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Abstract
The swift reduction of human’s carbon footprint is essential to prevent irreversible damage to the
climate and to meet climate policy targets. Designing flexible and reliable future energy systems is a
big contributor to meeting these goals. While energy system models have improved in the last few
decades, they remain vulnerable against parametric and structural uncertainty due to the varying
characteristics of parameters and the hardship of modelling all constraints and drivers accurately.
This thesis proposes a method that addresses both uncertainty types in energy system modelling
by applying SPORES cost optimisation and Monte Carlo scenario modelling simultaneously.

The main case study uses 27 input scenarios with varying outcomes for grid electricity price, solar
yield and energy consumption to provide insight in a 100 household neighbourhood energy system
with heating, cooling, electricity and hydrogen as energy carriers. With 1377 (near-)optimal solu-
tions, a novel approach in analysis and post processing is used to provide 52 useful configuration
options that each have their strengths and weaknesses to different political, economical, social and
technical drivers. These configurations are tested for cost, security of supply, CO2 emissions and
grid dependency. Those results are visualised through ridge plots and statistical tables to provide a
clear overview between each configuration’s trade-offs. An example is included to show how those
results can be used for improving energy system design in practice.

This thesis shows that two methods can successfully be combined into one universal one, while pro-
viding valuable design insights for energy systems under uncertainty. Furthermore, this method
can be applied to a wide variety of energy systems, as long as its possible components, their tech-
nical aspects and their allowed interactions are known beforehand. As many future energy system
aspects are uncertain, it should be seen as a vital tool to help speed up the decarbonization.

v





Contents

1 Introduction 3
1.1 Transition Necessity and Energy System Modelling . . . . . . . . . . . . . . . . . . . 3
1.2 Energy System Modelling: Simulation and Optimization . . . . . . . . . . . . . . . . 4
1.3 Energy System Modelling and Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Research Questions and General Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Motivation of the Research Questions . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theoretical Background 9
2.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Optimization Methodology with Example . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Optimization Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Addressing Parametric Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Parametric Uncertainty: MCA/MCS . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Parametric Uncertainty Method Choice: MCS . . . . . . . . . . . . . . . . . . 14

2.3 Addressing Structural Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Structural Uncertainty: MGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Structural Uncertainty: SPOREs . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Structural Uncertainty Method Choice: SPOREs . . . . . . . . . . . . . . . . . 15

2.4 Method: ESM Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Framework Choice: Calliope . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Calliope Operation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.3 Calliope Solver Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Uncertainty in ESM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.1 Choice of Uncertain Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5.2 Techniques to Characterise Uncertain Variables . . . . . . . . . . . . . . . . . 19
2.5.3 Historic Data Sources (Databases) . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Thesis Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.1 General Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.2 Stochastic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.3 System Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6.4 Outside Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Method 22
3.1 Computational Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Optimization Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Configurations Solution Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.4 Configuration Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.5 Testable Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

vii



Contents Contents

3.1.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.8 Recap Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Energy System Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Modelling Assumptions and Choices . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.3 Simulation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Visualised Input Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.5 Recap Additional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Results 38
4.1 Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 Configuration Solution Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2 Configuration Selection and Testable Configurations . . . . . . . . . . . . . . 39
4.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Configuration Solution Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Configuration Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Finalised Design Advice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Additional Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4.1 15 VS 50 SPOREs & 15% Slack VS 50% Slack . . . . . . . . . . . . . . . . . . . 52
4.4.2 Advanced Configuration Selection Method . . . . . . . . . . . . . . . . . . . . 53

5 Discussion 55
5.1 Study Objectives and Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Method Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Scientific Impact and Practical Applications . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Conclusion 59
6.1 Answers to Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 General Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.3 Recommendations for Further Research . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Bibliography 67

A Case 1 Continued 68
A.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.1.1 Timeseries: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.1.2 Uncertain Demand Profiles: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.1.3 Uncertain Solar Profiles: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.4 Supply Grid Power: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.5 Batteries: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.6 Region X1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.7 Region X2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
A.1.8 Region X3: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.1.9 Power Lines (underground): . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.1.10 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.1.11 PV Panels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.2 Uncertain Input Timeseries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.3 Algorithm/Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.4 Solution Configuration Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A.4.1 Normal Winter Week Behavior: . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.4.2 Summer Week Behavior: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.4.3 Storage Usage: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.4.4 Capacity Ranges: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

viii



Contents Contents

A.4.5 Configuration Selection and Testable Configurations Continued: . . . . . . . 73
A.5 Problems and Discussion Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.6 References Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

B Parametric Uncertainty Approaches Continued 76
B.1 Parametric Uncertainty: Stochastic Programming (SP) . . . . . . . . . . . . . . . . . . 76
B.2 Parametric Uncertainty: Robust Optimization (RO) . . . . . . . . . . . . . . . . . . . 77

C Case 2 Continued 78
C.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

C.1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
C.1.2 Chosen Physical Limitations for Neighbourhood of 100 Households . . . . . 79
C.1.3 Uncertain Profiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
C.1.4 Heat Pumps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
C.1.5 Heat and Cold Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
C.1.6 Electrical Li-ion Battery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.1.7 PEM Fuel Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.1.8 PEM Electrolyzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.1.9 Hydrogen Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.1.10 Hydrogen Boiler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.1.11 PV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.1.12 Electricity Export . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.1.13 Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.1.14 Electrical Cables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.1.15 Heating Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.1.16 Cooling Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
C.1.17 Hydrogen Pipes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

C.2 Simulation Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.3 Additional Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.5 References Appendix Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

ix



List of Figures

1.1 Atmospheric CO2 concentration during the industrial era. A steep increase in concentration is
visible between 1960 and 2000. Source: Keeling et al [1]. . . . . . . . . . . . . . . . . . . . . 4

2.1 The constraint lines of a simple optimization problem. . . . . . . . . . . . . . . . . . . . . . 10
2.2 Optimization problem classes. Source: Lin et al [2]. . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Random sampling from a planning cost distribution. Source: Gazijahani et al [3]. . . . . . . . 13
2.4 Solution times for different solvers within Calliope, applied to the national and urban example

models. Source: Calliope documentation [4]). . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 A simplified version of the methods’ workflow. . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Annual solar yield as an uncertain variable. The graph shows the average Solar yield in

[kW/hour/m2] of installed PV panels, in The Netherlands in 2019 [5]. This time-series repre-
sents south faced panels, under an inclination of 35°. . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Annual temperature as an uncertain variable. The graph shows the average temperature [C°]
per hour, in The Netherlands in 2019 [5]. This time-series represents temperature at a height
of 2 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 The spatial configuration of a simple energy system for a duplex house. All locations have
different possible technologies and can be connected by electricity cables with different dis-
tances. In locations 1 and 2, electrical demand, the grid connection and batteries are possible
technology options. In location 3, there is room for solar panels to be installed [6] . . . . . . . 24

3.5 Solution 1 (optimal solution, SPORE 0) for one input scenario. The optimal and cheapest solu-
tion only uses two electricity cables (loc1-loc3 and loc2-loc3). The max PV amount is installed
and both locations have 50 kWh of battery installed. . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Solution 2 (SPORE 1) for one input scenario. With an increased cost equal to the optimal cost
plus the slack, the result is different than the optimal one. In SPORE 1, a different electrical
cable is used, while less PV and battery is installed. . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Solution 3 (SPORE 2) for one input scenario. With the same cost, the second SPORE results in a
configuration with fewer electricity cables, fewer PV panels, and a spread-out battery capacity.
This configuration depends more on grid electricity. . . . . . . . . . . . . . . . . . . . . . . 25

3.8 Solution 4 (SPORE 3) for one input scenario. With the same increased cost, the third SPORE re-
sults in a configuration with a lot of electricity cables, an increased grid connection, an average
amount of PV panels, but no batteries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.9 The time-series in [kW] for electricity and electrical storage of a single solution. . . . . . . . . 25
3.10 The technology capacity solutions for SPORE 0, 1, 2 and 3, for one input scenario, visualised

in a box-plot. Battery loc1 has a larger spread than the electricity lines between 2 and 3. . . . 26
3.11 Workflow of the advanced configuration selection. . . . . . . . . . . . . . . . . . . . . . . . 27
3.12 A result time-series for electricity [kW], for a selected configuration and one of the input sce-

narios. Despite always using the maximum grid capacity, in February, there is still unmet
demand thanks to the lower solar yield. This unmet demand is used to calculate the Security
of Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

x



List of Figures List of Figures

3.13 An example of a total cost. In the histogram plot, all results in between two bin limits will be
summed to obtain the total count for that bin. The total amount of input scenarios is equal to
the total count. Source: Delle Monache et al [7]. . . . . . . . . . . . . . . . . . . . . . . . . 29

3.14 An example of a ridge plot. For each testable configuration (in this plot represented by “ideal”,
“premium”, “very good”, “good” and “fair”), the histogram for one performance indicator can
be plotted in a ridge plot. Source: Holtz et al [8]. . . . . . . . . . . . . . . . . . . . . . . . . 29

3.15 The performance of all chosen configurations against security of supply and cost. Each blue
dot represents a testable configuration. Source: Seed Energy [9]. . . . . . . . . . . . . . . . . 30

3.16 The filled workflow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.17 The spatial configuration of case 1. 3 locations are connected through electricity cables. . . . . 31
3.18 Energy system spatial configuration case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.19 An example of an annual time-series for the grid electricity price in the Netherlands in 2017. . 35
3.20 The annual demand for electricity, cooling and heating for case 2 (Appendix C). . . . . . . . 35
3.21 An example of Average monthly yield in kW per installed kWp of solar panels, based on

location “The Bilt”, from the year 2017 [5]. Base case = 0%, sunny case = +15%, cloudy case =
-15%. Each case has a 33% probability of occurrence (Appendix C). . . . . . . . . . . . . . . 36

4.1 Boxplot for the Electricity cable connections between all 3 locations. . . . . . . . . . . . . . . 38
4.2 Boxplot for the installed battery capacities on locations X1 and X2. . . . . . . . . . . . . . . 38
4.3 The installed electrical demand capacity for locations X1 and X2. . . . . . . . . . . . . . . . 38
4.4 Box-plot for the PV and Grid technologies on locations X1 and X2. . . . . . . . . . . . . . . 39
4.5 Cost histogram Configuration 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6 Cost histogram Configuration 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.7 Cost histogram Configuration 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 Cost histogram Configuration 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.9 CO2 histogram Configuration 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.10 CO2 histogram Configuration 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.11 CO2 histogram Configuration 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.12 CO2 histogram Configuration 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.13 Energy capacity distributions for 4 different SPOREs, for input scenario 1. . . . . . . . . . . 41
4.14 Storage capacity distributions for 4 different SPOREs, for input scenario 1. . . . . . . . . . . 41
4.15 Annual storage [kWh] time-series for SPORE 38, for input scenario 1. . . . . . . . . . . . . . 42
4.16 Electricity carrier flow [kW] time-series for SPORE 38 during a summer week, for input sce-

nario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.17 Heat storage [kW] time-series for SPORE 38 during a winter week, for input scenario 1. . . . 42
4.18 Box-plot for the Energy capacity of the Storage technologies for all input scenarios. . . . . . . 43
4.19 Box-plot for the Energy capacity of the Hydrogen technologies for all input scenarios. . . . . 43
4.20 Box-plot for the Energy capacity of the Generation technologies for all input scenarios. . . . . 43
4.21 Box-plot for the Storage capacity [kWh] of the Storage technologies for all input scenarios. . . 43
4.22 Filtered box-plot for the generation technology energy capacity for all input scenarios. . . . . 44
4.23 Filtered box-plot for the hydrogen technology energy capacity for all input scenarios. . . . . 44
4.24 Filtered box-plot for the storage technology energy capacity for all input scenarios. . . . . . . 45
4.25 Filtered box-plot for the storage technology storage capacity for all input scenarios. . . . . . 45
4.26 Cost histogram for configuration 7 (top 10% filter for high electrical export capacity), against

all input scenarios with a mean of 4.45 Million Euros (NPV). . . . . . . . . . . . . . . . . . . 46
4.27 Cost histogram for configuration 9 (bottom 10% filter for low electrical export capacity), against

all input scenarios with a mean of 4.95 Million Euros (NPV). . . . . . . . . . . . . . . . . . . 46
4.28 Ridge-plot of the cost distribution for only the interesting configurations against all input sce-

narios for its entire lifetime. St means storage. . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.29 Ridge-plot of the grid dependency distribution for only the interesting configurations against

all input scenarios. St means storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.30 Ridge-plot of the CO2 distribution for the interesting configurations against all input scenarios

for its entire lifetime. St means storage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.31 CO2 VS Grid dependency plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.32 CO2 VS Security of Supply plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.33 CO2 VS Cost plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



List of Figures List of Figures

4.34 Cost VS Grid Dependency plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.35 Cost VS Security of Supply plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.36 Grid dependency VS Security of Supply plot. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.37 3D plot of Cost, CO2 and security of supply. . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.38 Energy capacities for technologies for configuration 24. . . . . . . . . . . . . . . . . . . . . 51
4.39 Storage capacities for technologies for configuration 24. . . . . . . . . . . . . . . . . . . . . 51
4.40 Box-plot for the Storage capacity [kWh] for all storage technologies with all input scenarios at

15% slack and 15 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.41 Box-plot for the Storage capacity [kWh] for all storage technologies with all input scenarios at

15% slack and 50 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.42 Box-plot for the Storage capacity [kWh] for all storage technologies with all input scenarios at

50% slack and 50 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.43 Box-plot for the Energy capacity [kW] for all generation technologies with all input scenarios

at 15% slack and 15 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.44 Box-plot for the Energy capacity [kW] for all generation technologies with all input scenarios

at 15% slack and 50 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.45 Box-plot for the Energy capacity [kW] for all generation technologies with all input scenarios

at 50% slack and 50 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.46 Boxplot for the Energy capacity [kW] for all hydrogen technologies with all input scenarios at

15% slack and 15 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.47 Boxplot for the Energy capacity [kW] for all hydrogen technologies with all input scenarios at

15% slack and 50 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.48 Boxplot for the Energy capacity [kW] for all hydrogen technologies with all input scenarios at

50% slack and 50 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.49 Boxplot for the Energy capacity [kW] for all storage technologies with all input scenarios at

15% slack and 15 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.50 Boxplot for the Energy capacity [kW] for all storage technologies with all input scenarios at

15% slack and 50 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.51 Boxplot for the Energy capacity [kW] for all storage technologies with all input scenarios at

50% slack and 50 SPOREs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.1 An advanced version of the spatial configuration of case 2. . . . . . . . . . . . . . . . . . . 61

A.1 An example of an annual (2005) timeseries for the solar yield, used in case 1. . . . . . . . . . 71
A.2 An example of an annual (2005) timeseries for the electrical demand, used in case 1. . . . . . 71
A.3 Yearly averages for the solar yield in 2005-2019 for locations X1 (50°) and X2 (0°), used in case 1. 71
A.4 Yearly averages for the electrical demand in 2005-2019 for locations X1 and X2, used in case 1. 71
A.5 Monthly averages for the solar yield in 2005 for locations X1 (50°) and X2 (0°), used in case 1. 71
A.6 Monthly averages for the electrical demand in 2005 for locations X1 and X2, used in case 1. . 71
A.7 Single solutions for SPOREs 0, 1, 3 and 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.8 Timeseries for the electrical and storage flows during a winter week, for input scenario 1,

SPORE 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.9 Timeseries for the electrical and storage flows during a summer week, for input scenario 1,

SPORE 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
A.10 Timeseries for the electrical flows during a week in autumn, for input scenario 1, SPORE 0. . 73

B.1 Multiple stage, stochastic programming decision tree [2.2.2.0, Cobuloglu]. . . . . . . . . . . 76

C.1 CO2 distribution SPORE 0 scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
C.2 Cost distribution SPORE 0 scenario 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

xii



List of Tables

1.1 Aspects of Simulation and Optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Optimization types in literature [10] [11] [12] [2] [13]. . . . . . . . . . . . . . . . . . . . . . 12
2.2 Overview of commonly modelled variables for uncertain and deterministic opera-

tion in ESM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Input scenarios for case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Summary results case 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 20 interesting testable configurations that are tested against performance indicators in ridge

plots in the next section. Each interesting testable configuration has its own configuration
number (Python index). From the total set of 54 testable configurations, some are duplicates
and some are unreliable configurations due to the lack of spread for a certain technology.
Therefore, only a set of 20 testable configurations is used to visualise in the ridge-plots in the
next section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Overview of statistical data for all interesting configurations. the mean and STD values for
cost, SOS, CO2 and grid dependency are displayed. . . . . . . . . . . . . . . . . . . . . . . 51

A.1 The configurations, selected from the configuration solution space through the cumbersome
selection method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.1 Assumptions and Parameters of Case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
C.2 Assumptions and Parameters of Case 2, Continued. . . . . . . . . . . . . . . . . . . . . . . 79
C.3 Simulation parameters for case 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

1





1| Introduction

This chapter, in sections 1.1, 1.2, and 1.3, background information substantiating the research ques-
tions (section 1.4) and the general scope is provided. Section 1.1 explains the necessity for a sus-
tainable energy transition and the relevance of energy system modelling (ESM). In section 1.2, the
two main ESM approaches “simulation” and “optimization” are elaborated. In section 1.3, para-
metric and structural uncertainty are addressed further and the difference between stochastic and
deterministic parameters within ESMs is explained. Section 1.4 entails the research questions and
section 1.5 the report structure.

1.1 Transition Necessity and Energy System Modelling

Over the last 800000 years, the carbon dioxide (CO2) concentration in the earth’s atmosphere has
never reached higher concentration than 300 parts per million (ppm) until around 1910 [14] [15].
The annual concentration of CO2 particles has only increased since then [1]. The significant increase
in CO2 concentration is strongly correlated to the human population increase [16], and the resulting
increase in fossil fuel combustion [17] to meet its growing energy demand [18]. CO2 is one of
the greenhouse gases that contribute to temperature increase in the earth’s atmosphere. Heat is
prevented to leave the earth’s atmosphere, due to CO2’s capacity to absorb radiative heat [19]. The
rising temperature contributes to an increased ocean and air temperature, increased frequency of
extreme weather events (heat waves, drought, heavy precipitation and flooding due to higher sea
levels), loss of ecosystems and an increased risk of endangering food production systems, human
health, and tourism [20] [21]. Reducing human’s footprint and transitioning to a more sustainable
society is therefore essential to reduce those risks.

