

Building Better
Programmers: An AI
System for Guided
Program Decomposition
Author: Arnav Chopra
Date: 17 June, 2025

Contents

1 Introduction 2

2 Introductory Materials 5

2.1 Artificial Intelligence . 5

2.2 Natural Language Processing . 6

2.3 Large Language Models . 6

2.4 Prompt Engineering . 8

2.5 Problem Decomposition . 9

2.6 Program Decomposition in Software Engineering 9

2.7 In-IDE Learning . 10

2.8 JetBrains Academy . 11

2.8.1 Cognifire by JetBrains . 12

2.9 Think-Aloud Protocol . 13

3 Scientific Article 14

4 Supplementary Materials 27

4.1 Student Experiment . 27

4.2 System Prototypes . 27

Bibliography for Introductory Materials 29

1

1
Introduction

One of the longstanding goals in the evolution of programming languages has been

to raise the level of abstraction, from machine code to assembly, to low-level and then

high-level languages. Generative AI now introduces a new abstraction layer: natural

language (Reeves et al., 2024; Halpern, 1966). This shift means students can approach

programming problems at amore conceptual level, focusing on problem-solving rather

than on language-specific syntax (Prather et al., 2023). As a result, they become more

adaptable across languages and better equipped to translate ideas into working code.

The rise of generative AI is reshaping how computer science is taught, offering stu-

dents more interactive, intuitive, and personalised ways to learn programming. AI-

driven tools in education can provide contextual hints, instant feedback, offer cor-

rections, and support learners in developing foundational software engineering skills

(Woodrow et al., 2024). Among these, one particularly important skill is decomposi-

tion: the ability to break down a complex problem into simpler, independent parts.

Decomposition supports modularity, where each unit of code has a well-defined role.

It improves code clarity, encourages reuse, and simplifies both testing and debugging

(Keen et al., 2015). For beginners, learning to decompose problems effectively is often

the first step toward writing clean, maintainable software.

Planning decomposition before implementation, rather than doing it on the fly or

even after, offers clear advantages for novice programmers. It helps learners define de-

pendencies early, gain a deeper understanding of the problem, and allocate resources

more effectively. This can reduce complexity, streamline development, and lower the

2

1. Introduction 3

likelihood of major refactoring later on (Charitsis et al., 2023).

To support the development of decomposition skills in novice programmers, we

propose a new method to teach decomposition, using an automatic decomposition

feedback tool integrated into educational programming systems. Our aim is to in-

vestigate how such a tool might affect learners’ cognitive processes and confidence

in structuring code effectively. Specifically, we ask:

1. How does using a guided program decomposition system affect a learner’s cog-

nitive processes, as observed in a concurrent think-aloud study?

2. How does using a guided program decomposition system affect a learner’s con-

fidence in their own decomposition skills?

This system provides an extension to JetBrains’ educational system, Cognifire (Po-

triasaeva et al., 2024), which supports structured code generation through natural lan-

guage prompts. Cognifire is currently deployed within the in-IDE learning environ-

ment (Birillo et al., 2024) of the JetBrains Academy plugin (JetBrains Academy Plugin

n.d.), allowing learners to engage with real-world tools while developing their skills.

The system currently supports the Kotlin programming language.

As part of this work, a part of the implementation of the proposed method was

contributed. In particular, this research contributes the following:

• A novel program decomposition approach in educational systems.

• Prototypes for the user interface design in the JetBrains Academy plugin.

• The artificial intelligence functionality of the system: crafting prompts and han-

dling all interactions with the AI services.

The implementation of the user interface design prototypes into the plugin was

done by JetBrains.

By embedding decomposition guidance directly into the programming process, we

aim to help learners internalise this essential skill, improving both their technical pro-

ficiency and their confidence as they progress toward becoming capable software de-

velopers.

This thesis is structured in the followingmanner: Section 2 presents some introduc-

tory materials, which explain the concepts that are important to this research. Next,

4 1. Introduction

Section 3 presents the core of this research in the form of a scientific article. Thus, the

introductory materials aim to provide readers with some background knowledge of

concepts used in the scientific article. Finally, Section 4 contains supplementary mate-

rial corresponding to this research.

2
Introductory Materials

2.1 Artificial Intelligence

Artificial intelligence, orAI, is a greatly transformative area of computer science, touch-

ing everything from healthcare and finance to education, logistics, and creative work.

At its core, AI is about building systems that can perform tasks we typically associate

with human intelligence, such as recognising images, understanding language,making

decisions, and learning from data.

The field itself is broad and interdisciplinary, drawing on ideas from computer sci-

ence, statistics, cognitive science, and even philosophy. AI includes many subfields,

such as machine learning (where systems improve through learning), computer vi-

sion (understanding images and video), natural language processing (interpreting

and generating human language), and robotics (interacting with the physical world).

While each of these areas has its own methods and goals, they are all connected by the

central aim of creating systems that can adapt to uncertainty, respond intelligently to

complex environments, and learn from new information.

AI offers enormous potential. In science and engineering, it accelerates research

by automating pattern discovery and simulation. In medicine, it supports diagnosis,

drug discovery, and personalised treatment. Most importantly for this research, AI in

education can provide tailored learning experiences, identify gaps in understanding,

and offer timely feedback (MacNeil et al., 2023; Balse et al., 2023); something that is

hard to scale through traditional means.

5

6 2. Introductory Materials

2.2 Natural Language Processing

Natural language processing (NLP) is a field of artificial intelligence, concerned with

the ability of a computer to process data presented in the form of natural language

rather than traditional machine-readable formats. NLP is a critical intersection be-

tween computer science and linguistics, as it helps us to interact meaningfully with

machines using human language. Unlike structured formats, such as code, natural lan-

guage is extremely context-dependent and full of irregularities. These stark differences

make NLP a rewarding but challenging field of development, with several everyday

use cases, such as search engines and voice assistants.

An especially transformative area within NLP is text generation. The ability for

machines not only to interpret language but also to produce coherent, contextually

appropriate text opens the door to a range of applications, from creative content gen-

eration to conversational agents and educational tools. Generated text can be crafted

to summarise information, translate between languages, or answer queries.

2.3 Large Language Models

Large language models, or LLMs, represent a significant leap in the capabilities of arti-

ficial intelligence, particularly in the realm of language understanding and generation.

These models are designed to process and produce human language at scale, enabling

a range of applications that were previously out of reach, from coherent essay writing

and real-time dialogue to code generation and advanced question answering. Built on

modern deep learning architectures and trained on massive corpora of text, LLMs are

rapidly becoming the foundational engines behind a new wave of AI systems.

At their core, LLMs are statistical models that learn to predict the next word in

a sequence, given the words that came before it. While this may seem like a simple

task, scaling it up to billions of parameters and training on trillions of words allows

the model to internalise a rich representation of grammar, semantics, knowledge, and

even elements of reasoning. The result is a model that can produce fluent, contextually

appropriate language andhandle awide variety of linguistic taskswithout needing any

task-specific programming or training.

2.3. Large Language Models 7

Figure 2.1: Transformer architecture (Vaswani et al., 2023).

Modern LLMs are based on the transformer architecture (Vaswani et al., 2023) (dis-

played in Figure 2.1), which was introduced in 2017 and has since become the standard

for building scalable and efficient language models. Unlike earlier models, transform-

ers rely on a mechanism called self-attention to process input data in parallel, making

them well-suited for training on large datasets and for learning long-range dependen-

cies in text. Transformers also make it possible to represent each word or token not in

isolation, but in context, thus capturing the nuances of meaning that shift depending

on surrounding words.

LLMs have led to a paradigm shift in howNLP systems are designed and deployed:

instead of building specific models for each task, developers can use a single, general-

purpose model that adapts to a wide range of use cases based on how it is prompted.

LLMs can explain complex concepts in simple terms, answer questions in real-time,

and adapt responses to suit individual learning styles and levels. For students, LLMs

serve as accessible study companions; helpingwith writing, problem-solving, and crit-

ical thinking (Pankiewicz et al., 2023). By combining language understanding with

8 2. Introductory Materials

subject knowledge, LLMs help make education more interactive, inclusive, and scal-

able.

2.4 Prompt Engineering

As large language models have grown in sophistication and versatility, a new prac-

tice has emerged at the centre of using them effectively: prompt engineering. While

traditional computer interaction involves writing code to instruct a machine, prompt

engineering involves crafting natural language inputs to produce desired outputs from

a model.

Prompt engineering is, in essence, the science of communicating with language

models. Given that these models are trained to predict and generate text based on

patterns in human language, the phrasing, structure, and context of the input can dra-

matically influence the quality and relevance of the output. A poorly worded prompt

can yield vague, off-topic, ormisleading responses, while awell-structured prompt can

render precise, informative, or creative results (White et al., 2023).

At first glance, prompt engineeringmight seem simple, just asking questions or giv-

ing instructions in plain English. However, when interacting with LLMs, it becomes

quickly apparent that small variations in wording, format, and context can produce

vastly different outcomes. For instance, framing a request as a question versus a com-

mand, providing examples within the prompt, or defining the desired output format

can all steer the model in meaningful ways. Prompt design becomes a process of it-

erative refinement, where one experiments, evaluates, and adjusts to get closer to the

intended result.

