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ON RUCKLE’S CONJECTURE ON ACCUMULATION GAMES∗
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Abstract. In an accumulation game, the Hider secretly distributes his given total wealth h
among n locations, while the Searcher picks r locations and confiscates the material placed there.
The Hider wins if what is left at the remaining n− r locations is at least 1; otherwise the Searcher
wins. Ruckle’s conjecture says that an optimal Hider strategy is to put an equal amount h/k at k
randomly chosen locations for some k. We extend the work of Kikuta and Ruckle by proving the
conjecture for several cases, e.g., r = 2 or n−2; n ≤ 7; n = 2r−1; h ≤ 2+1/ (n−r) and n ≤ 2r. The
last result uses the Erdős–Ko–Rado theorem. We establish a connection between Ruckle’s conjecture
and the Hoeffding problem of bounding tail probabilities of sums of random variables.
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1. Introduction. Accumulation games, as proposed by Ruckle [16, 17] and by
Kikuta and Ruckle [11, 12, 13], concern the problem faced by an individual who is
forced to stash his wealth at a given number of locations, only to collect it later. We
call this individual the Hider. In the meantime an opposing Searcher can search some
of these locations and remove all the material that is hidden there. The Hider could
be an investor, spreading the risk of the investments, or a hoarder who is caching
food to prepare for winter. The Searcher could be nature or an opposing pilferer.
The game is played over time. The Hider acquires new wealth and hides it, while
the Searcher inspects locations and confiscates the material that is hidden there. The
Searcher wins if he confiscates more than a threshold value of wealth; otherwise the
Hider wins. Kikuta and Ruckle give several logistical applications regarding human
behavior. An example not mentioned in the earlier literature is that of the “scatter
hoarder” (e.g., a squirrel) who in the autumn hides food in multiple caches in the
hope that enough will remain (after natural disasters or active “pilferage”) to survive
the winter. The term scatter hoarder was introduced by Morris [15], who initiated
what is now a considerable literature in this area of animal behavior.

The game we study here is a special case of a more general dynamic game, which
is played over a number of periods. At the beginning of each period i, the Hider
distributes some new wealth hi that he has earned, and during the period the Searcher
removes the total wealth (accumulated over time) at a number of locations. The
wealth hi may be nonconstant over time, or it could be stochastic. The Searcher
may only find a part of the hidden material at a searched location, or the number
of locations that can be searched may vary over time. The game that we study
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here is the simplest type of accumulation game: discrete time, a finite number of
locations, the probability of detection is equal to 1, the incoming wealth is constant.
In this case, the game essentially reduces to what Kikuta and Ruckle call a one-stage
accumulation game. The Hider hides the material only once and the Searcher searches
a fixed number of locations.

To model the problem mathematically, we assume a fixed set of locations N =
{1, . . . , n} and a given initial wealth h. The Hider may distribute his total wealth
h among these locations in any way he chooses. We call his strategic variable w =
(w1, . . . , wn) a weighting, where wi ≥ 0 is the amount placed at location i. We treat
w as a measure on N , so that the feasibility condition is w (N ) = w1 + · · ·+wn ≤ h.
In the case of equality, we call w a partition of h, that is, h = w1 + · · · + wn. The
Searcher picks any r-subset I ⊂ N . The Hider wins the game if wealth at the n − r
surviving locations N − I satisfies w (N − I) ≥ 1. (The threshold of 1 is a convenient
normalization.) Otherwise, the Searcher wins. The parameters r, n, h are all fixed.
Interpreting this problem as a (zero-sum, win-lose) game, the value (optimal winning
probability of the Hider) and optimal strategies exist by standard minimax results [2].
Although in some instances the game formulation is useful, it will generally be more
convenient to analyze the problem as a discrete optimization problem, as already
demonstrated by Kikuta and Ruckle. They showed that the Hider has an optimal
strategy consisting of picking a weighting w and placing the n weights wi randomly
on the nodes. The Searcher can pick the set I randomly.

Ruckle has made the following remarkable conjecture.
Conjecture 1 (Ruckle [17]). For any parameter values n, r, and h, it is optimal

for the Hider to use k equal positive weights and n− k weights of 0 for some k ≤ n.

There is no need for the Hider to use weights greater than 1, since he only needs
to retrieve mass 1. If the Hider uses k = �h� equal positive weights, then he may
just as well use k unit weights. In this case we say that the Hider uses unit weights.
More generally, if the Hider partitions h (that is, if w (N ) = h), then of course the
positive weights are all h/k, but sometimes it is simpler to use smaller weights. As
an example, suppose n = 6, r = 4, and 5/2 < h < 3. It turns out that it is optimal
for the Hider to place five weights of 1/2, and one of 0. He does not need to use all
the material. Here Ruckle’s conjecture holds with k = 5.

