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Abstract: A novel non-iterative phase retrieval method is proposed and demonstrated with a
proof-of-principle experiment. The method uses a fixed specially designed mask and through-
focus intensity measurements. It is demonstrated that this method is robust to spatial partial
coherence in the illumination, making it suitable for coherent diffractive imaging using spatially
partially coherent light, as well as for coherence characterization.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

Coherent Diffractive Imaging (CDI) has emerged as a popular method for lensless imaging and
phase imaging. In CDI, one illuminates a thin sample with coherent light, and one or multiple
intensity patterns of the diffracted transmitted field are measured (for example in the far field).
With this set of intensity measurements, the complex-valued transmission function of the sample
is reconstructed. Several reconstruction schemes have been developed, and these can be divided
in two categories: iterative reconstruction algorithms, and non-iterative methods.

The most basic iterative reconstruction algorithms use a single far-field intensity measurement
and a support constraint that assumes we know the shape of the object a priori. Examples of such
algorithms are the Error Reduction and Hybrid Input-Output algorithms [1,2]. Other algorithms
use multiple intensity measurements. For example, in ptychography the object is illuminated with
a spot of light referred to as ‘the probe’. By shifting the probe to different overlapping positions
(or equivalently, by moving the object), different far-field intensity patterns are obtained, and the
object is reconstructed from this set of diffraction patterns [3]. Another method is to take set of
through-focus intensity measurements and reconstruct the object from these patterns [4].

Non-iterative methods are for example phase-shifting holography (also sometimes referred to
as quantitative Zernike phase contrast imaging [5]) and Fourier holography [6]. In these methods,
the transmitted field is modulated in a single point (ideally) so that in the far-field the diffracted
field interferes with a reference plane wave. The object is then reconstructed using methods
that are equivalent to phase-shifting interferometry and off-axis holography. Other examples
of non-iterative methods include single-parameter phase modulation [7], focus-variation that
assumes a high zeroth diffraction order [8], solving the Transport of Intensity Equation [9], and
using shifting Gaussian filters [10].

The reconstruction methods that were just mentioned all assume that the illumination is
perfectly coherent. It may be relevant to consider how the algorithms perform or how they must
be adapted when the illumination is spatially partially coherent. For the iterative solutions, the
solution usually involves mode decomposition. It can be shown that the mutual coherence function
can be decomposed into modes that propagate coherently, but are mutually incoherent [11]. In
the completely coherent case only one mode is required to describe the transmitted field, and
as the coherence decreases, more modes are required. If it is known a priori that the mutual
coherence function is shift invariant, the diffracted intensity can be calculated more easily using a
convolution [12]. For several non-iterative methods such as Fourier holography and phase-shifting
holography, it has been demonstrated [13] that these methods also work when the illumination is
partially coherent, and that in the absence of an object these methods can be used to reconstruct
the coherence function of the illumination.

In this article, a method for a non-iterative object reconstruction from through-focus intensity
measurements is presented. The method works by using a fixed specially designed mask. This
method is robust to partial coherence, and can also be used to characterize the coherence structure
of a field. If it can be assumed that the coherence function and/or the object transmission function
is real-valued, only half of the focal field needs to be scanned, which means that it is also possible
to reconstruct the field using just free-space propagation, thus eliminating the need for focusing
optics. Since it is a non-iterative method, it is computationally inexpensive. The method does not
require mode decomposition (as opposed to the iterative methods), which therefore avoids the
arbitrary truncation of the number of modes that are used to describe the coherence function.
Focus-variation is achieved by simply moving the detector, or by modulating the wave front
with a spherical or quadratic phase pattern, which is a relatively simple modulation that can be
introduced easily (using e.g. a liquid lens for optical wavelengths, or electromagnetic lenses for
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electrons), especially compared to other phase modulation methods [7].

