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Developing methods to process irregularly structured data is crucial in applications like gene-regulatory, brain,
power, and socioeconomic networks. Graphs have been the go-to algebraic tool for modeling the structure
via nodes and edges capturing their interactions, leading to the establishment of the fields of graph signal
processing (GSP) and graph machine learning (GML). Key graph-aware methods include Fourier transform,
filtering, sampling, as well as topology identification and spatiotemporal processing. Although versatile, graphs
can model only pairwise dependencies in the data. To this end, topological structures such as simplicial and
cell complexes have emerged as algebraic representations for more intricate structure modeling in data-driven
systems, fueling the rapid development of novel topological-based processing and learning methods. This paper
first presents the core principles of topological signal processing through the Hodge theory, a framework
instrumental in propelling the field forward thanks to principled connections with GSP-GML. It then outlines
advances in topological signal representation, filtering, and sampling, as well as inferring topological structures
from data, processing spatiotemporal topological signals, and connections with topological machine learning.
The impact of topological signal processing and learning is finally highlighted in applications dealing with
flow data over networks, geometric processing, statistical ranking, biology, and semantic communication.

1. Introduction and motivation

Many technological, biological, and natural systems exhibit data
with inherently irregular structures, as observed in critical infrastruc-
ture networks, neuroscience, gene regulatory networks, and social in-
teraction systems [1-4]. Such data often defy the assumptions of tra-
ditional Euclidean-based signal processing and machine learning tech-
niques, rendering these approaches insufficient for capturing their un-
derlying complexities. Consequently, these irregular dependencies have
motivated the development of new perspectives and methodologies
capable of accommodating their non-Euclidean nature. In particular,
graphs have emerged as the dominant paradigm for modeling irregular
data structures by representing pairwise relationships through nodes
and edges. This framework has been pivotal in historical advances,
such as graphical modeling [5] and network science [2,4], as well as in
the more recent fields of graph signal processing (GSP) [6] and graph
machine learning (GML) [7]. GSP extends classical signal processing
principles to graph-structured data, enabling tasks such as filtering [8],
spectral analysis [9], and signal sampling [10,11]. GML, on the other
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hand, leverages graph structures as relational inductive biases [12], to
design deep learning architectures that directly capture relations among
the data, thus facilitating powerful predictive models through repre-
sentation learning techniques like graph neural networks (GNNs) [13].
These methods have revolutionized applications in social networks,
recommendation systems, and biological networks, showcasing their
potential for uncovering intricate patterns in relational data. However,
the pairwise modeling of graphs imposes limitations in representing
more complex relationships, necessitating a broader paradigm.

While graphs are versatile, they represent a simple example of a
topological space, limited to capturing pairwise (or dyadic) relation-
ships between data entities [14]. As data grows increasingly complex
—such as in gene regulatory networks, social interactions, and neural
activity— the richness of interactions among the constituent elements
often exceeds the scope of simple dyadic relationships [15-17]. More-
over, graph-based techniques are predominantly designed for signals
defined on nodes, making them inadequate for analyzing signals asso-
ciated with higher-dimensional structures, such as flows along edges
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or signals defined over groups of nodes. These limitations constrain
the applicability of graph signal processing and learning methods in
scenarios where dependencies span multiple scales and dimensions.
Therefore, to effectively capture these data structures and their intricate
interdependencies, it is crucial to move beyond graphs and adopt richer
topological representations.

Topological representations, such as hypergraphs, simplicial com-
plexes, and cell complexes, provide powerful frameworks for model-
ing and analyzing multiway relationships [17]. Hypergraphs extend
the concept of edges to encompass connections among more than
two nodes, while simplicial and cell complexes introduce hierarchical
structures that facilitate efficient processing across multiple dimen-
sions [18]. Although hypergraphs are highly flexible, their generality
introduces an inherent complexity in terms of algebraic representation,
mainly based on tensor models [19-23], which might limit practical
applicability. In contrast, simplicial and cell complexes endow the
domain with hierarchical structures, enabling numerically efficient
processing that can handle signals defined at various levels of higher-
order structures [14]. Additionally, simplicial and cell complexes are
equipped with advanced algebraic tools, such as Hodge theory and the
Hodge Laplacian, which enable spectral analysis and signal decompo-
sition across different topological levels [24]. One of the fundamental
capabilities of algebraic topology is to extract global properties of the
space, i.e. invariants, starting from local relations. Graphs, which are
a simple case of topological space, can only capture global properties
associated to connectivity. Higher order structures, like simplicial or
cell complexes, enable the extraction of additional invariants, like the
number of holes or cavities associated with covering the embedding
space with higher order simplicial or cell complexes. The knowledge
of these invariants, also known as Betti numbers, plays a fundamental
role in devising signal processing tools tuned to the space where the
signals live. Finally, unlike graphs, higher order structures allow a joint
processing of signals defined not only on nodes and edges but also on
higher-dimensional entities, such as triangles or tetrahedra, ultimately,
paving the way for new opportunities in analyzing and learning from
complex, multi-scale data. Recent advances in topological signal pro-
cessing and learning (TSPL) have harnessed these capabilities, enabling
innovative methods for filtering, reconstruction, and representation
learning that are grounded in the geometric and topological properties
of data.

While recent progress in TSPL has demonstrated its potential, cur-
rent approaches face significant challenges such as developing methods
from first principles, ensuring computational efficiency, and achieving
seamless integration with machine learning frameworks. Advances in
Hodge theory, topological Fourier transform, convolutional filtering,
and topological neural networks, have provided a theoretical founda-
tion for the field. However, many techniques remain fragmented across
disciplines, hindering their broader adoption and development. This pa-
per seeks to unify the latest advances in TSPL, offering a comprehensive
and easily-accessible overview of the methods, challenges, and oppor-
tunities in this rapidly evolving domain. By addressing the limitations
of graph-based techniques and emphasizing the promise of topological
frameworks, we aim to inspire further research and applications of
TSPL methods to address the increasingly complex demands of modern
data analysis.

1.1. Related works and paper position

This paper serves two main purposes. First, it provides a uni-
fied, comprehensive, up-to-date, and accessible resource on topological
structures and their algebraic foundations. It explores how these struc-
tures serve as a framework for signals with irregular characteristics that
cannot be represented by graphs and how they connect to key signal
processing concepts through Hodge theory. Second, it seeks to unify
recent, scattered works in topological signal processing and topological
machine learning by linking them to these foundational concepts.
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Ultimately, the paper aims to serve as a valuable resource for both first-
time and advanced readers, helping them identify key contributions in
this rapidly evolving field. To this end, we position this work in relation
to advances in related areas, as well as to seminal works in topological
signal processing and topological machine learning.

(1) Graph signal processing and graph machine learning: Advances
in these areas primarily address pairwise dependencies between data
points represented by graphs and focus on processing or learning repre-
sentations from node values (commonly referred to as graph signals) [6,
8,13,25,26]. Consequently, much of this work does not emphasize
processing data defined on edges or other higher-order structures.
These contributions have established foundational concepts, such as the
graph Fourier transform, sampling and reconstruction of graph signals,
graph convolutions, and graph neural networks. While some works on
message-passing graph neural networks include aggregation rules for
edge values, they often do so in a black-box manner, treating edge
values as features without providing principled insights into how they
should interact with neighboring node or edge signals. Connections
to TSPL arise primarily through the Hodge Laplacian, which encodes
relational locality between topological signals. For instance, the Hodge
decomposition and the spectrum of the Hodge Laplacian form the
foundation for a topological Fourier transform, strongly tied to GSP
concepts. These tools also play a critical role in developing principled
topological neural networks.

(2) Network science: This area focuses on analyzing complex systems
and understanding their behavior through higher-order networks, such
as simplicial complexes, cell complexes, and hypergraphs [15,17,27—
30]. On the one hand, much of this research emphasizes the structure
of higher-order networks rather than the data defined on them. For ex-
ample, studies explore probabilistic models for their structure, algebraic
representations, and the relationship between spectral properties and
higher-order interactions. Connections to TSPL arise primarily from the
simplicial and cell complex representations of higher-order networks
and the use of the eigendecomposition of Hodge Laplacians to represent
signals in the spectral domain. On the other hand, many works focus
on modeling information diffusion and contagion over higher-order
networks [16,27,31-33]. TSPL can complement these efforts by char-
acterizing the evolution of such processes from a Fourier perspective,
providing sampling and reconstruction strategies, and offering more
powerful data-driven embedding techniques compared to higher-order
random walks [34]. Since then, numerous studies have expanded on
these foundational concepts, formalizing methods for convolutional
filtering, sampling, and reconstruction, as well as developing the first
techniques to learn topologies from signals and manage spatiotemporal
topological signals.

(3) Topological data analysis (TDA): This direction focuses on ex-
tracting meaningful shapes and structures present in the data by an-
alyzing them in high-dimensional or complex spaces [35-38]. TDA
provides a suite of tools, such as persistent homology, which captures
topological invariants like connected components, loops, and voids
across different scales, offering a robust way to characterize data ge-
ometry [39,40]. Many TDA methods align conceptually with TSPL, as
both frameworks aim to model and process data through its multi-scale
and multi-dimensional relationships. Persistent homology, for example,
has been used to compute topological summaries that complement
signal processing techniques by providing insights into the global and
local structure of data. Furthermore, advances in TDA have inspired
new approaches in topological machine learning, where persistent
diagrams and topological features are integrated with neural network
architectures for tasks like classification, clustering, and generative
modeling [41]. The core idea of TDA is to use topology as a lens to
uncover patterns and relationships in data that may be invisible to
traditional methods. Differently, TSPL considers the topology as the
support for the data and uses principled topological tools to derive
analysis tools tuned to the properties of the topological space where
the data lives.
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(4) Hypergraph signal processing: This field focuses on processing
signals defined over general topological spaces represented by hyper-
graphs. The study in [19] introduced a tensor-based hypergraph signal
processing (HGSP) framework to extend graph signal processing (GSP)
to high-order interactions. Key advancements include the definition of
the hypergraph Fourier space, analysis of hypergraph Fourier transform
spectrum properties, development of hypergraph sampling theory, and
the fundamentals of hypergraph filter design. This approach was later
extended in [20,22], leveraging a novel tensor-tensor product algebra, a
powerful tool for preserving the intrinsic structures of tensors. Notable
applications of these frameworks include 3D point cloud analysis [21]
and brain functional connectivity inference [42]. Furthermore, [23]
introduced hypergraph neural network architectures grounded in the
HGSP framework, opening new avenues for high-order data analysis.

