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In the 20th century, it was the lenses which were decisive. And the lens makers were the
“kings”. One had to go to them and ask them for the best lenses to get the best resolution.

But how is it today? No, it is not the lens makers. This resolution game is not about lenses
anymore.

Stefan Walter Hell, Nobel Lecture
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Summary

To assist in medicine development and microbiological research, microscopy has been
an important tool ever since the seventeenth century. Fluorescence microscopy is able
to provide the specificity and contrast needed for biological imaging, and the physical
resolution limit caused by diffraction can be circumvented through super-resolution
microscopy. By combining modulated excitation with sparse activation of fluorescent
emitters and subsequent localization of emitter positions, modulation enhanced single-
molecule localization microscopy achieves a localization precision in the order of mag-
nitude of nanometres to Ångströms, thereby making the invisible visible.

While these super-resolution methods allow us to access the nanoscale, their find-
ings are accompanied by the statistical uncertainty about whether the molecule posi-
tions that we retrieve correspond to the true underlying positions of emitters that are
truly present in the sample. A fundamental objective of super-resolution microscopy
is thus to give certainty about the localization uncertainty with which the position of a
single molecule can be determined.

To make the uncertain certain in single-molecule localization, the Cramér-Rao lower
bound is commonly used. The Cramér-Rao lower bound represents the theoretical min-
imum uncertainty with which unbiased estimators can localize emitters. However, the
Cramér-Rao lower bound leads to narrowly applicable, improperly represented or math-
ematically incorrect characterizations of the localization precision of modulation en-
hanced single-molecule localization microscopy.

To address this, new and generalizable image formation models are needed. In addi-
tion, we need to develop statistical tools that represent the full estimator distribution, as
well as the uncertainty of localization methods that use biased estimators.

In this dissertation, we address these issues through three major contributions. As
our first contribution, we derive a new and generalizable image formation model that in-
tegrates modulation enhanced localization in existing setups that use a spinning disk in
the illumination- and emission paths, leading to the theoretical design of a new method
called SpinFlux. In the SpinFlux analysis, emitters are localized in the recordings from
a sequence of individual pattern acquisitions, taking knowledge about the pattern into
account. SpinFlux shows its merit when the excitation intensity is modulated to incorpo-
rate the maximum amount of information, reaching a 3.5-fold local precision improve-
ment over single-molecule localization microscopy when using donut-shaped illumina-
tion patterns. Combined with the versatility of the image formation model to incorpo-
rate arbitrary illumination patterns, this makes SpinFlux the method of choice for local
refinements of the localization precision.

Secondly, we analyse the occurrence of multimodality in three-dimensional multi-
ple emitter imaging by reconstructing the full posterior distribution of localization. We
develop a Bayesian three-dimensional localization method called three-dimensional re-
versible jump Markov chain Monte Carlo, which approximates the posterior density of
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emitter positions rather than giving point estimates. We show that astigmatic multi-
ple emitter imaging results in a multimodal posterior distribution when two emitters
are separated by less than the standard deviation of the in-focus point spread function,
which causes ambiguous solutions to the estimation problem. This motivates the im-
portance of including appropriately chosen uncertainty measures in localization algo-
rithms. In particular, estimation of the full posterior distribution makes it possible to
detect cases where the localization uncertainty for individual emitters is not accurately
represented by Gaussian uncertainty ellipses, which would be misrepresented by the
Cramér-Rao lower bound.

Lastly, we quantify and analyse the localization precision of iterative localization mi-
croscopy methods, such as MINFLUX. These methods are able to locally improve the lo-
calization precision around an emitter position by using prior information derived from
measurements in earlier iterations. As the Cramér-Rao lower bound requires estima-
tors to be unbiased, it cannot incorporate prior information, making it inapplicable to
iterative localization microscopy. However, the Bayesian Van Trees inequality circum-
vents this mathematical limitation, and is therefore an appropriate bound to analyse
iterative localization microscopy. By taking modulation- and background imperfections
into account, we show that the improvement of iterative methods over single-molecule
localization is at most fivefold. The Van Trees inequality allows us to nuance existing
precision limits for methods resembling MINFLUX when affected by modulation- and
background imperfections, by showing that the precision of these methods is not maxi-
mized by minimizing the pattern distance, nor exponentially improved by increasing the
iteration count.

Based on these findings we argue that, in order to reflect the statistical uncertainty of
the localization process, emitter position estimates in single-molecule localization mi-
croscopy should be presented in the context of the estimation uncertainty. Image forma-
tion models and uncertainty quantification should be tailored to the application, letting
the particularities of the application determine the choice of appropriate mathematical
tools. As shown in this dissertation, this attitude towards uncertainty leads to new exper-
imental methods to improve the localization precision, and it advances our fundamental
understanding of localization uncertainty in super-resolution microscopy.
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Samenvatting

Om de ontwikkeling van medicijnen en microbiologisch onderzoek te ondersteunen, is
microscopie al sinds de zeventiende eeuw een belangrijk hulpmiddel. Fluorescentie-
microscopie kan de specificiteit en het contrast leveren die nodig zijn voor biologische
beeldvorming, en de fysische resolutiegrens die wordt veroorzaakt door diffractie kan
worden omzeild door middel van superresolutiemicroscopie. Door gemoduleerde exci-
tatie te combineren met het beperkt activeren van fluorescerende emitters en vervolgens
de emitterposities te lokaliseren, bereikt modulatie-versterkte single-molecule lokalisa-
tiemicroscopie een lokalisatieprecisie in de orde van nanometers tot Ångströms, waar-
door het onzichtbare zichtbaar wordt.

Hoewel deze superresolutiemethoden ons toegang geven tot de nanoschaal, worden
hun bevindingen vergezeld door de statistische onzekerheid over of de gevonden mo-
lecuulposities overeenkomen met de werkelijke onderliggende posities van emitters die
daadwerkelijk aanwezig zijn in het specimen. Een fundamenteel doel van superresolu-
tiemicroscopie is dan ook om zekerheid te verschaffen over de lokalisatie-onzekerheid
waarmee de positie van een enkel molecuul kan worden bepaald.

Om het onzekere zeker te maken in single-molecule lokalisatie wordt vaak de Cramér-
Rao ondergrens gebruikt. De Cramér-Rao ondergrens vertegenwoordigt de theoretische
minimale onzekerheid waarmee zuivere schatters emitters kunnen lokaliseren. Echter,
de Cramér-Rao ondergrens leidt tot beperkt toepasbare, onjuist weergegeven of wis-
kundig incorrecte karakteriseringen van de lokalisatieprecisie van modulatie versterkte
single-molecule lokalisatiemicroscopie.

Om dit aan te pakken, zijn nieuwe en generaliseerbare beeldvormingsmodellen no-
dig. Daarnaast moeten we statistische hulpmiddelen ontwikkelen die de volledige ver-
deling van de schatter weergeven, alsmede de onzekerheid van lokalisatiemethoden met
onzuivere schatters.

In dit proefschrift verhelpen we deze problemen met drie belangrijke bijdragen. In
onze eerste bijdrage leiden we een nieuw en generaliseerbaar beeldvormingsmodel af
dat modulatie versterkte lokalisatie integreert in bestaande opstellingen die een draai-
ende schijf gebruiken in de belichtings- en emissiepaden. Dit leidt tot het theoretisch
ontwerp van een nieuwe methode genaamd SpinFlux. In de SpinFlux-analyse worden
emitters gelokaliseerd in opnamen uit een reeks individuele patroonregistraties, waarbij
rekening wordt gehouden met kennis over het patroon. SpinFlux toont zijn waarde wan-
neer de excitatie-intensiteit wordt gemoduleerd om de maximale hoeveelheid informa-
tie te incorporeren, wat resulteert in een 3,5-voudige lokale verbetering van de precisie
ten opzichte van single-molecule lokalisatiemicroscopie bij gebruik van donutvormige
belichtingspatronen. Gecombineerd met de veelzijdigheid van het beeldvormingsmo-
del om willekeurige belichtingspatronen te incorporeren, maakt dit SpinFlux bij uitstek
tot de methode voor lokale verfijningen van de lokalisatieprecisie.
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Ten tweede analyseren we het zich voordoen van multimodaliteit in driedimensi-
onale meerdere-emitterbeeldvorming door de volledige a-posteriori kansverdeling van
de lokalisatie te reconstrueren. We ontwikkelen een Bayesiaanse driedimensionale loka-
lisatiemethode, genaamd driedimensionale reversible jump Markov chain Monte Carlo,
die de a-posteriori kansdichtheid van emitterposities benadert in plaats van puntschat-
tingen te geven. We tonen aan dat astigmatische meerdere-emitterbeeldvorming re-
sulteert in een multimodale a-posteriori kansverdeling wanneer twee emitters dichter
bij elkaar liggen dan de standaardafwijking van de in-focus puntspreidingsfunctie, wat
meerduidige oplossingen voor het schattingsprobleem veroorzaakt. Dit onderstreept
het belang van het opnemen van passend gekozen onzekerheidsmaten in lokalisatie-
algoritmen. In het bijzonder maakt het schatten van de volledige a-posteriori kansverde-
ling het mogelijk om gevallen te detecteren waarin de lokalisatie-onzekerheid van indi-
viduele emitters niet nauwkeurig wordt weergegeven door Gaussische onzekerheidsel-
lipsen, wat verkeerd zou worden weergegeven door de Cramér-Rao ondergrens.

Ten slotte kwantificeren en analyseren we de lokalisatieprecisie van iteratieve lokali-
satiemicroscopiemethoden, zoals MINFLUX. Deze methoden kunnen de lokalisatiepre-
cisie lokaal verbeteren rond een emitterpositie door gebruik te maken van a-priori ken-
nis die is afgeleid van metingen in eerdere iteraties. Omdat de Cramér-Rao ondergrens
vereist dat schatters zuiver zijn, kan deze geen a-priori kennis verwerken, waardoor deze
niet toepasbaar is op iteratieve lokalisatiemicroscopie. Echter, de Bayesiaanse Van Trees
ongelijkheid omzeilt deze wiskundige beperking en is daarom een geschikte grens om
iteratieve lokalisatiemicroscopie te analyseren. Door modulatie- en achtergrondimper-
fecties in acht te nemen, tonen we aan dat de verbetering van iteratieve methoden ten
opzichte van single-molecule lokalisatie maximaal vijfvoudig is. De Van Trees ongelijk-
heid stelt ons in staat om bestaande precisiegrenzen te nuanceren voor methodes zoals
MINFLUX wanneer ze worden beïnvloed door modulatie- en achtergrondonvolkomen-
heden, door te laten zien dat de precisie van deze methoden niet wordt gemaximaliseerd
door de patroonafstand te minimaliseren, noch exponentieel wordt verbeterd door het
aantal iteraties te verhogen.

Op basis van deze bevindingen beargumenteren wij dat, om de statistische onzeker-
heid van het lokalisatieproces weer te geven, schattingen van emitterposities in single-
molecule lokalisatiemicroscopie gepresenteerd moeten worden in de context van de
schattingsonzekerheid. Beeldvormingsmodellen en onzekerheidskwantificatie moeten
worden afgestemd op de toepassing, waarbij de bijzonderheden van de toepassing de
keuze voor de juiste wiskundige hulpmiddelen bepalen. Zoals in dit proefschrift wordt
aangetoond, leidt deze houding ten opzichte van onzekerheid tot nieuwe experimentele
methoden om de lokalisatieprecisie te verbeteren en draagt zij bij aan ons fundamentele
begrip van lokalisatie-onzekerheid in superresolutiemicroscopie.
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1
Introduction

Denn die einen sind im Dunkeln
Und die andern sind im Licht.
Und man siehet die im Lichte

Die im Dunkeln sieht man nicht.

Bertolt Brecht, Die Dreigroschenoper

1



1 I n October 2020, on the first day of my doctoral studies, the world was in the middle
of the coronavirus disease-19 (COVID-19) pandemic. COVID-19 is a respiratory infec-

tious disease, causing symptoms such as fever, coughing, fatigue, breathing difficulties
and the loss of smell or taste [1]. This disease, caused by the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), broke out in December 2019 in Wuhan. Within
a few months COVID-19 spread over the world, reaching the Netherlands in March 2020
[2].

The following years, particularly from 2020 to 2022, were negatively characterized
by overcrowded hospitals, social isolation measures and economic malaise. As per July
2025, a cumulative total of 778,407,760 cases of COVID-19 were reported worldwide
since January 2020, resulting in 7,098,440 confirmed cases of death [3] with estimates
showing that the total amount of casualties is three to five times higher [4]. For sur-
vivors, COVID-19 can have long-term effects on the brain, impacting memory, cognitive
and executive functions, as well as mental health, causing fatigue, anxiety and mood
disorders [5]. Social distancing measures changed the way in which people interacted
[6], contributing to an increase in loneliness, depression and anxiety, which has been
shown to have disproportionally affected adolescents and young adults [7, 8]. Economi-
cally, COVID-19 caused a global recession, with worldwide effects on, for example, gross
domestic products, labour markets, productivity and consumption [9].

The COVID-19 pandemic teaches us that medical, societal and economic disasters
on a global scale can be caused by a source as tiny as SARS-CoV-2, which is approxi-
mately 100 nm in size [10]. To prepare ourselves for a future pandemic, we should thus
improve our biological understanding of how cells, bacteria, viruses and proteins func-
tion and interact with each other. We can do so by looking at these structures on the
micro- to nanoscale. This requires the ability to see them, despite them being invisible
to the naked eye (see Fig 1.1a). But how can we make the invisible visible?

1.1. A short history of optical microscopy
To the reader of this dissertation who, assuming causality, lives in 2025 or beyond, the
answer to this question will likely be unsurprising. We can already image biology at the
micro- to nanoscale with optical microscopes. Yet there is a tremendous difference be-
tween the microscopes many people use in high schools, and the challenges and designs
that led to the state-of-the-art microscopes available now. We will therefore give a con-
cise historical overview of the challenges encountered by researchers on the journey to
image the nanoscale, as well as how these challenges were solved (see Fig. 1.1b).

1.1.1. Magnification: the first microscopes
As a first step to zoom in to the microscale, we need a way to magnify objects that are
too small to be seen by eye. Discussion about the physics of magnification can be traced
back to ancient history, where the Greeks and Romans were already aware of this con-
cept. For example around the years 62-64, Seneca the Younger comments in Natural
Questions that “Letters, although small and dark, appear larger and clearer through a
glass ball filled with water” [11]. Throughout the following era, we would see the devel-
opment of the first lenses, eyeglasses and magnifying glasses.
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Figure 1.1: Examples of microbiological structures, compared against a timeline of important discoveries in
microscopy that made these structures visible. (a) Biological and physical structures across eight orders of
magnitude, spanning from the millimetre-level to the Ångström-level. (b) Timeline of selected breakthrough
microscopes, which made it possible to image increasingly small structures.

Around 1600, the first compound microscope was developed, that being an assembly
of two lenses which are used together to magnify an object [12]. It is not clear who ex-
actly invented the first compound microscope, but the Dutch spectacle maker Zacharias
Janssen is often credited for the invention in 1590. These first compound microscopes
were able to magnify objects, limited to about 20 to 30 times its physical size.

Throughout the seventeenth century, microscopes were used to discover various bi-
ological microstructures [13, 14]. Around 1660, fellow Delftian Antonie van Leeuwen-
hoek was able to grind his own lenses, thereby developing a single-lens microscope with
which he could achieve magnifications of about 300 times. Using this microscope, Van
Leeuwenhoek was able to discover visible life at the microscale, for example by visual-
izing bacteria. Independently from Van Leeuwenhoek, Jan Swammerdam and Marcello
Malpighi respectively observed red blood cells and blood capillaries. In 1665, Robert
Hooke popularized microscopy with his book Micrographia, in which he collected illus-
trations of objects he observed with his compound microscope. Together, the discover-
ies of the seventeenth century provided key evidence to advance the knowledge about
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1 life, thereby firmly connecting microscopy to biological research.

1.1.2. Contrast, specificity and sensitivity: fluorescence microscopy
To enable biological discoveries within complex biological structures, magnification no
longer is the sole function a microscope needs to fulfil. Specifically, due to effects as
refractive index mismatches and scattering, biological microstructures appear opaque,
resulting in images with low contrast [15]. That means that structures of interest are
poorly distinguishable from background or adjacent structures.

Fluorescence microscopy is the modality of choice to improve image contrast [16,
17]. By labelling structures of interest in a sample with a fluorescent dye and imaging
only the emitted fluorescence signal on a detector, fluorescence microscopy is able to
achieve enhanced contrast as background illumination and unlabelled, out-of-interest
structures can effectively be removed from the image. Furthermore, it has the abil-
ity to image only a single type of fluorescent label, therefore having high specificity.
Lastly, fluorescence microscopy is sensitive enough to detect structures as small as sin-
gle molecules, which would ultimately be demonstrated by William Moerner and Lothar
Kador in 1989 [18] as well as by Michel Orrit and Jacky Bernard in 1990 [19].

The scientific origins of fluorescence can be traced back to the nineteenth century
[20, 21]. In 1833, David Brewster illuminated chlorophyll and found out that this caused
it to emit light, specifically of a different colour than the illumination light. Later, in 1845,
Frederik Herschel found a similar result for a quinine solution. These findings were ex-
plained in 1852 by George Stokes, who himself repeated the effect while experimenting
with a fluoride solution, leading to the name fluorescence. In Stokes’ namesake, the prop-
erty that light emitted by a fluorophore is of a longer wavelength than the excitation light
is now known as the Stokes shift.

Over the course of the subsequent century, the phenomenon of fluorescence found
its way into various microscope designs [16, 20]. Of particular interest for the purpose
of this dissertation is the development of the epi-fluorescence microscope, as shown in
Fig. 1.2a. In this type of microscope, excitation light enters the sample on the same side
as emission light is captured by the microscope. Inventions by Evgenii Brumberg in 1948
[22] and Johan Ploem in 1962 [23] resulted in epi-fluorescence microscopes that made
use of a dichroic mirror. The defining feature of a dichroic mirror is that depending on
the wavelength, incoming light is either reflected or transmitted. Due to this property,
excitation and emission light can be separated from each other by choosing the pass-
band of the dichroic mirror. In this way, only emitted light from fluorophores can reach
the detector, while excitation light is blocked. This results in the favourable contrast,
specificity and sensitivity properties that characterize fluorescence microscopy.

For biological applicability of the fluorescence microscope, it was necessary to find
fluorophores that could be integrated in microbiological structures for labelling, while
also being bright enough to be clearly visible on a detector. A major breakthrough here
came in 1962 by Osamu Shimomura and his collaborators, who discovered and isolated
the green fluorescent protein (GFP) as a by-product when attempting to extract the lu-
minescent protein aequorin from Aequorea victoria jellyfish [24].

At the time, GFP had no significant application [25]. This changed forty years later,
when Douglas Prasher and colleagues were able to clone complementary deoxyribonu-
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Figure 1.2: Diffraction-limited imaging with an epi-fluorescence microscope. (a) Design of an epi-fluorescence
microscope. Excitation light consisting of various wavelengths enters the microscope through the excitation
filter, which filters out wavelengths outside of the absorption spectrum of the fluorophore. The dichroic mirror
reflects the excitation light into the fluorescent sample. Emission light from the sample is captured by the
objective and passes through the dichroic mirror and emission filter. Lastly, the tube lens focuses the emission
light onto the camera sensor. (b) The numerical aperture of the objective is defined by the refractive index of
the immersion medium n and the objective half-angle θ. (c) When imaging a point source, the resulting image
cannot be refocused into an infinitesimally small spot due to diffraction. Instead, the object intensity will be
spread out over the image plane, forming an intensity distribution that is determined by the diffraction limit
(see Eq. (1.1)). This intensity distribution is called the point spread function. (d) Diffraction limits the spatial
resolution of an imaging system, as the images of two point sources will start overlapping when they move
closer together.

cleic acid (DNA) of GFP [26]. The application of this finding was found in 1994, first by
the group of Martin Chalfie and Douglas Prasher [27], and a month later it was also re-
ported by Satoshi Inouye and Frederick Tsuji [28]. Both groups found that expressing the
complementary DNA of GFP in Escherichia coli (E. coli) resulted in the production of a
protein of which the excitation and emission bandwidths are effectively equal to that of
GFP. Research by the team of Roger Tsien [29] discovered a mutant of GFP, which had in-
creased emission intensity and photostability compared to GFP. Furthermore, the peak
excitation frequency of this mutant changed, which made it compatible with commonly
available filters. Together, these improvements made GFP useful in practice for fluo-
rescence microscopy. For the discovery, expression and development of GFP, the Nobel
Prize in Chemistry of 2008 was awarded to Shimomura, Chalfie and Tsien [30].
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1 1.1.3. Diffraction: super-resolution microscopy
Having addressed the issues of contrast, specificity and sensitivity in biology, we aim to
zoom in beyond the microscale. We encounter another roadblock when trying to image
the nanoscale: the physics of light itself. Specifically, due to the wave nature of light,
diffraction occurs when light propagates through an aperture [31, 32], such as the mi-
croscope objective in Fig. 1.2a. Therefore when imaging an infinitesimally small object,
called a point source, the resulting image cannot be refocused into an infinitesimally
small spot. Instead, the object intensity will be spread out over the image plane, form-
ing an intensity distribution that is determined by properties of the optical system. This
intensity distribution is called the point spread function (PSF), and it describes the im-
age of a point source when imaged with a particular optical system (see Fig. 1.2c). As
every optical system is affected by diffraction, a diffraction-limited PSF is the limit of the
image intensity distribution. Any optical disturbances, such as phase aberrations due to
manufacturing or alignment imperfections of the optical components, can only further
distort the PSF.

Diffraction limits the spatial resolution of an optical system. Let us define spatial
resolution as the minimum distance two point sources need to be separated from each
other, for them to be individually distinguishable in the image plane. Due to the effects
of diffraction, the images of two point sources will start overlapping when they move
closer together (see Fig. 1.2d), thereby limiting the spatial resolution. This resolution
limit is called the diffraction limit, as described by Ernst Abbe in 1873 [33]. The Abbe
limit represents the maximum spatial frequency, beyond which spatial frequencies can
no longer pass through the objective of the microscope due to diffraction. It is given by

d = λem

2NA
, (1.1)

where d describes the diffraction-limited spatial resolution, λem is the wavelength of
emission light and NA = n sin(θ) describes the numerical aperture of the objective, given
by the refractive index of the immersion medium n and the objective half-angle θ (see
Fig. 1.2b). If we consider emission wavelengths of visible light, between 380 and 750
nm, and a NA of 1.5, we find that the diffraction limit takes values between 127 and 250
nm. While this is enough to resolve most biological cells (around 1 to 100 µm), it is not
enough to resolve viruses (around 100 nm), proteins and small molecules (around 1 to
10 nm) or atoms (around 1 Å).

The Abbe limit in Eq. (1.1) already prescribes a way to improve the resolution, namely
by reducing the emission wavelength. This would mean to consider alternative elec-
tromagnetic radiation bands, such as in ultraviolet (UV) microscopy, X-ray microscopy
or electron microscopy. While these techniques indeed offer improved spatial resolu-
tion, they do not offer the contrast and specificity that fluorescence microscopy provides.
They are further limited by, for example, the complexity of sample preparation, the like-
lihood of sample damage and a low throughput, thereby making them unsuitable for
live-cell imaging [34].

This shows the need for further improvements to the resolution that fluorescence mi-
croscopy can provide, meaning that the physics of diffraction need to be circumvented.
The family of methods that pass the diffraction limit are known as super-resolved fluo-
rescence microscopy, or super-resolution microscopy in short. For the development of
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super-resolved fluorescence microscopy, the Nobel Prize in Chemistry of 2014 would be
awarded to Eric Betzig, Stefan Hell and William Moerner [35]. The routes these Nobel
laureates took to circumvent Abbe’s limit are fundamentally different though, and we
will discuss these alternative approaches in Subsections 1.1.4 and 1.1.5.

1.1.4. Super-resolution through patterned excitation
The route Hell took to circumvent the diffraction limit uses the illumination path of the
microscope. We can trace this development back to the first half of the 1990s, when var-
ious techniques were developed that use interference to generate illumination intensity
patterns in the sample plane. For example, standing-wave intensity patterns were used
for microscopy in 1993 [36]. 4Pi microscopy, developed by Hell and colleagues in 1994
[37, 38], and I5M microscopy, invented by the team of Mats Gustafsson in 1995 [39], both
use opposing objectives to generate interference patterns in the illumination and the
emission paths. At the time of invention, these methods were mainly aimed at improv-
ing the axial resolution of the microscope. Purely by using patterned illumination, none
of these techniques were able to circumvent the diffraction limit though.