2. Method

Suppose we have a mutual coherence function J(x,Xz) of a quasi-monochromatic spatially
partially coherent field of which we want to reconstruct information using a through-focus
intensity scan. The intensity in the observation plane is given by

I(u, A) = // J(x1, xp)e AN FEPaF)gm2mitim) 8 gy, s, (M
where A is a defocus parameter and is given by (see Appendix A)
2f
= , 2
17 @)

where zy is the distance to the back focal plane of a lens with focal length f, and A is the
wavelength of the light. The reciprocal space coordinate u is related to the lateral focal field
coordinates (xr, yr) as

X f
=l— —. 3

[3737) ¥

Inverse Fourier transforming this intensity pattern with respect to both u and A gives

Fanll}(x wp) = //. J(x1,%X2)0 (wA - (|X1|2 - |X2|2)) o(x — (x1 — x2)) dx; dxp
“
= fJ(x + X2,X2)0 (a)A - (|x +x,% - |X2|2)) dx;.
If for the sake of notation we write X, =y, then we get

Tk xon) = [ S+ y.905 (wa - e - 2x-¥) . )

Our goal is to use the delta function in this integral to filter out information about J(xy, x3)
directly. To do this, we choose w4 = |x|?> + 2x - P (see Appendix B for details), where P is a fixed
point, the choice of which will be explained later. We get

Fab DX+ 2x-P) = [ Jx+yyo@x- (P-y) v ©)

Due to this delta function, the integrand contributes to the integral only when x = 0 or when x is
perpendicular to P —y. Let us assume in the following that x # 0. What we want to do now, is to
make sure that the integrand contributes only when y = P, so that we can directly reconstruct the
object modulated by the mutual coherence function of the illumination

FanlI(w A} x> + 2x - P) < J(x + P, P). (7)

Let us for now consider the case of full coherence in which case we can write J(x + P,P) =
O(x + P)O(P)*, where O(x) can be interpreted as the transmission function of a sample that we
want to reconstruct. If we want a nonzero contribution to the integral only if y = P, we require
the following

1. O(P)* #0,
2. O(x+P) #0,
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3. O(x+y)=0o0rO(y)* =0 when P -y is perpendicular to x and y # P.

We can make sure that these requirements hold by imposing a certain mask on the object, and we
can check these requirements visually as follows:

» Sketch O(x) and check that O(P)* # 0, i.e. P should lie within the domain of the object
(which can be defined by a mask). This fulfills requirement 1.

* Sketch O(x + P) as a function of x and see for which x it holds that O(x + P) # 0. These
are the x we are interested in. This fulfills requirement 2.

* For all the directions of x that we are interested in, draw lines perpendicular to x through
P, and lines perpendicular to x through x + P. These lines make up the collection of y and
X + y respectively for which x - (P —y) = 0. Verify that there is no y except for y = P for
which both O(x + y) and O(y)* are nonzero. This fulfills requirement 3.

In Fig. 1 this procedure is used to demonstrate that a star-shaped mask is suitable for non-iterative
focus-variation reconstruction: because of the sharp protrusions of the star, the line that is
perpendicular to any relevant x and goes through P will intersect O(x) in only a small region,
even if the line has a finite thickness due to the finite sampling range of A (as will be explained
in Section 2.1). Therefore, only a small region of y around P will contribute to the integral in
Eq. (6). On a practical note, it is important to recall that in the reconstruction formula in Eq. (7),

Fig. 1. Demonstration that a star-shaped mask is suitable for non-iterative focus-variation
reconstruction. If P is chosen to be one of the star’s points, then we see that for any x for
which O(x + P) is non-zero, all y for which P — y is perpendicular to x intersect the object
only in P.

7—: }4{-} denotes the three-dimensional inverse Fourier transform with respect to both u and A. In
practice however, it would be unnecessarily cumbersome to compute a three-dimensional inverse
Fourier transform and extract the desired two-dimensional surface from it. Therefore, we instead
perform the reconstruction by summing two-dimensional inverse Fourier transforms with respect
touforall A
Jx+P.P) o 3 Fo I, A)h(x, A)eP AN 2P, 8)
A

where in this case, Tu_l {-} denotes the two-dimensional inverse Fourier transform with respect to
u.
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2.1. Finite scanning range of A