Transitioning to a more sustainable society is complex due to a large amount and wide variation of
relevant actors and interests. Such a transition is substantiated by aspects in economic geography,
science innovation, organisational strategy, sociology, and modelling [22]. The engineering con-
sultancy company Witteveen + Bos (W+B) aims to support this sustainable transition by executing
more than 3000 projects annually in the fields of water, infrastructure, environment, and construc-
tion. By doing so, goals of sustainable development are central in executing these projects [23].
Many of these project’s hinge on the development of energy systems that need to be reliable and
flexible in design due to uncertain aspects of future energy system behaviour.

Energy system design is evolving over time as well because of the changing scope of future en-
ergy systems. With the changing political agendas and the rise of cheaper and more efficient (sus-
tainable) technologies, new challenges come to light. Energy production will become heavily de-
pendent on unpredictable weather due to the increasing share in solar and wind [24] [25] [26].
Moreover, the desire to be self-sustainable or energy neutral on a decentralised scale is increasing.
Meaning that choices of a single actor, can influence the systems’ behaviour more radically than
in larger scaled energy systems. Furthermore, economical aspects of future technologies are differ-
ent. In the past, over-sizing a diesel generator (capital expenditures, CAPEX) did not have large
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Figure 1.1: Atmospheric CO2 concentration during the industrial era. A steep increase in concentration is
visible between 1960 and 2000. Source: Keeling et al [1].

consequences for the total system costs as most costs resulted from purchasing fuel (operating ex-
penditures, OPEX). With emerging technologies like wind and solar, the sizing defines most of the
costs since there is as good as no fuel cost. Additionally, under-sizing or over-sizing might even re-
sult in an energy system not being feasible or being much more expensive than required. All these
uncertainties implore the need for methods that can calculate these aspects and their consequences
beforehand to decide on the best design.

Going about designing energy systems with aspects on this level of complexity requires a more so-
phisticated design approach. The design of such energy systems relies more and more on the use of
models [27] [28]. An ESM includes all the components and their interactions, that are required for
the generation, conversion, transmission, and consumption of energy within a specified energy sys-
tem working area [29]. ESMs provide scientific, financial, industrial, and political insights through
the computational combination of engineering, economic and environmental perspectives [30] [31].
These insights are used to help plan, design, and implement said energy systems in society. Ac-
cording to literature, modelling of energy systems is applied in different levels of variable types,
theoretical substantiation, technological depth, timescales, spatial scales, and model purposes [32].
This substantiates that energy system modelling is applied in many forms.

1.2 Energy System Modelling: Simulation and Optimization

Two general ESM approaches are distinguished: simulation and optimization [33], with each their
benefits to improve energy system design. Optimization finds an optimal energy system design
configuration for a chosen objective function such as minimising cost, CO2 emissions or energy use
[34]. Despite being heavily dependent on the correct interpretation and representation of compo-
nent behaviour and inputs for reliable results, optimization is a very strong tool to finding cost-
effective design. In general, optimization models suffer a heavier computational burden than sim-
ulation models [33].

Simulation focuses on analysing the performance of an energy system design for certain scenarios in
which key parameters are modified. With simulation models, the user oversees making the crucial
decisions in defining these different scenarios. While in optimization the crucial segment is defining
the system component behaviour. In the simulation approach, both high scoring and bad scoring
scenarios are analysed, whereas in optimization, only the best solution is considered. Therefore,
the reasons why sub-optimal solutions operate worse are not discovered in optimization, while this
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behaviour can be found and understood by comparing those scenarios in simulation. Optimization
techniques are “blind” for non-optimal options, and must be modified by hand to see alternative
near-optimal structurally different solutions [33].

Table 1.1: Aspects of Simulation and Optimization.

Cost-effective optimal designs have to be identified and used in order to provide competitive, long-
term energy system solutions in modern ESM that can provoke the energy transition. These energy
system optimization models (ESOM) have been extensively applied to provide essential insights
on all scales, proving optimization models to be crucial for energy system design [35]. However,
the loss of resolution in the solution space of optimization methods is not desired since future
uncertainties in the energy system are imminent. The preferred ESM technique is essentially one
that can combine the benefits of optimization and simulation modelling and can find optimal so-
lutions, while preserving the flexibility to design in structurally different ways to cope with future
uncertainties. In some cases, the strengths of both optimization and simulation models are already
combined in a single model [36, 37, 38, 39] [36] [37] [38] [39]. Nonetheless, in these cases a concise
approach that can summarise and analyse the results in a structured manner still lacks.

1.3 Energy System Modelling and Uncertainty

Addressing uncertainty is an important aspect within ESM [40]. Literature [29] [41] defines 2 kinds
of uncertainty, namely parametric and structural. Parametric uncertainty is the result of misrepre-
senting parameters in a model due to a lack of knowledge about them (like weather data, demand
forecasts and fluctuating prices). Structural uncertainty is the discrepancy that results from the
equations and interactions that define a model compared to the real system (like unmodelled objec-
tive functions and unmodelled constraints). Both types of uncertainties are an important challenge
within ESOMs. Parametric uncertainty is often high as many future parameters are not perfectly
predictable beforehand and can therefore not be modelled in full confidence. Structural uncertainty
is often high as ESOMs only solve for a chosen objective function (usually minimise cost or CO2
emissions), thereby ignoring other decision drivers like political, cultural, and normative aspects
[42]. This uncertainty type can be addressed by finding structurally different solutions near the
optimal solution that can satisfy objectives other than just economically optimal ones [43].

Parameters are represented in either a deterministic or stochastic manner within ESM. In the de-
terministic approach, all parameter behaviour and values are known (or assumed) perfectly by
working with expected values. In the stochastic approach, randomness is included in the system
by either representing the parameters in a stochastic distribution or by modelling a representative
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number of samples from it. The stochastic optimization technique greatly outperforms the deter-
ministic one, when considering uncertainties in long-term future energy system design [44]. The
deterministic approach is more suited for design scenarios with current or expected information
[45], and less suitable for complicated many sided scenarios with built-in uncertainties [46].

When designing energy systems for future long-term applications, designers should consider a
several features of uncertainty, well described by [47] in three aspects of “deep uncertainty”.

• The interactions of the essential driving forces in the long-term future are unknown before-
hand.

• The way to represent vital uncertain parameters in the most realistic mathematical manner is
never perfectly representable.

• One of the non-optimal alternatives may provide a more suitable solution for certain problems
than the optimal solution.

A literature review [42] is conducted on how these aspects of uncertainty are systematically as-
sessed in 34 different ESOMs. Subsequently, four techniques to apply uncertainty to ESOMs are
identified, Monte Carlo Analysis (MCA), Robust Optimization (RO), Stochastic Programming (SP),
and Modelling to Generate Alternatives (MGA). While MCA, RO and SP can only address paramet-
ric uncertainty, MGA provides the ability to take on structural uncertainty. Other ordinary methods
to decrease the structural uncertainty are increasing complexity to improve model dynamics, in-
volving expert opinion to define the model behaviour and model comparison. Chapter 2.2 and 2.3
address the relevant and available approaches that can tackle parametric and structural uncertainty
and how they operate. It should be mentioned that there is not one best approach when including
uncertainty. Therefore, the choice of approach should always depend on the desired type of insight
results, the accessibility of data, and the relevant area of uncertainty [42].

Unfortunately, the complexity and computational burden of an ESM increases when any type of
uncertainty is included [45]. Despite approaching more accurate and representative results, this
still remains a problem for especially large scale models [48]. The manner of complexity of an
energy system is established by the designer. Therefore, the trade-off between complexity, accuracy
of results and computational power is important when designing computational ESMs and should
always be considered when choosing the model configurations. Eventually, the added accuracy
decreases with added complexity, meaning that increasing complexity does not add marginal value
to the added accuracy at a certain point [49].

Although various methods are available to take on each type of mentioned uncertainty, there is a
deficit in literature where both are applied simultaneously [50] [51], let alone in a systematic way.
There is need for a systematic approach that includes parametric and structural uncertainty, to
improve future cost-effective intermittent energy system design [52] [53] [13]. Hence, the goal of
this thesis is to reduce that knowledge gap by providing such an approach.

1.4 Research Questions and General Scope

Now that basic background information is provided, the thesis objectives and research questions
are addressed. The purpose of this thesis is twofold. Firstly, this thesis creates a method addressing
parametric and structural uncertainty to add new scientific value to the energy system modelling
field. Secondly, this thesis aims to provide the company W+B with relevant and useful insights that
can improve their case designs, as this thesis takes place in collaboration with W+B. These purposes
are represented by the main research question:

How can intermittent energy system models provide reliable insights for optimized energy system designs by
systematically including both structural and parametric uncertainties?

The main research question can be split up into several sub research questions that help answer the
main research question.

1. Which variables are most relevant to model as uncertain in the ESM?
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2. How can these uncertain variables be modelled in a reliable and accurate way to be used as
inputs for the combined method?

3. Which methods are effective in addressing parametric and structural uncertainty in ESOM
and which ones are most suitable for this thesis?

4. How can the most suitable methods be systematically combined into a single method?

5. Can applying the method to one or two intermittent and renewable case studies (im)prove its
effectiveness and does it improve energy system design?

6. What kind of useful insights can this method provide when applied to one or two W+B cases
regarding effective energy system design?

7. How can the method be made easily accessible for other future energy system design projects?

1.4.1 Motivation of the Research Questions
For any parametric uncertainty approach to work well, the representation of the uncertain variables
must be adequate for the model to produce good results (2). Furthermore, only the most relevant
uncertain variables for the case study must be established (1). Expertise and accurate methods must
be formulated and used to create trustworthy variables that represent the plausible future (3). Both
types of uncertainty are to be applied at once to provide a new scientific approach (4).

The method will be applied to two case studies to test its performance. One of these case stud-
ies is based on a currently ongoing project of the company W+B. Both case studies are related to
sustainable energy system design and take place on a relatively small scale (non-national) (5). An
underlying goal of this thesis objective is to provide W+B with useful design guidelines and in-
sights for of their case projects (6). The method can be compared to a basic design approach to
determine if it provides useful insights.

Since energy system design methods can still be improved by including uncertainty more thor-
oughly in the design process, it is desired to make the method (when proven useful) accessible and
applicable for other similar projects as well (7) [54].

The general scope of this thesis is not focused on the optimization of existing energy systems but
on future systems that still have to be designed, as these methods are designed for it and since
W+B wants to apply it for their future design cases. It aims to combine parametric and systematic
uncertainty in an atomised manner and will be applied to two case studies to test and validate its
effectiveness. After the thesis background is provided at the end of chapter 2, the complete thesis
scope will be defined in more detail.

1.5 Thesis Structure

In the method chapter 2, the fundamentals of optimization and several available ESM methods
and frameworks with their benefits and disadvantages are researched. Subsequently, uncertain
variables and their role within ESMs are discussed. The scope of this thesis is found at the end
of chapter 2. In chapter 3, the method that is be applied for this thesis is elaborated, followed by
the case studies. The results come forward in chapter 4 and the discussion, future research, and
recommendations in chapter 5. In chapter 6, conclusions of this work are drawn.
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2| Theoretical Background

This chapter provides details on the available methods to complement the thesis objectives and to
elaborate on how the chosen methods are applied. Therefore, this chapter covers the remainder of
the literature research. First off, the optimization methodology and possible applications are dis-
cussed in section 2.1, followed by methods that can address structural and parametric uncertainty
within energy system models in sections 2.2 and 2.3. Subsequently, available optimization frame-
works are discussed in section 2.4, followed by how uncertain variables can be portrayed in ESM,
and on what choices the selection of them should depend on in section 2.5.

2.1 Optimization

There are many ways to apply optimization in ESM. In this section, the general methodology of
optimization is explained by elaborating on a simple dispatch optimization problem. Afterwards,
relevant types of optimization found in literature are highlighted.

2.1.1 Optimization Methodology with Example

Energy system optimization models are applied for this thesis due to its widely accepted effective-
ness in providing insights in ESM [55]. Optimization itself comes in many forms, but linear opti-
mization is used as an explanatory case in this section to understand how it operates. As briefly
touched upon in chapter 1.2, the goal of optimization is to either minimise or maximise an objec-
tive function by changing the values of the decision variables that are subject to constraints. Any
optimization problem therefore consists of 3 components:

1. Objective function: The problem function, subject to the decision variables'values (2.1).

2. Decision variables xn: The variables that need to be optimised for the optimal solution.

3. Constraints: The restrictions to which the decision variables are subject to (equation 2.2).

In the context of ESOMs, these objective functions can be minimising cost, minimising CO2 emis-
sions, minimising energy usage, or maximising profits. Basically, any objective that can test an
energy system for it’s effectiveness [56]. The decision variables are resources that contribute to this
objective function. These decision variables are limited by constraints, meaning that they cannot
just take any value because of physical or technical properties. These constraints can be maxima,
minima or binding (equal to). Within LO, any objective function f(xn) is subject to only linear re-
lations cn, and linear decision variables xn, meaning that all decision variables have the power of
one (see equation 2.1).

Objective function: Minimize f (xn) = c1 ∗ x1 + c2 ∗ x2 + · · · cn ∗ xn (2.1)
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S. t. constraints: a11 ∗ x1 + a12 ∗ x2 + · · · a1n ∗ xn ≤ b1

a21 ∗ x1 + a22 ∗ x2 + · · · a2n ∗ xn ≤ b2

...
am1 ∗ x1 + am2 ∗ x2 + · · · amn ∗ xn ≤ bm

(2.2)

Where cn represents the relation between the objective function value per unit of decision variable
xn and where amn is the variable that represents the relation between the constraint and decision
variable.

When the objective function, all relevant constraints and the decision variables are defined, the
optimization problem can be solved. This can be done analytically or by using a solver. When
using a solver, it iterates over different configurations of decision variables until an optimal solution
is found. For non-linear optimization, the solvers are required to be strategically efficient to select
the global optimum from multiple local optima [57] [58] [59] [56]. In the next section, different
approaches to find the global optimum are addressed, and in section 2.4, different applicable solvers
and their advantages are discussed.

When applying LO to a basic energy system problem example, an objective function can be to
minimise the total cost function C(cn, xn) [$] of operational capacities x1 and x2 [MW] of two energy
plants. Each plant has different marginal operating costs of c1=30 [$/MW] and c2=40 [$/MW] and
each plant has a maximum operation capacity b1=50 [MW] and b2=70 [MW]. The total operational
capacity of both plants must meet a total demand of b3=100 [MW]. For this example, the LO problem
is visualised in figure 2.1, and works by using equation 2.3:

Figure 2.1: The constraint lines of a simple optimization problem.
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Objective function: Minimise C(cn, xn) = 30 ∗ x1 + 40 ∗ x2
S. t. constraints: 1 ∗ x1 ≤ 50

1 ∗ x2 ≤ 70

x1 + x2 = 100

Optimal Solution: x1 = 50

x2 = 50

Total cost = 30 ∗ 50 + 40 ∗ 50 = 3500$

(2.3)

For most optimization problems, the optimal solution is directly determined by some of the con-
straints. Those constraints are called “active” constraints. In the example, the optimal solution is
determined by 2 active constraints. These 2 active constraints are the maximum operational ca-
pacity of energy plant 1 (b1) and the demand constraint. When either one of these constraints is
changed by 1 unit, the optimal solution will also change. For the maximum operational capacity
of plant 2 (b2), changing its value by 1 unit will not change the optimal solution. Therefore, it is a
non-active constraint for this particular system.

2.1.2 Optimization Types
Linear optimization or linear programming (LP) is not the only optimization type that is being used
within ESM. There are also optimization problems with non-linear constraints and objective func-
tions (NLP). This is often the case for more complex models, where relations cannot be represented
in a linear manner. This results in more than one extreme value and thus multiple local optimal
solutions. Problems with more than one local optimum are called non-convex. Within optimization
problems, decision variables can also be limited to discrete values. These decision variables can
only take on integer values in this context. These optimization problems are called (Mixed) Integer
(non) Linear Programming ((M)I(N)LP). Mixed programming occurs when the decision variables
can take either integer or continuous values. An overview of the optimization problem classes, as
defined by [2] can be seen in figure 2.2.

Figure 2.2: Optimization problem classes. Source: Lin et al [2].

Several literature reviews have been conducted on how optimization is applied to ESM [10] [11] [12]
[2]. In these reviews, different classifications have been used to differentiate between the different
methods. The most relevant and notable optimization methods are highlighted in table 2.1.

Uncertain optimization is most relevant for this thesis. The selected parametric uncertain optimiza-
tion technique (MCS/MCA) as well as the selected structural uncertainty technique (SPOREs), are
explained more intensively below in section 2.2 and 2.3. A more elaborate explanation of the other
optimization techniques that can address uncertainty can be found in Appendix B. Other techniques
that are less relevant for this thesis and not used, are shortly addressed below (table 2.1).
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Table 2.1: Optimization types in literature [10] [11] [12] [2] [13].

The chance constraint method (CCM) returns a solution space that meets a desired probability
confidence level for a certain objective [12]. The risk averse optimization technique (RVA) is one
that is based on calculating the expected utility. It compares 2 random results by finding those
results’ scalar transformations and determines which one it prefers based on that utility function.

Several artificial intelligent (AI) optimization techniques have been developed. Genetic Algorithm
(GA), Particle Swarm (PS) Optimization and Ant Colony Optimization (ACO) are all based on be-
haviour found in nature. Simulated Annealing (SA) and Artificial Neural Networks (ANN) are also
based on AI. GA mimics genetic processes found in organisms like evolution and natural selection
to find optimal solutions. PS finds the optimal solution by creating a population of possible solu-
tions and moving them around in the solution space in a swarm like manner. ACO looks to find the
optimal path through graphs, based on the how ants do. SA chooses, during each solution iteration,
a random step and accepts it in case the solution value is better than during the previous iteration.
ANN copies neuron behaviour by addressing data internally and externally.