One common strategy in prompt engineering is the use of few-shot learning, where

the prompt includes a few annotated examples of input-output pairs to demonstrate

the desired behaviour. This allows the model to infer the pattern and apply it to new

inputs. Even in the absence of examples, zero-shot prompting can work well if the task

is described clearly and concisely, though results tend to improvewithmore contextual

information. In more complex scenarios, chain-of-thought prompting can be used to

encourage the model to reason step-by-step by explicitly instructing it to ”think out

loud”, leading to better performance on logic-heavy or multi-step tasks.

2.5. Problem Decomposition 9

With the new natural language abstraction level, learning to interact with LLMs

and write prompts has become an essential skill for students to learn (Denny et al.,

2023).

2.5 Problem Decomposition

Problemdecomposition is a cognitive strategy fundamental to effective problem-solving

across several domains. It involves dividing a complex problem into smaller, more

manageable sub-problems, each of which can be addressed with greater clarity and

precision (Boyd et al., 2008). This process reduces cognitive load and exposes the in-

ternal structure of a problem.

Fromapsychological standpoint, problemdecomposition alignswithwell-established

theories of human cognition. Working memory has a limited capacity, and large, inter-

dependent problems often exceed this capacity, leading to decision paralysis or super-

ficial reasoning. By breaking the problem into discrete components, individuals can

focus attention on specific elements, reducing mental complexity and allowing deeper

analytical engagement with each part. This structured approach enhances comprehen-

sion and improves the accuracy and efficiency of problem-solving behaviour.

A key advantage of decomposition is that it reveals dependencies and constraints

that may not be obvious in the initial, undivided formulation of the problem. Some

subproblems may be independent and solvable in parallel, while others may be hi-

erarchical or conditional, requiring sequential resolution. This exposure of structure

is particularly important in project management, systems thinking, and policy devel-

opment, where understanding the relationships between subcomponents can guide

prioritisation, risk assessment, and resource allocation.

2.6 Program Decomposition in Software Engineering

In software engineering, program decomposition (Hsu et al., 2018) is not just a tech-

nique but a foundational design practice that shapes how systems are built, under-

stood, and maintained over time. At its core, program decomposition is the process

of taking a software problem and breaking it down into smaller, self-contained units

10 2. Introductory Materials

of logic: functions, modules, classes, components, and services. Each of these serves

as a building block that encapsulates a specific aspect of the system’s behaviour. When

donewell, decomposition enables clarity, modularity, and scalability; whendone poorly,

it results in tangled code, duplication, and fragility (Charitsis et al., 2023).

The need for decomposition arises naturally from the nature of software itself. Even

modest programs can quickly become too complex to hold entirely in one’s head. Rather

than trying to write a large program from top to bottom, engineers rely on decompo-

sition to break the problem into discrete parts, each with a clear purpose and well-

defined interface, so they can work incrementally and reason locally.

At the most granular level, decomposition begins with functions or procedures.

Each function is ideally responsible for a single task: one transformation, one decision,

one calculation (Martin, 2017). This is the principle of single responsibility, which is

central to having maintainable code. A well-decomposed function does exactly one

thing, has a clear name, and abstracts away the details of how that thing is done.

This simplicity enables reuse, testing, and composability; functions become small tools

that can be rearranged to form higher-level behaviour. Separation of concerns means

that different aspects of the program are handled in separate areas of the codebase, so

changes in one area do not unnecessarily affect others.

Perhaps the most valuable aspect of program decomposition is how it facilitates

reasoning. When a program is decomposed into well-defined, loosely coupled parts,

developers can work on one part without needing to fully understand the whole. It

enables testing in isolation, debugging with focus, and documentation that matches

the structure.

2.7 In-IDE Learning

An Integrated Development Environment (IDE), is a software application that pro-

vides a comprehensive set of tools for writing, testing, and debugging code within a

unified interface. It typically includes a code editor, compiler or interpreter, debug-

ger, and build automation tools, all designed to streamline the software development

process and improve productivity.

In-IDE learning is the practice of gaining knowledge and developing skills directly

2.8. JetBrains Academy 11

within a programming environment, rather than stepping away to consult external re-

sources (Birillo et al., 2024). This approach leverages the tools built into modern IDEs,

such as inline documentation, code completion, usage hints, real-time feedback, and

increasingly, AI-powered assistants, to deliver relevant information in context, exactly

when andwhere needed. The key advantage is immediacy: developers can learnwhile

staying focused on the task at hand, avoiding context switching that interrupts flowand

slows down comprehension.

As development environments becomemore sophisticated, in-IDE learning is evolv-

ing from simple tooltips and syntax reminders into a powerful, interactivemodel of ed-

ucation. Developers can explore unfamiliar APIs, understand language idioms, learn

best practices, and even receive real-time suggestions for code improvement, all with-

out leaving the code editor. This embedded, task-driven approach to learning supports

both novice programmers gaining confidence and experienced developers expanding

into new tools or frameworks, making it an increasingly central part of the modern

software development experience.

2.8 JetBrains Academy

JetBrains Academy (Birillo et al., 2024) is a platform developed by JetBrains that em-

beds interactive, project-based learning directlywithin professional development envi-

ronments. Unlike traditional approaches that separate theory from practice, JetBrains

Academy integrates both elements inside IDEs, allowing students to engage with theo-

retical content and apply it immediately through coding tasks and real-world projects.

This method supports a “learn by doing” model, which cognitive research has long

associated with improved retention, deeper conceptual understanding, and stronger

problem-solving abilities (Lesgold, 2001).

At the core of JetBrains Academy is its IDE plugin1, which transforms the devel-

opment environment into a dynamic learning space. Through structured course ma-

terials, learners progress through topics by completing lessons that combine theory,

quizzes, and coding exercises. The plugin provides immediate feedback via automated

test systems and visual cues, helping students identify and correct errors in real-time.

1 https://plugins.jetbrains.com/plugin/10081-jetbrains-academy

12 2. Introductory Materials

This continuous loop of instruction, implementation, and correction mirrors key prin-

ciples of active learning, which are foundational in educational theory.

The platform is designed to bridge the often-cited gap between academic program-

ming instruction and industry practice. By enabling students to learn within a full-

featured IDE, JetBrains Academy fosters familiaritywith professional tools, workflows,

and debugging practices from the outset. This reduces the cognitive and technical fric-

tion typically experienced during the transition from education to professional soft-

ware development. The inclusion of customisable tasks, support formultiple program-

ming languages, and seamless integration of course content within the IDE allows for

both flexibility and scalability, accommodating a wide range of learner needs and in-

structional designs.

2.8.1 Cognifire by JetBrains

Targeting Kotlin and built into the open-source JetBrains Academy plugin, Cognifire

(Potriasaeva et al., 2024) is a tool that implements a new approach to teaching students

to code in the low-code era of programming. It combines intelligent prompt engineer-

ing, code generation, and direct coding to teach algorithmic thinking and problem de-

composition.

A dedicated DSL provides support for special descriptions and draft blocks, giving

students a space for prompting. Meanwhile, static analysis is used to check whether

students are only using defined variables and functions and to improve the quality of

the model’s output. An overview of the current working on Cognifire is presented in

Figure 2.2.

Figure 2.2: A broad visualisation of the working of the Cognifire (Potriasaeva et al., 2024) system.

The current version of Cognfire only supports function-level descriptions. The

courses using Cognifire have pre-decomposed tasks, where the student simply has to

2.9. Think-Aloud Protocol 13

implement each sub-task. Therefore, while the students learn essential programming

concepts, such as variables, loops, and conditional statements, they do not learn to

decompose a given problem themselves.

2.9 Think-Aloud Protocol

Think-aloud protocols are a qualitative research method used to study cognitive pro-

cesses by having individuals verbalise their thoughts in real-time as they perform a

task (Ericsson et al., 1998). This technique provides direct insight into how people

understand problems, make decisions, and reason through complex activities, making

it a valuable tool in fields such as cognitive psychology, human-computer interaction,

usability testing, and education.

In a typical think-aloud session, participants are asked to speak continuously about

what they are thinking, noticing, or considering while engaging in a task, such as solv-

ing a maths problem, navigating a user interface, or writing a piece of code. The re-

searcher observes and records these verbalisations, often alongside screen recordings

or behavioural data, to later analyse patterns in reasoning, misconceptions, strategies,

or decision-making sequences. The emphasis is not on performance, but on capturing

the internal cognitive flow that would otherwise remain undetected.

Think-aloud data is typically analysed qualitatively through coding schemes that

identify different types of statements, such as planning, evaluation, inference, confu-

sion, or hypothesis generation. In usability research, for example, themethod helps un-

cover not only where users encounter friction but why, by capturing hesitation, mental

models, and expectations in the user’s own words.