To beat the Abbe limit, Hell focused on an emitter property called stimulated emis-
sion. Initially discovered by Albert Einstein in 1917 [40, 41], stimulated emission is a
process in which an emitter can be forced to emit a photon without the need for fluo-
rescence. This is accomplished by illuminating it with light that has a longer wavelength
than the fluorescence absorption light. This forced emission has the same wavelength
as the incoming illumination, which makes it distinguishable from fluorescent emission
light. Additionally, the occurrence of stimulated emission prevents the possibility of flu-
orescence. As such, emitters that emit light from stimulated emission can be distin-
guished from those that emit fluorescent light.

By combining patterned illumination and stimulated emission, stimulated emission
depletion (STED) microscopy was developed. While a patent for a similar concept al-
ready existed in 1986 [42], the development of STED is usually credited to Hell and Jan
Wichmann in 1994 [43]. In STED, an illumination beam used for stimulated emission is
modulated into an intensity pattern, called the depletion pattern. Typically in STED, the
depletion pattern is a diffraction-limited, donut-shaped beam, with an intensity min-
imum in the centre. The intensity minimum of the depletion pattern is then overlaid
with the excitation beam used for fluorescence, thereby limiting the area in which fluo-
rescence can take place to the centre of the depletion beam. By increasing the intensity
of the depletion beam, the central region of the donut in which fluorescence can occur
is effectively contracted. As the area in which fluorescence can occur is now limited by
the centre of the donut-shaped depletion pattern rather than the diffraction limit, the
diffraction limit can be circumvented. In the first experimental demonstration by Hell
and Thomas Klar in 1999 [44], STED was shown to achieve a lateral resolution of approx-
imately 106 nm, whereas currently the typical spatial resolution of STED is around 50
nm [45, 46].

Various other methodologies were conceived that, similar to STED, use the illumi-
nation path of the microscope to circumvent Abbe’s limit. In structured illumination
microscopy (SIM) [47, 48], invented in 2000, standing-wave intensity patterns are used
to illuminate the sample. As the fluorescence intensity is approximately proportional to
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1 the illumination intensity before saturation, brightly illuminated emitters appear bright
on the detector, and vice versa. As a result, diffraction-limited high-spatial frequency in-
formation in the sample is downshifted to lower spatial frequencies, thereby becoming
observable through the objective. By shifting and rotating the standing-wave illumina-
tion through the sample and subsequently reconstructing the image from the individual
acquisitions, a resolution improvement of at most a factor two can be attained. This res-
olution improvement can be extended to the axial direction using 3D-SIM [49], which
uses illumination patterns with structure in both the lateral and axial directions. Ad-
ditionally, a higher resolution improvement can be obtained with saturated SIM [50],
which increases the illumination intensity to the point where the fluorescence emission
starts saturating. While this theoretically allows for unlimited resolution, the increased
illumination intensity increases the rate of photobleaching, thereby limiting the resolu-
tion to approximately 50 nm in practice.

Effectively the same principles as in SIM are used by image scanning microscopy
(ISM) [51–53], experimentally realized in 2010, which scans through the sample with a
focused illumination spot. Alternatively, this scanning effect can be achieved in a spin-
ning disk confocal microscope (SDCM) [54, 55], by stroboscopically illuminating the
sample while the disk is rotating [56]. As each camera pixel has a different viewing angle
of the sample, scan images acquired by different pixels are reassigned either computa-
tionally [52, 56] or optically [57–59], ultimately giving a resolution improvement over the
diffraction limit of at most a factor

p
2. Using a deconvolution method called Fourier

reweighting in post-processing, the resolution improvement of ISM can be increased to
a factor 2.

1.1.5. Super-resolution through sparsely activated emission
Concurrently to the development of illumination-based super-resolution microscopy,
Moerner and Betzig worked on methods that instead use the emission path to circum-
vent the diffraction limit. To enable emission-based super-resolution, two separate in-
sights in literature needed to come together. The first insight, as already mentioned
before, is the demonstration of the single-molecule specificity of fluorescence micro-
scopes. This happened in 1989 and 1990, when the teams of Moerner [18] and Orrit [19]
showed that individual molecules could be detected through fluorescence microscopy.
The second insight stems from a research line spanning from 1955 to 1986, which would
show that isolated single-molecules can be localized with nanometre precision [60–63].
Betzig brought these findings together in a theoretical study in 1995 [64], in which he
proposes to isolate individual molecules based on some, at the time undetermined fea-
ture, after which they can be imaged separately and localized with molecule-level pre-
cision. The missing puzzle piece was now to find a property that could make individual
molecules appear isolated on the detector.

This puzzle piece was found in 1997, when Tsien, Moerner and colleagues discovered
photo-activatable GFP [65]. Specifically, they were able to make fluorescent emitters
blink, which means the emitters stochastically cycle through fluorescent emissions while
being illuminated. Furthermore, they found that fluorescent emitters can be brought
into a dark state, from which they can only be reactivated using illumination at a wave-
length separate from the fluorescence absorption wavelength. By using either of these
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properties, it becomes possible to switch fluorescent emitters on or off.
By switching fluorophores on and off over time as shown in Fig. 1.3b, we can observe

isolated emitters that are separated in space and time [66]. The separation in space en-
tails that during each image acquisition, all activated emitters should be separated by
at minimum the diffraction limit, so that isolated PSFs appear in the image. With sep-
aration in time, we mean that emitters within a range defined by the diffraction limit
should be switched on sequentially rather than concurrently, until the entire sample
has been imaged. Due to the stochastic nature of the switching behaviour, it cannot be
guaranteed that neighbouring emitters are never switched on simultaneously. To reduce
the probability of overlapping PSFs, the temporal separation requirement enforces that
sparse subsets of emitters need to be activated in each acquisition window. Sparsity in
the emission signal makes it possible to record isolated PSFs, but this comes at the cost
of a reduced labelling density as well as long total acquisition times to image the entire
sample.

This combination of sparse activation and sequential acquisition is characteristic of
single-molecule localization microscopy (SMLM). The main advantage of SMLM is that
it can be used on relatively simple setups. Only minor modifications are needed to an ex-
isting epi-fluorescence microscope, mainly in the illumination and sample preparation
to achieve stochastic switching. Additionally, the camera used for recording should have
single-photon sensitivity, low readout noise and a high quantum efficiency to prevent
information loss, as approximately only 1000 to 10,000 signal photons are emitted over
the lifetime of one fluorescent emitter. [66, 67].

a b c d e

Tim
e

Figure 1.3: SMLM improves the localization precision beyond the diffraction barrier, through sequential,
sparse activation of fluorescent emitters, and subsequent detection and localization. Images were simulated
using simulated ground truth emitter positions obtained from [67] and enhanced for visualization purposes.
(a) When using an optical microscope, such as the epi-fluorescence microscope of Fig. 1.2a, the resolution is
limited by the diffraction limit (see Eq. (1.1)). This limits the resolution to approximately 200 nm. (b) In SMLM,
rather than imaging the sample all at once, sparse emission signals are sequentially recorded over time. This
makes it possible to record isolated emitters, which are separated in space and time. (c) In the detection step of
the SMLM analysis, regions of interest that contain isolated emitters are cropped out from the acquired frames.
(d) In the localization step of the SMLM analysis, underlying emitter positions are estimated in each detected
region of interest. (e) By recombining the estimated emitter positions into one image, a single super-resolution
frame with a localization precision of approximately 20 nm can be created.

Yet through acquisition alone, SMLM does not provide an interpretable image with
improved precision over the diffraction limit. In fact, a full acquisition typically results in
10,000 to 100,000 camera frames containing isolated, diffraction-limited PSFs belonging
to thousands of molecules in the field of view (FOV) [66]. To bring this data to a single
image with improved precision, statistical analysis is needed. The two central steps of
the analysis are detection and localization, as shown in Fig. 1.3, c and d.
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1 The detection step (see Fig. 1.3c) aims to identify regions of interest (ROIs), that be-
ing regions of the data where the emission signal corresponding to a single molecule is
located [68]. This is inherently a hypothesis testing problem for classification, where the
hypothesis of a region containing a single emitter is compared against, for example, a re-
gion containing only noise or a region containing multiple emitters. In cases where the
signal-to-background ratio (SBR) is high, ROIs are usually selected by setting a threshold
on the recorded intensities. When the SBR is low or when the background is not uniform
over the FOV, such a method no longer results in acceptable performance. In this case,
statistical tests like the generalized likelihood ratio test (GLRT) can be used to accept or
reject regions of interest [69].

Subsequently, the ROIs are processed in the localization step, shown in Fig. 1.3d. The
goal of localization is to estimate the underlying emitter position, as well as related emit-
ter parameters such as the expected signal intensity or the expected background, from a
ROI. A naive approach of simply selecting the brightest pixel or centre pixel within a ROI
would be insufficient, as the minimum possible localization error would be limited by
the pixel size. To solve the regression problem with subpixel precision, initial approaches
used, for example, centre of mass localization [70–72]. However, this method does not
consider the camera noise statistics, the PSF model or background fluorescence, and
thereby results in biased estimates. As such, maximum likelihood estimation (MLE) in-
stead proved to be more accurate and precise [67, 73], as it is able to take the Poisson
statistics of the measurements, the PSF model and background fluorescence into ac-
count [74]. Furthermore, MLE is asymptotically efficient if the underlying model is ac-
curate, meaning that it becomes an asymptotically unbiased estimator with a Gaussian
distribution which has the theoretically minimum possible variance [75, 76]. In prac-
tice for SMLM, this asymptotic limit is approximately attained when 100 or more signal
photons are collected [74].

All SMLM methods essentially work the same, by encoding additional position in-
formation into sparse data and subsequently decoding said information through de-
tection and localization. The way in which SMLM methods are differentiated usually
comes down to the method by which the stochastic switching of fluorescent emitters
is achieved. The first SMLM methods came out in 2006, during which three groups
concurrently introduced photo-activated localization microscopy (PALM) [77], fluores-
cence photo-activation localization microscopy (FPALM) [78] and stochastic optical re-
construction microscopy (STORM) [79]. Direct STORM (dSTORM), released in 2008,
gained popularity as it could work with conventional fluorescent dyes like Cy5 or Alexa
647 [80, 81]. Points accumulation for imaging in nanoscale topography (PAINT) and
DNA-PAINT achieved stochastic switching by binding and unbinding fluorescent probes
to the sample [82, 83]. As the binding is reversible, DNA-PAINT does not suffer from pho-
tobleaching, as bleached emitters can simply be replenished by new ones. With these
methods, localization precisions of approximately 10 to 30 nm can be attained.

Recent developments show that the localization precision, accuracy, labelling den-
sity and temporal resolution of SMLM can be improved further. Resolution enhance-
ment by sequential imaging (RESI), published in 2023, sequentially images closely po-
sitioned emitters using Exchange-PAINT, a variant of DNA-PAINT which enables multi-
plexing [84, 85]. RESI shows that it is possible to assign photon measurements to indi-
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vidual emitters through sequential imaging, which makes it possible to reach Ångström-
level localization precision. The accuracy of the PSF models has been improved through
data-driven approaches, such as cubic spline identification and deep learning, reducing
the localization error in lateral and axial localization [86, 87]. Imaging at increased la-
belling densities became possible by trading in traditional analysis methods for deep
learning. Methods such as Deep-STORM [88, 89] and deep context dependent (DE-
CODE) [90] are able to localize closely spaced emitters at a localization precision compa-
rable to that of other SMLM methods. Deep learning has also shown promising results to
improve the temporal resolution of SMLM. For example, DBlink uses deep learning for
spatio-temporal interpolation between super-resolved frames, thereby making SMLM
better suited for the imaging of dynamical structures [91].

1.2. Localization uncertainty
In our discussion of the history of microscopy, we have seen that resolution plays a key
role throughout its development [92]. In the time of Van Leeuwenhoek, resolution was
limited by the degree with which lenses were able to magnify a sample. In the time of
Abbe, resolution was limited by diffraction and the size of the PSF. Yet with the invention
of super-resolution microscopy, we see that concept of resolution needs to be specified
further now that the diffraction barrier can be circumvented. In particular, the spatial
resolution of SMLM is determined by a combination of various factors, such as the spa-
tial frequencies present in the sample, the labelling density, the diffraction limit of the
system, the measurement noise, the detection precision and recall, the localization er-
ror and visual artifacts [93–96].

In the development of SMLM, the localization error has historically played a funda-
mental role. The localization error consists of two terms: the localization uncertainty,
or precision, and the localization bias, or accuracy. The localization accuracy is often
omitted in the quantification of the localization error of SMLM, due to the asymptotic
unbiasedness of MLE if the underlying model is accurate [75, 76]. This means that the
localization performance of SMLM methods is primarily given in terms of the localiza-
tion precision [97], which describes the estimator variance.

We illustrate the interpretation of the estimator variance using Fig. 1.4, a-c. For illus-
tration purposes, Fig. 1.4c shows a simplification of the probabilistic image formation
model used for MLE, namely as a deterministic model of the expected photon count.
The MLE of a parameter is obtained by first determining the likelihood of a parame-
ter subject to the measurements. The intuition behind this is to compare the acquired
data with all possible model explanations corresponding to different values of the model
parameter. The MLE is then determined by selecting the model parameter that best ex-
plains the measurements, which is mathematically equivalent to maximizing the likeli-
hood. Due to the stochastic nature of the data, a resampling of the data would give a
different MLE, as a neighbouring model in parameter space now gives a better explana-
tion of this particular resample. This gives rise to a probabilistic estimator distribution,
which models the relative frequency of occurrence of all possible estimator outcomes as
a result of the inherent randomness of the data. The variance of this distribution is equal
to the localization precision.

To determine the localization precision of SMLM methods, the Cramér-Rao lower
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Figure 1.4: Illustration of statistical image formation modelling, MLE and precision in SMLM. (a) The image
formation model describes the expected amount of photons that would arrive on detector coordinate x, under
the condition that the underlying emitter position is θx . (b) As photon arrivals at the detector follow a Pois-
son distribution, measurements can be modelled as samples from a Poisson distribution that has the expected
photon count as its rate. (c) In MLE, the objective is to maximize the probability of realizing the measurements
from the image formation model, by choosing the maximizing argument θ̂x . The intuition behind this, shown
here in a simplified manner by means of the expected photon count, is to compare the acquired data with
all possible model explanations corresponding to different values of the model parameter and subsequently
choosing the best match. Due to the inherent stochasticity of the data, a new measurement will result in a dif-
ferent MLE, as a neighbouring model will give a similar, but better explanation for that particular sample. This
estimator variance, which describes the uncertainty about the estimated emitter position due to the inherent
stochasticity of the measurements, is the localization precision. (d) meSMLM combines patterned illumina-
tion with sparse activation and subsequent localization. As the fluorescence intensity is proportional to the
illumination intensity, the overall intensity in the ROI now encodes information about where the emitter is
located relative to the illumination pattern. (e) By combining patterned illumination with sparse activation,
neighbouring image formation models in parameter space become more dissimilar as a function of θx when
compared to SMLM. This increase in information makes it easier to distinguish between models based on the
emitter position, which means the localization precision improves.

bound (CRLB) plays a central role. The CRLB, named in honour of Harald Cramér and
Calyampudi Rao, provides a lower bound on the covariance of any unbiased estimator
θ̂ of the emitter parameter vector θ [98]. In SMLM, θ usually contains the emitter posi-
tion (θx ,θy ), the expected signal intensity θI and the expected background per pixel θb .
Under mild assumptions on the likelihood function of the statistical model of the data,
it holds for any unbiased estimator θ̂ of the parameter vector θ that(

Cθ̂− I−1(θ)
)⪰ 0, (1.2)

which means the left-hand side quantity is positive semi-definite. Here, Cθ̂ denotes the
estimator covariance, I (θ) is the Fisher information matrix, and I−1(θ) is the CRLB. Each
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entry (u, v) of the Fisher information matrix is given by

Iuv (θ) =E
[
∂ℓ(θ|c)

∂θu

∂ℓ(θ|c)

∂θv

]
, (1.3)

where ℓ(θ|c) describes the log-likelihood of the parameter vector θ that parametrizes
the model describing the data c .

A particular result of Eq. (1.2) is that the estimator variance is bounded from below by
the diagonal of the CRLB. It is shown in [74] that in SMLM, the variance of MLE converges
to the CRLB at approximately 100 signal photons. As MLE attains the CRLB in a finite and
experimentally attainable amount of signal photons, the CRLB can be used to quantify
the best possible localization precision, or theoretical minimum uncertainty, that can be
obtained through SMLM.

To calculate the CRLB for SMLM, we need to formulate a parametrized statistical
model of the measurements, as shown in Fig. 1.4, a and b. The model should describe
the amount of photons that are recorded by a camera pixel during a measurement. In
the absence of readout noise, such a process can be modelled by the Poisson distribu-
tion [74]. The Poisson process is dependent on a single parameter µi , which describes
the expected amount of photons that fall on camera pixel i during a measurement. As-
suming that the measurements on each pixel are mutually independent, equivalent to
the absence of crosstalk, each entry (u, v) of the Fisher information matrix for Poisson
measurements is given by

Iuv (θ) =
Npixels∑

i=1

1

µi

∂µi

∂θu

∂µi

∂θv
. (1.4)

Here, Npixels describes the total amount of pixels on the camera. The model for the Pois-
son mean µi is given by

µi (xi , yi ,θ) = θI

∫ xi+ ∆x
2

xi− ∆x
2

∫ yi+ ∆y
2

yi− ∆y
2

h(x −θx , y −θy )dxdy +θb , (1.5)

where (xi , yi ) describe the centre coordinates of pixel i , (∆x,∆y) describe the pixel size
and h(x, y) is the PSF model.

As a model for the PSF h(x, y), a Gaussian is commonly used. It is given by

h(x, y) = 1

2πσ2
PSF

e
−x2−y2

2σ2
PSF , (1.6)

where σPSF denotes the standard deviation of the PSF. The standard deviation of the
Gaussian PSF is often treated as a known constant [74, 97], and least-squares approx-
imations for σPSF have been derived in literature [99]. Alternatively, the PSF standard
deviation can also be included as an estimation parameter [100]. However, the Gaussian
PSF model is no longer accurate in the presence of, for example, aberrations [101]. In
these cases, other PSF models should be considered, such as the vectorial model [102]
or data-driven models such as cubic splines [86, 103].

Under the Gaussian PSF model, the Poisson mean of Eq. (1.5) reduces to

µi (xi , yi ,θ) = θI E(xi −θx ,∆x,σ2
PSF)E(yi −θy ,∆y,σ2

PSF)+θb , (1.7)
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1 where the function E(x,∆x,σ2) is given by

E(x,∆x,σ2) = 1

2
erf

(
x + ∆x

2p
2σ

)
− 1

2
erf

(
x − ∆x

2p
2σ

)
. (1.8)

Using Eqs. (1.4)-(1.8), the CRLB can be computed numerically. Closed-form analytical
approximations of the CRLB of SMLM are also available [104–107]. From [106, 107], we
find that the theoretical minimum localization uncertainty σx of SMLM can be approxi-
mated as

σ2
x,SMLM = σ2

PSF +∆x2/12

θI

(
1+4τ+

√
2τ

1+4τ

)
. (1.9)

Here, τ is a normalized dimensionless background parameter, given by

τ= 2πθb(σ2
PSF +∆x2/12)

θI∆x2 . (1.10)

As an example to illustrate Eq. (1.9), for σPSF = 100 nm, ∆x = 65 nm, θI = 2000 photons
and θb = 8 photons per pixel, we find σx,SMLM = 2.8 nm.

Furthermore, Eq. (1.9) shows that the theoretical minimum uncertainty of SMLM is
inversely proportional to the square root of the signal photon count, that is

σx,SMLM ∝ 1√
θI

. (1.11)

In principle, the uncertainty of SMLM can thus be arbitrarily reduced given enough sig-
nal photons. In practice however, the signal photon budget per emitter is limited due
to the effect of, for example, photobleaching. Furthermore, acquiring an increasing
amount of signal photons per emitter also increases the imaging time, thereby reduc-
ing the acquisition speed and temporal resolution of SMLM [108].

To improve the localization precision beyond that of SMLM, it is therefore important
to increase the amount of information each signal photon contains about the model pa-
rameters, such as the emitter position. In light of the interpretation of the localization
precision established in Fig. 1.4, a-c, this equivalently means that we need to increase
the dissimilarity between neighbouring models in parameter space. This makes it easier
to distinguish between possible estimates under the inherent stochasticity of the mea-
surements and thus reduces the localization uncertainty.

1.3. Modulation enhanced single-molecule localization mi-
croscopy

To find a method that increases the amount of information each signal photon carries
about the emitter position, we take a second look at the invention of super-resolution
methods. As seen in Subsections 1.1.4 and 1.1.5, historically super-resolution methods
either used the illumination path of the microscope or the emission path of the micro-
scope to circumvent the diffraction barrier, but not both. Therefore to increase the in-
formation content per signal photon, we can look at synergistically combining insights
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from both fields. The resulting type of microscopy that combines patterned illumina-
tion with sparse activation and subsequent localization is called modulation enhanced
SMLM (meSMLM) [109].

To explain the information increase gained through meSMLM, we look at Fig. 1.4d.
As the fluorescence intensity is proportional to the illumination intensity, the overall in-
tensity in the ROI now encodes information about where an emitter is located relative
to the illumination pattern. That is, if the intensity in the ROI is bright, then the emitter
must have been located in a bright spot of the illumination pattern, and vice versa. The
shape of the PSF does not change as a result of patterned illumination, which means the
emission information used by SMLM remains unchanged. By combining these informa-
tion sources, the total amount of information encoded in the measurements has thus
increased. As shown in Fig. 1.4e, the differences between models in parameter space in-
crease, which means the theoretically minimum localization uncertainty is reduced. Yet
in contrast to widefield SMLM, the localization precision improvements of meSMLM are
local to the neighbourhood of a targeted emitter, as they are tied to the relative distance
between emitters and illumination patterns.

meSMLM has been demonstrated in both scanning and widefield configurations.
The most well-known example of a scanning meSMLM methodology is minimal pho-
ton fluxes (MINFLUX), which was first published in 2017 [110–112]. In MINFLUX, the
donut-shape intensity pattern known from STED is used, but for fluorescence excita-
tion rather than for stimulated emission. After acquiring an initial estimate of an emitter
position through a first scan, MINFLUX is used to refine the emitter position through a
procedure resembling triangulation. By probing around the emitter position with the in-
tensity minima of four donut-patterns in a ring with diameter L, we obtain information
about where the emitter is located with respect to each of the patterns. MINFLUX claims
that this leads to the following scaling law for the theoretical minimum uncertainty:

σx,MINFLUX ∝ L√
θI

. (1.12)

Eq. (1.12) indicates that MINFLUX allows for two ways to improve the precision. Either
the signal photon count can be increased, as is the case for SMLM, or the diameter L of
the triangulation region can be reduced.

This finding led to iterative MINFLUX, published in 2020 [112]. At the start of itera-
tive MINFLUX, the position of an emitter is estimated through triangulation with donut-
shaped illumination patterns, in a triangulation region with size L. This estimate and
its localization uncertainty are used as prior information for a new iteration. The emitter
estimate determines the centre of the triangulation region in the next iteration. Similarly,
the size L of the triangulation region shrinks proportionally to the localization precision
achieved during the previous iteration. After reconfiguring the triangulation region, a
new MINFLUX acquisition is started and new estimates of the emitter position and lo-
calization uncertainty are made, which will again be used as prior information during
the subsequent iteration. This iterative process repeats until K iterations are completed.

From Eq. (1.12), we can infer that due to the decrease of L, photons acquired in each
additional iteration are more informative. It is claimed that this leads to the following
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σx,iterative MINFLUX ∝ L(√
θI

)K
. (1.13)

Based on this scaling law, distributing the finite signal photon budget over as many itera-
tions as possible is preferred over increasing the amount of signal photons per iteration,
as the information content of signal photons increases exponentially over the course of
iterations. Using MINFLUX and its variants, nanometre-level localization precision can
be achieved in three dimensions [112–114] and the localization uncertainty can even be
reduced to the Ångström-level [115, 116].

