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Analysis of Joint Angle-Frequency
Estimation Using ESPRIT

Aweke N. Lemma, Alle-Jan van der Vegdenior Member, IEEEand Ed F. Depretter&ellow, IEEE

Abstract—High-resolution parameter estimation techniques a(f) = [I 6 6> --]" andp = 27wAsin(a), whereA is
have recently been applied to jointly estimate multiple signal the distance between the elements (in wavelengths)naisd
parameters. In this work, we consider the problem of determining the angle of arrival measured with respect to the normal of the

the directions and center frequencies of a number of narrowband is. A simil ituati in f timati
sources in a band of interest. We present a joint angle-frequency array axis. A simiiar situaton occurs in frequency estimation

estimation method, based on the multidimensional ESPRIT Where we have: = —2x fT'. Here,T is the sampling period,
algorithm. A perturbation error analysis gives bounds on the andf is the frequency to be estimated.
parameter estimates and provides optimal values for the temporal  \When ESPRIT is used to estimate multiple signal parameters,
and spatial smoothing parameters. The analysis is shown to be g,y 45 angle and frequency, one may solve the problem in one
consistent with simulation results. . . o
of the following two ways. In the first approach, the individual
Index Terms—Joint diagonalization, joint parameter estimation,  signal parameters are estimated independently, and only then
multidimensional ESPRIT, multiresolution ESPRIT, shift-invari- (using some matching algorithm) are the parameters that belong
ance. to the same signal grouped together. Apart from the computa-
tional overhead, this also leads to a humerically less robust set
I. INTRODUCTION of problems as it does not exploit the relation between the indi-

I N MANY practical signal processing problems, it is desire?ﬁ'duaI estimation problems.

to estimate from measurements a set of parameters upo second method is to combine the individual estimation
which the received signals depend. Optimal techniques ba@éablems Into a single joint parameter estimation p_roblem. In
on maximum likelihood are often applicable but might be conQUr context, joint parameter estimation is discussed in a number
putationally prohibitive. Algebraic techniques based on a bat8F1 papers, including joint azimuth and elevation angle estima-

of data have an edge in terms of computational c:omplexiﬁ'gn [2], joint frequency ar_1d ZfD angle esFimation [3], [4], and
Such techniques make specific use of certain algebraic str nt angle and delay estimation [5]. B_a5|ca_lly, these methods
tures present in the data matrix. rely on the fact that each parameter is estimated from a cer-

A prime example of an algebraic technique is the ESPRIT 4 i eigenva}lue problem, Where all eigenvalue problems sh{;\re
gorithm [1]. Since its formal derivation in 1985, ESPRIT ha € same elgenvectors (Wh'(.:h are related to the begmformmg
been used for direction-of-arrival (DOA) estimation, harmoni\éeCtlf)rsz_' This TJI:OWS tfhe ponsm? of t?z ptroblertn_ as a_{%mt d!ag-
analysis, frequency estimation, delay estimation, and combiifai2!!Zation problem ot a collection of data matrices. The prime

tions thereof. In essence, the algorithm makes use of the Sﬁ]q[vantgge of joint estimation is that the individual parameters
invariance structure present in the array response va¢tor are paired for free and show a better robustness to signal and

wheref = ¢/#, andy is a phase shift to be estimated. In narparametgr disturbances. -

rowband DOA estimation, the phase shiftis due to the differen eIn the I|terat_ure,_a number of ESPRIT-based joint angle an_d

in arrival times of the wavefront at the elements of an antenﬁ quency est!matlon mgthods hgve been p.roposed. In partic-

array. For a uniform linear array (ULA), it is well known that!'a" Zoltoyvsk!et al. [3] discuss this p.rloblem in the context of :
radar applications. Because of ambitious goals, however, their

solutions are very much directed by engineering considerations,
which incur a certain sacrifice in elegance and clarity. Haardt
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A. Outline of interest have a center frequengy and suppose that thith
We begin our discussion by describing the data model af@urce has a carrier frequencyfot+ f;. After demodulation to

i ¢ i@i2nfits. i
the parameter estimation problem. In Section I, we extend tHe the signal due to thth source ig:/27/:"s;(t), and the signal
ESPRIT algorithm to JAFE. Section Il looks into different dati€ceived at théth antennad: = 1, ..., M'is

extension and processing techniques that influence the robust- d
ness and performance of the algorithm. Following this, in Sec- zi(t) = Z ar(0:)e? ™ th;si () + wy(t)
tions IV-VII, we present a performance analysis of the JAFE i=1

algorithm. FinaIIy,_afte_r deriving Cram_ér—Rao lower bounds_ Rhered; is the parameterization of the DOA of tigh signal,
the parameter estimation errors (Section VIII), we present siMPih respect to a common phase referengg) is the antenna

lation results that illustrate the various aspects of this work (Ser‘é'sponse of theth antenna to a signal from directiénb; € R+
2

tion 1X). is the amplitude of théth signal, andu(¢) is noise. Itis natural
B. Notation to stack the antenna outputs into a single vgm(@}r.
Further suppose that the narrowband signals have a band-

Throughout, row and column vectors are denoted by loW&fjigth of less thart /7" so that they can be sampled with a period
case bold-faced letters and matrices with uppercase bold-fageg, satisfy the Nyquist rate. We normalize to= 1. Let us
letters. For any positive integgr I, denotes @ x p identity ma- g3y that the bandwidth of the band to be scanned is an integer
trix. We suppress the index when this does not lead to confusigymperP times larger: After demodulation to IF, we have to
Superscriptg-)T and(-)# denote transposition and Hermitianwmme at a raté [obviously we require-(P/2) < f; < P/2
transposition, respectively. Complex conjugation by itself is dgy prevent aliasing]. The data sample at the receiver is
noted by corf-). E{-} denotes mathematical expectation.

A vector constructed from a sequence of entries, sugh-as n 2 n n
[0 #1 --- ¢n], or a sequence of function values, such as?® (f) = Z a(6;)bi exp I fin ) si (F) tw (ﬁ)

¢ = [#(0) ¢(1) --- #(N)]T, may be written as =1
AN B N wherea(6;) is the array response vector of tite source, and
¢=[{o:}ilo], or é=[{s(n)}i0] w(n/P) € CM-1is the noise vector collecting the samples of
respectively. Similarly, a diagonal matrix with the above di- the noise terms at the output of each antenna element. In matrix
agonal entries may be expressed as form, this can be written as
n n [T n
@ = diag{:}, or @ = diag{4(n)}) . z(5) = AB®"s (5) +w (5) M
respectively. For two matriced € C™ " andB € C77, the where® = diag{¢;}?_,, ¢; = ¢/@™/P)fi B = diag{h;}*_,
Kroneker productd ® B € C™?:"? is defined as is a signal gain matrixd is anM x d matrix collecting thel
a1 1B a B - ay,B steering vectors, and the vectt) is a stack of thel signals,

where each signal has a unit amplitude. In the remainder of the
paper, unless it is necessary to write it explicitly, the diagonal
matrix B in the data model is absorbed bft), in which case,

the amplitude of théth signal is equal té; instead of 1. Assume
am, 1B am, 2B -+ am B that we have collected/ samples of the array outpaift) at a

Unless stated otherwise, in the paplet} is a Frobenius norm rate P into the M x N data matrixX, i.e.,

operator. X:A{S(O) @s(%) cI>N—15<N;1”

Il. JOINT ANGLE AND FREQUENCY ESTIMATION ,,
+W e N (2

(12_’1B ang azynB
AR B =

Suppose that we have an antenna array, observe a frequency
band of interest, and want to separate and identify the directiomBereW € C*-V is a matrix collectingV samples of the
and carrier frequencies of all sources that are present. For fid-x 1 array noise vector.
quency estimation to be meaningful, we assume that the sources )
are sufficiently narrowband, typically with different carrier freB- Temporal Smoothing
quencies, but the spectra might be partly overlapping. The ob4n this section, we consider a data stacking technique (re-
jective is to estimate the parameters and to construct a bedstred to as temporal smoothing) that adds structure to the data
former to separate the sources based on differences in angteglel for the implementation of the JAFE algorithm. Apart
or carrier frequencies. We will assume that the sample rates frten this, temporal smoothing introduces an interesting feature.
much higher than the data rates of each source and that mufthat is, the data matrix in (2) is rank deficient when two or more
path is negligible. signals have the same DOA. This is because the array steering
vectors corresponding to signals with the same DOAs are iden-
A. Model tical, and therefore, the rank of the data matrix will be less than
Suppose that there aresources of interest, with complexd, whered is the number of signals. It will be shown in this sec-
baseband representationst), fori = 1, ..., d. Let the band tion that, under a certain condition, temporal smoothing restores
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the rank of the data matrix. Am-factor temporally smoothed interesting properties. In Section 1I-C, these properties are
data matrix is constructed by stackingtemporally shifted ver- exploited for joint angle and frequency estimation. For now,
sions of the original data matrix. This results in the followingt suffices to note that temporal smoothing preserves the shift

mM x N —m + 1 matrix [viz. (2)]: invariance structure needed for the DOA estimation. That is,
) 1 N ) the extended array steering matu,, has the required shift
Als(0)®s( =) --- ®VN s —m invariance structure, and the DOAs are estimated in the usual
p p way.
1 2
X, = A® |s P s P C. Estimation Algorithm

At this point, we have obtained a model with much the same
: structure as in the classical ESPRIT algorithm but wAthe-
AP { <m - 1> m placed byA,,. The estimation of the parameters and the con-
P s| —— | Ps (—) .
L i struction of the beamformer can now follow the same strategy
+W,, (3) as well. First, note that the rank of is only d since this is
the number of rows of’,. We compute the SVD oX, i.e.,
whereW ,,, represents the noise term constructed fidfina X =: U,X,V, whereU, hasd columns, spanning the column
similar way asX,,, is obtained fromX. Assume that the signals space ofX . Thus, for some nonsinguldrx d matrix T'
are narrow band, i.e.,

U.=A,T

1 m—1
s(t) ~ s (t + F) RS (t + T) . We begin the estimation of the parameters by defining two types
of selection matrices: a pair to select submatrices for estimating
In this case, all the block rows in the right-hand term of ((3) a® and a pair for estimatin® = diag{6; }<_;:
approximately equal, which means th¥t, has the factoriza-

tion {J'T(ﬁb) =1 01]® Iy @
A JU($) =101 Lna] @ I

{ J(O):=1,, @ [Ir—1 0] ®
JY(0) = T, @01 Tni_s].

