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Electric flight scheduling with battery-charging and 
battery-swapping opportunities 

Mihaela Mitici *, Madalena Pereira, Fabrizio Oliviero 
Faculty of Aerospace Engineering, Delft University of Technology, HS 2926 Delft, the Netherlands   

A R T I C L E  I N F O   
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A B S T R A C T   

With the current advances in aircraft design and Lithium-Ion batteries, electric aircraft are expected to serve as a 
replacement for conventional, short-range aircraft. This paper addresses the main operational challenges for 
short-range flights operated with electric aircraft: determining the investment needs for a fleet of electric aircraft, 
and the logistics of charging stations and swap batteries required to support these flights. A mixed-integer linear 
program with two phases is proposed. In the first phase, a schedule for flight and battery recharge is developed 
for a fleet of electric aircraft. In the second phase, optimal times for battery charging are determined, together 
with an optimal sizing of the number of charging stations and swap batteries. We illustrate our model for short- 
range flights to and from an European airport and for an electric aircraft designed based on the operational 
characteristics of a conventional, narrow-body aircraft.   

1. Introduction 

It is estimated that the CO2 emissions generated by aviation are 
2.5–3% of the anthropogenic CO2, causing 5–9% of the anthropogenic 
radiative forcing (Lee et al., 2009). To address this, the EU has signed in 
2020 The European Green Deal Investment Plan (Tamma et al., 2020), 
which aims to achieve a climate neutral EU by 2050 by investing in 
environmentally-friendly technologies, and rolling out cleaner, cheaper and 
healthier forms of private and public transport. A promising cleaner means 
of transport are the electric or hybrid-electric aircraft (e-AC), which are 
expected to serve as a replacement for conventional aircraft. One such 
example is E-Fan X aircraft, introduced in 2017 by Airbus. However, due 
to the intrinsic design challenges related to electric powered-aircraft, it 
is expected that electric aircraft will first be used for short-range only. 

From an operational point of view, however, replacing conventional 
aircraft with e-AC for short-range flights poses several challenges. First, 
how many electric aircraft should an airline acquire to satisfy a given 
flight demand? Second, the aircraft are expected to be charged at the 
airport, using charging stations and/or use fully-charged, spare batte-
ries. Also here, it is of interested to understand how many charging 
stations would an airport need to sustain electric flights, as well as how 
many spare batteries are needed. Third, it is of interest to understand 
how should the e-AC be scheduled for flight and battery recharging. 

We address these operational challenges by proposing a novel, two- 

phase mixed-integer linear programming (MILP) model to schedule 
electric aircraft for short-range round-trip flights (missions) to and from 
a reference airport. Since it is expected that initially only large airports 
will have the necessary infrastructure to support electric flights, we 
assume that the battery management (battery charging, swapping) takes 
place at a hub-reference airport where round-trip flight originate from. 
The first phase of the optimization determines an optimal investment for 
a fleet of electric aircraft, given a flight demand, as well as an optimal 
sequence of missions and aircraft battery recharging events. In the sec-
ond phase, we apply time discretization and determine i) optimal times 
to start battery charging, ii) at which charging station to perform the 
charging, and iii) what is a minimum number of spare batteries needed 
to conduct the considered missions. By applying time discretization only 
in the second phase, the problem becomes computationally tractable. 
We illustrate our model for short-range flights to and from a hub airport. 
Since charging specifications are not yet available for electric aircraft, in 
this paper we consider charging specifications of an e-AC designed based 
on the operational characteristics of a regional carrier Embraer E175. 

Regarding contributions from a practical point of view, by deter-
mining an optimal number of charging stations and spare batteries for a 
given flight demand, our model provides airports with insights into 
infrastructure and logistics requirements for electric flights. Also, our 
model provides airlines with support in the acquisition of a fleet of 
electric aircraft to satisfy a specific flight demand. Nevertheless, our 
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approach can be considered for other electric means of transport, where 
the logistics of recharging options are of interest. 

The remainder of the paper is structured as follows. In Section 2 we 
discuss prior work on scheduling of electric vehicles. In Section 3 we 
describe the problem of scheduling electrical aircraft for missions, with 
the possibility to charge batteries at a charging station or to swap bat-
teries. In Section 4 we specify a two-phase optmisation model for our 
electric aircraft scheduling problem. In Section 5 we introduce a battery 
charging and discharging model for the e-AC considered, based on a 
conventional, narrow-body aircraft. In Section 6 we illustrate our model 
for short-range flights arriving to and departing from a large European 
airport. 

2. Prior work and contributions 

In the past years, several studies have addressed the Electric Vehicle 
Scheduling Problem (e-VSP) (Adler and Mirchandani, 2016; Wen et al., 
2016; Emde et al., 2018; Rinaldi et al., 2018; Chao and Xiaohong, 2013; 
Li, 2013). In these studies, assumptions are made regarding the charging 
location and the duration of the charging. In (Adler and Mirchandani, 
2016; Justin et al., 2020), the authors assume that the batteries of the 
electric vehicles can be charged at several locations. In comparison, we 
consider electric aircraft that can charge their batteries at an origin 
airport, where round-trip flights originate from. This is relevant for 
current aircraft operations, where only a few airports are envisioned to 
be able to support electric flights. Regarding the battery charging 
duration, instant charging is considered in (Adler and Mirchandani, 
2016; Rinaldi et al., 2018), whereas (Li, 2013) assumes a fixed charging 
duration, regardless of the residual battery energy. In (Wen et al., 2016; 
Emde et al., 2018) the charging duration is assumed to increase linearly 
with the required charge amount. In comparison, we consider that the 
charging duration follows a bi-linear charging profile, where for a 
charge of more than 90% of the battery capacity, the slope of the 
charging profile decreases, i.e., slow charging. Also, we take into ac-
count the residual battery charge before re-charge. In fact, a 
re-charge/swap can be postponed if the residual battery charge is suf-
ficient to perform a new mission. 

In general, electric vehicles scheduling considers only single trips 
(Adler and Mirchandani, 2016; Wen et al., 2016; Rinaldi et al., 2018; 
Chao and Xiaohong, 2013; Li, 2013; Kleinbekman et al., 2019; Justin 
et al., 2020), except for (Emde et al., 2018) which considers round trips, 
as in the case of our paper. In (Emde et al., 2018) the authors schedule a 
fleet of electric vehicles to timetabled milk-run trips. The proposed 
model is solved using two heuristics. In contrast, in this paper we obtain 
an optimal solution in a short computational time by modeling the 
problem in 2 optimization phases, which makes the problem computa-
tional tractable. In (Justin et al., 2020) a network of airports is assumed. 
After every flight the battery of the aircraft can be recharged at its 
destination airport. 

e-VSP with battery swapping, instead of battery charging, is 
considered in (Chao and Xiaohong, 2013; Sun et al., 2019). The swapped 
batteries need to be recharged so that they can be reused and a minimal 
number of required spare batteries is determined. In (Justin et al., 2020) 
a pool of spare batteries is considered, which can be either swapped or 
recharged in order to minimize the peak-power draw from the grid and 
capital expenditures. In (Verma, 2018) an heuristic is proposed for the 
electric vehicle routing problem with both battery charging and battery 
swapping opportunities. Similarly, we consider a mix of both battery 
swapping and charging at a charging station. 