While the resolution improvement of MINFLUX made it a well-known technique, its
original implementation was technologically complicated. This was addressed through
raster scanning a minimum of light (RASTMIN) [117–120]. By raster scanning a sample
with a donut-shaped beam, rather than the MINFLUX triangulation, RASTMIN shows
that similar precision improvements to those of MINFLUX can be obtained.

A drawback of scanning meSMLM modalities is that scanning reduces the through-
put. While parallelization of scanning is possible to mitigate the throughput limitation
[110], widefield meSMLM entirely does not suffer from it [109]. Rather than the donut-
shaped intensity pattern from STED, these methods use the standing-wave intensity pat-
tern from SIM. SIMFLUX [121], SIMPLE [122] and repetitive optical selective exposure
(ROSE) [123] all use sinusoidally shaped intensity patterns to improve the lateral reso-
lution. By using structured illumination with structure in both the lateral and axial di-
rections, patterned illumination can also be used to improve axial resolution, as done in
ZIMFLUX [124], modulated localization (ModLoc) [125–127] and axial localization with
repetitive optical selective exposure (ROSE-Z) [128].

Specifically for SIMFLUX [121], the localization precision is improved by at most a
factor 2.4 over SMLM. Furthermore, SIMFLUX uses six patterns in total, rather than nine
patterns as done in SIM. Therefore, the combination of structured illumination with
sparse activation and subsequent localization in meSMLM can result in a better reso-
lution over existing reconstruction approaches, while using less illumination patterns in
the process.

1.4. Thesis motivation
At the start of this chapter, we reasoned that understanding the biology of cells, bacteria,
viruses and proteins requires visualizing them on the micro- to nanoscale. We asked
ourselves the question: how can we make the invisible visible?

History provided us with answers to this question. The microscopes of the 1600s
magnified the microworld, the epi-fluorescence microscope of the 20th century tailored
the microscope to biology, and the limits of diffraction were circumvented through the
various super-resolution methods of the recent years. By sparsely activating emitters
and sequentially localizing their positions through statistical methods, SMLM reaches a
localization precision of approximately 20 nm [77–79]. Through modern methods such
as RESI [84, 85] or meSMLM [110, 112, 116], a localization precision in the order of mag-
nitude of nanometres to Ångströms can now be attained. Viewed through the lens of
these developments, we are succeeding in making the invisible visible.
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Yet these successes in microscopy have given rise to new questions. Before the in-
vention of super-resolution microscopy, images were directly observed through a mi-
croscope, which in principle gives the certainty that what we observe is present in re-
ality. When circumventing the diffraction limit through, for example, SMLM, RESI or
meSMLM, we forfeit the directly observed image in favour of computational image anal-
ysis. The end product of super-resolution microscopy is no longer a directly measured
image, but rather a list of estimated emitter positions that can be recombined into an
image in postprocessing.

While these super-resolution methods allow us to access the nanoscale, their find-
ings are accompanied by the statistical uncertainty about whether the molecule posi-
tions that we retrieve correspond to the true underlying positions of emitters that are
truly present in the sample. A fundamental objective of super-resolution microscopy
is thus to give certainty about the localization uncertainty with which the position of a
single molecule can be determined. But how can we make the uncertain certain?

To bound the uncertainty of SMLM, statistical lower bounds on the estimation un-
certainty are commonly used, such as the CRLB [97]. The CRLB represents the theoreti-
cal minimum uncertainty with which unbiased estimators can localize emitters [98]. As
the variance of MLE converges asymptotically to the CRLB if the underlying model is
accurate, and even reaches it within finite and experimentally realizable signal photon
counts, the CRLB is a reliable predictor for the best possible localization precision [74].
Furthermore, as the CRLB relies only on a model and not on experimental data, it can be
used in silico to design and optimize the experimental design [129, 130].

This suggests that the CRLB successfully brings certainty to the localization uncer-
tainty of state-of-the-art meSMLM. If this were to be the reality, designing meSMLM
through the CRLB would allow for the optimization of the localization precision. In ad-
dition, it would enable fundamentally reliable and trustworthy discoveries in our un-
derstanding of cells, bacteria, viruses and proteins, which would make it an invaluable
contribution to biological research and medicine development.

However, the mathematical limitations of the CRLB prevent this reality from occur-
ring. Specifically, the CRLB leads to narrowly applicable, improperly represented or
mathematically incorrect characterizations of the localization uncertainty of meSMLM.

Firstly, the improvements obtained through methods such as MINFLUX [110, 112]
and SIMFLUX [121] motivate the incorporation of meSMLM in existing systems, in which
image reconstruction instead of localization is the current state-of-the-art. Yet a stan-
dardized structure for meSMLM image formation models with general applicability is
still lacking, which staggers the application of the CRLB to meSMLM and complicates
the comparison of meSMLM modalities. Additionally, the lack of method-appropriate
image formation models hinders the design and optimization of new meSMLM systems,
as well as the optimization of the localization precision of existing methods.

Furthermore, the CRLB only bounds the variance of the emitter position estimator,
but it does not reveal the complete distribution of the estimator. This would not be prob-
lematic in cases where the underlying image formation model used for MLE is accurate,
as the MLE has an asymptotic Gaussian distribution [75, 76]. Yet when the underlying
image formation model is not accurate or when it does not uniquely explain the mea-
surements, the Gaussian limit of the estimator distribution might no longer hold [131].
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1 Trusting the CRLB would then give a false sense of confidence in the obtained localiza-
tions, whereas only a quantification of the full estimator distribution would appropri-
ately represent the localization error.

Lastly, the CRLB only bounds the variance of unbiased estimators from below. How-
ever, an increasing amount of estimation methods in SMLM are biased, as they use prior
information to improve the localization precision. While Bayesian methods have been
used for localization for over a decade [132], recent methods in deep learning and itera-
tive localization microscopy have put the use prior information back into the limelight.
For example, deep learning methods such as Deep-STORM [88, 89] and deep context
dependent (DECODE) [90] use prior information, obtained from seeing examples dur-
ing training, to obtain their resolution improvement at high labelling densities. Iterative
meSMLM methods, such as iterative MINFLUX [112], use prior information obtained
from previous iterations to improve the localization precision in subsequent iterations.
In these cases, the CRLB is no longer applicable and its usage will give mathematically
unfounded limits on the localization precision.

These three issues highlight the necessity of new statistical models and methods to
quantify the localization uncertainty of meSMLM. Specifically, a standardized general
structure is needed for image formation models in meSMLM, to be used in conjunction
with the CRLB and MLE. This standardized structure can then be specified for individ-
ual applications, leading to a tailor-made models for new and existing applications. In
addition, we need to develop statistical tools that represent the full estimator distribu-
tion, as well as methods that quantify the uncertainty of localization methods that use
prior information. Together, these are necessary steps to future-proof our understanding
of localization uncertainty in super-resolution microscopy, thereby improving its trust-
worthiness for biological research and medicine development.

1.5. Outline
This dissertation aims to solve these three issues, making it possible to quantify the lo-
calization uncertainty of existing and future meSMLM methods with awareness of the
full estimator distribution. We develop image formation models for meSMLM and show
how they can be used to design new meSMLM methods. Subsequently, we leverage re-
versible jump Markov chain Monte Carlo (RJMCMC) to approximate the full posterior
estimator distribution and use it to show how estimation degeneracy can occur in three-
dimensional multiple emitter localization. Lastly, we introduce the Van Trees inequality
(VTI) as a replacement for the CRLB in case prior information is available. We apply the
VTI to iterative meSMLM to show where it obtains its precision improvement from.

In Chapter 2, we develop a new image formation model which enables modulation
enhanced localization in spinning disk-based ISM setups [133]. Our method, called
SpinFlux, uses a spinning disk with pinholes in its illumination and emission paths, to
sequentially illuminate regions in the sample during each measurement. The result-
ing intensity-modulated emission signal is analysed for each individual pattern to local-
ize emitters with improved precision. Using our image formation model, we quantify
the best possible localization uncertainty of SpinFlux using the CRLB. Furthermore, we
compare SpinFlux to an alternative localization approach which has since been realized
experimentally [134], where emitters are instead localized in Fourier reweighted ISM re-
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constructions. As SpinFlux retrieves its precision improvement from an alternative anal-
ysis compared to ISM, only minor modifications to setups are needed. In addition, the
SpinFlux image formation model generalizes to arbitrary spinning disk setups and there-
fore enables the optimization of the design of spinning disks.

In Chapter 3, we develop a three-dimensional Bayesian multiple emitter fitting algo-
rithm using RJMCMC [135]. Multiple emitter fitting becomes important when increasing
the labelling density of the sample, as the probability of overlapping emitter signals in-
creases. Unfortunately due to the shape of the PSF, the overlap of emitters can cause
cases where multiple localization pairs explain the measurements with equal statistical
likelihood. As now no model uniquely explains the measurements, the estimator distri-
bution becomes multimodal, which is not captured by the CRLB. RJMCMC [136] recon-
structs the posterior density of both the model and the estimation parameters [131, 137].
This makes it able to better estimate the model, parameters and their uncertainties. We
apply RJMCMC to an astigmatic point spread function, to research the occurrence of
degeneracy in the position estimation.

In Chapter 4, we introduce the VTI and apply it to iterative meSMLM [138–140]. The
VTI bounds the mean squared error of arbitrary estimators from below in case prior in-
formation is available [75, 141]. For biased estimators, the VTI is therefore suited to re-
place the CRLB, which only applies to unbiased estimators. This makes the VTI a suit-
able mathematical framework to analyse iterative meSMLM, as it uses prior information
obtained in previous iterations to improve the precision in the current iteration [112].
We consider an iterative meSMLM method, which uses standing-wave illumination pat-
terns over the course of multiple iterations. We formulate an image formation model
for this method, which includes the effects of imperfect pattern modulation and back-
ground fluorescence. Subsequently we use the VTI to analytically and, through Monte
Carlo simulations [142], numerically approximate lower bounds on the maximum lo-
calization precision. We compare these results against those reported in MINFLUX, as
shown in Eqs. (1.12) and (1.13), to investigate these scaling laws in the context of imper-
fect modulation and non-zero background.

Lastly in Chapter 5, we conclude this dissertation by reflecting on our findings. In
addition, we provide recommendations for future research related to this thesis, as well
as an outlook on expected future developments in the field of quantitative nanoscopy.
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know you, I know your name, Tenar. That is my gift, my power.
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Abstract
Modulation enhanced single-molecule localization microscopy (meSMLM), where emit-
ters are sparsely activated with sequentially applied patterned illumination, increases the
localization precision over single-molecule localization microscopy (SMLM). The preci-
sion improvement of modulation enhanced SMLM is derived from retrieving the posi-
tion of an emitter relative to individual illumination patterns, which adds to existing
point spread function information from SMLM. Here, we introduce SpinFlux: modula-
tion enhanced localization for spinning disk confocal microscopy. SpinFlux uses a spin-
ning disk with pinholes in its illumination and emission paths, to sequentially illumi-
nate regions in the sample during each measurement. The resulting intensity-modulated
emission signal is analysed for each individual pattern to localize emitters with improved
precision. We derive a statistical image formation model for SpinFlux and we quan-
tify the theoretical minimum localization uncertainty in terms of the Cramér-Rao lower
bound. Using the theoretical minimum uncertainty, we compare SpinFlux to localiza-
tion on Fourier reweighted image scanning microscopy reconstructions. We find that lo-
calization on image scanning microscopy reconstructions with Fourier reweighting ide-
ally results in a global precision improvement of 2.1 over SMLM. When SpinFlux is used
for sequential illumination with three patterns around the emitter position, the localiza-
tion precision improvement over SMLM is twofold when patterns are focused around the
emitter position. If four donut-shaped illumination patterns are used for SpinFlux, the
maximum local precision improvement over SMLM is increased to 3.5. Localization of
image scanning microscopy reconstructions thus has the largest potential for global im-
provements of the localization precision, where SpinFlux is the method of choice for local
refinements.

Significance
One of the main objectives of SMLM is to improve the precision with which single molecules
can be localized. This has been successfully achieved through modulation enhanced SMLM,
which uses patterned illumination to increase the information content of signal photons.
However, this technique relies on setups with increased technical complexity over SMLM.
With SpinFlux, we enable a 2- to 3.5-fold maximum precision improvement over SMLM
when the emitter is in the pattern focus. These improvements can be achieved with only
minor modifications to existing spinning disk confocal microscopy setups (e.g., a phase
mask in the illumination and emission paths). In addition, our modelling framework en-
ables evaluation of a wide variety of spinning disk setups and therefore paves the way for
optimal spinning disk design.
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2.1. Introduction

S ingle-molecule localization microscopy (SMLM) increases the precision with which
single molecules can be localized beyond the diffraction limit [1–3]. Methods in

SMLM require sparse activation of single emitters, after which emitters can be localized
sequentially with reduced uncertainty.

In recent years, various modulation enhanced SMLM (meSMLM) methods were in-
troduced that increase the localization precision over SMLM by sparsely activating emit-
ters with intensity-modulated illumination patterns [4]. As a result, information is added
to the data about the relative position of the emitter with respect to the illumination
patterns. meSMLM methods include SIMFLUX [5], SIMPLE [6] and repetitive optical
selective exposure (ROSE) [7], which use sinusoidally shaped intensity patterns, and
MINFLUX [8] and RASTMIN [9, 10], which use a donut-shaped illumination pattern.
Patterned illumination can also be used to improve axial resolution, for example, with
modulated localization (ModLoc) [11, 12] and ROSE-Z [13], which use illumination with
both axial and lateral structure. Additional improvements to the localization precision
can be attained through iterative meSMLM [14, 15], where patterns are iteratively moved
through the sample using prior information from earlier measurements, to improve the
localization precision locally around single emitters.

Specifically for SIMFLUX [5], it has been shown that meSMLM with sinusoidal pat-
terns improves the resolution over both SMLM and structured illumination microscopy
(SIM) [16]. SIM uses nine sinusoidal patterns in total aligned on three lateral axes, and
subsequent reconstruction results in at most a 2-fold resolution improvement over the
diffraction limit. SIMFLUX on the other hand only uses six patterns in total aligned on
two lateral axes, and subsequent localization results in a 2.4-fold maximum improve-
ment of the localization precision over SMLM. Therefore, the combination of structured
illumination with sparse localization in meSMLM can result in a better resolution over
existing reconstruction approaches, while using less illumination patterns in the pro-
cess. These factors motivate the incorporation of meSMLM in existing systems, in which
image reconstruction instead of localization is the current state-of-the-art.

A promising candidate system is spinning disk confocal microscopy (SDCM) [17–21]
(see Fig. 2.1a). SDCM introduces a spinning disk with pinholes in the illumination and
emission paths. Rapidly pulsing the excitation laser causes stroboscopic illumination
of the sample with moving illumination foci. If used for image scanning microscopy
(ISM) [22], the fluorescent emission signal is recorded on an image detector. Subsequent
reconstruction of the recorded images results in an expected resolution improvement of
a factor 2 over diffraction limited imaging [18, 19].

Recently, SDCM was used for PAINT- and STORM-based localization microscopy,
where SMLM localization algorithms were used to localize emitters in raw camera data
[20, 21]. It is shown that this improves the detection rate and signal-to-background ratio
compared with widefield SMLM at the cost of a reduced signal photon count, resulting
in a localization precision that is at best comparable with that of SMLM [20].

However, these methods do not take the information contained in the illumination
pattern into account, as one would do in meSMLM. In this chapter, we therefore de-
velop a statistical image formation model, suited for modulation enhanced localization
in SDCM (see Fig. 2.1b). Our method, called SpinFlux, sequentially applies patterned
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Figure 2.1: Schematic overview of SpinFlux image formation and analysis. (a) In SpinFlux, a rotating disk con-
taining pinholes is placed in the illumination- and emission paths. This causes patterned illumination (green
cadre) in the sample, modulating the emission intensity of emitters in the sample based on their relative dis-
tance to the pattern. Subsequently, the emission signal (orange cadre) is windowed by the pinhole. Rapidly
switching the laser on and off causes stroboscopic illumination of emitters in the sample with stationary illu-
mination patterns. (b) SpinFlux obtains its localization precision improvement by merging localized emitter
data with information about the relative distance between an illumination pattern and the emitter, derived
from photon counts. In this way, it improves the localization precision over SMLM, which only uses localized
emitter data and ignores pattern information. We compare SpinFlux with an idealized approach, in which first
an ISM acquisition and reconstruction are performed. Afterward, isolated emitters are localized in the ISM
reconstruction. (c) Schematic overview of SpinFlux localization variants. In this chapter, we consider SpinFlux
with one, two, three, and four sequentially applied illumination patterns. The configurations with one, two,
and three patterns use Gaussian beams, the configuration with four patterns uses donut beams. Additional
configurations are explored in the supporting information.

illumination generated by a spinning disk to excite the sample. Subsequently, emitters
are localized in the recordings from a sequence of individual pattern acquisitions, taking
knowledge about the pattern into account. The resulting intensity-modulated emission
signal is then described by our image formation model.

To evaluate the potential localization precision improvements of SpinFlux, we need
to study the information contained in a single-pattern exposure, the localization preci-
sion obtained by sequential illumination with multiple patterns and the optimal pattern
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configuration to maximally improve the precision. To accomplish this, we calculate the
theoretical minimum uncertainty of SpinFlux in terms of the Cramér-Rao lower bound
(CRLB) [23, 24]. The CRLB is often used in (me)SMLM to quantify the theoretical min-
imum uncertainty of localizations. Using the SpinFlux image formation model, we cal-
culate the CRLB for various illumination pattern configurations. Based on the CRLB, we
compare SpinFlux with SMLM.

Secondly, we consider a localization approach that is comparable with SpinFlux.
Here, isolated emitters are localized directly in ISM reconstructions [25], rather than
in individual pattern acquisitions as done in SpinFlux. Specifically, we consider local-
ization in ISM reconstructions with a factor

p
2-reduction in the point spread function

(PSF) width. We also consider ISM reconstructions that are Fourier reweighted (see Fig.
2.1b), resulting in a factor 2 reduction in the PSF width. We approximate the maximum
localization precision of these approaches and compare it with SpinFlux.

2.2. Methods
In SpinFlux (see Fig. 2.1a), a spinning disk containing pinholes is placed in the illumi-
nation and emission paths. The spinning disk is rotated, thereby sequentially moving
illumination patterns over the sample. As in SDCM [19], the excitation laser is rapidly
switched on and off. Within the time frame where the laser is on, the spinning disk can be
considered stationary. This causes stroboscopic illumination of emitters in the sample.
Furthermore, the illumination has a nonuniform intensity profile over the field of view
due to the spinning disk architecture. This causes patterned illumination of emitters in
the sample, which in turn results in intensity modulation of the emission signal. The
rotation angle of the spinning disk determines the position of each illumination pattern
with respect to the emitter position. Subsequently, the intensity-modulated emission
signal is windowed by the same pinhole, after which the signal is imaged on a camera.

The image analysis (see Fig. 2.1b) consists of extracting localized emitters from the
recordings, as well as retrieving the relative distance between the illumination pattern
and emitter from the photon count. To evaluate the total amount of information that
can be extracted from the measurements with this approach, we first develop an image
formation model for SpinFlux. We subsequently use this model to calculate the theoret-
ical minimum uncertainty of SpinFlux in terms of the CRLB. The CRLB will allow us to
quantify the maximum amount of information contained in each exposure with a sin-
gle pattern. In turn, we use this to derive the localization precision that can be attained
through sequential exposures with multiple patterns. In addition, we can explore how
the pattern configuration, the pinhole radius, and the mutual spacing between patterns
affect the maximum localization precision.

2.2.1. Model for SpinFlux image formation
To calculate the theoretical minimum uncertainty that can be attained with SpinFlux
localization, we need a model to describe the amount of photons collected by a camera
pixel. Existing models for (me)SMLM [5, 8, 14, 26, 27] do not suffice for this, as they
do not include a pinhole in the illumination and emission paths. In this subsection, we
therefore develop a statistical image formation model for SpinFlux. A detailed derivation
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of this model can be found in Section 2.S2.

For the image formation, we assume that pinholes are separated far enough on the
spinning disk, such that only one pinhole can appear in a region of interest during each
camera frame. This assumption is valid for the magnifications, pinhole sizes, and pin-
hole separations in existing SDCM setups [19–21]. In line with this, we can assume that
there is no crosstalk of emission signals between different pinholes. This allows us to de-
scribe the regions of interest on the camera frames as separate regions of interest from
individual patterns.

We model the pinhole in the emission path as a circular window. In the absence of
readout noise, the measurements on each camera pixel can be described as independent
realizations of a Poisson process [26]. For each pixel i with centre coordinates (xi , yi )
and for the measurement corresponding to illumination pattern k, the expected photon
count µi ,k after illumination through the pinhole with position (xp,k , yp,k ) is described
by (see Section 2.S2):

µi ,k (xi , xp,k , yi , yp,k ) = AθI P (θx −xp,k ,θy − yp,k )H(θx ,θy , xi , yi )+ AθbBi ,k . (2.1)

Here, (θx ,θy ) is the emitter position, θI is the expected signal photon count under
maximum illumination, and θb is the expected background photon count.

Each illumination pattern P (θx − xp,k ,θy − yp,k ) is assumed to be a known function
with a known pinhole position (xp,k , yp,k ) in our image formation model. We model each
illumination pattern as a Gaussian PSF in the centre of the pinhole, with standard devi-
ation σillum. Alternate illumination patterns can be generated by placing a phase mask
in the illumination path. We therefore also include a model of the donut-shaped pattern
from, e.g., MINFLUX [8], with a zero-intensity minimum at the centre of the pinhole and
standard deviation σillum.

Note that the signal photon budget of a single emitter stays constant when going
from one pattern location to multiple pattern locations. In particular, this means that
one pattern exhausts the full signal photon budget, whereas multiple patterns need to
share the same signal photon budget. Each pattern in a multiple-pattern illumination
sequence gets a share of the signal photon budget proportional to their illumination in-
tensity on the emitter position.

We model the emission PSF as a Gaussian, with standard deviation σPSF. The term
H(θx ,θy , xi , yi ) describes the discretized emission PSF after windowing by the pinhole
(see Subsection 2.S2.2).

In existing work on meSMLM, such as in MINFLUX [8], it is assumed that meSMLM
is able to record the same amount of signal photons as SMLM. This assumption allows
benchmarking between methods on the same signal photon count. However, the as-
sumption is not trivial, as additional illumination power or time is needed to exhaust the
signal photon budget with nonmaximum illumination intensity. Properly adjusting the
illumination power to compensate for the reduced photon flux requires accurate prior
knowledge about the emitter position, which is generally unavailable. Increasing the il-
lumination time increases the probability of sample degradation. As such, we should
include the possibility that meSMLM will not exhaust the signal photon budget in the
image formation model.
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The normalizing constant A describes how the signal photon budget is affected by
nonmaximum illumination intensity. This constant plays a vital role in benchmark-
ing meSMLM (when the summed intensity over all patterns does not result in a uni-
form profile), as it gives a physical explanation of the fair signal photon count against
which meSMLM should be compared [14]. Specifically when comparing meSMLM to
SMLM, the normalization constant models whether meSMLM would have had recorded
the same amount of signal photons as SMLM, despite the additional illumination power
or time needed to do so. Results on the improvement of meSMLM compared with SMLM
should thus only be given in the context of the normalizing constant A.

We choose A to model two scenarios (see Subsection 2.S2.4). In the first scenario,
which we explore in this chapter, we assume that the entire signal photon budget is
exhausted after illumination with all patterns, independent of the total brightness on
the emitter position. We thus assume the illumination power and time is sufficient to
exhaust the signal photon budget of the emitter. Here, A is inversely proportional to
the summed illumination patterns. The only signal photon loss in this scenario comes
from the windowing effect of the emission pinhole. This scenario is consistent with
the assumption used in, e.g., MINFLUX [8], stating that meSMLM will record the same
amount of photons as SMLM. In the second scenario, the illumination power and time
are constant for each pattern such that the total illumination power and time equal that
of SMLM, even though this does not exhaust the signal photon budget for nonmaxi-
mum illumination. Instead, the maximum possible signal photon count occurs when
the emitter is placed at the brightest position of the total illumination pattern. Here, A is
inversely proportional to the amount of illumination patterns K .