(5) Topological signal processing: The first works on topological signal
processing began to mature with [43-45]. In parallel, the first tools
using tensor representations for hypergraph signal processing were in-
troduced in [19], extending the principles of GSP to hypergraph signals.
More recently, the overview article in [46] provided a unified, tutorial-
style perspective on signal processing concepts for simplicial complexes
and hypergraphs. Building on these early contributions, numerous stud-
ies have since formalized key methods; however, these developments
remain scattered across various disciplines. In Section 4.1, we unify
these scattered advancements, providing a cohesive perspective.

(6) Topological deep learning: This direction focuses on develop-
ing end-to-end representation learning methods for data defined on
topological structures, building on the success of graph neural net-
works [47-52]. Many of the methods and analyses in these works
share foundational principles with topological signal processing. For
instance, they leverage Hodge theory and Hodge decomposition to
construct principled architectures, utilizing approaches such as con-
volution [53,54] or attention mechanisms [55], among others. The
core idea is to use topology as a relational inductive bias to enhance
deep learning methods, enabling inductive learning solutions that can
generalize across different topologies and address the limitations of
graph-based neural networks. In this context, we highlight Hodge the-
ory and related topological signal processing concepts as foundational
tools for advancing topological deep learning (TDL). These concepts
pave the way for principled methods that complement and extend the
message-passing paradigm.

1.2. Outline of the paper

This paper is organized as follows. Section 2 introduces the key
elements of topological representations of data structures and topolog-
ical signals. It builds upon the concept of signals defined on graphs
and graph Laplacians, extending these ideas to topological signals
and Hodge Laplacians. Section 3 focuses on the spectral processing
of topological signals using Hodge theory. It first revisits the graph
Fourier transform and then transitions to the topological Fourier trans-
form, highlighting their similarities as well as key differences, such
as the interpretation of topological frequencies. Section 4 discusses
recent advancements in methods for signal representation, sampling
and reconstruction, learning topologies from data, and handling spa-
tiotemporal topological signals. This section connects these methods to
the core concepts introduced in Sections 3 and 4, and explores how
these techniques can be applied to develop and enhance machine and
deep learning methods for topological structures. Section 5 presents
promising application areas tailored to the methods discussed. Finally,
Section 6 concludes the paper and outlines key open issues that warrant
further research.

2. Knowledge representation over topological spaces

In this section, we formalize the concept of signals over topological
spaces, focusing specifically on signals defined over simplicial and cell
complexes, alongside the algebraic characterization of their associated
domains. To ease exposition, we first revisit signals on graphs in

Signal Processing 233 (2025) 109930

Section 2.1, before extending these concepts to topological domains in
Section 2.2.

2.1. Signals on graphs

Let us consider a graph G = (V, £) consisting of a set of N vertices
V = {1,2,..., N}, along with a set of E edges & C V x V. Let us also
denote the N x N adjacency matrix as A where the element (i, j) is
denoted as 4, ;, i,j € V. We assume 4;; > 0, if there is a link from
node j tonode i, i.e., (j,i) € £, or A; ;=0 otherwise. The combinatorial
Laplacian matrix for an undirected graph with a symmetric adjacency
matrix A is defined as L, = diag(1TA) — A.

Alternatively, a graph can be represented by its incidence matrix
that encodes the incidence relations between vertices and edges. To
define the incidence matrix B, even if the original graph is undirected,
it is necessary to introduce an orientation of the edges. Then, for each
edge we have an arrow and, in the case of a binary relation, the entries
of B, are defined as follows:

0, if node i is not incident on edge j
[31][,- = 1, if node i is the head of arrow j (€D)]
—1, if node i is the tail of arrow j

It is easy to check that the combinatorial Laplacian matrix, for undi-
rected graphs, can be written as:

L,=BB/, (2)

and its structure is independent from the orientation chosen for the
edges.

A signal x = [x,...,xy]T over a graph G is a mapping from the
vertex set to the set of real numbers, i.e.,, x : ¥ — R. Here, entry x;
is the signal value associated to node i € V. Clearly, this definition
can be generalized by associating vector or matrix-type data to nodes.
The fundamental assumption in graph signal processing is that the
algebraic proximities between nodes encoded in A or L translate into
proximities between the respective signals [6,25]. Such a coupling
can then be used for processing signal x by relying on neighboring
information in a similar way as we process temporal and image signals
based on temporal or spatial proximities [8].

2.2. Signals on topological spaces

Consider a finite set of vertices V. A k-simplex M, ; is a subset of
V with cardinality k + 1. A face of H,; is a subset with cardinality
k and consequently a k-simplex has k + 1 faces. A coface of ¥, ; is a
(k + 1)-simplex that includes H, ; as a subset. Two simplices are called
lower neighbors if they share a common face, and upper neighbors if
they share a common coface. A simplicial complex X of order K, is
a collection of k-simplices H,;, k = 0,...,K such that, if a simplex
H, ; belongs to X, then all its subsets },_, ; C H, ; also belong to Xx
(inclusivity property) [56]. The set of k-simplices in Xy is denoted by
Dy := {M,,; : H;; € Xk}, with its cardinality represented as |D;| = N,.

In most of the cases the focus is on complexes of order up to two
X,, thus having a set of vertices ¥V with |[V| = N, a set of edges &
with |€| = E, and a set of triangles 7 with |7| = T, which result in
D, V (simplices of order 0), D, = & (simplices of order 1), and
D, T (simplices of order 2). Fig. 1 illustrates one such example.
Here, edges {1,2},{1,3},{2,3} are faces of the filled triangle {1,2,3},
and this triangle is a co-face of these edges. Edges {1,2} and {1,3} are
both lower neighbors as they share node 1 (common face), and upper-
neighbors as they share triangle {1,2,3} (common co-face). Instead,
edges {1,3} and {1,7} are only lower neighbors.

To facilitate computations, it is customary to introduce a reference
orientation for simplices of orders k > 1, i.e., edges, triangles and

so on. This reference orientation is a matter of bookkeeping similar
to the arbitrary labeling of the nodes in a graph. W.l.o.g., we fix the
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edges
1 1 1 1 1 1 0 0 0 0
-1 0 0 0 0 0 1 1 0 0
0 -1 0 0 0 0 -1 0 1 0 0 0 —1
B, = 0 0 -1 0 0 0 0 -1 0 0 nodes Bs = 0 0 0 edges
0 0 0 -1 0 0 0 0 0 1 1 0 0
0 0 0 0 -1 0 0 0 0 -1 0 1 0
0 0 0 0 0 -1 0 0 -1 0 0 0 0
L 0 0 1]

Fig. 1. (top-left)A simplicial complex of order K = 2. It is composed of 7 nodes, 10 edges, and 3 filled triangles (shaded areas). Example of simplices: H,, = {1}, Hy, = {2},
Hys = {3); Hyy = (1,2}, Hy, = (1,3}, H,, = {2,3); Hy, = {1,2,3}, Hy, = {1,2,4}, H,5 = {1,5,6}. Notice that triangle {1,3,7} is empty and not a part of the SC. (top-right) The
oriented version of the SC following the lexicographi ordering of its vertices. Example of oriented simplices: H,, = [1,2], H,, = [1,3], H,, = [2,3]; H,, = [1,2,3], H,, = [1,2,4],

H,; =[1,5,6]. (bottom) Incidence matrices of the oriented simplicial complex.

orientation for a simplex according to the lexicographical ordering of
its vertices. See an example in Fig. 1.

A k-simplicial signal is a collection of mappings from the set of all
k-simplices contained in the complex to real numbers:

X = Do (Hy ) oo X (H ) o X (M g 1T € RYE, 3)

where x, : D, — R. For simplices of order k > 1, i.e. edges, triangles,
etc., if the signal defined over each simplex represents a flow, then its
value is positive if the flow goes in the same direction as the orientation
of simplex, or negative in the opposite case. In general, we define a
simplicial complex (SC) signal as the concatenation of the signals of
each order:

K
N
Xy = [Xo” ||X1<] € RZimo Vi,

4

For second-order SCs, the k-simplicial signals are defined as the follow-
ing mappings:

Xy V=R, x;: €-R, X, 1 T =R, 5)

representing graph, edge and triangle signals, respectively. In this case,
the corresponding SC signal is given by:

RN+E+T

(6)

Xy = [XolIx, lIx,] €

Remark 1 (Cell Complexes.). These definitions can be generalized to
the case of signals defined over cell complexes, which share most of the
properties of simplicial complexes, but also some important differences.
For instance, differently from simplicial complexes, the inclusivity does
not hold [14], i.e., given a simplex H, ; C Xk, not all subsets H,_;; C
H,; need to belong to X,. Interestingly, for cell complexes of order
2, this gives rise to the presence of polygon-type relationships among
the data. An example is illustrated in Fig. 2, where the presence of the
quadrilateral does not imply the presence of triangles or diagonal edges
within the quadrilateral itself. For more details on the differences be-
tween simplicial and cell complexes refer to [14], whereas for the role
such differences induce in signal representation refer to [57-59]. []

Fig. 2. A regular geometric cell complex of order K = 2. It is composed of 7 nodes,
9 edges, 2 filled triangles (shaded blue areas), and 1 filled polygon (shaded magenta
area). Examples of O-cells: nodes such as { {1}, ..., {7} }. Examples of 1-cells: edges
such as { {1,2}, ..., {5,6} }. Examples of 2-cells: triangles { {1,2,4}, {1,5,6} } and the
quadrilateral { {1,2,3,7} }. An orientation can now be set to any cell fro order k > 1
similar to the simplicial complex. The incidence matrix B, will capture node-to-edge
proximities, while the incidence matrix B, will capture edge-to-triangle and edge-to-
polygon proximities.

