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SUMMARY
Metaproteomics has emerged as one of themost promising approaches for determining the composition and
metabolic functions of complete microbial communities. Conventional metaproteomics approaches rely on
the construction of protein sequence databases and efficient peptide-spectrum-matching algorithms, an
approach that is intrinsically biased towards the content of the constructed sequence database. Here, we
introduce a highly efficient, database-independent de novo metaproteomics approach and systematically
evaluate its quantitative performance using synthetic and natural microbial communities comprising dozens
of taxonomic families. Our work demonstrates that the de novo sequencing approach can vastly expand
many metaproteomics applications by enabling rapid quantitative profiling and by capturing unsequenced
community members that otherwise remain inaccessible for further interpretation.
Kleikamp et al., describe a novel de novometaproteomics pipeline (NovoBridge) that enables rapid commu-
nity profiling without the need for constructing protein sequence databases.
INTRODUCTION

State-of-the-art approaches for analyzing the composition ofmi-

crobial communities are based on in situ staining, 16S ribosomal

RNA sequencing, or whole-genome shotgun-based ap-

proaches. Moreover, metatranscriptomics provides additional

gene activity information, but unfortunately, mRNA levels often

only poorly correlate with actual protein abundances (Maier

et al., 2009). Therefore, those approaches do not directly assess

the actual phenotype of a community, and the actively ex-

pressed pathways responsible for metabolic conversions remain

elusive (Martin and Uroz, 2016).

On the other hand, metaproteomics targets the functional

parts—the proteins—of a community directly, and therefore pro-

vides insights into the community phenotype. Furthermore,

because proteins make up the bulk mass of a cell, metaproteo-

mics also estimates the contribution of individual community

members to the community biomass (Kleiner et al., 2017).

In recent years, metaproteomics has gained substantial

momentum with the development of high-resolution proteomics

workstations and the establishment of next-generation

sequencing (NGS) technologies, which provide affordable

high-quality (protein) sequence databases from complete

communities (Wilmes and Bond, 2006).

Classical metaproteomics approaches employ peptide-spec-

trum-matching algorithms used for subsequent protein and

species identification. The quality and completeness of the em-

ployed databases are therefore of utmost importance (Timmins-
Schiffman et al., 2017; Xiao et al., 2018). A complete database

covers the genetic potential of all community members and

may contain hundreds of thousands of sequences. Alternatively,

comprehensive (and even larger) public sequence databases

such as NCBI, UniProtKB/Swiss-Prot, or GenBank may be ac-

cessed (in addition) (Xiao et al., 2018), which, however, require

advanced focusing/filtering strategies to manage computational

efforts (Heyer et al., 2017; Muth et al., 2015, 2016; Potgieter

et al., 2019). Very large protein sequence databases challenge

the common ‘‘peptide-spectrum-matching’’ algorithms and

associated statistical parameters, which have been historically

developed for single-species proteomics. Consequently, con-

ventional metaproteomics experiments can be compromised in

regard to sensitivity, accuracy, and throughput (Heyer et al.,

2017; Muth et al., 2015; Timmins-Schiffman et al., 2017). More-

over, database-matching inherently biases the outcome of a

metaproteomics measurement toward the (constructed) protein

sequence database.

A database-independent approach, such as de novo peptide

sequencing, that directly annotates mass spectrometric frag-

mentation spectra with amino acid sequences overcomes the

above mentioned database-related limitations. Ultimately, the

generation of the peptide sequence lists from the mass

spectrometric raw data can be regarded as inherently unbiased

(Muth et al., 2016). Following a successful de novo sequencing,

the sequence lists only require retrieving taxonomic and func-

tional annotations from comprehensive taxonomic databases

using efficient ‘‘text-search’’ tools. Thereby, de novo sequencing
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also avoids the loss of taxonomic and functional information

from community members not covered by the database. Those

signals (not covered by the target database) can be further

matched to related species through sequence homology search-

ing approaches (Ma and Johnson, 2012). Homology searching

further increases proteome coverage, by annotating also

‘‘partially correct’’ sequences (sequence tags), which are com-

mon ‘‘by-products’’ of the de novo sequencing process (Ma

and Johnson, 2012).

Moreover, de novo sequencing may serve as a direct measure

of the proportion of unsequenced members in a community. In a

similar manner, the usefulness of de novo sequencing for

evaluating the target sequence database completeness, or

‘‘suitability,’’ has been demonstrated only recently (Johnson

et al., 2020).

On the other hand, de novo peptide sequencing strongly de-

pends on high-quality mass spectrometric data and efficient

sequence annotation tools. Therefore, de novo sequencing

commonly provides fewer spectral identifications when

compared with database search approaches (Medzihradszky

and Chalkley, 2015). Nevertheless, whether de novo sequencing

provides sufficient qualitative and quantitative information

for (quantitative) metaproteomic applications has not been

effectively established to date.

Over the past years, several high-performance de novo

sequencing algorithms have been introduced (Tran et al., 2019;

Ma et al., 2003; Behsaz et al., 2020), and some have also been

proposed for taxonomic profiling applications (Lee et al., 2018;

Mooradian et al., 2019). In addition, a number of advanced

web-based services that support taxonomic and functional ana-

lyses of metaproteomic protein and peptide sequences have

been introduced only recently (Mesuere et al., 2015; Boekel

et al., 2015; Zhang et al., 2016; Singh et al., 2019; Riffle

et al., 2017).

In this study, we introduce and evaluate a newly established

de novo metaproteomics workflow for its quantitative perfor-

mance and taxonomic resolution using synthetic and natural

environmental community data. Furthermore, we introduce a

new validation strategy and demonstrate how to establish the

actual content of individual community members within commu-

nity proteomics data. The new pipeline (NovoBridge) efficiently

bridges individual components from de novo sequencing, auto-

mated annotation of sequences with taxonomies, a new valida-

tion procedure, and the provision of an output summary.

RESULTS

The presented metaproteomics pipeline employs conventional

high-resolution shotgun proteomics data in which fragmentation

spectra are subsequently translated into peptide sequence lists

by de novo sequencing. The lists are then submitted by pro-

grammed access to the (public) Unipept database to retrieve

taxonomic and metabolic information (Singh et al., 2019).

Annotations are then processed by the established pipeline,

which includes grouping into taxonomic branches and transla-

tion of enzyme commission numbers into KEGG pathways.

We investigated fundamental aspects and evaluated the

performance of the established workflow using synthetic and

natural microbial communities.
376 Cell Systems 12, 375–383, May 19, 2021
Taxonomic resolution
The first question concerns the taxonomic resolution that can be

achieved when matching de novo peptide sequences against

particularly large taxonomy databases to retrieve taxonomic

and functional annotations. A large number of peptide

sequences is common to several taxa and can therefore only

be unique to a certain taxonomic ranking. Hence, the number

of unique peptide sequences decreases from higher to lower

taxonomic rankings. For example, because of the relatedness

between taxa, there will be many more peptide sequences

unique only to the phylum level compared with the more

distinguished genus or species levels.