In (Wen et al., 2016; Emde et al., 2018; Kleinbekman et al., 2019) the 
time required to charge a battery evolves linearly with the remaining 
State-of-Charge (SOC) of the battery. In contrast, in this paper, we as-
sume a bi-linear charging function such that the charging duration in-
creases significantly when charging above 90% of the battery capacity, 
which reflects the charging behaviour of Li-Ion battery technologies that 
are nowadays used for automotive applications. 

3. Problem description 

We consider a given set M of short-range missions, |M| = m, that are 
scheduled during one day of operations (see Fig. 1). A mission is defined 
to be a round trip from a reference-origin airport to a destination airport 
and back to the origin airport. Each mission has a departure time, td, an 
arrival time, ta, ta > td, and a range, i.e. flown distance (km) between 
takeoff and landing. We consider a homogeneous fleet of e-AC that fly 
the set of missions M. Each aircraft is assumed to be equipped with one 
battery of capacity Q kWh. At the origin airport, there is a set of charging 
stations and a set of identical, fully-charged, spare batteries which the e- 
AC can use. We consider a stock of identical batteries to be the total 
number of batteries i) inside the aircraft plus ii) spare batteries, available 
at the airport. If a charging station is used, then only one aircraft at a 
time can recharge its battery at this station. The size of the e-AC fleet, the 
number of charging stations and the number of spare batteries are to be 
determined by our proposed model. 

To fulfill a mission with an e-AC, the battery inside this e-AC uses an 
amount of electrical energy. Thus, after a mission is completed, this 
battery’s State of Charge, SOC, decreases. We assume that the amount of 
energy decreases according to a linear function of the range of the 
completed mission. We keep track of the SOC of the e-AC upon mission 
completion. When we begin a battery recharge at a charging station, we 
initiate this recharging taking into account the residual SOC. Also, the 
battery charges only the required energy to fulfill the newly assigned 
mission. For example, let us assume that, after an e-AC completes a 
mission, its remaining SOC is 35% of the battery capacity. A new mission 
is assigned to this aircraft, which requires 40% of the battery capacity. It 
is decided to charge the battery at a charging station. Assuming a safety 
margin SF = 20%, the battery is then charged for the new mission an 
addition of 5% + 20% of the battery capacity to a final SOC of 35% + 5% 
+ 20% of its capacity. 

After completing a mission, the e-AC can i) recharge its battery using 
a charging station located at the origin airport, ii) swap its battery with a 
fully-charged, spare battery if any is available, or iii) keep its current 
battery without recharging, provided there is enough SOC. Charging the 
aircraft’s battery at a charging station is time-consuming and makes the 
e-AC unavailable during the charging period. Lastly, we ensure that at 
the end of a day of operations, all batteries (inside the aircraft and 
spares) are fully charged, so that at the beginning of a new day of op-
erations, all batteries are fully charged. 

We are interested in determining how many e-AC should the airline 
acquire, given aircraft acquisition costs and flight demand, as well as 
how to schedule e-AC for missions and battery recharging events (how 
many charging stations, how many spare batteries and when to charge/ 
swap batteries). 

As an example, Fig. 2 shows four missions, where mission i ∈ {1, 2, 3, 
4} has departure and arrival time at the origin airport tdi and tai , 
respectively. We denote by aij the turnaround time between two mis-
sions i and j, i, j ∈ {1, …, 4}, i ∕= j. Two missions i and j cannot be 
consecutively executed in the order i is immediately succeeded by j in 
the case: (a) the first mission i departs at a later time than the second 
mission j, (b) the aircraft is executing mission i at the time of the de-
parture of the second mission j, i.e., ta

i > td
j , (c) after the completion of 

the first mission i, the aircraft does not have sufficient time to carry out 
the necessary battery recharge/swap so that enough energy is available 
to execute the second mission j. In Fig. 2, missions 1 and 3 are an 
example of case (a). Missions 1 and 2 illustrate case (b) since they 
overlap. Lastly, missions 3 and 4 illustrate case (c). Even though ta3 < td

4, 
the required turnaround time, a34, between missions 3 and 4, prevents 
the aircraft from executing mission 4 at td4, i.e., ta3 + a34 > td4. 

We further discuss case (c) considering battery constraints. Let us 
assume that missions 3 and 4 in Fig. 2 require 70% and 80% of the e-AC 
battery capacity to be executed, respectively. Let us also assume that i) 
the e-AC is fully charged before performing mission 3, ii) between the 
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arrival of mission 3 and the departure of mission 4 there is a time period 
of only 30min and, iii) battery charging is performed at 1% per minute. 
Thus, if the e-AC that executed mission 3 would also be assigned to 
mission 4 (turnaround time of 30min), then it would have to charge 80 
− (100 − 70) = 50%. Since the charging would take 50min to be 
completed, but only 30min turnaround time is available between mis-
sions 3 and 4, the e-AC cannot execute mission 4 immediately after 
mission 3. 

4. e-AC scheduling problem with battery-charging and battery- 
swapping opportunities 

We consider a two-phase approach for the e-AC scheduling problem 
with battery-charging and battery-swapping opportunities. 

The first phase of the optimization problem consists in i) assigning e- 
AC to missions and ii) a decision is made whether to swap the battery of 
the e-AC or to charge this battery at a charging station (see Fig. 3). These 

decisions are driven by the costs needed to acquire a fleet of electric 
aircraft to satisfy a given flight demand (missions). 

In this phase we only decide whether a battery charge/swap occurs 
during turnaround times (i.e., time between missions), but we do not 
determine the exact time when the charging starts or when the swap 
occurs. The output of this phase is: the size of the fleet of e-AC, the 
assignment of e-AC to missions and, given this assignment, the decision 
to charge/swap the battery of an e-AC during its turnaround time. 

In the second phase (see Fig. 4), we take the result of the first phase as 
an input and determine i) at which charging station to charge a battery 
and at what time to start this charge (the battery charging is either inside 
the aircraft or is available at the airport as a spare, depleted battery), ii) 
what is the minimum number of charging stations and spare batteries 
needed to satisfy all battery charges and swaps scheduled in the first 
phase. 