2.3. Algebraic representation

The structure of a simplicial complex X is completely characterized
by its set of incidence matrices B, k = 1,..., K. Extending the concept
from graphs, the entries of the incidence matrix B, specify which -
simplices are incident to which (k — 1)-simplices. We use the notation
Hy_1; ~ H,,; to indicate two simplices with the same orientation,
and H,_,; » H,; to indicate that they have opposite orientation. The
entries of B, are defined as:

0, ifH_,, ¢ M,

[Bk]i,j = 1, ifH,_,; CH, and H,_j; ~ H,
=1, ifH_,; cH;and Hy_y; ~ Hy;

@
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As an example, considering a simplicial complex X, of order two, we
have two incidence matrices: the node-to-edge incidence matrix B, €
RN*E | and the edge-to-triangle incidence matrix B, € REXT. The latter
are illustrated in Fig. 1. From the incidence information, we can build
the higher-order Hodge Laplacian matrices, of orders k =0, ..., K, as:

L,=BB], (8)
L= BB, +By B/ , k=1, K-1, ©)
N~ ~——
L@ L
k k
Ly =B} By. (10)

Here, L, is the combinatorial graph Laplacian defined in Section 2.1
and captures node-to-node proximities. All Laplacian matrices of in-
termediate orders k = 1,...,K — 1, contain two terms: The first term
Lf), known as down Laplacian, encodes the lower adjacency of k-order
simplices; the second term Li“), known as upper Laplacian, encodes the
upper adjacency of k-order simplices. Thus, for example, two edges are
lower adjacent if they share a common vertex, whereas they are upper
adjacent if they are faces of a common triangle. Note that the vertices
of a graph can only be upper adjacent, if they are incident to the same
edge. This is why the Laplacian L, contains only one term, and it
corresponds to the usual graph Laplacian. Similar definitions apply also
for the higher-order Hodge Laplacians of cell-complexes, upon defining
the proper incidence relationships between the elements (i.e., the cells)
of the domain [58,59].

A key property of the Hodge Laplacians is that they make possible to
extract some fundamental global properties (invariants) of the complex.
More specifically, the dimension of the kernel of the Hodge Laplacian
of order k is equal to the Betti number g, of order k and its value
represents the number of connected components, for k = 0, the number
of holes, for k = 1, the number of 3D cavities, for k = 2, and so on.

The Hodge Laplacian matrices play the equivalent role for topolog-
ical signals of the graph Laplacian pays for graph signals. However,
depending on the setting, we may be interested in processing solely a
simplicial signal (e.g., edge flows) and have no other signal available,
or process jointly the SC signal (e.g., joint processing of node, edge, and
triangle signals). We shall detail the differences in these two cases in
the next two sections.

2.4. Hodge decomposition

One useful property of the Hodge Laplacian is their link with the
Hodge decomposition. In particular, given the kth intermediate Hodge
Laplacian L, = BBy + By,B/, , the Hodge decomposition states
that the signal space associated with each simplex of order k can
be decomposed as the direct sum of the following three orthogonal

subspaces [24]:

RN = span(B)) kernel(L,) . [€§))

——

(¢) harmonic space

® spanB,.;) @
[

(a) gradient space (b) curl space

This implies that the kth simplicial signal space is composed of three
subspaces, namely the gradient space span(Bz), the curl space span(B, ),
and the harmonic space kernel(L,). In turn, the Hodge decomposition
implies that every signal x, of order k can be decomposed as:

X, = Bzik—l + BaXe o+ Xy - a2
——

——

(a) gradient component (b) curl component (c) harmonic component
That is, there exists three signals %, _;,%,,X, ., of respective orders k—1,
k, k + 1 that can express the signal. In other words, the decomposition
in (12) shows how the inter-simplex couplings imposed by the Hodge
Laplacians translate into inter-signal couplings across different levels.
Such couplings yielding from the decompositions in (11) and (12) carry
the following interpretation when discussing edge signals x; (i.e., k =
1) [44,60]:
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(a) Gradient space and gradient component: The space span(BlT) is
called the gradient space. An edge flow signal x,, = BITXO
living in this space is referred to as a gradient flow and it can
be obtained by differentiating node signals X, along the edges
connecting them. The component of an edge signal x; living in
the gradient space is referred to as the gradient component (a.k.a.,
the irrotational component).

(b) Curl space and curl component: The space span(B,) is called the
curl space. An edge flow signal x, . = B,X, living in this space is
referred to as a curl flow and it can be induced by some triangle
signals X,. The component of an edge signal x, living in the curl
space is referred to as the curl component (a.k.a., the solenoidal
component).

(c) Harmonic space and harmonic component: The space kernel(L;)
is called the harmonic space. An edge flow signal %X, living in
this space is referred to as a harmonic flow and it cannot be
induced from adjacent simplicial signals. The component of an
edge signal x, living in the harmonic space is referred to as the
harmonic component.

The Hodge decomposition shows how the topological proximities

between different simplices translate into inter-simplicial couplings.
While the decomposition holds for any simplicial signal, the termi-
nology is more intuitive when discussing edge flows but often it is
used also for a more general setting. We shall see in Section 3.2 how
this Hodge decomposition ties with the Fourier analysis of topological
signals.
Performance-complexity tradeoff. Moving beyond graphs introduces
additional computational complexity, which must be justified by a
corresponding improvement in performance. The advantages of TSP
become particularly evident when data exhibit multi-way relation-
ships across various hierarchical levels, which traditional graph-based
approaches fail to fully capture. For instance, in the case of edge
flows, the Hodge decomposition in (12) identifies three distinct sig-
nal components: gradient, curl, and harmonic. As shown in (12), the
curl and harmonic components cannot be effectively extracted with-
out incorporating higher-order structures such as triangles or cells.
When predictive tasks strongly depend on these components, graph-
based methods inevitably lose valuable information, while topological
methods can effectively preserve and capture it, resulting in superior
performance in such contexts. This is even more critical when address-
ing applications where data is defined over second- or higher-order
simplicial or cell structures, necessitating the development of more
advanced and tailored TSP methods. Finally, the effectiveness of TSP
relies heavily on the accurate definition of the topological domain.
In cases where such knowledge is absent or incomplete, task-specific
topology learning methods must be designed to infer the optimal
topological structure that enhances performance while managing com-
plexity. Promoting sparsity in the topological representation should
serve as a key principle, as it provides a practical means to strike
a balance between computational efficiency and performance gains.
By addressing these challenges, TSP has the potential to unlock new
opportunities for processing and learning from complex, multi-scale
data in diverse applications.

2.5. Dirac operator and Dirac decomposition

The Hodge Laplacian and Hodge decomposition are convention-
ally used to represent, analyze, and process signals within a given
simplicial order. When signals across different simplicial orders are
present, a joint analysis and processing may carry useful information.
Since topological complexes rely on the assumption that simplices
influence each other only in consecutive orders, then a natural way is
to provide a representation that enables topological signal processing
across consecutive simplices. The latter is possible via the concept of
the Dirac operator which we elaborate next [61,62].
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Dirac operator. Focusing for simplicity on a simplicial complex X, of
order K = 2, the Dirac operator reads as:

0 B, 0 0 B, 0] o 0o o
Dy:=|Bf 0 B,|=|B] 0 0f+|0 0 B, 13)
0 B] 0 0 0 of |0 B] 0

@ @
DX Dé\’

where we refer to D(;) and DE\‘;) as the down and up Dirac opera-
tor, respectively. The Dirac operator is such that its square gives a
block diagonal concatenation of the Hodge Laplacians, i.e., Di} =
blkdiag(Ly,L;,L,).

Application to topological complex signals. When applied to a SC
signal, the Dirac operator yields the shifted signal:

xé)l) B x;
XEXP = Xll) = DXXX = BIXO +B2X2 . a4
o Blx

The shifted node signal x(()” = B,x,; sums the edge flows flowing into a
node and is referred to as the divergence of the edge flow; the shifted
edge signal X<11) = BlTx0 + B,x, is the linear combination of a gradient
flow obtained from the nodes and a curl flow induced by triangle
signals; and the shifted triangle signal xgl) = B;x1 is the curl signal
of the edge flow. The operation in (14) shows how we can translate
inter-topological couplings into inter-topological signal operations. The
latter has been used in a few recent works to filter topological signals
on simplicial complexes in a consistent way [62], or design principled
topological neural architectures [55].

Dirac decomposition. Similar to the Hodge decomposition in (11),
the Dirac decomposition states that the signal space associated with a
topological signal x, can also be decomposed as the direct sum of the
following three orthogonal subspaces reminiscent of (13):

K

RZoM = span(DY) o

span(D(Af)) ) kernel(D )

(b) joint harmonic space

(15)

(a) joint gradient space (b) joint curl space

where by following the same terminology as for the Hodge decomposi-
tion, we refer to (a) span(DEg)) as the joint gradient space; (b) span(D(A’j))
as the joint curl space; and (c) kernel(Dy) as the joint harmonic space.
While the interpretation of these subspaces is more involved than that
of the Hodge decomposition in (11), they still allow decomposing a
topological signal x into the sum of a signal ig‘f) S span(D(;)), a signal
i;’f) € span(D(X“)), and a harmonic signal X, € kernel(Dy), i.e.,

<(d = ~
X, = XEY) + ng) + Xy
—— ——
(a) joint gradient component (b) joint curl component (¢) joint harmonic component

(16)

We refer the reader to [62] for more details on the Dirac decomposition
of topological signals.

3. Spectral processing

In this section, we show how the Hodge and Dirac decomposition
can be used for a spectral analysis of topological signals. We first
recall the basic concepts of the graph Fourier transform in Section 3.1
and then define the more general topological Fourier transform in
Section 3.2. We conclude by discussing the spectral duality for joint
topological complex signals in Section 3.3.

3.1. Graph fourier transform

Given an undirected graph ¢ = (V,&) with graph Laplacian L
and graph signal x, the graph Fourier transform (GFT) of signal x is
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the signal projection onto the Laplacian eigenspace. More specifically,
given the eigendecomposition L = UAU", the GFT of x is & = UHx. The
eigenvectors U = [u,...,uy] serve as the spectral basis expansion for
the graph signal x, and the GFT coefficient %; is the weight indicating
how much eigenvector u; contributes to represent the signal. Following
the analogy with the classical Fourier transform [9], the eigenvalues in
A = diag(4,, ..., 4y) contain the so-called graph frequencies.

