader 31 124 21 0.986 0.976 0.0815 0.45 negligible
40 org.jabref.logic.protectedterms.ProtectedTermsParser 14 72 6615 0.773 0.767 0.584 0.484 negligible
41 org.jabref.logic.TypedBibEntry 7 44 1047 0.947 0.929 0.985 0.498 negligible
42 org.jabref.logic.util.io.FileUtil 42 239 591 0.847 0.864 0.176 0.604 small
43 org.jabref.logic.util.StandardFileType 3 15 2113 0.556 0.763 1.05e-07 0.833 large
44 org.jabref.logic.util.strings.StringLengthComparator 3 12 102578 0.991 0.993 0.71 0.516 negligible
45 org.jabref.logic.util.Version 47 215 622 0.86 0.858 0.18 0.451 negligible
46 org.jabref.model.bibtexkeypattern.AbstractBibtexKeyPattern 21 97 167 0.999 0.995 0.604 0.48 negligible
47 org.jabref.model.ChainNode 15 111 274 0.878 0.892 0.0419 0.567 negligible
48 org.jabref.model.database.BibDatabase 83 443 11410 0.847 0.843 0.575 0.457 negligible
49 org.jabref.model.database.BibDatabaseContext 45 193 7652 0.959 0.953 0.738 0.474 negligible
50 org.jabref.model.entry.Author 60 270 1191 0.995 0.997 1 0.5 negligible
51 org.jabref.model.entry.AuthorList 77 371 4717 0.805 0.854 0.191 0.599 small
52 org.jabref.model.entry.AuthorListParser 84 328 496 0.964 0.967 0.216 0.574 small
53 org.jabref.model.entry.BibEntry 128 618 103656 0.803 0.817 0.185 0.393 small
54 org.jabref.model.entry.BibtexSingleField 21 98 94328 1 0.999 0.334 0.483 negligible
55 org.jabref.model.entry.Date 26 101 187 0.968 0.969 0.555 0.542 negligible
56 org.jabref.model.entry.event.EntryEvent 4 28 2837 0.8 0.853 0.000454 0.733 medium
57 org.jabref.model.entry.event.FieldChangedEvent 14 78 2601 0.985 1 0.334 0.517 negligible
58 org.jabref.model.entry.FieldName 8 171 423 0.953 0.903 0.407 0.443 negligible
59 org.jabref.model.entry.InternalBibtexFields 52 321 29207 0.988 0.992 0.168 0.601 small
60 org.jabref.model.entry.KeywordList 37 137 301 0.966 0.975 0.293 0.563 negligible
61 org.jabref.model.entry.Month 23 120 216 0.542 0.547 0.00125 0.262 large
62 org.jabref.model.entry.specialfields.SpecialField 15 57 1112 0.573 0.353 1.2e-12 0 large
63 org.jabref.model.EntryTypes 36 182 2368 0.9 0.857 0.771 0.479 negligible
64 org.jabref.model.FieldChange 22 75 1932 0.997 0.974 0.371 0.464 negligible
65 org.jabref.model.groups.AbstractGroup 31 129 1476 0.885 0.855 0.563 0.458 negligible
66 org.jabref.model.groups.GroupTreeNode 54 229 1476 0.98 0.991 0.655 0.517 negligible
67 org.jabref.model.metadata.MetaData 50 232 7679 0.984 0.951 0.213 0.447 negligible
68 org.jabref.model.metadata.SaveOrderConfig 19 142 16 0.961 0.996 0.221 0.554 negligible
69 org.jabref.model.search.rules.SentenceAnalyzer 12 43 6256 0.984 0.977 0.57 0.517 negligible
70 org.jabref.model.strings.StringUtil 154 547 2183 0.943 0.934 0.0472 0.351 small
71 org.jabref.preferences.JabRefPreferences 168 1368 16694 0.0215 0.0193 0.113 0.448 negligible

Table A.4: PIT score for fit def sec def and fit max sec max compared per class

73

Appendix B

Additional coverage evolution figures

This appendix contains several additional figures showing the evolution of coverage values
for standard coverage metrics not discussed in Section 5.4.