A different way to analyse optimization problems is by solving it for multiple objectives instead of
one. This is done in Multi Objective Optimization (MOO) where, for example, the objective function
is solving for both costs and emissions [60]. Dynamic Programming (DP) optimises by assuming
that the optimal solution for a problem is directly related to the sub solutions of smaller segments
of that total problem. The Multi Agent Approach (MAA) combines multiple algorithms within a
single framework to solve more efficiently than frameworks, based on a single algorithm [61].
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2.2 Addressing Parametric Uncertainty

In this section, the most relevant method (MCS) that addresses parametric uncertainty will be ex-
plained. Subsequently, the reasons why this method is chosen over others are elaborated. As men-
tioned in the previous section, further explanation about the methods that also have high potential
in addressing parametric uncertainty but are not used for this thesis can be found in appendix B.

2.2.1 Parametric Uncertainty: MCA/MCS

Monte Carlo Analysis/Simulation (MCA/MCS) is a structured way to address (exogenous) para-
metric uncertainty. It operates by taking several samples from probability distributions of uncertain
model parameters (inputs, relations) and feeding it to the model, thereby creating many of different
scenarios for which the model must find a solution. Since these scenarios are randomly sampled
from the distributions of the uncertain variables, both convenient and unfavourable scenarios will
be created. The resulting model outcomes can be translated into useful insights by using statistical
techniques. A sufficiently high number of samples must be analysed (figure 2.3) to provide reliable
results. This number does not mainly depend on the number of stochastic variables but relies heav-
ily on the confidence of the representation of said variables. The ability to accurately represent the
stochastic variables in a mathematical way is essential for this technique to work reliably.

One of the drawbacks of MCS is that the number of required samples to produce a reliable result
sometimes exceeds reasonable computational demand/time [62]. Possible sub methods that can re-
duce the amount of runs while maintaining sufficient statistically significant results are latin hyper
cube sampling (LHS) [63] and importance sampling (IS) [64]. Furthermore, MCS assumes that the
future uncertainties can be defined correctly on this day (meaning that you can (almost) perfectly
represent the future uncertainty in a known probability distribution). Insights that can result from
MCS are the odds of obtaining a goal, a map on which decision variables are more robust/essential
for all the tested scenarios, and the interactions between the model and the inputs/outputs [42].
Within the MCS method, several algorithms have been developed that each approach sampling in
a different way, many with their benefits and disadvantages [65].

Figure 2.3: Random sampling from a planning cost distribution. Source: Gazijahani et al [3].

MCS can be easily implemented in frameworks in the form of input scenarios. Each sampled data-
set from a probability distribution of an uncertain variable results in a scenario that the model can
be tested against. It should be noted that for each extra variable that is chosen as uncertain, the
number of simulations increases exponentially.
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2.2.2 Parametric Uncertainty Method Choice: MCS

Whereas MCS is easy to implement in a recurring method, the other candidates for parametric un-
certainty (RO and SP, more information in appendix B) have less applicability. SP works by making
decisions before an uncertainty takes place, which is during multiple moments of a given time-
series. This is computationally more demanding and harder to program. RO assumes only the
expected worst-case scenarios for an energy system, resulting in only one solution that can address
all those worst-case uncertainties. However, this is not economically or practically efficient, as this
can lead to excessive over-sizing and usually over expensive solutions. In many case studies, the
functionality to model for best-case scenarios is also a valuable insight. Providing just an oversized
and over expensive result is, in the current day energy system market, not a competitive and con-
temporary driver. Therefore, using MCS is preferred, as it can address a wider extent of design
problems [42] for energy systems.

However, MCS will be represented by a limited number of simple outcomes and probabilities for
this thesis. This is chosen as the emphasis of this thesis lies more on the post processing and analysis
of the results, and less about the quality of the inputs itself. If we take a large sample size for each
uncertain variable, say 50 outcomes, instead of 3 (e.g., base, bad and good outcomes with an equal
probability of 33%), then the results will be processed in the same way. However, it will take a
lot longer to compute and create said results. Therefore, a simple representation of Monte Carlo
scenarios is chosen to represent the uncertain variables for the case studies. How these scenarios
will be modelled can be found in chapter 3 (method). Furthermore, MCS can more easily be run in
tandem with the available structural uncertainty approaches [42].

2.3 Addressing Structural Uncertainty

Structural uncertainty remains problematic for ESOM. Ordinary approaches to decrease it are exert-
ing expert opinion onto the model design process and implementing more complex relations into
the model behaviour to further approach its realistic representation. However, a different and more
structured option is discussed further in this section as not all modellers have expert opinion about
the relations and properties of the system itself. The near optimal solution space is a useful topic to
address this matter [66] and is explained further below.

2.3.1 Structural Uncertainty: MGA

Modelling to generate alternatives (MGA) was initially developed to address public planning prob-
lems in the early 80’s [67]. It was noted that, next to the optimal solution, additional near optimal
solutions can provide very interesting options that can address other problems than what the model
solves for. For some energy systems, a 10% increase in cost can be justified and preferred if that extra
cost solves for example a societal or political problem.

MGA operates by finding the optimal solution first, and then considers a slack value to add to the
optimal result value to create new solutions. MGA assigns an integer weight to each nonzero de-
cision variable from that optimal solution, which is then used in an iterated second optimization,
returning a maximally different decision space. The calculation can be adjusted in case more than
one near-optimal solution is preferred [52] [42]. The slack value for MGA is chosen subjectively.
However, MGA cannot be applied on energy systems with a higher spatial resolution (several lo-
cations). MGA only considers the technologies themselves within systems. Therefore, MGA lacks
the functionality if insight is required in the spatial distribution of the technologies.

2.3.2 Structural Uncertainty: SPOREs

Where MGA lacks in spatial resolution, Spatially Explicit Practically Optimal Results (SPOREs)
makes up for it. This method, developed by Lombardi et al [13], is a spatial resolution extension on
the MGA method. Instead of distributing a weight to a certain technology, a weight is attributed to
every technology + location combination in SPOREs. If you can have the same technology in mul-
tiple locations, several near-optimal solutions provide a different capacity distribution for those
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locations [13]. Each near-optimal solution is referred to as a SPORE in the remainder of this report.
Choosing the number of SPOREs when using the SPORE method is essential in providing a com-
plete result data-set, and is highly dependent on the complexity of the chosen energy system. The
slack cost value works similarly as in MGA. The algorithm itself is explained further below.

SPOREs step 1: Find the global optimum of the objective function for the ESM [13] (equation 2.4).

Minimize Cost =
∑
j

∑
i

(Cfix,ij ∗ xcapij +
∑
t

Cvar,ij ∗ xprodt,ij )

S.t. : A ∗ x ≤ b

x ≥ 0

(2.4)

Where j is the jth location in the spatial domain, and i is the ith technology in the energy system.
xcap
ij is the installed capacity of one such technology i on location j. xprod

t,ij is the power production
of one i, j technology location combination. cfix,ij and cvar,ij are the discounted financial fixed and
variable costs. A and b represent the constraints to which the decision variables x are subject to in
the energy system.

SPOREs step 2: A weight wij is designated to each technology location combination decision vari-
able that has a nonzero result in the global optimum. This weight is assigned by taking the inverse
of the (absolute) distance from the average for that decision variable in the previous iterations (n−1)
through xij (equation 2.5 and 2.6). The higher the weight is, the heavier it will be minimised in the
next iteration. Meaning that if a technology capacity is close to the average of the previous solu-
tions, it will be more heavily changed in the next iteration. This is the evolving average method [68]
[69].

wij =

∣∣∣∣xij − xij
xij

∣∣∣∣−1

(2.5)

xij =

∑n−1
ij=1 ∗xij
n− 1

(2.6)

SPOREs step 3: A near-optimal solution (SPORE) is now created by minimising the sum of all
the weighted technology/location decision variables, while coercing the total objective value to the
optimal value plus the added slack (equation 2.7). This is seen as ϵ constrained MOO, in which cost
can be regarded as a second objective, although it is not explicitly minimised.

Minimise Y =
∑
j

∑
i

(wij ∗ xcapij )

S.t. : costn ≤ (1 + slack) ∗ cost0
A ∗ x ≤ b

x ≥ 0

(2.7)

Where n is the current SPORE number.

SPOREs step 4: This process is then repeated, meaning that (equation 2.5) is applied again to
receive new weight values for the decision variables to create yet another near-optimal SPORE.

2.3.3 Structural Uncertainty Method Choice: SPOREs
As each SPORE adds an additional dimension to the solution space, this technique is preferred over
MGA. SPOREs can provide a bigger effect on a larger variety of energy systems that have spatial
resolution in it, making the final method more universal when SPOREs is combined into it instead
of MGA. SPOREs is also implemented in the well-known modelling framework Calliope, where it
is continually being improved, making it more state of the art than MGA, which is still based on
scoring methods from 1979.
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2.4 Method: ESM Frameworks

Several software frameworks have been developed and used to support ESM. Several literature re-
views [11] [70] on these frameworks have been conducted, where over 45 different software tools
have been analysed on their ability to analyse and calculate energy system insights [10] [27]. An
online database with open source energy models is also available [71]. Popular examples are OS-
eMOSYS, MARKAL/TIMES and the HOMER software, with each their own strengths and unique
functionalities.

OSeMOSYS results are generally used for large scale policy expansion. It is based on perfect fore-
casts and is currently written in the programming languages Mathprog, GAMS and Python. OSe-
MOSYS uses LP to find optimal solutions and has the possibility to interpret MILP. Electricity and
heat are possible energy carriers and OSeMOSYS has been applied to case studies regarding the
electricity sector for Africa and South America. Furthermore, OSeMOSYS is obtainable under a free
Apache 2.0 License [72] [73].

MARKAL/TIMES also optimises through LP and is written in GAMS. It has been developed by the
International Energy Agency (IEA). TIMES is an evolution of the MARKAL software, but both soft-
ware’s are very similar. MARKAL/TIMES are used all over the globe in more than 170 institutions
[35] and even has a built-in SP function [42].

HOMER is a software developed by NREL, that has similar functionalities and is already used by
some departments of W+B. It has a selectable temporal resolution of minutes up to hours and is
intended to model systems of a local scale. HOMER does not include the option to model transmis-
sion, but does have an implemented sensitivity analysis functionality that can be used to find the
sensitive technologies within an energy system. The objective function is economically motivated
[70].

2.4.1 Framework Choice: Calliope

The open energy modelling framework CALLIOPE is chosen as modelling environment for the ap-
plication of the combined structural and parametric uncertainty approach. CALLIOPE is developed
by Stefan Pfenninger and Bryn Pickering while they were active in the department of environmen-
tal systems science (ETH Zürich) and department of engineering (university of Cambridge). It is
freely accessible for commercial and private applications, also through an Apache 2.0 license [74].
It is run through Python and is, as of today, the only framework that includes the SPOREs function-
ality [75]. It also has the “operate” functionality, which represents a more realistic dispatch strategy
based on non-perfect foresight of the future.

2.4.2 Calliope Operation Methodology

Operating under an Apache 2.0 license generally means that there is no big company responsible
for customer support. Despite this, Calliope has an active community for debugging, issue solving
and software development (updates). Calliope has been developed to be as user-friendly and log-
ical as possible by using internal reliability and solidity within the code. Calliope’s design is also
intended to be able to handle energy systems with large fractions of variable renewable energy, dif-
ferent spatial (transmission etc.) and temporal (time-steps) resolutions. Additionally, a simplified
approach to be able to run models on a high computing cluster has been implemented and to be
accessible for many users, the chosen programming language is Python.

Two of the main developers of Calliope and SPOREs are in the employment of the TU Delft, making
discussion and code development or tweaking easily possible [75]. Calliope allows both large-scale
modelling and small-scale modelling, making it more accessible to be used for many other projects
other than the case studies of this thesis. Other frameworks are commonly designed for one scale.
Additionally, Calliope does not limit its models to just electricity and/or heat energy carriers, any
energy carrier can be defined in Calliope. It is just up to the designer to model the conversion
between multiple energy carriers correctly.
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Other than the SPORE functionality, Calliope also has the “operate” mode. Operate mode runs a
predefined decision variable solution set for a scenario, but with a more realistic foresight horizon.
Perfect foresight over the complete time-series is assumed in the default plan mode, whereas in
reality planners can only look in the nearby future for a reliable forecast. In operate mode, the
model is run with the knowledge that forecasts are only investigated up to 24 or 48 hours in the
future [76]. Which can result in long term effects like high temperature in winter being overseen.

Calliope defines a model through yaml files (text files), where all the technical components with
their economic and technical aspects (cost/kW, efficiency, ramp up time, lifetime, interest rate etc.)
can be defined. These technologies can be generation, conversion, storage, transmission, and de-
mand. Next up, spatial resolution can be defined by creating locations with either coordinates or
distances between each other. The designer can define which technologies are available at each lo-
cation, and which connections between other locations are possible. Lastly, the designer can define
the operation settings for the run through the text file. Then, the model can be run by optimising
for the best net present value (NPV) of your chosen objective function. An in-depth explanation on
how CALLIOPE works, can be found in the online documentation [77].

2.4.3 Calliope Solver Choice
Within CALLIOPE, the optimization solver that is being used, depends on the user. Nonetheless,
Calliope has the built-in functionality to switch and use several solvers like the free GLPK, CBC, as
well as the commercial GUROBI and CPLEX solvers. Since GUROBI is one of the fastest free solvers
available for Calliope (figure 2.4 [4]), and since being affiliated with the TU Delft provides students
with a free academic GUROBI license, the choice to use GUROBI for this thesis is made.

Figure 2.4: Solution times for different solvers within Calliope, applied to the national and urban example
models. Source: Calliope documentation [4]).
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2.5 Uncertainty in ESM

Almost every aspect of an energy system can be modelled as uncertain. But not all variables should
be chosen as uncertain since over-complexity reduces the reliability, and increases the computa-
tional time of the model. In practice, most model inputs will even be taken as deterministic. This
section explains what variables can be taken as uncertain in EMSs, how one can choose which are
most important to model as uncertain and elaborate on ways to model them as uncertain.

2.5.1 Choice of Uncertain Variables
The variables that should be taken as uncertain are the inputs that are most likely to change during
the operation of the chosen energy system. The variables that fit this description are subject to
the energy system that is chosen and are not by definition, always eligible for every single energy
system. Some variables fluctuate during the time-span of an energy model, many of which have
been modelled as uncertain before [45] [78] [26].

Table 2.2: Overview of commonly modelled variables for uncertain and deterministic operation in
ESM.

Although almost any variable is uncertain, some variables are usually modelled in a deterministic
way as they do not fluctuate a lot during the time-span of an ESM or since they simply don’t
supplement to the focus of the energy system when taken as uncertain (see table 2.2).

Although many of these aspects will realistically differ from their expected values, setting them as
constant values increases the workability of the model. When making every aspect of the model
uncertain, the spread and total uncertainty is also reflected in the results. Over-complexity can then
make the calculation insanely long and the results useless, since nothing can be said with absolute
certainty. This means that if the uncertainty range is too high, there is no point in modelling at all.
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2.5.2 Techniques to Characterise Uncertain Variables
Many approaches are available and have been used to characterise uncertain wind and solar yield
[26] [12] [79] [10]. Wind can be modelled by taking Monte Carlo samples from a Weibull distri-
bution, whose parameters can be deducted from historic data [80]. Alternatively, wind can be
modelled using the ARMA technique. The ARMA technique uses annual historic wind data-sets
to create new yearly data-sets that have similar statistical properties as the provided historic data-
sets. Multiple data-sets can be created through this ARMA technique [81] [82]. This could also be
applied for demand time-series, but demand has more specific peak correlations around holidays.
The TPLF method is a promising method to represent the uncertain aspects of solar data, also based
on historic data-sets [83].

Since this thesis is not in essence about the quality of the inputs, it is chosen to model the uncertain
variables in a relatively simple manner by basing them on historic data sets (see chapter 3). The
goal of this thesis is to show what the method can do with inputs, provided they are correct. Several
historic data sources are mentioned in the next section.

2.5.3 Historic Data Sources (Databases)
Reliable data sources should be considered to create data-sets for uncertain variables like solar
power, wind power, cooling, heating and electricity demand. Some possible options are mentioned
below:

1. The PVgis database, hourly data for potential photo voltaic (PV) panel data [84].

2. The NEDU organisation provides annual synthetic data-sets for energy usage in the Nether-
lands for gas/heat and electricity [85].

3. Smart meter data from Liander (Network operator in the Netherlands) [86].

4. The Royal Netherlands Meteorological Institute (KNMI), for Dutch weather data [87].

5. Renwables.ninja, an online tool that integrated weather data from NASA MERRA and CM-
SAF’ SARAH to provide pv and wind data-sets for every location on the world [5].

For this thesis, renewables.ninja [5] is used to extract solar PV data and temperature, which can be
used to create the time-series for PV production, cooling and heating demand. NEDU’s synthetic
data-sets [85] are used to create the electrical, heating, and cooling demand for the cases. Many
more sources are available, but for the application of the case studies the above mentioned sources
are sufficient to find reliable historic data for case studies in the Netherlands.
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2.6 Thesis Scope

2.6.1 General Scope
This thesis is not focused on the optimization of existing energy systems, but on future systems that
still have to be designed. It aims to combine parametric and structural uncertainty, by combining
the MCS and SPOREs approach respectively (see section 2.2 and section 2.3) within the Calliope
framework (section 2.4), which has not yet been done before and is recommended as future research
for the SPOREs approach (the inclusion of parametric uncertainty within SPOREs) [13]. The solver
used in Calliope is GUROBI since it is the fastest and free under an academic license (section 2.4).
The method is applied to two case studies, a simple case 1 (test case) and case 2, to test and validate
its effectiveness. The scale application in this thesis is at uttermost on district level for both case
studies, despite its proven effectiveness for national scale energy systems [13]. Applying SPOREs
at district level is also be novel, as it has been used before only on national levels.

2.6.2 Stochastic Variables
Bearing in mind feasibility and limited computational complexity, only 2 and 3 variables are consid-
ered as uncertain for case 1 and case 2 respectively. These variables are represented by modifying
historical data. For demand, it is within the scope to model actors that deviate from the average us-
age profile, but (as decided in a progress meeting) modelling per minute instead of per hour is not
within the scope of this research since it increases the computational requirements exponentially
and does not change the processing steps. This does mean however that some of the optimised
capacities might not be high enough to cope with realistic peak moments. This problem can easily
be tackled by including additional constraints.

2.6.3 System Modelling
It is within the scope of this thesis to model the physical models in a way that the components are
represented reasonably.

1. Timeseries: The model’s temporal space is hourly, and the runs last for a year.

2. Integer or continuous programming: Discrete decision variables are not be used in this model as
continuous variables decrease solution time.