The Fourier notion of the projection & = U"x comes from the fact
that we can view each eigenvector w; = [u;,, ..., u;y]" as a graph signal
and analyze its variability w.r.t. the graph ¢. One way to do this is
via the quadratic variation QV(u;) = u:."Lu,- = 4;, which indicates how
smooth u; is over the graph ¢. Thus, we can sort the eigenvectors based
on their variability 0 = QV(u;) < QV(uw,) < ... £ QV(uy), which
implies an ordering of the graph frequencies 0 = 4, < 4, < ... < An.
As a consequence, we refer to the eigenvalues A; close to 0 as low
frequencies and to eigenvalues 4; > 0 as high frequencies. Hence, the
GFT coefficient %; indicates how much the eigenvector signal basis u;
contributes to the variability of the graph signal x. We shall discuss
next that a similar, yet slightly more involved, Fourier analysis can be
derived also for topological signals of any order.

3.2. Topological fourier transform

As for the graph Laplacian, any Hodge Laplacian of order k enjoys
an eigendecomposition of the form

L, =LY + LY =B/B, +B,,B] | =U,A,U] 17
with orthogonal eigenvector matrix Uy = [uy;,...,uy ] € RN
and eigenvalue matrix A, = diag(4y., ..., 4 y,)- Then, the topological

Fourier transform (TFT) of a signal x, is given by the projection onto
the eigenvectors Uy, i.e., X, = UZxk [44]. As for the GFT, the ith entry
of %, i.e., %, ; represents the weight of eigenvector u,; in expressing
signal x,. The inverse TFT is given by x, = U,X,. Notice that the GFT
discussed in Section 3.1 is the special case of the TFT for k = 0. While in
principle the TFT and the GFT are quite similar, they differ substantially
in terms of interpretation as we elaborate in the sequel.

Interpreting the TFT. The Hodge Laplacian eigendecomposition has a
correspondence with the Hodge decomposition in (11). More specifi-
cally, from [60, Proposition 4] it is possible to rearrange the eigenvec-
tors in U, and eigenvalues in A, respectively as:

Uy = [Up .U, .Uyl and A, = blkdiag(Ay g, Ay c. Agp)- (18)

Focusing again to edge signals, k = 1, we can observe the following:

(@) Gradient space and gradient frequencies: The eigenvectors U, ; €
RM>*Ng span the gradient space span(BlT) with dimension N,.
Hence, the component %,, = UlT,gxl represents the gradient
component of the TFT. The eigenvectors u, € U, ; also carry a
notion of variability via the quadratic variation w.r.t. the Hodge
Laplacian L, i.e.,

QV(uy) = i Ljug = [IByugl3 + B ugll; = [Byugl3 = 4, (19)

where B;ug = 0 since u, is a gradient flow. Thus, the eigen-
value 4, is the squared #,—norm of the divergence Bu, of the
corresponding gradient eigenvector. We can use this quadratic
variation to sort the gradient eigenvectors, and correspondingly,
the divergence variation of the corresponding eigenvectors in an
ascending order 0 < QV(ug;) < QV(ug ;) implying an ordering of
the eigenvalues 0 < Agi < Ag; for i,j € {1,...,Ng}. In turn,
this ordering carries the same meaning of variability as for the
graph frequencies but now it measures the variability of the
total divergence. We refer to the eigenvalues 4, associated to
the gradient eigenvectors U, , as the gradient frequencies.

(b) Curl space and curl frequencies: Analogously, the eigenvectors
U, . € RN*Ne span the curl space span(B,) with dimension N..
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Fig. 3. Eigenvectors of the L, Hodge Laplacian shown as edge flow signal along with their respective eigenvalues. (top-row) gradient eigenvectors with increasing total divergence.
(bottom row) curl eigenvectors with increasing total curl variation, and the harmonic eigenvector. The latter is localized around the hole in the simplicial complex.

The projection %, = ULX, represents the curl component of
the TFT, where the eigenvectors u, € U, . do carry a notion of
variability that is different from that seen above. Using again the
quadratic variation w.r.t. the L, Hodge Laplacian we have

QV(u) =ulLju. = [Bjuc[? + IBJucl = [Bjul3 =4 (20)

where B,u, = 0 since u, is a curl flow. Now, the eigenvalue A,
is the squared #,—norm of the total curl B]u, of the correspond-
ing curl eigenvector. Using this interpretation of the quadratic
variation, we can sort separately the curl eigenvectors, and
correspondingly, the total curl variation of the corresponding
eigenvectors in an ascending order 0 < QV(u.;) < QV(u;)
implying an ordering of the curl eigenvalues 0 < A.; < A; for
i,j €{l,..., N.}. We refer to the eigenvalues 4, associated to the
curl eigenvectors U, . as the curl frequencies.

(c) Harmonic space and harmonic frequencies: Finally, the eigenvec-
tors Ujy, € R¥N1*M span the harmonic space kernel(L;) with
dimension Ny,. The projection %, ), = UITh}n{l represents the har-
monic component of the TFT, where the eigenvectors u, € Uy,
are all associated to the zero eigenvalue since

QV(uy) = uf Lyuy = [[Byuy |13 + IBJupll3 = 0 = 4. (21

Consequently, we will refer to the eigenvalues 4;, = 0 as the
harmonic frequencies. These harmonic frequencies correspond to
a global conservative flow, i.e., a flow signal that does not have
any gradient or curl component.

The above discussion shows that the notion of low and high fre-
quency in a SC are only meaningful within a certain type. An illus-
tration of the latter is shown in Fig. 3. This behavior is a unique
characteristic of topological spaces that is not conventionally seen in
graph and discrete signal processing. We refer the reader to [44,46,59,
60,63] for more details on the latter.

Remark 2 (Hodge Decomposition and GFT). Notice that the graph Lapla-
cian can also be written as L = BIBIT, which implies that the space of
all graph signals, i.e., kK = 0, enjoys also a Hodge decomposition of the
form RMo = span(B,) @ kernel(L). Since from a topological perspective,
the case k = 0 implies that nodes are connected only via the upper
Laplacian, the space span(B;) is the analogous of the curl space in
(11), whereas kernel(L) is the harmonic space. Consequently, the GFT
accounts for the projection of the graph signals onto these subspaces,
where the eigenvectors U associated with a non-zero eigenvalue span
the curl space span(B;) and those associated with a zero eigenvalue
span the harmonic space kernel(L). []

3.3. Joint spectral spaces

As for the Hodge Laplacians, the Dirac operator enjoys the eigende-
composition:

D, =D + DY = UyA, UL (22)
The matrix of eigenvectors Uy of D, can be written as:
Uy = [UY. 0%, 0, 23

where U(;),U()‘;) are the matrices of non-zero eigenvectors of D(;) and
DE{,‘), respectively, whose columns respectively span the joint gradient
space span(D(;)) and the joint curl space span(Dg?)). The columns of
U, span the joint harmonic space kernel(D,). Since the Dirac operator
matrix is a block matrix composed of the incidence matrices defining
the topological complex, it is possible to relate the eigendecomposition
in (23) with the singular value decompositions of the incidence matri-
ces B,, as well as the harmonic eigenvectors of the Hodge-Laplacian.
Likewise, also the eigenvalues in A, can be grouped into those related
to UE{,‘,) , U(;), and Uy and they can in turn be related to the eigenvalues
of the Hodge Laplacian and singular values of the incidence matrices.
Specifically, eigenvectors associated with positive eigenvalues of D(X“)
and D;‘j) capture configurations where signals defined on the 1 and
0-simplices, and on the 2 and 1-simplices, respectively, are aligned
with the action of the boundary operators. On the other hand, eigen-
vectors associated with negative eigenvalues, capture configurations
where signals defined on the 1 and O-simplices, and on the 2 and 1-
simplices, respectively, are antialigned with the action of the boundary
operators. By picking out the eigenvectors associated to positive (neg-
ative) eigenvalues of the Dirac operator, one can thus find appropriate
basis vectors for aligned (anti-aligned) simplicial signals. The above
theoretical framework and interpretation enables and motivates the
design of filters acting on joint spectral spaces. We refer the reader
to [62] for further details on the matter.

As for the topological Fourier transform, we can compute the spec-
tral projections of simplicial signals onto the Dirac operator eigenspace.
Specifically, letting x = [x],x/,x; |7 € RN+E+T be the vector collecting
node, edge, and triangle signals, the topological Dirac Fourier transform
reads as X = U;x, where the ith entry represents the weight of the ith
eigenvector of U, in expressing signal x. The inverse topological Dirac
Fourier transform readily writes as x = UX.

4. Current advances

The goal of this section is twofold. First, it aims to bring together the
current methodological advances on topological signal processing and
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learning. Second, it highlights how these advances tie to the concepts
discussed in Sections 2 and 3. More specifically, in Section 4.1 we dis-
cuss topological signal representation advances, whereas in Section 4.2
we focus on how to learn topological structures from data. Then, in
Section 4.3 we discuss topological filters and in Section 4.4 sampling
and reconstruction strategies that take into account the topological
complex structure. Section 4.6 discusses the case of processing spa-
tiotemporal topological signals, and finally Section 4.5 discusses how
these techniques can be useful when building machine learning models
for topological structures and signals.

4.1. Signal representation

A spectral theory for signals defined over simplicial complexes
was first introduced in [44], utilizing algebraic topology tools such as
higher-order Laplacian matrices. The framework identifies eigenvectors
of these Laplacians as a natural basis for representing and analyzing
these signals, and enables the Hodge decomposition of signals into
meaningful components via spectral analysis. This decomposition iden-
tifies signals components like harmonic, gradient, and curl flows, which
can then be manipulated or analyzed separately. Other studies extended
the approach from [44] to regular cell complexes [57,58], whereas
the work in [59] generalized the concept of cell complexes to include
hollow cells. These approaches to filter data on simplicial complexes
operate independently on each order. To formally incorporate inter-
dependencies among simplices of different orders, the Dirac operator
was introduced in [61] and has been employed as a robust and theoret-
ically grounded approach to jointly process signals across consecutive
orders of simplices [62].