Kikuta and Ruckle [13] showed that the conjecture holds for r equal to 1 and
n− 1, and they gave examples of other parameter values where it is true. This paper
establishes that the conjecture holds for many more parameter values. Using the
complementary variable s = n − r which describes the size of the set of unsearched
locations, these parameters are s = 2 or n − 2; h < 2 and n = 0 or 1 mod s;
n ≤ 7; n = 2s+1; h < 2+ 1/ (s− 1) and n ≥ 2s. The last result uses the well-known
Erdős–Ko–Rado theorem [7] on the size of “intersecting families” of s-sets. We also
establish a more tenuous connection between Ruckle’s conjecture and the difficult
Hoeffding problem [9] of bounding tail probabilities of sums of random variables. For
general parameters n, r, h, Ruckle’s conjecture remains open.

The accumulation games described above are similar to the “number hides game”
that has been studied in [3, 19]. Different types of accumulation games have been
studied by Kikuta and Ruckle in [11] and [12].

2. Notation. It is notationally easier to analyze the accumulation game from
the complementary point of view, in which the pure Searcher strategy is to state
the s-set I ⊂ N which he leaves unsearched, where s = n − r is a positive integer.
Thus the accumulation game may be described by the Hider (secretly) choosing a
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weighting w on N with w (N ) ≤ h, the Searcher picking an s-subset I of N , and the
Hider winning (with payoff 1) if

w (I) ≥ 1,

where w(I) denotes the sum of the weights in I. Otherwise the Searcher wins (with
payoff 0). The value of the game is thus the winning probability of the Hider, assuming
best play on both sides. As observed by Kikuta and Ruckle (and generalized by Alpern
and Fokkink in [1]) it is optimal for the Searcher to pick a random s-set, and hence
the Hider faces an optimization problem: Choose w to maximize the number of s-sets
I with w (I) ≥ 1. We say that I is heavy if w(I) ≥ 1, and otherwise it is light. To
summarize, an optimal weighting maximizes the number of heavy sets.

It is useful to restrict the parameter values n, s, h to avoid certain trivial (and
exception) cases. If sh

n ≥ 1, then the Hider can guarantee a win by dividing his
material into n equal weights of h/n. If h < 1, then obviously the Hider can never
win; if h ≥ 1, then putting all the weight at a single location makes some sets heavy.
So we make the following assumption.

Standing assumption:
sh
n < 1 and h ≥ 1. So there always exist s-sets that are

heavy and s-sets that are light.

The family of all s-subsets of N = {1, . . . , n} is a well-known object in combi-
natorics: it is a hypergraph on N . It is convenient to adopt this terminology, and
we say that an s-subset I of N is an edge and that the elements of N are nodes.
The Hider orders the nodes by increasing weights: w1 ≤ · · · ≤ wn. (Of course the
Searcher doesn’t know this ordering.) If an edge I contains nodes i1 < · · · < is and J
contains nodes j1 < · · · < js under the ordering of the weights, then we write I � J if
ik ≥ jk for k = 1, . . . , s. In particular w(I) ≥ w(J) if I � J . The family of all heavy
edges forms a hypergraph, and the Hider seeks to maximize the number of edges of
this hypergraph. We denote the set of heavy edges containing i as Ei and call its
cardinality the degree of i, denoted di.

3. Bounds on the value of the game. The value of a zero-sum game is often
easier to determine, or at least approximate, than the optimal play. That is why
we first consider the value of the accumulation game V (n, s, h). It is equal to the
maximal number of heavy edges divided by

(
n
s

)
. In the proofs in this section, we

silently assume that the Hider uses an optimal weighting (whatever it may be).

Lemma 2. The degree sequence d1 ≤ · · · ≤ dn is increasing and d1 < dn. In
particular there exist edges I and J that have s − 1 nodes in common such that I is
heavy and J is light.