3. Cyclic storage: The state of charge (SOC) of the storage components at the start of the model
runs are set equal to the final SOC of the model run.

4. Efficiency: Degradation or fluctuation of efficiency is not considered, and efficiency is constant
and equal to the average one from product specification or current day values.

5. Ramp up time: Ramping of components is only modelled if they are known and significantly
relevant compared to the hourly based time-series that are used.

6. Curtailment: PV panel production is not curtailed.

7. CO2 emissions: Any component with known operational CO2 emissions, is programmed to
include its carbon footprint in the model in a realistic manner. The CO2 emissions emitted
during component production are included in the model as well if a reliable source is avail-
able.

2.6.4 Outside Scope
This thesis does not include in-depth research on how to model the uncertain variables correctly.
The validity of those stochastic variable representations is gazed upon briefly (in section 2.5) to
provide sufficient data quality. The value of this thesis lies within the method, and not in the
representation of the uncertain variables. Predicting the future is therefore not central in this thesis
but having a proper way to interpret that/any future, no matter what shape it takes, is. Global
Sensitivity Analysis is also out of scope.
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3| Method

Each step of the method is explained and visualised in depth in order to help understand its work-
flow in this chapter. Subsequently, both case studies to which this method will be applied, are
explained in section 3.2 and 3.3. Case 1 is mainly used as an exploratory case to see if the method
is applicable and works for these types of energy systems. Therefore, due to the similarity between
the case 1 and case 2 results, case 1 is only explained briefly in this and the next chapter. An in-depth
explanation of case 1 and its results can be found in appendix A.

3.1 Computational Workflow

In essence, the computational workflow has 7 parts (figure 3.1). It starts with the Inputs, where the
components of the energy system model are defined and where the uncertain variables are chosen.
Subsequently, the first optimization calculates all the possible solution ranges that the components
can have, also called the configurations solution space, by choosing the amount of SPOREs and an
allowed cost slack value in the Optimization Strategy. In this solution space, only component ranges
that work very well for the energy system under the chosen uncertain variables are created. How-
ever, this Configurations Solution Space is still a very large set of component ranges that must be
filtered into configurations that are most promising and interesting for the chosen energy model.
This filter is applied in the Configuration Selection. The result of this filter is a small set of Testable
Configurations. In the Evaluation, each of those configurations is tested versus all the input scenar-
ios on a set of chosen performance indicators, like cost and security of supply. The results of that
second optimization are found in the Results. These results are in the form of performance scores,
statistical figures, and statistical statements. For the remainder of this chapter, each method step is
explained in detail, followed by an encapsulated overview.

3.1.1 Inputs

Firstly, the inputs and the energy system model itself are defined. The relevant uncertain variables
are chosen, and their data-sets collected. The parametric uncertainty is addressed by choosing sev-
eral outcomes that the chosen uncertain variable can take on, and by giving each of those outcomes
a probability of occurrence as is also done in MCS. In figure 3.2 and figure 3.3, an annual time-
series of two possible uncertain variables “solar yield” and “temperature” are visualised. Multiple
data-sets should be used with each a certain probability of occurrence for each uncertain variable.

All the possible technologies and, if applicable, all the spatial locations of the chosen energy system
must be defined in Calliope through the yaml files [77]. A simple duplex house energy system
is used to explain all the steps of this method. The spatial configuration of this simple duplex
house energy system is displayed in figure 3.4. In this example energy system there are 3 locations,
interconnected by electricity cables and with solar panels, batteries, grid connection and electrical
demand as possible technologies. Any physical or other capacity constraints like the maximum
square meters available for solar panels, are defined in the yaml files as well.
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Figure 3.1: A simplified version of the methods’ workflow.

Figure 3.2: Annual solar yield as an uncertain
variable. The graph shows the average Solar yield
in [kW/hour/m2] of installed PV panels, in The
Netherlands in 2019 [5]. This time-series represents
south faced panels, under an inclination of 35°.

Figure 3.3: Annual temperature as an uncertain
variable. The graph shows the average temperature
[C°] per hour, in The Netherlands in 2019 [5]. This
time-series represents temperature at a height of 2 m.

For this thesis, all the data-sets for uncertain variables that are related to historic weather conditions
are based on measured weather conditions in a central point in the Netherlands (De Bilt), taken
from the data sources mentioned in section 2.5. Other uncertain variables are based on averages
in the Netherlands. This means that the random selection that usually happens in MCS, is not
detained. However, the resulting data-sets still represent a realistic and similar data-set compared
to a randomly sampled MCS, and it improves the calculation time immensely. The data-set format
that Calliope uses is the “ISO 15927-4:2005” standard. This is a standard that reads data for time-
series in the form of ‘yyyy-mm-dd hh:mm:ss’ [88].

3.1.2 Optimization Strategy
With the energy system model and uncertain variables defined, the simulation options can be cho-
sen. Options like the number of SPOREs (number of near optimal solutions), its slack value [%],
and for what time-span the scenarios are run (time range and the time-step size) are defined. Ad-
ditionally, the solver choice, (multi) objective function and cyclic storage are also prescribed.

For the Optimization Strategy phase, additional simulations are conducted to improve the methods’
effectiveness. Two simulation options are varied since it is expected that they are most influential
on the effectiveness of the workflow/method:
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Figure 3.4: The spatial configuration of a simple energy system for a duplex house. All locations have differ-
ent possible technologies and can be connected by electricity cables with different distances. In locations 1 and
2, electrical demand, the grid connection and batteries are possible technology options. In location 3, there is
room for solar panels to be installed [6]

• Cost slack for SPORE options: How does using a low slack (15%) or a high slack (50%) value
affect the results and the way to process them?

• The number of SPOREs: The more complex a system is (more technology/location combina-
tions), the more SPOREs are desired if all possible options are to be considered. However,
how does changing the number of SPOREs created between a high number (50) and a low
number (15), change the reliability/resolution of the stage 1 results for the main case?

Both additional simulations are tested on case 2 to improve the simulation options decision making
process for the method in future cases. The results can be found in chapter 4.4.

3.1.3 Configurations Solution Space
After the optimization strategy simulations, Calliope will return several solutions, equal to the
amount of Monte Carlo scenarios (input scenarios) multiplied by the number of SPOREs + 1 (equa-
tion 3.1). All of these (near) optimal solutions for all the given input scenarios combined, are called
the configurations solution space.

#ofsolutions = #MCS ∗ (SPOREs+ 1) (3.1)

One single solution is either the cost optimal (SPORE 0) or a near cost optimal result (SPORE) for the
energy system, for one of the input scenarios. This contains the technology capacities per location
for all the components (four examples of single solutions can be found in figures 3.5, 3.6, 3.7 and
3.8), as well as the best way to use those capacities through real time behaviour (dispatch) of the
system through time-series data (see figure 3.9).

Although a single solution already provides a lot of information about how a solution can behave
for a specific input scenario, it does not yet provide a decision-making design strategy for the energy
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Figure 3.5: Solution 1 (optimal solution, SPORE 0)
for one input scenario. The optimal and cheapest so-
lution only uses two electricity cables (loc1-loc3 and
loc2-loc3). The max PV amount is installed and both
locations have 50 kWh of battery installed.

Figure 3.6: Solution 2 (SPORE 1) for one input sce-
nario. With an increased cost equal to the optimal
cost plus the slack, the result is different than the op-
timal one. In SPORE 1, a different electrical cable is
used, while less PV and battery is installed.

Figure 3.7: Solution 3 (SPORE 2) for one input sce-
nario. With the same cost, the second SPORE results
in a configuration with fewer electricity cables, fewer
PV panels, and a spread-out battery capacity. This
configuration depends more on grid electricity.

Figure 3.8: Solution 4 (SPORE 3) for one input
scenario. With the same increased cost, the third
SPORE results in a configuration with a lot of elec-
tricity cables, an increased grid connection, an aver-
age amount of PV panels, but no batteries.

Figure 3.9: The time-series in [kW] for electricity and electrical storage of a single solution.

system that is robust against all the input scenarios. The whole configuration solution space (all the
single solutions, for all the input scenarios) must be used in a way to detect what (type of) solution
works best for all the possible input scenarios. One convenient way to obtain that, is by visualising
the complete configuration solution space in capacity box-plots (see figure 3.10).

Several statements can already be made about the energy system, when comparing the full config-
uration solution space in box-plots:
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Figure 3.10: The technology capacity solutions for SPORE 0, 1, 2 and 3, for one input scenario, visualised in a
box-plot. Battery loc1 has a larger spread than the electricity lines between 2 and 3.

• Certain relations within the model can then be defined:

– The installed electrical demand capacity is directly connected to the input scenario. If an
input scenario has high electrical demand, then the installed electrical demand will be
equal to the max electrical demand.

– The total cable capacity that is connected to location 3 (PV location) must be able to cope
with the maximum PV yield.

• Certain technologies can then be identified as (non-) Essential:

– The electricity cable between location 2 and 3 is never equal to 0, making it essential for
all the input scenarios.

– Both location 1 and 2 always need a grid connection.

• Identify the certainty range of technologies, a larger data spread means a more sensitive tech-
nology (-location combination):

– The installed battery capacity has a very large spread, meaning that the battery technol-
ogy is sensitive to the inputs.

Despite providing useful knowledge, it does not tell designers yet which configurations are most
interesting to test against all the input scenarios. Therefore, a reliable and systematic configuration
selection method is desired.

3.1.4 Configuration Selection

To obtain the best design configurations, two approaches are applied in this thesis. The first ap-
proach chooses design configurations by simply selecting specific single solutions from the config-
urations solutions space based on extreme values like the maximum or minimum installed capacity
of a particular technology(-location) combination. This way, a configuration can be selected because
it had the highest battery capacity from the complete configurations solutions space, or because it
was simply the cheapest option. This approach is very subjective and ignores many repetitive tech-
nology correlations among all solutions and will likely result in unnecessarily low performance
scores in the final results as many of these solutions are created through SPOREs (which promotes
diverse solutions). Therefore, a second “advanced configuration selection” is also designed to use
a more structured procedure. The subjective “cumbersome” selection procedure is used for case 1.
While the advanced configuration selection approach is tested and applied in case 2.
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Figure 3.11: Workflow of the advanced configuration selection.

The improved configuration selection method tries to automatically utilise repetitive correlations
between technologies by filtering a set of solutions and using those correlations to create configu-
rations to test to obtain the final results. If a “top 10% capacity for technology A” filter is applied,
and if all those filtered solutions also show a high capacity in technology B, then a repetitive corre-
lation is found and utilised (see figure 4.22). The “improved configuration selection” algorithm is
implemented (figure 3.11) to automise this process for all correlations and technologies. For each
technology/location capacity combination, a “top 10%”, “bottom 10%”, or “average 10%” capacity
filter is applied to the complete configuration solution space. Subsequently, an additional depen-
dency check is conducted to make sure that these correlations are not too dependent on particular
input scenarios instead of the technologies themselves. This check inspects from which input sce-
nario each result from the currently used 10% filter is, and checks if they have a large enough
diversity. This is done by counting the amount of times each input scenario is used for the filtered
results, and dividing (normalizing) that count by the total number of solutions in the 10% filter. If
more than 25% of the filtered results is dependent on a single input scenario, any correlation found
can not be devoted to the energy system and the technologies, making it unhelpful to analyse that
configuration further. If the dependency check shows that the filtered results are less than 25% de-
pendent on a single input scenario, then the results of that current filter are used to create a testable
configuration. This testable configuration is created by taking the median of the filtered values of
each technology/location combination.

3.1.5 Testable Configurations

1 testable configuration is created per applied filter for each technology/location combination thanks
to the advanced configuration selection method. These testable configurations are all based on the
correlations of all SPOREs and optimal solutions (the complete configuration solution space). De-
pending on how complex the energy system is, the number of testable configurations can be high.
The resulting testable configurations are now be tested against all the possible input scenarios for
certain performance scores.

3.1.6 Evaluation

Calliope is once again used to test the performance of each selected configuration against all the
possible input scenarios. Calliope has two ways to test an energy system with predefined capacities
for different input scenarios: plan mode and operate mode. Plan mode is used for this thesis.
Subsequently, Calliope uses the configurations from the testable configurations step as additional
input for each scenario. This means that each configuration is run for every input scenario. The
resulting outcomes are then used to score each configuration on certain performance indicators,
used for the final results.

Many criteria can be used to determine which configuration is the best one. Indicators can be cost
[EU NPV], security of supply (SOS) [%], CO2 emitted [kg NPV], grid dependency [%], capacity
factors [%], LCOE [EU NPV], unmet demand [kWh], self-dependency [%], redundancy [-], and
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many more. Just 3 scoring indicators are used for case 1, whereas just 4 of these are chosen as
scoring indicators for case 2. CO2 emissions, cost, SOS and grid dependency are chosen for case 2.
Each result is scored on these performance indicators and visualised by histograms, tables, time-
series and other plots (see next section) after Calliope’s plan optimization.

All the unmet demand (heating, cooling and electrical) of the total time-series is calculated and di-
vided by the total demand (equation 3.2) to calculate the security of supply (SOS). For the total cost,
the net present values (NPV) for all technology and operation costs are calculated and summed
(equation 3.3). For the total CO2 emissions, a similar calculation is applied to the time-series (equa-
tion 3.4). To obtain the grid dependency, the total electricity, extracted from the grid, is divided by
the total amount of energy consumed by all the demand (equation 3.5)

Security of Supply (SOS)[%] =
(1− Unmet demand [kWh]])

Total demand [kWh]
(3.2)

Total Cost [Euro, NPV] =
tech:loc∑

i=1

CAPEXi +OPEXi(t) (3.3)

Total CO2 [kg, NPV] =
tech:loc∑

i=1

CAPEXi +OPEXi(t) (3.4)

Grid Dependency [%] =
Electricity from grid [kWh]

Total consumed demand [kWh]
(3.5)

with i = each technology/location combination

3.1.7 Results

For each selected configuration and input scenario combination, the entire time-series of optimal
dispatch is conducted (figure 3.12) by Calliope. The scoring parameters are generated as explained
in equations 3.2, 3.3, 3.4 and 3.5 from these results.

Figure 3.12: A result time-series for electricity [kW], for a selected configuration and one of the input scenar-
ios. Despite always using the maximum grid capacity, in February, there is still unmet demand thanks to the
lower solar yield. This unmet demand is used to calculate the Security of Supply.

These performance indicators are calculated for each configuration for each scenario. Subsequently,
a histogram is generated by multiplying each score with its probability of occurrence (figure 3.13)
to visualise all these performance scores simultaneously for one configuration versus all input sce-
narios. A ridge plot is used, to visualise all possible configurations for one performance indicator,
against all the input scenarios. All these histograms are visualised simultaneously in a ridge plot
(figure 3.14).

The obtained data is used to calculate statistical data like the mean values and standard deviations.
An overview of all the performance indicator scores, for all the configurations, against all the input
scenarios, is also made clear in a table. The mean of a set of data-points is obtained by (equation 3.6).
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Figure 3.13: An example of a total cost. In the his-
togram plot, all results in between two bin limits will
be summed to obtain the total count for that bin. The
total amount of input scenarios is equal to the total
count. Source: Delle Monache et al [7].

Figure 3.14: An example of a ridge plot. For
each testable configuration (in this plot represented
by “ideal”, “premium”, “very good”, “good” and
“fair”), the histogram for one performance indicator
can be plotted in a ridge plot. Source: Holtz et al [8].

The standard deviation is found by taking the square root of the variance, defined as in (equation
3.7) [89].

Mean x =

∑n
i=1 xi
n

(3.6)

Standard Deviation std =

√∑n
i=1(xi − x)2

n− 1
(3.7)

Where n is the total number of data-points, and i is the ith data-point. If the input data represents
the parametric uncertainty in a realistic manner, these results are used for the design strategy of
the energy system. When considering the possible configurations from the advanced configuration
selection, one can now state which configuration has the highest robustness regarding SOS, grid
dependency, CO2 emissions or cost. With these results, one can state that the probability for a
chosen configuration to meet a certain budget is equal to XX% within the given input scenarios.

The results can also be visualised by plotting two performance indicators against each other. Amongst
energy system designers, it is often interesting to find the cost of unmet demand. This is obtained
by showing both the total cost results and the security of supply in a single plot (figure 3.15).
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Figure 3.15: The performance of all chosen configurations against security of supply and cost. Each blue dot
represents a testable configuration. Source: Seed Energy [9].

3.1.8 Recap Workflow

The complete workflow is now filled with useful settings (figure 3.16).

Figure 3.16: The filled workflow.
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3.2 Case 1

As mentioned in the introduction of this chapter, case 1 (test case) is a relatively simple energy sys-
tem. It is designed to discover Calliope’s capability to execute of the workflow described in section
3.1. However, since case 1 does not provide extensive meaningful additional results, compared to
the case 2 results, its background and results are discussed only briefly here and in chapter 4. Case
1 is designed to address the following features of ESM:

• Transmission losses

• Battery losses (round-trip and self-discharge)

• The impact of high and low demand on different locations

• Choosing between two PV types with different efficiencies, when installed in two possible
inclinations.

• The impact of different demand profiles

• The impact of different solar profiles.

The energy system consists of two clusters of 3 households (figure 3.17). The first cluster of 3
households on location X1 has a combined roof surface of 60 m2, with an inclination of 50°pointed
towards the south. The other cluster of 3 households on location X2, has a combined roof surface
of 100 m2, but its inclination is 0°(flat roof). The only grid connection of the system is located on
location X3. The electricity can flow to, and from these 3 locations through electricity cables that
have certain losses per kilometre. On each household cluster, two types of PV panels (type 1: low
efficiency & cheap, type 2: high efficiency & expensive) and batteries can be installed. Regarding
electricity demand, the households on location X2 are modelled as above average electricity users
(1.1* national average), while the houses on location X1 are modelled as average electricity users
(national average).

Figure 3.17: The spatial configuration of case 1. 3 locations are connected through electricity cables.

The two chosen uncertain variables for case 1 are solar yield and electrical demand. Uncertain solar
yield is realised by taking 15 years of historical solar data (2005-2019) from [renewables.ninja] for a
location in the Netherlands. For the electrical demand, the average annual electrical consumption
is multiplied by fractional hourly electrical consumption profiles. More information can be found
in appendix A. The most important chosen simulation settings are a 15% cost slack, 5 SPOREs and
the cumbersome configuration selection method.
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3.3 Case 2

Case 2 is based on a project [90], that is similar to a currently ongoing project within W+B. Many
assumptions are made, based on current day values and reasonable estimates. These assumptions
and their sources can be found in appendix C.