When performing the Fourier transform with respect to A as in Eq. (4), note that we can scan A
only over a finite range. As a result, we will not have a sharp delta peak in wy4, but rather we
have a function a finite width Aw4. We can mitigate the effects of a finite sampling range by
introducing a sampling function H(A)

Jx+P.P)~ > Fo (0, A)lx, AYH(A)e AE2xP), )
A

If we take a rectangular sampling window H(A) = 1, taking the inverse Fourier transform with
respect to A gives a factor proportional to

7! {H(A)e%”“‘(‘”ylz*‘yl”} (X% + 2x - P) = Wsinc(xW(2x - (P — y))) (10)

where W is the sampling range of A. This function gets narrower when W or |x| gets larger, but it
always has significant sidelobes. By choosing H(A) to be a Hamming window, these sidelobes
can be suppressed, as is shown in Fig. 2.

Rectangular window Hamming window

(a)

Rectangular window Hamming window

(W)

Fig. 2. Plots showing the contribution of each y to the integral, superimposed on the mask
of the object. The yellow arrow indicates P, and the red arrow indicates a certain choice
of x. The size of the object mask and the values for A are the same as the ones used in the
experiment (see Section 3). For larger |x|, the line consisting of the y that contribute to the
integral becomes narrower. By applying a Hamming window function, the effects of the
sidelobes are reduced significantly, at the expense of broadening the central lobe.
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Another problem that may occur is that if one varies A by varying the propagation distance in
the Fresnel approximation, rather than focusing the field, then only positive A can be scanned. In

this case, A is given by
1

A= —, 11
22z ab
and u is related to the real-space coordinates (x, y) as
Xy
S B B 12
" (/lz /lz) (12)

where A is the wavelength and z is the propagation distance. If it is known that the mutual
coherence function is real-valued (i.e. J(x1, X2) = J(X1, X2)"), the intensity measurements obtained
for positive A can be used to infer the intensity patterns for negative A.

I(u, A) = (// J(x1, Xz)*e—Zni(—A)(lxl P=Ix2 %) p=27i(x1=%2)-(-W) dx; dXz)

B (.// J(Xl’ X2)e_27ri(_A)(\X1 \2—\?(2 \Z)e—27ri(x1—x2)~(—u) Xm dXz) (1 3)
= I(-u, -A)"
=I(—u,—A).

This extrapolation method as well as others are discussed in [14].

3. Experiment

To test the method in a proof-of-principle experiment, we use the setup as shown in Fig. 3. In this
setup, we use green laser light (4 = 532nm) which is expanded in the beam expander. The beam
is made partially coherent by focusing it on a rotating ground-glass disk, after which the beam
is approximately collimated again with a second lens. By varying the position of the first lens,
we can vary the spot size on the rotating disk, thereby changing the degree of coherence. The
resulting beam has a Gaussian correlation structure. The partially coherent beam is incident on
a reflective liquid crystal phase-only Spatial Light Modulator (SLM, HOLOEYE-GAEA-VIS,
3840x2160 resolution, 3.74 um pixel size), on which a pattern is assigned that serves as the
object that is to be reconstructed. The radius of the object on the SLM is R = 2.62mm, see Fig. 4.
Using a third lens with focal length f = 15cm, the modulated light is focused, and in the back
focal plane of the lens, the intensity pattern is recorded with a CCD camera. In order to generate
the through-focus data set, quadratic phase factors are added to the pattern assigned to the SLM.
The defocus parameter AR? is varied from -7 to 7 in 100 steps, which according to Eq. (2) means
that for the given parameters this is equal to physically scanning through the focal field from
Zr = —2.45cm to zy = 2.45cm. In case one knows a priori that the sample and the coherence
function of the illumination are real-valued, the third lens is in principle not necessary, since the
intensity patterns obtained with free-space propagation is already sufficient for the reconstruction.

With this experimental setup, we take two data sets each consisting of 100 through-focus images,
where for each data set a different degree of coherence has been used. The coherence widths of
the Gaussian-correlated beam with constant amplitude at the SLM-plane are o = 2.3mm (high
coherence) and oo = 0.5mm (low coherence). These values have been obtained using coincidence
measurements [15].