AP 1
X, ~ i [5(0) ®s <F> } +W,,
: To estimate®, we take submatrices consisting of the first and
At the lastM (m — 1) rows of U, respectively, i.e.,
= A’ITIFQ + Wm S CMM7 N=m1 (4) T Y
U, =T ($)Us, U, s=JY)U,

where Ay, throughogt the se.qugl, WhiCh is referred to as trWhereas to estimat®, we stack, for each of the. blocks, its
extended array steering matrix, is given by first and lastM — 1 rows, respectively

4 Us o= J°O0U,, U,s—JO)U..
AP
A, = _ e cmM.d (5) These data matrices have the structures
' U, ,=AT" U,o=A"T""
[ Apm! " v ©9)
and U, s=A®T" U,o=A"0T""
[ N — ; . . .
F,=|s(0) --- ®N-ms (Tm> } € cHN=m+l (6) whereA’ andA” are both submatrices d,,,. If dimensions are
L such that these are low-rank factorizations, then

is a matrix collectingV — m + 1 samples of the sources.

Theorem 11.1: Consider anM element antenna array im-
pinged byd < M narrowband far-field signals. Assume that all Ey = UI oUy o =TOT™ " (10)
the signals have distinct (different) center frequencies. Suppose

that the signals are divided intogroups, such that the signalsIt IS seen that the data matricék; and E are jointly dlago—
from each group have the same DOA. petfori — 1, ..., r nalizable by the same matrik. There are several algorithms

represent the number of sources in tile group. Then, the to compute this joint diagonalization, €.9., by meang)df it-

m-factor temporally smoothed data mattk,, of (4) is full eration [7], [8] or Jacobi iterations [2]. For this to work, it is
rankd if and only if . > max; p; necessary that each submatrix in (9) has at léastvs. After

Proof: See Appendix A T has been found, we also have estimateéf, ¢,)} for each
The ab;)ve theorem shows that with-factor temporally of thed sources. This provides us with angle and frequency es-
smoothed data, the ESPRIT algorithm can resolve umto timates:

signals having the same DOA. Apart from rank restoration, _ asin arg(0;)
it enriches the structure of the data matrix, resulting in some i = 2w A

E,:=U! U, ,=T®T™"

P
fi= &rg(¢i)%~
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. ML - are divided inta- groups, such that the signals from each group
. subarray L have the same center frequencies. Letjferl, ..., r, g; rep-
ML . resent the number of sources in thiegroup. Then, thé-factor
P subarray 2 spatially smoothed data matriX ., with My > d, (4) is full
SR ML, - rankd if and only if L > max; ¢;.
o subarray 1 Proof: Consider thel-factor spatially smoothed data ma-
et — trix of (12). As we have assumed that all the sources have dif-
M ferent DOAs, the rank ofd’ is d. Thus, sinceF;, has onlyd
Fig. 1. Spatial smoothing. rows, it is sufficient to show that these are linearly independent.

The proof is similar to that given for Theorem II.1. First, note
that F7 has the same structure 4s,, with ® playing the role
of ®. Thus, with the same argument, it follows tH8t is full

rank if
The data matrix given in (3) is the basic JAFE data model.

In this section, we consider some additional data manipulation L > maxg;. [
techniques and processing stages that have some influence on ‘
the performance of the algorithm.

Ill. FACTORS AFFECTING THE PERFORMANCE
OF THE JAFE ALGORITHM

B. Forward-Backward Averaging

A. Spatial Smoothing Another way of extending the data matrix is termed as for-

As discussed above, temporal smoothing enables usWard-backward averaging [12]-[15]. It uses the fact that the
estimate the underlying parameters correctly even if the DOAENvaluegd;, ¢;) lie on a unit circle and that the structure
of more than one signal are the same. Employing a similar teéf-A is centro-symmetrie.A forward-backward averaged data
nique in the spatial domain, coherent signals can be separaf@atrix X s, is constructed from the daf¥ given in (2) as
This is called spatial smoothing [9]—-[11]. In spatial smoothing, . M.2N
an array of M sensors is subdivided inté subarrays. The Xpp=[X con(IIX)] e C™ (13)
number of elements in a subarray depends on the way {QBerell is an anti-diagonal exchange matrix that reverses the
division is made. For instance, in ULA, allowing a maximungrdering of the rows ofX. It can be shown [5], [18] that if the
overlap as in Fig. 1, the number of elements per subarray égntro-symmetric property is satisfied, the forward-backward
Mp =M - L+ 1. averaged datX ;;, has the required shift-invariant structure. We

Forl =1,..., L, lettheM, x M matrix J; be a selection can, therefore, apply ESPRIT to solve for the underlying param-
matrix that selects part of thef x NV data matrixX that corre- eters. Note that with this data extension, the number of available
spond to théth subarray. Then, a spatially smooth®d x LN temporal samples per antenna element has essentially doubled
data matrixX';, is constructed as from N to 2N, which gives a significant improvement in accu-
racy. It also provides some protection against loss of rank in the
case of coherent sources, i.e., eveh i 1 (see above), we can
tolerate coherent signals with multiplicity 2.

X, =[IX J,X - JyX]eCMoIM — (11)

Using the structure oX in (2), we can re-express (11) as

F, C. Spatio-Temporally Smoothed and Forward—Backward

AveragedData Model
XL:[JlA JLA] + Wy . . . . .
In this section, we derive a generalized data model that in-

F, corporates the above three data extension procedures. We start
Ijth the temporally smoothed da#,, givenin (3). LetM, be

the number of antenna elements in the subarrays of the spatially

oothed data, and let, for= 1, ..., L, the selection matrix

whereW ;, is a noise term that has also been shuffled in a simil
way asX ;. Let A’ contain the rows ofd that correspond to the

first subarray; then, from the shift-invariance property, we ha\?]én |
y property ; € RmMr,mM gelect part of the data matriX,,, that corre-

the following relation fork = 1, ..., L: .
wing ! B sponds to théth subarray. Then, afwn, L) factor spatio-tem-
JA=J,AOF ! = A/@" 1. porally smoothed data matriX ,,, 1. is constructed as
Using these propertieX ;, can be written in a compact formas Xm.z = [J1Xm - JiX,,] € CmMe EN=m+l) (14
X, =A[F,OF, -.- L 'F,| + W Using the structure ok,,, from (3), this can be factored as
= A'F; + W e CMe LN, (12) F,
Theorem II1.1: Consider anM element antenna array im- Xm,z = [J1 4 - J1An ] + Wi L
pinged byd narrowband far-field signals. Assume that all the F

signals have distinct (different) DOAs. Suppose that the signals
2An antenna array is said to be centro-symmetric if the element locations of
INote that a maximum overlap of subarrays is obtained by shifting a selectbé array are symmetric with respect to the centroid and the complex radiation
window over a single antenna as in Fig. 1 characteristics of paired elements are the sanze[(6]-[18]).
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whereW,, 1 is a noise term that has also been shuffled in Rutting these into (17) and noting théf;, = M — L + 1, it
similar way asX,, r. Let A, = J;A,, € C™Mz:4 Then, follows thatU,, , andU,, 4 are both(m — 1)(M — L + 1) x
from the shift invariance structure o, € C™*-4 it follows d matrices, whereall, o andU, 4 are bothm(M — L) x d
thatfork =1,..., L matrices. Thus, for ULA, combining conditions 1 and 2, we get
the following identifiability criteria:
JrAy, = J1A,08 1 = A @F L

a) d<m(M -1L)
b) d<(m-1)(M-L+1)
Xm,L:A:n[Fs ®Fs ®L_1Fs]+Wm,L C) dSZL(N_m+1) (19)

=: A;nFL +Wo L (15)

Thus, X, 1 can be written in a compact form as

Given the number of sensofd and the number of snapshots

Finally, performing forward-backward averaging on the abowd. We want to find the paifrn, L) that maximizes the number
(spatio-temporally smoothed) data, we getth#l, x 2L(N —  Of signals that can be identified. In analogy to a similar problem

m + 1) data matrix considered in [5], we obtain as the solution to this maximization
problem:
Xm,L7fb B [Xm7L COﬂj(HX,mL)] (16) 1
. . . fN>M+—
wherell is an exchange matrix that reverses the ordering of the V2
rows of X, ;. All of the above data models contain the shift dmax = M(N +1)(2 — V2)?
invariance properties needed by the JAFE algorithizm [5] and . _ 20
[18]). Thus, the angle-frequency pairs may be estimated in the mo = (N +1)(2~2) (20)
usual way (by considering shift invariance pairs). Loy=M(V2-1)
. 1
< [
D. Identifiability TN <M-7
The extended datX ,, 1 s, of (16) is the generalized data dnax = N(M + 1)(2 — V/2)?
model we want to work with. It incorporates three processes: mo=N(2—-V2)+1 (21)
1) temporal smoothing; L —(M+1(V/3—1
2) spatial smoothing o= (M+1)(V2-1).
3) forward-backward averaging. The first set of equations corresponds to a region where con-