3.3.1 Energy System Configuration
The energy system for case 2 consists of 100 households with electrical, heating, and cooling de-
mand profiles. To meet these demand profiles, multiple energy carriers are introduced to the energy
system, namely electricity, heating water, cooling water, and hydrogen.

Figure 3.18: Energy system spatial configuration case 2.

As visualised in figure 3.18, there is a grid connection available for this energy hub (system) and
there is a connection available for all the installed solar panels. The electricity can flow between
the grid connection, solar panels, battery, electrolyzer, fuel cell and electrical demand. The electri-
cal demand, heat pump and electrolyzer can only consume electricity, while the fuel cell and solar
panels can only create electricity. The grid and battery can both consume and create electricity. Hy-
drogen is created by the electrolyzer and flows towards the hydrogen storage, where it can either
be stored or sent to either the hydrogen boiler (for heat production) or to the fuel cell (for electricity
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production). In order to meet the cooling demand, only the heat pump can be used by converting
electricity to cooling water with a coefficient of performance (COP) of 9. The heating water can
be extracted from the electrolyzer waste heat, fuel cell waste heat and the hydrogen boiler. There
is hot and cold water storage available for both the heating and cooling demand. The electrical,
heating and cooling demand represent the needs of a 100 households. Most connections are unidi-
rectional and some are bidirectional, depicted by the arrow type used in the figure. Assumptions
and explanations about all technical aspects of these components, can be found in appendix C.

It must be noted that the heating system is simplified in this version of the energy system since all
energy carriers are connected to each other directly through its energy value [kWh]. For heating
and cooling, a fixed temperature difference is used to connect the conversion rates. A more realistic
but complex version of this energy system is therefore recommended in the future research. In this
complex version, the heating and cooling quality should be considered as well.

Since each individual non-transmission technology is only allowed at a single location, the technol-
ogy/location combinations have no additional functionality for this energy system. Furthermore,
since the case 2 energy system is small scaled, the cost contribution for the transmission technolo-
gies is very low compared to the other technologies. Meaning that a change in transmission ca-
pacity between locations, while having a large effect, is not expensive. A variable transmission
technology would often not be considered on this small scale in practice, but depicted by standard
oversized regulations. For that reason, the energy system for case 2 is modelled without transmis-
sion technologies to increase the focus on the technology distributions. This choice greatly reduces
the computational time and complexity, while barely affecting the objective function (cost) and its
results.

3.3.2 Modelling Assumptions and Choices
For the main thesis case study (case 2), 3 variables are taken as uncertain: “Solar Yield”, “Energy
Demand” (electrical, heating and cooling) and “grid electricity price”. The choice is made to use an
“average” year, take historic data from that year, and then create an average (base), a good (+10-
20%), and a bad (-10-20%) outcome with equal probability of occurrence (33%) for each uncertain
variable. With 3 possible outcomes for each of the 3 uncertain variables, 27 input scenarios are
defined (3*3*3). This approach is chosen to simplify and therewith reduce the computational time
of the results, as the added complexity does not change the post processing approach but does only
increase the calculation time significantly. As mentioned earlier, this does not exactly represent the
random sampling process that normally happens in MCS, but it does create a data-set with similar
properties as MCS would produce.

As this energy system is a complex one with many components, many assumptions are made by
consulting multiple sources. Values are based upon current day market values, invoices, technical
data-sheets, and common sense. The used specifications and an in-depth elaboration on all the
parameters can be found in appendix C.

3 variables are modelled as uncertain, with each 3 equally probable outcomes (table 3.1):

1. Grid electricity cost (base 33%, high 33%, low 33%)

2. PV yield (base 33%, cloudy 33%, sunny 33%)

3. Demand (base 33%, extreme 33%, frugal 33%)

(a) Electricity (S21).

(b) Heating (DHW+TH).

(c) Cooling (TH)

To compute the grid electricity price, historic time-series of Dutch grid data for 2017 are used and
multiplied with 1.2 and 0.8 respectively to create a high and low scenario. Afterwards, a carbon tax
of 150 [EU/kg CO2] (0,03 [EU/kWh] for the expected energy mix in 2030) is internalised by adding
it to the grid price time-series. For the PV yield, measured data for the year 2017 for location “De
Bilt” is used and multiplied with 0.9 and 1.1 respectively. For demand, 3 equally probable possible
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Table 3.1: Input scenarios for case 2.

outcomes are chosen for 100 A-labelled households in 2017. Average values for electrical, heating,
and cooling demand are used as input time-series for the base outcome. High values are used for
all three demand types simultaneously in the extreme case. For the frugal case, only low demand
values are used as input. All time-series are modelled as hourly time-series for 1 year (8760 data-
points). Certain physical and political assumptions about the minimum and maximum capacities
for PV, hot storage, cold storage, hydrogen storage, electrolyzer and fuel cell technology are made,
and can also be found more elaborately in appendix C.

Notable constraints assumed/chosen for Case 2:

• PV: Minimum is 375 kWp (kilo Watt peak), maximum is 750 kWp (available rooftop area).
Minimum is 50% as newly built houses are highly likely to have PV panels on them.

• Cold and Hot water storage: Physical Maximum of 125 m3 for 100 households for both types
of storage. (2187.5 kWh hot storage, 730 kWh cold storage with dT’s).

• Hydrogen storage: Minimum 1 tube trailer, maximum 5 tube trailers (safety).

• Electrolyzer = minimally 20% of average total demand per hour (avg demand = cooling +
heating + dhw (domestic hot water) + electricity = 210 kWh/hour) –> 0,2 * 210 = 42 kW.

• Fuel cell = same as minimum electrolyzer –> 42 kW minimum capacity.

• Minimum grid capacity of 3450 kW.

3.3.3 Simulation Options
• Time-series (1 year, hourly)

• 3*3*3 = 27 “Monte Carlo” Scenarios

• SPOREs: 50 per scenario (15% slack), Evolving Average Method.

• Objective function = Minimise cost.

– Grid CO2 is internalised through 150 EU/Ton CO2 tax.

– 27 MCS * 50 SPOREs = 1350 solution configurations.

34



Chapter 3. Method 3.3. Case 2

3.3.4 Visualised Input Data
The uncertain variables are modelled and shown as annual time-series in figures 3.21, 3.20, and
3.21.

Figure 3.19: An example of an annual time-series for the grid electricity price in the Netherlands in 2017.

Figure 3.20: The annual demand for electricity, cooling and heating for case 2 (Appendix C).

3.3.5 Recap Additional Simulations
The workflow of the method as described in section 3.1 is applied in the context of case 2. However,
additional simulations are conducted to case 2, while changing certain simulation options. These
additional simulations aim to improve the effectiveness of the total workflow of the method, by
comparing those different simulation options to provide a manual for choosing the optimization
options.

The effect of changing the number of SPOREs on the quality of the results and on the advanced
configuration selection is checked for the configuration solution space. This is done by running
the optimising strategy for 50 SPOREs and for 15 SPOREs. Furthermore, the effect of a different
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Figure 3.21: An example of Average monthly yield in kW per installed kWp of solar panels, based on location
“The Bilt”, from the year 2017 [5]. Base case = 0%, sunny case = +15%, cloudy case = -15%. Each case has a
33% probability of occurrence (Appendix C).

slack value on those same results is tested as well for the configuration solution space. This is done
by running the optimising strategy for 15% slack and for 50% slack. Lastly, the improved selection
method is compared to the cumbersome simple configuration choice approach. All these additional
tests are applied to case 2 and their results are discussed in chapter 4.4.
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4| Results

The final results of case 1 and 2 are explained in this chapter. First, the results of the method’s
application on case 1 are visualised. Subsequently, all the case 2 results from the methods’ workflow
are revealed. Afterwards, an analysis of the additional simulations for slack, number of SPOREs
and the configuration selection method is done.

4.1 Case 1

The case 1 results reveal that the required functionalities work as expected. Except for minor hur-
dles/problems, they also show that most of the workflow can be applied to case 2. Case 1 is used to
fine-tune the methodology into the version as explained in section 3.1. An in-depth elaboration on
the inputs, assumptions, results, and discussion of case 1, can be found in appendix A. The simula-
tions with a 15% cost slack, 5 SPOREs and 15 different input scenarios are run without the cluster
on a private laptop within 12 hours.

4.1.1 Configuration Solution Space

After the optimising strategy, the SPOREs differ in spatial configuration from the optimal solution
and other SPOREs as expected. The box-plots show which techniques are essential and which ones
are not (see figures 4.1, 4.2, 4.3 & 4.4).

Figure 4.1: Boxplot for the Elec-
tricity cable connections between
all 3 locations.

Figure 4.2: Boxplot for the in-
stalled battery capacities on loca-
tions X1 and X2.

Figure 4.3: The installed electri-
cal demand capacity for locations
X1 and X2.
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Within the 15% cost slack, the power lines between X2 and X3 seem to be essential, since they have
a capacity of at least 1 kW for all solutions (figure 4.1). A similar statement is made for batteries on
both locations, as there is always a minimum installed storage capacity of 14 kWh for the complete
configuration solution space. This means that the battery technology is essential, on both locations
(figure 4.2). For the demand capacity, it is clearly visible and logical that it is directly related to
the demand input scenarios. Installing a higher capacity than the maximum demand is pointless
(figure 4.3).

Figure 4.4: Box-plot for the PV and Grid technologies on locations X1 and X2.

Within the 15% cost slack, the installed PV technology (PV type one) on location X1 is fixed for all
input scenarios (figure 4.4, in every single solution). For location X2, the distribution of the installed
PV types can change, but the roof is always completely covered. This difference can be attributed
to the difference in roof inclination. A grid connection is always installed, but its size depends on
the highest electrical flow.

Essential takeaways from the configuration solution space:

• Model relations: Installed demand capacity is directly related to the demand time-series from
the input scenarios. The total installed cable capacity to location X3 must be equal to the
maximum PV yield flow. The whole roof area is always used for PV, but the distribution of
the PV type fluctuates.

• (non-) Essential technologies: The battery is essential for all input scenarios, as well as the
electricity cable between X2 and X3. The energy system can also not operate without a grid
connection.

• Certainty range of technologies: It can be seen that the PV technologies installed on location
X2 and the batteries have a large spread in the solution data. This means that these technolo-
gies are sensitive to the input scenarios.

4.1.2 Configuration Selection and Testable Configurations

For the remainder of this case, 4 configurations are selected by taking single solutions from the
complete configuration solution space (the cumbersome configuration method).

• Configuration 1: Highest battery capacity (input scenario “2008”, solution: “optimal”).

• Configuration 2: Lowest NPV cost (input scenario “2019”, solution “optimal).

• Configuration 3: Highest NPV cost (input scenario “2015”, solution “SPORE 4”).

• Configuration 4: Least CO2 emission (input scenario “2018”, solution “optimal”).
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As mentioned before in chapter 3, the cumbersome method completely ignores many valuable
findings from the SPORE method, including recurring technology correlations. The exact capacity
values for the selected configuration can be found in Appendix A.

4.1.3 Results

For each of the configurations, the results for the performance indicators cost and CO2 are com-
piled in histogram plots (figures 4.5 to 4.12). It can be noted that some configurations are in general
cheaper than others. Configuration 2 has on average cheaper results than configuration 1. In the
same manner, the CO2 emissions of configuration 4 are on average much lower than those of con-
figuration 3.

Figure 4.5: Cost his-
togram Configuration 1.

Figure 4.6: Cost his-
togram Configuration 2.

Figure 4.7: Cost his-
togram Configuration 3.

Figure 4.8: Cost his-
togram Configuration 4.

Figure 4.9: CO2 his-
togram Configuration 1.

Figure 4.10: CO2 his-
togram Configuration 2.

Figure 4.11: CO2 his-
togram Configuration 3.

Figure 4.12: CO2 his-
togram Configuration 4.

The results of all configurations can be compared by making statistical calculations like the mean
value. Those results are summarised in table 4.1.

Table 4.1: Summary results case 1.

From all these results, useful statements can be conducted like “there is an 80% chance to meet a 31k
budget when choosing for configuration 1, under the chosen input scenarios". Similar statements
can be made for other performance indicators like CO2 and security of supply.
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4.2 Case 2

Each scenario takes about 8-16 hours of simulation time. However, all simulations could be run in
parallel within 16 hours thanks to the TU Delft cluster. The case 2 results are based on 15% slack,
50 SPOREs, 27 input scenarios and a 3% interest rate. With 50 SPOREs, the complete configuration
solution space consists of 1377 Single solutions. A case 2 results overview can be found in section
C.4.

4.2.1 Configuration Solution Space
After the optimising strategy, 27 optimal solutions are conducted, along with 1350 SPOREs. For
each scenario, the SPOREs prove to be maximally different from each other, offering good techno-
logically different alternatives in addition to just the optimal one (see figure 4.13 and 4.14).

Figure 4.13: Energy capacity distributions for 4 different SPOREs, for input scenario 1.

Figure 4.14: Storage capacity distributions for 4 different SPOREs, for input scenario 1.

Each single solution shows expected behaviour. For SPORE 38 (randomly picked as an example
where seasonal storage is visible) with input scenario 1, hydrogen storage is installed and used
for seasonal storage. In summer, the heat storage gets charged since not much heating is needed
then (figure 4.15), while in winter the heat storage is used as short-term storage (figure 4.17). In
a summer month (figure 4.16), most electricity is provided by the PV panels, while the excess PV
electricity is converted into hydrogen and sometimes even sold back to the grid.
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Figure 4.15: Annual storage [kWh] time-series for SPORE 38, for input scenario 1.

Figure 4.16: Electricity carrier flow [kW] time-series for SPORE 38 during a summer week, for input scenario
1.

Figure 4.17: Heat storage [kW] time-series for SPORE 38 during a winter week, for input scenario 1.
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Figure 4.18: Box-plot for the Energy capacity of the
Storage technologies for all input scenarios.

Figure 4.19: Box-plot for the Energy capacity of the
Hydrogen technologies for all input scenarios.

Figure 4.20: Box-plot for the Energy capacity of the
Generation technologies for all input scenarios.

Figure 4.21: Box-plot for the Storage capacity [kWh]
of the Storage technologies for all input scenarios.

When plotting the complete configuration solution space in box-plots, several essential takeaways
can already visually be concluded (figures 4.18, 4.19, 4.20 & 4.21). These takeaways are sensitive to
subjectivity, but can be objectified through the advanced configuration selection:

• Model relations: Installed demand capacity is directly related to the demand time-series from
the input scenarios. Cooling can only be provided by the heat pump, therefore the heat pump,
cold storage and cold demand are connected.
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• (non-) Essential technologies: Heat storage is almost always at its maximum allowed storage
capacity. PV is always at its minimum allowed installed capacity. Battery is almost always
zero or very low. The grid capacity is almost always at its minimum.

• Certainty range of technologies: The electrolyzer, hydrogen boiler, fuel cell, and hydrogen
storage have a large spread in the solution data. This means that these technologies are sen-
sitive to the input scenarios. The PV, grid power, heat storage and battery on the other hand
have little to no spread in the solution data, meaning that their capacities are fairly certain.

4.2.2 Configuration Selection
For case 2, the advanced configuration selection method is applied instead of the cumbersome one
(see section 3.2). 3 filters (top 10%, bottom 10% and average 10%) are applied for each technology
to find structural and repetitive correlations between the technologies that are independent of the
input scenarios. For example, when applying a top 10% filter to the storage capacity of hydrogen
storage, the resulting capacities look as in figures 4.22, 4.23, 4.24 & 4.25.

Figure 4.22: Filtered box-plot for the generation
technology energy capacity for all input scenarios.

Figure 4.23: Filtered box-plot for the hydrogen tech-
nology energy capacity for all input scenarios.

Some technologies show strong correlations with this filter. All the filtered results for heat stor-
age [kWh] (kilo Watt hour), battery [kWh], cold storage [kW] (kilo Watt), battery [kW], fuel cell
[kW], electrolyzer [kW], heat pump [kW], PV [kWp] and Grid connection [kW] have a very low
spread compared to the unfiltered results. Cold storage [kWh] and hydrogen boiler [kW] still have
a spread, but the other correlations can be used and translated to a reliable configuration.

As stated before, some technologies have (almost) no spread, meaning that the configuration filter
for the top 10%, bottom 10% and average 10% are unnecessary. For these technologies, all 3 filters
result in similar unreliable configurations, making those filters redundant. However, since the pro-
cess is automised, a total of 52 configurations is automatically created for all 14 technologies (42 for
the energy capacity, and 12 for the storage capacity). Eventually, only the configurations where the
technology result distributions have a spread will be interesting to compare since many configura-
tions are the same (table 4.2). For now, these "interesting" configurations are chosen manually by
only proceeding with the results that are based on filters for the technologies that have a spread.
However, this can be automised in the future by only proceeding with the technology/location
combinations that have a spread (large enough normalised standard deviation). Ridge plots are
created in the next section for the 20 interesting configurations.
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Figure 4.24: Filtered box-plot for the storage tech-
nology energy capacity for all input scenarios.

Figure 4.25: Filtered box-plot for the storage tech-
nology storage capacity for all input scenarios.

Table 4.2: 20 interesting testable configurations that are tested against performance indicators in ridge plots
in the next section. Each interesting testable configuration has its own configuration number (Python index).
From the total set of 54 testable configurations, some are duplicates and some are unreliable configurations
due to the lack of spread for a certain technology. Therefore, only a set of 20 testable configurations is used to
visualise in the ridge-plots in the next section.
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4.2.3 Results
After creating the testable configurations with the use of the filters, they are tested against all the
input scenarios to find out how each testable configuration scores on the chosen performance in-
dicators, total cost, CO2 emitted, Grid dependency and security of supply. For each configuration,
one histogram is created in which a single performance score is visualised against for the input sce-
narios. For configuration 7 (the top 10% filter for electrical export capacity), the histogram for the
cost indicator is visualised in figure 4.26. The cost histogram for configuration 9 (the bottom 10%
filter for electrical export capacity) is found in figure 4.27.