Proof. Let w1 ≤ · · · ≤ wn be an optimal weighting. For 0 ≤ m ≤ n − s denote
Im = {m+ 1,m+ 2, . . . ,m+ s} . By our standing assumption, I0 is light, In−s is
heavy, and w(Im) increases with m. Let j be the index such that Ij is light and Ij+1

is heavy. These edges have s− 1 common nodes. For k < l, define ψ = ψk,l to be the
set map that replaces k by l when possible (for sets containing k but not l) and is the
identity otherwise. Then w (ψ (I)) ≥ w (I) and thus ψ preserves heavy edges. Since
ψ gives an injection of Ek into El, we have dk ≤ dl. Note that ψj,j+s : Ej → Ej+s is
not a surjection, as Ij+1 ∈ Ej+s − ψj,j+s (Ej) . In particular dj < dj+s, and it follows
that d1 < dn.

If di = dj for j > i, then the injection Ei → Ej is in fact a bijection. In this case
we can reduce wj to wi without decreasing the number of heavy edges. Therefore,
we may assume that wi = wj if and only if di = dj . Ruckle’s conjecture turns out to
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be equivalent to the statement that all the ≤ signs in the sequence d1 ≤ · · · ≤ dn are
equalities, except for possibly one inequality.

It is convenient to think of V (n, s, h) as a probability. If s numbersH1, . . . , Hs are
sampled without replacement from an optimal weighting {w1, . . . , wn}, then V (n, s, h)
is the tail probability:

V (n, s, h) = P (H1 + · · ·+Hs ≥ 1) .

In the proof below, we denote the sum of random variables by Ss = H1 + · · ·+Hs or
simply by S if the number of samples is clear.

Theorem 3. V (n, s, h) is nondecreasing in h, decreasing in n, and increasing
in s.

Proof. The Hider need not use all the material, so the value is nondecreasing in
h. To see that V decreases with n, let {w1, . . . , wn} be an optimal weighting for a
value V . Note that

∑
di = sV · (ns), so it follows from Lemma 2 that d1 < V · (n−1

s−1

)
.

The number of heavy edges that do not contain the first node is V · (ns) − d1 >

V · (n−1
s

)
. Hence the weighting {w2, . . . , wn} yields a value > V , and we conclude

that V (n− 1, s, h−w1) > V (n, s, h). Since we have established monotonicity in h we
have V (n− 1, s, h) ≥ V (n− 1, s, h− w1) > V (n, s, h) as claimed.

To see that the value increases with s, we use that V (n, s, h) is the tail probability
P(Ss ≥ 1) for an optimal partition. We sample once more to get V (n, s + 1, h) =
P(Ss+1 ≥ 1). Let H be the event that Ss ≥ 1, where Ss is a sum of random variables.
Then

P(Ss+1 ≥ 1) = P(Ss+1 ≥ 1 | H) · V + P(Ss+1 ≥ 1 | Hc) · (1− V ),

where V = V (n, s, h). Since P(Ss+1 ≥ 1 | H) = 1 it suffices to show that P(Ss+1 ≥
1 | Hc) > 0. In other words, it suffices to show that there exists a light edge that can
be made heavy by adding just one node. This is the content of Lemma 2.

Theorem 4.

1− e−
s�h�
n < V (n, s, h) ≤ �sh�

n
.(1)

Proof. The Searcher orders the nodes cyclically, in a way that is unrelated to
the ordering of the weights, and adopts the strategy of picking edges with nodes
that are consecutive in this cyclic order. More specifically, if we number the nodes
{1, . . . , n} modulo n, then the Searcher picks a random subset Ij = {j+1, . . . , j+ s}.
Notice that

∑
w(Ij) = sh and that there are n intervals. Since the Searcher adopts a

strategy of picking intervals only, the value of this “restricted game” is greater than or
equal to V (n, s, h). The restriction benefits the Hider. The sum of random variables
S = Hj+1+ · · ·+Hj+s has expectation E[S] = sh

n . It follows from Markov’s inequality

P(S ≥ 1) ≤ E[S] = sh
n . There are n intervals, so at most �sh� of them can be heavy,

which gives the upper bound.
The lower bound follows from the Searcher strategy of placing �h� unit weights.

The number of heavy edges is
(
n
s

) − (
n−�h�

s

)
in this case, and if we divide this by

the total number of edges
(
n
s

)
, we obtain that 1−∏s−1

i=0

(
1− �h�

n−i

) ≤ V (n, s, h). Now

observe that
∏s−1

i=0

(
1 − �h�

n−i

) ≤ (
1 − �h�

n

)s
< e−

�h�
n s, where we have strict inequality

since 0 < h < n. We conclude that 1− e−
s�h�
n < V (n, s, h).