To derive identifiability conditions we assume that initially, alitions a) and c) are satisfied with equality and the second set
total of N samples per antenna element are present. Thus, aftefresponds to a region where conditions b) and c) are satisfied
temporal smoothing, spatial smoothing, and forward-backwandth equality. The actual maxima are slightly smaller because
averaging, the extended data mati, i s, has the dimen- m andL can take integer values only.

sionsmMp, x 2L(N —m+ 1). LetU, be a full rankm My, x d For identifiability in addition to the above conditions, the

matrix that spans the column spaceXf, 1, ;. submatriced/ 4, Uy, Uyg, andU,, in (9) must also be full
Condition 1:To correctly estimat# ., X, 1. s» must have rank d. If the impinging wavefronts have distinct frequencies
at leastd rows andd columns. o and DOAs, the Vandermonde structures of the matrices ensures

OnceU, is determined, the next step in JAFE is to construdpat this is the case. Under conditions where there are multiple
S ’

submatrices with the required shift invariance properties usiftf?”S or multiple center frequencies, the matrices may still be
selection matrices. To this end, let the four selection matrickgl ranked if, in addition to (20) and (21), the following are also

T (), Ty(¢), J.(9), andJ,(#) be such that satisfied {iz. [5]):
Us,p =Ja(9)Us U, o =J.(0)U, m>p
{U =J,(¢)U {U =J,0U () N>3p
Yy, ¢ y s y, 0 y s and
form shift invariant pairs. L>1q
Condition 2:To estimate the DOAs and frequencies prop- M>3g

erly, these matrices must have at leasbws.
The actual number of rows in these matrices depend on the walyerep andq are the multiplicity of the DOAs and center fre-
the selection matrices are defined. For a ULA for instance, wittuencies, respectively. These inequalities are derived by consid-
the subarrays chosen as shown in Fig. 1, the selection matriegag the results of Theorems 1.1 and III.1.
are given by
E. Whitening as the JAFE Processing Stage

{ I2(0) @ The spatio-temporal smoothing procedure introduces corre-
Jy(0) = In @ [01 Tar, 1] lation between the noise terms in the different rows of the data
I ( ® [Iar,—1 01] (18) matrix. In many cases, this correlation causes degradation as it
Jy( ®[01 Iar,—1]- tends to reduce the degree of averaging that could have been
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YE- 2) diagonalization of a set of eigenvalue decomposition
Spatio-a] - (EVD) problems;
:;r(l,%?;mg : 7z : > 3) transformation of the eigenvalues into signal parameters.

X The first step, which is equivalent to finding the EVD of the
T mL > data covariance matrix, is well studied in the literature [22]—[26]
for the case of white Gaussian noise contaminated data model.
In our case, however, since some data stacking techniques have
been employed, the noise is no longer white. Thus, in this sec-

) . . ) tion, we will first derive the eigenvalue estimation error for the
obtained had the noise been white. In this context, the JAFE 5‘A‘FE data model and show how this can be applied to derive

gorithm can be preceded with a whitening filter, as shown {5 on shift invariance parameters. In Section V, we make
Fig. 2. Consider the noise part of spatio-temporally smoothgde ot the results of this section to derive more specific error

data matrix given in (14). Let the singular value decompositio&pressiOnS for the parameterized DOA and frequency estima-

. . _ H .
of the noise covariance matr®,, = W, LW5,, 1, be given by tions. Similar analyses, in the context of white Gaussian noise,

have been presented in [27] and [28]. The results obtained here
could be seen as the generalization of these results.
When we assume that prewhitening has been applied to the
data before the application of the JAFE algorithm, as discussed
L =USWUEX,, ;. (22) in Section I_II-E, _the analysis reduces to the forms _similar to
’ ' those described in [27] and [28]. However, the results in [27] are
Thus, in Fig. 2, the transformation matri& is equal to derived considering a ULA only. Their final result does not give

Fig. 2. Whitening the spatio-temporally smoothed data.

R, =U,X2U~.

Then, the whitened data matrix is derived @iz.([19])

U,X;'UZ. Letthe SVD oinn’L be given by explicit relations between the parameter estimation errors and
the noise. In [28], the results of [27] are extended to more gen-
e > eral array geometries, and the analysis there is fairly complete.

However, the results are derived for DOA estimation only, and
and letU”, be thed dominant columns o/ corresponding to they consider a data model without any extension or stacking.
thed largest singular values; then, the JAFE algorithm is implédere, we give derivations for both angle and frequency estima-
mented in the usual way by considering shift invariance propdiens, and we also show how the different data extension proce-
ties ofU, = U, X 'UXU’,. In Section IX, we present simula- dures affect the estimation performances.
tion results comparing the performances of the JAFE algorithm
implemented with and without whitening. A. Eigenvectors of the Data Covariance Matrix

F. Multiresolution ESPRIT Algorithm _ The follqwmg theorem, yvho;e proof is given in Appendix-B,
gives the eigenvectors estimation errors for the JAFE data model
Recall that the data sampling rate used in constructing t§gen in (15).
data matrix of (1) isP times the Nyquist rate of the baseband Theorem IV.1:Consider an M-element antenna array
signals. Since” can be quite large, it would be very expensiv@npinged by d far-field narrowband signals. Let the
to construct a full data matrix of all samples. In fact, itis suft;, 1) factor spatio-temporally smoothed data ma-
ficient to subsample: Collect 2 subsequent samples at &*atgrix x,, , e CmM:xL(N-m) pe as given in (14),

followed by m samples at a rat&/k, wherek is an integer g, = (1/N)X,, X ; be the finite sample data covari-
greater than one. This leads to the so-called multiresolution Egyce matrix, and/ € C"Mr-mMr ands ¢ ¢mMr.mMz phe

PRIT (MR-ESPRIT) [6], [20], [21] based JAFE algorithm. Ingych that the eigenvalue decompositioddf ; = E{R,, .}
the MR-based JAFE algorithm, multiple spatio-temporal sam given by '
pling rates are used to improve the parameter estimation accu-

racy without raising the estimation complexity. In the above ex- R, , =UX2U".

ample, for instance, if the size of the data matrix is preserved, ’

the MR approach provides /ktimes accuracy improvement.| ot 7. be the firstd columns ofU. In Section I1-C, it has been
On the other hand, if we perform downsampling on the originghown that for some invertible matrik

number of samples (effectively reducing the number of samples
by the factork), we obtain a significant reduction in complexity
for the same estimation accuracy. In the simulation results of

Section IX, we give quantitative analysis of this effect. See the ) ) _ )

above papers for further understanding. Now, letw; be thejth eigenvector o, 1, wherej < d.

Moreover, letAu,; represent a noise-caused perturbatioman

0?2 =52 + o2 be thekth eigenvalue oR,,, 1, wherez ? is the

kth noise free eigenvalue, and let is the noise contribution.
As described in Section II-C, the JAFE algorithm involveget & = diag{¢;}?_,, and let® = diag{#;}~, be the parame-

three main steps, namely terizations of the center frequencies and DOAs ofiisggnals.
1) singular value decomposition (SVD) of the data matrix;Moreover, let

U,=A,T " (23)

IV. PERFORMANCEANALYSIS
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 Z” be a Toeplitz matrix with all the elements equal to zer@re such that thé x d matrix £ = UI,Uy has the eigenvalue
except for those unity valued entries on tith parallel to decomposition
the main diagonal;

* m, := min(m, N —m) andL, := min(My, L) A1
* Q= T-', ¢¥ andt, be thexth row and clzflumn of the A= = QET 27)
matrices@) andT’, respectively. (Note that't, = 0, for
z # yandgft, = 1forz =y.) L Ad
CY(x,yvow) = Sl Ykl ZMir gl
Hagh@r
uyq, ®"O",; — | Elty - & 28
c Qa,y, v, w)H =30 Sl z My, : [t a] (28)
0, ® 1Oty L H_hM 4
s,y vow) = 330l g w2, o _
uH z=hMr=rq ! ° Lo whereQ = T~!, andT is as in (23). In the above model, coin-

0qding eigenvalues are allowed, as long as the eigenvectors (the
corresponding columns &) are linearly independent. In fact,
we require that the eigenvectors be sufficiently distirgtich

that after small perturbation they remain linearly independent.

Assuming thaﬁm 1, has distinct eigenvalues, the covariance
the eigenvector estimation erri{ Au; Aul!} is given by

E{Au,Aul},, | This assumption is needed becalise" appears in the deriva-
woz ' tions, and thus, we wafit to be invertible. From (28), it follows
= n that
L(N—-m+1)
N Qi v, w)T R (v, w)ed Ai = qi' Bt; (29)
22 (2-oN(2 -0} O™ S
oy iZw J i whereg; andt; are the left and right eigenvectors #&f, re-
d d NP spectively, i.e.g7 E = \jqf andEt; = \;t;. Moreover, for
T, w, 5 )05 | o i,j=1,2 ... d g andt sat
+Z 2 (02 —02)(0% —07) T (24) 57 =L 2 g andt; SaSy
i#v itw 1, ifi=j
| | ;= { | (30
Lemma IV.1: For the whitened spatio-temporally smoothed 0, otherwise.

data matrix, the covariance of the eigenvector estimation error

reduces a2 { Auy, At} = 0 for w £ v, and t A\, Ag;, At; and AFE represent noise caused pertur-

bations on)\;, g;, t; and E, respectively. We assume that the

eigenvectors are sufficiently separated and remain distinct after

E{Au,AulT},, | these small variations. Thus, under noisy situations, (29) may
1 be rewritten as

LN =m+1) N+ AN = (g + AgT)(E + AE) (6 + At).
¢ 6202 — 5252 Mt
X Z %uﬂf 0202 ﬁ Taking only the linear terms in the above equation, and after
= (0f —a3) j=d+1 (03 —73) some rearrangement of the terms, we obtain
(25) AN ~q" AEt; + Aq Bt + ¢ EAL,
for w = w. =g AEt; + Aq? \it; + \igP At
Proof: See Appendix C. n =qI AEt; + \i(AqfTt; + ¢ ALy). (31)

SinceQ = T}, the noise termag, andAt; are not indepen-
dent. Their relation is derived by noting that (30) is valid under
LetX,,, ; € C™Me LN"m) andU, = A, T € C™Me* noigy conditions as well, i.e.,
be as defined in Theorem IV.1. In Section II-B it has been shown
that the angle and frequency estimation is attained by consid-
ering the dual shift invariance structure presentin In this
section, we take a close look at the behavior of this computa-
tion. To this end, as before, define two selection matrifgs Taking the first-order terms only, this simplifies to
andJ,, such that the two full column ranked matridés and
U, defined as

B. Shift Invariance Parameters

1, ifi=j

H H
i +Ag )t + Atj) = i
(q ;" )(t; i) {0, otherwise.