Figure 4.26: Cost histogram for configuration 7 (top
10% filter for high electrical export capacity), against
all input scenarios with a mean of 4.45 Million Euros
(NPV).

Figure 4.27: Cost histogram for configuration 9
(bottom 10% filter for low electrical export capacity),
against all input scenarios with a mean of 4.95 Mil-
lion Euros (NPV).

All the histogram results per performance indicator for each configuration are summarised simulta-
neously in the ridge plots, which are found in figures 4.28, 4.30 & 4.29 for the performance indicators
total cost, CO2 emitted and grid dependency. The histograms from figures 4.26 and 4.27 are the first
two (7 and 9) histograms in the cost ridge-plot of figure 4.28.
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Figure 4.28: Ridge-plot of the cost distribution for only the interesting configurations against all input sce-
narios for its entire lifetime. St means storage.

When regarding total cost (NPV) as a performance indicator (figure 4.28), it is noted that certain
configurations require a higher cost than others. For example, configurations 10 (top 10% elec-
trolyzer energy capacity), 14 (top 10% fuel cell energy capacity) and 47 (top 10% hydrogen storage,
storage capacity) show high total cost results for all 27 input scenarios, while configurations 19 (bot-
tom 10% heat pump energy capacity) and 37 (top 10% battery storage capacity) have a much lower
cost result. It must be kept in mind that a cheap configuration can go hand in hand with a lower
score for the other performance indicators.
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Figure 4.29: Ridge-plot of the grid dependency distribution for only the interesting configurations against all
input scenarios. St means storage.

With regard to grid dependency, it is stated that the results are fairly spread out. Nonetheless, the
severity of this spread for some configurations is smaller than other configurations and the mean
values are much lower than other configurations. For configurations 13 (bottom 10% electrolyzer
energy capacity), 19 (bottom 10% heat pump energy capacity) and 26 (bottom 10% hydrogen boiler
energy capacity), it is seen that the spread is much lower compared to the other configurations.
Despite these differences in spread, it is still possible to find advantages and disadvantages between
configurations. For example, a lower grid dependency is imminent for all input scenarios when a
low electrolyzer energy capacity is installed. Figure 4.29 also tells us that when a high amount of
fuel cell energy capacity is installed (configuration 14), a lot of grid energy is needed to make the
energy system feasible.
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Figure 4.30: Ridge-plot of the CO2 distribution for the interesting configurations against all input scenarios
for its entire lifetime. St means storage.

Regarding the CO2 performance indicator, it is visible that the results are highly dependent on the
input scenarios. Since in 33% of the input scenarios a high demand is simulated, in 33% an average
demand, and in 33% a frugal demand, it is expected that three small islands are visible for each
configuration in figure 4.30. Ideally, more than just 3 demand input scenarios are used for better
analysis that would fill the holes between these "islands" of histograms in the ridge plot. Nonethe-
less, certain configurations always have a lower CO2 footprint compared to other configurations.
It is clearly visible that configuration 13 (bottom 10% electrolyzer energy capacity) has the lowest
CO2 footprint of all configurations and that either configuration 10 (top 10% electrolyzer energy
capacity) or 14 (top 10% fuel cell energy capacity) has the largest CO2 footprint on average, for all
the input scenarios. The SOS ridge-plot is not displayed, but is represented in the next 6 figures
(figures 4.31, 4.32, 4.33, 4.34, 4.35 & 4.36) as an additional performance indicator.

Figure 4.31 shows all the mean configurations scores for CO2 and grid dependency simultaneously.
The trend-line fits fairly well to the data, which makes sense since most CO2 emissions are related
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Figure 4.31: CO2 VS Grid depen-
dency plot.

Figure 4.32: CO2 VS Security of
Supply plot.

Figure 4.33: CO2 VS Cost plot.

Figure 4.34: Cost VS Grid Depen-
dency plot.

Figure 4.35: Cost VS Security of
Supply plot.

Figure 4.36: Grid dependency VS
Security of Supply plot.

to the grid imported electricity (see figure C.1). The other figures can all be used for the decision
making process of a project’s design phase. For some project designers CO2 footprint is more im-
portant than cost. While SOS is the most important driver for other projects. In addition, three
performance indicators can be plotted simultaneously in a 3D plot as well as in figure 4.37).

Figure 4.37: 3D plot of Cost, CO2 and security of supply.
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4.3 Finalised Design Advice

If for example a project designer’s main design drivers are to reduce the CO2 emissions while main-
taining a high security of supply, figure 4.32 is used to select the best configuration according to the
designers preference. The configurations on the right side of the figure all have a similarly high
SOS, but a different CO2 score. In this case, Configuration 24 (top 10% hydrogen boiler energy
capacity) is one of the better options since it reduces the CO2 emissions while maintaining a 0.999
SOS. From the configuration selection method, the testable configuration 24 is selected and used as
design advice for the project. The retrieved component capacities from the advanced configuration
selection method can be seen in figures 4.38 and 4.39.

Figure 4.38: Energy capacities for technologies for
configuration 24.

Figure 4.39: Storage capacities for technologies for
configuration 24.

It is also possible to create an overview of the statistical results in a table. In table 4.3, all ridge-plot
results are described through their mean values and standard deviations (STD). A designer can
then apply decision drivers simultaneously and directly see the trade-offs between them.

Table 4.3: Overview of statistical data for all interesting configurations. the mean and STD values for cost,
SOS, CO2 and grid dependency are displayed.

The structural uncertainty can now more easily be addressed by filtering the testable configurations
to those that meet the additional design criteria. For example, if the installed cold storage capacity
is preferably low due to a personal preference or due to an upcoming subsidy, the effects of that
preference to the performance indicators can directly be found in the summarised statistics table.
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When using the conventional SPOREs method (without MCS), one only considers one input sce-
nario, resulting in only viable cost effective spatially different solutions for one future outcome.
These results however, only show spatially different configurations that work very well for multi-
ple uncertain scenarios, making the results more robust against uncertain futures.

Compared to using only MCS, this method is much more efficient as it only provides results that
work very well for the input scenarios (thanks to the optimising steps). Furthermore, the sub op-
timal solutions are used as well in conducting the testable scenarios, automatically providing mul-
tiple other design criteria without the need to define those through human input in the scenario
definition.

4.4 Additional Simulations

Additional simulations have been run to see the effect of different SPOREs and slack values on the
results.

4.4.1 15 VS 50 SPOREs & 15% Slack VS 50% Slack
The effect of simulating a different number of SPOREs (15 and 50), while keeping the slack value
constant is only fairly visible. The main spreads and ranges of both results are very similar and com-
parable, which can mean that a fewer number of SPOREs (lower computational power) is enough
to find similar results. However, it can still be argued that when an energy system is complex
(many technologies and spatial locations), a similar spread might not be enough to map all possible
maximally different spatial solutions. Therefore, a higher number of SPOREs is preferred for those
complex energy systems. Nonetheless, a valid statement about the perfect number of SPOREs,
for a specific energy system can not be conducted from these results. The results only show that
additional research is required if the computational time for these calculations is to be optimised.

However, changing the slack value does present a clear difference in results. As expected, a higher
slack results in a larger spread for the uncertain technologies. A higher amount of capacity can
be purchased with a larger budget, resulting in even more spatially different (varying capacity
distributions between multiple nodes with similar technologies) solutions compared to a lower
slack value. As further discussed in chapter 5, this does not mean that a higher slack value should
always be used for this method. The slack value should strongly depend on what phase the project
is in and if a larger budget for the project is available or not.

Figure 4.40: Box-plot for the Stor-
age capacity [kWh] for all storage
technologies with all input scenar-
ios at 15% slack and 15 SPOREs.

Figure 4.41: Box-plot for the Stor-
age capacity [kWh] for all storage
technologies with all input scenar-
ios at 15% slack and 50 SPOREs.

Figure 4.42: Box-plot for the Stor-
age capacity [kWh] for all storage
technologies with all input scenar-
ios at 50% slack and 50 SPOREs.
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Figure 4.43: Box-plot for the En-
ergy capacity [kW] for all genera-
tion technologies with all input sce-
narios at 15% slack and 15 SPOREs.

Figure 4.44: Box-plot for the En-
ergy capacity [kW] for all genera-
tion technologies with all input sce-
narios at 15% slack and 50 SPOREs.

Figure 4.45: Box-plot for the En-
ergy capacity [kW] for all genera-
tion technologies with all input sce-
narios at 50% slack and 50 SPOREs.

Figure 4.46: Boxplot for the En-
ergy capacity [kW] for all hydrogen
technologies with all input scenar-
ios at 15% slack and 15 SPOREs.

Figure 4.47: Boxplot for the En-
ergy capacity [kW] for all hydrogen
technologies with all input scenar-
ios at 15% slack and 50 SPOREs.

Figure 4.48: Boxplot for the En-
ergy capacity [kW] for all hydrogen
technologies with all input scenar-
ios at 50% slack and 50 SPOREs.

4.4.2 Advanced Configuration Selection Method
As visualised in the beginning of section 3.3, the advanced configuration selection method is used
successfully for case 2. Figures 4.22, 4.23, 4.24 & 4.25 show how a single filter is applied to the com-
plete configuration solution space. This approach is much more viable compared to the cumber-
some configuration selection method that was used for case 1. This method provides a structured
and automatised way to check the effects of changing each technology-location combination for a
top 10%, average 10% and bottom 10% capacity, making it much more reliable than simple selecting
single solutions from the configuration solution space.
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Figure 4.49: Boxplot for the En-
ergy capacity [kW] for all storage
technologies with all input scenar-
ios at 15% slack and 15 SPOREs.

Figure 4.50: Boxplot for the En-
ergy capacity [kW] for all storage
technologies with all input scenar-
ios at 15% slack and 50 SPOREs.

Figure 4.51: Boxplot for the En-
ergy capacity [kW] for all storage
technologies with all input scenar-
ios at 50% slack and 50 SPOREs.



5| Discussion

5.1 Study Objectives and Key Findings

The case 1 results reveal that the required functionalities work as expected, and except for minor
problems, they also show that most of the workflow could be applied to case 2. Case 1 is used to
fine tune the methodology into the version as explained in chapter 3. The case 2 results show that
the study objectives are successfully obtained with the proposed method. It shows the potential to
be a reliable insightful method for energy system design that provides useful findings which are
crucial in deciding the best final energy system composition.

5.2 Method Application

A dependency check is included to verify if the resulting filtered data is not too dependent on
the input scenarios in the advanced configuration selection method. This step is reasonable and
necessary since a high capacity of (for example) wind power can strongly depend on an input
scenario where a lot of wind occurs, implying that installing more wind power is much more useful
than a different energy source for that input scenario. This is in that case not a correlation of the
technologies within the energy system itself, but a direct correlation of the high wind production
and wind power capacity. Since the goal of the advanced configuration selection method is to
find energy system specific correlations, it is not useful if the filter analyses configurations that only
have a direct correlation to the inputs. This is currently conducted automatically in the dependency
check, based on an arbitrarily chosen value of 25% dependency. This value can be improved by
replacing it with one based on literature.

The simulations for this thesis are conducted on a TU Delft student account on the high computing
power (HPC) cluster. This student account has a standard available disk space of 15 GB on the
cluster. The method results are compressed into netCDF files with Calliope’s functionality for this
thesis, resulting in a maximum required disk space of about 5 GB. These netCDF results are moved
to a laptop and translated into CSV files that are required to calculate the performance indicators.
A larger available storage capacity is recommended for more complex future projects that include
more or better uncertain variables.

With the current settings and cluster availability, the case 2 calculations are conducted within 16
hours by running all 27 scenarios in parallel. Each input scenario then takes up to 16 hours to
conduct its optimal solution and the 50 sub optimal solutions. As of this day, Francesco Lombardi
(main developer of SPOREs) is also working on an improved SPORE version that allows the SPORE
calculations to be executed in parallel. When finished, this improvement can greatly reduce the
calculation time for these energy system problems, making the method even more promising with
regards to high computational computing.
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Two different simulations are conducted with a different number of SPOREs for case 2. The differ-
ence in results (see section 4.4.1) is not large as the spreads are similar for both simulations, meaning
that 15 SPOREs seems to provide enough distributed results for this energy system. However, the
drawback for a reduced number of spores is that they might not provide enough solutions for iden-
tifying all possible different configuration solutions. The current number of SPOREs (50) is chosen
arbitrarily, but can be calculated automatically by finding a correlation between the complexity of
the energy system (number of technology/location combinations) and the variability of them in the
results. By finding the number of active constraints and technologies of the energy system, this cor-
relation could be found. Additional simulations and research to verify this automatised calculation
for the best number of SPOREs is recommended.

A similar statement is made about the currently arbitrarily chosen SPORE slack value. A large
spread and maximally different capacity distributions are available in the results with the 15% slack
value, resulting in valuable insights thanks to the increased budget. A larger spread in the results
is visible (see section 4.4.1) with the additional simulation of 50% cost slack, providing additional
insight in component sensitivity. Choosing the best slack value for a project is dependent on project
criteria, but running for multiple slack values can always provide additional insight in the trade-offs
between money and other decision drivers, making running for multiple slack values as a standard
an attractive option.

Many literature-based assumptions are made for the component characteristics for case 1 and 2, re-
sulting in a realistic digital energy model compared to one that is based on simplified assumptions.
However, the components can be made even more realistic by finding the best way to represent a
digital version of it. For example, some components are modelled as if they don’t produce any CO2
during the production process, and some component prices or interest rates are based on (price)
ranges. By providing more realistic values, the energy model can be made even more realistic.

Operation strategies is a challenging subject to address, as they will always be a drawback within
optimization. Optimization always calculates the best dispatch, despite any preference of energy
usage. In case a designer prefers to charge the battery first with excess solar production before
sending it to an electrolyzer or selling it to the grid, the optimization will completely ignore this
preference if the optimal solution is otherwise (which can be the case if battery storage has a lower
levelised cost of energy (LCOE), compared to selling electricity to the grid). Some strategies can be
implemented in optimization by adding additional constraints, but not all of them. However, this
is a general optimization problem that is not within the scope of this thesis to consider thoroughly.

The computational power of computers is increasing, and will keep doing so in the future. The
optimization is currently done with data-sets of hourly resolution, that oversee aspects like ramp
up time and peak usage. Energy system modelling can be made even more realistic if they are
analysed for their real-time data with a higher resolution, which will be feasible eventually in the
near future with the increasing computational power.

In the advanced configuration selection method, each technology/location combination is filtered
3 times to obtain its top 10%, bottom 10% and average 10% capacity solutions. This results in a
valuable set of testable configurations that are tested further on in the evaluation. However, many
solutions are inter correlated between certain technologies, resulting in similar configurations that
occur more than once. The advanced configuration selection method can therefore be even further
improved by automatically filtering out all repetitive configurations from the resulting configu-
rations. This could also be prevented earlier in the process by including some sort of sensitivity
analysis of the technology-location combinations, before creating all the filtered results.

Moreover, a focus can be applied within the advanced configuration selection method if the main
decision should depend on just a few technologies (given as input). The advanced configuration
method can then look at those technology-location combinations with a higher resolution, ignoring
the other technology-location combinations. If for example hydrogen storage is an interesting factor
for a client, this could mean that more than just 3 filters can be applied to this technology (for
example the top 5%, the ¾ 5%, the avg 5%, the ¼ 5%, and bottom 5%). Then, a more in-depth
analysis will be done on the technology-location combination that is of most interest to the designer
or client.
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All the configurations are tested against all the input parameters in the evaluation phase. This is
currently done with the “plan” mode of Calliope. However, when using Calliope’s plan mode, per-
fect forecast of the inputs is considered which is unrealistic in practice. A shorter forecast window
is considered every day (24 hours) when using operate mode, where the input parameters of only
the next few days (48 hours) are considered instead of the entire year. This is more realistic since in
practice energy systems don’t make decisions based on the next year, but more likely on the next
few days by taking weather forecasts into account. Before deciding to use plan mode for the eval-
uation phase, the operate mode has been attempted. Unfortunately, operation mode is currently
not maintained as much within Calliope as plan mode, leading to bugs for some specific model
configurations, often involving storage technologies. However, it is expected that this problem is
resolved in the next major release of Calliope, which is coming soon. Operate mode is preferred for
future more realistic operations, despite possibly losing insight in the seasonal storage solutions.

All the correlations within the energy system are automatically accounted for through the advanced
configuration method, resulting in testable configurations that are tested in the evaluation phase.
Despite all being accounted for, these correlations are not made visible with the final results. They
can however be extracted by looking at the intermediate results in the configuration selection phase.
These intermediate results help understand the essential operation features of an energy system.

5.3 Scientific Impact and Practical Applications

As requested in the introduction of this thesis, the combined method combines the strengths of
optimization modelling and scenario modelling. It provides a structured approach that can provide
valuable design insights about the energy system that is addressed.

What makes this method so universal is its ability to choose between using all or just a selection of
its functionalities. This method provides the possibility to include parametric uncertainty by defin-
ing multiple scenarios (MCS) with different future outcomes. It can include energy systems with
multiple spatial nodes by defining them in the energy system configuration. It can also use sub
optimal solutions to address more structural uncertainty by allowing more than 0 SPOREs. The
method can also find relevant and interesting testable configurations automatically by applying
the advanced configuration selection method instead of the cumbersome configuration selection
method. All of these functionalities can, but don’t have to be used when the designer is less inter-
ested in the use of one of them.

Furthermore, this method can be applied to a wide variety of energy system types. As long as
the energy systems’ possible components, their technical aspects and their allowed interactions
are known beforehand, the energy system can be analysed with this method. The allowed energy
system is also not limited to specific energy carriers, as they can be defined by hand in Calliope
manually.
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6.1 Answers to Research Questions

To reflect back on the main purposes of the thesis, the aim to create a method that can address
parametric and structural uncertainty simultaneously is by all means achieved. This thesis shows
that two methods can successfully be combined into one concise method, while providing relevant
and valuable insights that can be used for design phases in energy systems. The research questions,
as proposed in chapter 1 are answered in this chapter as well:

How can intermittent energy system models provide reliable insights for optimised energy system designs by
systematically including both structural and parametric uncertainties?

1. Which variables are most relevant to model as uncertain in the ESM?

2. How can these uncertain variables be modelled in a reliable and accurate way to be used as
inputs for the combined method?

3. Which methods are effective in addressing parametric and structural uncertainty in ESOM
and which ones are most suitable for this thesis?