A key challenge in signal processing is sparse signal representa-
tion [64], which focuses on creating overcomplete dictionaries of atoms
to represent signals as linear combinations of only a few atoms from
the dictionary. Two main approaches have proven effective for both
Euclidean and graph signals. The first involves analytical dictionaries,
which are structured and derived from mathematical models, designed
based on the specific domain while assuming a certain class of signals,
such as Fourier transforms, wavelets, or curvelets. The second approach
is learnable dictionaries, which are unstructured and learned from a set
of training signals [65]. A crucial trade-off exists between these meth-
ods: analytical dictionaries are typically faster to implement but are less
resilient to model mismatches, whereas learnable dictionaries are more
robust across different signal classes but involve higher complexity
due to the training phase. In the context of topological dictionaries,
analytical methods have been extended from graph signals, where the
topological Fourier modes provide a natural basis for signal represen-
tation [34]. However, since Fourier modes are often non-sparse and
inefficient for representing localized signals, other methods have been
developed. In [66], a dictionary of basis vector maximally concentrated
in the discrete vertex and frequency sets were introduced, generalizing
the seminal work of Slepian from continuous time to graphs. The
work in [67] proposed a family of wavelets for simplicial signals that
respect the Hodge decomposition. Then, the authors of [68] introduced
topological Slepians, which are signals maximally concentrated on the
topological domain and perfectly localized in the spectral domain.
Specifically, let us introduce two localization operators acting onto an
edge concentration set, say S, and onto a frequency concentration set,
say F, respectively. The edge-limiting operator onto the edge set S is
defined as the matrix Cg € REXE given by:

Cg = diag(1y), (24)
where 15 € RE is a vector having ones in the index positions specified
in S, and zero otherwise. Clearly, from (24), an edge signal x; is

perfectly localized onto the set S if Cgx; = x,. Similarly, the frequency
limiting operator can be defined as:

Fy = U, diag(1;) U7, (25)
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which represents an ideal band-pass filter over the frequency set F.
Clearly, an edge signal is perfectly localized over the bandwidth F if
Frx; = x;. The topological Slepians are the set of orthonormal vectors
that are maximally concentrated over the edge set S, and perfectly
localized onto the bandwidth 7. Mathematically, topological Slepians
are given by the solution of the following optimization problem:

v, =argmax ICsw;li3

subject to |ly;ll=1, Fry, =y, (26)

<y,y;>=0, j=1L..,i-Lifi>],

for all i = 1,...,E. The solution of problem (26) is given by the
eigenvectors of the matrix operator FrCrFz. Topological Slepians can
be used to build localized dictionaries for signals defined over sim-
plicial or cell complexes, which theoretically provide non-degenerate
frames [68]. Other generalizations are illustrated in the work [69],
which exploits multiscale basis dictionaries on simplicial complexes
based on generalized Haar-Walsh and hierarchical graph Laplacian
eigen transforms, to design multiscale hodge scattering neural net-
works.

On the other side, the paper in [70] introduced a dictionary learning
algorithm for sparse representation of signals on regular cell com-
plexes. Utilizing Hodge theory, the dictionary is structured as polyno-
mials of Hodge Laplacians. Specifically, the dictionary consists of the
concatenation of P convolutional filters, i.e.,:

H = (H;(Ly), Hy(Ly), ..., Hp(Ly)} € RMXFNk,

where each sub-dictionary is expressed as:
Ty Ty

H,(Ly) = Y AP MDY + Y Ay (27)
t=0 t=0

where {hl(.:l)}, {hg‘)} are the filter coefficients as we discuss more in
detail in Section 4.3. The dictionary learning problem, combining topo-
logical filter coefficients and sparse representation, is then efficiently
solved via an alternating optimization approach.

4.2. Learning topologies from data

This section deals with discovering topological relationships from
data. Within the field of graph signal processing, many results ex-
ist on edge-wise topology identification from node signals. Here, a
link between the data and the graph is established based on con-
cepts like smoothness, structural equation models, Gaussian graph-
ical models, and spectral templates to name a few [71]. Discover-
ing higher-order topological relationships from nodal (and potentially
higher-order) observations is less obvious.

Focusing on simplicial and cell complexes, the problem statement
is finding a complex that can explain the topologically data that is
(fully or partially) available on different levels. In [44], a hierarchical
method has been proposed to infer the structure of one layer, assuming
knowledge of the lower layers. For instance, if flow data (edge signals)
are available, which implicitly assumes that a graph is known (and
thus L, or B, are known), we can infer the structure of a simplicial
or cell complex of order two. Since B, is already known, we know the
lower Laplacian L<]d) and only the upper Laplacian L(1"> or B, needs
to be estimated. Referring back to the Hodge decomposition, it is
clear that B, is only needed to explain the data if the edge signals
have a curl component. So first the flow data is projected onto the
orthogonal complement of the gradient space. And if there is enough
energy left, a fixed number of triangles is filled in such a way that some
total variation measure (or smoothness measure) of the (gradient-free)
flow data over the upper Laplacian L(I“) is minimized. This measure is
similar to the well-known smoothness measure of node signals over the
Laplacian L,,. Extensions to cell complexes have been proposed in [59].
In [72], on the other hand, triangles are filled based on maximizing the



E. Isufi et al.

fit of the (gradient-free) flow data to the curl space, which is different
from the smoothness measure considered in [44,59]. In [73,74], the
observations over the elements of a simplicial complex are modeled as
random variables and methods to infer the structure of the complex
from data are proposed. The focus of [73,74] is on the edge flows,
but the approach can be generalized to higher order structures. The
model in [73] assumes smooth Gaussian node and triangle random
variables plus a white Gaussian harmonic random variable. Since the
observation of edge variables implicitly assumes that the graph skeleton
is known (and thus L, or B, is known), the problem that maximizes
the posterior probability then basically boils down to a smoothness-
regularized edge flow fitting problem, which can be contrasted to the
maximum likelihood style fitting problem of [72] where no smoothness
priors are assumed. In [74] it was shown that, if the gradient, curl
and harmonic random variables are uncorrelated, but with arbitrary
covariance matrices, a principal component analysis (PCA) performed
on the covariance matrix of the edge variables still satisfies the Hodge
decomposition. Furthermore, simple algorithms have been proposed to
infer the structure of B,, thus filling the triangles in the simplicial
complex, based on the covariance matrix of the observed random vector
projected onto the space orthogonal to the gradient space of the edge
flow. A generalized version of the graphical lasso method [75] to
random edge variables was also proposed, to estimate the partial cor-
relation coefficients between edge variables and then infer conditional
independencies among the edge variables.

Non-hierarchical methods have been proposed in [76-78]. The
work [76] is probably closest to the previously cited papers and jointly
estimates the edges and triangles, i.e., B, and B,, using full nodal data
and partial flow data (an extension to partial nodal data is straight-
forward). The properties that are exploited in [76] are that the node
signals are smooth over the Laplacian L, and the edge signals have
a small curl (i.e., they are smooth over the upper Laplacian L(l”)).
Similarly, it can be considered that the edge signals have a small
divergence (i.e., they are smooth over the lower Laplacian L(l")). Or
even a weighted combination of the two edge smoothness measures
can be used in the objective function. On the other hand, [77] relies
on the Volterra model to estimate a second-order hypergraph using
only nodal information. A least squares cost can be used to fit the
nodal observations to the first- and second-order Volterra kernels.
Furthermore, the constraint required to force the hypergraph to be a
simplicial complex, i.e., to satisfy the inclusion property, can be relaxed
to a convex constraint. A similar yet probabilistic Volterra-like model
has been considered in [78] for modeling social contagion dynamics.
It can be viewed as an extension of the Ising model from pairwise
to higher-order interactions. From observed binary infection data, the
probabilities that a node or a pair of nodes is connected to another
node is estimated using the expectation-maximization algorithm. Those
probabilities can then be used to recover edges and triangles of a
simplicial complex.

Finally, the paper in [79] presents latent higher-order topology
inference. The work introduces the differentiable cell complex mod-
ule (DCM), an architecture that dynamically learns cell complexes by
first inferring the 1-skeleton (a graph) and then identifying higher-
order cells (polygons) to include. These steps leverage message passing
and a sparse sampling technique. The DCM is trained end-to-end and
achieves significant accuracy improvements on both homophilic and
heterophilic datasets, demonstrating robust performance even when
input graphs poorly represent the data.

4.3. Filtering

In Section 3, we discussed the spectral processing of topological
signals by means of either the Hodge or Dirac decomposition. This
duality between the spectrum and the topological domain opens the
doors to a different signal representation and processing perspectives as
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discussed in Section 4.1. Alternatively, we can spectrally process topo-
logical signals via local filtering approaches without resorting to the
spectral domain. The latter is achieved in two ways: first, by extending
the concept of convolutional filtering to the topological domain; and
second via regularization techniques.

Convolutional filtering. The spectral filtering of topological signal is
computationally expensive as we need to compute the eigendecomposi-
tion of the Hodge or Dirac matrices. To avoid the latter, [60] developed
topological filters by following the principle of convolution to process
the kth signal x, and produce the output y, as:

Ty Ty
d d
Ve i= HILx, = ) RO WD) x, + Y ALY x, (28)
=0 =0
t: t:
H L) H (L)

where hﬁj) and h;:;) are the filter parameters associated to the lower
and upper Hodge Laplacians, respectively. Here, (L;('))’ is meant as the
tth power of the kth of the respective Laplacian matrix which are
computed up to orders 7, or T,. Since the Hodge Laplacian matrices
are sparse, operations of the form (L?)’x,C can be computed recursively
as (LZ))’xk = L?((LZ))I_IX,{) to reduce the computation cost. As for the
convolutional filters in time, images and graphs [8], the operation in
(28) builds upon the shift-and-sum principle by propagating signal x,
to neighboring simplices via either the upper or lower adjacencies. This
locality of information processing is the reason why the dictionaries in
(27) are topological local dictionaries.

The nice property of the operation in (28) is that is preserves
a spectral analogy. In fact the lower Laplacian filtering component
Hk(Lid)) processes the gradient component of the topological Fourier
transform, whereas the upper Laplacian filtering component Hk(LL“))
processes the curl component of the TFT. This processing is coupled
with that of the harmonic part via the zero-th power of the Laplacian
matrices. To provide an independent processing of the Harmonic part,
the work in [55] modified (28) to:

Ty Ty

Ve i= HLx, = ) ADLOYx + Y ALY x, + A= eLy)Tix, (29)

t
t=1 t=1

where the polynomials start from ¢ = 1 and the term (I-eL, )" projects
the input x, onto the harmonic space as the integer T;, — oo, if we set
parameter 0 < e < 2/, (Ly).