3
Scientific Article

14

Building Better Programmers: An AI System for Guided Program Decomposition
Analysing how guided program decomposition affects cognitive processes in computer science students

Arnav Chopra1,3

Supervisor(s): Gosia Migut1, Anastasiia Birillo2

1EEMCS, Delft University of Technology, The Netherlands
2JetBrains, Belgrade, Serbia

3JetBrains, Amsterdam, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Master of Computer Science
June 17, 2025

Name of the student: Arnav Chopra
Final project course: IN5000
Thesis committee: Marcus Specht1, Arie van Deursen1, Gosia Migut1

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Generative AI has opened up new possibilities in computer sci-
ence education. Large language models have made it possi-
ble for learners to get instantaneous and customised feedback
on different programming concepts, as well as the ability to
use natural language to implement these concepts. One such
concept is program decomposition, an essential skill in soft-
ware engineering. This work presents a novel method for
teaching program decomposition, using a three-stage guided
AI decomposition system. We analyse how this method af-
fects a learner’s program decomposition cognitive processes
via a concurrent think-aloud protocol where a student decom-
poses three simple programming tasks. Furthermore, we mea-
sure how using the system changes a student’s confidence in
their decomposition skills. We find that participants do not dis-
play any significant change in confidence levels after using the
system. We observe that the students display a significant im-
provement in performance during the course of the study. The
participants also display a significant decrease in metacogni-
tive confusion and a clear emergence of reflection based on
previous errors. We conclude that the proposed method and
the implemented system lead to a level of internalisation of de-
composition skills in the students. We recommend that a study
of change in decomposition skills is conducted over a longer
time period to observe the full effects of the method.

1 Introduction
Increasing the level of abstraction has historically been a
key objective in the development of programming constructs,
from machine code to low-level languages to high-level lan-
guages [1], [2]. The rise of Generative AI has now introduced
a novel abstraction level, natural language. Learners who can
solve programming problems at a high conceptual level are
better able to translate their ideas into code in a way that is
versatile and less constrained by the syntactic and grammati-
cal differences between programming languages [3], [4].

Artificial intelligence tools in computer science education
can provide students with hands-on experience supplemented
with context-based tips and real-time feedback [5]. These
systems can help novice programmers acquire essential soft-
ware engineering skills, including testing, debugging, and
code quality control. In this work, we focus on one such
skill: decomposition. Program decomposition is a funda-
mental software development skill to learn for any aspiring
programmer, as it enables them to break down complex prob-
lems into manageable sub-problems. This approach promotes
modularity using modules with well-defined and independent
purposes. Decomposition also encourages code legibility and
minimising duplicate code fragments. Furthermore, by main-
taining smaller components, each component becomes easier
to test and debug [6].

Decomposing a problem in advance, rather than at the time
of implementation, can provide several benefits for novice
programmers. Upfront decomposition can help define depen-
dencies, optimise resource allocation, and improve one’s un-
derstanding of a problem. Identifying these characteristics
in advance may lead to reduced complexity and make it less
likely that the solution will have to be refactored later on [7].

In this research, we introduce a method for guided decom-
position in educational programming systems, using natural

language. In particular, we aim to answer the following ques-
tions:

How does using a guided program decomposition sys-
tem affect a learner’s cognitive processes, as observed in
a concurrent think-aloud study?

How does using a guided program decomposition sys-
tem affect a learner’s confidence in their own decompo-
sition skills?

The implementation of this proposed method serves as
an extension to JetBrains’ educational programming system,
Cognifire [8]. This system enables students to produce struc-
tured code using natural language prompts and is currently
integrated into the in-IDE learning format [9] of the JetBrains
Academy plugin [10], with support for Kotlin [11].

As part of this work, a part of the implementation of the
proposed method was contributed. In particular, this research
contributes the following:

• A novel program decomposition approach.

• Prototypes for the user interface design in the JetBrains
Academy plugin.

• The artificial intelligence functionality of the system: craft-
ing prompts and handling all interactions with the AI ser-
vices.

The implementation of the user interface prototypes into
the plugin was done by JetBrains.

The rest of this paper is structured as follows, Section 2 de-
scribes related work and similar existing tools. The method-
ology is then described in Section 3, including how the sys-
tem was implemented and improved. Section 4 describes how
the user study was conducted and what was inferred from the
study. The results of the user study are then highlighted and
discussed in Sections 5 and 6. Finally, the paper is concluded
and future improvements are described in Section 7.

2 Related Work
2.1 Prompt-Based Programming
Researchers have highlighted the value of prompt engineering
in the context of code generation. Liang et al. interviewed 20
prompt engineers and found notable differences between tra-
ditional software engineering and prompt programming, sug-
gesting that a translation between the two must be approached
with caution [12]. In [13], Ma et al. underline the importance
of requirement specification when prompting a Large Lan-
guage Model (LLM), and introduce a new human-AI system
with a focus on requirement specification from a human per-
spective.

Promptly is an interactive platform created by Denny et al.
that teaches students how to prompt code LLMs, by providing
an example of functionality that should be replicated, as well
as real-time execution of the generated solution [14].

Reeves et al. argue that the historical development of pro-
gramming constructs has had a clear focus on increasing the
level of abstraction. They argue that programming has always
been heading towards a natural language level of abstraction
and that GenAI has finally enabled this possibility. This new
level of abstraction can encourage beginners to focus on ac-
tual problem-solving, rather than getting stuck in the daunting
syntactical subtleties that each programming language has to
offer [1].

Therefore, prompt programming provides several advan-
tages over classical coding for novice programmers. It helps
learners learn to solve problems at a higher level, rather than
focusing on the exact technical details of different program-
ming languages.

2.2 AI in CS Education
Liu et al. [15] explore the use of generative AI in Harvard
University’s introductory CS50 course with 70 students, in
the form of a chatbot. They found that 73% of students found
the tool to be “helpful” or “very helpful” and 70% of students
found the tool to be “effective” or “very effective”. However,
they also point out that AI assistants are susceptible to errors,
just as humans are, but that they display unwavering confi-
dence despite being inaccurate, something which humans do
not always tend to do.

Woodrow et al. [5] developed a real-time feedback sys-
tem in a course with over 8,000 students. They found that
students who received feedback in real-time were five times
more likely to view and engage with their feedback than stu-
dents who received delayed feedback. Furthermore, they
found that students who viewed the provided feedback were
79% more likely to make relevant changes based on this feed-
back. Despite these positives, they find that the tool displayed
inconsistent behaviour and was unable to effectively provide
feedback on certain areas.

In [16], Zastudil et al. interviewed 12 students and 6 in-
structors to investigate their preferences regarding AI in com-
puter education. They find that students and instructors are
concerned about potential over-reliance on AI systems, as
well as their trustworthiness. They also find that both sets
of stakeholders believe that AI will broaden access due to its
constant availability and low cost. However, they find that
students and instructors are not exactly aligned on how to
adapt assessment methods to keep up with the rise of AI in
education.

CodeAid [17] is an LLM-powered programming assistant,
developed by Kazemitabaar et al., which aims to help stu-
dents without explicitly revealing solutions. The system an-
swers conceptual questions, generates pseudo-code with line-
by-line explanations, and annotates students’ incorrect code
with fix suggestions. The developers deployed this system in
a programming class of 700 students and analysed the result-
ing 8,000 usages of the system. This analysis was further sup-
plemented with student and educator interviews. They find
that students value its constant availability, contextual knowl-
edge of a given task, and question-answering capabilities.

Overall, students generally perceive AI programming tools
to be helpful due to their context-based and instantaneous
feedback. However, there is still considerable doubt over their
trustworthiness from students and educators alike.

2.3 Teaching Program Decomposition
Haldeman et al. present a framework for teaching decomposi-
tion [18] in introductory programming courses. They identify
three main concerns for program decomposition: the single
responsibility principle, reduction of artificial coupling, and
reusability. Furthermore, they suggest strategies to teach stu-
dents how to identify decomposition patterns and procedures
to decompose them.

Keen and Mammen introduce a long-term project approach
to teaching decomposition in computer science. In this
project, the students must solve a computer graphics prob-
lem by implementing smaller individual components, while
building towards the overarching solution [6].

Earthworm [19] is an automated decomposition suggestion
tool implemented by Garg and Keen. This tool leverages met-
rics such as variable flow, program slicing, cyclomatic com-
plexity, and consecutive statements to generate decomposi-
tion suggestions.

Charitsis et al. delve into the reasons for students to de-
compose functions during a task. They analyse 45,000 snap-
shots from 168 students during an introductory programming
assignment [7]. They designate three reasons for creating a
new function: adding new functionality, restructuring code,
and removing duplicate code. They find that the students who
are able to correctly decompose the program at once, without
the need for any restructuring, tend to need less time to find a
viable solution.

There are several tools aimed at teaching students the skill
of program decomposition. However, these tools focus on
improving the structure of an already implemented program.
Therefore, none of them explore the possible benefits of up-
front decomposition, without any code.

3 Methodology
This section describes the proposed decomposition frame-
work, the methodology for implementing the AI-guided sys-
tem, and the iterative process of developing the system.