Fig. 1. Example of e-AC to missions assignment, where there are m = 3 missions. For the 3 missions, we have a fleet of 2 e-AC, a stock of 3 identical batteries (2 
batteries inside the 2 aircraft and 1 spare battery) and 2 identical charging stations. The set of 3 missions is known, while the aircraft fleet size, the size of the battery 
stock and the number of charging stations are to be determined by our proposed model. 

Fig. 2. Example of constraining factors for the assignment of e-AC to missions.  

Fig. 3. Example of a first-phase solution, with five 
missions to be carried out: e-AC1 is assigned to mis-
sions 1 and 5, e-AC2 is assigned to missions 2, 3, 4. 
Following the e-AC-to-mission assignment, the turn-
around time for e-AC1 is the time between ta

1 and td
5, i. 

e., a15 = td
5 − ta

1. For e-AC1, the battery is charging at 
a station during a15. At this phase we do not know 
when the charging starts during the turnaround time 
a15. However, by deciding to charge during a15, we 
ensured that a15 is at least as large as the time needed 
to charge for mission 5. For e-AC2, the battery is 
swapped with a spare one during its turnaround time 

a34. We assume a fixed battery swap time. By deciding to swap the battery during a34, we ensured that a34 is at least as large as the battery swapping time.   

M. Mitici et al.                                                                                                                                                                                                                                  



EURO Journal on Transportation and Logistics 11 (2022) 100074

4

4.1. First phase: fleet sizing, e-AC-to-mission and battery-to-recharging 
assignment 

We fist introduce the following notation. Let V denote a set of e-AC, | 
V| = v. We will show below how to initialize the value v. Let mission i ∈
M have the departure and arrival times td

i and ta
i ,1 ≤ i ≤ m, respectively, 

and range Ri km. Let tLU > 0 denote the amount of time needed to board/ 
de-board the passengers of an e-AC. Let tBS > 0 denote the period of time 
needed to swap a battery. Let qS

i and qE
i be the battery SOC at the start 

and end of mission i, respectively, with qS
i ,qE

i ≤ Q. We assume a battery 
safety margin SF = 0.2Q such that it is always the case that qE

i ≥ 0.2Q 
(20% safety margin). Let qR

i be the minimum energy needed to perform 
mission i of range Ri (without a safety margin). Let PC be the nominal 
power of charge at a charging station. Let qC

ij be the battery capacity 
required to charge between two consecutive missions i and j, with qC

ij a 
function of qR

i and qE
i , as we will show below. Finally, let tC

ij denote the 
battery charging time needed to ensure sufficient energy for mission j, 
given that mission i is immediately succeeded by mission j. We define tCij 
to be a function of qS

i , qE
i , qR

i and PC, as we will show below. Here, tCij 
assumes a bi-linear profile: it increases linearly with a given slope when 
charging up to 90% of the battery capacity (fast charging), while for 
charging 90% or more of the battery capacity, the slope decreases 
significantly (slow charging), see Fig. 5. 

Formally, we define the time to charge between missions i and j as 
follows: 

tC
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qC
ij

Pc , if qE
i <0.9Q, qS

j <0.9Q

qC
ij

Pc/10
, if qE

i >0.9Q, qS
j >0.9Q

0.9Q − qE
i

Pc +
qR

j +SF − 0.9Q
Pc/10

, if qE
i <0.9Q, qS

j >0.9Q

, ∀i,j∈M; i< j.

(1)  

4.1.1. Decision variables 
We considered the following decision variables: 

xik =

{1,  if  e− ACk is  assigned  to  mission i
0,  otherwise

yk =

{1,  if  e− ACk is  used  at  least  once  during  the  planning  horizon
0,  otherwise

zijk =

{1,  if  e− ACkexecutes  mission j immediately  after  mission i
0,  otherwise

wBS
ij =

{1,  if  e− AC  swaps  batteries  between  consecutive  missions iand j
0,  otherwise

wBC
ij =

{1,  if  e− AC  charges  batteries  between  consecutive  missions iand j
0,  otherwise.

we note that all missions considered are ordered by their tdi , i ∈ M, such 
that every two missions i and j where i > j, leads to zijk = 0. We also 
construct the following auxilary variables: 

aij =

⎧
⎨

⎩

1,  ifwBC
ij = 1 and qR

j + SF ≥ 0.9Q
0,  otherwise

bij =

{
1,  ifaij = 1 and qE

i ≥ 0.9Q
0,  otherwise

cij =

{ 1,  ifaij = 1 and bij = 0
0,  otherwise,

with variable aij showing the case when only slow charge is needed, 
variable bij showing the case when only fast changing is needed and, 
variable cij showing the case when both fast and possibly slow charging 
is needed. 

4.1.2. Objective function 
We consider the cost cAC of acquiring an e-AC, the cost cBS of 

acquiring a battery, and the cost cBC of charging a battery, where cAC ≫ 

Fig. 4. Example of a second-phase solution. Following the first-phase solution (see Fig. 3), the charging start time for battery 1 inside e-AC1 is determined. This start 
time is within turnaround time a15 of e-AC1. To perform all 5 missions, a minimum of one spare battery (a battery stock of three batteries) and one charging station 
is required. 

Fig. 5. Bi-linear charging profile.  
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cBS ≫ cBC. In this phase, the objective of the problem is to create a cost- 
efficient schedule for all e-AC, i.e., we minimize the acquisition cost of e- 
AC and spare batteries costs, as well as the operating cost associated 
with the electricity cost of charging a battery. Moreover, we also incur a 
large penalty, H ≫ cAC, for every unfulfilled mission. Thus, we consider 
the following objective function: 

min
∑

k∈V
cAC⋅yk +

∑

i∈M

[(

1 −
∑

k∈V
xik

)

⋅H +
∑

j∈M
(ωBC

ij ⋅ cBC +ωBS
ij ⋅ cBS)

]

, (2)  

where the first term corresponds to the minimization of e-AC acquisition 
costs by minimizing the number of e-AC used to carry out the missions, 
the second term attributes a large penalty H to each unassigned mission 
and, lastly, the third term minimizes the cost of battery charging and 
swapping. 