We note that the Azuma–Hoeffding inequality applies to random samples without
replacement [9, Thm. 4], so it can also be used to bound the value of the game.
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However, it gives a weaker bound than Markov’s inequality. If s�h�
n is small, then the

lower bound in Theorem 4 is s�h�
n −O

(
( s�h�n )2

)
. Under some arithmetic restrictions

on s and h, s�h�
n is an upper bound.

Theorem 5. If n = 0 mod s or n = 1 mod s, then V (n, s, h) ≤ s�h�
n .

Proof. As in the proof of the previous theorem, the Searcher randomly takes an
s-interval, according to some ordering of the nodes. The value of the restricted game

is bounded by �sh�
n and by our standing assumption sh < n, so there exists a light

interval. Without loss of generality we may assume that In−1 is light (note that we
cannot assume that w1 ≤ · · · ≤ wn since the Hider adopts a restricted strategy).

To prove the theorem, it suffices to show that there are at most s�h� heavy s-
intervals. Since n = 0, 1 mod 1 there exists an integer k such that either n = ks or
n = ks + 1. Since I0 ∪ Is ∪ · · · ∪ I(k−1)s is a disjoint union, the sum of the weights
of these intervals is at most h. So at most �h� of these intervals can be heavy. The
same argument applies to Ij ∪ Is+j ∪ · · · ∪ I(k−1)s+j , and we find that at most s�h� of
the intervals Ij+is are heavy with 0 ≤ j < s and 0 ≤ i < k. For the given restrictions
on j and i we find all intervals except In−1 for n = ks+ 1. But In−1 is light.

The arithmetic restriction on s and n is necessary. If n = 5 and s = 3 and
h = 3/2, then the Hider divides into { 1

2 ,
1
2 ,

1
2 , 0, 0}, creating 7 heavy s-sets. It follows

from Theorem 16 below that this weighting is optimal. The value of the game is

V (5, 3, 3/2) = 7
10 , while

s�h�
n = 3

5 and �sh�
n = 4

5 .
Corollary 6. If h < 2 and if n = 0 or 1mod s, then the Hider uses a single

unit weight. In particular, Ruckle’s conjecture holds.

Proof. Since �h� = 1 the lower bound 1−∏s−1
i=0

(
1− �h�

n−i

)
in the proof of Theorem 4

is equal to s
n = s�h�

n . By Theorem 5 this is the value of the game.
Corollary 7. If n = 0 mod s and if h ≥ n−1

s , then Ruckle’s conjecture is true.
Proof. Under these conditions �h� = n−s

s . By Theorem 5 the number of light

edges is at least n−s�h�
n · (ns) =

(
n−1
s−1

)
. Now suppose the Hider puts n− 1 weights 1

s .

Then the number of light edges is
(
n−1
s−1

)
, which is the best possible.

These corollaries are typical for the results in our paper. We are able to prove the

conjecture only if s�h�
n is close to 1 or if it is close to 0. This suggests that there exists

a symmetry between sampling s times or n− s times in an accumulation game. We
can prove that such a symmetry exists only under a severe restriction on the weights.

Theorem 8. Suppose that there exists an optimal weighting with weights bounded
by h−1

n−s−1 for s < n− 1 and h > 1. Then V (n, s, h) = V (n, n− s, sh+h−n
h−1 ).

Proof. Let w = {w1, . . . , wn} be an optimal weighting of mass h. Define a new
weighting w′ with weights gi = 1 − (

n−s−1
h−1

) · wi, which is well defined and has total

weight g = sh+h−n
h−1 . Conversely, any such weighting w′ can be transformed to a

weighting w with weights ≤ n−s−1
h−1 by the inverse transformation wi = 1−gi

n+1−s−g .
Now compute

w1 + · · ·+ ws ≥ 1 ⇔ ws+1 + · · ·+ wn ≤ h− 1 ⇔

n− s− 1

h− 1
· ws+1 + · · ·+ n− s− 1

h− 1
· wn ≤ n− s− 1 ⇔

(1− gs+1) + · · ·+ (1− gn) ≤ n− s− 1 ⇔ gs+1 + · · ·+ gn ≥ 1.

In particular, an edge is heavy w(I) ≥ 1 under the weighting w if and only if its
complement is heavy w′(Ic) ≥ 1 under the weighting w′.
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Fig. 1. Number m of edges in a T -graph on 5 nodes of mass 2.

4. Solution of the conjecture for some special cases. Kikuta and Ruckle
proved that Ruckle’s conjecture is true if s = 1 or s = n − 1. Indeed, if s = 1, then
the Hider divides h into �h� parts of weight h/�h�. If s = n− 1, then the Hider puts
a single weight h. We prove that Ruckle’s conjecture is true if s = 2 or s = n− 2.