When signals across multiple topological levels are present, we can
readily extend operations (28)—(29) onto filterbanks that account for
the adjacent simplicial signals [80]. To illustrate the latter, let us focus
on the edge flow signals x; and consider available both node signal x,,
and triangle signals x,. We can then compute the output edge flow as:

v = HL)x, +HL)Bx, + HL)B,x, (30)
edge — edge node — edge triangle — edge

where the node signal x, and triangle signal x, are transformed via
the respective incidence relations onto edge flows and then processed
via respective filters. Notice that the operation in (30) can be easily
extended to processing also node and triangle signals by accounting
for the edge flows in a similar manner. In all these cases, the filters
have different parameters so that to allow a higher flexibility when
processing the different spectral components. In case the parameters
are learned from limited data, we can rely on the Dirac operator (13)
and process jointly the topological signal x, = [x,, X, X,] [cf. (4)] as:

Yx = HDy)xy. (31)

Here, H(D,) is a matrix polynomial in the form (28) or (29) where the
kth Hodge Laplacian matrix L, is substituted by the Dirac matrix D . In
this case, the same scalar coefficients are used to process all simplicial
signals, which allows a spectral analysis of the filter frequency response



E. Isufi et al.

via the Dirac decomposition [cf. Section 3.3]; refer to [55, Appendix A]
for more details on the latter.

Filtering by regularization. An alternative way to process topolog-
ical signals with a spectral equivalence is to rely on regularization
techniques in a form akin to the popular Tikhonov regularization
or trend filtering for graph signals [8]. To be more specific, let us
consider the task of edge flow signal x, reconstruction from partial
noisy measurements f; = M(x; +n), where M € {0, 1}1*N1 is a masking
matrix sampling M; < N, edge flows and n, is a zero-mean Gaussian
noise. Then, we can estimate the edge flow signal by solving:

argmin  [[M(f; — x5 + a,IByx; |12 + 8, 1IB x| (32)

x; RN

where a,,f, > 0 are scalars and p.q € {1,2}. The prior information
about the edge flow here is put on the regularization terms, where
[IB;x; ||§ penalizes the divergence of the edge flow to be either of low
magnitude (p = 2) or sparse (p = 1), whereas the second term ||B2Tx1 ||Z
penalizes the curl component of the edge flows. Variants of problem
(32) have been discussed in [81-83]. As for the convolutional filtering,
the regularizer problem can be extended to account for multiple signal
levels via the Dirac operator by penalizing either smooth or sparse
differences across all the simplicial complex [62].

4.4. Sampling and reconstruction

In [44], the sampling and reconstruction problem of graph signals
is extended to simplicial complexes. More specifically, an edge signal
x, is subsampled over the edge space and is further assumed to be
bandlimited in the spectrum of L, i.e., it only consists of a limited
number of eigenvectors of L;. It is then shown that perfect recon-
struction of x; can be obtained under a full rank condition of the
product of the edge limiting and edge-frequency limiting operators.
In [44], this single-layer sampling method is further extended to multi-
layer sampling, where additionally a limited number of samples of the
node signal X, and/or the triangle signal X, forming the edge signal x,
(see (12)) are available, and where furthermore %, and X, are assumed
to be bandlimited in the spectrum of L, and L,, respectively.

In [84], on the other hand, not only x; is subsampled but also
its higher-order diffusions (aggregations) over the edge Laplacian L.
The goal is then again to reconstruct this edge signal x; but now by
estimating the simplicial signals of one order lower %, (a node signal)
and one order higher %, (a triangle signal) as well as the harmonic
edge signal X, that all three together yield the complete edge signal
x, through the Hodge decomposition (see again (12)). In order to do
that, it is assumed that %, and %, are bandlimited in the spectrum of L,
and L,, respectively, and that also %, is bandlimited over kernel(L,). As
proven though in [84], these bandlimitness conditions are equivalent
to assuming bandlimitedness of x; in the spectrum of L,. Hence, [84]
is basically similar to the single-layer sampling method of [44] yet
replacing edge sampling by edge aggregation sampling.

Results for a product cell structure which can be viewed as the
Cartesian product of two simplicial complexes can be found in [85].
In that context, bandlimited edge signals on the product cell complex
can be written as a direct sum of the Kronecker product of bandlimited
edge and node signals on the factor simplicial complexes.

Gaussian processes that encapsulate the structure of a simplicial
complex have been studied in [86]. Edge flows are then modeled
as a function of edge features, where this function has a Gaussian
process distribution with a kernel that depends on L;. Based on a
limited number of observed edge flows and all edge features, the kernel
parameters can be learned and the edge flows on the unobserved edges
can be predicted. Furthermore, an online setting can be considered
where the most informative edge flows (the ones with the largest
uncertainty score) are sequentially sampled.
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4.5. Bridging with topological machine learning

Upon defining the notions of topological support and local proxim-
ity between topological signals [cf. Section 2], as well as their spectral
equivalence [cf. Section 3], it becomes fairly natural to leverage the lat-
ter as relational inductive biases [12] for developing machine learning
solutions for topological signals. While different reviews [49,52] and
position papers [50] are tailored to topological deep learning, we here
review works that bridge the topological signal processing techniques
with the broader domain of topological machine learning.
Topological neural networks (TNNs). TNNs architectures have been
proposed to learn end-to-end representations for topological signals
and have been inspired by three main principles: (i) message passing;
(ii) convolution; and (iii) attention. Message passing architecture for
simplicial and cell complexes have been developed in [87,88]. In
these cases, messages within and across different simplices or cells are
exchanged and update by using the incidence matrices (7) and the
Hodge Laplacian. A principled analysis of the latter for edge flows has
been proposed in [89] where the data invariance (such as permutation
and orientation equivariance) are investigated to characterize the role
of the simplicial proximities in each layer. A scalable solution inspired
by the graph inception idea [90] is presented in [91].

Convolution-based architectures have a layered structure where in
each layer a convolutional filter of the forms (28)—(31) nested into
pointwise nonlinearity in the same spirit as the Euclidean and graph
convolutional neural networks [92]. For example, the works in [53,
54] proposed simplicial convolutional neural networks that operate
at a single simplicial level, whereas extensions to signals present at
different topological levels have been discussed in [93-95]. In these
cases, the simplicial convolutional filters is used to learn both the
embedding from multi-hop neighboring signal information in each
layer and to link the latter with the Fourier spectral interpretation
discussed in Section 3. A bridge between convolutional and message
passing solutions can be established by limiting the convolutional filter
order to one, which has been discussed in [96,97] in a form akin
to the popular graph convolutional networks [98]. To improve the
computational efficiency of these solutions, the work in [99] proposed
a binarized simplicial convolutional neural network. Finally, the work
in [100] introduced a convolution operation over the tangent bundle
of Riemannian manifolds, defined via the exponentials of the Con-
nection Laplacian operator, and the corresponding Tangent Bundle
Neural Networks that operate on tangent bundle signals. The authors
further propose a discretization procedure for Tangent Bundle Neural
Network, demonstrating that their discrete implementation constitutes
a principled variant of sheaf neural networks.

Self-attention mechanisms for simplicial neural networks were con-
currently introduced in [101,102], with the aim of processing data
components at different layers (e.g., nodes, edges, triangles, and so on),
while learning how to weight both upper and lower neighborhoods of
the given topological domain in a task-oriented fashion. This approach
was then extended in [103] to handle a generalized higher-order do-
main called a combinatorial complex. Additionally, a simplicial-based
attention mechanism tailored for heterogeneous graphs was presented
in [104]. Finally, [55] introduces an attention-based neural architec-
ture for processing data on simplicial complexes using masked self-
attention layers, leveraging the simplicial Dirac operator to combine
data from neighboring simplices of various orders (nodes, edges, trian-
gles) in a task-specific manner, while ensuring permutation equivari-
ance and simplicial-awareness. Interestingly, even if typically learned
attentional shift operators are not Hodge Laplacians (i.e., they do not
respect the Hodge decomposition), the work in [55] proposes an atten-
tional variant enforcing a Hodge Laplacian structure over the learned
shift operators.

A way to reduce the computational complexity while improving the
learning performance of TNNs is to interleave the learning layers with
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pooling strategies. However, to be effective and respect the topological
structure of the data, these pooling layers should account for the
simplicial and cell structures when coarsening the topological domain.
An example is given in [105], where the authors introduced a general
simplicial pooling layer consisting of three key operations: (i) a local
aggregation step, which generates a meaningful summary of the input
signals; (ii) a selection step, which identifies an appropriate subset
of simplices; and (iii) a reduction step, which downsamples the input
complex and the aggregated signals from step (i) based on the simplices
selected in step (ii). By customizing steps (ii) and (iii), [105] proposed
four distinct simplicial pooling layers that extend the widely used graph
pooling strategies. Another interesting approach was then proposed
in [106], which introduced a pooling layer for simplicial complexes
that uses vertex partitions to create hierarchical representations, col-
lapsing information through learned vertex cluster assignments and
deterministically coarsening higher-dimensional simplices.

Gaussian processes (GPs). Gaussian processes are a class of statistical
models that can quantify the uncertainty associated with their pre-
diction. In essence, GPs are distribution over functions characterized
by the mean function and a covariance kernel function that models
the dependence between function values at two different inputs. When
these inputs are topological signals, we would like to include their
topological structure into the covariance matrix and define appropriate
kernels to aid learning. The work in [107] discussed this case when
said kernels have a spectral meaning and can distinguish between
the gradient and curl components of the signal. A related discussion
is present in [108] for cell complexes. Finally, topologically-aware
GPs for edge flow reconstruction and simplicial closure are discussed
in [86,109], respectively.

Data augmentation and self-supervised learning. The particular
coupling between topological signals and their underlying structure
can be used for data augmentation purposes; and in particular to train
TNNs in a self-supervised manner. In this regard, the work in [110]
builds upon the mixup technique [111] to generate artificial topologies
that respect the simplicial complex structure. A topological-domain
augmentation perspective is also discussed in [112] where random
augmentations that respect the simplicial structure are used as data
generation for self-supervised learning of TNNs. Differently, [113] dis-
cusses data augmentation techniques for SSL that respect spectral prior
and uses the latter as an additional bias to aid learning.