3.1 Framework for decomposition
As mentioned earlier, using natural language can help novice
programmers develop a more intrinsic understanding of the
programming concept that they are learning, free from the
syntactical and technical differences between programming
languages. Furthermore, we discussed the several benefits of
AI in computer education, such as instantaneous and context-
based feedback. Lastly, we discussed the possible benefits
that decomposing a problem before implementation can have
for novice programmers. Defining dependencies upfront and
developing a better understanding of a given problem can
help reduce complexity and refactoring during implementa-
tion. As discussed in Section 2, current tools to teach pro-

Figure 1: An overview of the AI program decomposition feedback system. The figure highlights how a user’s decomposition is iteratively
improved based on a three-stage feedback loop from the system. Once the user has a satisfactory solution for a stage, the feedback loop
moves on to the next stage.

gram decomposition are focused on improving or refactor-
ing already implemented programs, rather than developing
an understanding of decomposition as a distinct step in the
programming process. Combining all these points, we pro-
pose an AI feedback system for a student to learn program de-
composition using natural language, before writing any code.
This system follows a three-stage feedback loop, based on
completeness, granularity, and defining dependencies. In this
system, the user simply provides high-level descriptions of
the functions needed to solve a given task.

Stage One: Completeness The first step checks the com-
pleteness of the user’s proposed decomposition by verifying
whether the provided set of functions satisfies the respective
task. This stage aims to verify that the functions described
by the user provide complete coverage of all the functionality
needed to solve the provided problem.

Stage Two: Granularity The second step verifies whether
the proposed solution follows good software architecture
practices, specifically whether each function follows the Sin-
gle Responsibility Principle. The Single Responsibility Prin-
ciple (SRP) is a software architecture principle aimed at mak-
ing a program robust and modular [20]. The principle states
that a module must play a singular and distinct role in a sys-
tem. In this case, a function described by the user must have
a singular responsibility within their solution.

Stage Three: Dependencies The final stage verifies the re-
lationships and dependencies between functions as defined
by the user. Here, the user connects the functions on a high
level. Specifically, the user defines which functions would be
dependent on which other functions when the program is im-
plemented. This stage aims to help the user better understand
the flow of the program so they have a clearer idea of how the
functions are connected when they implement their solution
in code. By defining these dependencies, the user can map out
a recomposition of their sub-tasks into their final solution.

The user iteratively improves their solution based on the
feedback provided, and only once the solution is deemed to
be satisfactory for the current stage, the feedback loop moves

on to the next stage. An overview of this system is shown in
Figure 1.

3.2 Implementing the system
The feedback system begins with a provided problem descrip-
tion which must be decomposed by the user. The user pro-
vides the set of functions that they believe will be sufficient
to solve this problem. It is important to note that the user
does not actually provide implementations of the functions
that they propose, but only a high-level description of what
the function does, described in natural language.

At each stage, the proposed solution is verified using a
Large Language Model (LLM). The LLM is provided with
the set of functions described by the user, a description of the
task to be solved, and the specific criteria to be met at a given
stage.

First, to verify the completeness of a set of functions with
respect to a given problem, the LLM is prompted to check
whether the combination of the functions as a whole would be
adequate to solve the task. This approach is chosen over us-
ing a model solution and comparing the user’s solution to the
model solution due to the inherently subjective nature of de-
composing a problem. As there is not just a singular ideal so-
lution to a problem, the system instead verifies the proposed
solution without a reference solution, thus allowing for indi-
vidual design choices.

To verify whether the functions provided by the user fol-
low the single responsibility principle, the LLM is prompted
to analyse each function description separately. The LLM
checks whether a function is described as performing mul-
tiple tasks, which should be split into separate functions to
keep in line with the SRP. If a function does not adhere to
this principle, it is highlighted, and the user is expected to re-
work their function description, potentially by creating a new
function for one of the sub-tasks.

Finally, the user defines the expected dependencies be-
tween functions. Specifically, the user defines which func-
tion(s) would make a call to which other function(s) in a fu-
ture implementation of the solution. This stage aims to help
the user consider how the different modules in their solu-
tion will interact, thus setting the foundation for when they
eventually implement their described functions. The LLM

Figure 2: An example of how the decomposition system provides feedback in case a function does not follow the Single Responsibility
Principle.

is prompted to verify that the flow of the program is logi-
cal using the user-defined dependencies and to ensure that all
functions are connected within the larger program.

An example of the system prototype inside the JetBrains
IntelliJ IDE is displayed in Figure 2.

3.3 Validating the system
As the LLM’s ability to correctly verify a solution is at the
core of the system’s functionality, it is necessary to fine-tune
the prompts used for each stage of the system’s feedback
loop. For stages one and three, this was done by generating
simple programming tasks and 25 valid and 25 invalid solu-
tions. For stage two, 50 function descriptions were generated,
half of which followed the SRP and the other half did not.
Several prompting methods were tested, such as adjusting the
temperature of the LLM, using different models, and alter-
ing the structure of the prompt. In the end, the prompts were
augmented with few-shot learning. This process was refined
until the LLM was able to correctly verify the valid solutions
in the generated dataset with 100% accuracy and correctly la-
bel the invalid solutions with a satisfactory accuracy of over
80%, depending on the corresponding stage.

4 Student Experiments
To evaluate the proposed method of teaching program de-
composition and the developed system, student experiments
were conducted. These experiments took the form of a con-
current think-aloud study. The study aims to observe how a
student’s cognitive process of decomposing a given program-
ming problem changes while using the system. Furthermore,

the study also measures the students’ self-confidence in their
decomposition skills before and after using the tool.

This study employs a mixed-methods analysis to examine
how a feedback-enhanced decomposition system affects the
cognitive processes of novice programmers. The setup of the
experiment was as follows: the study consisted of 12 first-
and second-year computer science students from the Delft
University of Technology. Each student participated in an
interview lasting approximately one hour. The student de-
composed three simple programming tasks using the feed-
back system, each lasting around 20 minutes. The tasks are
sourced from the Kotlin Onboarding: Introduction course
from the JetBrains Academy plugin, these tasks are presented
in Appendix A. While performing the decomposition, the stu-
dents were asked to verbalise their thoughts about their expe-
rience with decomposing the task, the feedback provided by
the system, and any other relevant thoughts that the students
may have about the task. The students were also asked to
complete a pre- and post-confidence survey on their decom-
position skills.

4.1 Self-confidence assessment

The participants rated their self-confidence on
decomposition-related skills, before and after perform-
ing the tasks and using the tool. This assessment is done on
a five-point Likert scale of strongly agree, agree, neutral,
disagree, and strongly disagree, adapted from validated
sources [21]–[23]. The skills evaluated in this assessment are
displayed in Table 1.

Item # Statement

Q1 I am confident in my ability to break a programming task into smaller parts.
Q2 I feel comfortable identifying the exact steps needed to complete a programming sub-task.
Q3 I know how to decide which sub-tasks should become separate functions.
Q4 When I plan a program, I trust my ability to structure it well from the start.

Table 1: Self-Confidence Assessment Questions for Programming Task Decomposition Skills.

Category Code Description

Decomposition Reasoning

DEC-COMPLETE Function descriptions cover all major responsibilities in the task
DEC-INCOMPLETE One or more key functions are missing from the decomposition
DEC-SINGLE Each function has a single, clear responsibility
DEC-MULTI One or more functions combine unrelated or multiple concerns

Feedback Interpretation

FB-UNDERSTAND Student correctly interprets the feedback on decomposition
FB-CONFUSED Student misinterprets or is unsure about the feedback
FB-DISAGREE Student disagrees with the feedback
FB-APPLY Student revises their decomposition based on the feedback

Cognitive Strategy PLAN-HIERARCHY Student reasons about structure or relationships between functions
PLAN-EXAMPLES Student uses example inputs or outputs to inform decomposition

Metacognitive/Affective States
CONFIDENT Expressing certainty or clarity about decomposition choices
CONFUSED Expressing uncertainty or hesitation about what to include
REFLECT Reflecting on mistakes, learning, or changes in thinking

Table 2: Coding scheme for the think-aloud protocol based on the decomposition feedback tool.

4.2 Think-Aloud Protocols in Computer Science
Education

The think-aloud protocol was first developed by Ericsson and
Simon [24]. This method involves participants thinking aloud
while completing a set of specified tasks. The goal of this
method is to understand the cognitive processes behind a par-
ticipant’s actions. While think-aloud protocols have been
used in several different domains, their prevalence in com-
puting education is sparse.

In [25], Whalley et al. use a think-aloud protocol to gain
insight into the performance and behaviour of three students
performing debugging tasks. In this study, the participants
were asked to think aloud while solving the given debugging
tasks. Furthermore, the participants were asked to rate their
confidence in their programming and problem-solving abili-
ties. Finally, a retrospective think-aloud interview was also
conducted, where participants were asked to explain certain
actions and revisit incoherent utterances.