Lemma 9. For any partition h = w1 + · · · + wn there exists another partition
g = g1 + · · · + gn for g ≤ h and all gi ∈ {0, 12 , 1}, such that wi + wj ≥ 1 implies
gi + gj ≥ 1.

Proof. Let R be the set of all equations wi + wj ≥ 1 that are satisfied by a
weighting {w1, . . . , wn}. Without loss of generality, we may assume that h minimizes
w1 + · · · + wn under the constraints R and wi ≥ 0. Let b = max {wi : wi �= 1} and
a = min {wi : wi �= 0} , so that a ≤ b. Call the weights wi which are equal to b the
“big weights” and those equal to a the “small weights.”

If a + b > 1, then h could be reduced by decreasing all the big weights to 1 − a,
contradicting our assumption that h is minimal under the constraints R. Similarly, if
a+ b < 1, then we could decrease all the small weights to zero. Hence a+ b = 1.

Let α be the number of small weights, let β be the number of big weights, and let
ε be the minimum difference between any two weights. If β > α, we could decrease h
by changing the big weights to b−ε and increasing the small weights to a+ε, contrary
to the assumption. If β < α, then h may be reduced by changing the small weights
to a− ε and the big ones to β + ε. We conclude that α = β.

Minimize |b − a| under the constraints R and h = w1 + · · · + wn and wi ≥ 0.
We claim that |b − a| = 0. If not, then we could reduce the big weights to b − ε and
increase the small weights to a+ ε under the constraints, since α = β, contradicting
minimality. We conclude that a = b = 1

2 and we are done.

Definition 10. A graph is called a T -graph if its nodes can be partitioned into
three sets A,B, and C such that two nodes are connected by an edge if and only if

(a) at least one of the nodes is in C, or
(b) both nodes are in B.

If the cardinalities of the three node sets are, respectively, a, b, and c, then we write
T (a, b, c), and we define the mass of the graph to be b+ 2c.

We say that a T -graph G is optimal if its edge number is maximal among all
T -graphs that have the same number of nodes as G and that have mass ≤ m(G). For
instance, the graph T (3, 0, 2) is optimal in Figure 1.

Lemma 11. If G is an optimal T -graph, then either a = 0 of c = 0 or b ≤ 1.

Proof. Let H be a T -graph such that a > 0 and c > 0 and b > 1. We show that
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H is not optimal by increasing the number of edges while preserving the mass and
the nodes. We consider two overlapping cases, b ≥ a and b ≤ a.
b ≥ a Since a and c are at least 1, we may move two nodes x and y from A and C,

respectively, to B. There will be b more edges incident to x, corresponding to
the original nodes of B, and a− 1 fewer edges incident to y. Hence there are
b− (a− 1) ≥ 1 more edges in the resulting T -graph.

b ≤ a Since b ≥ 2, we may move two nodes u and z from B into A and C, respec-
tively. In the resulting T -graph there will be b− 1 fewer edges incident to u,
corresponding to the nodes ofB other than u and z, and amore edges incident
to z. Hence the resulting T -graph has a− (b− 2) ≥ 1 more edges.

Theorem 12. Ruckle’s conjecture is true if s = 2.
Proof. Suppose that s = 2. The optimal weighting maximizes the number of

wi+wj ≥ 1, and by Lemma 9 we may suppose that the weights are either 0 or 1
2 or 1.

Hence, the equations wi + wj ≥ 1 correspond to the edges on a T -graph, with A the
set of zero weights, B the set of weights 1

2 , and C the set of unit weights. An optimal
weighting corresponds to an optimal T -graph, so a = 0 or c = 0 or b ≤ 1. If b = 1,
then there is only one weight 1

2 , which could be changed to a zero weight without
losing optimality. We conclude that min{a, b, c} = 0. If a = 0, then wi + wj ≥ 1 for
all weights, so all edges are heavy, contradicting our standing assumption. Therefore,
either b = 0 or c = 0. In other words, either all nonzero weights are 1

2 or all weights
are 1. The conjecture holds.

Theorem 13. Ruckle’s conjecture is true if s = n− 2.
Proof. First note that by our standing assumption h < n

s = 1 + 2
n−2 . Since h is

only marginally larger than 1, putting a unit weight will be optimal or nearly optimal.
Suppose that a weighting contains a weight > h − 1. Then an edge is heavy if and
only if it contains that weight, so in this case putting a unit weight is optimal. For
the rest of the proof, we assume that all weights are ≤ h− 1.