4.1.3. Constraints 
We consider the following constraints. 

∑

k∈V
xik ≤ 1, ∀i ∈ M (3)  

xjk ≥
∑

i∈M, i<j

zijk, ∀j ∈ M; k ∈ V (4)  

xik ≥
∑

j∈M, i<j

zijk, ∀i ∈ M; k ∈ V (5)  

zijk ≥ xik + xjk − 1 −
∑

l∈M, i<l<j

zilk, ∀i, j ∈ M; k ∈ V; i < j (6)  

∑

k∈V
yk ≤ v (7)  

∑

i∈M
xik ≤ m⋅yk, ∀k ∈ V (8)  

(

1 −
∑

k∈V
zijk

)

⋅H ≥ ta
i + tLU + ωBS

ij ⋅tBS + ωBC
ij ⋅tC

ij − td
j , ∀i, j ∈ M; i < j (9)  

ωBS
ij + ωBC

ij ≤
∑

k∈V
zijk, ∀i, j ∈ M; i < j (10)  

qS
j =

⎛

⎜
⎝1 −

∑

k∈V

∑

i∈M, i<j

zijk

⎞

⎟
⎠⋅Q

+
∑

i∈M, i<j

[

ωBS
ij ⋅Q + ωBC

ij ⋅(qR
j + SF) +

(
∑

k∈V
zijk − ωBS

ij − ωBC
ij

)

⋅qE
i

]

, ∀j ∈ M

(11)  

qE
i = qS

i − qR
i , ∀i ∈ M (12)  

qC
ij =

{
qR

j + SF − qE
i , if  ωBC

ij = 1
0, otherwise

, ∀i, j ∈ M; i < j (13)  

aij ≥
qR

j + SF − 0.9⋅Q
Q

− H⋅(1 − ωBC
ij ), i, j ∈ M; i < j (14)  

aij ≤
qR

j + SF
0.9⋅Q

+ H⋅(1 − ωBC
ij ), i, j ∈ M; i < j (15)  

aij ≤ ωBC
ij , i, j ∈ M; i < j (16)  

bij ≥
qE

i − 0.9⋅Q
Q

− H⋅(1 − aij), i, j ∈ M; i < j (17)  

bij ≤
qE

i

0.9⋅Q
+ H⋅(1 − aij), i, j ∈ M; i < j (18)  

bij ≤ aij, i, j ∈ M; i < j (19)  

cij = aij − bij, ∀i, j ∈ M; i < j (20) 

Lastly, 

tC
ij =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qC
ij

Pc , if  aij = 0

qC
ij

Pc/10
, if  bij = 1

0.9Q − qE
i

Pc +
qR

j + SF − 0.9Q
Pc/10

, if  cij = 1

, ∀i, j ∈ M; i < j (21) 

Constraint (3) ensures that each mission is executed by at most one 
aircraft. Constraints (4–5) ensure that each mission is immediately 
preceded and succeeded by at most one mission. Together with 
Constraint (6), this ensures that missions i and j are characterized as 
consecutive missions if, and only if, e-AC k is assigned to both missions 
and does not carry out any other mission in between. Constraints (7–8) 
determine the number of used aircraft does not exceed the number of 
available aircraft, and if an aircraft is used, respectively. Constraint (9) 
ensures that an aircraft can only execute mission j immediately after 
arriving from mission i not only if mission j starts after mission i is 
concluded, but also if the aircraft has sufficient time to carry out pas-
senger loading and unloading and to fulfill its battery renewal needs. 
Constraint (10) ensures that battery renewal opportunities are only 
allowed between two consecutive missions. Constraint (11) defines that 
the battery capacity at the beginning of each mission j is Q if it is the e- 
AC’s first mission of the day or if its battery has been swapped with a 
fully charged ones, qR

j + SF if the e-AC has been charged just enough to 
execute its next mission and, finally, qE

i if the e-AC has enough battery 
capacity remaining from its previous mission to fulfill its next mission, 
thus not requiring any battery renewal process. Constraint (12) traces 
the remaining battery at the end of each mission. Constraint (13) de-
termines the amount of battery capacity needed to be charged between 
missions i and j if battery renewal is needed and allowed. Constraints 
(14–16) check if the battery capacity after the charge is complete is 
higher than 90% of the total battery capacity Q. For charges that verify 
these conditions, constraints (17–19) determines if the battery capacity 
at the beginning of the charge process is higher than 90% of the total 
battery capacity Q. Constraint (20) assesses if the battery capacity at the 
beginning of the charge process is lower than 90% of Q but by the end of 
the process is higher than 90% of Q. Constraint (21) measures the 
charging time (in minutes) according to the type of charge conditions 
defined in Constraints (14–20). 

We make the following remarks regarding the constraints above. 
Remark 1: Let us assume that an e-AC is assigned to some missions 1, 

2 and 4, in this order. Then missions 1 and 4 are not considered to be 
consecutive, since mission 2 is executed in-between. Constraint (6) for 
missions 2 and 4 determines that z241 ≥ x21 + x41 − 1 − z231 = 1 ⇒ z241 
= 1 since constraint (5) ensures that z231 = 0 becauset x31 = 0. Similarly, 
for missions 1 and 2, z121 ≥ x11 + x21 − 1 = 1 ⇒ z121 = 1. On the other 
hand, for missions 1 and 4, z141 ≥ x11 + x41 − 1 − z121 − z131 = 0 since 
mission 3 is not executed by the e-AC and missions 1 and 2 are 
consecutive missions. However, given that constraint (5) ensures that 
mission 1 only has one succeeding mission, 1 ≥ z121 + z131 + z141 + ⋯ +
z1m1, and that z121 = 1, then z131 = z141 = ⋯ = z1m1 = 0. Thus, even 
though e-AC executes both missions 1 and 4, these are not consecutive. 

Remark 2: Let us consider that mission 5 has the arrival time at the 
airport at 10:00, and mission 6 has the departure time at 11:00 from the 
airport. According to constraint (9), (1 −

∑
k∈Vz56k)⋅H ≥ 15+ 20⋅ωBS

56 +

60⋅ωBC
56 ⋅tBC − 60. Here, tBC is expressed in hours, and the time to board/ 
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un-board is tLU = 15min. If, in order to perform mission 6 after executing 
mission 5, this e-AC has to charge for 50 min (tBC = 0.83), then (1 −

∑
k ∈

Vz56k) ⋅ H ≥ 5. Hence, to comply with constraint (9), 
∑

k ∈ Vz56k = 0 so 
that H ≥ 5. Therefore, missions 5 and 6 cannot be a consecutive pair of 
missions. However, if the time to charge is only 20 min, then (1 −

∑
k ∈

Vz56k) ⋅ H ≥ − 25 ⇒
∑

k ∈ Vz56k ∈ {0, 1}. Thus, in this case, even though 
the departure time of mission 6 is after the arrival time of missions 5, the 
two mission are not executed one immediately after the other. 