H H H
g ti+q;7 At; + Ag;'t; =1
a’ At; + Aql't; 0.
U,=J,U, 3Note that the eigensubspaces belonging to such a multiple eigenvalue do

not have unique eigenvectors. Thus, an orthogonal basis of eigenvectors in that
gy =JyUs (26)  subspace can be chosen.

<
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This means that the second term in (31) is approximately zeestimation erroZ{ Au;Aul’} is as given in (25). Let;, . be
and the first-order approximations of the errors on the eigedefined as

values are given bwiz. [27]) 9 9 _o9_2
C» L Ujak_ajak
AN ~ g AEL;. (32) PET (02— 02)?

Let AU, represent the noise perturbation®@n and similarly and then, putting (25) into (34), it follows that
for AU, andU,; then, an expression fohE is derived by

noting that om, L(Ai)
d
1
_ T ~ . 2 -
E+AE=(U,+AU,) (U, + AU,). (33) rm,L()\L)j; It IV —m D
If the perturbation is small enough, the first term in the above " "
equation can be approximated (up to first order) as o Uy,
q pp (up ) < | S ¢ ) + (0202) Y : 2_k2>2
t f t k=1 k=d+1 03~ n
(U, + AU, = (I -ULAU,)UL. ke
X Tm, L()\z) (35)
Putting this into (33) and taking the linear terms only, we get the
following approximation forAE Let the left eigenvectors of the data covariance matrix be parti-
tioned intoU ; andU ,,, such thalJ, spans the signal subspace,
AE ~ U (AU, - AU,E). andU,, spans the noise subspace. Let the (punctured) diagonal

) ) ) ) matrixI';, with a zero at thg jth position, be defined as
Using this relation, and noting tha%; = \;t;, AU, = J, AU
andAU, = J, AU, the expression faa )\; in (32) becomes diag{¢;, 1+

AN = gl UL (I, — \J,)AU ;. L= 0 ,
diag{Cj7k}k:j+1

Note thatU,; and the selection matrices have dimensions
that are functions of the spatio-temporal smoothing fadhen, we can rewrite (35) in a simplified way as
tors m and L. In the following, these dependencies are
made explicit using indexed references. Thus, putting 9
i (\) = ¢'UI(J, — N\ J,), the errorA)\; may then be T, () = T 1 Z |fﬂ| L(N —m+1)
written asA\; & rﬁi (M) AU t; and its mean square value as

H ojon H
O, (A) = E{|AN]%} XAULUS+ g Unln | ().
H H H 1 n

~T, L (AN) E{AU it AU S b, n(Ni)- (36)
Letu; andAu; be such thally, = [u; --- u4] andAU, = . . ) )
[Auy -+ Aug]. With these definitionsg.,,. 7.(\;) is givenas  Note thatinthe above discussions, we have made no assumption

’ on the array geometry. The geometry information is contained
inrf  (X) = qf Hyt(J, — \iJ.), which is referred to as the

Aujt it Aull 3r,, 1(\;) array geometry parameter. Lt = J, A, A, = JyA, andw?
1 be theith row of AT ; then, noting thal/,, = A, T~', whereT'is

' _ ~asgivenin (27), the array geometry parameter may be expressed
wheret j; is thejth entry of the column vectds; defined earlier. zg

Noting thatt;; is noise independent, the above can be rewritten

M&

d
Om, L(Ai)= Z

j=lk

?,.
Il

as () = TAT(J i)
Om. n(N) =72 L (\ tiith B{AwjAul} | v n(\).
() () jzz:l ; sitii B Au; A} £(M) A further simplification of (36) is obtained by notingd, =

(34) A, A and the following factyiz. [28]):

H _
Note that a similar term te,,, .()\) has been derived in [28]. T, (AU _Tm (A )AT

Later, we will make use of some interesting properties of this HTAT(Jy J,)AT™!
term derived in [28] to get simplified expressions éox, (Ai)- =q¢"TAl(A, /\ A)T!
One further simplification of (34) is conveniently obtained for — g"T AL (A A — A, )T‘

a whitened data matrix. In the remainder of this section, we will : B
assume that a whitening has been applied to the data matrix prior =¢'TAL A, (A - \D)T™!
to the application of the algorithm. In this case, the eigenvector =¢2T(A - \D)T ' =[0---0].
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From this, it follows that the first term in (36) vanishes, and witAnd thus, witht;; equal to thejith entry of T’
the parameten; defined as
1

2 27
oi — oy

d
—1
o2 (R =D |til?
i=1

1 d
—= til’ =5 (38)
w2 =Gy

whereo; is thejjth entry of the diagonal matriX,;. Note that
we get the following expression for,, 1,(\;): the signal covariance matrix (the left-hand expression) is inde-
pendent of the array geometry. This means that the right-hand
summation and, therefore; is also independent of the array
geometry and ofn. In a similar way, one can show that is
also independent of the spatial smoothing fadioNote that

‘7721/711‘ H H
om, L(Ai) & IN—m+1) T, LA)URU T, (). (39)

Let p,,, £(Ai) be defined as for good SNR,o; > o, for all j < d, in which casey; ~
1/{R;'}.; and, hence, is independentrefand L. n
pr, L(A) =T (AT, L(A). (40)  This result is useful when we consider the effects:cdnd L
) . " . " on the estimation errors because the dependeney,,0f (\;)
Then, noting that,, [ (A)UnU,, =75 (A)I—UUJ) = on these parameters is completely described by the less com-
il 1 (\), (39) simplifies to plex factorp,,. .(\;). To emphasize the fact that the geometry
) information is fully described by,,, r.();), in the sequel, it will
Tm. 1 (M) 1 In . 1.(Ai)- (41) be referred to as the geometric factor. Moreover, sipde de-
’ L(IN—-m+1) n " pendent purely on the signal covariance matrix and on the SNR,

it is referred to as the signal factor, and the r&MR = nijo?

Theorem [V.2:Suppose that anM-element antenna is termed as the effective SNR.

array that is split intol. subarrays each with\/; ele-
ments, is impinged byl < Mj narrowband signals. Let
X ¢ C™Me, LIN-m) pe an(m, L)-factor spatio-temporally
smoothed data matrix collected at the output of the array,In the foregoing discussions, we have made no reference to
o2 be the power of the noise, ad, € C™M» ¢ be thed the parameter to be estimated. The analysis up to now, there-
dominant eigenvectors of the data covariance matrix. Nofore, applies for both the parameterized DOA and frequency es-
let U, andU, be two submatrices d, such that, for some timations alike. The distinction comes in the way the selection
nonsingulard x d matrix T and ad x d nonsingular diagonal matrices are defined. In the following, we derive more specific
matrix A, UI:UU = T~ 'AT. Let \; be theith entry of A and results by separately considering the parameterized DOA and
om. £(\;) be the variance of the estimation error ®n Then, the parameterized frequency estimations.

the dependence of,, .(\;) on the array geometry and the

V. PARAMETERIZED DOA AND FREQUENCY ESTIMATION

spatio-temporal smoothing factors is completely described By Parameterized DOA Estimation

the factor In line with the discussions in Section IV-B, the parameter-
1 ized DOA estimation erros.,, 1.(6;) is obtained from (41) by
G(m, L) := N =m) P, L(Ai). replacing); with 6; andp,.,. 1.(Ai) With p,,.. 1.(6;):

2
Proof: For the condition stated in the theorem, it has al- O 1.(0;) 1 In P 1(67). (42)

ready been shown that,,, (\;) is given by (41). Thus, for the L(N —m+1)

proof, it s sufficient to show thay; defined in (38) is m_depen— Here,d; is theith parameterized DOA defined in Section II-A,
dent of the array geometry and the factor&ndL. To this end, : .
and p.,. 1.(6;) is the corresponding array factor constructed

e s 10 e seleton matica, (1) .1, ). In s secton,
P g facly present the analysis whére. = 2 andL = 1, in which

of m, U, be a unitary matrix that spans the column space Q L
oS : . . ase, the column span of the data matrix is given b
the extended data matrix, aiil be a diagonal matrix that con- P 9 y

tains thed largest singular values of the extended data matrix. A

Then, there exists a nonsingukarx d matrix T' such that the Am = [A@} - (43)

data covariance matriR, = (1/L(N —m+1))X X" may be

expressed as Here, A represents the array steering matrix. For a ULA and

(m, L) = (2, 1), the selection matriceg, (#) andJ, (#) select
U.SUY =R, = AR Al + o)1 the first and, respectively, the lakf — 1 rows from each of the
=U,TR,T"UY + 521 two block entries ofA,,,. Thus
whereR, is the signal covariance matrix. Solving f&f !, we Jy(0) — 0,J.(0) = [(1) ﬂ ® Y (6;)
obtain