For our study, we aimed to retrieve taxonomic information

from the Unipept database, which contains processed peptide

sequences pre-allocated with taxonomic and functional anno-

tations derived from the Uniprot database, using NCBI taxon-

omy (Mesuere et al., 2012, 2016). The Unipept ranking uses

the hierarchical structure of the NCBI taxonomy for which

consensus taxa have been determined using the lowest com-

mon ancestor approach (Mesuere et al., 2012). To test the Uni-

pept database for the achievable taxonomic resolution, we

generated in silico peptide sequences from >1,000 species

retrieved from the NCBI reference sequences database

(www.ncbi.nlm.nih.gov/refseq/). This provided for approxi-

mately 90% of all peptide sequences taxonomic annotations,

but as expected, showed a steady decrease in the number of

assigned peptides from higher to lower taxonomic rankings

(= ‘‘drop-off rate’’), with a particularly large drop between genus

and species levels (Figure 1C). It is worth noting that deviations

from this ‘‘drop-off rate’’ can be observed for species from

highly sampled taxa and species with inconsistent taxonomic

classifications. This impacts not only the quantitative perfor-

mance but may also limit the taxonomic resolution, because

a certain number of peptides is required for the identification

of a respective taxon.

Furthermore, because there is no complete taxonomy

database available, there is always a high likelihood of

‘‘unsequenced’’ community members—those that are not in

the taxonomy database—being present in the community.

Those retrieve annotations through related species mostly at

higher taxonomic rankings and will therefore provide only a

comparatively low taxonomic resolution.

A quantitative analysis should therefore aim to investigate

the ‘‘drop-off rates’’ for individual taxonomic branches, in or-

der to flag poorly quantitative traits. For this, in silico pepti-

domes may serve as highly useful comparators to establish

the actual content of a member within the community prote-

omics data.

A validation procedure
De novo sequencing commonly generates a fraction of only

partially correct peptide sequences. This raises the question of

whether those incomplete sequences lead to false-positive as-

signments, which bias the taxonomic representation of the

community.

As a measure of confidence for de novo-established peptide

sequences, the software platform PEAKS provides the average

local confidence (ALC) score, and DeepNovo, the p score (Ma

et al., 2003; Tran et al., 2019, 2017). Although these parameters

http://ncbi.nlm.nih.gov/refseq/


Figure 1. Overview of the de novo metaproteomics workflow and an evaluation of fundamental characteristics

(A) Shotgun metaproteomics workflow. Shotgun metaproteomic raw data from microbial communities are de novo sequenced and processed through the

established pipeline as ‘‘correct’’ and randomized sequences. The peptide-centric approach accesses Unipept (Mesuere et al., 2016) to obtain taxonomic and

functional annotations. Further processing includes grouping into taxonomic branches and translation of functional annotations into KEGG pathways. High-

quality unmatched sequences are further made accessible for homology search approaches such as BLAST+.

(B) Specificity of taxonomy databases for de novo peptide sequence lists. Shotgun proteomic data from pure reference strains were de novo sequenced and

processed through the established de novo metaproteomics pipeline to retrieve taxonomic annotations. The annotated sequences were then grouped into

taxonomic lineages (phylum, class, order, family, and genus) and represented as circle graphs. The circle areas correlate to the normalized sequence counts of

the respective taxonomic rank. Every reference strain is represented by four circle lanes: black triangle arrow, ‘‘# of measured peptides per rank,’’ which counts

the number of peptide sequences annotated to the lineage of the target strain, e.g., A. baumannii; gray triangle arrow, ‘‘other,’’ which counts the number of

(legend continued on next page)
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are useful for ranking de novo sequences based on their quality,

an estimate on the actual number of incorrect sequences is not

provided.

Consequently, additional measures are required to give confi-

dence in the taxonomic representation achieved by de novo-

generated sequences. A recently proposed solution employs a

taxonomic database containing sequences not only in correct

but also in reverse order. This strategy enables to make use of

the widely employed target/decoy approach (Mooradian et al.,

2019). However, database volumes are thereby duplicated,

and considering only single taxonomic points does not allow per-

formance of a quantitative investigation of the taxonomic

profiles.

Therefore, we aimed not to randomize the target database se-

quences but to randomize the peptide query sequences instead.

To qualify this approach, we processed proteomics data from

pure reference species, once in correct order, and once after

peptide sequence randomization. The randomized sequences

retrieved a surprisingly large number of taxonomic annotations

at the root (>20%) and super kingdom levels (>10%) but were

consistently low for the lower taxonomic rankings (Figures 1B

and 1D). Only small proportions of other taxa were observed,

mostly related to culturing and sample preparation conditions,

or the samples themselves (such as virus L-A related proteins

for the yeast S. cerevisiae). Several of those unexpected

matches were only identified at certain taxonomic levels, which

underlines the importance of measuring the taxonomic profiles

across several taxonomic rankings (e.g., from phylum, family,

or genus level) rather than single taxonomic points (e.g., only

genus level) (Figure 1B; Table S5).

Next, we constructed the theoretical drop-off rates using the

reference proteomes of the test strains to investigate for

‘‘hidden’’ side populations, not covered by the taxonomic

database. This, however, showed that the theoretical and the

observed drop-off rates were very comparable, which confirmed

the purity of the selected reference strains.
peptide sequences annotated to other taxonomic lineages than the target strain

peptide sequenceswhich received a taxonomic annotation; blue triangle arrow, ‘‘#

sequences for every rank. The experiment confirms that erroneous or only partia

representation of the metaproteomic sample. Furthermore, the low number of ‘‘o

samples. Except for the in silico experiments, the averages of duplicate analyses

(C) In silico proteome recall study. The bar graph shows the average number of in

number’’ annotations. The in silico peptide sequences were generated from a larg

database). The individual taxonomic rankings domain (D), phylum (P), class (C),

Approximately 90% of the peptides obtained taxonomic annotations (black ba

mission numbers, white bars). The number of sequence annotations per taxon s

red arrow).

(D) Evaluation of de novo sequence quality parameters. The bar graph shows the a

when considering different quality parameter thresholds. The randomized sequenc

(excluding T. brucei and Ca. Accumulibacter). The quality parameter thresholds e

frequency limits (# of peptide sequences observed for an individual taxonomic id

random sequence annotations to >5%. Therefore, an ALC of 70 and a minimum

experiments in this study.

(E) The percentage of annotated de novo sequences. The bar graph outlines t

taxonomic annotations. The bars (1–10) represent the strains shown in Figure 1B

bars represent all annotations including ‘‘root’’ level, which are sequences comm

domain level and lower; and the green bars show annotations assigned to phyl

annotations at the lower taxonomic rankings. The observed differences in the deg

employed sample preparation protocols and instrumental setups. Therefore, alth

different laboratories, those parameters are likely to provide a useful quality para
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In summary, using the pure reference strain samples and the

sequence randomization strategy, we could demonstrate that

de novo sequence lists provide only small numbers of erroneous

assignments at lower taxonomic rankings (phylum and genus).