Think-aloud protocols provide direct insight into how peo-
ple understand problems, make decisions, and reason through
complex activities, making them a valuable tool in fields such
as cognitive psychology, human-computer interaction, usabil-
ity testing, and education. However, there are also certain
drawbacks to think-aloud protocols. Constant verbalisation
while performing tasks may lead to a higher cognitive work-
load, potentially affecting performance. Furthermore, due to
the unnatural requirement to verbalise all relevant thoughts,

the participant can find it hard to articulate their mental mod-
els. Lastly, some participants may be naturally better at ver-
balising their thoughts, thus leading to high variability in the
results.

Despite these drawbacks, a concurrent think-aloud proto-
col was chosen as the evaluation method for this study. Due
to the limited timeframe of this research, it was not viable to
measure how well a student can learn program decomposition
while using the system. Furthermore, A/B testing, where one
group decomposes a problem using the system and the other
decomposes it without using it, is not logical as the system
will eventually converge to an ‘ideal’ solution. Therefore, a
think-aloud protocol was chosen due to its ability to extract
trends in cognitive processes exhibited by the learner, which
can be indicative of a broader process of learning and inter-
nalising concepts.

4.3 Think-aloud interview and processing
All think-aloud sessions were audio-recorded and transcribed
verbatim. Non-verbal vocalisations (e.g., pauses, sighs, self-
directed mutterings) were retained when they contributed to
interpreting cognitive or affective states.

A theory-driven coding scheme was developed and in-
formed by existing models of self-regulated learning, pro-
gramming cognition, and feedback engagement [26]–[29].
The transcriptions were then annotated using this coding
scheme.

The scheme comprises four major code families, each with

subcategories to capture nuances in students’ behaviours and
thought processes. These themes and their corresponding
codes are shown in Table 2.

The coding was manually done concurrently with the inter-
view. Later, the audio recordings and transcripts were revis-
ited and the code occurrences were validated and corrected.
Originally, the validation was planned to be conducted using
a semi-automatic annotation tool. However, due to the nature
of the data and the coding scheme, the tools were unable to
correctly distinguish between and annotate the cognitive and
feedback interpretation categories, and the annotations had
to be corrected completely manually. Since the decomposi-
tion reasoning category is purely quantitative, and the cogni-
tive and feedback interpretation categories were not well an-
notated using semi-automatic tools, the validation was done
manually.

4.4 Interpretation of collected data
In order to interpret the data collected during the think-aloud
interview, changes in coding patterns over the three tasks
are analysed. We tracked the frequency, sequence, and co-
occurrence of codes across phases to observe progression in
behaviour and cognitive processes.

The first coding change analysed is the change in DEC-
INCOMPLETE and DEC-MULTI codes. In particular, we
observe how many DEC-INCOMPLETE codes are detected
during each task before reaching a DEC-COMPLETE code.
Similarly, we observe this pattern for DEC-MULTI to DEC-
SINGLE codes.

Next, we analyse the emergence of feedback uptake and
cognitive strategies. The presence of these codes signifies
that the student understands how the feedback provided by
the tool relates to their work and has a clear plan on how to
tackle the given task.

Finally, we analyse the emergence of metacognitive codes.
In particular, we observe whether there is an emergence of
CONFIDENT and REFLECT codes, and a decrease in CON-
FUSED codes. These codes reflect a student’s emotional state
while performing a task.

In order to interpret the data collected using the self-
confidence surveys, we measure the difference in reported
confidence before using the system and after completing all
tasks using the tool during the interview. We observe whether
there are any statistically significant confidence gains in the
post-confidence survey.

Patterns across these layers are used to infer both individual
and group-level improvements.

5 Results
This section describes the results of the self-confidence as-
sessment, the think-aloud protocol code trends, and general
opinions on the method and system.

5.1 Self-confidence assessment
Figure 3 shows the average self-confidence reported by stu-
dents before and after using the decomposition system. We

observe that the average perceived self-confidence in the four
skills, before and after the experiment, remains consistent. In
fact, the average confidence for question 1 and question 4 re-
mains equal before and after the experiment. Meanwhile, the
average confidence for question 2 slightly increases and the
average confidence for question 3 slightly decreases.

When asked why their confidence changed, students gen-
erally had two lines of thought. In case of an increase in con-
fidence, the students said that they felt confident as they did
not need much feedback from the system, either throughout
all three tasks or due to a decrease in the feedback required
after the first task.

In case of a decrease in confidence, some students felt like
they had initially overestimated their decomposition abilities.
This feeling of underconfidence was directly linked to need-
ing several rounds of feedback from the system before reach-
ing a valid solution. Interestingly, some students exhibited
this underconfidence even if the number of feedback rounds
needed decreased over the three tasks.

5.2 Think-aloud protocol

Table 3 shows the occurrences of certain codes for each par-
ticipant in the three tasks.

For the decomposition reasoning codes, we see that 8 out of
the 12 participants display a decrease in the number of incom-
plete iterations before reaching a complete set of functions,
from the first to the third task. 2 of the 12 students had an
increase in the number of incomplete iterations between the
first and last task. The participants generally performed well
on the single-responsibility checks, with a significantly lower
amount of iterations required. 5 of the 12 students needed a
lower number of feedback rounds for this step by the third
task, and no students needed more rounds.

For the feedback uptake codes, the trend was less clear.
Overall, the participants did not disagree with the feedback
very often, 5 of the participants did not disagree with the feed-
back provided at any stage of the interview. The number of
times the feedback was understood by participants, propor-
tional to the number of times they received feedback, did not
show any significant change. There was a clear decrease in
the number of times the students were confused by the feed-
back, with 10 participants showing a decrease in this category
by the final task.

There was no clear trend in the number of hierarchical
planning codes compared to the number of example-based
codes. In general, students tended to maintain the type of
planning they used while completing the tasks.

Confidence codes exhibited a generally downward trend
over the three tasks, with 5 students displaying this trend.
Meanwhile, 2 students showed an increase in confidence
codes. 7 out of the 12 students displayed a downward trend
in confusion, while none of the participants had an increase
in confusion. All participants showed some form of reflection
over the course of the interview.

Q1 Q2 Q3 Q4
Not Confident At All

Not Confident

Neutral

Confident

Very Confident
3.83 3.92

3.67
3.17

3.83
4.08

3.5
3.17

Question

A
ve

ra
ge

C
on

fid
en

ce
(1

-5
)

Average student pre- and post-confidence (N=12)

Pre-confidence Post-confidence

Figure 3: Comparison of mean pre- and post-confidence levels with error bars on a 5-point Likert scale, based on the questions stated in
Table 1. The survey asks the students about their perceived abilities in: Breaking-down large problems [Q1], identifying exact functionalities
needed in a sub-task [Q2], following the single responsibility principle [Q3], and structuring a program well from the beginning [Q4].

Decomposition Feedback Planning Metacognitive

Participant Task INCOMPLETE MULTI UNDERSTAND DISAGREE CONFUSED HIERARCHY EXAMPLE CONFIDENT CONFUSED REFLECT

One 4 1 3 1 4 6 5 2 4 0
P01 Two 3 0 3 1 1 8 4 0 0 1

Three 4 1 4 2 2 4 3 3 0 1
One 4 0 3 0 1 8 2 3 9 1

P02 Two 2 0 2 0 0 6 4 1 0 5
Three 0 0 0 0 0 4 2 2 1 3
One 1 1 0 2 2 4 6 1 2 0

P03 Two 1 0 0 2 0 4 5 0 0 2
Three 0 0 0 0 0 3 2 0 0 1
One 3 1 4 0 4 0 6 2 6 0

P04 Two 4 0 1 1 0 0 8 0 0 2
Three 2 1 2 1 1 0 5 0 1 1
One 0 0 0 0 0 6 1 0 0 1

P05 Two 1 0 0 0 1 5 3 0 0 1
Three 2 0 1 0 0 3 6 0 0 1
One 6 0 2 1 1 1 5 0 0 1

P06 Two 4 0 2 1 0 2 3 0 0 1
Three 1 0 0 1 0 1 2 2 0 0
One 3 0 1 1 2 4 6 0 0 2

P07 Two 3 0 3 0 1 5 8 1 0 5
Three 0 0 0 0 0 1 4 0 0 1
One 1 1 1 0 0 6 5 0 1 2

P08 Two 2 0 2 0 0 7 4 0 0 2
Three 1 0 1 0 0 3 5 0 0 1
One 3 0 2 0 1 0 7 0 1 0

P09 Two 1 0 1 0 1 3 9 1 2 2
Three 0 0 0 0 0 0 6 0 0 1
One 2 1 1 1 2 2 3 1 0 1

P10 Two 7 1 4 0 2 2 3 0 0 0
Three 3 0 1 0 0 1 2 0 0 0
One 14 4 10 0 7 0 6 0 3 2

P11 Two 4 2 2 0 2 0 6 0 1 2
Three 5 2 3 0 1 0 5 0 0 2
One 8 3 1 2 5 1 3 1 0 1

P12 Two 6 2 3 2 1 0 4 0 0 2
Three 0 0 0 0 0 1 4 0 0 1

Table 3: Coding scheme occurrences in the think-aloud study, by participant and task. Participants 2 and 11 are highlighted as representative
examples of the observed general trend. We observe a clear decrease in incomplete decomposition occurrences. Furthermore, there is a
decrease in the confused metacognitive state and an emergence of reflection based on past errors.