In Fig. 5 the non-iterative reconstructions are plotted, and compared to the simulated amplitudes
which are obtained by multiplying the amplitude of O(x + P) with the Gaussian correlation
function with respect to the reference point P:
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Fig. 3. Illustration of the experimental setup. RGGD=Rotating Ground Glass Disk,
GAF=Gaussian Amplitude Filter, BS=Beam Splitter, SLM=Spatial Light Modulator.

Fig. 4. The image that is assigned to the SLM, which serves as the object that is to be
reconstructed. The grayscale values denote the phase shift in radians.

J(x+P,P) = O(x + P)O(P)* o~ |(x+P)-P /207

14

o« O(x + P)e’l"‘z/z‘f2 (1

It is thus shown that the coherence structure of the illuminating field limits the field of view

of the reconstruction, and conversely, the degree of coherence can be inferred directly from the
non-iterative reconstruction.

3.1. Extending the field of view

For each P, a coherence function Jy(x) = J(0,x) ‘illuminates’ a different part of the object O(x).
In the example of Eq. (14), we have Jy(x) = e X120 gq by shifting P around, we ‘illuminate’
different parts of the object, thereby extending the field of view. In Fig. 6 it is shown how the
field of view can be extended by considering multiple reference points P. In order to synthesize
an object reconstruction O(x) with an extended field of view from the set of reconstructions for
different P, we use a factorization method that was originally used for ptychography [16]. Let us
define

vi(x) = 0O(x)Jo(x — Pj). (15)

These i;(x) are the reconstructions we obtain using the non-iterative method as shown in Fig. 6,
except that we have shifted them by P to the center. Also, we have multiplied the reconstructions
with a window function to eliminate the artifacts of the non-iterative reconstruction, as shown
in the top two rows of Fig. 7. We denote the collection of all y;(x) as ¥. Next, we define the
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Reconstructed Phase (radians) Reconstructed Amplitude (arb. units) Simulated Amplitude (arb. units)
- - 3 1
-4 5 -4
; 2 08 1
-2 4 -2 0.8
086
Eo 0 Eo 0.6
I 04
2 -1 2 04
: > 02 0.2
4 4
ik -3
2 0 2 4 2 0 2 4 0 0
mm mm
(a) High coherence, o = 2.3mm.
Reconstructed Amplitude (arb. units)
3 1 1
-4
2 0.8 08
. -2
0.6 06
0 Eo
04 04
-1 5
2 02 0.2
4
-3
4 -2 0 2 4 0 0
mm
(b) Low coherence, oo = 0.5mm.
Fig. 5. Non-iterative reconstructions for different degrees of coherence. The simulated
amplitudes are obtained by multiplying the shifted object amplitude with a Gaussian function
2 2
e~ XI°/20° Because the amplitude of the non-iterative reconstruction blows up for small x|,
their colorbars have been truncated. To ensure a fair comparison, the cut-off value for each
plot is determined by its value at the position of the red dot as indicated in the top image.
projection operators wo[Jo(X)], 77[O(x)] that can act on ¥ as
25 i (x)Jo(x — Pj)*
molJo(X)]¥ = S
2jlJo(x=Pj)|* + € (16)
Sivix+P)Ox+P))”
_ &~y T J J
m[OX)Y =

2 10x+P)2+e

where € is a small constant to prevent division by 0. To put it in words, the operator 7o [Jo(x)]
obtains O(x) from ¥, assuming that Jy(x) is known. The operator 7;[O(x)] obtains Jy(x) from
¥, assuming that O(x) is known. Since in our case both O(x) and Jy(x) are unknown, we have to
apply an iterative procedure to reconstruct O(x) and Jy(x). Denoting the k' estimate of O(x) and
Jo(x) as 0% (x) and J(()k)(x) respectively, one iteration of the procedure is defined as follows