Quantitative community profiling
Finally, we investigated the quantitative aspect when measuring

more complex communities. Kleiner et al. only recently demon-

strated the usefulness of metaproteomics for estimating species

biomass contributions (Kleiner et al. 2017). Thereby, the authors

generated highly useful metaproteomic reference data from syn-

thetic communities consisting of species with ‘‘equal protein’’

and ‘‘equal cell’’ content. We de novo sequenced the publicly

available raw data from both synthetic communities and sub-

jected the obtained sequence lists to our data-processing pipe-

line. By employing the abovementioned multi-point taxonomic

evaluation, we achieved a particularly good quantitative repre-

sentation of the community as shown for the ‘‘equal protein’’

community (phylum and family) in Figure 2A. The 17 genus-level

identifiers provided a comparably good correlation, although 3

strains did not provide sufficient unique peptides at this lower

level. The same good species abundance correlation was

achieved when analyzing another dataset of the same ‘‘equal

cell’’ community, thereby also comparing 2 different de novo

sequencing platforms, PEAKS and DeepNovo (Figure 3). Verifi-

cation of parameters such as ALC scores and mass error,

including species abundance correlations, obtained for the

‘‘equal cell’’ synthetic community are shown in Figures S1–S4.

Furthermore, we aimed to apply the de novo pipeline to data-

sets from two natural communities. Thereby, we first processed

a publicly available metaproteomic dataset published by Mikan

et al., representing microbiomes sampled from the Bering Sea

(Mikan et al., 2020). We generated peptide sequences once us-

ing de novo sequencing and once using peptide-spectrum-

matching employing the metagenomics constructed database

published by the authors. Thereby, the taxonomic profiles
; light gray triangle arrow, ‘‘random,’’ which counts the number of randomized

of in silico peptides per rank,’’ which counts the number of in silico target strain

lly correct de novo sequences only insignificantly interfere with the taxonomic

ther’’ strain assignments confirmed the purity of the selected reference strain

are shown.

silico peptide sequences which retrieved taxonomic or ‘‘enzyme commission

e number of proteomes (>1,000, retrieved from the NCBI reference proteome

order (O), family (F), genus (G), and species (S) are shown as separate bars.

rs), and 10%–20% retrieved additional functional annotations (enzyme com-

howed a steady decrease from the phylum to the genus level (‘‘drop-off’’ rate,

verage number of random sequences which obtained a taxonomic annotation,

es were generated from the ‘‘correct’’ reference strains de novo sequence lists

valuated were the average local confidence score (ALC, PEAKS platform) and

entifier). ALCs below 60 and frequency limits <3 increased the percentage of

of 3 sequence annotations per taxon were set as default thresholds for the

he percentage of de novo sequences submitted to Unipept, which retrieved

(A. baumannii, top of the image; L. sakei, bottom right of the image). The blue

on to all domains of life; the light blue bars represent annotations assigned to

um level and lower. The yellow bars indicate the average number of random

ree of sequence annotations are supposedly a consequence of differences in

ough the percentage of assigned sequences are difficult to compare between

meter when operations are standardized within one laboratory.



Figure 2. Quantitative taxonomic profiling of microbial communities

(A) Analyzing the community composition by de novometaproteomics. Proteomics data from a synthetic community, as established by Kleiner et al. (Kleiner et al.,

2017), were used to evaluate the quantitativeness of the established de novometaproteomics workflow. For this, the raw data were once de novo sequenced and

once analyzed using the constructed target database published by the authors. The taxonomic rankings from phylum and family are represented as circle graphs.

Thereby, rows annotated with: ‘‘DN’’ show the protein abundances of each taxon using the de novo sequences; ‘‘DB’’ show the protein abundances obtained for

each taxon using the sequences established by database matching; ‘‘RB’’ show the protein abundances obtained after grouping the taxon annotated database

matched peptides directly; ‘‘T’’ shows the theoretical (true) protein abundances for each taxon. The circle areas correlate to the normalized spectral sequence

counts of the respective taxon. All community members show abundance profiles, which strongly correlate to the expected/true (T) species protein abundances.

The taxonomic lineages of Rhizobiaceae and Rhodobacteriaceae are outlined with arrows for exemplification purposes. Those account for approximately 13%

and 8.5% of the total community protein content, respectively. Shown is the average of duplicate analyses. The taxonomic identifiers with the numbers 1–27

represent: (1) Bacteria, (2) Eukaryotes, (3) Archaea, (4) Proteobacteria, (5) Firmicutes, (6) Chlorophyta, (7) Thaumarchaeota, (8) Deinococcus-Thermus, (9) Al-

phaproteobacteria, (10) Gammaproteobacteria, (11) Bacilli, (12) Betaproteobacteria, (13) Chlorophyceae, (14) Nitrososphaeria, (15) Deinococci, (16) Rhizobiales,

(17) Alteromonadales, (18) Bacillales, (19) Burkholderiales, (20) Chlamydomonadales, (21) Neisseriales, (22) Enterobacterales, (23) Nitrososphaerales, (24)

Rhodobacterales, (25) Pseudomonadales, (26) Xanthomonadales, and (27) Thermales. The lower graph shows the Spearman’s rank correlation between the

(legend continued on next page)
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between both approaches were highly comparable (Figure S5A),

where only some of the very-low-abundance members were not

resolved by the de novo approach. However, the metaproteo-

mics approaches indicate a stronger contribution of the

Alphaproteobacteria, compared with the 16S rRNA sequencing

data published by the authors (Figure S5A).

The second dataset was derived from the metaproteomic

analysis of a wastewater treatment plant community, published

by Hansen et al. (Hansen et al., 2014). The authors investigated

different protein extraction procedures to maximize extraction

reducibility and community coverage. We therefore analyzed

the mass spectrometric raw data obtained from the most effi-

cient protocol through the established metaproteomics pipeline.

Furthermore, the observed community profiles appeared very

comparable between the de novo-generated peptide sequences

and the (metagenomics) database search peptide sequence

matches. Again, differences were only observed in the very-

low-abundance community members. Moreover, the de novo

phylum-level profile of the de novo dataset was found highly

comparable to qFISH data established from the same commu-

nity at an earlier time point (Albertsen et al., 2012) (Figure S6).
Database incompleteness and spectral volume
dependency
To evaluate the impact of incomplete databases, we simulated

scenarios where the taxonomies present in the microbiomes

are not covered by the taxonomic database (e.g., Unipept). As

a consequence, measured peptide sequences from those taxo-

nomic identifiers would only match to related taxa (potentially)

present in the same database.