5.3 General opinions on method

The opinion on the decomposition method was generally pos-
itive. 2 students had some negative opinions on the method.

One student said, “I would probably just use ChatGPT for
this kind of thing.” Another student said, “I don’t think I
would use it much at this point [in my programming jour-

ney].” The other participants had a generally positive opinion
of the method. One of the students was also appreciative of
the dependencies step of the system. They said, “I think the
dependencies is a good way to model things. It makes sense
in my brain... I think this is a good level of abstraction to
decompose a problem.”

Regarding the idea of decomposing before implementa-
tion, a student said, “I think it’s really really useful as a plan-
ning tool because I often have trouble with planning stuff and
when I just start coding and I realise something midway, I
have to fix a lot of things and it’s a lot of time wasted that
way.” One of the students who provided some negative feed-
back also said, “once you’ve made a small enough problem
anyone can solve anything, right? I mean if the function is to
print Hello World! then anyone can do it. There is definitely
a lot of value to getting to that point.” There were also a few
students who stated that they would probably not decompose
a problem before implementation in such a manner, but that
they see the value in doing so, especially for programmers
who are just starting out.

The idea of using natural language to do this decomposi-
tion was slightly more divisive. Most students found it to be
more enjoyable as they did not have to “first think about the
problem in natural language, then think about how to solve it
in code.” However, a few students had opposing views. One
student said, “we as programmers are not as used to putting
everything into human language, you are used to just cod-
ing stuff, and maybe you’re not as good in describing it as
you think you are.” Furthermore, certain students also strug-
gled with finding the right phrase for what they wanted to
describe, this was mainly due to a slightly lower proficiency
in the English language.

The opinions on the feedback provided by the system were
generally positive. However, the negative opinions on the
feedback were not exactly unanimous. Some students felt
that the feedback was not specific enough, while others felt
like it was pushing them too much towards a very specific di-
rection. One of the students also suggested that they would
have preferred if the feedback regarding the completeness be-
came more obvious with every incorrect solution provided to
the system.

6 Discussion
From the student experiments, we see that there is no statis-
tically significant difference in the reported self-confidence
of the participants before and after the experiment. We rea-
son that this is due to the participants changing their percep-
tion of their decomposition skills in two ways, based on their
statements while completing the survey after the interview.
First, the students believe that, over the course of using the
tool, they have improved their decomposition skills due to an
improvement in performance (decrease in feedback needed).
Second, the students realised that they had over-estimated
their decomposition abilities, and they felt less confident due
to the number of feedback rounds needed to solve the tasks.

Furthermore, many students did not believe that their decom-
position skills had been affected while using the system, thus
there was no change in their confidence levels. Due to these
reasons, the average results remain unchanged.

From the coding of the think-aloud protocol, we observed
no obvious trend in the planning of the cognitive strategies of
the participants. There was also no obvious change in under-
standing feedback by the system. However, there was a sig-
nificant decrease in confusion caused by the feedback from
the system, which shows that the participants were able to
grasp what the system suggested, after a short initial learning
curve.

The most interesting trends came in the metacognitive cat-
egory. There was a small decline in confidence codes exhib-
ited by the participants. However, there was an even sharper
decline in the confusion displayed by the participants. This
clearly shows that the participants started to develop a clearer
picture of what was expected from them while decomposing a
task, as several participants did not know where to start at the
beginning of the first task. Lastly, each participant reflected
on their past errors throughout the interview, thus showing
that they had internalised feedback provided by the system
and implemented those learnings in future tasks, or even later
in the same task.

The participants displayed a clear trend in the reduction of
the number of iterations of feedback needed to reach a final
solution. Thus, their performance throughout the interview
undoubtedly improved, in relation to what the system con-
sidered to be a valid solution. Once again, this shows a clear
internalisation of what was expected of them from the system.

Most students maintained a positive opinion of the method
used in the system, in particular, the upfront decomposition
and defining dependencies. Even participants who said that
they would not necessarily use the system themselves noted
that it could be a valuable tool for novice programmers. The
use of natural language was more divisive, as more students
struggled with correctly phrasing their descriptions or finding
the right words due to a lack of English proficiency. How-
ever, many students also noted the benefits of being able to
describe functions in the same way as they think. Some of
these issues can be rectified by extending support to more lan-
guages. Furthermore, with the increasing level of abstraction
in programming tools, it is possible that future generations
of programmers will not struggle as much with using natural
language in programming.

7 Conclusions and Future Work
In this research, we proposed a new method of teaching pro-
gram decomposition, involving natural language and upfront
decomposition of a problem. We aimed to evaluate how the
new method, as implemented in an AI system, affects the self-
confidence of students in their decomposition skills and how
their (meta)cognitive processes change while using the sys-
tem.

We find that the reported self-confidence of the students

does not display any significant change. We note a signifi-
cant increase in performance, in terms of the number of feed-
back rounds needed before reaching a valid solution, Finally,
we note a clear decrease in confusion while decomposing a
problem and an emergence of reflection based on past errors.
Thus, we conclude that the method is able to somewhat in-
ternalise good decomposition practices, as determined by the
AI system. We also find that students found the proposed
method of decomposition to be beneficial overall. However,
some students struggled with the natural language aspect of
the system.

Limitations Due to the limited time span of this research, it
was not possible to conduct a long-term observation of the de-
velopment of decomposition skills in the participants. There-
fore, it is not possible to conclude that the proposed decompo-
sition method improves the decomposition skills of the partic-
ipants, rather we can only observe trends in the cognitive and
metacognitive processes during the short think-aloud study.
Furthermore, the current decomposition method emphasises
a function-level decomposition. Therefore, other essential as-
pects of software engineering, such as an object-oriented ap-
proach, are not covered.

Future work For the future, we recommend extending sup-
port for more languages and more decomposition paradigms
in the system. For the evaluation of the method, we recom-
mend a longer-term study of how the students’ decomposition
skills develop, to observe the full effects of the internalisa-
tion of decomposition practices from the method. Further-
more, conducting the study with participants who have min-
imal programming experience, such as high school students
rather than university students, would be more accurate as
that is the intended demographic for the system.

References
[1] B. N. Reeves, J. Prather, P. Denny, et al., Prompts first,

finally, 2024. arXiv: 2407.09231 [cs.CY]. [Online].
Available: https://arxiv.org/abs/2407.09231.

[2] M. Halpern, “Foundations of the case for natural-
language programming,” in Proceedings of the Novem-
ber 7-10, 1966, Fall Joint Computer Conference,
ser. AFIPS ’66 (Fall), San Francisco, California: As-
sociation for Computing Machinery, 1966, pp. 639–
649, ISBN: 9781450378932. DOI: 10.1145/1464291
.1464360. [Online]. Available: https://doi .org/
10.1145/1464291.1464360.

[3] J. Prather, P. Denny, J. Leinonen, et al., “The robots are
here: Navigating the generative ai revolution in com-
puting education,” in Proceedings of the 2023 Work-
ing Group Reports on Innovation and Technology in
Computer Science Education, ser. ITiCSE-WGR ’23,
Turku, Finland: Association for Computing Machin-
ery, 2023, pp. 108–159, ISBN: 9798400704055. DOI:

10 .1145 / 3623762 .3633499. [Online]. Available:
https://doi.org/10.1145/3623762.3633499.

[4] A. Raman and V. Kumar, “Programming pedagogy
and assessment in the era of ai/ml: A position paper,”
in Proceedings of the 15th Annual ACM India Com-
pute Conference, ser. COMPUTE ’22, Jaipur, India:
Association for Computing Machinery, 2022, pp. 29–
34, ISBN: 9781450397759. DOI: 10 .1145/3561833
.3561843. [Online]. Available: https://doi .org/
10.1145/3561833.3561843.

[5] J. Woodrow, A. Malik, and C. Piech, “AI Teaches the
Art of Elegant Coding: Timely, Fair, and Helpful Style
Feedback in a Global Course,” in Proceedings of the
55th ACM Technical Symposium on Computer Science
Education V. 1, ser. SIGCSE 2024, event-place: Port-
land, OR, USA, New York, NY, USA: Association for
Computing Machinery, 2024, pp. 1442–1448, ISBN:
9798400704239. DOI: 10 .1145/3626252 .3630773.
[Online]. Available: https://doi .org/10 .1145/
3626252.3630773.

[6] A. Keen and K. Mammen, “Program decomposition
and complexity in cs1,” in Proceedings of the 46th
ACM Technical Symposium on Computer Science Edu-
cation, ser. SIGCSE ’15, Kansas City, Missouri, USA:
Association for Computing Machinery, 2015, pp. 48–
53, ISBN: 9781450329668. DOI: 10 .1145/2676723
.2677219. [Online]. Available: https://doi .org/
10.1145/2676723.2677219.