4. How can the most suitable methods be systematically combined into a single method?

5. Can applying the method to one or two intermittent and renewable case studies (im)prove its
effectiveness and does it improve energy system design?

6. What kind of useful insights can this method provide when applied to one or two W+B cases
regarding effective energy system design?

7. How can the method be made easily accessible for other future energy system design projects?

The most relevant and commonly modelled uncertain variables in ESM (1) are solar yield, wind
yield, demand, and prices (read more in section 2.5, table 2.2). These uncertain variables are com-
monly modelled (2) by taking Monte Carlo scenario samples through Weibull distributions (for
wind), the ARMA technique (for wind), the TPLF method (for solar) and by reusing historic data
(read more in sections 2.2 & 2.5). MCS, SO and RO are the most broadly methods used to address
(3) parametric uncertainty in ESM (read more in section 2.2), while MGA and SPOREs are great
ESM methods to address structural uncertainty (read more in section 2.3). For this thesis, the com-
bination of both MCS and SPOREs are most suitable in regards to the design of energy systems. The
methods are combined (4) into an effective method by running SPOREs optimization for multiple
Monte Carlo scenarios (read more in chapter 3).
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When applying the method (5) to two case studies (case 1 and case 2), promising output results
are found that can be used for improved design purposes. These results entail (6) histograms,
ridge plots and statistical values (read more in chapter 4) that summarise the performances for all
configurations effectively, making the benefits and disadvantages of each technology trade-off very
clear. Case 2 is relevant to one of W+B’s current projects and its results can directly be used for
further evaluation and improvement of the project design (read more in section 4.3). The approach
that has been used can be applied to different inputs (7) and energy systems by feeding different
data to the framework.

6.2 General Conclusion

The study objectives are successfully obtained with the proposed method. It shows the potential
to be a reliable insightful method for energy system design. This method provides the insights to
find (non)-essential technologies, and quantifies the monetary trade-offs in deciding between tech-
nology/location capacities, just like when only using the SPORE method. It clarifies the possible
decision space that can provide solutions (political and socially motivated) other than the cheapest
one, but all with the possibility to include uncertain inputs.

The proposed method can be seen as a vital tool to help speed up the decarbonization process for
energy systems since it also concludes uncertain input parameters. Since many aspects of the future
energy systems are uncertain, this addition is essential to make energy system design inclusive. It
can and should be used by all energy system designers that have uncertain features and can be
implemented into the Calliope framework as a new method (next to the current plan, operate and
SPORE modes) and turned on if relevant.

The method is highly recommended for energy systems that are complex and too hard to solve
analytically. It provides insights that are worth the computational time since many problems can
be solved beforehand by modelling the energy system properly with this method.

6.3 Recommendations for Further Research

The cases that are used for this thesis represent the methods effectiveness in a broad manner. In this
thesis the method is tested on simplified energy systems in case 1 and case 2, showing a high ef-
fectiveness when applied to energy systems that are subject to uncertainty. However, the method’s
effectiveness can still be tested for different cases as well:

• More uncertain variables: In reality, more than 3 variables can be uncertain. The method’s
performance can be tested for energy systems with more than 3 uncertain variables.

• Better representation of the uncertain variables: For case 1 and 2, a simplified approach
is used to create uncertain input scenarios. Energy systems with more realistic uncertain
variables should also be analysed with this method.

• Larger sample size: Creating more realistic scenarios from uncertain variables can be achieved
by taking more samples from the uncertain variable.

• Energy system spatial configuration (inputs): In case 2, only one spatial location is consid-
ered, while in reality the energy system is much more complex. Testing the method on the
same system with and without spatial resolution can provide different results and different
computational times (see figure 6.1).

• Different temporal resolution: Currently, the model is run for hourly data. But using a longer
time scale (like for example 2, 4 or 6 hours) can also produce similar results while reducing
the computational time significantly. Therefore testing the method on both resolutions will
provide insight in the trade-offs between computational time and temporal resolution.
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Figure 6.1: An advanced version of the spatial configuration of case 2.
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A| Case 1 Continued

To briefly test what Calliope can do in the context of this thesis, a relatively simple test case will
be defined and tested in combination with both uncertainty methods. This test case will be used
to see how the combined method reacts to different inputs and if it can provide relevant insights
for the continuation of this thesis. The chosen test case will be modeled in a way that the following
aspects can be analyzed: - Transmission losses - Battery losses (roundtrip and self-discharge) - The
impact of high and low demand on different locations - Choosing between two PV types with
different efficiencies, when installed in two possible inclinations. - The impact of different demand
profiles - The impact of different solar profiles. As said before, the aim of this thesis is not to be
able to model (uncertain) aspects in the most perfect way, but to be able to assess them in the best
way, provided they are correct. Therefore, for this test case, many assumptions have been made,
based on current day values and reasonable estimates. The remainder of this chapter entails the
operational assumptions of the test case, the approach, and relevant findings.

A.1 Parameters

A.1.1 Timeseries:

• Yearly timeseries data for each run, with hourly datapoints.

• Both the uncertain timeseries data are based on historic datasets. This is done to make sure
that the used timeseries are realistic. As said before, the goal of this test case is to be able to
process the data correctly, provided that the data is correct/realistic.

A.1.2 Uncertain Demand Profiles:

• The demand profiles are based on historic data between 2005 and 2019. In region X1, the
3 households follow average national demand profiles, whereas the 3 households in region
X2 follow an above average demand profile (1.1*average). Fractional electricity profiles have
been taken from [19] and average annual consumption [kWh] from [18] (from [18], the S21
profile has been used (Electricity - Household with Night Consumption/Day Consumption
ratio < 1.3 (or Grid User without an exclusive nightly rate if no consumption history))). The
fractional data from [19] has datasets per 15 minutes, therefore the data has been transferred
to average fraction per hour by taking the average of 4 values per hour. Then, for each year,
the measured fractions are multiplied with the average consumption [kWh] of that year and
with the number of households in that region (3). In [18], there is only demand data for 2009-
2019. The demand for 2005-2008 has been interpolated from the 2009-2019 data. For region
X2, those timeseries have been multiplied with 1.1 to create a “high demand” dataset. When
looking at [18], there is a clear trend of decreasing electricity usage between 2010 and 2019,
which is most likely due to the increasing energy efficiency of electrical components.
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Appendix A. Case 1 Continued A.1. Parameters

A.1.3 Uncertain Solar Profiles:

• Chosen: Solar timeseries from 2005 to 2019 are taken from [6]. They have been taken from a
location in the Netherlands. Timeseries for solar panels inclined at 50 degrees (X1) and at 0
degrees are both used.

A.1.4 Supply Grid Power:

• Chosen: 0.2 kg CO2/kWh from the grid expected in 2030 [2] [3] [4].

• Chosen: 0.2 kg CO2/kWh from the grid expected in 2030 [2] [3] [4].

• Chosen: 0.125 EU / kg CO2 –> CO2 costs/kg [1].

• Chosen: 0.025 EU/kWh CO2 tax (almost insignificant)

• Chosen: The grid connection is only available at location X3, to be able to model the effects of
transmission losses.

• Assumed: Total price per kWh from grid = 0.5 EU/kWh.

• Assumed: Lifetime 50 years

• Assumed: Max capacity 25 kW (should be enough, can also be inf).

• Assumed: 15 EU/kW grid capacity is copied from the urban scale example.

• Assumed: Unlimited supply of electricity.

A.1.5 Batteries:

• Chosen: 55 EU per kWh storage capacity based on 2030 projections [7].

• Chosen: Round trip Energy efficiency of 90% (0,9487% single trip) [10].

• Chosen: Storage losses 5% per month [15].

• Chosen: Lifetime = 12 years in Pyreneen [16]?

• Chosen: Cyclic storage = true (SOC on timepoint 1 = SOC on last timepoint).

• Assumed: 4 kW of (dis)charge capacity per 1 kWh of storage capacity.

• Assumed: Initial State of Charge (SOC) of 50%.

• Assumed: Max total battery storage is taken as 150 kWh over total system.

A.1.6 Region X1:

• Chosen: 3 houses, house 1, 2, 3.

• Chosen: Inclination 50°

• Chosen: lat 51,75625 lon 4,16435

• Assumed: Total region available surface area for PV: 60 m2 [5].

A.1.7 Region X2:

• Chosen: 3 houses, house 4, 5, 6.

• Chosen: Inclination 0°

• Chosen: lat 51,75625 lon 4,16435

• Assumed: Total region available surface area for PV: 100 m2 [5].
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Appendix A. Case 1 Continued A.2. Uncertain Input Timeseries

A.1.8 Region X3:

• Chosen: Grid connection only.

A.1.9 Power Lines (underground):

• Chosen: Lifetime = 40 years [22]

• Chosen: Distance power lines:

– X1 <-> X2: chosen as 0.6 km

– X2 <-> X3: chosen as 2.5 km

– X3 <-> X1: chosen as 1.5 km

• Assumed: Efficiency per km distance = 95%

• Assumed: Cost per distance = 0.01 (taken from urban scale example).

A.1.10 Cost

• Assumed: Interest rate chosen as 10%, taken from the urban scale example.

A.1.11 PV Panels

• PV1: Polycrystalline panel

– Chosen: Efficiency = 18% [20]

– Chosen: Resource per area cap = 5.84 m2 needed for 1 kWp of installed PV [20].

– Chosen: Lifetime = 25 years [17]

– Chosen: Expected O&M costs: 0.2 EU/kW/year [12].

– Assumed: Parasitic efficiency 85% (invertors).

– Assumed: Expected cost per 1 kWp = 700 EU/kWp.

– Assumed: Export excess PV energy: 0.2 EU/kWh.

• PVtwo: Monocrystalline panels

– Chosen: Resource per area cap = 4.99 m2 needed for 1 kWp of installed pv [21].

– Chosen: Lifetime = 30 years [17].

– Chosen: Expected O&M costs = 0.2 EU/kW/year [12].

– Assumed: Parasitic efficiency 95% (inverters)

– Assumed: Efficiency = 25%

– Assumed: Expected cost per 1 kWp = 1000 EU/kWp.

– Assumed: Export excess pv energy: 0.2 EU/kWh.

A.2 Uncertain Input Timeseries

A.3 Algorithm/Approach

After choosing the solar profiles, demand profiles and after defining the test case model, the first
step “Inputs”, is completed. Then, the simulation settings in Calliope must be defined. For the
objective function for this test case is chosen to minimize cost. For the SPOREs options, it was cho-
sen to take 15% cost slack. Due to low computational power of 1 laptop (HPC connection was still
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Appendix A. Case 1 Continued A.3. Algorithm/Approach

Figure A.1: An example of an annual (2005) time-
series for the solar yield, used in case 1.

Figure A.2: An example of an annual (2005) time-
series for the electrical demand, used in case 1.

Figure A.3: Yearly averages for the solar yield in
2005-2019 for locations X1 (50°) and X2 (0°), used in
case 1.

Figure A.4: Yearly averages for the electrical de-
mand in 2005-2019 for locations X1 and X2, used in
case 1.

in progress), it was chosen to run the test case with only 4 SPOREs. Meaning that for each MCA
(Monte Carlo Analysis) scenario, the optimal solution, and 4 structurally different 15% more expen-
sive solutions will be found. 15 MCA scenarios were chosen. Based on historic data (realistic data),
with each scenario having a equal 1/15 (6,67% chance) probability of occurring. The following step
is the stage 1 results, where the model behavior will be presented and where the possible capacity
ranges for a cost slack of 15% will be discussed. Then configurations will be chosen based upon
the configuration strategy. The chosen configurations’ performance will then be tested on all the 15
possible Monte Carlo scenarios on the metrics Security of Supply, CO2 emitted and total cost in the
“operation” mode in Calliope. The results of this final step will lead to essential statements that can
be found in the last chapter. The standard SPORE method is applied, only for case 2, the evolving
average is used.

Figure A.5: Monthly averages for the solar yield in
2005 for locations X1 (50°) and X2 (0°), used in case 1.

Figure A.6: Monthly averages for the electrical de-
mand in 2005 for locations X1 and X2, used in case 1.
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A.4 Solution Configuration Space

For all capacities except battery, the graph is in [kW], for the battery capacity, the graph is in [kW].
As explained in the last progress presentation, for each year, the optimal solution will be calculated
(top left -> SPORE 0), and 4 SPOREs will be created, where the cost value is increased by 15%, but
the solution space is changed. You can see that, within 15% cost slack, the model can also work
without X1-X2 power cable connection, and that the PV/Pvtwo division can also change, while still
being feasible.

Figure A.7: Single solutions for SPOREs 0, 1, 3 and 4.

A.4.1 Normal Winter Week Behavior:
The model behaves as expected. All the PV power is directly used, and excess pv is stored in the
batteries. When the batteries are empty, the grid power is used (figure A.8).

Figure A.8: Timeseries for the electrical and storage flows during a winter week, for input scenario 1, SPORE
0.

A.4.2 Summer Week Behavior:
Due to perfect foresight, the model always charges exactly what it will need the next day. Since
there is a self-discharge loss modeled over time, the charging happens late on the day to prevent
self-discharge losses. The remainder is sold back to the grid, since there is a positive export price.
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Figure A.9: Timeseries for the electrical and storage flows during a summer week, for input scenario 1, SPORE
0.

A.4.3 Storage Usage:

Despite being able to charge excess pv energy for the battery, the model prefers to sell the excess pv,
and buy grid power later, since it is simply cheaper. Objective function = cheap as possible. There-
fore, this happens. The 2 purple blocks of grid import cost less than storing instead of exporting.

Figure A.10: Timeseries for the electrical flows during a week in autumn, for input scenario 1, SPORE 0.

A.4.4 Capacity Ranges:

The infomation of this subsection can be found in chapter 4.1.

A.4.5 Configuration Selection and Testable Configurations Continued:

The exact configuration dimensions can be found in table A.1. These dimensions have been used in
Calliope to run the Evaluation against all 15 input scenarios.
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Table A.1: The configurations, selected from the configuration solution space through the cumbersome selec-
tion method.

A.5 Problems and Discussion Case 1

Small and general:

• Power lines had an unrealistic cost function,

– Find and use an actual cost for cables

• A 10% interest rate is used for all components, but it’s based upon nothing, Mikel said that
this depends on the one investing:

– Self-investing: interest rate should equal the inflation rate

– Borrowing: interest rate should be equal to the lending rate

– Investor: interest rate depends on the expected risk and on the interest rate if that money
is spent on a different project.

• 4 SPOREs is not enough

– HPC information received from Rene, we can use it to put the hpc to work.

• Can and should we include charging strategies in the model? (charge battery before selling to
the grid)

• What should the SPORE slack % be based upon?

– Samuel: design phase -> 50% uncertainty?

– Francesco: use multiple slack %’s to see the effect.

• These solutions are of course based upon perfect representation of all components and uncer-
tain variables, is that a problem?

– Remember, within my scope is the method to work, not to be a fortune teller or to be a
person that calls all the companies for what the exact component specifications are.

• The timeseries are still per hour, so the actual capacities should be capable to handle the peak
demand.
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Configurations choice:

• We are currently using only optimal or SPORE solutions as configurations, is that okay? Is it
not also reasonable to use freestyle?

– Using freestyle brings us back to including the human error into the equation.

• If a technology is still on the “essential technology” list, can the slack then be changed to
remove it from that list?

– Samuel: we will not do that, if they would have wanted that so badly, it could have been
included in the model criteria (minimum/maximum capacity for that technology).

Operate mode:

• More metrics to score against, other than SOS, CO2 & $

– Yes (read back the tape)

• Storage is broken,

– Will discuss this with Francesco

• For the results I used yearly costs, this should be returned to NPV

– Yes, investigate economics behind the NPV a bit more.

• Is the 24-48 horizon window large and realistic enough?

– We will see if it is a problem, if it is, we will investigate changing it, otherwise, we won’t.

A.6 References Case 1

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [15] [16] [17] [18] [19] [20] [21] [22]

75

https://www.emissieautoriteit.nl/actueel/nieuws/2020/11/27/voorlichting-co2-heffing-industrie#:~:text=De%20co2%2Dheffing%20koppelt%20een,125%20euro%20per%20ton%20co2
https://www.cbs.nl/nl-nl/nieuws/2019/44/klimaat-en-energieverkenning-2019 
https://www.kivi.nl/uploads/media/5c3768e68d653/Energieblog%20van%20Jasper%20Vis%2010-01-2019.pdf
https://www.pbl.nl/sites/default/files/downloads/pbl-2017-nationale-energieverkenning-2017_2625.PDF 
https://www.zonnepanelen-weetjes.nl/blog/afmetingen-van-zonnepanelen/#:~:text=U%20weet%20nu%20de%20standaard,schuin%20of%20plat%20dak%20heeft. 
https://www.renewables.ninja/ 
https://www.caranddriver.com/news/a34992832/battery-price-drop-2023/#:~:text=The%20report%20also%20notes%20that,up%20the%20drop%20in%20prices. 
https://about.bnef.com/blog/battery-pack-prices-cited-below-100-kwh-for-the-first-time-in-2020-while-market-average-sits-at-137-kwh/#:~:text=Partnership-,Battery%20Pack%20Prices%20Cited%20Below%20%24100%2FkWh%20for%20the%20First,Average%20Sits%20at%20%24137%2FkWh
https://www.consumentenbond.nl/energie-vergelijken/kwh-prijs#:~:text=De%20kosten%20per%20verbruikte%20kWh,.%2015%20cent%20per%20kWh
https://www.tesla.com/sites/default/files/pdfs/powerwall/Powerwall%202_AC_Datasheet_en_northamerica.pdf
https://batterytestcentre.com.au/project/lead-acid/ 
https://www.nrel.gov/docs/fy17osti/68023.pdf 
https://www.mpoweruk.com/performance.htm 
https://www.mdpi.com/2076-3417/11/3/1099/pdf 
https://solarenergyforus.com/solar-panel-efficiency-lifespan/#:~:text=highest%20efficiency%20for%20polycrystalline%20cell,lifespan%20ranges%20around%2025%20years. 
https://www.vreg.be/nl/evolutie-energieverbruik#1
http://www.synergrid.be/index.cfm?PageID=16896&language_code=NED 
https://www.futurasun.com/wp-content/uploads/2020/10/2020_FuturaSun_72p_300-330W_en.pdf?x97762
https://www.q-cells.com/en/main/products/solar_panels/G9/Q.PEAK-DUO-ML-G9.html
https://www.xcelenergy.com/staticfiles/xe/Corporate/Corporate%20PDFs/OverheadVsUnderground_FactSheet.pdf 


B| Parametric Uncertainty

Approaches Continued

B.1 Parametric Uncertainty: Stochastic Programming (SP)

Stochastic programming is based on solving a large equivalent of deterministic options that are
defined by taking known stochastic variable distributions. It operates by making decisions before
an uncertainty takes place, based on the information that the model has available at that moment.
For example, for a solar and diesel-powered energy system, for each time stage, there is a known
probability that solar energy production will be either high, medium, or low. However, deciding
how much diesel fuel must be bought beforehand to cover the low solar production scenarios,
without overspending, must be done in the most strategical way. The SP method calculates all
possible scenario outcome probabilities (figure decision tree) and their consequences and finds the
optimal hedging strategy that will result in the least amount of lost benefit (objective function)
despite the actual scenario outcome.