Interestingly, when all species or genera (present in the syn-

thetic ‘‘Kleiner community’’ or Bering Sea microbiome) were

removed, the obtained community profiles at the higher taxo-

nomic rankings (e.g., family/phylum) changed only marginally

compared with the unfiltered database output (Figures S2B

and S5B). However, an incomplete taxonomic database

unavoidably limits the achievable taxonomic resolution. Never-
peptide sequence lists (obtained by DB matching, ‘‘DB,’’ and DN sequencing, ‘‘DN

the expected protein abundances was strong for both sequence list approaches (

family level, considering all taxonomic identifiers, including ‘‘x’’). The very compa

sequence lists confirms the high quality of the de novo established peptide seq

matched peptides show, as expected, a slightly better correlation. Therefore, the d

shows the impact of the database, such as sequence coverage and volumes.

reference proteomes of the strains present in the synthetic community, and th

database. Moreover, the very large and generic Unipept peptide sequence databa

taxa for some strains (e.g., for Roseobacter sp. AK199).

(B) KEGG pathway community profiles. The graphs compare profiles for the m

obtained by sequence lists from de novo (outer circles) or peptide-spectrummatc

(DN) and the database (DB) sequences provide very comparable profiles. Neve

space, sequences can be matched to several enzymes or different pathways, w

(C) Establishing the actual contribution of communitymembers. The de novometa

high enrichment (>95%, ‘‘other’’ versus ‘‘Accumulibacter,’’ D*). Furthermore, c

discrepancy of approximately 17% (small bar graphs, D**). To investigate for po

quality (HQ) unmatched sequences (top 20% fraction based on ALC scores) were

the newly retrieved annotations were again assigned to Ca. Accumulibacter (sm

individual circle graph columns represent: black triangle arrow, ‘‘# of measured pe

of Ca. Accumulibacter; blue triangle arrow, ‘‘# of in silico peptides per rank,’’ whic

light gray triangle arrow, ‘‘random,’’ which counts the number of randomized pe

‘‘other,’’ which counts the number of measured peptide sequences annotated to o

to spectral sequence (peptide) counts for the respective taxonomic ranking.
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theless, this is expected to become an increasingly less impact-

ful parameter over time. Proteome/genome databases have

been rapidly expanding over the past years, and this is likely to

further accelerate due to the continuous advancements in

sequencing technologies. For example, the RefSeq database

expanded by approximately 25,000 entries for bacteria alone

over 5 years (November 2015–November 2020), which corre-

sponds to an increase of >100 million protein sequences in

that period of time (www.ncbi.nlm.nih.gov/refseq/statistics/).

Furthermore, to evaluate the dependency of achieving a

comprehensive taxonomic coverage on the volume of peptide

sequences, we performed a random downsampling of the pep-

tide sequences from the synthetic ‘‘Kleiner community’’ and the

Bering sea metaproteomics datasets. To evaluate the impact of

the downsampling procedure, we plotted the number of the re-

maining sequences against the obtained number of taxonomic

identifiers. This showed a plateau for the number of obtained

taxonomic identifiers at a certain percentage of the original num-

ber of peptide sequences (approximately 40%–60% for the

‘‘Kleiner community’’ and approximately 80%–90% for the

Bering Sea microbiome) for both metaproteomic experiments.

This means that (nearly) no new taxonomic identifiers were

obtained after this fraction of peptide sequences and that the

acquired datasets therefore indeed comprehensively cover the

microbiome biomass.
Establishing the actual content of a community member
Finally, we aimed to investigate the usefulness of in silico drop-

off curves (the decrease in the number of peptides, assigned

to different taxonomic ranks from the higher to the lower taxo-

nomic ranks using the (lowest common ancestor [LCA]

approach) and BLAST+ homology search, for investigating the

actual content of an enrichment culture. Evaluating the drop-

off rates of a lineage enables one to evaluate whether the

observed numbers of peptides at the higher taxonomic levels

(e.g., phylum level = Proteobacteria) are aligned with the number

of peptides observed at lower taxonomic levels (e.g., Ca.
’’) and the expected protein abundance ratios (‘‘T’’). Overall, the correlation to

e.g., >0.82 for the DN sequence lists from phylum to order, and 0.67 only at the

rable correlation between the de novo and the database-matching generated

uences. The profiles obtained after directly grouping the database spectrum-

ifference between these profiles and the profiles obtained by the sequence lists

The database used for the database-matching experiments consisted of the

erefore represented a comparatively focused, complete, and non-redundant

se, used to annotate the peptide sequence lists, contained only closely related

ajor KEGG categories ‘‘metabolism’’ and ‘‘genetic information processing,’’

hing approaches (inner circles) of the ‘‘equal protein’’ community. Both de novo

rtheless, since peptide sequence lists are compared against a large genomic

hich may inflate functional annotations. See also Figure S6.

proteomic analysis of aCa. Accumulibacter enrichment culture suggests a very

omparing the experimental with the in silico ‘‘drop-off’’ rates, shows only a

tential ‘‘hidden’’ members not covered by the taxonomic database, the high-

analyzed using BLAST+ for homolog sequences. Thereby, more than 80% of

all pie chart), confirming the content estimated after drop-off correction. The

ptides per rank,’’ which counts the peptide sequences annotated to the lineage

h represents the number of Ca. Accumulibacter in silico sequences per taxon;

ptide sequences which received a taxonomic annotation; gray triangle arrow,

ther taxonomic lineages thanCa. Accumulibacter. The circle areas correspond

http://ncbi.nlm.nih.gov/refseq/statistics/


Figure 3. Comparison of microbiome profiles established by PEAKS and DeepNovo

(A) Community profiles of the ‘‘equal protein’’ community established by PEAKS and DeepNovo. The circle graphs show the taxonomic profiles obtained from the

‘‘equal protein’’ community (Kleiner et al., 2017) established by PEAKS or DeepNovo. De novo sequence lists from both platforms were processed by the es-

tablished de novometaproteomics pipeline using the same parameters. ‘‘T’’ represents the true abundance of the respective community members (dashed box).

‘‘PEAKS SC’’ represents the established profiles obtained from the PEAKS de novo sequences using spectral sequence counting. ‘‘DeepNovo SC’’ represents

profiles obtained from the DeepNovo de novo sequences using spectral sequence counting. The unexpected, ‘‘other’’ taxonomic annotations were summed and

are shown as circles labeled with ‘‘X.’’ The experiment demonstrates that both tools provide very comparable taxonomic profiles and only differ in the proportions

of the unexpected ‘‘other’’ matches. The circles represent the average of 2 analyses, where the circle areas correlate to the normalized spectral sequence counts.