1 a2 5 1 4Note that for JAFE, the minimum possible valuewfis 2, and that of is 1.
R "=T"(3; -0, I)"'T Behaviors corresponding to largerandZ values are considered in Section IV.
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where casemn = 2 andL = 1. The effects of othefm, L) values
o 1 is considered in Section VI. Fdn, L) = (2, 1), the column
' span of the data matrix is given by (43). For the parameterized
—0; 1 frequency estimation, the selection matfix(¢) selects the first
Y(6:) = — : 44) A7 rows of A,,, (which isA) andJ,(¢) its lastM rows. Thus
Let A, denote the firsf/ — 1 rows of A andA4,,, , be defined Letw be theith row of AT then, using (37), it follows that
as ' 8 (¢:) = [~pw! wl'] 5 and hence
A, .= [ 4 ] ) p2,1(4i) =73 ((i)ra,1(¢i) = 2|w;|?
’ A,® and
C1 gt : 2|w;|* o}
It follows thatW, = (1/v/2)[A] & 1Al] is a left inverse of o2,1(¢) 7
A, -, and if we letw = [w; 1+ w;, m—1] represent the T
ith row of AT, then theith row of W is given bywﬂi = For a single sourcdw; |2 = 1/M, and S/N\Rl = m/o? ~
(1/vV2)[wf ¢7' wl]. Thus, using (37) and (40), it follows SNR;; thus
that 9 1
21(91) ~ N =T SRRy
p2,1(0;) = % (|wi,1|2 + |wi, a1 ? ) N .
It is seen that the estimation error, for = 2, decays only in
M—1 linear proportion withV. This is, of course, an extremely poor
+ Z lwi, j—1 — giwi7k|2) (45) result. However, itis important to note that far= 2, the effec-
k=2 tive number of temporal samples used in actual phase computa-

. , tion is 2. This means that by choosing largewvalues, the per-
For a single sourcew;, = (1/(M_— 1))6; ", and thus, formance can be improved significantly. In fact, in the following
p2,1(61) = 1/(M — 1)*. Moreover,SNR, = 71 /07 = SNRi.  section, it will be shown that by choosing an appropriate value
Combining these and using (42), we get the following approXior 1, the frequency estimation error can be made to decay in
mation for the estimation error: proportion toN =3,
L L 46
M —1)2(N —1) SNR; - (46) VI. EFFECTS OFDATA EXTENSIONS

0'271(01) ~ (

The performance analysis outlined in the above section con-
siders the data model of (14), with a spatial smoothing factor
2 1 (47) L = 1 and a temporal smoothing facter = 2. In this section,

M —1)2N SNR, we give analysis of how the data extension procedures affect

. . . . ._the estimation performances. Moreover, we derive the optimum
which agrees with those described in [27] and [28] for a sing lues ofZ, andm (L, m,) that minimize the angle, frequency,

source scenario. It is seen that the DOA estimation error is PRy joint estimation errors
portional to the inverse of the square of the number of antennasehsider an antenna ar.ray with an arbitrary geometry. Let

1(;his njealgs thLat the glgoriéhrghfgr_ largé, fa_lilsf;_o _achie\;'e the for an(m, L) spatio-temporally smoothed data matrix, the pairs
ramér—Rao Lower Bound ( li.e., itis inefficient). How- (Jo(9), J,(¢)) and (J.(6), J,(8)) be the selection matrices

ever, In Section VI, it will be shqwn _that by choosing an aBhat produce the shift invariance pairs for the parameterized fre-
propriate value fot., the DOA estimation error can be made t%uency and DOA estimations, respectively: then

decay in proportion ta/ 3.

If we have started by setting = 1, we get the expression

0'21 1(91) ~ (

. - . { JL(¢) = [Im—l 01] ® IJML (49)
B. Parameterized Frequency Estimation Jy(¢):=[01 I, 1]® Iy,
For the frequency estimation, with reference to the discus- J.(0):=1,,®J; .(0)
. . . - . oo ’ 50
sions in Section IV-B, the parameterized frequency estimation { T (0) = In© J1 ,(6). (50)

error o, 1.(¢;) is obtained from (41) by replacing; with ¢;
and the geometric factg,, r.(A;) with p., 1(¢;): whereJ, .(#) andJ, ,(#) are the selection matrices for the
case(m, L) = (1, 1) and are array geometry dependent. For a
1 o2 ;
n (6:) (48) ULA, they are given by

LIN—m+1) n ’™F
. . ) ) . J1,.(0) =[Iar—1 04]
wherep,,, .(¢;) is defined using the selection matrics(¢) Juy(0) =[0y I ]
and J,(¢). For a ULA, these selection matrices are given in Lyl?) =10 SM =1

(7). In the following, we give a performance analysis for the 6Note that in contrast td.(8) and J,(8), the structures of the selection
matricesJ . (¢) andJ,(¢) are independent of array geometry, and thus, this
5In CRB, the angle estimation error is proportionahtt—?3 result applies to an arbitrary array geometry.

Om, (i) =
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Now, letU, be a unitary matrix that spans the column spageear singular, the extended steering matrix may be well condi-
of the extended data matrix; then, for some invertible makttix tioned. This means that for closely separated sources, the above
the matricesd,, := J,.(¢)U,T~" andA, := J,.(A)U,T~" are inequalities may become loose, and the given approximations
given by might be too pessimistic. As a rule of thumb, in the case of a
ULA for instance, we say two sources with DOAs and as

/
A(L) A(L) are sufficiently separated if
A(L)® A(L)®
Ay = : and Ay = : | sin ay — sin ag| > VA
A(L)®™m—2 A(L)dm—t where A is antenna spacing measured in fractions of signal

) _ ) ) wavelength. Note that when this condition is satisfied, the peaks
respectively, whered(L) is the array steering matrix Corre-of the FFT of the columns of the array steering matiare at
sponding to thelL-factor spatially smoothed data matrix, a”%astzw/M rad apart, which is equal to the BW of thé-point
A(L)is a submatrix ofA(L), whose row dimension depends=gT pins. Thus, this states that if the peaks of the FFRof
on how the spatial smoothing is performedT. . are separated at least by an amount equal to the BW of the bins

Letw andwg; be theith rows of W, = A} andWy = Ag,  of the M-point FFT, then the sources are said to be sufficiently
respectively, and let the bi-diagonal matii ¢;) be defined as geparated. Considering the fact that the FFT matrix is a unitary

4 1 matrix, this is a justifiable assumption. In the following, we will
‘ assume that the sources under consideration are sufficiently sep-
—¢i 1 arated and that the above inequalities are tight. Under this con-
(i) = - : (51) dition, we may write
~di 1 wll ~ L (wl(L) 67 w(L) e 6wl ()]
m—
Then, using the selection matrices defined in (49) and (50), it 1 _ .
can be shown that wj ~ m [w(L) ¢;7'w#(L) - ¢ wi(L)]
L (0:) =wi [I, @ Y(6;)] where w? (L) and w/¥ (L) are theith rows of W(L) and
P2 () =wl [X(h:) @ Iy, ). (52) W'(L), andw! andw;! are theith rows of W, and Wy,

respectively. Putting these into (37) and using (40), it follows

Note that althoughr (6;) is array geometry-dependent¢;) that
is independent of geometry. It is seen that for ULA, these ma-

Ml H NE
trices have the same structure [compare (51) with (44)]. Now, p2,1(0:) = [lwi” (L)X (6:)]]

2

let W(L) = A'(L) andW'(L) = A’f(L); then, it is seen that pa, £(¢:) = 2lJwi(L)||?
the two matrices and
2
W= —— C(W(D) -'W(L) --- ®"W(L)] pm,1(0:) = 0 P2, 2(60:)
m - 1
and ) P, L(}i) = tm—1)2 " (). (53)
W, =—[W(L) ®W'(L) --- ®—"W'(L)]
m The expressions for the parameterized angle and frequency esti-
are left inverses oft,, and Ay, respectively, i.e., mation errors are obtained by replacing these into (42) and (48),

respectively. Thus, with
WA, =1 and W/ Ay =1

2
G =——
It is well known, however, that the Moore—Penrose inverse (the o (m) m(N —m+1) 54
pseudo-inverse) gives unique leftinverses of these matrices with 1 (54)
minimum (Frobenius) norms. Thus, with, = AL andWy = Gy, (m) = (m—12(N—m+1)
A, and
1
W (L)|? Go,(L) = + p2,L(0:)
IWoll? < Wl = -0 L (5)
and Go(L) = 1 p2, (1)
W' (L)|I?
[Wol* <[[W7,|I> = e it follows that
. . . ~ 02
If the underly!ng sources are su_fﬁmently_separat_&@ ~W,, Enm, L1860:2) = 7 Gy (m) G, (L)
andW, ~ W, and the above inequalities are tight. When the n
sources are close to each other, on the other hand, while the orig- P> A2 ~ o2 G oL 56
inal array steering matrix (the steering matrix with= 1) is m, A"} ~ o (m)Ge, (L). (56)
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The above relations show that the estimation errors are separdbiehese functions. Let/;, and M be the number of rows in
functions inm andL. This means that the optimum values of thed(L) andA’ (L), respectively; then, for sufficiently independent
spatio-temporal smoothing factdrs,, L,) are independent of sources, the following approximations are valid:
each other. In the following, we will compute these values, con-
sidering each separately. 1 1

g p y GQ(L) ~ m and Gd)(L) ~ L—]\JL
A. Optimum Temporal Smoothing Factor

From (56), it is seen that the optimum valuesmoffor the For a single source, these relations are exact. For more sources,

parameterized DOA and frequency estimations are obtain@wever, the above approximation is valid only if the steering
by minimizing G4(1n) and G4(m), respectively. Denoting Vectors are sufficiently independent. This is always (asymptoti-
by m.(#) andm,(¢) the optimum temporal smoothing fac-cally) satisfied for largel/,, and M values.