0%*D(x) = (1 - WO®(x) + o [JOX)¥,

17
J(x) = (1= I F(x) + s [0F D). (17)

Here u is a step size that should be chosen between 0 and 1. In order to obtain the results in the
bottom row of Fig. 7, we first applied 10 iterations with p = 1, then 10 iterations with u = 0.1. It
must be noted that even though this is technically an iterative method, it is a computationally
inexpensive one: in ptychography, this iterative method is applied in each iteration of the
algorithm.
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- 5 >
i 0
£ o
-5
-2
-10
4 -2 0 2 4
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- 5 -
2
i 0
E o
-5
-2
-10
4 -2 0 2 4
mm
(a) Amplitude (logarithm) in arbitrary units (b) Phase in radians
Fig. 6. Non-iterative reconstructions for low coherence for various choices of the reference
point P. It is illustrated how the coherence width affects the field of view, and how using
multiple reference points P can help in creating a more complete picture of the object.
Amplitude (arb. units) Amplitude (arb. units) Amplitude (arb. units) Amplitude (arb. units)
R 02 i 4 0.15 02
0.15 o 0.15
0.1
Eo o1 E Eo 01
0
1 0.05 1 "0 0.05
-1 0 1 0 0 -1 0 1 0 0
mm mm
Phase (radians) Phase (radians) Phase (radians)

mm

Reconstructed object amplitude (arb. units)  Reconstructed object phase (radians)  Reconstructed coherence function (amplitude, arb. units)  Reconstructed coherence function {phase in radians)
5 .

Fig. 7. Demonstration of how reconstructions for different reference points P; can be
synthesized into a reconstruction of O(x) with an extended field of view. In the top two
rows are the amplitude and phase of the non-iterative reconstructions ;(x) for four different
P; that correspond to the four different protrusions of the star-shaped mask as shown in
Fig. 6. In the bottom row are the amplitude and phase of the reconstructed object O(x)
and coherence function Jy(x). Note that the coherence function is reconstructed only in the
regions that are covered by O(x + P;).
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3.2. Characterization of a Laguerre-Gaussian correlated Schell-model beam

To illustrate how the non-iterative method can be used to characterize the coherence of a partially
coherent beam, we generate a Laguerre-Gaussian correlated Schell-model beam (LGCSM) by
inserting a spiral phase plate of topological charge n = 2 before the lens L1 in Fig. 3. The
resulting coherence function is given by [15, 17]

Jo(x) = e 151207 0 (|x|2/202), (18)

where n = 2 is the topological charge of the spiral phase plate, and L denotes the Laguerre
polynomial of mode order n and 0. The parameter we aim to find is the coherence width . To do
this, we perform a non-iterative through-focus reconstruction, and take two cross-sections, taken
from reconstructions obtained with different P, as shown in Fig. 8. These two cross-sections are
then fitted to Eq. (18) using a least-squares method, which gives a value of o = 0.80mm. With
this parameter value, one can compute the coherence function as prescribed by Eq. (18).

Reconstruction 1 (log amplitude, arb. units) Reconstruction 2 {log amplitude, arb. units)

5
P 4 4
- 2 -3
B o 2
. " -
E
4 0
1 R
5
2
5 4
-10 a 10
12

Cross section of reconstructed coherence function (amplitude, arb. units), 5=0.79937mm Reconstructed coherence function (amplitude arb. units)

1 T T T T T T T T T 09
1
—Fit{reconstructed coherance function) 4
03
Reconstruction 1
08 Reconstruction 2 -2 07
-2
0.6
06 1 -1
0.5
0
04
04 g 1
3 0.3
02t 1 2 02
4 0.1
9 et
- B B , 4

Fig. 8. Top row: reconstructions for different reference points P. The lines indicate the
cross-sections that are used to find o-, which are plotted in the bottom left figure, in which
also the cross-section for the fitted function is plotted, which is shown in its entirety in the
bottom right figure.