The left upper graph shows the Spearman’s rank correlation of the taxonomic profiles between PEAKS and DeepNovo. The very strong correlation (rS between

1.0–0.97, from phylum–family, considering the expected taxonomic identifiers, 1–40) confirms that both tools provide highly comparable peptide sequence lists.
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Accumulibacter, genus level). This approach allows one to eval-

uate whether the proportion of proteobacteria is likely derived

from Ca. Accumulibacter or whether there are other lineages

present that are not covered by the database. Ca. Accumuli-

bacter has been described frequently as showing strong dis-

crepancies in the proposed community contribution when

comparing between FISH- and 16S RNA sequencing-based

techniques (Stokholm-Bjerregaard et al., 2017). Therefore, we

analyzed an Accumulibacter enrichment culture metaproteomic

dataset through the described pipeline, which indicated a partic-

ularly high enrichment (Figure 2C, approximately 98% at the

genus level [D*], in contrast to 16S RNA data for the same reactor

at an earlier time point of approximately 34% [Da Silva et al.,

2018]). When comparing the experimental drop-off rate for the

lineage of Ca. Accumulibacter with the in silico constructed

drop-off curve, we observed a discrepancy of only approxi-

mately 17% (D**), meaning that nearly all sequences assigned
to proteobacteria translate to the Ca. Accumulibacter genus-

level annotations. Nevertheless, to fully exclude significant quan-

tities of potential other populations—e.g., from other phyla, not

captured by the (Unipept) database—the high-quality un-

matched sequences (top 20% based on ALC scores) were

analyzed using BLAST+ against the non-redundant NCBI protein

sequence database (for the sake of speed using a local installa-

tion). Thereby, approximately 83% of newly retrieved (genus

level) sequences could be attributed again to Ca. Accumuli-

bacter (Table S7; Figure 2D), reflecting the estimated content ob-

tained after drop-off correction. Moreover, the high degree of

enrichment indicated by our metaproteomics experiments is in

good agreement with the observed phosphate accumulation ac-

tivity, observed for this culture during lab experiments (data

not shown).

Determining the fraction of unmatched (high-quality) spectra

has already been proposed as an indicator for the presence of
Cell Systems 12, 375–383, May 19, 2021 381
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community members not captured by the database (Kleiner

et al., 2017; Johnson et al., 2020). The fraction of unmatched

high-quality spectra, however, may considerably depend on

the applied analytical procedures. The same was observed for

the reference strains used in this study, in which raw data were

acquired from different laboratories and thus showed large var-

iations in their fraction of peptides that obtained taxonomic an-

notations (Figure 1E). Although this approach appears very

promising, it may provide misleading conclusions if not cor-

rected for individual analytical procedures.

DISCUSSION

Metaproteomics has emerged as one of themost promising post-

genomics approaches to study microbial dynamics in nature or in

the context of human health, such as the microbial dynamics of

the gut microbiome (Behsaz et al., 2020; Timmins-Schiffman

et al., 2017). However, common metaproteomics workflows

require the laborious construction of high-quality protein

sequence databases. Thus, spectrum-matching algorithms are

challenged by very large databases or unsequenced community

members not covered by the database. Furthermore, the quanti-

tative aspect is often only poorly supported, despite being utmost

important when investigating community dynamics.

Here, we introduce a newly established de novo metaproteo-

mics workflow, which enables quantitative profiling of microbial

communities within a very short analysis time. We provide a sys-

tematic evaluation of the taxonomic resolution and quantitative

performance using reference strains and natural communities.

Thereby, we introduce a validation procedure and demonstrate

how to establish the actual content of community members

within community proteomics data. The established pipeline au-

tomates data filtering, taxonomic annotation, additional valida-

tion procedures, grouping, and reporting of taxonomic and func-

tional outputs with only minutes of processing time for a typical

shotgun metaproteomics dataset. In comparison, metagenom-

ics including database construction, or the analysis of the

mass spectrometric data against very large generic databases,

typically requires (several) days of processing time.

Notably, because our approach is database independent, it

generates peptide sequences also from ‘‘not-in-the-database’’

community members, making them accessible for further inter-

pretation. The achievable resolution in de novometaproteomics,

however, depends not only on the taxonomic database but also

on the abundance of the individual community members. More-

over, a completely metagenomics-independent evaluation of a

community, containing only unsequenced community members,

will likely provide only a comparatively low taxonomic resolution

or provide assignments only to the closest taxa present in the

database.

The evaluation we performed demonstrates that the highest

accuracy is achieved up to the family level, which could therefore

be suggested as the default level of operation. However, an

improved resolution and quantification (number of peptide

matches) for the lower taxonomic rankings—such as genus or

even species level—could currently be achieved by performing

a de novo/database-matching hybrid approach. De novo-estab-

lished taxonomies thereby guide the construction of a focused

database from large generic databases, which subsequently
382 Cell Systems 12, 375–383, May 19, 2021
can be used for comparatively efficient peptide-spectrum-

matching experiments.

Nevertheless, the current vast technical advancements in the

field of mass spectrometry and sequencing algorithms are likely

to continue improving the quality of the sequencing spectra and

thus the number of correct de novo sequence annotations in the

near future. Ultimately, this will strengthen and expand the scope

of de novo metaproteomics as either a hybrid, orthogonal, or

stand-alone approach.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Reagents/Equipment

Sequencing Grade Modified Trypsin Promega V5111

Oasis HLB 96-well Plate Waters WAT058951

B-PER� Bacterial Protein

Extraction Reagent

Thermo Scientific 78243

Y-PER� Yeast Protein

Extraction Reagent

Thermo Scientific 78991

QE plus Orbitrap mass

spectrometer

Thermo Scientific

EASY nano LC 1200 Thermo Scientific

Acclaim PepMap

RSLC RP C18 reverse phase,

(75mm x 150mm, 2mm)

Thermo Scientific 164568

Deposited Data

Candidatus Accumulibacter phosphatis PXD016992 MP_Ser_01122018_Accum_2hr_DDA01.raw