Remark 3: We do not consider opportunistic charging, i.e., extra 
charging in-between flights. The main reason is that charging electrical 
batteries is expected to require a much larger period of time than fueling 
conventional aircraft, especially when charging extra the battery to a 
high SOC. Instead of opportunistic charging during the day, we ensure 
that all batteries (inside the aircraft and spares) are fully charged before 
the beginning of a day of operations (before first mission in the morn-
ing). In other words, we aim to charge fully during the night, rather than 
having time-consuming, extra charging in between flights. 

4.1.4. Determining the size v of the e-AC fleet 
The size v of the e-AC fleet is not known prior to optimization, so we 

determine v in an iterative manner as follows. We initialize 0 < v ≪ m 
and check the value of the objective function in eq. (1) relative to H (see 
4.1). If the objective function has the same order of magnitude as H, then 
it means that v is too small and there is an insufficient number of e-AC to 
carry out all m missions. In this case, we increment v and evaluate again 
the objective function. Otherwise, v is sufficiently large and we stop the 
iterative process. 

4.1.5. Constraint linearization 
In Section 4.1, constraints (9) and (11) are quadratic. 
We linearize these constraints as follows. Consider a generic 

constraint d = f ⋅ E, where f is a binary variable and E, 0 < E < E, is a 
continuous variable bounded bellow above by E. We linearize this 
constraint as follows (Torres, 1990): 

d ≤ E⋅f (22)  

d ≤ E (23)  

d ≥ E − (1 − f )⋅E (24)  

d ≥ 0 (25) 

We note that if f = 0 in eq. (22), then d = 0. Also, eq. (24) states that 
d must be greater than a negative number. However, if f = 1, then eq. 
(22) ensures that d < E, which is further tightened by eq. (23). Equation 
(25) ensures that d ≥ 0 in all cases. 

Following the example above, constraint (9) is linearized, using d =

δij = ωBC
ij ⋅tC

ij , as follows: 
(

1 −
∑

k∈V
zijk

)

⋅H ≥ ta
i + tLU + ωBS

ij ⋅tBS + 60⋅δij − td
j (26)  

δij ≤ tMAX ⋅ωBC
ij (27)  

δij ≤ tC
ij (28)  

δij ≥ tC
ij − (1 − ωBC

ij )⋅tMAX (29)  

δij ≥ 0 (30) 

Similarly, constraint (11) is linearized, using d = μij =
(∑

k∈Vzijk −

ωBS
ij − ωBC

ij

)
⋅qE

ij = γij⋅qE
ij, as follows: 

qS
j =

⎛

⎜
⎜
⎜
⎜
⎝

1 −
∑

k∈V

∑

i∈M

i<j

zijk

⎞

⎟
⎟
⎟
⎟
⎠

⋅Q +
∑

i∈M

i<j

[
ωBS

ij ⋅Q + ωBC
ij ⋅(qR

j + SF) + μij

]
(31)  

γij =
∑

k∈V
zijk − ωBS

ij − ωBC
ij (32)  

μij ≤ γij⋅H (33)  

μij ≤ qE
i (34)  

μij ≥ qE
i − (1 − γij)⋅H (35)  

μij ≥ 0 (36) 

Also, in Section 4.1, constraints (13) and (21) are indicator functions. 
We also linearize constraints (13) is as follows: 

qC
ij ≥ qR

j + SF − qE
i − (1 − ωBC

ij )⋅H (37)  

qC
ij ≤ qR

j + SF − qE
i + (1 − ωBC

ij )⋅H (38) 

Constraint (37) and (38) ensure that when ωBC
ij is 1, qC

ij ≥ qR
j + SF −

qE
i . Contrarily, when ωBC

ij = 0, then − H ≤ qC
ij ≤ H, indicating that qC

ij can 
assume any value as long as its absolute value is bounded by H. How-
ever, constraint (13) also establishes that if ωBC

ij = 0, then qC
ij is neces-

sarily 0 as well, therefore the linearized set of constraints also include 
the following inequality: 

qC
ij ≤ ωBC

ij ⋅H (39) 

Similarly, constraint (21) is linearized as follows: 

tC
ij ≥

qC
ij

PC − H⋅aij (40)  

tC
ij ≤

qC
ij

PC + H⋅aij (41)  

tC
ij ≥

qC
ij

PC
/

10
− (1 − bij)⋅H (42)  

tC
ij ≤

qC
ij

PC
/

10
+ (1 − bij)⋅H (43)  

tC
ij ≥

0.9Q − qE
i

PC +
qR

j + SF − 0.9Q
PC
/

10
− (1 − cij)⋅H (44)  

tC
ij ≤

0.9Q − qE
i

PC +
qR

j + SF − 0.9Q
PC
/

10
+ (1 − cij)⋅H (45) 

As an example, when aij = 0, constraints (17–20) establishes that 
both bij = 0 and cij = 0. Consequently, constraints (42–45) ensure that −

H ≤ tC
ij ≤ H, while constraints (40) and (41) ensure that tC

ij =
qC

ij
PC, which is 

in line with constraint (21). 

4.2. Second phase: optimal time for battery charge and minimizing the 
number of charging stations and batteries 

In this second phase, we consider as input the battery-charging and 
swapping events planned in the first phase. Also, in contrast with the 
first phase model, we now consider a discrete-time optimization model. 
Our aim is to determine the optimum moment when a battery charge 
starts such that the total number of charging stations and spare batteries 
is minimized. 

M. Mitici et al.                                                                                                                                                                                                                                  



EURO Journal on Transportation and Logistics 11 (2022) 100074

7

We consider a discrete time horizon of T time units. Let CS denote the 
set of identical charging stations, |CS| = cs, that have to fulfill all 
charging events CE, |CE| = ce. Let CES denote the set of swapping battery 
events, |CES| = ces and CES ⊂ CE. Let TS denote the set of time units when 
battery swaps are carried out. We define 

st =

{
1, if  t ∈ TS
0, if  t ∈ T\TS.

Let an event n ∈ CE have a duration dn = tC
ij (determined in phase 1). 

Let [en, ln] define a time window within which event n needs to start. If 
wBC

ij = 1 (battery charging at a charging station), then en = ta
i and ln =

td
j − dn. If wBS

ij = 1 (battery swap), then en = ta
i and ln = T. 

4.2.1. Decision variables 
We considered the following decision variables: 

ot
k =

{
1,  if  if  charging  station k is  in  service  at  time  t
0,  otherwise (46)  

ut
ik =

{
1,  if  charging  station k starts  servicing  event i at  time t
0,  otherwise

(47)   

rk=

{
1,  if  charging  stationk is  used  at  least  once  during  planning  horizonT
0,  otherwise

(48)  

we also define the following auxiliary variables: 
b ∈ N+: Number of batteries needed in stock to fulfill every swap 

requirement. 
pt ∈ N+: Number of swapped batteries that at time t are waiting to be 

charged. 