The constant Bi ,k describes how the background is affected by illumination pattern
k. As such, the term AθbBi ,k represents the effective background under patterned illu-
mination. It depends on the camera pixel area, the pinhole area, the PSF, and the illumi-
nation pattern, but not on the emitter position (see Subsection 2.S2.3). In the analysis
of, e.g., MINFLUX [8], the pattern dependency of the background is neglected. We can
incorporate this in our image formation model for SpinFlux by modelling Bi ,k as the
overlapping area between the camera pixel i and the approximation of pinhole k (see
Subsection 2.S2.5).

2.2.2. Cramér-Rao lower bound
To quantify the theoretical minimum uncertainty of localizations, the CRLB is often used
[23, 24]. Under regularity conditions on the likelihood of the data [23], the CRLB states
that the estimator covariance Cθ̂ of any unbiased estimator θ̂ of the parameters θ sat-
isfies the property that

(
Cθ̂− I−1(θ)

)
is positive semidefinite. Here, I (θ) is the Fisher

information, of which entry (u, v) is described by:

Iuv (θ) =E
[
∂ℓ(θ|c)

∂θu

∂ℓ(θ|c)

∂θv

]
, (2.2)

where ℓ(θ|c) is the log-likelihood function given the recorded photon counts c on the
camera pixels. The matrix I−1(θ) is the CRLB. Consequently, the diagonal of the CRLB
bounds the estimator variance from below.

Specifically for SMLM, the CRLB is attained by the covariance of the maximum like-
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lihood estimator (MLE) for 100 or more signal photons [26]. As the localization uncer-
tainty of the MLE converges asymptotically to the CRLB [28, 29], we can also use the
CRLB to investigate the theoretical minimum uncertainty of SpinFlux.

Using the image formation model from Eq. (2.1), we can derive the CRLB for Spin-
Flux. When using K pinholes and a camera consisting of an array with Npixels pixels, any
entry (u, v) of the Fisher information is given by (see Section 2.S3):

Iuv (θ) =
Npixels∑

i=1

K∑
k=1

1

µi ,k

∂µi ,k

∂θu

∂µi ,k

∂θv
. (2.3)

To evaluate Eq. (2.3), the partial derivatives of the image formation model of Eq.
(2.1) with respect to the unknown parameters θx , θy , θI and θb need to be computed.
Expressions for these partial derivatives are found in Section 2.S4.

2.2.3. Simulations and parameter values
We sampled measurements from the image formation model and evaluated the CRLB
using representative in silico experiments. The model parameters (see Table 2.S1) are
considered to be representative of an SDCM experiment [20].

To maximize the information contained in the Gaussian illumination and emission
PSFs, we choose their standard deviations to be diffraction limited [30]. Specifically, we
approximate the standard deviation of the illumination σillum = 0.21λex

NA and the stan-

dard deviation of the PSF σPSF = 0.21λem
NA . Here, λex and λem, respectively, describe the

excitation and emission wavelengths and NA is the numerical aperture.
Emitters are located in the centre of the region of interest, consisting of 10 × 10 pixels.

The pinhole was discretized on a mesh with NM,x , NM,y = 100 pixels in each direction.
For NM,x , NM,y = 100 mesh pixels, the relative error in the CRLB caused by the discretized
pinhole approximation is at most 0.02% (see Fig. 2.S2).

2.3. Results
A spinning disk can be designed with various pinhole sizes, spacing, and arrangements
[20]. In addition, the rotation of the spinning disk gives additional freedom, as patterns
and pinholes can appear arbitrarily close to each other via sequential illumination with
a rotating spinning disk. For SpinFlux, this means that a wide variety of illumination pat-
tern configurations can be created via the appropriate spinning disk and rotation angle.
Furthermore, donut-shaped illumination patterns can be used by adding a phase mask
in the illumination path (see Fig. 2.S3). In this section, we explore how the theoretical
minimum localization uncertainty of SpinFlux depends on pattern configurations and
positions.

In Figs. 2.2-2.5 and 2.S4-2.S17, we calculate the theoretical minimum uncertainty for
the scenario where the entire signal photon budget is exhausted after illumination with
all patterns. We compute the theoretical minimum localization uncertainty for three
standard configurations. These pattern configurations can be created via sequential illu-
mination with a rotating spinning disk, where the rotation angle of the spinning disk de-
termines the position of an illumination pattern. In Subsection 2.3.1, we establish local-
ization on ISM reconstruction data as a benchmark for SpinFlux. In Subsection 2.3.2, we
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simulate the theoretical minimum uncertainty using a single pattern and pinhole, akin
to confocal microscopy. In Subsection 2.3.3, we compute the CRLB for a two-pattern
configuration where pinholes are separated by a distance s along the x-axis, resembling
raster-like configurations of earlier work on meSMLM [9, 10, 14]. In Subsection 2.3.4,
patterns and pinholes are arranged in an equilateral triangle configuration, similar to
the configuration found in MINFLUX [8, 15]. Subsection 2.3.5 shows the effect of donut-
shaped illumination patterns. A summary of the most important simulation results is
found in Table 2.1.

To rigorously quantify the improvement of SpinFlux, we also evaluate the localiza-
tion precision in the two other scenarios described in Subsection 2.2.1. Figs. 2.S18-2.S31
show the theoretical minimum uncertainty in the case in which the illumination power
and time are constant for each pattern. There, the maximum possible signal photon
count occurs when the emitter is placed at the brightest position of the total illumina-
tion pattern. Figs. 2.S32-2.S45 show the CRLB where the pattern dependency of the
background is neglected and where the entire signal photon budget is exhausted after
illumination with all patterns.

2.3.1. Localization on image scanning microscopy reconstruction data
As a straightforward implementation of localization, we consider localizing isolated emit-
ters in ISM reconstruction data. In this approach, an ISM image is first acquired and re-
constructed, resulting in a reduction of the PSF width by at most a factor

p
2 [18, 19]. If

the ISM image is subsequently Fourier reweighted [18], the PSF width is reduced further
by a total factor 2. Subsequently, individual emitters are localized in the ISM reconstruc-
tion data.

We approximate the CRLB for this localization approach (see Section 2.S1). For a
signal photon count of 2000 photons per emitter and a background photon count of
8 photons per pixel, the best-case localization precision of localization on the ISM re-
constructions is 1.77 nm, or 1.25 nm with Fourier reweighting, whereas SMLM would
achieve a localization precision of at most 2.62 nm. The improvement of localization on
the ISM reconstructions over SMLM is thus 1.48, or 2.10 with Fourier reweighting. These
results agree with the improvements that were recently found experimentally [25].

Fig. 2.2 shows the localization precision of localization of individual emitters in the
ISM data over a range of signal and background photon counts, PSF standard deviations,
and camera pixel sizes. From Fig. 2.2b, we see that the improvement of localization on
the ISM data over SMLM for a PSF standard deviation of 93.3 nm and a camera pixel
size of 65 nm is at most 1.8, or 3.0 with Fourier reweighting. This is achieved at a signal
photon count of 200 photons and a background photon count of 16 photons per pixel.
Furthermore, the improvement decreases to 1.4, or 1.9 with Fourier reweighting, as the
background goes to zero. For zero background, the improvement over SMLM is constant
as a function of the signal photon count. In our approximation, the localization precision
of localization on ISM reconstructions is proportional to 1p

θI
if the background is zero,

and therefore the improvement over widefield SMLM is constant.
Fig. 2.S1 shows the localization precision of localization of individual emitters in

the ISM data over a range of PSF standard deviations and camera pixel sizes. From Fig.
2.S1b, we see that the improvement of localization on the ISM data over SMLM for a
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a b

Figure 2.2: Approximation of the theoretical minimum localization uncertainty of SMLM on reconstructions
acquired from (Fourier reweighted) ISM. For this simulation, a PSF standard deviation of 93.3 nm and a camera
pixel size of 65 nm were used. (a) Approximate CRLB in the x-direction as a function of the expected signal
photon budget for varying values of the expected background photon count. (b) Improvement of the approx-
imate CRLB over SMLM as a function of the expected signal photon budget for varying values of the expected
background photon count.

signal photon count of 2000 photons and a background photon count of 8 photons per
pixel is at most 1.7, or 2.8 with Fourier reweighting, achieved at a PSF standard deviation
of 250 nm and a camera pixel size of 50 nm. Furthermore, the improvement decreases to
1.3, or 1.5 with Fourier reweighting, for an increasing camera pixel size and a decreasing
PSF size.

2.3.2. Single pattern configuration
In Fig. 2.3, we evaluate the theoretical minimum uncertainty in the case in which a sin-
gle pinhole is used for illumination and emission, as illustrated in Fig. 2.3a. Results are
shown for the scenario where the entire signal photon budget is exhausted after illumi-
nation with all patterns.

From Fig. 2.3, d and e, we see that the localization precision is optimal when the
pinhole and pattern are centred directly on the emitter position. Without a pinhole,
this results in an improvement of at most 1.17 over SMLM. For a pinhole with radius
rp = 4σPSF, the difference with SMLM is negligible, indicating that the confocal effect
of the pinhole has been lost. The improvement can thus be attributed to the effect of
pattern-dependent background, as the background is reduced on camera pixels that are
not located on the maximum of the Gaussian illumination pattern. This background
reduction is visualized in Fig. 2.S4g, showing a 10.2-fold reduction in the average back-
ground count per pixel compared with SMLM for rp = 4σPSF and xp = θx .

For pinholes of radius rp = 3σPSF and below, the localization precision deteriorates
with respect to the no-pinhole case. Already for rp = 2σPSF, no position of the pinhole
results in an improvement over SMLM. In these cases, the pinhole not only blocks back-
ground photons, but also signal photons carrying information about the emitter posi-
tion. Fig. 2.S4, f and g show that, in the best case (for xp = θx ) 248 signal photons are lost
when going from rp = 3σPSF to rp = 2σPSF, whereas the average background is reduced
with only 0.21 photons per pixel. As such, more information about the emitter position is
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Figure 2.3: Theoretical minimum localization uncertainty of SpinFlux localization with one x-offset pinhole
and pattern. For this simulation, 2000 expected signal photons and 8 expected background photons per pixel
were used. Results are evaluated for the scenario where the entire signal photon budget is exhausted after illu-
mination with the pattern (disregarding signal photons blocked by the spinning disk). (a) Schematic overview
of SpinFlux localization with one pinhole with radius rp, centred at coordinates (xp, yp). In (d) and (e), the
x-distance (xp −θx ) between the pinhole and the emitter is varied, where yp = θy . (b) SpinFlux CRLB in the
x-direction as a function of the emitter-pinhole x- and y-distances for pinhole radius rp = 3σPSF. (c) Improve-
ment of the SpinFlux CRLB over SMLM as a function of the emitter-pinhole x- and y-distances, for pinhole
radius rp = 3σPSF. (d) CRLB in the x-direction as a function of the emitter-pinhole x-distance. Simulations
show SpinFlux with varying pinhole sizes, widefield SMLM, and localization on ISM reconstructions. (e) Im-
provement of the SpinFlux CRLB over SMLM as a function of the emitter-pinhole x-distance for varying pin-
hole sizes.

lost due to the loss of signal photons than that we gain by blocking background, resulting
in a reduction of the improvement factor from 1.14 to 0.90. Similarly, moving the pinhole
away from the emitter position blocks signal photons, thereby reducing the localization
precision. For rp = 3σPSF, the improvement over SMLM goes from 1.14 at xp = θx to 0.73
at a 130 nm distance between xp and θx . From this, we can conclude that larger pinholes
are in principle better for SpinFlux, as more information about the underlying signal is
revealed through the larger pinhole.

2.3.3. Two-pattern configuration
In Figs. 2.4 and 2.S6, we evaluate the theoretical minimum uncertainty in the case in
which multiple patterns are used sequentially for illumination and emission. We first
consider the scenario of pinholes that are separated in the x-direction around focus co-
ordinates (xf, yf) as illustrated in Fig. 2.4, a-e. Results are shown for the scenario where
the entire signal photon budget is exhausted after illumination with all patterns. For
these simulations, the pinhole radius was set to rp = 3σPSF for both pinholes.

From Fig. 2.4, d and e, we see that using multiple patterns is beneficial for SpinFlux,
maximally resulting in a 2.62-fold precision improvement over SMLM in the x-direction
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Figure 2.4: Theoretical minimum localization uncertainty of SpinFlux localization with multiple pinholes and
patterns. For this simulation, 2000 expected signal photons and 8 expected background photons per pixel were
used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where the entire signal photon
budget is exhausted after illumination with all patterns (disregarding signal photons blocked by the spinning
disk). (a) Schematic overview of SpinFlux localization with two pinholes, separated in x by distance s and cen-
tred around the focus coordinates (xf, yf). In (d) and (e), the x-distance (xf−θx ) between the pattern focus and
the emitter is varied, where yf = θy . (b) SpinFlux CRLB in the x-direction as a function of the emitter-pinhole
x- and y-distances for pinhole separation rp = 4σPSF. (c) Improvement of the SpinFlux CRLB over SMLM as
a function of the emitter-pinhole x- and y-distances for pinhole separation rp = 4σPSF. (d) CRLB in the x-
direction as a function of the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole sepa-
rations, widefield SMLM, and localization on ISM reconstructions. (e) Improvement of the SpinFlux CRLB over
SMLM as a function of the emitter-focus x-distance for varying pinhole separations. (f ) Schematic overview of
SpinFlux localization with a triangle of three pinholes, centred at focus coordinates (xf, yf) at a radius r . In (i)
and (j), the x-distance (xf−θx ) between the pattern focus and the emitter is varied, where yf = θy . (g) SpinFlux
CRLB in the x-direction as a function of the emitter-pinhole x- and y-distances for pinhole spacing r = 2σPSF.
(h) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-pinhole x- and y-distances for
pinhole spacing r = 2σPSF. (i) CRLB in the x-direction as a function of the emitter-focus x-distance. Simula-
tions show SpinFlux with varying pinhole spacing, widefield SMLM, and localization on ISM reconstructions.
(j) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying
pinhole spacing.
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when using a pinhole separation s = 4σPSF. This improvement decreases only moder-
ately to 2.17 when the pattern y-coordinate is moved 130 nm out of focus (see Fig. 2.S7).
When the illumination time and power are adjusted to exhaust the entire signal photon
budget, the low-intensity tails of the Gaussian intensity profile increase the informa-
tion content of signal photons, as these contain increased information about the relative
position of the emitter with respect to the illumination pattern. As discussed in Sec-
tion 2.2.1, the multiple-pattern configuration has the same signal photon budget as the
single-pattern configuration. These results therefore show that the same signal photon
budget is utilized more efficiently by using multiple pattern locations.

However, increasing the pinhole separation also reduces the region where SpinFlux
improves over SMLM. For a pinhole separation s = 3σPSF, the domain where SpinFlux
improves over SMLM by at least a factor 1.2 spans 175 nm, whereas this domain spans
111 nm for s = 4σPSF. In the case where the pinholes are not centred around the emitter
position, one of the patterns takes more of the signal photon budget than the other. As
such, highly informative signal photons carrying information from the tails of the Gaus-
sian illumination pattern are traded in for lowly informative photons coming from the
centre of the pattern. This is shown in Fig. 2.S6f : for a pinhole separation s = 4σPSF, 1573
signal photons are collected in total when the xf = θx , with the remaining 427 photons
being blocked by the spinning disk. When considering a 130 nm distance between xf

and θx , 1956 signal photons are being collected in total as one pinhole has moved close
to the emitter position. Yet these photons are lowly informative, resulting in a precision
improvement of 1.09 over SMLM. For increasing separations, the relative difference in
illumination intensity between noncentred patterns increases, thereby reducing the do-
main of improvement.

Furthermore, Fig. 2.4, d and e show that there is an optimal pinhole separation of
s = 4σPSF for SpinFlux. When increasing the pinhole separation beyond this, the local-
ization precision decreases again. This is caused by a combination of two factors. First of
all, as shown in Fig. 2.S6f , the spinning disk blocks an increasing amount of signal pho-
tons for increasing pinhole separations, as the overlap between the pinhole and emis-
sion PSF is reduced. Between s = 4σPSF and s = 5σPSF, the amount of signal photons is
reduced by 324 when xf = θx . This effect is eliminated when the pinhole is removed, as
shown in Fig. 2.S8.

Secondly, increasing the pinhole separation results in illumination with the low-in-
tensity tails of the Gaussian illumination patterns. As we exhaust the signal photon
budget in this scenario and as the background is pattern dependent, this results in an
amplification of the background. Fig. 2.S6g shows that the average background count
increases from 7.75 photons per pixel at s = 4σPSF to 26.7 photons per pixel at s = 5σPSF.

Up until now, we have only considered the localization precision in the x-direction.
Because the pattern has a different structure in the x- and y-directions, the modulated
emission intensity will carry different information about the emitter x- and y-positions.
Specifically in this configuration, both patterns lie on the x-axis. Therefore, the inten-
sity difference in the modulated emission signal is strongly affected by the emitter x-
position. However, as both patterns have the same y-coordinate, there is no difference
in the effect of the emitter y-coordinate on the modulated emission intensity between
the patterns. Therefore minimal information is carried about the emitter y-position.

43



2

To investigate how the two-pattern configuration of Fig. 2.4a affects the y-precision,
we equivalently consider the x-precision that can be obtained with the rotated pattern
(see Fig. 2.S9). From Fig. 2.S9, we see that the x-precision for the rotated pattern results
in negligible improvements or even reductions over SMLM if the entire signal photon
budget is exhausted. Specifically for s = 4σPSF, the improvement factor over SMLM is
0.83 when the patterns are perfectly centred around the emitter position, whereas the
improvement increases to 1.12 when the distance between yf and θy is 130 nm. From
the equivalence, we can thus conclude that the two-pattern configuration of Fig. 2.4a
results in optimal x-precision, but the associated y-precision is diminished.

2.3.4. Triangular pattern configuration
In Figs. 2.4, f -j and 2.S10, we evaluate the theoretical minimum uncertainty in the case
in which multiple pinholes are used for illumination and emission in an equilateral tri-
angle configuration, centred around focus coordinates (xf, yf). Results are shown for the
scenario where the entire signal photon budget is exhausted after illumination with all
patterns. For these simulations, the pinhole radius was set to rp = 3σPSF for all pinholes.

From Fig. 2.4, i and j, we see that the triangle configuration from Fig. 2.4f results
in a precision improvement in the x-direction of at most 1.94 compared with SMLM,
when the distance between the pinholes and the centre of the triangle is r = 2σPSF. As
seen for the two-pattern case, this optimum is a result of two contrasting factors. On
one hand, increasing the pattern distance illuminates the emitter with the tail of the
Gaussian intensity profile, thereby increasing the information that signal photons carry
about the relative distance between the illumination pattern and the emitter. On the
other hand, increasing the distance between the emitter and the pinholes also increases
the amount of signal photons that are blocked by the spinning disk, while the pattern-
dependent background increases due to the low illumination intensity.

Note that the x-localization precision of the triangle configuration is worse than that
of the two-pattern configuration described in Subsection 2.3.3. The reason for this is that
the triangle configuration contains one pinhole, of which the x-coordinate is located
close to the true emitter x-coordinate (i.e., the blue pattern in Fig. 2.4f ). As such, signal
photons that are collected after illumination with this pattern contain little information
about the emitter x-position. The two-pattern configuration of Subsection 2.3.3 is thus
able to distribute signal photons more efficiently to maximize the information about the
emitter x-position.

On the other hand, as discussed earlier for Fig. 2.S9, the two-pattern configuration
contains little information about the emitter y-position. To investigate this for the tri-
angle configuration, Fig. 2.S11 shows the x-localization precision that can be achieved
when the triangle pattern is rotated clockwise by 90◦ for all three scenarios under con-
sideration. Equivalently, these results also hold for the y-precision that can be attained
with the nonrotated pattern. It can be seen that the optimal spacing r and the localiza-
tion precision are comparable with those for the nonrotated triangle configuration. We
find a precision improvement in y-direction of 2.05 over SMLM. As the rotated pattern is
asymmetric along the x-axis, the precision also scales asymmetrically around the opti-
mum. In addition, the asymmetry causes a shift to the optimal x-coordinate of the pat-
tern focus. For example, the optimal focus position is xf = θx−0.13 nm when considering
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the scenario where the entire signal photon budget is exhausted. From the equivalence,
we find that the triangle configuration balances the localization precision in the x- and
y-directions at approximately a twofold improvement in either direction at the cost of
suboptimal precision in each individual direction.

In MINFLUX [8, 15], a triangle configuration was also used for illumination, where an
additional fourth pattern was added in the centre of the configuration. As such, we also
consider the scenario where an additional pinhole and pattern are added in the centre
of the triangle for both rotations of the configuration (see Figs. 2.S12 and 2.S13).

From Figs. 2.S12 and 2.S13, we find that adding a centre pinhole causes a deteri-
oration of the localization precision compared with the triangle configuration without
a centre pinhole. The precision improvement over SMLM is at most 1.44 for the non-
rotated pattern, and at most 1.78 for the rotated pattern. On the other hand, the domain
where SpinFlux attains an improvement over SMLM has increased due to the addition of
the centre pinhole. For the nonrotated pattern with spacing r = 2σPSF, the improvement
over SMLM varies between 1.39 and 1.44 as long as the pattern focus and the emitter
remain in a 130 nm distance from each other.

The explanation for both these effects is that the centre pinhole blocks the least
amount of signal photons, and also claims the majority of the signal photon budget due
to illumination with near-maximum intensity. As such, as shown in Figs. 2.S12, f and
g and 2.S13, f and g, the effect of the pinhole spacing r on the usage of the signal pho-
ton budget and background count is strongly reduced. For pattern spacings between
r = 0.5σPSF and r = 2σPSF, pattern focus positions within a 130 nm range of the emitter
position and either rotation, signal photon counts vary between 1753 and 1968 photons,
and average backgrounds vary between 0.88 and 4.30 photons per pixel. When the centre
of the triangle is displaced from the emitter position, another pinhole is able to cover the
emitter position, thereby enlarging the range of similar photon counts and increasing
the domain of precision improvement.

2.3.5. Donut-shaped intensity patterns
Note that MINFLUX uses a donut-shaped intensity pattern for illumination, which con-
tains an intensity minimum in the centre. As described until now, SpinFlux uses a Gaus-
sian intensity profile, with an intensity maximum in the centre. By incorporating two
phase masks in the system (see Fig. 2.S3), SpinFlux can be adapted to utilize donut-
shaped illumination. As the donut-shaped pattern increases the information content of
signal photons in its centre rather than at its boundary [8], it will mitigate the situation
where highly informative signal photons are blocked by the pinhole, which in turn im-
proves the theoretically minimum localization uncertainty. We explore this effect in Figs.
2.5 and 2.S14-2.S17.

Figs. 2.S14 and 2.S15 show the SpinFlux localization precision of the triangular con-
figuration without a centre pinhole, in the scenario where the entire signal photon bud-
get is exhausted. Here, the improvement of SpinFlux with donut-shaped illumination
over SMLM is approximately 1.64 in the x-direction and 1.74 in the y-direction at a pin-
hole spacing r = 3σPSF. This improvement is comparable with that of SpinFlux with
Gaussian illumination, as the intensity minimum of the illumination donut is placed
3σPSF away from the emitter. The Gaussian pattern at r = 2σPSF and the donut-shaped
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Figure 2.5: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
donut-shaped patterns in an equilateral triangle configuration with a centre pinhole. For this simulation,
2000 expected signal photons and 8 expected background photons per pixel were used, with pinhole radius
rp = 3σPSF. Results are evaluated for the scenario where the entire signal photon budget is exhausted af-
ter illumination with all patterns (disregarding signal photons blocked by the spinning disk). (a) Schematic
overview of SpinFlux localization with a triangle of three pinholes with an additional centre pinhole centred
at focus coordinates (xf, yf). In (d) and (e), the x-distance (xf −θx ) between the pattern focus and the emitter
is varied, where yf = θy . (b) SpinFlux CRLB in the x-direction as a function of the emitter-pinhole x- and y-
distances for pinhole spacing r = 3σPSF. (c) Improvement of the SpinFlux CRLB over SMLM as a function of the
emitter-pinhole x- and y-distances for pinhole spacing r = 3σPSF. (d) CRLB in the x-direction as a function of
the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole spacing, widefield SMLM, and
localization on ISM reconstructions. (e) Improvement of the SpinFlux CRLB over SMLM as a function of the
emitter-focus x-distance for varying pinhole spacing.

pattern at r = 3σPSF are comparable on the emitter coordinates, thereby negating the
advantages of the donut-shaped pattern.