[7] C. Charitsis, C. Piech, and J. C. Mitchell, “Detecting
the reasons for program decomposition in cs1 and eval-
uating their impact,” in Proceedings of the 54th ACM
Technical Symposium on Computer Science Education
V. 1, ser. SIGCSE 2023, Toronto ON, Canada: As-
sociation for Computing Machinery, 2023, pp. 1014–
1020, ISBN: 9781450394314. DOI: 10.1145/3545945
.3569763. [Online]. Available: https://doi .org/
10.1145/3545945.3569763.

[8] A. Potriasaeva, K. Dzialets, Y. Golubev, and A. Birillo,
Using a low-code environment to teach programming
in the era of llms, Jun. 2024.

[9] A. Birillo, M. Tigina, Z. Kurbatova, et al., Bridging ed-
ucation and development: Ides as interactive learning
platforms, 2024. arXiv: 2401 .14284 [cs.SE]. [On-
line]. Available: https://arxiv .org/abs/2401
.14284.

[10] Jetbrains academy plugin. [Online]. Available:
https://plugins.jetbrains.com/plugin/10081
-jetbrains-academy.

[11] “Kotlin.” (), [Online]. Available: https : / /
kotlinlang.org/.

[12] J. T. Liang, M. Lin, N. Rao, and B. A. Myers,
Prompts are programs too! understanding how devel-
opers build software containing prompts, 2024. arXiv:
2409 .12447 [cs.SE]. [Online]. Available: https :
//arxiv.org/abs/2409.12447.

[13] Q. Ma, W. Peng, H. Shen, K. Koedinger, and T. Wu,
What you say = what you want? teaching humans to
articulate requirements for llms, 2024. arXiv: 2409
.08775 [cs.HC]. [Online]. Available: https : / /
arxiv.org/abs/2409.08775.

[14] P. Denny, J. Leinonen, J. Prather, et al., Promptly: Us-
ing prompt problems to teach learners how to effec-
tively utilize ai code generators, 2023. arXiv: 2307
.16364 [cs.HC]. [Online]. Available: https : / /
arxiv.org/abs/2307.16364.

[15] R. Liu, C. Zenke, C. Liu, A. Holmes, P. Thornton,
and D. J. Malan, “Teaching cs50 with ai: Leveraging
generative artificial intelligence in computer science
education,” in Proceedings of the 55th ACM Techni-
cal Symposium on Computer Science Education V. 1,
ser. SIGCSE 2024, Portland, OR, USA: Association
for Computing Machinery, 2024, pp. 750–756, ISBN:
9798400704239. DOI: 10 .1145/3626252 .3630938.
[Online]. Available: https://doi .org/10 .1145/
3626252.3630938.

[16] C. Zastudil, M. Rogalska, C. Kapp, J. Vaughn, and
S. MacNeil, Generative ai in computing education:
Perspectives of students and instructors, 2023. arXiv:
2308 .04309 [cs.HC]. [Online]. Available: https :
//arxiv.org/abs/2308.04309.

[17] M. Kazemitabaar, R. Ye, X. Wang, et al., “CodeAid:
Evaluating a Classroom Deployment of an LLM-based
Programming Assistant that Balances Student and Ed-
ucator Needs,” in Proceedings of the CHI Conference
on Human Factors in Computing Systems, ser. CHI
’24, event-place: Honolulu, HI, USA, New York, NY,
USA: Association for Computing Machinery, 2024,
ISBN: 9798400703300. DOI: 10 .1145 / 3613904
.3642773. [Online]. Available: https://doi .org/
10.1145/3613904.3642773.

[18] G. Haldeman, J. R. Bernal, A. Wydra, and P. Denny,
Teaching program decomposition in cs1: A conceptual
framework for improved code quality, 2024. arXiv:
2411 .09463 [cs.SE]. [Online]. Available: https :
//arxiv.org/abs/2411.09463.

[19] N. Garg and A. W. Keen, “Earthworm: Automated de-
composition suggestions,” in Proceedings of the 18th
Koli Calling International Conference on Computing
Education Research, ser. Koli Calling ’18, Koli, Fin-
land: Association for Computing Machinery, 2018,
ISBN: 9781450365352. DOI: 10 .1145 / 3279720
.3279736. [Online]. Available: https://doi .org/
10.1145/3279720.3279736.

[20] R. C. Martin, Clean Architecture: A Craftsman’s Guide
to Software Structure and Design, 1st. USA: Prentice
Hall Press, 2017, ISBN: 0134494164.

[21] R. Schwarzer, M. Jerusalem, J. Weinman, S. Wright,
and M. Johnston, “Generalized self-efficacy scale,”
Measures in Health Psychology: A User’s Portfolio.
Causal and control beliefs Windsor, Jan. 1995.

[22] V. Ramalingam, D. LaBelle, and S. Wiedenbeck,
“Self-efficacy and mental models in learning to pro-
gram,” SIGCSE Bull., vol. 36, no. 3, pp. 171–175,
Jun. 2004, ISSN: 0097-8418. DOI: 10.1145/1026487
.1008042. [Online]. Available: https://doi .org/
10.1145/1026487.1008042.

[23] A. Bandura, “Social cognitive theory of self-
regulation,” Organizational Behavior and Human De-
cision Processes, vol. 50, no. 2, pp. 248–287, 1991,
Theories of Cognitive Self-Regulation, ISSN: 0749-
5978. DOI: https : / / doi .org / 10 .1016 / 0749
-5978(91)90022 -L. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/
074959789190022L.

[24] K. A. Ericsson and H. A. S. and, “How to study think-
ing in everyday life: Contrasting think-aloud proto-
cols with descriptions and explanations of thinking,”
Mind, Culture, and Activity, vol. 5, no. 3, pp. 178–186,
1998. DOI: 10.1207/s15327884mca0503\ 3. eprint:
https://doi.org/10.1207/s15327884mca0503 3.
[Online]. Available: https://doi .org/10 .1207/
s15327884mca0503 3.

[25] J. Whalley, A. Settle, and A. Luxton-Reilly, “A think-
aloud study of novice debugging,” ACM Trans. Com-
put. Educ., vol. 23, no. 2, Jun. 2023. DOI: 10.1145/
3589004. [Online]. Available: https://doi.org/10
.1145/3589004.

[26] J. Hattie and H. Timperley, “The power of feedback,”
Review of Educational Research, vol. 77, no. 1, pp. 81–
112, 2007. DOI: 10.3102/003465430298487. eprint:
https://doi .org/10 .3102/003465430298487.
[Online]. Available: https://doi .org/10 .3102/
003465430298487.

[27] N. Kiesler, An exploratory analysis of feedback types
used in online coding exercises, 2022. arXiv: 2206
.03077 [cs.HC]. [Online]. Available: https : / /
arxiv.org/abs/2206.03077.

[28] M. Wu, N. Goodman, C. Piech, and C. Finn, Proto-
transformer: A meta-learning approach to providing
student feedback, 2021. arXiv: 2107.14035 [cs.CY].
[Online]. Available: https://arxiv.org/abs/2107
.14035.

[29] M. Someren, Y. Barnard, and J. Sandberg, The Think
Aloud Method - A Practical Guide to Modelling Cog-
nitiveProcesses. Jan. 1994.

A Programming Tasks
The programming tasks used in the study, adapted from the
Kotlin: Onboarding course of the JetBrains Academy Plugin,
are listed below.

Mastermind The project of this lesson is Bulls and cows
(Mastermind). This is a popular children’s game of guessing
the hidden word. With each attempt, the player receives the
number of exact matches (correct letters in the right position)
and partial matches (correct letters in the wrong position). For
example, with ACEB as the hidden word, the BCDF guess
will result in 1 full match (C) and 1 partial match (B).

Pattern generator The project of this lesson is a pattern
generator. The purpose of this project is to create an applica-
tion for automatically generating character images of a size
and recurring pattern provided by the user, using a text input
interface. The user can either provide their own pattern or
choose a pre-defined pattern.

Hangman The project of this lesson is Hangman. The pur-
pose of this game is to guess the word chosen by the com-
puter, letter-by-letter. Each incorrect guess brings the player
closer to “hanging” a stick figure. The game ends when the
word is guessed or the figure is fully drawn.

4
Supplementary Materials

4.1 Student Experiment

Human Research Ethics

The experiment involves human participants, who are its primary focus. In accordance

with TU Delft’s policies, “all research involving Human Research Subjects – includ-

ing Master’s theses – requires approval from the Human Research Ethics Committee

(HREC) before it can go ahead.1” Therefore, prior to conducting the experiment de-

scribed earlier, an applicationwas submitted to theHREC, and approvalwas granted to

proceed with the study. This approval process is intended to minimise potential risks

to participants. In this context, such risks could include the collection of sensitive in-

formation, improper handling of data, or participants feeling coerced into taking part.

As specified in the HREC application, the experiment does not collect any personally

identifiable information, as it is not relevant to the study. All data is stored in locations

that comply with TU Delft’s current data management practices. Participation in the

experiment is entirely voluntary, and participants are free to decline or withdraw at

any time.