4.2.2. Objective function 
The goal of the second phase of the problem consists in minimizing 

the number of spare batteries, b, and the number of charging stations, rk, 
k ∈ CS, as follows: 

min

(

b +
∑

k∈CS

rk

)

(49)  

4.2.3. Constraints 
We considered the following constraints: 

∑

k∈CS

∑li

t=ei
ut

ik = 1, ∀i ∈ CE (50)  

ot
k =

∑

i∈CE

ei≤t≤li+di

∑t
h=t− di

h≥ei

uh
ik, ∀t ∈ T; k ∈ CS (51)  

pt =
∑

t′ ∈TS

t′ ≤t

st′ −
∑

i∈CES

∑

k∈CS

∑

t′′∈T

ei≤t′′≤t− di

ut′′
ik , ∀t ∈ TS (52)  

b = max({pt, pt′ ,…, pt′′ }), ∀t, t′ ,…, t′′ ∈ TS (53)  

∑

i∈CE

∑

t∈T
ut

ik ≤ ce⋅rk (54)  

∑

k∈CS

rk ≤ cs (55) 

Constraint (50) guarantees that every charging event must be satis-
fied by exactly one charging station within its window [ei, li]. Constraint 

(51) ensures that each battery recharge is carried out continuously by 
the same charging station. Constraint (52) determines the number of 
swapped batteries awaiting to be charged whenever a new swap occurs. 
Constraint (53) determines the number of batteries required in stock to 
comply with the swaps conducted throughout the planning horizon T. 
Constraints (54–55) assess if a charging station is used and ensure that 
the number of used charging stations cannot exceed the number of 
available charging stations, respectively. Constraint (53) can be linear-
ized by, for instance, introducing additional indicator variables δti =

1if  pti > b,ti ∈ TS, see MirHassani and Hooshmand (2019), Chapters 4.5 
and 4.6. Specifically, our initial constraint can be formulated as: b >=

ptj , j ∈ {1,…,n}, b <= ptj + M⋅(1 − δj), j ∈ {1,…,n}, 
∑n

j=1δj = 1. 
We make the following remarks regarding the constraints above. 
Remark 4: Let us consider the case when an e-AC arrives at ta = 100 

and departs at td = 200 from two consecutive missions. During the 
turnaround time, this e-AC is required to charge for 30min to renew its 
battery before departing again. Thus, for this charging event i, ei = 100 
and li = 170. Constraint (50) ensures that charging event i occurs within 
t = 100 and t = 170. Assuming that this charging event is done at 
charging station k at t = 150, u150

ik = 1, then constraint (51) guarantees 
that the charging is performed without interruptions. 

Remark 5: We consider that a depleted battery is swapped with a 
fully charged one. The swapped depleted battery can be charged and 
reused again. Thus, the number of swapped batteries waiting to be 
charged, pt, can increase or decrease with t. Constraint (52) determines 
the number of swapped batteries that are waiting to be charged by 
subtracting the number of swaps until time t (inclusive) with the number 
of swapped batteries that have already been charged and are apt to 
replace depleted ones. 

4.2.4. Initializing the number of charging stations 
The number of charging stations cS available is not known prior to 

the optimization, and it is determined in an iterative manner as follows. 
The solution obtained in phase 1 assumes that all charging and swapping 
events are fulfilled. Thus, the solution of the model in phase 2 must cover 
all charging events obtained by the phase 1 model. Thus, we initialize 0 
< cS ≪ v and increment cS until we obtain a feasible solution for the 
phase 2 model. 

5. e-Aircraft and battery models 

In this section, we discuss the models used to estimate i) the battery 
SOC decrease due to the completion of a mission i of range Ri, and ii) the 
charging time tCij needed for the battery to be able to carry out mission j 
of range Rj immediately after mission i. Lastly, since there are not yet 
available charging specifications for electric or hybrid-electric short- 
range flights, we introduce an electrified version of an conventional 
narrow-body aircraft, Embraer 175, who is usually used for short-range 
flights and whose characteristics are recalculated to account for possible 
weight penalties given by the installation of batteries instead of fuel. 

5.1. Aircraft model 

The energy required to execute a mission of range R is calculated by 
means of the Mission Anaysis methods, widely used during conceptual 
and preliminary aircraft design to estimate the fuel needed to carry out a 
nominal mission. This method uses a weight fraction method (Raymer, 
1992) together with a Breguet formula(Hepperle, 2012) that have been 
properly adapted to take into account the differences between electric 
and conventional propulsion configurations. The rationale behind the 
aforementioned approach consists into determining the amount of fuel 
for a conventional aircraft and then calculating the correspondent 
amount of electrical energy needed in case of an e-AC. 

Specifically, we take the following steps. First, the mission is 
considered to be composed of the following phases: takeoff, climb, 
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cruise, descent and landing. During descent and landing, we assume that 
the requested energy is negligible. 

Second, in line with the weight fraction method (Raymer, 1992), it is 
assumed that a conventional aircraft burns 7% of its Maximum Take Off 
Weight (MTOW) during Take-Off and Climb segments. Thus, the 
correspondent electrical energy is calculated as follows: 

ξTO,CL
b =

Wf ⋅E∗
f ⋅ηf

ηb
=

(1 − 0.93)⋅MTOW⋅E∗
f ⋅ηf

ηb
, (56)  

where E∗
f denotes the specific energy density of the fuel, ηf and ηb the fuel 

and battery to propulsive power efficiency, respectively, and Wf the fuel 
mass. 

Third, the total energy that needs to be provided by the batteries of 
the e-AC during cruises is estimated using the Bregued Formula adapted 
to an e-AC (Hepperle, 2012) as follows: 

ξCR
b = E∗

b⋅Wb =
R⋅g

ηb⋅L/D
⋅MTOW, (57)  

where E∗
b denotes the specific energy density of the battery, Wb is the 

battery mass, R is the flight range, g is the gravity acceleration, and L/D 
is the lift to drag ratio. 