MP_Ser_01122018_Accum_2hr_DDA02.raw

Acinetobacter baumannii PXD011302 Nsco_20170712_LFQ_P_negative_ABCA1_WC_B1.raw

Nsco_20170712_LFQ_P_negative_ABCA1_WC_B2.raw

Campylobacter jejuni PXD005306 Cj_media_DOC_R1_23Feb15_Arwen_14-12-03.raw

Cj_media_DOC_R2_23Feb15_Arwen_14-12-03.raw

clostridium saccharolyticum PXD016992 MP_AM27072018_S1SC_No1_DDA01.raw

MP_AM27072018_S1SC_No2_DDA01.raw

Lactobacillus sakei PXD011417 BBM_079_P064_01_FRH_12_R1.raw

BBM_079_P064_01_FRH_13_R1.raw

Paracoccus denitrificans PXD013274 PDL-2-5.raw

PDL-2-6.raw

Rhodopseudomonas palustris PXD013729 Biodiversity_R_palustris_long_

WT_Ar_20d_01_QEP_20Aug18_

Wally_18-07-04

Biodiversity_R_palustris_long_WT_

Ar_20d_02_QEP_20Aug18_

Wally_18-07-04

Streptococcus mutans PXD006735 WT1.raw

WT2.raw

Saccharomyces cerevisiae PXD016992 MP18112018_yeast_Y1_1uL_DDA01.raw

MP18112018_yeast_Y2_1uL_DDA01.raw

Trypanosoma brucei PXD009073 mb161104_01.raw

mb161104_02.raw

Synthetic community equal protein PXD006118 Run2_P1_2000ng.raw

Run2_P2_2000ng.raw

Run4_P1_2000ng.raw

Run4_P2_2000ng.raw

Synthetic community equal cell PXD006118 Run2_C2_2000ng.raw

Run2_C4_2000ng.raw

Bering Sea T1 (#14 BS.T1.Control) PXD008780 2014_Sept_08_BeringSea32.raw

2014_Sept_08_BeringSea33.raw

Bering Sea T6 (#49 BS.T6.Control) PXD008780 2014_Sept_08_BeringSea36.raw

2014_Sept_08_BeringSea37.raw

Bering Sea T10 (#60 BS.T10.Control) PXD008780 2014_Sept_08_BeringSea38.raw

2014_Sept_08_BeringSea39.raw

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Wastewater treatment

plant community

PXD000862 FAH_SludgeExtr_B_BB_1.raw

FAH_SludgeExtr_B_BB_2.raw

Software, Databases and Algorithms

Matlab The MathWorks, Inc. https://www.mathworks.com

Python Python Software Foundation https://www.python.org/

NovoBridge This paper https://github.com/hbckleikamp/NovoBridge

PEAKS Studio X Bioinformatics solutions Inc. https://www.bioinfor.com/

BLAST NCBI blast-2.9.0+ https://blast.ncbi.nlm.nih.gov

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/

blast+

DeepNovo DeepNovo_2017 https://github.com/nh2tran/DeepNovo

Taxonomy NCBI server https://www.ncbi.nlm.nih.gov/

books/NBK21100/ (Handbook)

https://ftp.ncbi.nih.gov/pub/taxonomy/

KEGG BRITE Database https://www.kegg.jp/ https://www.genome.jp/kegg-bin/get_htext?ko00001

Unipept Gent University https://unipept.ugent.be/apidocs

Diamond v2.0.6 https://github.com/bbuchfink/diamond
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Martin

Pabst (m.pabst@tudelft.nl).

Materials availability
This study did not generate new materials.

Data and code availability
Generated mass spectrometric raw data have been deposited at ProteomeXchange server and are publicly available under the

project code PXD016992. Moreover, this paper analyzes existing, publicly available data. These datasets’ accession numbers are

summarized in the key resource table and are outlined in more detail in the method details part.

A conversion (including description) of the original NovoBridge code into Python code is available via github.com: https://github.

com/hbckleikamp/NovoBridge. The Matlab codes are freely available upon request from the Lead Contact.

The functions used to generate the figures reported in this paper are available via Matlab 2017b or later versions plus

Bioinformatics Toolbox (https://nl.mathworks.com/) and their use is described in the STAR Methods.

Any additional information required to reproduce this work is available from the Lead Contact.

METHOD DETAILS

Application of publicly available data
The synthetic community proteomic raw datawere downloaded fromProteomXchange server project PXD006118, established byM.

Kleiner and M. Strous labs (Kleiner et al., 2017). Protein content and taxonomic lineages of the synthetic community samples used

have been further outlined in the Tables S2 and S3. Due to incomplete coverage of viral strains in the Unipept database, viruses were

not further considered in the quantitative analysis. Shotgun proteomic raw data from Rhodopseudomonas palustris were retrieved

from the project PXD013729 generated by E. Nakayasu, Pacific Northwest National Laboratory and C.S. Harwood, University of

Washington, Campylobacter jejuni raw data were retrieved from PXD005306 generated by M. Monroe, and J. Adkins, Pacific North-

west National Laboratory, Paracoccus denitrificans raw data were downloaded from project PXD013274 generated by T. J. Erb and

M.Glatter, MPIMarburg, respectively. Lactobacillus sakeiPXD011417 fromC. Ludwig, Bavarian Center for BiomolecularMass Spec-

trometry (BayBioMS), Technical University Munich. Acinetobacter baumannii PXD011302 from M. Feldmann Washington University

School of Medicine and J. Scott, University of Melbourne; Streptococcus mutans PXD006735 from J. Koh and K.C. Rice, University

of Florida; Trypanosoma brucei PXD009073 from J.W. Dupuy form Centre de Génomique Fonctionnelle Bordeaux, France and M.

Boshart, from Ludwig-Maximilians-University Munich Martinsried, Germany. Additional environmental community reference dataset

shown in Figure S5, was obtained from PXD008780, as published by B. L. Nunn and E. Timmins-Schiffman of the University of Wash-

ington (Mikan et al., 2020). The waste water treatment plant community data shown in Figure S6, were obtained from processing

PXD000862, which were published by S. A. Hansen and F. A. Herbst, from Aalborg University.(Hansen et al., 2014) Comparative
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database-search peptide sequences were retrieved from published supplemental information, which were filtered for sequences

with PEP<0.01 before processing through the pipeline. qFISH abundances were obtained from the paper published by Albertsen

et al. (2012),(Albertsen et al., 2012) using the ‘GetData Graph Digitizer’ tool.

Whole cell lysate proteolytic digestion
Approximately 25-50mg biomass (wet weight) of each cell pellet/material were homogenised by beads beating in TEAB/B-PER re-

agent (Thermo Scientific�, for bacterial cells such as Ca. Accumulibactor phosphatis enrichment and Clostridium sacch.) or Y-PER

reagent (Thermo Scientific�, for yeast cells), respectively. The supernatant was collected by centrifugation at 14.000xg. The protein

content was precipitated using TCA (1 vol TCA 100 w/v % to 4 vol sample) followed by washing with ice cold acetone. The protein

pellet was resuspended in 200 mM ammonium bicarbonate containing 6M Urea, reduced in a 10 mM DTT solution at 40C for 1 hour,

and alkylated using 20 mM IAA in the dark, at room temperature, for 30 minutes. The solution was diluted to below 1 M Urea and

digested using sequencing grade Trypsin at a protease to protein ratio of approximately 1:50. Peptides were desalted using Oasis

HLB solid phase extraction cartridges (Waters Corporation) according to the protocol provided by themanufacturer, speed-vac dried

and resuspended in 3% acetonitrile in H2O, containing 0.1% formic acid.

Shotgun metaproteomic analysis
An aliquot of each sample was analysed using a nano-liquid-chromatography system consisting of an EASY nano LC 1200 equipped

with an Acclaim PepMap RSLC RP C18 reverse phase column (75mmx 150mm, 2mm) coupled to a QE plus Orbitrap mass spectrom-

eter (Thermo, Germany). Solvent A was H2O containing 0.1% formic acid, and solvent B consisted of 80% acetonitrile in H2O, con-

taining 0.1% formic acid. The flow rate was maintained at 300 nL/min. The Orbitrap was operated in top 10 data dependent acqui-

sition (DDA) mode, acquiring peptide signals form 350-1400 m/z, at 70K resolution in MS1 with an AGC target of 3e6 and max IT of

100ms. For yeast, approx. 250ng protein digest were analysed using a short linear gradient from 4 to 30% B over 32.5 minutes, and

further to 70% B over 12.5 minutes. MS2 acquisition was performed at 17.5K resolution, with an AGC target of 2e5, and a max IT of

54ms, using a NCE of 28. Unassigned, singly charged as well as 7, 8 and >8 charged mass peaks were excluded. For bacterial

samples, approx. 100ng protein digest were analysed using a linear gradient from 5-30% B over 85 minutes and further to 75% B

over 25 minutes. MS2 acquisition was performed at 17.5K resolution, with an AGC target of 1e5, and a max IT of 54ms, at a NCE

of 30. Unassigned, singly charged, 8 and >8 times charged mass peaks were excluded.