4.2 System Prototypes

1 https://www.tudelft.nl/over-tu-delft/strategie/integriteitsbeleid/human-research-ethics

27

28 4. Supplementary Materials

Figure 4.1: An example of how the system provides feedback on an incomplete decomposition.

Figure 4.2: An example of how the system provides feedback on a function which does not follow the
Single Responsibility Principle.

Bibliography for Introductory

Materials

Balse, Rishabh et al. (2023). “Evaluating the Quality of LLM-Generated Explanations

for Logical Errors in CS1 Student Programs”. In: Proceedings of the 16th Annual ACM

India Compute Conference. COMPUTE ’23. Hyderabad, India: Association for Comput-

ing Machinery, pp. 49–54. ISBN: 9798400708404. DOI: 10.1145/3627217.3627233. URL:

https://doi.org/10.1145/3627217.3627233.

Birillo, Anastasiia et al. (2024). Bridging Education and Development: IDEs as Interactive

Learning Platforms. arXiv: 2401.14284 [cs.SE]. URL: https://arxiv.org/abs/2401.

14284.

Boyd, Stephen P. et al. (2008). “Notes on Decomposition Methods”. In: URL: https:

//api.semanticscholar.org/CorpusID:4539264.

Charitsis, Charis, Chris Piech, and John C. Mitchell (2023). “Detecting the Reasons for

ProgramDecomposition in CS1 and Evaluating Their Impact”. In: Proceedings of the 54th

ACMTechnical Symposium on Computer Science Education V. 1. SIGCSE 2023. TorontoON,

Canada: Association for Computing Machinery, pp. 1014–1020. ISBN: 9781450394314.

DOI: 10.1145/3545945.3569763. URL: https://doi.org/10.1145/3545945.3569763.

Denny, Paul et al. (2023). Prompt Problems: ANew Programming Exercise for the Generative

AI Era. arXiv: 2311.05943 [cs.HC]. URL: https://arxiv.org/abs/2311.05943.

Ericsson, K. Anders and Herbert A. Simon and (1998). “How to Study Thinking in

Everyday Life: Contrasting Think-Aloud Protocols With Descriptions and Explana-

tions of Thinking”. In: Mind, Culture, and Activity 5.3, pp. 178–186. DOI: 10 . 1207 /

29

https://doi.org/10.1145/3627217.3627233
https://doi.org/10.1145/3627217.3627233
https://arxiv.org/abs/2401.14284
https://arxiv.org/abs/2401.14284
https://arxiv.org/abs/2401.14284
https://api.semanticscholar.org/CorpusID:4539264
https://api.semanticscholar.org/CorpusID:4539264
https://doi.org/10.1145/3545945.3569763
https://doi.org/10.1145/3545945.3569763
https://arxiv.org/abs/2311.05943
https://arxiv.org/abs/2311.05943
https://doi.org/10.1207/s15327884mca0503_3
https://doi.org/10.1207/s15327884mca0503_3

30 4. Supplementary Materials

s15327884mca0503_3. eprint: https://doi.org/10.1207/s15327884mca0503_3.

URL: https://doi.org/10.1207/s15327884mca0503_3.

Halpern, Mark (1966). “Foundations of the case for natural-language programming”.

In: Proceedings of the November 7-10, 1966, Fall Joint Computer Conference. AFIPS ’66 (Fall).

San Francisco, California: Association for Computing Machinery, pp. 639–649. ISBN:

9781450378932. DOI: 10.1145/1464291.1464360. URL: https://doi.org/10.1145/

1464291.1464360.

Hsu, Ting, Shao-Chen Chang, and Yu-Ting Hung (July 2018). “How to learn and how

to teach computational thinking: Suggestions based on a review of the literature”. In:

Computers Education 126. DOI: 10.1016/j.compedu.2018.07.004.

JetBrains Academy Plugin (n.d.). URL: https : / / plugins . jetbrains . com / plugin /

10081-jetbrains-academy.

Keen, Aaron and Kurt Mammen (2015). “Program Decomposition and Complexity in

CS1”. In: Proceedings of the 46th ACM Technical Symposium on Computer Science Educa-

tion. SIGCSE ’15. Kansas City, Missouri, USA: Association for Computing Machinery,

pp. 48–53. ISBN: 9781450329668. DOI: 10.1145/2676723.2677219. URL: https://doi.

org/10.1145/2676723.2677219.

Lesgold,AlanM. (2001). “The nature andmethods of learning bydoing.” In:TheAmeri-

can psychologist 56 11, pp. 964–73. URL: https://api.semanticscholar.org/CorpusID:

10883999.

MacNeil, Stephen et al. (2023). “Experiences from Using Code Explanations Gener-

ated by Large Language Models in a Web Software Development E-Book”. In: Proceed-

ings of the 54th ACM Technical Symposium on Computer Science Education V. 1. SIGCSE

2023. Toronto ON, Canada: Association for Computing Machinery, pp. 931–937. ISBN:

9781450394314. DOI: 10.1145/3545945.3569785. URL: https://doi.org/10.1145/

3545945.3569785.

Martin, Robert C. (2017). Clean Architecture: A Craftsman’s Guide to Software Structure

and Design. 1st. USA: Prentice Hall Press. ISBN: 0134494164.

https://doi.org/10.1207/s15327884mca0503_3
https://doi.org/10.1207/s15327884mca0503_3
https://doi.org/10.1207/s15327884mca0503_3
https://doi.org/10.1207/s15327884mca0503_3
https://doi.org/10.1145/1464291.1464360
https://doi.org/10.1145/1464291.1464360
https://doi.org/10.1145/1464291.1464360
https://doi.org/10.1016/j.compedu.2018.07.004
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy
https://doi.org/10.1145/2676723.2677219
https://doi.org/10.1145/2676723.2677219
https://doi.org/10.1145/2676723.2677219
https://api.semanticscholar.org/CorpusID:10883999
https://api.semanticscholar.org/CorpusID:10883999
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3545945.3569785

4.2. System Prototypes 31

Pankiewicz, Maciej and Ryan S. Baker (2023). Large Language Models (GPT) for automat-

ing feedback on programming assignments. arXiv: 2307.00150 [cs.HC]. URL: https://

arxiv.org/abs/2307.00150.

Potriasaeva,Anna et al. (June 2024).Using a Low-Code Environment to Teach Programming

in the Era of LLMs.

Prather, James et al. (2023). “The Robots Are Here: Navigating the Generative AI Rev-

olution in Computing Education”. In: Proceedings of the 2023 Working Group Reports on

Innovation and Technology in Computer Science Education. ITiCSE-WGR ’23. Turku, Fin-

land: Association for Computing Machinery, pp. 108–159. ISBN: 9798400704055. DOI:

10.1145/3623762.3633499. URL: https://doi.org/10.1145/3623762.3633499.

Reeves, Brent N. et al. (2024). Prompts First, Finally. arXiv: 2407.09231 [cs.CY]. URL:

https://arxiv.org/abs/2407.09231.

Vaswani, Ashish et al. (2023). Attention Is All You Need. arXiv: 1706.03762 [cs.CL].

URL: https://arxiv.org/abs/1706.03762.

White, Jules et al. (2023). “A Prompt Pattern Catalog to Enhance Prompt Engineering

with ChatGPT”. In: ArXiv abs/2302.11382. URL: https://api.semanticscholar.org/

CorpusID:257079092.

Woodrow, Juliette, Ali Malik, and Chris Piech (2024). “AI Teaches the Art of Elegant

Coding: Timely, Fair, and Helpful Style Feedback in a Global Course”. In: Proceedings

of the 55th ACM Technical Symposium on Computer Science Education V. 1. SIGCSE 2024.

event-place: Portland, OR, USA. New York, NY, USA: Association for Computing Ma-

chinery, pp. 1442–1448. ISBN: 9798400704239. DOI: 10 . 1145 / 3626252 . 3630773. URL:

https://doi.org/10.1145/3626252.3630773.

https://arxiv.org/abs/2307.00150
https://arxiv.org/abs/2307.00150
https://arxiv.org/abs/2307.00150
https://doi.org/10.1145/3623762.3633499
https://doi.org/10.1145/3623762.3633499
https://arxiv.org/abs/2407.09231
https://arxiv.org/abs/2407.09231
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://api.semanticscholar.org/CorpusID:257079092
https://api.semanticscholar.org/CorpusID:257079092
https://doi.org/10.1145/3626252.3630773
https://doi.org/10.1145/3626252.3630773

	Contents
	1. Introduction
	2. Introductory Materials
	2.1. Artificial Intelligence
	2.2. Natural Language Processing
	2.3. Large Language Models
	2.4. Prompt Engineering
	2.5. Problem Decomposition
	2.6. Program Decomposition in Software Engineering
	2.7. In-IDE Learning
	2.8. JetBrains Academy
	2.8.1. Cognifire by JetBrains

	2.9. Think-Aloud Protocol

	3. Scientific Article
	4. Supplementary Materials
	4.1. Student Experiment
	4.2. System Prototypes

	Bibliography for Introductory Materials