tors for the parameterized DOA and frequency estimations,From their definitions, it is clear that the valuesdf;, and
respectively, we have M depend on the way the spatial smoothing is performed. For

a ULA, for instance, if we assume a maximum overlap of sub-

N arrays as described in Section ll-A{;, = M — L + 1, and
mo(6) = 27 for 4, and Mj; = M — L. Putting these into the above expressions and
2N +1 minimizing G (L) andG, (L) with respect tal., we obtain
(@) = 3+ . forg, 9Ge(L) o(L) P
The above value ofi, (¢) agrees with a similar result reported ER for ¢, and
in [29] for the harmonic retrieval problem. The corresponding L, = M1
variances of the parameterized DOA and frequency estimation for ¢.
are then
o2 4 The corresponding variances of the parameterized DOA and fre-
Ep,, {|A0]} ~ ?n ~z Go(L) guency estimation are then
z 27
B, p{|A¢P2Y 22— =1 Gu(L). o2 27
o,L{| ¢| } n 4(N _ 1)3 ff’( ) Em,L,,{|A9|2} ~ 7n Ve Gg(m)

For JAFE, it makes more sense to look for an optimunthat o, 02 4
minimizes the joint estimation error. To this end, we define a Ep 1 {|A0°} = o ME—1 Gy(m).
joint estimation error as the geometric mean of the variances of

the angle and frequency estimation errors: For JAFE, defining a joint estimation error as in (57), we obtain

By, 1.0, 8) 2 \/Em, {18012} B, 1 {1AGP} (5T) Lo~ M

which is equivalent to the arithmetic mean on the Iogarithmi&S in the case ofn,, this value ofL, is approximately equal
scale. This definition has twofold advantages: First, it aIIeviat«leg he average of the optimum values obtained considering the
the scaling problems associated with the arithmetic mean, aé]‘f{;le and frequency estimations separately.

second, it preserves the separability of the error function in the

variablesm and L. Minimizing E,,, (6, ¢) with respect tan

. NSO : C. Forward-Backward Averagin
and after some elaboration (approximation), we obtain ging

Forward-backward averaging [5], [18] is equivalent to dou-
3N 42 bling the number of temporal samples, with the rest of the data
me R 5 parameters remaining unchanged. Thus, for fo#imd ¢, this
data extension provides a factor-of-2 improvement in the esti-

It is seen thatn, for the joint estimation is approximately equalmat'on accuracies. The important aspect of forward-backward

to the average of its values obtained considering the angle é],ygraging is th_at the resulting_data matri_x can _be transformed
frequency estimations separately. into a real matrix of the same size [16]. This provides a substan-

tial reduction in complexity [18] while improving the accuracy.

B. Optimum Spatial Smoothing Factor
. . L . . VIl. ERRORS INCOMPUTING THE ACTUAL PARAMETERS
Referring to (56), it follows that minimizing the estimation

G4(L). To this end, first, we need to derive explicit expressiorf@meterized DOAs and the parameterized frequencies into their
actual values in radians and hertz, respectively. In this section,

"To simplify notations, in the remainder of this section, we omit the signéﬂ’e consider how these transformations affect the error behav-
number index, For instance, we writé instead of, . 10rS.
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A. Errors in Computing the DOAs wheren(k) is anM x 1 noise vector. Here, the dependence of

The relation between the parameterized and the physitdf Signak(k) onpis made explicit by writings(k; u). Assume

DOAs is defined by the array geometry. In the case of the ULADt (k) is a white Gaussian noise (WGN) with varianeé
for instance, this relation is given by and that we have collected time samples of the signal(k).

Then, the log likelihood function of the signal (defined as the
asin(arg 9) logarithm of the probability density function) is given by
o = .

2 A

MN

L(z; p) = ——— In(270?)
Assuming the real and imaginary partsiadre affected by sta- 12v
tistically independent equal variance noises, the mean square 1 CuH .
errors on the angle estimates can be computed as (first-order 202 £ [#(k) = s(ks W)™ [w(k) — s(k; )] (61)
approximations)\iz. [27], [30]-[33]) =1

Let the gradient of the signal vectsfk; u) with respect tqu be

= 2 __omr(l) denoted byDy,(u), i.e.
om p(0) = B{A0}m 1 = 50 e O (58) k()
Os(k; p)  Os(k; p) 9s(k; p)
The final expressions fos,,, 1.(a) are obtained by replacing Dy (p) = o o1 th

om, £(8) with the expressions from (42).

. . . then the so-called Fisher information matrix is given by
B. Errors in Computing the Frequencies

As recalled from Section II-A, the actual signal frequency is 1 al
-A, _ H
computed from the parameterized frequeraysing the trans- T(p) = o2 Re (z_: Dy (”)Dk(u)) ‘ (62)
formation =t
P The CRB for estimating théh parametey:; is obtained from
f=5_agg. the inverse of the Fisher information matrikz [34]) as
The first-order approximation of the perturbatidry on f is CRB(1;) = [T~ ()]s
of P
Af~Rel == A¢ | = — Re(Ag),
! <8gb ¢> 2w AA9), A. CRB for the JAFE Data Model

Consider a simplified version of the JAFE data model, in

and thus, the variance of the frequency estimation error is ) i .
q y which the modulating signals are set to hayd” = 0

2
O i) = § g O, 1(6). (59) 2(k) = A@)B#* +n(k) = s(k: ) +n(k)  (63)
The final expression fow,, 1(f) is obtained by replacing Where we have the following.
om, 1.(¢) With the expression from (48). « A(9) = [a(61) a(f2) a(6s)] € CM?, anda(h) is
the array response vector for a signal with a parameterized
VIIl. CRAMER—RAO LOWER BOUND DOA of 6.
« @ =[6---04)7 is a vector containing the parameterized

Putting a lower bound for any estimator proves to be ex- DOA of the d sianals

tremely useful. It provides a benchmark against which we can & '9 C T .
. . o " =[pF ok %], whereg; is the parameter-

compare the performance of any unbiased estimator. Moreover, ized fr ! n 2 fth 'thd i n | ‘
it tells us the impossibility of finding an unbiased estimator Be_ d?guejlcg © is 2 dizgor?él ain matrix, wheré
whose variance is less than the bound. One such bound is the ]R+_'s th?a{glniizl'lt de of tr?@th s'gnal as rec'e' ed;[b Ethe
CRB [34]. In this section, we derive the CRB for the JAFE al- ' piitu '9 v y
gorithm, antenna array.

Let us assume that al/ x 1 deterministic signal vector * (k) is anM XTl white Gaussian _”9'Se vector. o
s(k; ) with unknown parameter vector LetB= 1[4 -- ~__ﬂd]_ be a vector containing the chan_nel gains;
then, the conditioning parameters that affect the signal likeli-

hood function are collected into ti3&d x 1 vectorpu:

p=lm p2 o g
_ T T 7
is observed in additive noise n=1[0" ¢ p |
s1(k; w) Define
s2(k; ) 0 o
£(b) = (ks 1)+ (k) = Fnk) eC (60 Di=| 6y o
) p

s1(k: ) " = diag(¢"}.
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Evaluating the derivative af(k; p) with respect to each param- 10 —— i
eter, we get the following: -~ Without whitening
as(k; .
S = Doset =i D,(0) .
9s(k; p) k-1 %
9s(k; p) K
————— = A®" =: Di(B).
5 «(8)
Let I (u) be defined as 107 s s 5 > 2
. SNR (dB)
Dy(6)" [ Di(0)" 1"
1 " H Fig. 3. Effect of whitening on the frequency estimation error.
I(w) = —Re| Du@)" | | Du@) | . (64)
Di(B)" Dy(B)* 10 —— With whiteming
- — - - Without whitening
Then, the Fisher information matrix is
N A PT Q" F
! u .
I(p)=> In)=—RelP T R (65) S0
g [a]
=t Q R A 5
whereN is the number of time samples, and
N 10” ; y .
A — Z @—kBDgDaBQk 0 5 10 SN;{S(dB) 20 25 30

ES

—_

Fig. 4. Effect of whitening on the DOA estimation error.
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Fig. 5. Parameterized DOA and frequency estimation errors as functions of
temporal smoothing factor. at SNR= 30 dB andL = 2. Itis seen that the
theoretical behaviors perfectly agree with the simulation results.