Combining eq. (56) and eq. (57) it follows that the battery energy 
needed to perform a mission of range R, is: 

ξb = ξTO,CL
b + ξCR

b =

((

1 − 0.93)⋅E∗
f ⋅ηf +

R⋅g
L/D

)

⋅
MTOW

ηb
. (58) 

We note that, for a given electrical technology (for which corre-
spondent values of battery specific energy E∗

b and electrical efficiency ηb 
are determined) and for a given aircraft (assuming a value for the 
aerodynamic characteristics expressed by L/D) the requested energy, is 
linearly depending on the mission range (see also the right graph in 
Fig. 6 where E∗

f = 11, 000Wh/kg, ηb = 73% and ηf = 33% and L/D =
16.5). We also note that for short ranges the required energy is still 
relatively high because of the energy needed to perform take-off and 
climb. Lastly, the MTOW has been calculated using an iterative class I 
estimation method (Raymer, 1992) as explained in detail in Section 5.3. 

5.2. Battery charge model 

The charging model is used to calculate the charging time in such a 

way that an aircraft that just completed mission i of range Ri can 
immediately perform mission j of range Rj/. The charging time depends 
on the nominal power of charge PC, which is defined as follows: 

PC =
PD

MAX

CMAX
/

CNOM
, (59)  

where CMAX and CNOM are the C-rates at which the discharge and 
nominal charge occur, respectively. A C-rate is a measure of the rate at 
which a battery charges/discharges relative to its nominal capacity. In 
this paper, we assume that CMAX = 6 and CNOM = 1, where the chosen 
values reflect typical charging and discharging conditions for a Li-Ion 
battery. 

We also assume that the maximum power required for takeoff is 
proportional to the MTOW of the aircraft considering the value extracted 
from the reference aircraft (see Table 1. In addition, the charging time 
follows a bi-linear dependence on the battery State of Charge (SOC), as 
expressed in eq. (21); this relation takes into account two different 
charging phases (constant current and constant voltage). 

Fig. 6 shows how the energy consumption is determined based on the 
range to be flown for mission j of range Rj which immediately follows 
after mission i of range Ri. Next, this energy is used to determine the time 
to charge this energy. 

Using the model in Section 5.1 the amount of energy (expressed in 
SOC) needed for missions i and j is determined. When the aircraft 
completes mission i, its final SOC is SOCi. For the new range Rj, a new 
SOC is required, SOCj. Then the energy to charge is given by SOCj −

SOCi. The SOC is defined as the ratio of the energy level of the system 
(the aircraft) at a certain moment ξ, over the maximum energy that the 
system can store ξmax, i.e., 

Fig. 6. Procedure to determine the time-to-charge tC
ij .  

Table 1 
Embraer E175 and e-AC weight parameters.  

Parameter Embraer E175 e-AC 

Wpay (Kg) 10, 094 10, 094 
MTOW (Kg) 40, 370 54, 660 
EOW (Kg) 21, 886 28, 558 
Wenergy (Kg) 9, 355 16, 008 
Battery Capacity (KWh) – 12, 804 
Take Off Power (MW) 14.5 22.65  
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SOC =
ξ

ξmax
.

In other words, SOC = 1 when the aircraft start a mission with fully 
charged batteries, whereas 1 < SOC < 0 when an aircraft lands after the 
completion of a certain mission. For the present study, it is thus neces-
sary to adopt a model to correlate the SOC of a certain aircraft to the 
mission that the aircraft itself has flown. As such, eqs. (56)-(58) deter-
mine the relation between the SOC and the flown range R of the aircraft: 
for a full electric aircraft, this relation is linear and it is represented in 
the left graph of Fig. 6, i.e. ξ = A + B ⋅ R, where A and B are two co-
efficients depending on the technical performance of the aircraft. 

Lastly, the time needed to charge is determined using a bi-linear 
charging function (see the right graph of Fig. 6). 

5.3. e-Aircraft class I estimation 

An initial set of aircraft characteristics is needed to initialize the 
calculations introduced in Sections 5.1 and 5.2. Since currently there are 
no fully e-AC that can be taken as reference for regional transportation, a 
modified class I estimation method is applied to an existing aircraft to 
estimate the new MTOW, where the battery is the main propulsive en-
ergy source. The method consists in including eq. (58) as mission 
analysis to estimate the weight of the needed batteries, into an iteration 
loop (Raymer, 1992) to estimate a converged value of the MTOW. 

Table 1 shows the results of the iterative class I estimation loop. The 
MTOW of the electrified version increases of about 35% compared to the 
baseline aircraft, despite of a drastic reduction of the nominal range. In 
fact it is assumed that the e-AC can fly a nominal range of 700 Km 
whereas the reference E175 has a range of approximately 4000 km. This 
difference is mainly caused by the very low specific energy density of the 
batteries when compared to the fuel. 

6. Numerical results 

In this section we illustrate the performance of our two-phase opti-
mization model for 49 short-range missions, i.e. 49 round-trip flights, 
that arrive at and depart from Amsterdam Airport Schiphol (AMS) 
during one day of operations and have a range of at most 350 km one 
way from AMS. Fig. 7 shows the number of missions occurring simul-
taneously during the day. The optimization model is solved with Gurobi 
8.1.1 with standard settings, on an Intel Core i7-5500U, 2.50 GHz. The 
results are obtained in 42min. To linearize constraint (53), we consider 
the function Model.addGenConstrMax(.), which introduces additional 
slack variable for linearization, see Gurobi (2021). The routine Model. 

addGenConstrMax(.), introduces additional slack variable δj, j ∈ {1, …, 
n} and slack variable zj, j ∈ {1, …, n} to linearize a constraint w = max 
(x1, x2, …, xn) as follows: w = xj + δj, j ∈ {1, …, n}, z1 + … + zj = 1, SOS1 
(sj, zj), j ∈ {1, …, n}, sj > = 0, j ∈ {1, …, n}, zj ∈ {0, 1}, j ∈ {1, …, n}. The 
SOS1 constraints state that at most one of the two variables δj and zj can 
be non-zero, which models the implication zj = 1 → sj = 0. 

6.1. Estimation of model parameters 

In estimating the model parameters for the e-AC, we consider as 
reference the electric aircraft Pipistrel Taurus Electro G2 (Pipistrel, 
2018) and the conventional, regional aircraft Embraer E175. 

The acquisition cost and the battery price of Pipistrel Taurus Electro 
G2 with a 9.7 KWh battery, was in 2018, 10, 619€/KWh and 1, 402€/ 
KWh (Pipistrel, 2018), respectively. Furthermore, considering 
Netherlands’ electricity price for transportation purposes in 2018, 
recharging a battery costs 0.083€/KWh. Thus, considering the 8, 004 
KWh battery capacity of the Embraer E175 electric version shown in 
Table 1, we assume that the cost of the aircraft acquisition, of the battery 
purchase and of the battery recharge (from depleted to fully charged) 
are 85 × 106 €, 11 × 106 € and 664 €, respectively. Given that cost for an 
Embraer E175 is approximately 42 × 106 € (FlightGlobal, 2017; Air-
ways, 2018) and that electric propulsion is more expensive than con-
ventional propulsion, we assume a cost of 85 × 106 € for an electrical 
aircraft. Without loss of generality, we scale all costs above by a factor 
1/664. 