PEAKS and DeepNovo raw data processing
Comparative database-search peptide sequences were retrieved from published supplemental information, which were filtered for

sequences with PEP<0.01 before processing through the pipeline. qFISH abundances were obtained from the paper published by

Albertsen et al. (2012),(Albertsen et al., 2012) using the ‘GetData Graph Digitizer’ tool. Peptide sequencing procedures: Mass spec-

trometric raw data were processed using PEAKS Studio X (Bioinformatics Solutions Inc., Canada)(Ma et al., 2003) for database

search and de novo sequencing, or DeepNovo(Tran et al., 2019) for comparative de novo sequencing studies. Both, de novo

sequencing and database search was performed allowing 15ppm parent ion and 0.015Da fragment mass error (depending on the

acquisition, slightly more tolerant parameters such as 20ppm/0.02Da were applied). Carbamidomethylation was set as fixed and

methionine oxidation as variable modifications. Database search allowed in addition N/Q deamidation as variable modifications.

The same settings were applied to DeepNovo where applicable, otherwise software default settings were used. Database search

further used decoy fusion for estimation of false discovery rates (FDR) and subsequent filtering of peptide spectrum matches for

1% FDR. Only the top ranked de novo sequence annotations were considered for processing. Both, sequence lists were further pro-

cessed through the same metaproteomics pipeline. Except for the comparative study, shown in Figure 3, PEAKS was used to

generate sequence lists.

NovoBridge data processing pipeline
The NovoBridge Matlab pipeline is freely available upon request from the lead contact. A conversion (including description) of the

original pipeline into Python code is available via github.com.https://github.com/hbckleikamp/NovoBridge

AMatlab ‘main script’ was constructed that links together functions for pre-filtering, sequence randomisation, automated submis-

sions to Unipept to obtain taxonomic and functional information, threshold filtering, taxonomic grouping and visualisation of output

data. The pipeline was established and tested with peptide sequence lists generated by de novo sequencing using PEAKS or Deep-

Novo, from high-resolution QE Orbitrap shotgun proteomics raw data. The script was constructed using Matlab 2017b and 2019

respectively.

Function 1, pre-filtering, sequence randomisation and Unipept submission

The first part of the script involves importing peptide sequence lists (obtained from PEAKS/DeepNovo) into the Matlab environment

and to perform pre-filtering based on the sequence annotation quality parameters. The default pre-filtering thresholds were set to

ALC scores >40, less than 20ppm mass error and a minimum peptide length of 7 amino acids. Sequence lists were ‘cleaned’

from peptide modification annotations and mass errors were corrected for mass drifts. The Matlab ‘rand’ function was further

used to generate additional randomised sequences from imported de novo lists. Thereby, the order of amino acids in front of the

cleavage site (R or K) of every sequence was randomised, keeping original sequence parameters attached. Automated sequence

submission to Unipept was done using Unipept‘s inbuilt API (https://unipept.ugent.be/apidocs) option.(Mesuere et al., 2015) For
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retrieving taxonomic information, ‘pep2lca’ including the options ’&equate_il=true’, to equate leucine and isoleucine, were used.

Further, ‘&extra=true &names=true’ are specified to get the complete taxonomic lineage and the names of every taxonomic rank.

The script automatically filters for the main categories super kingdom, phylum, class, order family, genus and species. The ‘pept2-

funct’ combined with the option ’&equate_il=true’ was used to retrieve additional EC number information.(Mesuere et al., 2015)

Thereby, a single peptide sequence can generate multiple EC numbers or pathways which cause functional inference and inflation,

particularly when searching against a large sequence database space. For this study, only the top scoring peptide sequence per scan

was considered.

Function 2, compositional analysis

The compositional analysis considered themajor taxonomic categories super kingdom, phylum, class, order, family, genus and spe-

cies. Depending on data quality/abundance, lower ranks (such as species or genus) were excluded from quantitative analysis/rep-

resentation due to low numbers or insufficient annotations. In a first step, tables were filtered for sequences with ALCs >70 (or less

than -0.1 for DeepNovo), and a mass error of less than 15 ppm. To exclude random matches from erroneous de novo sequences or

low-abundance signals, a taxonomic identifier of a branch was only considered when occurring at least 3 times. Frequency and ALC

cut-offs/thresholds were established using randomised sequences of the pure reference strains. Remaining taxonomic branches are

further grouped and visualised using the ‘bar(x..,stacked)’ function in Matlab for both, absolute and normalized peptide sequence

counts (or areas/intensities, respectively). Visualising the relative abundances of the individual community members were performed

using circle graphs using the ‘surf’ function in Matlab. Circle areas represent thereby the number of normalised spectral sequence

counts and show the average of 2 separate analyses (except stated otherwise). True/expected abundances of individual community

members of the synthetic communities were retrieved from the supplemental information materials, as published by Kleiner et al.

(2017).(Kleiner et al., 2017)

Function 3, functional analysis

KEGG pathways, from global classifications to individual conversions within a pathway, correspond to the KEGG orthology (KO) co-

des.(Kanehisa and Goto, 2000) Therefore, we established a script, which translates the retrieved enzyme commission numbers (EC)

into KO codes. This was done by integrating the KEGG annotation database, downloaded from https://www.genome.jp/kegg-bin/

get_htext?ko00001 (10/19), into the Matlab environment. The analysis of the global community metabolic functions, considered

thereby only branches which were also used for compositional analysis. Sequences assigned to root and super kingdom levels

were excluded. EC assignments matched more than twice (based on unique spectral sequence counts) were further translated

into KO codes, normalised to the total number of spectral sequence counts and grouped into pathways. Obtained functional

community profiles were visualised using heat maps or circle graphs based on KEGG pathways/category levels 2 (global) and 3 (car-

bohydrate and energy metabolism). Further information regarding ‘KEGG pathway categories’ are outlined below.(Kanehisa and

Goto, 2000)* Heat maps were generated using the ‘heatmap’ function, and circle graphs were created using Matlab‘s ‘donut.m’

function as available through www.mathworks.com ‘file exchange’ website.