This changes when including a centre pinhole in the triangular configuration, as
shown in Figs. 2.5, 2.S16 and 2.S17. Here, the maximum improvement over SMLM is
3.5 in the x- and y-directions at a pinhole spacing of r = 4σPSF. When increasing the
spacing r between the pinholes (beyond the width of the donut-shaped beam), a larger
share of the signal photon budget will be claimed by the centre pinhole. The intensity
minimum of the centre pinhole increases the information content of signal photons,
thereby improving the resolution over SpinFlux with Gaussian illumination. However,
this improvement decays sharply when the pattern focus is not centred on the emitter
position. Specifically for r = 4σPSF, the improvement exceeds 1.5 in either direction only
when the emitter-focus distance is smaller than 5 nm. Therefore, it is more practical to
choose a smaller spacing between the pinholes. For r = 3σPSF, the maximum improve-
ment over SMLM is 3.3 in the x- and y-directions, and the improvement is larger than
1.5 in either direction when the emitter-focus distance is at most 37 nm.
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Table 2.1: Summary of simulation results for localization on ISM reconstructions and SpinFlux variants con-
sidered in this chapter.

Variant Amount of patterns Illumination type Maximum x-improvement
ISM reconstructions ≫ 4 Gaussian 1.48

Fourier reweighted ISM reconstructions ≫ 4 Gaussian 2.10
SpinFlux 1 Gaussian 1.17

2 Gaussian 2.62
3 Gaussian 1.94
4 Donut 3.50

2.4. Discussion
In meSMLM, sparse activation of single emitters with patterned illumination results in
improved localization precision over SMLM. The precision improvement of meSMLM
is derived from retrieving the position of an emitter relative to individual illumination
patterns, which adds to existing PSF information from SMLM. In addition, meSMLM
improves the resolution over image reconstruction in SIM while reducing the required
amount of illumination patterns. This suggests that meSMLM can improve the localiza-
tion precision in existing setups, which are limited by image reconstruction in process-
ing.

We developed SpinFlux, which incorporates meSMLM into SDCM setups. In Spin-
Flux, patterned illumination is generated using a spinning disk with pinholes to sequen-
tially illuminate the sample. Subsequently, the emission signal is windowed by the same
pinhole before being imaged on the camera. During the analysis, emitters are localized
in the recordings from a sequence of individual pattern acquisitions, taking knowledge
about the pattern into account.

We have derived a statistical image formation model for SpinFlux, which includes the
effects of patterned illumination, windowing of the emission signal by the pinhole and
pattern-dependent background. For our analysis, we considered Gaussian illumination
patterns and a Gaussian emission PSF. We also consider donut-shaped illumination pat-
terns, which can be generated by incorporating a phase mask in the illumination path. In
addition, we have derived and evaluated the CRLB for this model. We applied the CRLB
to various illumination pattern configurations to quantify the theoretical minimum un-
certainty that can be gained with SpinFlux. We compared SpinFlux with SMLM and with
localization on ISM reconstruction data, which results in an average global improvement
of 1.48 over SMLM, or 2.10 with Fourier reweighting.

When using one pattern only, pattern-dependency of the background causes an im-
provement of at most 1.17 over SMLM, whereas no improvement is found when neglect-
ing this effect. In the single-pattern case, the pinhole blocks signal photons that carry
information about the emitter position. As such, it is beneficial for SpinFlux to use pin-
holes that are as large as possible to reduce the amount of signal photons blocked by
the pinhole. In other words, we find that a spinning disk with pinholes is convenient to
generate patterned illumination, although the pinhole itself has an adverse effect on the
localization precision due to the blockage of signal photons.

However, we have not considered neighbouring emitters in our analysis, nor have
we modelled out-of-focus background. In ISM, optical sectioning is achieved with the
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spinning disk by reducing the effects of neighbouring or out-of-focus fluorescent sig-
nals, thereby improving the resolution. We expect that the pinhole has a similar effect
on the localization precision that can be attained with SpinFlux, thereby resulting in an
optimal pinhole radius. Future research should focus on incorporating these effects into
the image formation model.

Based on the single-pattern results, we conclude that SpinFlux requires multiple pat-
terns to generate a significant precision improvement over SMLM. We explored vari-
ous multiple-pattern configurations, which can be obtained via sequential illumination.
We found that a configuration of two pinholes with radius 3σPSF, separated in the x-
direction around the emitter position by a distance of 4σPSF, results in a precision im-
provement of 2.62 in the x-direction compared with SMLM, while the y-improvement
is at most 1.12. For larger separations, the information content of signal photons in-
creases due to illumination with the low-intensity tails of the Gaussian illumination pat-
tern. However, when the separation increases above 4σPSF, the loss of signal photons
due to the windowing effect of the pinhole causes deterioration of the localization pre-
cision.

We also evaluated the theoretical minimum uncertainty of a triangular pattern con-
figuration, where pinholes are sequentially placed at the corners of an equilateral tri-
angle around the emitter position. This results in approximately a twofold x-precision
improvement over SMLM, which is a reduction compared with the two-pattern config-
uration. However, the triangle configuration also attains approximately a twofold pre-
cision improvement in the y-direction. As such, the triangle configuration balances the
localization precision in the x- and y-directions at the cost of suboptimal precision in
each individual direction. Including a centre pinhole in the triangle does not improve
the maximum localization improvement, but it extends the domain on which any im-
provement can be attained.

By including a phase mask in the illumination and emission paths, illumination pat-
terns with arbitrary diffraction-limited intensity profiles can be created. We evaluated
the localization precision of SpinFlux with donut-shaped illumination. As the donut-
shaped pattern increases the information content of signal photons in its centre rather
than at its boundary, it will mitigate the situation where highly informative signal pho-
tons are blocked by the pinhole. We find that, in the triangular configuration with a
centre pinhole, the maximum improvement over SMLM is increased to 3.5 in the x- and
y-directions at a pinhole spacing r = 4σPSF.

We conclude that localization on ISM reconstruction data results is the most straight-
forward implementation and results in the largest global average improvement of the
localization precision. On the other hand, SpinFlux is the method of choice for local
refinements of the localization precision. In addition, the versatility of the image forma-
tion model makes SpinFlux analysis on non-Gaussian illumination patterns straightfor-
ward.

Data and Code Availability
The data that support the findings of this study are openly available in 4TU.ResearchData
[31]. The code that supports the findings of this study is openly available on GitHub [32].
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Supporting Citations
The following references appear in the supporting information: [33–38].
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2.S1. Theoretical approximation of the best-case localiza-
tion precision of localization on image scanning mi-
croscopy data

In this section, we derive a theoretical approximation of the best-case localization preci-
sion that can be achieved by localizing emitters on ISM reconstructions. Concretely, we
assume that enough illumination patterns are used to uniformly illuminate the sample.
For ideal ISM reconstructions [1, 2], the effective PSF standard deviation after recon-
struction is reduced by a factor

p
2. If the ISM reconstructions are subsequently Fourier

reweighted, the effective PSF standard deviation is reduced further, up to a total factor 2.

From [3, 4], we find that the theoretical minimum localization uncertainty σx of
SMLM can be approximated as:

σ2
x = σ2

PSF +∆x2/12

θI

(
1+4τ+

√
2τ

1+4τ

)
. (2.S1)

Here, σPSF denotes the standard deviation of the Gaussian PSF, ∆x is the pixel size and
θI is the expected signal photon budget. In addition, τ is a normalized dimensionless
background parameter

τ= 2πθb(σ2
PSF +∆x2/12)

θI∆x2 , (2.S2)

where θb denotes the expected amount of background photons per pixel.

If individual emitters are localized in ISM data, the standard deviation of the best-
case ISM PSF is given by

σPSF, ISM = σPSFp
2

. (2.S3)
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The approximation of the theoretically minimum localization precision is then given by:

σ2
x, ISM = σ2

PSF/2+∆x2/12

θI

(
1+4τISM +

√
2τISM

1+4τISM

)
, (2.S4)

τISM = 2πθb(σ2
PSF/2+∆x2/12)

θI∆x2 . (2.S5)

For ISM reconstructions with Fourier reweighting, the analysis is identical with a re-
duction of σPSF by a factor two.

As described in Eqs. (2.S4) and (2.S5), the localization precision depends on a com-
bination of the PSF size and the pixel size. If the PSF size is small compared to the pixel
size, the localization precision becomes proportional to the pixel size. On the other
hand, if the PSF size is large compared to the pixel size, the localization precision be-
comes a (non-proportional) function of the PSF size. In that case, the ratio between the
PSF size and the pixel size influences the weighting of the signal-to-background ratio in
determining the localization precision, through the parameter τISM in Eq. (2.S5). This
dependency is shown in Fig. 2.S1.

2.S2. Image formation model for SpinFlux localization
In this section, we derive a statistical image formation model for SpinFlux meSMLM.
We start by formulating a model for one pinhole and one illumination pattern, then we
extend the model for arbitrary amounts of pinholes and patterns.

In Section 2.S3, we will model the amount of photons that are acquired by a camera
pixel through the Poisson distribution. As such, we aim to find a model for the Poisson
mean µi here, to describe the expected amount of photons recorded on each camera
pixel i . We follow a similar modelling procedure as [5–8] to derive a model for the Poisson
mean µi .

An image g̃ (x, y) of an object f (x, y) is formed through an optical system with PSF
h(x, y) through a convolution, as shown in Eq. (2.S6).

g̃ (x, y) = h(x, y)⊗ f (x, y). (2.S6)

In Eq. (2.S6), ⊗ denotes the two-dimensional convolution operator. In this equation, we
need to ensure that the total area under the PSF equals 1, to avoid that the optical system
adds energy to the image formation process. This results in the normalization condition
of Eq. (2.S7). Ï

R2
h(x, y)dxdy = 1. (2.S7)

We will now propose a model for the object function f (x) when a single pinhole and illu-
mination pattern are used. Consider a point emitter, located at a position (θx ,θy ). Such
an emitter can be modelled as δ(x −θx , y −θy ), where δ denotes the two-dimensional
delta function. Under non-uniform illumination with a pattern P (x − xp, y − yp) centred
at pinhole centre coordinates (xp, yp), the expected amount of signal photons emitted by
this emitter is P (x−xp, y−yp)θI and the expected pattern-dependent background count
is P (x − xp, y − yp)θb . Here, the (dimensionless) illumination intensity needs to satisfy
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0 ≤ P (x − xp, y − yp) ≤ 1 for all (x, y) ∈ R2, and P (x − xp, y − yp) = 1 for some (x, y) ∈ R2

to ensure there exists a coordinate which receives maximum illumination. The resulting
object function f (x, xp, y, yp) is shown in Eq. (2.S8).

f (x, xp, y, yp) = P (x −xp, y − yp)(θIδ(x −θx , y −θy )+θb). (2.S8)

To obtain an expression for the image function g̃ (x, y), we evaluate the convolution in
Eq. (2.S6). This ultimately results in the expression for g̃ (x, y) as shown in Eq. (2.S9).

g̃ (x, xp, y, yp) = θI P (θx −xp,θy − yp)h(x −θx , y −θy )

+θb

Ï
R2

h(τ,γ)P (x −xp −τ, y − yp −γ)dτdγ.
(2.S9)

For SpinFlux, the image g̃ (x, y) is not imaged on the camera directly. Instead, g̃ (x, xp, y, yp)
passes through a circular pinhole, resulting in the circularly windowed image g (x, y). Let
rp describe the radius of the pinhole. For notation convenience, we define the pinhole

area Sp =
{

(x, y)|(x −xp)2 + (y − yp)2 ≤ r 2
p

}
. We describe the pinhole with centre coordi-

nates (xp, yp) by the pinhole maskΠ(x, xp, y, yp).

Π(x, xp, y, yp) =
{

1, if (x, y) ∈ Sp,

0, otherwise.
(2.S10)

We identified two different ways of modelling a confocal pinhole in literature. In the first
type of models [1, 9, 10], the pinhole is included as a product with emission point-spread
function. A second class of models exists, where the confocal aperture is modelled as a
convolution with the emission point-spread function [11, 12].

From [9], we infer that that the product model is valid in case the pupil stop of the ob-
jective lens is much smaller than the pupil stop of the pinhole. We therefore choose this
model and limit ourselves to simulation conditions where this is the case. This means
our image formation model is not suited for the case where the pinhole stop is more
limiting than the objective lens.

The image g (x, y) on the camera after windowing by the pinhole is now given by:

g (x, y) =Π(x, xp, y, yp)g̃ (x, y). (2.S11)

As a next step, we need to discretize the image function g (x, y) on the camera pixel array.
Let Sc,i denote the area belonging to the camera pixel with index i . To discretize the im-
age function on camera pixel i , we integrate it over all (x, y) ∈ Sc,i to obtain the expected
amount of photons on the i ’th pixel, µi . Let (xi , yi ) denote the centre coordinates of the
i ’th pixel. We then find:

µi (xi , xp, yi , yp) = θI P (θx −xp,θy − yp)
Ï

(x,y)∈Sc,i

Π(x, xp, y, yp)h(x −θx , y −θy )dxdy

+θb

Ï
(x,y)∈Sc,i

Π(x, xp, y, yp)

(Ï
R2

h(τ,γ)P (x −xp −τ, y − yp −γ)dτdγ

)
dxdy.

(2.S12)
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The aperture mask Π(x, xp, y, yp) from Eq. (2.S10) acts as a window on the integrands,
thereby constraining the relevant domain of integration to the overlapping area between
the camera pixel area Sc,i and the pinhole area Sp. We denote this overlapping area as(
Sc,i ∩Sp

)
. Eq. (2.S12) then becomes Eq. (2.S13).

µi (xi , xp, yi , yp) = θI P (θx −xp,θy − yp)
Ï

(x,y)∈(Sc,i∩Sp)
h(x −θx , y −θy )dxdy

+θb

Ï
(x,y)∈(Sc,i∩Sp)

(Ï
R2

h(τ,γ)P (x −xp −τ, y − yp −γ)dτdγ

)
dxdy︸ ︷︷ ︸

Bi

.

(2.S13)

Note that the effective background Bi is a constant, which does not depend on the emit-
ter position, but only on the camera pixel area, the pinhole area, the PSF and the illu-
mination pattern. We can thus give a compact expression for the Poisson mean µi , as
shown in Eq. (2.S14).

µi (xi , xp, yi , yp) = θI P (θx −xp,θy − yp)
Ï

(x,y)∈(Sc,i∩Sp)
h(x −θx , y −θy )dxdy +θbBi .

(2.S14)

2.S2.1. Approximation of domain of integration
To evaluate the integrations in Eq. (2.S14), we need to describe the domain of integration(
Sc,i ∩Sp

)
. That is, we have to find the overlapping area of the camera pixel with centre

coordinates (xi , yi ) and the pinhole with centre coordinates (xp, yp). To this extent, let
us assume a camera for which all pixels have the same shape and size. Let all pixels be
rectangular, with length ∆x in the x-direction and length ∆y in the y-direction. Further-
more, let Nx , Ny be the amount of camera pixels in each direction (with the total amount
of pixels being Npixels = Nx Ny ).

To simplify our analysis, we resort to a numerical approximation of the intersec-
tion, where we approximate the pinhole Sp and the overlapping area

(
Sc,i ∩Sp

)
on a

square mesh. Let (xM, j , yM, j ) describe the centre coordinates of mesh pixel j , defined
in the same coordinate system as the pixel coordinates (xi , yi ). We define the mesh to
have NM,x , NM,y pixels in each direction (with the total amount of mesh pixels being

NM = NM,x NM,y ). We parametrize the mesh width as ∆xM = Nx
NM,x

·∆x in the x-direction

and as ∆yM = Ny

NM,y
·∆y in the y-direction. To avoid cases where mesh pixels partially

overlap with camera pixels, we restrict choices of NM,x and NM,y to integer multiples of
Nx and Ny . Note that increasing the amount of mesh pixels NM,x and NM,y decreases the
mesh widths ∆xM and ∆yM and thus improves the accuracy of the numerical approxi-
mation.

On the mesh, we approximate the pinhole area Sp as S̃p. We propose the following
midpoint approximation, which assigns the area of mesh pixel j to the approximated
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pinhole area S̃p if its centre coordinate (xM, j , yM, j ) falls within Sp:[
xM, j − ∆xM

2
, xM, j + ∆xM

2

]
×

[
yM, j − ∆yM

2
, yM, j + ∆yM

2

]
⊆ S̃p if

(
xM, j , yM, j

) ∈ Sp.

(2.S15)

As S̃p is a square mesh in the same coordinate system as the camera pixel area Sc,i , the
intersection

(
Sc,i ∩ S̃p

)
is straightforward to evaluate. Namely, this intersection consists

of those mesh pixels in S̃p that are also contained in Sc,i . Formally, this is the set of all
mesh pixels j for which the centre coordinates satisfy (xM, j , yM, j ) ∈ (

Sc,i ∩ S̃p
)
. This is

illustrated in Fig. 2.1c.
Using this numerical approximation, Eq. (2.S14) can be rewritten as follows:

µi (xi , xp, yi , yp) = θI P (θx −xp,θy − yp)

· ∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

∫ xM, j + ∆xM
2

xM, j − ∆xM
2

∫ yM, j + ∆yM
2

yM, j − ∆yM
2

h(x −θx , y −θy )dxdy +θbBi .

(2.S16)

2.S2.2. Illumination and emission point spread functions
As a model for the illumination PSF P (x − xp, y − yp) and the emission PSF h(x, y), we
choose to use Gaussians. The illumination PSF is given by Eq. (2.S17), where σillum de-
notes the standard deviation of the illumination PSF.

PGaussian(x −xp, y − yp) = e

−(x−xp)2−(y−yp)2

2σ2
illum . (2.S17)

Alternate illumination patterns can be generated by placing a phase mask in the illumi-
nation path. We therefore also include a model of the donut-shaped pattern from e.g.
MINFLUX [13], with a zero-intensity minimum at the centre of the pinhole and standard
deviation σillum:

Pdonut(x −xp, y − yp) = e ·
(

(x −xp)2 + (y − yp)2

2σ2
illum

)
e

−(x−xp)2−(y−yp)2

2σ2
illum . (2.S18)

Note that for the Gaussian and donut illumination models, the condition
0 ≤ P (x−xp, y − yp) ≤ 1 is satisfied, with PGaussian(x−xp, y − yp) = 1 for x = xp, y = yp and
with Pdonut(x −xp, y − yp) = 1 for (x −xp)2 + (y − yp)2 = 2σ2

illum.
The emission PSF is given by Eq. (2.S19), where σPSF denotes the standard deviation

of the emission PSF.

h(x, y) = 1

2πσ2
PSF

e
−x2−y2

2σ2
PSF . (2.S19)

Note that for the Gaussian emission PSF model, the condition of Eq. (2.S7) is satisfied.
Furthermore, note that the exponential term in Eq. (2.S19) can be split up as a product of
two exponentials, of which one is dependent on x and of which the other is dependent
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on y . Using this property, we can further simplify the expression for the Poisson mean
µi :

µi (xi , xp, yi , yp) = θI P (θx −xp,θy − yp)

· ∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

(∫ xM, j + ∆xM
2

xM, j − ∆xM
2

1

σPSF
p

2π
e
− (x−θx )2

2σ2
PSF dx

)
︸ ︷︷ ︸

E(xM, j −θx ,∆xM,σ2
PSF)

∫ yM, j + ∆yM
2

yM, j − ∆yM
2

1

σPSF
p

2π
e
− (y−θy )2

2σ2
PSF dy


︸ ︷︷ ︸

E(yM, j −θy ,∆yM,σ2
PSF)

+θbBi .
(2.S20)

We will use the error function to evaluate the integrations from Eq. (2.S20). To this extent,
we introduce the function E(x,∆x,σ2):

E(x,∆x,σ2) = 1

2
erf

(
x + ∆x

2p
2σ

)
− 1

2
erf

(
x − ∆x

2p
2σ

)
. (2.S21)

The integrations then evaluate to:

E(xM, j −θx ,∆xM,σ2
PSF) = 1

2
erf

(
xM, j −θx + ∆xM

2p
2σPSF

)
− 1

2
erf

(
xM, j −θx − ∆xM

2p
2σPSF

)
, (2.S22)

E(yM, j −θy ,∆yM,σ2
PSF) = 1

2
erf

(
yM, j −θy + ∆yM

2p
2σPSF

)
− 1

2
erf

(
yM, j −θy − ∆yM

2p
2σPSF

)
. (2.S23)

In final, we obtain the Poisson mean µi as shown in Eq. (2.S24).

µi (xi , xp, yi , yp) = θI P (θx −xp,θy − yp)

· ∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

E(xM, j −θx ,∆xM,σ2
PSF)E(yM, j −θy ,∆yM,σ2

PSF)+θbBi .

(2.S24)

For convenience, we collect the terms∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

E(xM, j −θx ,∆xM,σ2
PSF)E(yM, j −θy ,∆yM,σ2

PSF)

in the discretized emission PSF term H(θx ,θy , xi , yi ). By doing so, we retrieve the image
formation model as in Chapter 2:

µi (xi , xp, yi , yp) = θI P (θx −xp,θy − yp)H(θx ,θy , xi , yi )+θbBi . (2.S25)

2.S2.3. Effective background Bi
In Eq. (2.S13), a constant term Bi was identified which describes the effective back-
ground, given the camera pixel area, the pinhole area, the PSF and the illumination
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pattern. Using the discretized approximation of the pinhole area, Bi ,Gaussian can be ex-
pressed as follows:

Bi = ∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

∫ xM, j + ∆xM
2

xM, j − ∆xM
2

∫ yM, j + ∆yM
2

yM, j − ∆yM
2

(Ï
R2

h(τ,γ)P (x −xp −τ, y − yp −γ)dτdγ

)
dxdy.

(2.S26)

Under the Gaussian model of the illumination and emission PSFs, we can explicitly eval-
uate the integrals contained in the effective background Bi . For the convolution, we
find:Ï

R2
h(τ,γ)PGaussian(x −xp −τ, y − yp −γ)dτdγ=

Ï
R2

1

2πσ2
PSF

e
−τ2−γ2

2σ2
PSF e

−(x−xp−τ)2−(y−yp−γ)2

2σ2
illum dτdγ

(2.S27)

=
∫

R

1p
2πσPSF

e
−τ2

2σ2
PSF

+ −(x−xp−τ)2

2σ2
illum dτ

 ·
∫

R

1p
2πσPSF

e
−γ2

2σ2
PSF

+ −(y−yp−γ)2

2σ2
illum dγ

 (2.S28)

=

 σillum√
σ2

PSF +σ2
illum

e

−(x−xp)2

2
(
σ2

PSF+σ
2
illum

)
 ·

 σillum√
σ2

PSF +σ2
illum

e

−(y−yp)2

2
(
σ2

PSF+σ
2
illum

)
 (2.S29)

= σ2
illum

σ2
PSF +σ2

illum

e

−(x−xp)2−(y−yp)2

2
(
σ2

PSF+σ
2
illum

)
(2.S30)

= 2πσ2
illum

 1

2π(σ2
PSF +σ2

illum)
e

−(x−xp)2−(y−yp)2

2
(
σ2

PSF+σ
2
illum

)  . (2.S31)

For the effective background Bi ,Gaussian, we now have:

Bi ,Gaussian = 2πσ2
illum

· ∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

∫ xM, j + ∆xM
2

xM, j − ∆xM
2

∫ yM, j + ∆yM
2

yM, j − ∆yM
2

1

2π
(
σ2

PSF +σ2
illum

)e

−(x−xp)2−(y−yp)2

2
(
σ2

PSF+σ
2
illum

)
dxdy

(2.S32)

= 2πσ2
illum

∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

∫ xM, j + ∆xM
2

xM, j − ∆xM
2

1
p

2π
√
σ2

PSF +σ2
illum

e

−(x−xp)2

2
(
σ2

PSF+σ
2
illum

)
dx


︸ ︷︷ ︸

E
(
xM, j −xp,∆xM,σ2

PSF+σ2
illum

)

·

∫ yM, j + ∆yM
2

yM, j − ∆yM
2

1
p

2π
√
σ2

PSF +σ2
illum

e

−(y−yp)2

2
(
σ2

PSF+σ
2
illum

)
dy


︸ ︷︷ ︸

E
(

yM, j −yp,∆yM,σ2
PSF+σ2

illum

)
.