IX. SIMULATION EXAMPLES

In this simulation example, we consider a four-element ULA First, results comparing the performances of the JAFE algo-
with baseline separation & = 1/2. We assume that two far rithm implemented with and without a pre-whitening filterz
field, equal power signals; ands, are impinging on the an- Section IlI-E) are shown in Figs. 3 and 4 (For clarity, only be-
tenna array. The DOA and center frequencypfrea; = 10°  haviors corresponding to the first source are shown. Similar sit-
and f; = 2 MHz, and those ok, areas = 55° andfo = 5 uations are observed for the second source as well.). In the sim-
MHz, respectively. The source signals are narrowband (25 kHaation, the temporal and spatial smoothing factors are chosen
amplitude-modulated signals. The data is sampled at a ratea@bem = 3 andL = 2, respectively. From the results, one sees
20 MHz, and the processing is done o¥er= 32 time samples. that the whitening has very minor effect on the DOA estimation
All simulation results are based on 100 Monte Carlo runs. Tleeror. On the other hand, an appreciable performance improve-
behaviors are summarized in Figs. 5-8. In Fig. 6 and 8, whiteent is observed in the frequency estimation, particularly at the
keeping the rest of the parameters fixed at their original valuésw SNR region.
the DOA and center frequency ef are varied to generate be- Fig. 5 shows how temporal smoothing affects the parameter
haviors as functions of angular and frequency separations, estimation errors. From the plots, it is seen that the DOA es-
spectively. timation error is minimum form = N/2 and that the fre-
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Parameterized DOA 10— - ;
T T L —— Simulation
——  Simulation — — Theoretical
- —  Theoretical ~* CRB
* —-x CRB

8
a =100
= &
m —
S =X— K — ¥ —
CRB(®, ¢)
o =X K= M = N =M= =X K = W M N X X Y
100 ‘ - :
10° v . - 01 02 03 04 05 06 07 08
0 10 20 30 40 50 60 LM
Angular separation (Degrees)
Fig. 7. Parameterized DOA and frequency estimation errors as functions of
(a) spatial smoothing factof. at SNR = 20 dB andm = 2. It is seen that the
1 Parameterized Frequency theoretical behaviors perfectly agree with the simulation results.
10 - -
——  Simulation
— —  Theoretical
0 * ~* CRB ] a Parameterized DOA
10 r ;
——  Simulation
— —  Theoretical
* -x CRB

10 CRB 4

- —X— K= K — M — X —X— K= ¥ — N =N —K— K —
10_4 > v : ”

0 10 20 30 40 50 60

Angular separation (Degrees)
-3
10 - .
(b) 10° 10°

Frequency Separation (kHz)

Fig. 6. Behavior of (a) the parameterized DOA and (b) the parameterized
frequency estimation errors as functions of angular separation. Note the (a)
improvement obtained via temporal smoothing, particularly at small angular 1 Parameterized Frequency
i 10 - .
separations. (SNR= 20 dB). —— Simulation

— =  Theoretical
» —X CRB

qguency estimation error is minimum fex = 2N/3, as pre- o

dicted in Section VI. Itis seen thatwhfem /N — 2/N, the fre-

guency/DOA estimation errors increase sharply and that for the §

algorithm to attain the CRBn should be close to its optimum a

value. Choosing large:, however, increases the computational 0 e o o S CRB ]

complexity. This means that one has to find a compromise be-

tween complexity and accuracy. In Fig. 6, itis shown that, apart

from improving the estimation accuracy, temporal smoothing 107

also provides robustness against rank loss when there exist mul-

tiple signals with the same DOA. This is in agreement with the

identifiability conditions discussed in Section II-D. (b)
The effect of spatial smoothing on the estimation errors is

summarized in Fig. 7. The simulation was run using a ULA wit][iig- 8. Behavior of (a) the Par?met.erizede}OA and (b) the parameterizehd

_ _ _ _ _ requency estimation errors as functions of frequency separation. Note the
M = 16 elementsN' = 16, m = m, = 1.0' and SNR= 20 superior performance of the spatially smoothed data approach at small
dB. The DOAs and the center frequencies of the two sourcesjuency separations. (SNR 20 dB.)

under consideration are the same as before. As predicted in Sec-
tion VI, the parameterized DOA and frequency estimation errors . -
are minimu[:'n forl, = M/3 and, = (Mq+ 1)/%/ respectively was changed from 1 to 2. This should not be surprising because

— — H _ 2 _ 2
Moreover, in Fig. 8 it is seen that, apart from performance i or M = 4andL = 2, the ratio(M — 1)*/L(M — L) > 1 (cf.

provement, spatial smoothing achieves rank restoration wh getion IV), and thusii, > E,, whereE, andE; are estima-

several signals have the same center frequencies. In Fig. 82'3? errors corresponding th = 1 andL = 2, respectively.

a seemingly unexpected behavior is seen. That is, for large freid‘S stated above, the JAFE algorithm approaches the CRB

guency separation, the DOA estimation error increased \ﬂhel?nl_y whenm and L are clo§e to their (_)p_t|_mum vaIue;. Th|s_
is, in most cases, computationally prohibitive. To alleviate this

8Note that the minimum possible value far is 2. problem, we can use the MR-ESPRIT algorithm described in

10 10°
Frequency Separation (kHz)
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—— Simulation optimum values are different, and thus, one cannot satisfy si-
1 — ~  Theoretical . . . g s
10 f 6—o0 MR-ESPRIT multaneous optimality in both identifiability and accuracy.

CRB Moreover, it has been shown that the JAFE algorithm
achieves the CRB only when the spatio-temporal smoothing
factors are close to their optimum values. However, choosing
the smoothing factors close to their optimum values is com-
A putationally too expensive. We have shown that in this case,
[ e e e e the multiresolution concept can elegantly be used in the JAFE
context to solve this problem with an acceptable complexity.

. , o , Finally, it should be noted that the performance analysis pre-

01 02 03 04 03 06 07 08 09 sented here is independent of the joint diagonalization tech-

nigue that may have been used in solving the joint matrix pencil

Fig. 9. MR-ESPRIT-based JAFE improves the performance of the frequengyoblem described in Section Il. The analysis assumes that an

estimation in the smak: region. (SNR= 30 dB). optimum joint diagonalization of the matrix pencil problem has
been achieved. The actual performance is therefore dependent

Section III-F in the JAFE context. With this approach, it is posan the quality of the joint diagonalization procedure employed.

sible to improve the estimation accuracy significantly in thAlthough there are several accounts in the literature on this

smallm and L regions without raising the computational comproblem, it is an open research topic to find a reliable optimal

plexity. For instance, the effect of MR temporal sampling on trgolution. One way to evaluate the quality of a joint diagonaliza-

frequency estimation is summarized in Fig.@here results ob- tion method is to compare it against the expected performance

tained via the MR-ESPRIT, with a resolution gain factor of 2 ar@erived in this work.

compared against those of the direct estimation method. The su-

periority of the MR-based approach is obvious, particularly at APPENDIX

smallm values. PROOFS OFTHEOREMS

Let k& represent the resolution gain factor; then, in [6], [20]y  proof of Theorem 11.1

and [21], it has been shown that the MR-ESPRIT gives a factor o )
k improvement in accuracy assuming the size of the data matrix>ince all the sources are assumed to have distinct frequencies,

is preserved. If the size of the data matrix is reduced as is the N (4) has a full row rank. Thus, for the proof, itis sufficient
case here, on the other hand, the gained accuracy will be [Bs§hoW thatd,,, is full column ranked matrix. To this end, for
thank. More precisely, if we let(m) ande,n, (m) represent * = 1, ...,7 letéd; represent the DOA of the signals from
the variances of the direct and the multiresolution approached ?th group, and forj = 1, ..., p;, let ¢; ; be the center
a temporal smoothing factor ef, respectively, the above two fréauency of thejth signal from theith group. Moreover, let
effects can be combined to obtain the relation A; and®; be defined as

RMSE (kHz)

—
(=]
<

1 1 1
emr(m):dekm) m < Ny/k—d 0, 0, 0,
s—m A = _ . . c CMxPi
where N; is the original number of samples. FdL /k > m, : : :
this simplifies to gM-1 gM-1 .. gM-1
N and ®; = diag{¢;, ; 7;;1, then the extended steering matrix
emr(m) & e(km). A,, can be expressed as

If N, is comparable tan, on the other hand, the MR-ESPRIT A Az A,
never achieves the best performance obtainable with the direct APy Ax®y - AD,

estimation approach. This is clearly seen in the plots of Fig. 9.  Am =

X. CONCLUSIONS AT At . AP

In this paper, we have presented an analysis of the ESPRFF.Prove the theorem, it is sufficient to show that for a given

based JAFE algorithm. Using a simple perturbation model, We/€Ctore

were able to derive analytical expressions for the estimation

. . A,z =0 x=0.
errors and for the optimum values of the spatial and temporal

smoothing factors. Let z be partitioned inta- sub-vectorsey, . ..z, with dimen-
We have discussed two sets of optimum values for the spfons such that

tial and temporal smoothing factors: the first set maximizing the Az + Aoy + -+ + A,

number of identifiable sources and the second set minimizing

g S A ® A® o+ APz,
the joint parameter estimation error. It has been seen thatthege . _ | ' "' FABam Tl _. (66)

SWith an MR spatial sampling, a similar behavior is exhibited in DOA esti- '
mation. A1§>;”_1z1 + .4 AT<I>;"‘_1$,«
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If A, is full column rank, the above will be satisfied if andB. Proof of Theorem IV-1

only if z; = 0,z = 0,..., % = 0. Forap-vectorv = Consider the Gaussian, circulant noise-contaminated data
[v1, ..., vp], let the functionS(v) be given by model X, ; given in (14). LetY,, ; = Xy — Wy, 1 be
p the noise-free data
- Z vi , 1 H
k=1 R, = L(N—m) Xm,LXm7L
and letAy be defined as
1 1 1 Ryy ::mym’LYg’L
0, 0 b, )
Ay = . R,y =——« W wi
S 5 LN ) T
pM-1 gM-1 . pM-—1 In the following, we use a perturbation analysis to derive the co-

variance of the errors on the eigenvectordpf.. In the deriva-

Since the); are different and that we have assumiéd> d > r, tion, we will make the assumption that the noise-free ¥atar,

from the Vandermonde structure, it follows th4s has a full

. o is deterministic, and henc&{R,,} = R, ,. Now, letR,., =
column rank ofr. Now, using the above definitions, (66) can (R, )} and ElRyy} = Ry,
equivalently be expressed as o
S(.’Bl) '5’('1’1:51) V=R, _Rzz~
S(x2) S(®2x2) V is a perturbation oR,,,.. From its definition, it is seen that
Ay : =4 : = V is Hermitian andZ{V} = 0. Let R,, = UX*U" be the
: ) EVD of R,., u, be thevth column ofU (the vth eigenvector
S(z,) LS(®,x,) of R,.), andAu, represent the perturbation ap due toV'. In
_agm—1 [35], it has been sown that for the above model, the first-order
S‘I’l (.’171) . . . . .
1 approximation ofAu,,, v < d (d is the number of signals in the
4 S(®y' x2) _ channel) is given by
=Ay . =0. mM, HV
. Uy
Auy= 3 ——5u;
_Sq);n_l(xr) i1 v T 9;

iFw
From this, it follows that

My mM
AR T E{u V'u,v'u, V'u,z}

Becausedy is a full rank matrix, it follows that4,,, is also full
rank if and only if there does not exists an# 0 such that