An edge is heavy if and only if its complementary set has weight ≤ h− 1. Max-
imizing the number of heavy edges is equivalent to maximizing the number of 2-sets
of weight ≤ h− 1. For a given weighting {h1, . . . , hn} let R be the set of inequalities
hi+hj ≤ h−1 that correspond to such 2-sets. Suppose that h is minimal and that the
weighting satisfies the constraints in R. For such a minimal h, we take a weighting
with a maximal number of weights 0 or h− 1.

Let b = max {hi : hi �= h− 1} and a = min {hi : hi �= 0} , so that a ≤ b. Call the
weights hi which are equal to b the “big weights” and those equal to a the “small
weights.” If a + b = λ < 1, then we could multiply all weights by λ to obtain a
weighting that satisfies the same constraints. This contradicts the minimality of h
and therefore a+ b ≥ 1.

Let ε = min{a, h− 1− b}. Increase one of the big weights by ε and reduce one of
the small weights by ε. This is possible as long as there are at least 2 weights between
0 and h− 1. The resulting weighting has more weights that are equal to 0 or h− 1.
We claim that it still satisfies the constraints. To see this, notice that the total weight
remains the same, so if one of the constraints in R is no longer valid, then it has to
involve the big weight that has been increased. However, such a constraint consists of
the increased big weight and a zero weight, so it remains valid. Since our weighting
maximizes the number of weights that are 0 or h − 1, the operation is not possible.
We conclude that there exists a weighting that minimizes h under the constraints R,
which contains at most one weight between 0 and h− 1.

If there is no weight between 0 and h− 1, then we are done. If there exists such
an intermediate weight, then we can take away an equal amount from all the weights
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that are h − 1 and add that to the intermediate weight. The constraints R remain
satisfied. We can redistribute the weight until all nonzero weights are equal.

Corollary 14. Ruckle’s conjecture is true for n ≤ 6.
Proof. Since the conjecture is correct if s ∈ {1, 2, n−2, n−1}, it is true for n ≤ 5.

For n = 6 the remaining case is s = 3, which is settled by Corollary 6.
Theorem 15. Ruckle’s conjecture is true if n = 2s+ 1.
Proof. If h < 2, then Corollary 6 applies. Suppose that h ≥ 2 and note that

h < 2 + 1
s by our standing assumption. If the Hider puts two unit weights, then he

creates
(
2s+1

s

) − (
2s−1

s

)
heavy edges. This is optimal if the number of light edges is

always at least
(
2s−1

s

)
. Since

(
2s−1

s

)
= 1

2

(
2s
s

)
it suffices to show that of the edges with

nodes in {2, . . . , 2s + 1}, half are light. Suppose that I and J are complementary
edges in {2, . . . , 2s + 1} and suppose that both are heavy. Then sw1 ≥ w(I) ≥ 1 so
w1 ≥ 1

s and therefore h ≥ w1 + w(I) + w(J) ≥ 2 + 1
s , contradicting our standing

assumption. It follows that of each pair of complementary edges, at least one is light.
So half of the edges with nodes in {2, . . . , 2s+ 1} are light.

One might expect to dispose of the case n = 2s− 1 in a similar manner, but we
can only prove this under a restriction.

Theorem 16. Ruckle’s conjecture is true if n = 2s− 1 and h ≥ 2− 1
s−1 .

Proof. Suppose h ≥ 2− 1
s−1 . We show that the partition into 2s− 3 weights 1

s−1

is optimal. This creates
(
2s−3
s−2

)
light edges. Let w1 + · · · + wn be any partition of h

with w1 ≤ · · · ≤ wn. Note that wk <
1
s ; otherwise all edges are heavy. We say that

two edges I, J are 1-complementary if {1} = I ∩ J . Two such edges cannot both be
heavy since w(I) +w(J) = h+w1, which is < 2 by our standing assumption. So the
number of light edges is at least 1

2

(
2s−2
s−1

)
=

(
2s−3
s−2

)
.