(2.S33)
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Note that Eq. (2.S33) requires us to compute definite integrals over Gaussian functions,
as was also necessary in Eq. (2.S20). As such, we can again use error functions to simplify
the expression. Using the definition of E(x,∆x,σ2) from Eq. (2.S21), we find:

E
(
xM, j −xp,∆xM,σ2

PSF +σ2
illum

)= 1

2
erf

 xM, j −xp + ∆xM
2√

2σ2
PSF +2σ2

illum

− 1

2
erf

 xM, j −xp − ∆xM
2√

2σ2
PSF +2σ2

illum

 ,

(2.S34)

E
(
yM, j − yp,∆yM,σ2

PSF +σ2
illum

)= 1

2
erf

 yM, j − yp + ∆yM
2√

2σ2
PSF +2σ2

illum

− 1

2
erf

 yM, j − yp − ∆yM
2√

2σ2
PSF +2σ2

illum

 .

(2.S35)

In the end, we find the following expression for the effective background under Gaussian
illumination:

B i ,Gaussian = 2πσ2
illum

· ∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

E
(
xM, j −xp,∆xM,σ2

PSF +σ2
illum

)
E

(
yM, j − yp,∆yM,σ2

PSF +σ2
illum

)
.

(2.S36)

The donut-shaped illumination pattern is not separable in x and y , which means we can-
not separate the convolutions as was done in Eq. (2.S28). For the convolution between
the donut-shaped illumination pattern and the PSF, we find:

Ï
R2

h(τ,γ)Pdonut(x −xp −τ, y − yp −γ)dτdγ (2.S37)

=
Ï

R2

1

2πσ2
PSF

e
−τ2−γ2

2σ2
PSF ·e ·

(
(x −xp −τ)2 + (y − yp −γ)2

2σ2
illum

)
e

−(x−xp−τ)2−(y−yp−γ)2

2σ2
illum dτdγ (2.S38)

= e ·
σ2

illum

(
σ2

illum

((
x −xp

)2 + (
y − yp

)2 +2σ2
PSF

)
+2σ4

PSF

)
2
(
σ2

PSF +σ2
illum

)3 e

−(x−xp)2−(y−yp)2

2
(
σ2

PSF+σ
2
illum

)
. (2.S39)

For the effective background Bi ,donut, we now have:

Bi ,donut =
∑

(xM, j ,yM, j )∈(Sc,i∩S̃p)
F

(
xM, j + ∆xM

2
, yM, j + ∆yM

2

)
−F

(
xM, j + ∆xM

2
, yM, j − ∆yM

2

)

−F

(
xM, j − ∆xM

2
, yM, j + ∆yM

2

)
+F

(
xM, j − ∆xM

2
, yM, j − ∆yM

2

)
.

(2.S40)
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where F (x, y) is the function:

F (x, y) = eπ

2
σ2

illumerf

 x −xp√
2σ2

PSF +2σ2
illum

erf

 y − yp√
2σ2

PSF +2σ2
illum


− e

p
πσ4

illum√(
2σ2

PSF +2σ2
illum

)3

(
x −xp

)
e

−(x−xp)2

2σ2
PSF+2σ2

illum erf

 y − yp√
2σ2

PSF +2σ2
illum


+(

y − yp
)

e

−(y−yp)2

2σ2
PSF+2σ2

illum erf

 x −xp√
2σ2

PSF +2σ2
illum


 .

(2.S41)

2.S2.4. Multiple illumination patterns
In Eq. (2.S8), we assumed that only one illumination pattern is used for illumination. In
SpinFlux, we have the opportunity to use multiple pinholes and patterns for illumina-
tion. In this subsection, we extend our image formation model to this situation.

For the image formation, we assume that pinholes are separated far enough on the
spinning disk, such that only one pinhole can appear in a region of interest during each
camera frame. This assumption is valid for the magnifications, pinhole sizes and pin-
hole separations in existing SDCM setups [2, 14, 15]. Accordingly, we assume there is
no crosstalk between emission signal coming from different pinholes. This allows us to
describe the regions of interest on the camera frames as separate regions of interest from
individual patterns.

In the K -pattern case, the object on each camera frame is the result of single-pattern
illumination, where the illumination patterns are centred at pinhole positions
xp = [xp,1, . . . , xp,K ], yp = [yp,1, . . . , yp,K ], each corresponding to the pinhole with area

Sp,k =
{

(x, y)|(x −xp,k )2 + (y − yp,k )2 ≤ r 2
p,k

}
. This gives rise to the following object func-

tion fk (x, xp,k , y, yp,k ) for the object corresponding to pattern k:

fk (x, xp,k , y, yp,k ) = Ak P (x −xp,k , y − yp,k )(θIδ(x −θx , y −θy )+θb). (2.S42)

In existing work on meSMLM, such as in MINFLUX [13], it is assumed that meSMLM
is able to record the same amount of signal photons as SMLM. This assumption allows
benchmarking between methods on the same signal photon count. However, the as-
sumption is not trivial, as additional illumination power or time is needed to exhaust
the signal photon budget with non-maximum illumination intensity. Properly adjust-
ing the illumination power to compensate for the reduced photon flux requires accurate
prior knowledge about the emitter position, which is generally unavailable, and is lim-
ited by saturation of the illumination intensity profile. Increasing the illumination time
increases the probability of sample degradation. As such, it is reasonable to assume that
meSMLM will not exhaust the signal photon budget completely.

The normalizing constant Ak describes how the signal photon budget is affected by
non-maximum illumination. This constant plays a vital role in benchmarking meSMLM
(when the summed intensity over all patterns does not result in a uniform profile), as
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it gives a physical explanation of the fair signal photon count against which meSMLM
should be compared [8]. Specifically when comparing meSMLM to SMLM, the normal-
ization constant models whether meSMLM would have had recorded the same amount
of signal photons as SMLM, despite the additional illumination power or time needed to
do so. Results on the improvement of meSMLM compared to SMLM should thus only be
given in the context of the normalizing constant Ak .

We choose Ak to model two different scenarios in this work, to explore how Spin-
Flux is affected by these conditions. In the first scenario, the entire signal photon bud-
get is exhausted after illumination with all patterns (aside from signal photons that are
blocked by the spinning disk), disregarding the illumination power and time needed to
accomplish this for each pattern. This scenario is consistent with the assumption used
in e.g. MINFLUX [13], stating that meSMLM will record the same amount of photons as
SMLM. For this scenario, the sum of the illumination patterns should satisfy the condi-
tions

∑K
k=1 P (x − xp,k , y − yp,k ) ≥ 0 for all (x, y) ∈R2 and

∑K
k=1 P (θx − xp,k ,θy − yp,k ) = 1 to

exhaust the expected signal photon budget on the emitter position. Under these con-
ditions, Ak = A is a constant applied equally to all patterns. If the individual patterns
satisfy P (x − xp,k , y − yp,k ) ≥ 0 for all (x, y) ∈R2, A must be given by Eq. (2.S43) to satisfy
the constraints on

∑K
k=1 P (θx −xp,k ,θy − yp,k ):

Ak = A = 1∑K
k=1 P (θx −xp,k ,θy − yp,k )

. (2.S43)

In the second scenario, the illumination power and time are constant for each pattern
such that the total illumination power and time equal that of SMLM, even though this
does not exhaust the signal photon budget for non-maximum illumination. For this sce-
nario, the sum of the illumination patterns should satisfy the conditions
0 ≤∑K

k=1 P (x −xp,k , y − yp,k ) ≤ 1 for all (x, y) ∈R2. If the individual patterns satisfy
0 ≤ P (x−xp,k , y−yp,k ) ≤ 1 for all (x, y) ∈R2 and P (x−xp,k , y−yp,k ) = 1 for some (x, y) ∈R2,
A must be given by Eq. (2.S44) to satisfy the constraint on

∑K
k=1 P (x − xp,k , y − yp,k ) for

arbitrary x and y :

Ak = A = 1

K
. (2.S44)

We now continue the derivation of the image formation model. We approximate every
pinhole area Sp,k by the discretized pinhole S̃p,k following the discretization procedure
described before. This gives the following model for the Poisson mean µi ,k (xi , xp, yi , yp)
on pixel i with pinhole and pattern k:

µi ,k (xi , xp,k , yi , yp,k ) = AθI P (θx −xp,k ,θy − yp,k )

· ∑
(xM, j ,yM, j )∈(

Sc,i∩S̃p,k
)E(xM, j −θx ,∆xM,σ2

PSF)E(yM, j −θy ,∆yM,σ2
PSF)

+ AθbBi ,k ,
(2.S45)

Bi ,k = 2πσ2
illum

· ∑
(xM, j ,yM, j )∈(

Sc,i∩S̃p,k
)E

(
xM, j −xp,k ,∆xM,σ2

PSF +σ2
illum

)
E

(
yM, j − yp,k ,∆yM,σ2

PSF +σ2
illum

)
.

(2.S46)
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2.S2.5. Pattern-independent background
In Eq. (2.S8), we assumed that the illumination pattern modulates both the signal com-
ing from the emitter PSF, as well as the background. In existing meSMLM work, such as
in the analysis of e.g. MINFLUX [13], the pattern-dependency of the background is ne-
glected. To allow for a fair comparison between these methods and SpinFlux, we derive
and adapted image formation model, where the background is assumed to be pattern-
independent. In this scenario, the object f (x, xp, y, yp) for a single pinhole and illumina-
tion pattern is modelled as follows:

fpatt.-indep. b.g.(x, xp, y, yp) = P (x −xp, y − yp)(θIδ(x −θx , y −θy ))+θb . (2.S47)

Following the same derivation as for the pattern-dependent background, we find the
following expression for the Poisson mean µ:

µi ,patt.-indep. b.g.(xi , xp,yi , yp) = θI P (θx −xp,θy − yp)

· ∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

E(xM, j −θx ,∆xM,σ2
PSF)E(yM, j −θy ,∆yM,σ2

PSF)

+θbBi ,patt.-indep. b.g.,
(2.S48)

Bi ,patt.-indep. b.g. =
∑

(xM, j ,yM, j )∈(
Sc,i∩S̃p,k

)∆xM ·∆yM. (2.S49)

Note that for this case, the constant Bi ,patt.-indep. b.g. only depends on the intersection
area

(
Sc,i ∩ S̃p

)
between the camera pixel i and the approximation of pinhole k.

To extend the model with pattern-independent background to multiple illumination
patterns, we formulate the following object function:

fk,patt.-indep. b.g.(x, xp,k , y, yp,k ) = Ak P (x −xp,k , y − yp,k )(θIδ(x −θx , y −θy ))+θb . (2.S50)

For the Poisson mean µi ,k,patt.-indep. b.g.(xi , xp, yi , yp) on pixel i for the camera frame with
pattern k, this gives the following model:

µi ,k,patt.-indep. b.g.(xi ,xp,k , yi , yp,k ) = AθI P (θx −xp,k ,θy − yp,k )∑
(xM, j ,yM, j )∈(

Sc,i∩S̃p,k
)E(xM, j −θx ,∆xM,σ2

PSF)E(yM, j −θy ,∆yM,σ2
PSF)

+θbBi ,patt.-indep. b.g.,
(2.S51)

Bi ,patt.-indep. b.g. =
∑

(xM, j ,yM, j )∈(
Sc,i∩S̃p,k

)∆xM ·∆yM. (2.S52)

Here, A is as in Eq. (2.S43) for the scenario where the entire signal photon budget is
exhausted after illumination with all patterns.

2.S3. Cramér-Rao lower bound for SpinFlux localization
In this section, we derive the CRLB for SpinFlux meSMLM.
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2.S3.1. Log-likelihood function for SpinFlux localization
In this subsection, we describe a statistical model for photon collection. The model
should describe the amount of photons that are recorded by a camera pixel during a
measurement, in the absence of readout noise. From [5], we infer that such a process can
be modelled by the Poisson distribution. The Poisson distribution describes the amount
of event occurrences within a certain time interval and it is therefore a proper proba-
bilistic model for photon collection.

The Poisson process is dependent on a single parameter µ, which in our case de-
scribes the expected amount of photons that fall on a camera pixel during a measure-
ment (see Section 2.S2). The probability mass function p(c) of the Poisson distribution
is given by Eq. (2.S53).

p(c) =P(C = c) = µc e−µ

c !
. (2.S53)

We start by considering single-pinhole and single-pattern SpinFlux. Let the random vari-

ables {Ci }
Npixels

i=1 describe the amount of photons acquired by camera pixels
i ∈ {1,2, . . . , Npixels} during a measurement with a pattern P (x − xp, y − yp). Therefore,

{Ci }
Npixels

i=1 can be considered mutually independent [5] and they all have a Poisson dis-

tribution with Poisson parameter µi (xi , xp, yi , yp). Furthermore, let c = {ci }
Npixels

i=1 denote

the acquired measurements, which can be seen as realizations of {Ci }
Npixels

i=1 . We then
find the Poisson likelihood L(θ|c) and log-likelihood ℓ(θ|c) of Eqs. (2.S54) and (2.S55),
respectively.

L(θ|c) =
Npixels∏

i=1

µ
ci
i (xi , xp, yi , yp)e−µi (xi ,xp,yi ,yp)

ci !
, (2.S54)

ℓ(θ|c) =
Npixels∑

i=1

(
ci log(µi (xi , xp, yi , yp))− log(ci !)−µi (xi , xp, yi , yp)

)
. (2.S55)

2.S3.2. Cramér-Rao lower bound for SpinFlux localization
In this subsection, we compute the CRLB for single-pinhole and single-pattern SpinFlux,
using the log-likelihood function of Eq. (2.S55). For notation convenience, we leave
out the arguments (xi , xp, yi , yp) of µi . We compute the partial derivative of ℓ(θ|c) with
respect to the u’th element of θ, θu :

∂ℓ(θ|c)

∂θu
=

Npixels∑
i=1

(
ci

1

µi

∂µi

∂θu
− ∂µi

∂θu

)
(2.S56)

=
Npixels∑

k=1

(
(ci −µi )

1

µi

∂µi

∂θu

)
. (2.S57)

We can compute entry (u, v) of the Fisher information matrix as shown in Eq. (2.S58) [16,
17].

Iuv (θ) =E
[
∂ℓ(θ|c)

∂θu

∂ℓ(θ|c)

∂θv

]
. (2.S58)
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The Fisher information for single-pinhole and single-pattern SpinFlux is then given by:

Iuv (θ) =E
[(

Npixels∑
i=1

(ci −µi )
1

µi

∂µi

∂θu

)(
Npixels∑

j=1
(c j −µ j )

1

µ j

∂µ j

∂θv

)]
(2.S59)

=
Npixels∑

i=1

Npixels∑
j=1

E
[

(ci −µi )(c j −µ j )
1

µiµ j

∂µi

∂θu

∂µ j

∂θv

]
(2.S60)

=
Npixels∑

i=1

Npixels∑
j=1

1

µiµ j

∂µi

∂θu

∂µ j

∂θv
E

[
(ci −µi )(c j −µ j )

]
. (2.S61)

Note that E
[
(ci −µi )(c j −µ j )

]
denotes the covariance of Ci and C j . As {Ci }

Npixels

i=1 were
assumed to be mutually independent, the covariance is 0 if i ̸= j and it is equal to the
variance if i = j . Furthermore, recall that the variance of a Poisson distribution is equal
to its mean. We can hence express the Fisher information as shown in Eq. (2.S62).

Iuv (θ) =
Npixels∑

i=1

1

µi

∂µi

∂θu

∂µi

∂θv
. (2.S62)

The CRLB states that for any unbiased estimator θ̂ of the parameter vectorθ,
(
Σθ̂− I−1(θ)

)
is positive semi-definite [16]. Here, Σθ̂ denotes the estimator covariance, I (θ) is the
Fisher information and I−1(θ) is the CRLB. In particular, the diagonal of I−1(θ) thus
bounds the estimator variance from below.

2.S3.3. Log-likelihood function and Cramér-Rao lower bound for multiple-
pattern SpinFlux

In the multiple-pattern case, the use of multiple single-pattern camera frames leads to
an additional product term in the likelihood function of Eq. (2.S54). This leads to the
following log-likelihood function:

ℓ(θ|c) =
Npixels∑

i=1

K∑
k=1

(
ci ,k log(µi ,k (xi , xp,k , yi , yp,k ))− log(ci ,k !)−µi ,k (xi , xp,k , yi , yp,k )

)
.

(2.S63)
Analogous to the derivation of the single-pattern Fisher information, we find the follow-
ing expression for the multiple-pattern case:

Iuv (θ) =
Npixels∑

i=1

K∑
k=1

1

µi ,k

∂µi ,k

∂θu

∂µi ,k

∂θv
. (2.S64)

2.S4. Derivatives of the SpinFlux image formation model,
needed to compute the Cramér-Rao lower bound

In this section, we derive expressions for ∂µi
∂θx

, ∂µi
∂θy

, ∂µi
∂θI

, and ∂µi
∂θb

, which allow us to com-

pute the Fisher information from Eq. (2.S62).
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Derivative with respect to x-position (single pattern)

∂µi

∂θx
=

θI
∂P (θx −xp,θy − yp)

∂θx

∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

E(xM, j −θx ,∆xM,σ2
PSF)E(yM, j −θy ,∆yM,σ2

PSF)

+θI P (θx −xp,θy − yp)
∑

(xM, j ,yM, j )∈(Sc,i∩S̃p)

∂E(xM, j −θx ,∆xM,σ2
PSF)

∂θx
E(yM, j −θy ,∆yM,σ2

PSF)

(2.S65)

Here,
∂P (θx−xp,θy−yp)

∂θx
and

∂E(xM, j −θx ,∆xM,σ2
PSF)

∂θx
are as follows:

∂PGaussian(θx −xp,θy − yp)

∂θx
=

(
xp −θx

σ2
illum

)
e

−(θx−xp)2−(θy −yp)2

2σ2
illum (2.S66)

∂Pdonut(θx −xp,θy − yp)

∂θx
= e

(
θx −xp

σ2
illum

)
e

−(θx−xp)2−(θy −yp)2

2σ2
illum

+e

(
(θx −xp)2 + (θy − yp)2

2σ2
illum

)(
xp −θx

σ2
illum

)
e

−(θx−xp)2−(θy −yp)2

2σ2
illum

(2.S67)

∂E(xM, j −θx ,∆xM,σ2
PSF)

∂θx
= 1p

2πσPSF

e

−
(

xM, j −θx− ∆xM
2

)2

2σ2
PSF −e

−
(

xM, j −θx+ ∆xM
2

)2

2σ2
PSF

 (2.S68)

Derivative with respect to y-position (single pattern)

∂µi

∂θy
=

θI
∂P (θx −xp,θy − yp)

∂θy

∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

E(xM, j −θx ,∆xM,σ2
PSF)E(yM, j −θy ,∆yM,σ2

PSF)

+θI P (θx −xp,θy − yp)
∑

(xM, j ,yM, j )∈(Sc,i∩S̃p)
E(xM, j −θx ,∆xM,σ2

PSF)
∂E(yM, j −θy ,∆yM,σ2

PSF)

∂θy

(2.S69)
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Here,
∂P (θx−xp,θy−yp)

∂θy
and

∂E(yM, j −θy ,∆yM,σ2
PSF)

∂θy
are as follows:

∂PGaussian(θx −xp,θy − yp)

∂θy
=

(
yp −θy

σ2
illum

)
e

−(θx−xp)2−(θy −yp)2

2σ2
illum (2.S70)

∂Pdonut(θx −xp,θy − yp)

∂θy
= e

(
θy − yp

σ2
illum

)
e

−(θx−xp)2−(θy −yp)2

2σ2
illum

+e

(
(θx −xp)2 + (θy − yp)2

2σ2
illum

)(
yp −θy

σ2
illum

)
e

−(θx−xp)2−(θy −yp)2

2σ2
illum

(2.S71)

∂E(yM, j −θy ,∆yM,σ2
PSF)

∂θy
= 1p

2πσPSF

e

−
(

yM, j −θy − ∆yM
2

)2

2σ2
PSF −e

−
(

yM, j −θy + ∆yM
2

)2

2σ2
PSF

 (2.S72)

Derivative with respect to expected signal photon count (single pattern)

∂µi

∂θI
= P (θx −xp,θy − yp)

∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

E(xM, j −θx ,∆xM,σ2
PSF)E(yM, j −θy ,∆yM,σ2

PSF)

(2.S73)

Derivative with respect to expected background count (single pattern)

∂µi

∂θb
= Bi (2.S74)

= 2πσ2
illum

· ∑
(xM, j ,yM, j )∈(Sc,i∩S̃p)

E
(
xM, j −xp,∆xM,σ2

PSF +σ2
illum

)
E

(
yM, j − yp,∆yM,σ2

PSF +σ2
illum

)
(2.S75)

Derivative with respect to x-position (multiple pattern)

∂µi ,k

∂θx
= AθI

∂P (θx −xp,k ,θy − yp,k )

∂θx

· ∑
(xM, j ,yM, j )∈(

Sc,i∩S̃p,k
)E(xM, j −θx ,∆xM,σ2

PSF)E(yM, j −θy ,∆yM,σ2
PSF)

+ AθI P (θx −xp,k ,θy − yp,k )

· ∑
(xM, j ,yM, j )∈(

Sc,i∩S̃p,k
) ∂E(xM, j −θx ,∆xM,σ2

PSF)

∂θx
E(yM, j −θy ,∆yM,σ2

PSF)

(2.S76)
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Here,
∂P (θx−xp,k ,θy−yp,k )

∂θx
is as follows:
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∂E(xM, j −θx ,∆xM,σ2
PSF)

∂θx
remains unchanged from Eq. (2.S68).

Derivative with respect to y-position (multiple pattern)
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Here,
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is as follows:
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∂E(yM, j −θy ,∆yM,σ2
PSF)

∂θy
remains unchanged from Eq. (2.S72).