N — ) — . — m=1, _ HY _ H
S(zi) =S(®iz;) == S(®" ') =0 E{Au,Aull} Z Z ) -
1= 17 e, T (67) ];éL 1775117
Let = (69)
PuttingV = R,. — R, into the above and noting that for
1 1 e 1 r # y,u’ R,,u, = 0, the above can be rewritten as
di1 bi2 o Dip, mMy mMp E{u R uul Ry,u;}
A, = E{Au,Aul} = el YN
o { Z LE: ]) (02, — 02) Ui
J;éu iFw
e (70)

X
then the conditions in (67) can be combined into the single eli?t Zx be thekth column of Xy, .; then, we have

L(N—m+1
pression 1 Nt
PN N
. L(N—-m+1)
Ay,z; =0, t=1---,7 (68) k=1

Thus, putting this in place d®,... in (70), the numerator term is
Thus, A,, is full rank if and only if there does not exists anexpressed as

x; # 0 that satisfies (68), or, in other word4,,, is full rank = 1

if and only if A,, is a full rank matrix. Observe that,, has % {v] Rovuou Rosui } = 2N — 2
;i ! i L2(N —m+1)

a Vandermonde structure. Since all the; are assumed to be

_dlstlnct, it will have full rank_ prO\_/|ded thaty _2 Di. From this, L(N—m+1) P .
it follows that the data matriX,,, is full rank if and only if, for : Z E {“j LTy Uply Tnly “i} - (71)
1 =1,...,r, all theA,, are all full rank matrices, which is k,n=1
satisfied if It is well known that for nonzero mean Gaussian random vari-
ableszy, 2z, z3 andz,
m 2 WAXp;. E{z1202324) = E{z120 Y E{z324} + E{z123} E{z224}

This concludes the proof. ‘E{z124} E{2223} — 2E{z1} E{22} E{23} E{z4}.
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Using this property and noting{z:} = y,, we get Note that the first term is equal to (74), which is identical
E{ g H  H. H } to zero. Thus, we are left with the last three terms only.
Z Uy TkT) Wty Tny Wi Consider the second term (henceforth denotedtdy Let
Fom A,, € C™Mu.d pe the extended array steering matrix, the
= Z E{UfIkauv}E{ugznwfui} d-vector p be the complex amplitudes of the signals, and
kon B := diag{p}. The spatio-temporally smoothed noise free-data
y o u o matrixY,, r € C™Me, LIN=m+1) can then be expressed as
+ Z E {'u,j xkuwzn} E {xk Uy T, 'u,z} Y1 =AnB[F, OF, --- OL-'F]=:A,S.
k,n ’ .
Forp, q € [0, L] andg, h € [0, N —m], letk andn be written
+ Z FE {ufzkznui} F {ufznxkuv} as
k,n k:p(N—m-Fl)-l—k‘l
-2 Z ufykykuvufu[ynynui- (72) n = q(N —-m + ]_) + n'.
k,n

_ _ In addition, let®” := diag{¢?}Z_,, and®" := diag{f7" }<L,.
The first term may be written a8” E {3", =iz} woulE  Then, thekth andnth columns ofY,, r, which are denoted by
{>°, znz)'} ui. However,E{}, zwxf'} = L(N —m +1) 4, andy,, are given by

R,... Thus, the first term in (72) can be written more compactly s — A BF QP
asL?(N —m+ I)QufoIuvungui. Sincej # v andi # w, k m p
this term reduces to zero. s, = A, ®" @lp.

Consider the second term. Let, be thekth noise vector | ot p — pp'l: then, we have
(which is assumed to be Gaussian and circulant) such:that
Y, + wy. Putting this into the second term, and noting that ajh — Z qum'IJ""(BPD'If”/(B*qAﬁ
the odd number moments in the noise are zero and, fér al| K ponq
E{w,wl} = 0, we obtain

Z E {u?:ﬂkuga;n} E {:I:kH'u,szui}
k,n From the spatio-temporal smoothing process, we see that the

factor
=Y wlyywaly,y,u (73)
k,n FE {ugwnwfuv}

Rearranging the terms, the above can be compactly written as , ) ,
ging pactly is a function ofk — n only. More precisely, leZ" be a Toeplitz

L*(N —m+ 1)2ujHRyyuvu5Ryyui~ (74)  matrix with all the elements equal to zero, except for those unity-
Forj # v ori # w, this vanishes. Note that the fourth term ir¥@lued entries on theth parallel to the diagonal, and lef, be
(72) also reduces to (74). Thus, it also vanishes. This means fif% variance of the noise. Léf, = min(L, M) andm, =

E{ulw,wiu,}. (76)

the only remaining term in (72) is the third one; hence min(m, N —m + 1); then
Z E {ufzszuvugznzfui} E {ugwnwkHuv}
s " " o2 ZF = OMLtp=a) kot <o,
= kzg FE {'u,j zkznui} FE {'u,w .’ank’ll,v} . _ &lp - q| < Lo (77)
0, otherwise.

Puttingz;. = y, + wy. in the above, we get 16 terms. Of these,
all the odd order moments in the noise are zero, and since Nfgking change of variables and, fore [~L,, L,] andh =
have assumed circulant noigé{w,w’ } = Oforalln, k. After [—m,, m,), settingn’ = k' — h andg = p — (76) can be

eliminating all these terms, we obtain expressed as
E{uziz,u E{ulz, 10, / '
kz;l { g Lk } { w k } t2 = 0121 Z quAka @PD@h—k @r—Pp
7 k' p,r, h
_ H, H, H, H ,
= kzg Ui YrYn Uithy, Y Yy o -Agu,;ugZhML'Hu,,,. (78)
+ Z UfykyfulE {ugwnwlkquv} Rearranging the terms, we obtain
k,n
rMp+h
+ E{ufwow)ui}uly,yi'u, 2= |on ) wgZM e A,
k,n r, h
H H H H k' @p —k' o —p h@r AH
] v (2 n c v - (
+3 E{ufwewlu} E {ullw,wfu,} . (75) xY (e¥'orner'er) 8" e Allu,

k,n k', p
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Note that

Y @ erDeF e =L(N -m+1)R.,
k', p
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Putting this into (69) and noting tha® is nonzero only for
1, j < d, (24) follows. This concludes the proof.

C. Proof of Lemma IV.1
For white noise Z"*+*" in (79) is nonzero only for = 0

dd j i i i ,
whereR,, € C** is the signal covariance matrix. Thus, W&nd#h = 0. In this caseZ = I, and (79) reduces to

have
2= (L(N —m+1)o})

X E 'u,fthML+TuvujHAmRss‘I>h@TAgui.

T h

SinceU; andA,,, span the same column space, there exists an

invertible matrixZ’ € C* ¢ such that/ = A4,,T7'. LetQ =
~1: then, noting thaRR,, = QX2Q%, for z < d, it follows
that

—2 H
'u'mAmRss =0 .9,

H
A u, =t,

wherez, is thexth noise-free eigenvalue, agfl andt,, are the
zth row and column 0@ andT?, respectively. Putting these

in to above, we get

L(N m+ 1 Z uHZ}LAIL+ru q] (I>h®r

r, h

In a similar way, for the third term in (69) (denoted t8), we
get

f3 L(N m+1 Z uHZ }LAIL T’U, qw @7’L® ,,,t

r, h

and the fourth term becomes

t4 = 0,4 Z Z 5Z}LJ\1L+T

r, h

-?Z_}LA/[L —Tu’i.

SinceZ"Mr+" is independent of, this reduces to

§ :'u,HZhMLJrT'u, ’U,HZ hMjp — T’U,

7, h

=L(N-m+1)o

Combining all the three terms, we obtain

H H
E {'u.j R..u,u, Rmui}

- 5 (e

r=—L, h=—m,
. (uﬁZTM"+huq,.q§{<I>h@Tti)

. T

H rp—rMp—h —h r
-_— A = Hp—-h@- t7,)
LN —m+1) (e it

ok

+ n

H rprMp+h Hr—rMp,—h
ot (Ml 7 )
LN —m+1) ("w oty “

(79)

FE {umeuvungui}

0'20'2
_ i% Hoy oHy
S I w1 e t)
T80 H, H
I —my) utet)
4
+ U—") (uguvuful) .

L(N-m+1 (80)

Note that fori, j > d, the first term is zero; foi # j, 'u,jH'u,i =
g¢i't; = 0, and forv # w, ullu, = ¢flt, = 0. Putting (80) into
(69), we thus obtain

FE {umeuvungui} =0

forw # v ori # j, and

1
E {u] Rovuyuy, Rosui} = (N—m+1)
X Zd: Tioitaioitor 5N Thohtoy (81)
2 _ +2)2 2 _ 52)\2
j=1 (Uw U_]) j=d+1 (Uu; U])
jv

for w = v andi = j. Sinces? = 72 + 02, we may write

—2 2 , =2 2 4 _ 2 2 —2_2
00, +04,0,+0,=0,0;—0,0;
—2 2 4 _ 2 2
0 wOn +Un = 040n-

Placing these into (81), we obtain (25). This concludes the proof.
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