4.6. Processing spatiotemporal signals

The methods discussed so far focus on time-invariant signals over
topological spaces. However, in many real-world applications, obser-
vations typically consist of time series defined on various higher-order
structures, including edges, triangles, and beyond [46,114] that in-
fluence each other in a non-trivial manner. As an example, in water
networks, the water flow in the pipes can be better modeled as a time-
varying process evolving over the edges of the network, whereas the
pressure is a process over the nodes. The mutual influence between
these edge and vertex signals underscores the need for learning models
that can capture their dependencies across both time and the higher-
order structure. To account for the latter spatiotemporal coupling, a
few works have emerged that either rely on recurrent models, adaptive
filtering, or product spaces.

Recurrent models. One of the key recurrent models for multivariate
data is the vector autoregressive model (VAR) [115-122]. While this
model captures the temporal dependencies among the time-varying
processes as a linear combination of their past realizations, it ignores
the underlying network structure of the data and, consequently, do not
grasp the inductive biases inherent in them. Given that the network
topology affecting the process is typically sparse, a standard VAR model
ignoring this structure fails to capitalize on the sparsity of interactions
between the time series, suffering from the curse of dimensionality.
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This disadvantage can be alleviated with the introduction of network-
based VAR models, such as the graph VAR (G-VAR) model [122],
which considers the time series as processes over the vertices of a
graph and models their evolution as a sparse linear combination of the
time series in the adjacent vertices. It accounts for the structure and
captures the sparsity in the data via the so-called graph convolutional
filters [123], enabling parameter sharing across vertices. This results in
a computational complexity of a G-VAR model is linear in the number
of time series, while that of standard approaches is quadratic [116,119,
124-129]. Similarly, it is also possible to learn G-VAR models over
signals defined exclusively on the edges of a graph (e.g. flows of a
water network). However G-VAR models do not exploit higher-order
dependencies.

In [130], SC-VAR models are introduced to represent time series
defined over higher-order networks. Leveraging the Hodge Laplacian
representation of simplicial complexes and simplicial convolution fil-
ters, the proposed model efficiently captures temporal interactions
among signals across different higher-order network structures, while
attaining orders of magnitude less parameters than conventional VAR
models. The SC-VAR model can capture spatio-temporal dependencies
between signals defined on distinct simplicial levels, as we describe
next.

To be more specific, let us consider a time varying vertex signal x ,,
edge signal x, ,, and triangle signal x,,. By leveraging the adjacencies
between simplices of different orders, we can process a k—simplicial
signal x; ,_, by first filtering it with a filter H; ,(L;), then transforming
it into its adjacent simplex via the corresponding incidence matrix,
and finally filtering the transformed signal via another filter Gy ,(Ly.,)
or Gy ,(L_y), e.8., G,w,(LkH)BZkap(Lk)xk,,_p. Following, this convolve-
transform-convolve principle, we define a SC-VAR model of order P
as:

P
X, = 2 HY(Lo)xg,—, + GO (Lo)B HO' (L xy ., + 1y,
p=1
P
X1, = 2 GIOL)BTH (Lo)xg,—, + HY (L), .,
=1 33)
+G ) (LB H (L)X, + 1y
P
X = O G2 (LB H2 (L)X, + H2(Ly)xy,, + 1y,
p=1

where n, denotes the model error. The SC-VAR expression in (33)
consists of three k—process equations, each for k = 0,1, and,2, de-
lineating the processes related to vertices, edges, and triangles. The
indices m and n of filters GZ’"(-) and HZ”'(A) represent the simplicial
levels after and before the convolve-transform-convolve operations,
i.e., we are processing a n—simplicial signal on the m—process equation.
When processing a k—signal on the k—process equation, the transform
operation is not required, and hence such terms in (33) do not require
the post-transform filters G’;"(-).

A particular instance of the SC-VAR model is the Simplicial-VAR (S-
VAR) model, which neglects the vertical adjacencies, overlooking the
dependencies across distinct simplicial levels:

P
Xps = Z H, ,(L)x,,_, +n, for k=0,1,2,
p=1

(34

where {H’;(Lk)} I‘JD ", are simplicial convolutional filters [131].

An online learning method is proposed in order to update the
time-varying SC-VAR model parameters of the model from streaming
time series, providing convergence guarantees in terms of an upper
bound for the dynamic regret, attaining a sublinear dynamic regret
under reasonable assumptions suitable for real-world applications. In
addition, a joint simplicial-temporal Fourier transform is also intro-
duced by extending the simplicial Fourier transform concept [45] and
analyzing the SC-VAR model in the spectral domain to investigate the
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learned frequency responses of the model. Unlike the analogous G-VAR
analysis [122], a coupled two-dimensional frequency response is shown
between different types of simplicial frequencies.

Both SC-VAR and S-VAR have been representations that have been
exploited in several relevant problems, such as online edge flow im-
putation, evolution backcasting of edge flows, spatio-temporal filtering
and Kalman filtering for simplicial processes. An algorithm to retroac-
tively compute the evolution of edge signals is proposed in [132]. In
this case, first, this method learns an S-VAR representation and esti-
mates missing edge signals from partially observed data using a block
coordinate descent technique; and then, leveraging the learned S-VAR
representation and the reconstructed signals, the algorithm backcasts
the evolution of edge flows prior to the partial observations. It should
be noticed that backcasting becomes more challenging when we only
possess partial observations, which is common in practical scenarios
(e.g. traffic or water networks) where data availability is limited due
to sensor and communication failures, or due to the impracticality
of placing sensors in some locations. However, the rich structural
information rooted in the simplicial complex structure, enables the
algorithm to address this effectively.

In [133], the simplicial-complex structure and Hodge Laplacians
are exploited to incorporate the inductive bias in combination with
multilinear kernel regression to perform edge imputation via mani-
fold learning (MultiL-KRIM) [134]. MultiL-KRIM assumes that missing
entries can be estimated by a set of landmark points, extracted from
measurements and located around a smooth manifold, embedded in
an ambient reproducing kernel Hilbert space (RKHS), which allows
to perform functional approximation and perform imputation of time-
varying edge flows. Similarly, in [135], an online algorithm is pre-
sented for time-varying edge flow imputation which combines learning
a line graph identification via a vector autoregressive model and a
group-Lasso-based optimization with a Kalman filtering-based recon-
struction, leveraging a simplicial complex (SC) representation over
the underlying learned causal dependencies. Another Kalman filtering
approach for simplicial processes has been recently presented in [136],
where it is assumed that the hidden dynamics of a system can be
expressed as a simplicial process that respects the structure of the
underlying network topology. These dynamics are observed through an
observation matrix, which is represented using simplicial convolution
filters. The combination of linear dynamics and linear observation
enables the use of a Kalman filter to compute the best linear unbiased
estimate of the process. Additionally, a parametric, structure-aware
noise covariance model is proposed for the system dynamics, and the
algorithm alternates between estimating the process state using the
Kalman filter and updating the parameters through maximum likeli-
hood estimation.

While these methods focus primary on linear models, the work
in [137] proposed a recurrent neural network type TNN perspective for
modeling nodal time series, where the simplicial complexes represent
the higher-order interactions of the hidden states.

Adaptive filtering. Topological filtering can also be cast in the context
of adaptive learning, whose aim is to infer and track the structure of
an unknown system from streaming and noisy data observed over time.
As an example, the work in [138] introduced a topological least-mean
squares algorithm to process and learn from streaming signals defined
over cell complexes. Specifically, let x, be stationary edge flow signals,’
processed over time by the linear shift-invariant graph filters according
to the following model:
Tq Ty
¥, =M, Z ROLDymx, _,, + Z AYLWY"x,_, +1, |, (35)
=0

m=1

1 We here drop the subscript k = 1 to avoid overcrowded symbols.
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with + > max{T,;,T,}, where n, denotes an i.i.d. zero-mean mea-
surement noise, independent of any other signal; h is the vector col-
lecting all topological filter coefficients to be estimated; and M, =
diag(my,, ..., my; ) € RMPM1 is a sampling operator such that m;, = 1 if
edge i is sampled at time ¢, and zero otherwise. The goal is to estimate
the filter coefficients h in (35) using a mean-square-error criterion:

2
min E{Hy, - M,X,hH i (36)
where matrix X, is given by:

T, T,
X, = [ LgXeops oo L% X o L% g ] 37)

which collects shifted versions of the edge flows x,_,, over the upper
and lower neighborhoods. Then, parameters h can be determined by
proceeding iteratively using stochastic gradient descent:

h,, =h+ ﬂX;th(Yt - Xxhz)’ (38)

with 4 > 0 denoting a (sufficiently small) step-size. Recursion (38) is
referred to as the topological LMS algorithm [138], where streaming
flow signals {y,,x,} are processed taking into account the topological
information coming from the cell complex domain.

Product spaces. An alternative to the above serial models, is to build
upon the concept of product graphs [139,140] and enable spatio-
temporal filtering of time-varying signals on SCs. The work in [141]
presents a framework for signal processing on product spaces of sim-
plicial complexes, where the time axis is interpreted as a SC, and a
cellular complex is constructed to represent the spatially distributed,
time-varying signal. It leverages the structure of the eigenmodes of the
Hodge Laplacian of the product space to jointly filter along time and
space. For this, they use a decomposition of the Hodge Laplacian of
the product space, which shows how the product structure induces a
decomposition of each eigenmode into a spatial and temporal compo-
nent. This technique is applied to interpolate trajectories from a limited
set of observed trajectories.

5. Applications

While topological signal processing and learning is an emerging
research direction, they have shown promise in some key application
areas or lend themselves in developments in different fields. Comple-
mentary application areas tailored to topological deep learning can be
found in [50].