Figure B.1: Multiple stage, stochastic programming decision tree [2.2.2.0, Cobuloglu].

However, for every additional stage or additional uncertain parameter, the computational require-
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ment for SP increases exponentially. It also requires a more in-depth information of the uncertain
variables. Most studies have been limited to 2- or 3-time stages and no more than 10 possible “State
of Worlds” (SOW), meaning possible results for uncertain variable (e.g., high, medium, low pro-
duction for solar production). For long-term planning, the stage limit is though.

[2.2.2.0] Cobuloglu, H. I., & Esra Büyüktahtakın. (2017). A two-stage stochastic mixed-integer pro-
gramming approach to the competition of biofuel and food production. Computers and Industrial
Engineering, 107, 251–263.

[2.2.2.1] DeCarolis, J., Daly, H., Dodds, P., Keppo, I., Li, F., McDowall, W., Pye, S., Strachan, N.,
Trutnevyte, E., Usher, W., Winning, M., Yeh, S., & Zeyringer, M. (2017). Formalizing best practice
for energy system optimization modelling. Applied Energy, 194, 184–198.

B.2 Parametric Uncertainty: Robust Optimization (RO)

Robust optimization is simply said, a type of worst-case analysis. It takes a simplified approach
regarding addressing uncertainty. It defines a set of variables that can be uncertain and calculates
optimal solutions while controlling the intensity of uncertainty of said variables through a “budget
of uncertainty”. If the budget of uncertainty is chosen as zero, all uncertain parameters reflect their
nominal values. When the budget of uncertainty is maximized, the most pessimistic approach is
taken by letting all uncertain parameters take extreme values, resulting in a highly robust solution.
The robustness of the solution is therefore represented by the severity of the uncertainty budget
[2.2.3.0, Ben-Tal].

Robust optimization can avoid a high computational burden and account for many uncertain vari-
ables by representing them in a simplified worst-case manner. In other studies, robust optimization
was used for providing insights like the cost to hedge against uncertainty [2.2.3.1] and the iden-
tification of key hedging technologies [2.2.3.2, Labriet]. Despite being able to provide the most
robust solution against maximum uncertainty, RO does not provide a strategy that can cope with
all the possible outcomes [2.2.1.2,Yue]. Furthermore, RO is limited and only capable of addressing
parametric uncertainty.

[2.2.3.0] Ben-Tal, A., El Ghaouni, L., & Nemirovski, A. (2009). Robust Optimization. Princeton
University Press.

[2.2.3.1] Lorne, Daphne, & Tchung-Ming, Stephane (Oct 2012). The French biofuels mandates under
cost uncertainty - an assessment based on robust optimization (INIS-FR–14-0518). France

[2.2.3.2] M. Labriet, C. Nicolas, S. Tchung-Ming, A. Kanudia, R. Loulou Energy Decisions in an
Uncertain Climate and Technology Outlook: How Stochastic and Robust Methodologies Can Assist
Policy-makers Informing Energy Clim. Policies Using Energy Syst. Model, Springer International
Publishing (2015), pp. 69-91,
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C| Case 2 Continued

C.1 Parameters

Table C.1: Assumptions and Parameters of Case 2.

C.1.1 General

• Timeseries:

– Yearly timeseries data for each run, with hourly datapoints (15 minute and 5-minute
time-series have been translated to hourly datapoints, while keeping the maximum peak
load the same).

• Chosen: global monetary interest rate of 3%.
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Table C.2: Assumptions and Parameters of Case 2, Continued.

C.1.2 Chosen Physical Limitations for Neighbourhood of 100 Households

• PV: minimum is 375 kWp, maximum is 750 kWp (available rooftop area). Minimum is 50% as
newly built houses are highly likely to have PV panels on them.

• Cold and Hot water storage: Physical Maximum of 125 m3 for 100 households for both types
of storage. (2187.5 kWh hot storage, 730 kWh cold storage).

• Hydrogen storage: Minimum of 1 tube trailer, maximum of 5 tube trailers (safety issues).

• Electrolyzer = minimally 20% of average total demand per hour (avg demand = cool + heat +
dhw + elec = 210 kWh/hour) -> 0,2 * 210 = 42 kW.

• Fuel cell = same as minimum electrolyzer -> 42 kW minimum capacity.

• Grid minimum installed capacity is 3450 kW

C.1.3 Uncertain Profiles

• “Uncertain” demand profiles, 100 households are used, consisting of 10 rows of 10 houses,
resulting in 80 terrace households, and 20 side/corner houses. Each house is assumed to have
an average surface area of 100 m2 and 2 floors [invulversie].

– Heating demand

* The total heat demand [kWh] consists of both the domestic hot water demand (DHW)
and the Thermostat heating demand (TH). The base case is 100%, the high demand
case is 120%, and the frugal case is 80%.

· DHW profile from 2017 is used from [secret W+B file], and multiplied with 100
households annual demand from [invulversie]

· TH profile is calculated through [secret W+B file], based on historic temperature
timeseries from 2017, measured in “de Bilt”. And multiplied with 100 house-
holds annual demand from [invulversie].
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* The total heat demand is assumed to use the 65 C hot water, over a Delta Tempera-
ture of 15 C. (Tout heating demand = 50C)

– Cooling demand:

* The cooling demand is calculated in a similar manner through [secret W&B file] as
the heating TH demand, but it is flipped and multiplied with the annual cooling
demand for these houses from [invulversie].

* The base case is 100%, the high demand case is 120%, and the frugal case is 80%.

* The total cooling demand is assumed to use the 15 C cold water over a Delta Tem-
perature of 5 C (Tout cooling = 20C).

– Electrical demand:

* The electrical demand fractional profiles from [Nedu] 2017 are used and multiplied
with the total annual demand of the 100 households. For this case, S21 profiles are
chosen [hy.60].

* The base case is 100

• “Uncertain” solar profiles:

– Chosen: Solar timeseries are based upon 2017 historic data, measured in “de Bilt”. The
timeseries are in kWh produced per installed kWp [kWh/kWp/hour] and taken from
[6].

• “Uncertain” grid electricity price profiles

– Chosen: price timeseries, based upon the historic data from 2017, from [hy.70], [hy.71].

C.1.4 Heat Pumps

Water source Heat pump: for small domestic projects it costs around 2000 EU/kW of installed
capacity, for larger domestic/commercial projects, the capex are 1150 EU/kW (calculated from
pounds) [hy.1]. Another source mentions a capital cost of (2009 pound = 1.26 2021 pound –> 1350
EU/kW installed) 1350 Eu/kW [hy.2] [hy.3]. 1350 EU/kW is chosen. For a commercial/public
water heat pump system, a typical lifetime is 20 years[hy.2] [hy.3]. Another source mentions a
heat pump lifetime of 15 years [hy.7]. 20 years is chosen. The operational costs of such a system
is (one 2009 pound = 1.26 pound in 2021 –> 6 Eu/kW/year.) 6 Eu/kW/year [hy.2] [hy.3]. The
COP for heating water depends on the difference of the “ambient temperature” (the input wa-
ter/air) and the targeted heating water temperature. COP = 0.0023 ∗ (Toutout − Tsourcein)2 –
0.2851 ∗ (Toutout − Tsourcein) + 10.677 –> for a Toutout of 65 C, the COP with 20 C input would
be 2.505, rounding up to 2.5 for the model. For an output temperature of 15 degrees for the floor
heating cooling, the COP would be around 9. [hy.11].

C.1.5 Heat and Cold Storage

Heat and cold storage (sensible water tank heat storage) is modeled with a round trip efficiency
of 100%, but a self-discharge of 0.5% per hour assuming highly insulated storage vessels. Cost of
it ranges between 0.1-10$/kWh storage capacity [hy.4], 4 EU/kWh is chosen. Hot water storage
should be done at 60 degrees Celsius to kill bacteria, 65 degrees is chosen [hy.5]. The cold-water
storage will occur at a temperature of 15 C, as the only cooling demand is the floor heating, which
occurs around 15C [hy.45] [hy.9]. The floor heating (DHW) is done at 35 degrees [hy.10]. For the
thermal energy system, there is always unlimited water available at a temperature of 20C (ambient
temperature). This is used to justify the assumptions on water quality for heating and cooling
purposes. CO2 at production is neglected. The lifetime is estimated at 50 years.
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C.1.6 Electrical Li-ion Battery

Nissan leaf battery leasing in the Netherlands is offered at 100 EU / month –> 1200 EU / year /
40 kWh = 30 EU / year / kWh. The power of one Nissan leaf battery = 110 kW [hy.6]. Resulting
in a 2.75 charge cap / storage cap ratio. Chosen initial and minimum state of charge of the batter-
ies is 30% [hy.46]. Lithium-ion batteries produce between 39 and 196 kg CO2 / kWh of charging
capacity, take average of 117.5 kg CO2/kWh is used [hy.8]. lifetime is 22 years [hy.47]. Leaseplan
promises minimum capacity and efficiency etc. roundtrip efficiency lithium-ion batteries = 90% .
Self-discharge for lithium-ion batteries it is 2.5 percent per month [hy.48].

C.1.7 PEM Fuel Cell

PEM fuel cells are chosen. Fuel cell CHP electrical and thermal efficiency if used in chp form,
electrical = 40%, thermal = 55%. [hy.19]. When looking at the lifetime of a PEM fuel cell, the CO2
emissions, emitted during production, 750 kG CO2 / kW. [hy.19]. Fuel cell costs in 2020 are 2500
EU/kW installed [hy.15]. PEM electrolyzer lifetime: 40000 hours, but with an ESTIMATED uptime
of 33%, 13,6892539357 years of lifetime is expected. Rounded up to 14 years. This 33% is based on
an expectation that excess energy is available mostly during the day in the summer [hy.18]. Fuel
cell PEM operating temperature 50-100 degrees. [hy.28] [hy.17], 80C is chosen.

C.1.8 PEM Electrolyzer

PEM electrolyzer is chosen. The CAPEX of a PEM electrolyzer are 1950 Euro/kW for PEM systems.
The OPEX are assumed negligible since they mostly depend on the electricity “price” [hy.21]. Elec-
trolyzer CO2 emissions (from electrolyzer production) are 0,043 kg CO2 per kg of h2 (39 kWh = 1
kg h2), resulting in 0,001102564103 kg CO2 per kWh of h2 produced for the electrolyzer [hy.22].
PEM electrolyzer electrical efficiency is between 65-82% [hy.13], 80% is chosen. The cooling water
will be between 80 and 90 degrees [hy.25] [hy.26]. 80 C is chosen. Operation costs are negligible, as
they are mostly dominated by the electricity price [hy.21]. Lifetime is expected at 40000 hours. With
33% expected uptime since mostly active during hot summer days, 14 years of lifetime is expected
[hy.18]. For every kWh of electricity, 80% will go into h2 production, and 90% of 20% will go into
heat recovery [hy.20]. To include the hydrogen storage compression energy cost, an average value
of 2 kWh per kg of h2 stored is used [hy.24]. This is included in the total efficiency of the electrolyzer
(77% electrical efficiency, 19% heat efficiency, rest is used for compression).

C.1.9 Hydrogen Storage

Hydrogen storage CO2 emissions (from storage tank and compressor production) 0,004358974359
kg CO2 per kWh of hydrogen compressed and stored in the storage tank [hy.22]. Hydrogen com-
pression is expected to be around 2 kWh per kg h2 produced and is included in the electrolyzer
efficiency. It is based on 3-5 compression stages, to an outlet pressure of 445-495 bara. The range
comprises both regularly air-cooled systems, as well as actively cooled system [hy.24]. This com-
pression electrical requirement is implemented within the efficiency of the electrolyzer, meaning
that next to the electrolyzer efficiency of 75%, the additional requirement of 2 kWh per kg h2 pro-
duced is included as well [hy.24]. CSD (compression, storage, and decompression) in 2020 is 0,68
EU/kg h2 –> 0,01743589744 EU/kWh h2. [hy.23]. For the specifications of hydrogen storage, tube
trailers are used. One tube trailer has a volume of about 16.2 m3 [hy.61]. If hydrogen is stored at
300 bar (commonly done), the density is 20,537 [hy.62], 334.2 kg can be stored in 1 tube trailer. Since
1 kg of hydrogen has a potential of 39 kWh, 13000 kWh can be stored in 1 tube trailer. 10 EU/kWh
storage capacity is assumed. A storage loss of 2.4% per month xis assumed.

C.1.10 Hydrogen Boiler

Hydrogen boiler burns around 300 degrees [hy.29]. has 100% efficiency. Costs are taken as the
equivalent cost of normal gas boilers [hy.50] and will be around. Average boiler for 1 household is
30 kW, average cost for 1 boiler is 1750 EU, cost per kW is 60 EU [hy.51], [hy.52], rounded up to 100
EU/kW. CO2 due to production is neglected.
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C.1.11 PV

PV Polycrystalline panels with 18% efficiency [20]. Lifetime of 25 years [17]. O&m costs of 33
EU/kWp/year [hy.32]. 0.04 kg CO2 / kWh produced by solar panels [hy.33]. installation cost of
1100 EU/kWp [hy.32]. system efficiency of 95%. Minimum installed capacity 375 kWp (50% of
average rooftop surface), maximum installed capacity 750 kWp (100% of average rooftop surface).
Since these are newly built households, the regulations dictate that they are built as sustainably as
possible, resulting in at least 50% coverage of pv panels for the rooftops. Average rooftop area per
household is 55 m2 [hy.63], let’s say that 80% of that area is effectively usable, for 100 households,
this results in 4400 m2 available for pv panels. 6 m2 is required to install 1 kWp of the chosen pv
[20], resulting in a max pv capacity of 750 kWp. The average angle for the households is taken as
45 degrees in the Netherlands [hy.64]. It is assumed that the households are built with their roofs
aimed towards the south.

C.1.12 Electricity Export

Max 10 kW of export available, with 0.01 EU/kWh profit. This is chosen to impede dumping excess
pv energy on the grid when the sun shines, but to create the possibility to return energy to the grid.
The capacity costs of export are 0 EU/kW, as the excess electricity can flow through the supply grid
technology.

C.1.13 Grid

In 2030, it is expected that the applied carbon tax will be equal to 0.150 EU/kg of CO2 emitted [1].
It is also expected that in the Netherlands, the grid will consist for 0.2 kg CO2 emissions per kWh
of produced electricity [2], [3], [4], as the expected share of renewable generation will increase.
To calculate the costs for new grid connection, per single household, a 3phase 3x50A connection
is considered, resulting in 1611 EU / 3x50A connection, which is 34500 W (230*50*3) connection.
This will be by default the minimum installed capacity since each household will be equipped with
it. Meaning that per kW, the cost for grid connection is equal to 33,6695652174 EU/kW [hy.111]
[hy.112] [hy.113]. For 100 households, this means that the minimum installed capacity is 3450 kW.
This is chosen as fixed to cope with the electricity peak demands that are missed due to the hourly
electrical demand resolution. The assumed lifetime of such a grid connection is estimated at 50
years. It is also assumed that an infinite amount of electricity can be taken from the grid. O&M
costs are neglected for the grid connection as they will most likely be paid for by the consumer.

C.1.14 Electrical Cables

50 years of lifetime is considered [hy.117]. 10 EU / m OR (supersimple case) 100 EU /kW. We
assume a 1% loss per km. 10 kg of CO2 per m per kW assumed.

C.1.15 Heating Pipes

50 yeas of lifetime is considered [hy.115]. 200 EU / m [hy.116] OR (supersimple case) 100 EU /kW.
We assume a 1% loss per km. 10 kg of CO2 per m per kW assumed.

C.1.16 Cooling Pipes

50 yeas of lifetime is considered [hy.115]. 200 EU / m [hy.116] OR (supersimple case) 100 EU /kW.
We assume a 1% loss per km. 10 kg of CO2 per m per kW assumed. . For all transmission technolo-
gies, it is assumed that, as they will only portray a small part of the costs, that the peak demands
can be supplied by the storages and pipes themselves.

C.1.17 Hydrogen Pipes

50 years lifetime is considered [hy.115]. 500000 EU per km. OR (supersimple case) 100 EU /kW
[hy.114]. 10 kg of CO2 per m per kW assumed. . No leaking is assumed.
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C.2 Simulation Options

Table C.3: Simulation parameters for case 2.

C.3 Additional Results

Pictures of the cost and CO2 distribution of the components.

Figure C.1: CO2 distribution SPORE 0 sce-
nario 1.

Figure C.2: Cost distribution SPORE 0 sce-
nario 1.

C.4 Overview
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C.5 References Appendix Case 2

[hy.1] [hy.2] [hy.3] [hy.4] [hy.5] [hy.6] [hy.7] [hy.8] [hy.9] [hy.10] [hy.11] [hy.13] [hy.15] [hy.17]
[hy.18] [hy.19] [hy.20] [hy.21] [hy.22] [hy.23] [hy.24] [hy.25] [hy.26] [hy.28] [hy.29] [hy.32] [hy.33]
[hy.45] [hy.46] [hy.47] [hy.48] [hy.50] [hy.51] [hy.52] [hy.60] [hy.61] [hy.62] [hy.63] [hy.64] [hy.70]
[hy.71] [hy.99] [secret W+B file] [invulversie] [nedu] [hy.111] [hy.112] [hy.113] [hy.114] [hy.115]
[hy.116] [hy.117] [6] [17] [20] [1] [2] [3] [4]
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