75

B. ADDITIONAL COVERAGE EVOLUTION FIGURES

0.00

0.25

0.50

0.75

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for direct branch coverage

Figure B.1: Evolution of the median test suite direct branch coverage value for different
configurations.

76

0.00

0.25

0.50

0.75

1.00

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for exception coverage

Figure B.2: Evolution of the median test suite exception coverage value for different con-
figurations.

77

B. ADDITIONAL COVERAGE EVOLUTION FIGURES

0.00

0.25

0.50

0.75

1.00

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for input coverage

Figure B.3: Evolution of the median test suite input coverage value for different configura-
tions.

78

0.00

0.25

0.50

0.75

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for line coverage

Figure B.4: Evolution of the median test suite line coverage value for different configura-
tions.

79

B. ADDITIONAL COVERAGE EVOLUTION FIGURES

0.00

0.25

0.50

0.75

1.00

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for method coverage

Figure B.5: Evolution of the median test suite method coverage value for different configu-
rations.

80

0.00

0.25

0.50

0.75

1.00

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for method (no exception) coverage

Figure B.6: Evolution of the median test suite method (no exception) coverage value for
different configurations.

81

B. ADDITIONAL COVERAGE EVOLUTION FIGURES

0.00

0.25

0.50

0.75

0e+00 1e+05 2e+05
Runtime (ms)

M
ed

ia
n

co
ve

ra
ge

 v
al

ue

configuration

fit_def_sec_def

fit_def_sec_max

fit_def_sec_min

fit_max_min_sec_def

fit_max_sec_max

fit_min_sec_min

Coverage value evolution for weak mutation score

Figure B.7: Evolution of the median test suite weak mutation score for different configura-
tions.

82

Glossary

CFG control flow graph. vii, 12–15, 24, 63

CUBTG common and uncommon behavior test generation. i, 1–3, 7, 8, 16, 17, 19, 21, 22,
24, 27, 29–31, 34, 36, 37, 39–42, 44, 46, 49, 50, 52–54, 57–59, 61–64

CUT class under test. 6, 11, 12, 14–16, 19, 23–25, 41, 61, 62

FF fitness function. 1, 2, 7, 8, 17, 19, 21, 22, 27–30, 32, 34–37, 40–42, 44, 46, 47, 50,
52–54, 57–59, 61, 62

MOSA the many-objective sorting algorithm. i, v, vii, 1, 2, 5, 7, 8, 16–19, 21, 22, 28–32,
34–37, 39–42, 44, 46, 49, 50, 52–54, 57, 61–64

MWW Mann–Whitney–Wilcoxon. 30, 59

NSGA-II the non-dominated sorting genetic algorithm II. 7, 21, 28, 31

SO secondary objective. 1, 2, 18, 19, 21, 22, 27–30, 32, 34–37, 40–42, 46, 47, 50, 52, 53,
57–59, 61, 62

SUT software under test. 1, 11, 26, 35

VD.A Vargha and Delaney A. 59

83

	Preface
	Contents
	List of Figures
	Introduction
	Research questions and contributions
	Thesis structure

	Background and related work
	Genetic algorithms
	Test case selection in MOSA
	Usage-based test generation

	Defining commonality and using it in an evolutionary algorithm
	Defining commonality
	Incorporating commonality in an evolutionary algorithm

	Empirical evaluation - methodology
	Research questions
	Subjects
	Obtaining execution count data
	EvoSuite configurations
	Data collection and analysis

	Empirical evaluation - results
	RQ1: Commonality score
	RQ2: Fault revealing capability
	RQ3: Standard coverage criteria and EvoSuite runtime metrics
	RQ4: Efficiency for standard metrics
	RQ5: Efficiency for CUBTG
	Threats to validity

	Conclusion and future work
	Summary
	Implications
	Future work

	Bibliography
	Results per class
	Additional coverage evolution figures