Processing network flow signals. Flow signals appear in a myriad
of infrastructure networks such as water, power, transportation and
telecommunication networks, among others. Such signals reside natu-
rally on the edges of a network and are coupled with the node signals.
One key challenge in critical infrastructure networks is that the overall
network state (node+edge signals) need be estimated or forecasted by
a few observations. The topological sampling techniques discussed in
Section 4.4 can be used for sensor placement. One such case has been
discussed in [142] for sensor placement in water distribution systems,
where topological Gaussian processes have also been exploited. Addi-
tionally, topologically-aware interpolation strategies can be used for
state estimation, which consists of in a node-and-edge signal interpola-
tion task. In the water network case, a topological neural networks have
been used in [143] to develop surrogate models that can transfer to
unseen networks. Often, in these cases we may often require inferring
edge flows from partial nodal data; in this case the physics of these
models need be taken into account where the Hodge theory can be
used to map between node and edge flows. The latter idea was used
to develop implicit layers for simplicial neural networks in [144].
Simplicial neural networks and Hodge representation of networks has
also been used in [145] for power outage detection and in [146]
for false data injection attacks in smart grids. When such anomalies
can be localized on particular Hodge subspaces [cf. Section 3], a
mathematically tractable matched subspace detector with optimality
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guarantees [147] can be used in place of neural network solutions. A
further application of edge flow processing comes from the analysis
of a discrete vector field, defined as a set of vectors associated to a
point loud. As shown in [44], operating a Delaunay triangulation of
the point cloud, a discrete vector field can be converted into a scalar
field obtained by projecting the vector on each vertex onto the incident
edges of the triangulation. The resulting edge flow can then be filtered
using the methods described in the previous sections. The resulting
scalar edge signal can then be mapped back onto a filtered discrete
vector field living on the original point cloud.

Geometry processing and vector calculus. Historically, point cloud
processing has been approached by graph-based techniques on the
3D mesh [148]. Such a paradigm has in fact been the early roots
of developing graph signal processing techniques [149,150] till the
latest progress with graph neural networks [13]. More recently, a
topological-based mesh processing is taking place that combine vector
calculus with mesh processing via the Hodge theory. For example,
vector field-based computational processing in surfaces plays a crucial
role in encoding both direction and sizing of the surfaces. By means
of vector calculus and Hodge-Helmholtz decomposition it is possible to
characterize and process the coupling of surface data on nodes, edges
and triangular faces, ultimately, linking topological signal processing
and learning with differential geometry [151,152]. For example, [153]
considers a Hodge spectral processing of tangential vector fields that
has strong ties with the topological Fourier analysis in Section 3. This
spectral-based perspective for geometry processing has also been used
in [154] to develop a spectral coarsening approach to expedite pro-
cessing. Such spectral duality has also been used in end-to-end learning
via tailored topological neural networks that are both geometric- and
Hodge-aware in [155,156]. We hypothesize that bridging advances
in geometry processing with those topological signal processing and
learning can expedite the method development in both domains, in the
same way, mesh-based and graph-based processing complemented each
other.

Statistical ranking. Hodge theory and decompositions have shown
great potential in statistical ranking of lists [157]. In particular, each
vertex is an item in a list and an edge flow is considered as a ranking
order; i.e., if the flow goes from vertex i to j then the ranking score is
higher at i than j. Then, via the Hodge decomposition, a gradient flow
shows a global consistency in ranking as they always go from higher-to-
lower ranking scores, whereas a presence of an harmonic or curl flow
would show local or global inconsistencies in rankings. This Hodge-
based statistical ranking (HodgeRank) has been successfully applied to
top-N recommender system lists and currency exchange markets [157]
as well as in biomolecular data analysis [158]. The TSPL methods
can further aid statistical ranking. For example, they can be used to
remove ranking noise, perform ranking with missing values, or sample
a minimum number of items to guarantee a certain ranking consistency.
TNNs, and in particular those linked with the Hodge spectrum such as
convolutional architectures [54] can be used to learn deep statistical
ranking models.

Biomolecular data. A key challenge in graph-based learning is to
classify molecules or even synthesize new one from a limited training
set [159,160]. In fact, many of the message-passing TNN advances
have been developed to overcome the limited Weisfeiler-Lehman ex-
pressivity of GNNs in graph classification tasks [87,88,91]. Molecules
in particular can be seen as structurally rich graphs with (hidden)
topological information that are combined their features [161]. By
inducing higher-order simplicial or cell structures within a molecular
graph —a technique known as lifting [162]- TNNs can leverage these
topological relations to learn more expressive representations. The
Hodge theory discussed in Sections 2 and 3 has been used in [158] to
analyze biomolecular structures. More specifically, these biomolecular
structures have been represented via simplicial complexes with certain
edge flows, and the spectrum of the respective Hodge Laplacian reveals
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particular properties of the structure as well as characterizes folding
or compactness of the biomolecule. Linking the latter with flow vari-
abilities and the topological Fourier transform represents a promising
unexplored direction that may reveal deeper insights on the relation
between molecular features and structure.

Brain networks. Topological processing tools have been also largely
applied to represent and extract information from brain network data.
Specifically, the work in [163] addresses the challenge of identifying
shared topological (group-level hole) substructures in brain networks
by extending graph Laplacians to higher-order Hodge Laplacians. Then,
the study in [164] employs Hodge decomposition to analyze brain
networks by breaking them into gradient, curl, and harmonic flow
components, effectively capturing complex topological features. Using
a Wasserstein distance-based topological inference, the method reveals
statistically significant differences in the topological properties of male
and female brain networks from resting-state fMRI data. The works
in [165,166] presents a persistent homology-based framework using
the Hodge Laplacian to extract and analyze cycles in brain networks,
validated through simulations and resting-state fMRI data. The au-
thors of [167] introduced a noise-resilient method for EEG analysis
using persistent homology and a Bayesian framework, enabling effec-
tive classification of noisy, nonlinear, and nonstationary signals. Other
approaches have augmented GNNs with topological information [168—
170]. For instance, the study [168] introduces a novel heterogeneous
graph convolutional neural network using Hodge-Laplacian operators
and topological graph pooling to analyze fMRI data, outperforming
state-of-the-art GNNs in predicting general intelligence and providing
interpretable neural circuit insights. Similarly, the work [169] proposed
Hodge-Graph Neural Network, which leverages the Hodge Laplacian
to directly model edgewise topological features in brain networks,
outperforming traditional GNNs and graph classification models in
the Alzheimer’s Disease Neuroimaging Initiative study. Finally, the
authors [170] introduces a dual aggregation framework for brain net-
work analysis that simultaneously learns node and edge embeddings,
capturing intricate node-edge relationships and demonstrating superior
performance and interpretability.

Epidemic modeling. Modeling and predicting epidemic spreading rep-
resents one of the cornerstone applications network science [171].
This problem is conventionally seen as a dynamic process over the
nodes of the graph, where the signal on the nodes indicates the state
and edges represent probabilities of infection (e.g., susceptible vs.
infected). Bridges of the latter with graph-based processing techniques
can be found in [172-174]. More recently, contagion and spreading
processes in complex systems have been better understood via higher-
order networks and simplicial complexes; see e.g., [27,29,31]. While
direct bridges between TSPL and epidemic spreading have yet to be
established, we hypothesize that many of the advances presented in
this paper can facilitate the latter and open the doors to new insights.
Semantic communication. A key challenge in semantic communica-
tions is managing the complexity of data representation while ensuring
transmitted symbols effectively convey intended meanings within ac-
ceptable distortion or perceptual variation [175,176]. This demands
robust methods to model, extract, and encode data semantics. Al-
though a universal definition of semantics in communication is still
lacking, it can be understood as the relationships between elements of a
broadly defined language, often formalized using topological spaces—
mathematical structures describing elements and their relations [175].
Defining multi-way relationships allows data to be represented as sig-
nals over a topological space, where TSP becomes crucial for semantic
data representation and communication. In particular, the choice of
the semantic topological space directly impacts our ability to pro-
cess the data and achieve an efficient, parsimonious representation
that optimally balances distortion, perception, and complexity of data
representation.
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6. Conclusion and open issues

This paper brought together recent methodological advances in
topological signal processing and learning. Instrumental to these meth-
ods is to represent the higher-order data structure via simplicial or
cell complexes, which consists of well-structured richer forms of hy-
pergraphs. By representing these topological structures via the Hodge
Laplacians, it is possible to generalize key signal processing concepts
from the Euclidean and graph domain to topologies, where now we
can characterize signals defined on nodes, edges and other higher-order
topological structures such as triangular faces. Relying on the latter
and on the spectral theory of these Hodge Laplacians, we highlighted
striking differences between topological Fourier domain and Euclidean
and graph Fourier domain. Subsequently, methodological advances
have been revisited and linked to potential application domains where
graph-based techniques remain limited.

While recent works have shown their promise for some important
applications, there remain significant open issues.

« First, on the topological representation front, these methods rely
predominantly on undirected and unweighted topological struc-
tures. This, however, limits drastically their representation power
as dependency between higher-order signals can be better repre-
sented as a directed or a weighted one. Some recent advances
about weighted representation of topological complexes have
been proposed in [70,177] and the first works have emerged
about algebraic representation of directed topologies [178,179]
and directed topological neural networks [180]. Yet, these direc-
tions remain largely unexplored and the impact of weights and
directionality on TSPL methods is little studied.

Second, inferring the simplicial and cell structure from data poses
not only the conceptual challenge of how to tie the signal with the
topology, but also poses a large computational challenge. While
some techniques have emerged as discussed in Section 4.2 scaling
the latter to hundreds of thousands of nodes as may be the case
in brain structures is non-trivial.

Third, the spectral techniques for TSPL are meaningful when
processing signals at a particular topological level. When multiple
signals are present, we can rely on spectrum of the Dirac operator
[cf. Section 2.5] but the latter is not as meaningful as the spec-
trum of the Hodge Laplacians. Especially, for spectral analysis of
topological signals deeper insights on joint spectral processing of
multiple topological signals remains an open issue.

Fourth, most of the datasets and applications contain signals up
to edge flows, ultimately, limiting the potential of TSPL methods.
Identifying, significant application areas with data over second or
higher order simplicial/cell structures may be a substantial leap
forward towards developing more powerful TSPL methods. Links
of the latter with topological data analysis and topological deep
learning can further accelerate the impact.

Fifth, on the application front, TSPL methods has shown the
most promise for signals up to edge flows present in data sets
exhibiting irregular relationships that can captured by simplicial
or cell structures. However, additional research is needed to iden-
tify promising application areas where signals reside naturally
on higher-order simplicial or cell structures. The latter will not
only open the doors to new application domains but will also
provide deeper insights on the advantages and limitations of these
techniques for handling irregular data.
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