Derivative with respect to expected signal photon count (multiple pat-
tern)

∂µi ,k

∂θI
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(2.S82)
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Derivative with respect to expected background count (multiple pat-
tern)

∂µi ,k

∂θb
= ABi ,k (2.S83)
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)
E

(
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PSF +σ2
illum

)
(2.S84)

2.S5. Supporting figures and tables

a b

Figure 2.S1: Approximation of the theoretical minimum localization uncertainty of SMLM reconstructions
acquired from (Fourier reweighted) ISM. For this simulation, 2000 expected signal photons and 8 expected
background photons per pixel were used. (a) Approximate CRLB in the x-direction as a function of the PSF
standard deviation for varying camera pixel sizes. (b) Improvement of the approximate CRLB over SMLM as a
function of the PSF standard deviation for varying camera pixel sizes.
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Figure 2.S2: Relative error in the x-CRLB resulting from the discretized pinhole approximation as a function
of the amount of mesh pixels NM,x , NM,y in each direction. To determine the error, the CRLB approximation
for a fine-mesh pinhole approximation with NM,x , NM,y = 1000 mesh pixels was assumed as the ground truth.
θb = 8 expected background photons per pixel were used and the expected signal photon count θI is varied.
(a)-(c) Relative errors for the scenario where the entire signal photon budget is exhausted after illumination
with all patterns (disregarding signal photons blocked by the spinning disk). (d)-(f ) Relative errors for the sce-
nario where the illumination power and time are constant during illumination with all patterns. (g)-(i) Relative
errors for the scenario where the entire signal photon budget is exhausted after illumination with all patterns
(disregarding signal photons blocked by the spinning disk), neglecting the effects of pattern-dependent back-
ground. (a), (d), (g) Relative errors for the one-pattern configuration, with pinhole radius rp = 3σPSF and
pinhole position (xp, yp) = (θx ,θy ). (b), (e), (h) Relative errors for the two-pattern configuration, separated in
x, with pinhole radius rp = 3σPSF, pinhole separation s = 4σPSF and focus position (xf, yf) = (θx ,θy ). (c), (f ), (g)
Relative errors for the non-rotated equilateral triangle pattern configuration, with pinhole radius rp = 3σPSF,
pinhole spacing r = 2σPSF and focus position (xf, yf) = (θx ,θy ).
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Figure 2.S3: Schematic overview of SpinFlux image formation with donut-shaped illumination patterns. A
spinning disk is placed in the illumination- and emission paths. This causes patterned illumination of emitters
in the sample and subsequent windowing of the emission signal. Rapidly switching the laser on and off causes
stroboscopic illumination of emitters in the sample with stationary illumination patterns. A phase mask in the
illumination path modulates the illumination pattern into a donut-shaped beam. As the emission path also
passes through the phase mask, the emission signal is demodulated using an additional phase mask in the
emission path.
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Figure 2.S4: Theoretical minimum localization uncertainty of SpinFlux localization with one x-offset pinhole
and pattern. In (c)-(g), 2000 expected signal photons and 8 expected background photons per pixel were used.
Results are evaluated for the scenario where the entire signal photon budget is exhausted after illumination
with the pattern (disregarding signal photons blocked by the spinning disk). (a) Schematic overview of Spin-
Flux localization with one pinhole with radius rp, centred at coordinates (xp, yp). In (d)-(g), the x-distance
(xp −θx ) between the pinhole and the emitter is varied, where yp = θy . (b) Example of pinhole in the region
of interest (650 × 650 nm). The pinhole radius rp = 2σPSF was used. The pinhole mask was discretized with
NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest,
resulting from illumination and emission through the pinhole in (b). (d) CRLB in the x-direction as a function
of the emitter-pinhole x-distance. Simulations show SpinFlux with varying pinhole sizes and widefield SMLM.
(e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-pinhole x-distance for varying
pinhole sizes. (f ) Average amount of signal photons after compensation for non-maximum illumination in-
tensity as a function of the emitter-pinhole x-distance, for SpinFlux with varying pinhole sizes and widefield
SMLM. (g) Average amount of background photons per pixel after compensation for non-maximum illumi-
nation intensity as a function of the emitter-pinhole x-distance, for SpinFlux with varying pinhole sizes and
widefield SMLM. (h) CRLB in the x-direction as a function of the expected signal photon count for varying val-
ues of the expected background photon count. The pinhole radius rp = 3σPSF was used and (xp, yp) = (θx ,θy ).
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Figure 2.S5: Theoretical minimum localization uncertainty of SpinFlux localization with one y-offset pinhole
and pattern. In (c)-(g), 2000 expected signal photons and 8 expected background photons per pixel were used.
Results are evaluated for the scenario where the entire signal photon budget is exhausted after illumination
with the pattern (disregarding signal photons blocked by the spinning disk). (a) Schematic overview of Spin-
Flux localization with one pinhole with radius rp, centred at coordinates (xp, yp). In (d)-(g), the y-distance
(yp −θy ) between the pinhole and the emitter is varied, where xp = θx . (b) Example of pinhole in the region
of interest (650 × 650 nm). The pinhole radius rp = 2σPSF was used. The pinhole mask was discretized with
NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest,
resulting from illumination and emission through the pinhole in (b). (d) CRLB in the x-direction as a function
of the emitter-pinhole y-distance. Simulations show SpinFlux with varying pinhole sizes and widefield SMLM.
(e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-pinhole y-distance for varying
pinhole sizes. (f ) Average amount of signal photons after compensation for non-maximum illumination in-
tensity as a function of the emitter-pinhole y-distance, for SpinFlux with varying pinhole sizes and widefield
SMLM. (g) Average amount of background photons per pixel after compensation for non-maximum illumi-
nation intensity as a function of the emitter-pinhole y-distance, for SpinFlux with varying pinhole sizes and
widefield SMLM. (h) CRLB in the x-direction as a function of the expected signal photon count for varying val-
ues of the expected background photon count. The pinhole radius rp = 3σPSF was used and (xp, yp) = (θx ,θy ).
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Figure 2.S6: Theoretical minimum localization uncertainty of SpinFlux localization with two pinholes and pat-
terns separated in the x-direction. In (c)-(g), 2000 expected signal photons and 8 expected background pho-
tons per pixel were used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where the entire
signal photon budget is exhausted after illumination with all patterns (disregarding signal photons blocked by
the spinning disk). (a) Schematic overview of SpinFlux localization with two pinholes, separated in x and cen-
tred around the focus coordinates (xf, yf). In (d)-(g), the x-distance (xf−θx ) between the pattern focus and the
emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole
radius rp = 2σPSF and pinhole separation s = 2σPSF were used. The pinhole masks were discretized with NM,x ,
NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest, result-
ing from illumination and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of the
emitter-focus x-distance. Simulations show SpinFlux with varying pinhole separations and widefield SMLM.
(e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying
pinhole separations. (f ) Average amount of signal photons after compensation for non-maximum illumina-
tion intensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole separations and
widefield SMLM. (g) Average amount of background photons per pixel after compensation for non-maximum
illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole sepa-
rations and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal photon count for
varying values of the expected background photon count. The pinhole radius rp = 3σPSF and pinhole separa-
tion s = 4σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S7: Theoretical minimum localization uncertainty of SpinFlux localization with two y-offset pinholes
and patterns separated in the x-direction. In (c)-(g), 2000 expected signal photons and 8 expected background
photons per pixel were used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the entire signal photon budget is exhausted after illumination with all patterns (disregarding signal photons
blocked by the spinning disk). (a) Schematic overview of SpinFlux localization with two pinholes, separated
in x and centred around the focus coordinates (xf, yf). In (d)-(g), the y-distance (yf − θy ) between the pat-
tern focus and the emitter is varied, where xf = θx . (b) Example of pinholes in the region of interest (650 ×
650 nm). The pinhole radius rp = 2σPSF and pinhole separation s = 2σPSF were used. The pinhole masks
were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response
in the region of interest, resulting from illumination and emission through each pinhole in (b). (d) CRLB in
the x-direction as a function of the emitter-focus y-distance. Simulations show SpinFlux with varying pin-
hole separations and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a function of the
emitter-focus y-distance for varying pinhole separations. (f ) Average amount of signal photons after com-
pensation for non-maximum illumination intensity as a function of the emitter-focus y-distance, for SpinFlux
with varying pinhole separations and widefield SMLM. (g) Average amount of background photons per pixel
after compensation for non-maximum illumination intensity as a function of the emitter-focus y-distance, for
SpinFlux with varying pinhole separations and widefield SMLM. (h) CRLB in the x-direction as a function of
expected signal photon count for varying values of the expected background photon count. The pinhole radius
rp = 3σPSF and pinhole separation s = 4σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S8: Theoretical minimum localization uncertainty of SpinFlux localization with two patterns with-
out pinholes separated in the x-direction. in (b)-(f ), 2000 expected signal photons and 8 expected background
photons per pixel were used. Results are evaluated for the scenario where the entire signal photon budget is ex-
hausted after illumination with all patterns. (a) Schematic overview of SpinFlux localization with two pinholes,
separated in x and centred around the focus coordinates (xf, yf). In (c)-(f ), the x-distance (xf −θx ) between
the pattern focus and the emitter is varied, where yf = θy . (b) Example of fluorescent response in the region of
interest, resulting from illumination and emission by each pattern in (a). (c) CRLB in the x-direction as a func-
tion of the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole separations and wide-
field SMLM. (d) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance
for varying pinhole separations. (e) Average amount of signal photons after compensation for non-maximum
illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole sep-
arations and widefield SMLM. (f ) Average amount of background photons per pixel after compensation for
non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with varying
pinhole separations and widefield SMLM. (g) CRLB in the x-direction as a function of expected signal photon
count for varying values of the expected background photon count. The pattern separation s = 4σPSF was used
and (xf, yf) = (θx ,θy ).
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Figure 2.S9: Theoretical minimum localization uncertainty of SpinFlux localization with two pinholes and pat-
terns separated in the y-direction. In (c)-(g), 2000 expected signal photons and 8 expected background pho-
tons per pixel were used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where the entire
signal photon budget is exhausted after illumination with all patterns (disregarding signal photons blocked by
the spinning disk). (a) Schematic overview of SpinFlux localization with two pinholes, separated in y and cen-
tred around the focus coordinates (xf, yf). In (d)-(g), the y-distance (yf−θy ) between the pattern focus and the
emitter is varied, where xf = θx . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole
radius rp = 2σPSF and pinhole separation s = 2σPSF were used. The pinhole masks were discretized with NM,x ,
NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest, result-
ing from illumination and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of the
emitter-focus y-distance. Simulations show SpinFlux with varying pinhole separations and widefield SMLM.
(e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus y-distance for varying
pinhole separations. (f ) Average amount of signal photons after compensation for non-maximum illumina-
tion intensity as a function of the emitter-focus y-distance, for SpinFlux with varying pinhole separations and
widefield SMLM. (g) Average amount of background photons per pixel after compensation for non-maximum
illumination intensity as a function of the emitter-focus y-distance, for SpinFlux with varying pinhole sepa-
rations and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal photon count for
varying values of the expected background photon count. The pinhole radius rp = 3σPSF and pinhole separa-
tion s = 4σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S10: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
patterns in an equilateral triangle configuration. In (c)-(g), we used 2000 expected signal photons and 8 ex-
pected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario
where the entire signal photon budget is exhausted after illumination with all patterns (disregarding signal
photons blocked by the spinning disk). (a) Schematic overview of SpinFlux localization with a triangle of three
pinholes, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf−θx ) between the pattern focus and
the emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pin-
hole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks were discretized with
NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest,
resulting from illumination and emission through each pinhole in (b). (d) CRLB in the x-direction as a func-
tion of the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole spacing and widefield
SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for
varying pinhole spacing. (f ) Average amount of signal photons after compensation for non-maximum illumi-
nation intensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and
widefield SMLM. (g) Average amount of background photons per pixel after compensation for non-maximum
illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing
and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal photon count for varying val-
ues of the expected background photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF
were used and (xf, yf) = (θx ,θy ).
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Figure 2.S11: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
patterns in a 90◦ rotated equilateral triangle configuration. The pattern is rotated clockwise by 90 degrees with
respect Fig. 2.S10. In (c)-(g), we used 2000 expected signal photons and 8 expected background photons per
pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where the entire signal photon
budget is exhausted after illumination with all patterns (disregarding signal photons blocked by the spinning
disk). (a) Schematic overview of SpinFlux localization with a triangle of three pinholes, centred at focus coor-
dinates (xf, yf). In (d)-(g), the x-distance (xf −θx ) between the pattern focus and the emitter is varied, where
yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and
pinhole spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh
pixels in each direction. (c) Example of fluorescent response in the region of interest, resulting from illumina-
tion and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus
x-distance. Simulations show SpinFlux with varying pinhole spacing and widefield SMLM. (e) Improvement
of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying pinhole spacing.
(f ) Average amount of signal photons after compensation for non-maximum illumination intensity as a func-
tion of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Av-
erage amount of background photons per pixel after compensation for non-maximum illumination intensity
as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM.
(h) CRLB in the x-direction as a function of expected signal photon count for varying values of the expected
background photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and
(xf, yf) = (θx ,θy ).
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Figure 2.S12: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
patterns in an equilateral triangle configuration with a centre pinhole. In (c)-(g), we used 2000 expected signal
photons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated
for the scenario where the entire signal photon budget is exhausted after illumination with all patterns (disre-
garding signal photons blocked by the spinning disk). (a) Schematic overview of SpinFlux localization with a
triangle of three pinholes with an additional centre pinhole, centred at focus coordinates (xf, yf). In (d)-(g), the
x-distance (xf−θx ) between the pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes
in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were
used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of
fluorescent response in the region of interest, resulting from illumination and emission through each pinhole
in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux
with varying pinhole spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a
function of the emitter-focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons
after compensation for non-maximum illumination intensity as a function of the emitter-focus x-distance,
for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average amount of background photons
per pixel after compensation for non-maximum illumination intensity as a function of the emitter-focus x-
distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a
function of expected signal photon count for varying values of the expected background photon count. The
pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S13: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
patterns in a 90◦ rotated equilateral triangle configuration with a centre pinhole. The pattern is rotated clock-
wise by 90 degrees with respect to Fig. 2.S12. In (c)-(g), we used 2000 expected signal photons and 8 expected
background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the entire signal photon budget is exhausted after illumination with all patterns (disregarding signal photons
blocked by the spinning disk). (a) Schematic overview of SpinFlux localization with a triangle of three pin-
holes with an additional centre pinhole, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf−θx )
between the pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes in the region of
interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pin-
hole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent
response in the region of interest, resulting from illumination and emission through each pinhole in (b). (d)
CRLB in the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux with varying
pinhole spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a function of the
emitter-focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons after compensa-
tion for non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with
varying pinhole spacing and widefield SMLM. (g) Average amount of background photons per pixel after com-
pensation for non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux
with varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal
photon count for varying values of the expected background photon count. The pinhole radius rp = 3σPSF and
pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S14: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
donut-shaped patterns in an equilateral triangle configuration. In (c)-(g), we used 2000 expected signal pho-
tons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for
the scenario where the entire signal photon budget is exhausted after illumination with all patterns (disre-
garding signal photons blocked by the spinning disk). (a) Schematic overview of SpinFlux localization with a
triangle of three pinholes, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf −θx ) between the
pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650
× 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks
were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response
in the region of interest, resulting from illumination and emission through each pinhole in (b). (d) CRLB in
the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole
spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-
focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons after compensation for
non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with varying
pinhole spacing and widefield SMLM. (g) Average amount of background photons per pixel after compensa-
tion for non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with
varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal
photon count for varying values of the expected background photon count. The pinhole radius rp = 3σPSF
and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S15: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
donut-shaped patterns in a 90◦ rotated equilateral triangle configuration. The pattern is rotated clockwise by
90 degrees with respect to Fig. 2.4. In (c)-(g), we used 2000 expected signal photons and 8 expected background
photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where the entire sig-
nal photon budget is exhausted after illumination with all patterns (disregarding signal photons blocked by
the spinning disk). (a) Schematic overview of SpinFlux localization with a triangle of three pinholes, centred
at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf − θx ) between the pattern focus and the emitter
is varied, where yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole ra-
dius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x ,
NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest, result-
ing from illumination and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of
the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole spacing and widefield SMLM.
(e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying
pinhole spacing. (f ) Average amount of signal photons after compensation for non-maximum illumination in-
tensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield
SMLM. (g) Average amount of background photons per pixel after compensation for non-maximum illumi-
nation intensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and
widefield SMLM. (h) CRLB in the x-direction as a function of expected signal photon count for varying values
of the expected background photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were
used and (xf, yf) = (θx ,θy ).
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Figure 2.S16: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
donut-shaped patterns in an equilateral triangle configuration with a centre pinhole. In (c)-(g), we used 2000
expected signal photons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Re-
sults are evaluated for the scenario where the entire signal photon budget is exhausted after illumination with
all patterns (disregarding signal photons blocked by the spinning disk). (a) Schematic overview of SpinFlux
localization with a triangle of three pinholes with an additional centre pinhole, centred at focus coordinates
(xf, yf). In (d)-(g), the x-distance (xf −θx ) between the pattern focus and the emitter is varied, where yf = θy .
(b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole
spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in
each direction. (c) Example of fluorescent response in the region of interest, resulting from illumination and
emission through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance.
Simulations show SpinFlux with varying pinhole spacing and widefield SMLM. (e) Improvement of the Spin-
Flux CRLB over SMLM as a function of the emitter-focus x-distance for varying pinhole spacing. (f ) Average
amount of signal photons after compensation for non-maximum illumination intensity as a function of the
emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average amount
of background photons per pixel after compensation for non-maximum illumination intensity as a function
of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB in
the x-direction as a function of expected signal photon count for varying values of the expected background
photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S17: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
donut-shaped patterns in a 90◦ rotated equilateral triangle configuration with a centre pinhole. The pattern
is rotated clockwise by 90 degrees with respect to Fig. 2.S12. In (c)-(g), we used 2000 expected signal photons
and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the
scenario where the entire signal photon budget is exhausted after illumination with all patterns (disregarding
signal photons blocked by the spinning disk). (a) Schematic overview of SpinFlux localization with a triangle
of three pinholes with an additional centre pinhole, centred at focus coordinates (xf, yf). In (d)-(g), the x-
distance (xf −θx ) between the pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes
in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were
used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of
fluorescent response in the region of interest, resulting from illumination and emission through each pinhole
in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux
with varying pinhole spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a
function of the emitter-focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons
after compensation for non-maximum illumination intensity as a function of the emitter-focus x-distance,
for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average amount of background photons
per pixel after compensation for non-maximum illumination intensity as a function of the emitter-focus x-
distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a
function of expected signal photon count for varying values of the expected background photon count. The
pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S18: Theoretical minimum localization uncertainty of SpinFlux localization with one x-offset pinhole
and pattern. In (c)-(g), 2000 expected signal photons and 8 expected background photons per pixel were used.
Results are evaluated for the scenario where the illumination power and time are constant during illumination
with this pattern. (a) Schematic overview of SpinFlux localization with one pinhole with radius rp, centred at
coordinates (xp, yp). In (d)-(g), the x-distance (xp −θx ) between the pinhole and the emitter is varied, where
yp = θy . (b) Example of pinhole in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF was
used. The pinhole mask was discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of
fluorescent response in the region of interest, resulting from illumination and emission through the pinhole
in (b). (d) CRLB in the x-direction as a function of the emitter-pinhole x-distance. Simulations show Spin-
Flux with varying pinhole sizes and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a
function of the emitter-pinhole x-distance for varying pinhole sizes. (f ) Average amount of signal photons af-
ter compensation for non-maximum illumination intensity as a function of the emitter-pinhole x-distance, for
SpinFlux with varying pinhole sizes and widefield SMLM. (g) Average amount of background photons per pixel
after compensation for non-maximum illumination intensity as a function of the emitter-pinhole x-distance,
for SpinFlux with varying pinhole sizes and widefield SMLM. (h) CRLB in the x-direction as a function of the
expected signal photon count for varying values of the expected background photon count. The pinhole radius
rp = 3σPSF was used and (xp, yp) = (θx ,θy ).
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Figure 2.S19: Theoretical minimum localization uncertainty of SpinFlux localization with one y-offset pinhole
and pattern. In (c)-(g), 2000 expected signal photons and 8 expected background photons per pixel were used.
Results are evaluated for the scenario where the illumination power and time are constant during illumination
with this pattern. (a) Schematic overview of SpinFlux localization with one pinhole with radius rp, centred at
coordinates (xp, yp). In (d)-(g), the y-distance (yp −θy ) between the pinhole and the emitter is varied, where
xp = θx . (b) Example of pinhole in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF was
used. The pinhole mask was discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of
fluorescent response in the region of interest, resulting from illumination and emission through the pinhole
in (b). (d) CRLB in the x-direction as a function of the emitter-pinhole y-distance. Simulations show Spin-
Flux with varying pinhole sizes and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a
function of the emitter-pinhole y-distance for varying pinhole sizes. (f ) Average amount of signal photons af-
ter compensation for non-maximum illumination intensity as a function of the emitter-pinhole y-distance, for
SpinFlux with varying pinhole sizes and widefield SMLM. (g) Average amount of background photons per pixel
after compensation for non-maximum illumination intensity as a function of the emitter-pinhole y-distance,
for SpinFlux with varying pinhole sizes and widefield SMLM. (h) CRLB in the x-direction as a function of the
expected signal photon count for varying values of the expected background photon count. The pinhole radius
rp = 3σPSF was used and (xp, yp) = (θx ,θy ).
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Figure 2.S20: Theoretical minimum localization uncertainty of SpinFlux localization with two pinholes and
patterns separated in the x-direction. In (c)-(g), 2000 expected signal photons and 8 expected background
photons per pixel were used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the illumination power and time are constant during illumination with all patterns. (a) Schematic overview of
SpinFlux localization with two pinholes, separated in x and centred around the focus coordinates (xf, yf). In
(d)-(g), the x-distance (xf −θx ) between the pattern focus and the emitter is varied, where yf = θy . (b) Exam-
ple of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole separation
s = 2σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direction.
(c) Example of fluorescent response in the region of interest, resulting from illumination and emission through
each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance. Simulations show
SpinFlux with varying pinhole separations and widefield SMLM. (e) Improvement of the SpinFlux CRLB over
SMLM as a function of the emitter-focus x-distance for varying pinhole separations. (f ) Average amount of
signal photons after compensation for non-maximum illumination intensity as a function of the emitter-focus
x-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (g) Average amount of back-
ground photons per pixel after compensation for non-maximum illumination intensity as a function of the
emitter-focus x-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (h) CRLB in the
x-direction as a function of expected signal photon count for varying values of the expected background pho-
ton count. The pinhole radius rp = 3σPSF and pinhole separation s = 4σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S21: Theoretical minimum localization uncertainty of SpinFlux localization with two y-offset pinholes
and patterns separated in the x-direction. In (c)-(g), 2000 expected signal photons and 8 expected background
photons per pixel were used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the illumination power and time are constant during illumination with all patterns. (a) Schematic overview of
SpinFlux localization with two pinholes, separated in x and centred around the focus coordinates (xf, yf). In
(d)-(g), the y-distance (yf −θy ) between the pattern focus and the emitter is varied, where xf = θx . (b) Exam-
ple of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole separation
s = 2σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direction.
(c) Example of fluorescent response in the region of interest, resulting from illumination and emission through
each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus y-distance. Simulations show
SpinFlux with varying pinhole separations and widefield SMLM. (e) Improvement of the SpinFlux CRLB over
SMLM as a function of the emitter-focus y-distance for varying pinhole separations. (f ) Average amount of
signal photons after compensation for non-maximum illumination intensity as a function of the emitter-focus
y-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (g) Average amount of back-
ground photons per pixel after compensation for non-maximum illumination intensity as a function of the
emitter-focus y-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (h) CRLB in the
x-direction as a function of expected signal photon count for varying values of the expected background pho-
ton count. The pinhole radius rp = 3σPSF and pinhole separation s = 4σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S22: Theoretical minimum localization uncertainty of SpinFlux localization with two patterns with-
out pinholes separated in the x-direction. in (b)-(f ), 2000 expected signal photons and 8 expected background
photons per pixel were used. Results are evaluated for the scenario where the illumination power and time
are constant during illumination with all patterns. (a) Schematic overview of SpinFlux localization with two
pinholes, separated in x and centred around the focus coordinates (xf, yf). In (c)-(f ), the x-distance (xf −θx )
between the pattern focus and the emitter is varied, where yf = θy . (b) Example of fluorescent response in the
region of interest, resulting from illumination and emission by each pattern in (a). (c) CRLB in the x-direction
as a function of the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole separations
and widefield SMLM. (d) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus
x-distance for varying pinhole separations. (e) Average amount of signal photons after compensation for non-
maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with varying pin-
hole separations and widefield SMLM. (f ) Average amount of background photons per pixel after compensa-
tion for non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with
varying pinhole separations and widefield SMLM. (g) CRLB in the x-direction as a function of expected signal
photon count for varying values of the expected background photon count. The pattern separation s = 4σPSF
was used and (xf, yf) = (θx ,θy ).
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Figure 2.S23: Theoretical minimum localization uncertainty of SpinFlux localization with two pinholes and
patterns separated in the y-direction. In (c)-(g), 2000 expected signal photons and 8 expected background
photons per pixel were used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the illumination power and time are constant during illumination with all patterns. (a) Schematic overview of
SpinFlux localization with two pinholes, separated in y and centred around the focus coordinates (xf, yf). In
(d)-(g), the y-distance (yf −θy ) between the pattern focus and the emitter is varied, where xf = θx . (b) Exam-
ple of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole separation
s = 2σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direction.
(c) Example of fluorescent response in the region of interest, resulting from illumination and emission through
each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus y-distance. Simulations show
SpinFlux with varying pinhole separations and widefield SMLM. (e) Improvement of the SpinFlux CRLB over
SMLM as a function of the emitter-focus y-distance for varying pinhole separations. (f ) Average amount of
signal photons after compensation for non-maximum illumination intensity as a function of the emitter-focus
y-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (g) Average amount of back-
ground photons per pixel after compensation for non-maximum illumination intensity as a function of the
emitter-focus y-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (h) CRLB in the
x-direction as a function of expected signal photon count for varying values of the expected background pho-
ton count. The pinhole radius rp = 3σPSF and pinhole separation s = 4σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S24: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
patterns in an equilateral triangle configuration. In (c)-(g), we used 2000 expected signal photons and 8 ex-
pected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario
where the illumination power and time are constant during illumination with all patterns. (a) Schematic
overview of SpinFlux localization with a triangle of three pinholes, centred at focus coordinates (xf, yf). In
(d)-(g), the x-distance (xf −θx ) between the pattern focus and the emitter is varied, where yf = θy . (b) Exam-
ple of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing
r = 1.5σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direc-
tion. (c) Example of fluorescent response in the region of interest, resulting from illumination and emission
through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance. Simula-
tions show SpinFlux with varying pinhole spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB
over SMLM as a function of the emitter-focus x-distance for varying pinhole spacing. (f ) Average amount of
signal photons after compensation for non-maximum illumination intensity as a function of the emitter-focus
x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average amount of background
photons per pixel after compensation for non-maximum illumination intensity as a function of the emitter-
focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction
as a function of expected signal photon count for varying values of the expected background photon count.
The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S25: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
patterns in a 90◦ rotated equilateral triangle configuration. The pattern is rotated clockwise by 90 degrees with
respect to Fig. 2.S24. In (c)-(g), we used 2000 expected signal photons and 8 expected background photons per
pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where the illumination power and
time are constant during illumination with all patterns. (a) Schematic overview of SpinFlux localization with a
triangle of three pinholes, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf −θx ) between the
pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650
× 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks
were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response
in the region of interest, resulting from illumination and emission through each pinhole in (b). (d) CRLB in
the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole
spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-
focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons after compensation for
non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with varying
pinhole spacing and widefield SMLM. (g) Average amount of background photons per pixel after compensa-
tion for non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with
varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal
photon count for varying values of the expected background photon count. The pinhole radius rp = 3σPSF
and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S26: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
patterns in an equilateral triangle configuration with a centre pinhole. In (c)-(g), we used 2000 expected signal
photons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated
for the scenario where the illumination power and time are constant during illumination with all patterns. (a)
Schematic overview of SpinFlux localization with a triangle of three pinholes with an additional centre pin-
hole, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf−θx ) between the pattern focus and the
emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole
radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x ,
NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest, result-
ing from illumination and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of
the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole spacing and widefield SMLM.
(e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying
pinhole spacing. (f ) Average amount of signal photons after compensation for non-maximum illumination in-
tensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield
SMLM. (g) Average amount of background photons per pixel after compensation for non-maximum illumi-
nation intensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and
widefield SMLM. (h) CRLB in the x-direction as a function of expected signal photon count for varying values
of the expected background photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were
used and (xf, yf) = (θx ,θy ).
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Figure 2.S27: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
patterns in a 90◦ rotated equilateral triangle configuration with a centre pinhole. The pattern is rotated clock-
wise by 90 degrees with respect to Fig. 2.S26. In (c)-(g), we used 2000 expected signal photons and 8 expected
background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the illumination power and time are constant during illumination with all patterns. (a) Schematic overview
of SpinFlux localization with a triangle of three pinholes with an additional centre pinhole, centred at focus
coordinates (xf, yf). In (d)-(g), the x-distance (xf − θx ) between the pattern focus and the emitter is varied,
where yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF
and pinhole spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh
pixels in each direction. (c) Example of fluorescent response in the region of interest, resulting from illumina-
tion and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus
x-distance. Simulations show SpinFlux with varying pinhole spacing and widefield SMLM. (e) Improvement
of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying pinhole spacing.
(f ) Average amount of signal photons after compensation for non-maximum illumination intensity as a func-
tion of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Av-
erage amount of background photons per pixel after compensation for non-maximum illumination intensity
as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM.
(h) CRLB in the x-direction as a function of expected signal photon count for varying values of the expected
background photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and
(xf, yf) = (θx ,θy ).
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Figure 2.S28: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
donut-shaped patterns in an equilateral triangle configuration. In (c)-(g), we used 2000 expected signal pho-
tons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for
the scenario where the illumination power and time are constant during illumination with all patterns. (a)
Schematic overview of SpinFlux localization with a triangle of three pinholes, centred at focus coordinates
(xf, yf). In (d)-(g), the x-distance (xf −θx ) between the pattern focus and the emitter is varied, where yf = θy .
(b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole
spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in
each direction. (c) Example of fluorescent response in the region of interest, resulting from illumination and
emission through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance.
Simulations show SpinFlux with varying pinhole spacing and widefield SMLM. (e) Improvement of the Spin-
Flux CRLB over SMLM as a function of the emitter-focus x-distance for varying pinhole spacing. (f ) Average
amount of signal photons after compensation for non-maximum illumination intensity as a function of the
emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average amount
of background photons per pixel after compensation for non-maximum illumination intensity as a function
of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB in
the x-direction as a function of expected signal photon count for varying values of the expected background
photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S29: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
donut-shaped patterns in a 90◦ rotated equilateral triangle configuration. The pattern is rotated clockwise
by 90 degrees with respect to Fig. 2.S24. In (c)-(g), we used 2000 expected signal photons and 8 expected
background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the illumination power and time are constant during illumination with all patterns. (a) Schematic overview
of SpinFlux localization with a triangle of three pinholes, centred at focus coordinates (xf, yf). In (d)-(g), the
x-distance (xf−θx ) between the pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes
in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were
used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of
fluorescent response in the region of interest, resulting from illumination and emission through each pinhole
in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux
with varying pinhole spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a
function of the emitter-focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons
after compensation for non-maximum illumination intensity as a function of the emitter-focus x-distance,
for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average amount of background photons
per pixel after compensation for non-maximum illumination intensity as a function of the emitter-focus x-
distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a
function of expected signal photon count for varying values of the expected background photon count. The
pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S30: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
donut-shaped patterns in an equilateral triangle configuration with a centre pinhole. In (c)-(g), we used 2000
expected signal photons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Re-
sults are evaluated for the scenario where the illumination power and time are constant during illumination
with all patterns. (a) Schematic overview of SpinFlux localization with a triangle of three pinholes with an ad-
ditional centre pinhole, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf −θx ) between the
pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650
× 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks
were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response
in the region of interest, resulting from illumination and emission through each pinhole in (b). (d) CRLB in
the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole
spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-
focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons after compensation for
non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with varying
pinhole spacing and widefield SMLM. (g) Average amount of background photons per pixel after compensa-
tion for non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with
varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal
photon count for varying values of the expected background photon count. The pinhole radius rp = 3σPSF
and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S31: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
donut-shaped patterns in a 90◦ rotated equilateral triangle configuration with a centre pinhole. The pattern
is rotated clockwise by 90 degrees with respect to Fig. 2.S26. In (c)-(g), we used 2000 expected signal pho-
tons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for
the scenario where the illumination power and time are constant during illumination with all patterns. (a)
Schematic overview of SpinFlux localization with a triangle of three pinholes with an additional centre pin-
hole, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf−θx ) between the pattern focus and the
emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole
radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x ,
NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest, result-
ing from illumination and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of
the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole spacing and widefield SMLM.
(e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying
pinhole spacing. (f ) Average amount of signal photons after compensation for non-maximum illumination in-
tensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield
SMLM. (g) Average amount of background photons per pixel after compensation for non-maximum illumi-
nation intensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and
widefield SMLM. (h) CRLB in the x-direction as a function of expected signal photon count for varying values
of the expected background photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were
used and (xf, yf) = (θx ,θy ).
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Figure 2.S32: Theoretical minimum localization uncertainty of SpinFlux localization with one x-offset pin-
hole and pattern. In (c)-(g), 2000 expected signal photons and 8 expected background photons per pixel were
used. Results are evaluated for the scenario where the entire signal photon budget is exhausted after illumi-
nation with the pattern (disregarding signal photons blocked by the spinning disk), neglecting the effects of
pattern-dependent background. (a) Schematic overview of SpinFlux localization with one pinhole with radius
rp, centred at coordinates (xp, yp). In (d)-(g), the x-distance (xp −θx ) between the pinhole and the emitter
is varied, where yp = θy . (b) Example of pinhole in the region of interest (650 × 650 nm). The pinhole radius
rp = 2σPSF was used. The pinhole mask was discretized with NM,x , NM,y = 100 mesh pixels in each direction.
(c) Example of fluorescent response in the region of interest, resulting from illumination and emission through
the pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-pinhole x-distance. Simulations
show SpinFlux with varying pinhole sizes and widefield SMLM. (e) Improvement of the SpinFlux CRLB over
SMLM as a function of the emitter-pinhole x-distance for varying pinhole sizes. (f ) Average amount of sig-
nal photons after compensation for non-maximum illumination intensity as a function of the emitter-pinhole
x-distance, for SpinFlux with varying pinhole sizes and widefield SMLM. (g) Average amount of background
photons per pixel as a function of the emitter-pinhole x-distance, for SpinFlux with varying pinhole sizes and
widefield SMLM. (h) CRLB in the x-direction as a function of the expected signal photon count for varying val-
ues of the expected background photon count. The pinhole radius rp = 3σPSF was used and (xp, yp) = (θx ,θy ).
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Figure 2.S33: Theoretical minimum localization uncertainty of SpinFlux localization with one y-offset pin-
hole and pattern. In (c)-(g), 2000 expected signal photons and 8 expected background photons per pixel were
used. Results are evaluated for the scenario where the entire signal photon budget is exhausted after illumi-
nation with the pattern (disregarding signal photons blocked by the spinning disk), neglecting the effects of
pattern-dependent background. (a) Schematic overview of SpinFlux localization with one pinhole with radius
rp, centred at coordinates (xp, yp). In (d)-(g), the y-distance (yp −θy ) between the pinhole and the emitter
is varied, where xp = θx . (b) Example of pinhole in the region of interest (650 × 650 nm). The pinhole radius
rp = 2σPSF was used. The pinhole mask was discretized with NM,x , NM,y = 100 mesh pixels in each direction.
(c) Example of fluorescent response in the region of interest, resulting from illumination and emission through
the pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-pinhole y-distance. Simulations
show SpinFlux with varying pinhole sizes and widefield SMLM. (e) Improvement of the SpinFlux CRLB over
SMLM as a function of the emitter-pinhole y-distance for varying pinhole sizes. (f ) Average amount of sig-
nal photons after compensation for non-maximum illumination intensity as a function of the emitter-pinhole
y-distance, for SpinFlux with varying pinhole sizes and widefield SMLM. (g) Average amount of background
photons per pixel as a function of the emitter-pinhole y-distance, for SpinFlux with varying pinhole sizes and
widefield SMLM. (h) CRLB in the x-direction as a function of the expected signal photon count for varying val-
ues of the expected background photon count. The pinhole radius rp = 3σPSF was used and (xp, yp) = (θx ,θy ).
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Figure 2.S34: Theoretical minimum localization uncertainty of SpinFlux localization with two pinholes and
patterns separated in the x-direction. In (c)-(g), 2000 expected signal photons and 8 expected background
photons per pixel were used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the entire signal photon budget is exhausted after illumination with all patterns (disregarding signal pho-
tons blocked by the spinning disk), neglecting the effects of pattern-dependent background. (a) Schematic
overview of SpinFlux localization with two pinholes, separated in x and centred around the focus coordinates
(xf, yf). In (d)-(g), the x-distance (xf−θx ) between the pattern focus and the emitter is varied, where yf = θy . (b)
Example of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole sep-
aration s = 2σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each
direction. (c) Example of fluorescent response in the region of interest, resulting from illumination and emis-
sion through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance.
Simulations show SpinFlux with varying pinhole separations and widefield SMLM. (e) Improvement of the
SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying pinhole separations. (f )
Average amount of signal photons after compensation for non-maximum illumination intensity as a function
of the emitter-focus x-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (g) Aver-
age amount of background photons per pixel as a function of the emitter-focus x-distance, for SpinFlux with
varying pinhole separations and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal
photon count for varying values of the expected background photon count. The pinhole radius rp = 3σPSF and
pinhole separation s = 4σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S35: Theoretical minimum localization uncertainty of SpinFlux localization with two y-offset pinholes
and patterns separated in the x-direction. In (c)-(g), 2000 expected signal photons and 8 expected background
photons per pixel were used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the entire signal photon budget is exhausted after illumination with all patterns (disregarding signal pho-
tons blocked by the spinning disk), neglecting the effects of pattern-dependent background. (a) Schematic
overview of SpinFlux localization with two pinholes, separated in x and centred around the focus coordinates
(xf, yf). In (d)-(g), the y-distance (yf−θy ) between the pattern focus and the emitter is varied, where xf = θx . (b)
Example of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole sep-
aration s = 2σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each
direction. (c) Example of fluorescent response in the region of interest, resulting from illumination and emis-
sion through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus y-distance.
Simulations show SpinFlux with varying pinhole separations and widefield SMLM. (e) Improvement of the
SpinFlux CRLB over SMLM as a function of the emitter-focus y-distance for varying pinhole separations. (f )
Average amount of signal photons after compensation for non-maximum illumination intensity as a function
of the emitter-focus y-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (g) Aver-
age amount of background photons per pixel as a function of the emitter-focus y-distance, for SpinFlux with
varying pinhole separations and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal
photon count for varying values of the expected background photon count. The pinhole radius rp = 3σPSF and
pinhole separation s = 4σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S36: Theoretical minimum localization uncertainty of SpinFlux localization with two patterns without
pinholes separated in the x-direction. in (b)-(f ), 2000 expected signal photons and 8 expected background
photons per pixel were used. Results are evaluated for the scenario where the entire signal photon budget is
exhausted after illumination with all patterns, neglecting the effects of pattern-dependent background. (a)
Schematic overview of SpinFlux localization with two pinholes, separated in x and centred around the focus
coordinates (xf, yf). In (c)-(f ), the x-distance (xf−θx ) between the pattern focus and the emitter is varied, where
yf = θy . (b) Example of fluorescent response in the region of interest, resulting from illumination and emission
by each pattern in (a). (c) CRLB in the x-direction as a function of the emitter-focus x-distance. Simulations
show SpinFlux with varying pinhole separations and widefield SMLM. (d) Improvement of the SpinFlux CRLB
over SMLM as a function of the emitter-focus x-distance for varying pinhole separations. (e) Average amount
of signal photons after compensation for non-maximum illumination intensity as a function of the emitter-
focus x-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (f ) Average amount of
background photons per pixel as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole
separations and widefield SMLM. (g) CRLB in the x-direction as a function of expected signal photon count
for varying values of the expected background photon count. The pattern separation s = 4σPSF was used and
(xf, yf) = (θx ,θy ).