Corollary 17. Ruckle’s conjecture is true for n = 7.
Proof. The cases s ∈ {1, 2, 5, 6} are settled by the preceding theorem and s = 3

is settled by Theorem 15. It remains to settle the case s = 4. Theorem 16 set-
tles this if h ≥ 5/3, so we may assume that h < 5/3. We show that in this case
{0, 0, 0, 0, 1/2, 1/2, 1/2} is an optimal weighting. It has 22 heavy edges and there are
45 edges in total, so we need to argue that any other weighting gives 13 light edges
or more. We argue by contradiction. Assume that there exists a weighting with < 13
light edges. Since I = {2, 3, 4, 7} has 12 edges that are smaller in the � order, it
has to be heavy. If I is heavy, then its 3-complementary edge J = {1, 3, 5, 6} is light.
Indeed, if I and J would both be heavy, then h+w3 = w(I)+w(J) ≥ 2, which implies
that w3 ≥ 1/3. But this is nonsense since then the weights w3, w4, . . . , w7 would add
up to ≥ 5/3. So I is heavy and J is light. There are 8 edges that are smaller than
J in the edge order, so they are light also. The edges {2, 3, 5, 6} and {1, 3, 4, 7} are
3-complementary, so at least one of the following cases holds:

(A) {2, 3, 5, 6} is light.
(B) {1, 3, 4, 7} is light.

Assume that (A) holds. Since {2, 3, 5, 6} is larger than 11 edges in the � order,
we need just one more light edge to get a contradiction. The edges {1, 2, 3, 7} and
{2, 4, 5, 6} are 2-complementary, so at least one of them is light. This gives 13 light
edges, contradicting our assumption that there are at most 12. Assume that (B) holds.
There are two edges that are smaller than {1, 3, 4, 7} and that are not in the set of 9
light edges that are � J for a total of 12 light edges. The edge {2, 3, 4, 6} is not in this
set, so it is heavy by our assumption. Its 3-complementary edge {1, 3, 5, 7} therefore is
light, and this is the 13th edge that is light. We conclude that {0, 0, 0, 0, 1/2, 1/2, 1/2}
is an optimal weighting if h < 5/3.
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Now suppose that h < 3/2. We claim that it is optimal to put one unit weight, for
a total of 20 heavy edges. We argue by contradiction and assume that there are fewer
than 15 edges that are light. This implies that {3, 4, 5, 6}4, {2, 3, 5, 7}, {1, 4, 5, 7}
all are heavy, since each has 14 edges that are smaller. By the familiar argument,
only one of two 5-complementary edges can be heavy. So the three edges {1, 2, 5, 7},
{1, 4, 5, 6}, {2, 3, 5, 6} are light, but there are 13 edges that are smaller than one of
these three edges, contradicting our assumption.

A weaker form of Ruckle’s conjecture is that the Hider uses at least n− sh zero
weights in an optimal partition. The following result is a step toward settling this
weakened conjecture.

Theorem 18. For any n, s, h there exists an optimal weighting for the Hider
with at least n− s2�h� zero weights.

Proof. Fix some optimal weighting and let {I1, . . . , Ik} be a maximal family of
disjoint heavy edges, so that k ≤ �h�, and let I = I1 ∪ · · · ∪ Ik. Every heavy edge
contains at least one node in I. Let J = {j:wj > 0} be the nodes of weight > 0 in
the Hider’s partition. Suppose that |J | > s2�h�. Let ε denote the minimum nonzero
weight. Reduce the weight on the nodes that are in J \I by ε and increase the weight
on the nodes in I by (s− 1)ε. There are more than s2�h� − s�h� nodes in J \ I and
there are at most s�h� nodes in I, so this operation does not increase the total weight
of the partition. It preserves heavy sets, since each heavy set contains a node that
increases by (s − 1)ε. So we can reduce the total weight until J contains no more
than s2�h� nodes.

5. Intersecting families. Let F be a family of subsets of {1, . . . , n}. In other
words, F is a hypergraph. It is called an intersecting family if no two of its elements
are disjoint.

Theorem 19 (Erdős–Ko–Rado [7]). Let F be an intersecting family of s-subsets.
If 2s ≤ n, then F has no more than

(
n−1
s−1

)
elements. In other words, the family of

sets with one common element has maximal cardinality.
The following improves on Corollary 6 and Theorem 15.
Corollary 20. Ruckle’s conjecture is true if h ≤ 2 + 1

s and n ≥ 2s.
Proof. If h < 2, then the heavy edges form an intersecting family, and by the