* Second category codes: 09101 Carbohydrate metabolism, 09102 Energy metabolism, 09103 Lipid metabolism, 09104 Nucle-

otide metabolism, 09105 Amino acid metabolism, 09106 Metabolism of other amino acids, 09107 Glycan biosynthesis and

metabolism, 09108 Metabolism of cofactors and vitamins, 09109 Metabolism of terpenoids and polyketides, 09110 Biosyn-

thesis of other secondary metabolites, 09111 Xenobiotics biodegradation and metabolism, 09121 Transcription 09122 Trans-

lation, 09123 Folding, sorting and degradation, 09124 Replication and repair, 09131 Membrane transport, 09132 Signal trans-

duction, 09133 Signalling molecules and interaction, 09141 Transport and catabolism, 09143 Cell growth and death, 09144

Cellular community – eukaryotes, 09145 Cellular community – prokaryotes, 09142 Cell motility.

* Third category codes: 00010 Glycolysis/Gluconeogenesis, 00020 Citrate cycle (TCA cycle), 00030 Pentose phosphate

pathway, 00040 Pentose and glucuronate interconversions, 00051 Fructose andmannosemetabolism, 00052 Galactose meta-

bolism, 00053 Ascorbate and aldarate metabolism, 00500 Starch and sucrose metabolism, 00520 Amino sugar and nucleotide

sugar metabolism, 00620 Pyruvate metabolism, 00630 Glyoxylate and dicarboxylate metabolism, 00640 Propanoate meta-

bolism, 00650 Butanoate metabolism, 00660 C5-Branched dibasic acid metabolism, 00562 Inositol phosphate metabolism,

00190 Oxidative phosphorylation, 00195 Photosynthesis, 00196 Photosynthesis - antenna proteins, 00710 Carbon fixation in

photosynthetic organisms, 00720 Carbon fixation pathways in prokaryotes, 00680 Methane metabolism, 00910 Nitrogen

metabolism, 00920 Sulfur metabolism. *www.genome.jp/kegg/pathway.html

Function 4. Peptide sequence outputs

To interface with other tools, a peptide sequence table output is provided in form of ‘.xls’ or ‘.mat’ files. Thereby either all sequences,

only identified or non-identified sequences can be selected. The later can be filtered for high quality spectra, such as selecting for

the top 20% (based on ALC score), which was exemplified using the BLAST+ homology search module, to investigate for potential

un-sequenced community members.

Alternative BLAST+ search of unidentified spectra

Alternatively, high quality unidentified de novo sequences were subjected to BLAST+ homology search(Madden, 2013; Camacho

et al., 2008). Even though there are homology search web services available(Junqueira et al., 2008), we used a local installation to

maintain sufficient throughput and integrity with the established de novo metaproteomics pipeline. For this ncbi-blast-2.9.0+ and

the non-redundant protein sequence database ‘nr.gz’ (segmented for more efficient use, due to size) were downloaded from the
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NCBI ftp server (ftp://ftp.ncbi.nlm.nih.gov/blast, updated 12/19) and installed on a local windows 10 workstation. BLAST searches

were operated using the Matlab ‘system’ command function. All BLAST searches used the PAM30 scoring matrix. The top 5 assign-

ments per query sequence (based on bit-scores) were combined and filtered for best e values and scores, respectively. Taxon ID and

name databases were downloaded from the NCBI server. Full taxonomic lineages were retrieved form NCBI using E-utilities calls

’http://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=taxonomy&id=’ and

‘taxurl_right=’&retmode=xml’.(Sayers, 2009)

Taxonomic annotation of metagenomic sequence database
Themetagenomics protein (assembly) sequence database fromMikan et al.(Mikan et al., 2020) was annotated with taxonomies using

DIAMOND v2.0.6 and the non-redundant bacterial NCBI RefSeq database (Reference Sequence, release 203) and default

parameters.(Buchfink et al., 2015) Furthermore, for the top 20% of sequence alignments (based on bit score), complete lineages

were determined using the Unipept taxonomy API. The LCA was established using the LCA approach, and the taxonomy ID was

retrieved from the prot.accession2taxid database downloaded from the NCBI repository (ftp.ncbi.nih.gov).

QUANTIFICATION AND STATISTICAL ANALYSIS

In silico evaluation of ‘drop-off curves’
Large-scale reference proteomes in silico study: A large number of reference proteomes (>1500) covering all 3 domains of life were

retrieved from the NCBI reference database (www.ncbi.nlm.nih.gov/refseq/). In silico trypsin cleavage, random selection of 1K

sequences (each) and programmed submission to Unipept was done and determination of drop-off curves were performed using

Matlab2017b (The MathWorks, Inc., US). Reference proteome in silico drop off analysis: A random selection of 3.5K unique trypsin

cleaved in silico peptides (7-15 amino acids length, to approximate real samples) for the pure strains analysed in this study, as listed in

the Table S4, was performed using MATLAB’s bioinformatics toolbox. The in silico peptidomes were processed through the same

NovoBridge pipeline, as described above.

Simulation of peptide sequence database lacking specific taxonomies
Peptide sequences were submitted (as usual), using the above-mentioned NovoBridge pipeline, to Unipept to retrieve taxonomic

lineages based on the lowest common ancestor (LCA) approach using ‘pept2lca’. Unlike in the default processing pipeline, peptide

sequences that obtained a class or lower taxonomic annotation were further annotated with taxIDs using the ‘pept2prot’ and

‘taxonomy’ API to obtain all underlying taxonomic lineages. This moreover enabled to selectively remove lineages for peptides

from taxonomic entries at defined taxonomic rankings, e.g. species, genus, or family. Following the selective filtering, the remaining

taxonomic lineages (of the respective peptide sequences) were regrouped using the LCA approach and further processed through

the conventional NovoBridge pipeline with default parameters. The evaluation of the obtained taxonomic profiles was compared to

the true (synthetic Kleiner community) or the initially determined taxonomic profiles (Bering Sea community) by determining the

Spearman rank-order correlation coefficient (rs) using the MATLAB ‘corr’ function and the ‘Spearman’ option.

Simulation of metaproteomics data containing different volumes of peptide sequences
To evaluate the taxonomic profiles obtained from metaproteomics containing different amounts of spectral information, we

performed a (random) down-sampling of the peptide sequences. For this, the metaproteomics data from the synthetic ‘Kleiner com-

munity’ or the natural Bering Seamicrobiome were down-sampled stepwise to finally contain only 90, 80, 70, 60, 50, 40, 30, 20, 10, 8,

6, 4, 2, or 1%of the original number of peptide sequences. The remaining sequenceswere further processed through the NovoBridge

pipeline using default parameters. The change in the obtained number of taxonomic identifiers (at different taxonomic ranks) was

compared using line plots created with the MATLAB ‘plot’ function and hill equation curve fitting.

Spearman rank correlation
Generally, the evaluation of the obtained taxonomic profiles were compared to the true or otherwise comparatively determined

taxonomic profiles by determining the Spearman rank-order correlation coefficient (rs) using the MATLAB ‘corr’ function and the

‘Spearman’ option.
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