For the model in Section 4.1 we assume a constant duration of 20min 
for battery swap, and a 15min duration for loading and unloading of 
passenger in the e-AC. 

6.1.1. e-Ac fleet sizing, mission and battery renewal schedule 
Fig. 8 shows an optimal e-AC-to-mission schedule where a fleet of 15 

e-AC, 23 battery charges and 9 battery swaps are needed to fulfill all the 
49 missions considered (see Fig. 7). These results are obtained with the 
optimization models in Section 4.1 and Section 4.2. 

During the busiest time of the day, from 18:30–19:30, there are 13 
missions being executed at the same time (see Fig. 7). However, the 
obtained schedule (see Fig. 8) shows that during this busy period, two 
additional e-AC are needed, having a total need of 15 electric aircraft. 
This is due to the fact that, during this period, two e-AC are undergoing 
battery renewal procedures, and, consequently, cannot be assigned to 
any mission. Furthermore, Fig. 8 shows that battery-swapping occurs 
only during the second half of the day (from 15:00 onwards), while 
battery-charging events occur evenly throughout the day. There are no 
battery charging or swapping early on since we assume that all batteries 
are fully charged at the beginning of the day. 

6.1.2. Charging stations and swap battery infrastructure requirements for 
the e-AC 

Fig. 8 shows that the e-AC schedule requires 24 battery charges (light 
blue lines) and 9 battery swaps (orange lines). Fig. 9a shows the time 
windows i.e., the time between two consecutive missions during which a 
battery charge/swap event is scheduled (the output of phase 1 Optimi-
zation) versus the actual period when these 24 + 9 charging events take 
place. Towards the end of the day, the swapped batteries become 
depleted. Our model ensures that all batteries are fully charged at the 
beginning of a new day of operations (before the first mission of the 
day). As a result, although there are no more missions in the last phase of 
the day to require battery charging, the depleted swap batteries are 
required to charge before the beginning of the day. During night, the 
time windows are larger since the turnaround time until next mission in 
the morning is larger. The charge of the swapped batteries is pushed 
towards the end of the day, where the time windows are larger. This 
shows that battery swapping is used in the last phase of the day, when 
the number of flights increases significantly and the number of charging 
stations is not large enough to support the simultaneous charging Fig. 7. Missions to and from AMS during one day of operations.  

M. Mitici et al.                                                                                                                                                                                                                                  



EURO Journal on Transportation and Logistics 11 (2022) 100074

10

Fig. 8. Optimal fleet schedule when considering 49 missions. A total of 15 e-AC are needed to carry out all the 49 missions. A vertical red line indicates the peak time 
when 13 aircraft are executed at the same time. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Fig. 9. (a) Time window and actual charging instances of charging events either originating in e-AC charges or swapped batteries charges. (b) Number of charging 
stations working simultaneously. 
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needed during this peak period. 
Regarding the infrastructure needed to support these electric flights, 

Fig. 9a shows that a minimum of 7 charging stations need to be available 
at the airport. This is because, irrespective of the actual charging period, 
events 26 through 32 will always overlap, given their limited time 
window. Furthermore, at 20:45, a total of 16 events need to be simul-
taneously processed. However, only 7 are performed using a charging 
station. This illustrates that the charging events are arranged so that a 
minimal number of charging stations is used in the charging process. 
Fig. 9a also shows that a mix of charging the batteries at a station and 
battery swaps is preferred in the second part of the day, when the 
number of simultaneous missions increases. 

Fig. 9b shows the number of charging stations (CS) that are in service 
at the same time. The charging stations are particularly busy at the end 
of the day since batteries that were previously used for swaps are now 
also re-charged at a charging station. These events have a wider time 
window than charging events originated from battery charges, therefore 
they offer a bigger schedule flexibility. Accordingly, in order to mini-
mize the number of charging stations operating at the same time, 
charging events originating from battery swaps are postponed to less 
busy periods, i.e., periods of the day with less demand from events 
generated by battery charges. This situation is particularly evident in 
events 21 through 25, which are delayed until events 26 to 30 are 
completed. 

Figs. 8 and 9a show that a stock of 8 spare batteries are required to 
fulfill every swap need during one day of operations, with a total of 9 
swaps being performed. In particular, Fig. 10 shows how the number of 
depleted batteries is impacted by the moments at which a battery swap 
occurs (swap instances) as well as the charging events of these batteries. 
Here, the number of spare batteries is driven by two factors. To begin 
with, the first 8 swaps occur within a shorter time frame than the 
charging duration of these batteries. Thus, there is not sufficient time to 
fully charge the batteries so they can replace forthcoming swapped 
batteries. Second, the first 8 swaps occur during a period of high demand 
from events originated from battery charges. Hence, the charging of 
these swapped batteries is delayed so that the battery charges can be 
completed within their time window. As a result of this delay, the 
number of depleted batteries grows. These batteries become available 
later, so any swap that occurs in the meantime needs to be performed 
with a spare battery. 

7. Conclusions 

We have developed a two-phase optimization model that determines 

the number of resources, i.e., number of electric aircraft, charging sta-
tions and spare batteries, required to fulfill a set of missions (round-trip 
flights). With this, we determined a schedule for electric aircraft to 
perform round-trip flights. Our approach considers as battery renewal 
options both swapping batteries with spare one, or charging batteries at 
a charging station. If the battery is charged at a charging station, then 
the charging duration is a function of the residual energy level of the 
battery and the range the aircraft is scheduled to fly next. 

Our proposed model has been implemented for a set of short-range 
flights arriving and departing from a reference airport during a day of 
operations. The results show that a mix of using both charging stations 
and spare batteries can enable a fleet of electric aircraft to execute three 
times more round-trip flights than the size of this fleet. Moreover, the 
results show that charging the electric aircraft at a charging station is 
preferred in the first part of the day, while a mix of battery swapping and 
charging at a station is preferred in the second, more busy part of the 
day, where the number of missions performed at the same time in-
creases. Nonetheless, although we consider the scheduling of electric 
aircraft as an application, our proposed model is generic and can be 
applied for hybrid-electric aircraft provided charging specifications are 
given, as well as for other electric means of transport, where the vehicle 
fleet sizing and logistics of vehicle charging are of interest. 

As future work we plan to extend our analysis for a set of more 
complex types of missions that could involve several flight legs and 
detailed flight phases. Also, we plan to consider dedicated battery 
technologies to illustrate our models. 
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