=]

23

4. Conclusion

In this article we have proposed a non-iterative phase retrieval method using a fixed specially
designed mask and a through-focus data set of intensity patterns. We have demonstrated
mathematically how the method works, and that it is robust to partial spatial coherence in the
illumination. With a proof-of-principle experiment using visible laser light and a spatial light
modulator to create an object and scan through focus, we tested the proposed algorithm for
different degrees of coherence of the illumination. The non-iterative reconstruction directly
reveals information about the coherence structure of the illuminating field. Focus-variation can
be introduced relatively easily, especially when the object is known to be real-valued, in which
case only half of the focal field needs to be scanned, which means one does not necessarily need



Research Article Vol. 26, No. 7 | 2 Apr 2018 | OPTICS EXPRESS 9342

Optics EXPRESS

to focus the transmitted field, but rather let it propagate freely. Therefore, this method can be a
valuable contribution to the field of diffractive imaging and coherence characterization.

A. Fresnel propagation of the focal field

The focal field is given by

19

0xp.yp) = F(Ux. ) (x—f Y )

Af af
where (xf, yr) denote the coordinates in the back focal plane, A is the wavelength, f is the focal
length of the lens, and (x, y) are the coordinates in the front focal plane. We propagate this field
by zy using the Angular Spectrum method. The spectrum of U (xf, yr) is

. i 52 .
¢{U(3€f’)’f)}(fx,fy)2[/U(X,y)e 2 (x/lf+)’/lf)e_27”(xfﬁc+yffy)dxdydxfdyf

= (A U(=Af o, = AL 1)

In the Fresnel approximation the propagator is given by
. . k3K
etz\/szki—k)z, ~ etk pmizs =5 ,

)2
_ gtk i LG8 e

(20)

P ; 2, 2
— elkae—lZfﬂ'/l(fX +f5 ).

Thus, for the propagated field we get
0(Xf, Vfs Zf) ~ eisz(/lf)z [/ U(_/lffx, _/lff;})e—iZfﬂ/l();z+]§,2)e2ﬂi(ﬁVXf+]§,yf) df, df;,
. _ ﬂ 7. 7. o x7f ’ l
— elka ‘// U(x’,y')e i (x2+y 2)6—27r1(x 7Y /lf) dx’ dyl (22)

SEfT 22
i (P | [ Xf VS
= FLU(x, y)e A7 =L =L
{ (x, y)e S
If we define R to be the size of the object, so that (X,Y) = (%, %) are normalized coordinates,
we can write

A _iﬂ R Z(XZ Y2) )Cf yf
U('xf’ yf’ Zf) ~ R2T{U(X7 Y)e g (f) ’ } (ﬁ’ ﬁ) . (23)

B. Conditions for wy,

We have
Fabnn) = [[[ 70395 (wa - 1x - 2x-¥) ay
(24)
= //J(X+y,y)6(X-V) dy,
where
vV =pux—2y
_wa_ 25)
SN

Our goal is to use the delta function in this integral to filter out information about J(x) directly.
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B.1. Condition for ws giveny =P

We want to choose wy4 such that the delta function gives a contribution for y = P. We require
x-v=0, (26)

which means

— ™"
v=1 [_x1 @7)
for any constant 4. We also know by definition (Eq. (25)), and given thaty = P
R A A
c=ufa]-2 [ -
Combining Eq. (27) and (28) gives us the matrix equation
X —xf(pf_, P
o =R <29>
Solving this equation gives
P
p=2—2, (30)
Ix|2
and from Eq. (25) we then get
wa = |x]* +2P - x. (31)

B.2.  Condition for ws givenx+y =P

We want to choose wy4 such that the delta function gives a contribution for y + x = P. In this case
we have to substitute in Eq. (28) P with P — x, which gives

_ x|, |P1
v=(u+2) o 2 Pz] . (32)
We can quickly see from Eq. (33) that in this case
P
p=2—2-2, (33)
x|
and from Eq. (25) we then get
wa = —|x|* +2P - x. (34)

Funding

National Natural Science Foundation of China (11774250 and 91750201); sponsorship of Jiangsu
Overseas Research & Training program for University Prominent Young & Middle-aged Teachers
and Presidents.

Acknowledgments

AK designed the reconstruction method and wrote the manuscript; XL performed the experiment;
LL performed experiments for the revised manuscript; WC, CZ and HU supervised the research.