Erdős–Ko–Rado theorem the Hider puts one unit weight. Consider the case that
h ≥ 2. Obviously wn ≥ 1

s ; otherwise no edge can be heavy. If wn = 1
s , then all other

nonzero weights can be taken to be 1
s as well; otherwise they do not contribute to any

heavy edge. So in this case Ruckle’s conjecture is true. It remains to consider the case
that h − wn < 2. In this case the family of heavy edges that do not contain node n
form an intersecting family F . By the Erdős–Ko–Rado theorem |F| ≤ (

n−2
s−1

)
. There

are
(
n−1
s−1

)
edges that contain node n, so the number of heavy edges is bounded by(

n− 2

s− 1

)
+

(
n− 1

s− 1

)
=

(
n

s

)
−
(
n− 2

s

)
,

which is the number of heavy edges if the Hider puts two unit weights.
The Erdős–Ko–Rado theorem is a celebrated result and a starting point of the

theory of hypergraphs [4]. It has been extended in many ways. For integers n, s, k the
number f(n, s, k) is defined as the largest possible collection of s-sets, no k of which
are pairwise disjoint, that can be chosen from a set of size n.1 Obviously, if k = �h�,

1This number is also denoted by f(n, s, k, 0), where 0 represents empty intersection and Erdős
in [6] denotes it by f(n, s, k) − 1. In other papers, the number f(n, s, k) represents the maximum
cardinality of a union of k intersecting families.
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then the maximal number of heavy edges is bounded by f(n, s, k).
Theorem 21 (Erdős [6]). For each s ≥ 2 there exists a constant c(s) depending

only on s such that

f(n, s, k) =

(
n

s

)
−
(
n− k + 1

s

)
for n > c(s)k.

The value of f(n, s, k) in this theorem is attained by the family of all s-subsets
that contain at least one element of a given k−1-subset. In other words, it is attained
if the Hider uses unit weights.

Corollary 22. Ruckle’s conjecture is true if n > c(s)�h�, and in this case the
Hider uses �h� unit weights.

The best known estimate of the constant in Theorem 21, due to Bollobás, Daykin,
and Erdős [5], is c(s) ≤ 2s3.

6. Hoeffding’s problem. Ruckle’s conjecture is related to the work of Hoeffd-
ing and others in probability. Suppose that the Searcher samples randomly and with
replacement, so he may pick the same weight twice. Unlike in Ruckle’s accumulation
game, it is not easy to give a real-life interpretation of this game, but it does simplify
the random variables. In particular, the samples X1, . . . , Xs now are independent
and the Hider wants to maximize the tail probability P(X1 + · · ·+Xs ≥ 1) for i.i.d.
random variables. This is related to a probability problem that was proposed by
Hoeffding [8] and studied by Hoeffding and Shrikhande [10]. Hoeffding’s problem is
to find nonnegative i.i.d. random variables that maximize P(X1 + · · ·+Xs ≥ 1) for a
given E[Xi] = α.

Theorem 23 (Hoeffding–Shrikhande). If s = 2 and if 2α < 1, then the tail
probability is maximized by either Xi ∈ {0, 12} or Xi ∈ {0, 1}.

Note that the random variable Xi is well defined, since it takes only two values
and since its expectation is known. The Hoeffding–Shrikhande theorem is similar to
our Theorem 12.

Hoeffding’s problem has been proposed in several contexts. The problem satisfies
a common rule: s = 1 is trivial, s = 2 can be solved with a reasonable amount of
work, and s ≥ 3 is hard; see [14]. There is no conjectured solution to Hoeffding’s
problem, but the general idea seems to be that the tail probability can be maximized
by a random variable that takes on only two values. The only result on Hoeffding’s
problem apart from the Hoeffding–Shrikhande theorem is the following asymptotic
result.

Theorem 24 (Samuels [18]). Let Xi be i.i.d. and nonnegative for 1 ≤ i ≤ s. If
max{4sh/n, (s− 1)sh/n} < 1, then the tail probability is maximized by Xi ∈ {0, 1}.

In particular, if 2s2h < n and if h is an integer, then a weighting by unit weights
is optimal. Note the similarity with our Corollary 22, and also note that the order s2

is sharper than s3, which follows from the results of Bollobás, Daykin, and Erdős.
Hoeffding’s problem is not exactly the same as the problem of finding an optimal

weighting in an accumulation game with replacement. For instance, if s = 2 and
n = 4 and h = 3/2, then E[Xi] = 3/8. By the Hoeffding–Shrikhande theorem the
tail probability is maximized by random variables Xi ∈ {0, 1} (which give a greater
tail probability under these conditions than Xi ∈ {0, 12}). However, these random
variables cannot be created by a weighting on 4 locations. The optimal weighting is
{0, 0, 12 , 1}. Suppose we double the number of locations n = 8 and the mass h = 3,
keeping the expectation at E[Xi] = 3/8; then it is possible to create the optimal
random variables by the weighting {0, 0, 0, 0, 0, 1, 1, 1}, which therefore is optimal.
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