106



2

Su
p

p
o

rt
in

g
In

fo
rm

at
io

n
fo

r
C

h
ap

te
r

2

a b c

d e

f g h

Figure 2.S37: Theoretical minimum localization uncertainty of SpinFlux localization with two pinholes and
patterns separated in the y-direction. In (c)-(g), 2000 expected signal photons and 8 expected background
photons per pixel were used, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the entire signal photon budget is exhausted after illumination with all patterns (disregarding signal pho-
tons blocked by the spinning disk), neglecting the effects of pattern-dependent background. (a) Schematic
overview of SpinFlux localization with two pinholes, separated in y and centred around the focus coordinates
(xf, yf). In (d)-(g), the y-distance (yf−θy ) between the pattern focus and the emitter is varied, where xf = θx . (b)
Example of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole sep-
aration s = 2σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each
direction. (c) Example of fluorescent response in the region of interest, resulting from illumination and emis-
sion through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus y-distance.
Simulations show SpinFlux with varying pinhole separations and widefield SMLM. (e) Improvement of the
SpinFlux CRLB over SMLM as a function of the emitter-focus y-distance for varying pinhole separations. (f )
Average amount of signal photons after compensation for non-maximum illumination intensity as a function
of the emitter-focus y-distance, for SpinFlux with varying pinhole separations and widefield SMLM. (g) Aver-
age amount of background photons per pixel as a function of the emitter-focus y-distance, for SpinFlux with
varying pinhole separations and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal
photon count for varying values of the expected background photon count. The pinhole radius rp = 3σPSF and
pinhole separation s = 4σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S38: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
patterns in an equilateral triangle configuration. In (c)-(g), we used 2000 expected signal photons and 8 ex-
pected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario
where the entire signal photon budget is exhausted after illumination with all patterns (disregarding signal
photons blocked by the spinning disk), neglecting the effects of pattern-dependent background. (a) Schematic
overview of SpinFlux localization with a triangle of three pinholes, centred at focus coordinates (xf, yf). In
(d)-(g), the x-distance (xf −θx ) between the pattern focus and the emitter is varied, where yf = θy . (b) Exam-
ple of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing
r = 1.5σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direc-
tion. (c) Example of fluorescent response in the region of interest, resulting from illumination and emission
through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance. Simula-
tions show SpinFlux with varying pinhole spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB
over SMLM as a function of the emitter-focus x-distance for varying pinhole spacing. (f ) Average amount of
signal photons after compensation for non-maximum illumination intensity as a function of the emitter-focus
x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average amount of background
photons per pixel as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and
widefield SMLM. (h) CRLB in the x-direction as a function of expected signal photon count for varying values
of the expected background photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were
used and (xf, yf) = (θx ,θy ).
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Figure 2.S39: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
patterns in a 90◦ rotated equilateral triangle configuration. The pattern is rotated clockwise by 90 degrees with
respect to Fig. 2.S38. In (c)-(g), we used 2000 expected signal photons and 8 expected background photons
per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where the entire signal photon
budget is exhausted after illumination with all patterns (disregarding signal photons blocked by the spinning
disk), neglecting the effects of pattern-dependent background. (a) Schematic overview of SpinFlux localiza-
tion with a triangle of three pinholes, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf −θx )
between the pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes in the region of
interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pin-
hole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent
response in the region of interest, resulting from illumination and emission through each pinhole in (b). (d)
CRLB in the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux with varying
pinhole spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a function of the
emitter-focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons after compensa-
tion for non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with
varying pinhole spacing and widefield SMLM. (g) Average amount of background photons per pixel as a func-
tion of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB
in the x-direction as a function of expected signal photon count for varying values of the expected background
photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S40: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
patterns in an equilateral triangle configuration with a centre pinhole. In (c)-(g), we used 2000 expected signal
photons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated
for the scenario where the entire signal photon budget is exhausted after illumination with all patterns (disre-
garding signal photons blocked by the spinning disk), neglecting the effects of pattern-dependent background.
(a) Schematic overview of SpinFlux localization with a triangle of three pinholes with an additional centre pin-
hole, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf−θx ) between the pattern focus and the
emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole
radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x ,
NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest, result-
ing from illumination and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of
the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole spacing and widefield SMLM.
(e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying
pinhole spacing. (f ) Average amount of signal photons after compensation for non-maximum illumination in-
tensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield
SMLM. (g) Average amount of background photons per pixel as a function of the emitter-focus x-distance, for
SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a function of ex-
pected signal photon count for varying values of the expected background photon count. The pinhole radius
rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S41: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
patterns in a 90◦ rotated equilateral triangle configuration with a centre pinhole. The pattern is rotated clock-
wise by 90 degrees with respect to Fig. 2.S40. In (c)-(g), we used 2000 expected signal photons and 8 expected
background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where
the entire signal photon budget is exhausted after illumination with all patterns (disregarding signal pho-
tons blocked by the spinning disk), neglecting the effects of pattern-dependent background. (a) Schematic
overview of SpinFlux localization with a triangle of three pinholes with an additional centre pinhole, centred at
focus coordinates (xf, yf). In (d)-(g), the x-distance (xf−θx ) between the pattern focus and the emitter is varied,
where yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF
and pinhole spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh
pixels in each direction. (c) Example of fluorescent response in the region of interest, resulting from illumina-
tion and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus
x-distance. Simulations show SpinFlux with varying pinhole spacing and widefield SMLM. (e) Improvement
of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying pinhole spacing. (f )
Average amount of signal photons after compensation for non-maximum illumination intensity as a function
of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average
amount of background photons per pixel as a function of the emitter-focus x-distance, for SpinFlux with vary-
ing pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal photon
count for varying values of the expected background photon count. The pinhole radius rp = 3σPSF and pin-
hole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S42: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
donut-shaped patterns in an equilateral triangle configuration. In (c)-(g), we used 2000 expected signal pho-
tons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for
the scenario where the entire signal photon budget is exhausted after illumination with all patterns (disregard-
ing signal photons blocked by the spinning disk), neglecting the effects of pattern-dependent background.
(a) Schematic overview of SpinFlux localization with a triangle of three pinholes, centred at focus coordinates
(xf, yf). In (d)-(g), the x-distance (xf −θx ) between the pattern focus and the emitter is varied, where yf = θy .
(b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole
spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in
each direction. (c) Example of fluorescent response in the region of interest, resulting from illumination and
emission through each pinhole in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance.
Simulations show SpinFlux with varying pinhole spacing and widefield SMLM. (e) Improvement of the Spin-
Flux CRLB over SMLM as a function of the emitter-focus x-distance for varying pinhole spacing. (f ) Average
amount of signal photons after compensation for non-maximum illumination intensity as a function of the
emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average amount
of background photons per pixel as a function of the emitter-focus x-distance, for SpinFlux with varying pin-
hole spacing and widefield SMLM. (h) CRLB in the x-direction as a function of expected signal photon count
for varying values of the expected background photon count. The pinhole radius rp = 3σPSF and pinhole spac-
ing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S43: Theoretical minimum localization uncertainty of SpinFlux localization with three pinholes and
donut-shaped patterns in a 90◦ rotated equilateral triangle configuration. The pattern is rotated clockwise by
90 degrees with respect to Fig. 2.S38. In (c)-(g), we used 2000 expected signal photons and 8 expected back-
ground photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the scenario where the en-
tire signal photon budget is exhausted after illumination with all patterns (disregarding signal photons blocked
by the spinning disk), neglecting the effects of pattern-dependent background. (a) Schematic overview of
SpinFlux localization with a triangle of three pinholes, centred at focus coordinates (xf, yf). In (d)-(g), the x-
distance (xf −θx ) between the pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes
in the region of interest (650 × 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were
used. The pinhole masks were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of
fluorescent response in the region of interest, resulting from illumination and emission through each pinhole
in (b). (d) CRLB in the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux
with varying pinhole spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a
function of the emitter-focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons
after compensation for non-maximum illumination intensity as a function of the emitter-focus x-distance, for
SpinFlux with varying pinhole spacing and widefield SMLM. (g) Average amount of background photons per
pixel as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield
SMLM. (h) CRLB in the x-direction as a function of expected signal photon count for varying values of the
expected background photon count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used
and (xf, yf) = (θx ,θy ).
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Figure 2.S44: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
donut-shaped patterns in an equilateral triangle configuration with a centre pinhole. In (c)-(g), we used 2000
expected signal photons and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Re-
sults are evaluated for the scenario where the entire signal photon budget is exhausted after illumination
with all patterns (disregarding signal photons blocked by the spinning disk), neglecting the effects of pattern-
dependent background. (a) Schematic overview of SpinFlux localization with a triangle of three pinholes with
an additional centre pinhole, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf −θx ) between
the pattern focus and the emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650
× 650 nm). The pinhole radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks
were discretized with NM,x , NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response
in the region of interest, resulting from illumination and emission through each pinhole in (b). (d) CRLB in
the x-direction as a function of the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole
spacing and widefield SMLM. (e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-
focus x-distance for varying pinhole spacing. (f ) Average amount of signal photons after compensation for
non-maximum illumination intensity as a function of the emitter-focus x-distance, for SpinFlux with varying
pinhole spacing and widefield SMLM. (g) Average amount of background photons per pixel as a function of
the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB in the
x-direction as a function of expected signal photon count for varying values of the expected background pho-
ton count. The pinhole radius rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Figure 2.S45: Theoretical minimum localization uncertainty of SpinFlux localization with four pinholes and
donut-shaped patterns in a 90◦ rotated equilateral triangle configuration with a centre pinhole. The pattern
is rotated clockwise by 90 degrees with respect to Fig. 2.S40. In (c)-(g), we used 2000 expected signal photons
and 8 expected background photons per pixel, with pinhole radius rp = 3σPSF. Results are evaluated for the
scenario where the entire signal photon budget is exhausted after illumination with all patterns (disregarding
signal photons blocked by the spinning disk), neglecting the effects of pattern-dependent background. (a)
Schematic overview of SpinFlux localization with a triangle of three pinholes with an additional centre pin-
hole, centred at focus coordinates (xf, yf). In (d)-(g), the x-distance (xf−θx ) between the pattern focus and the
emitter is varied, where yf = θy . (b) Example of pinholes in the region of interest (650 × 650 nm). The pinhole
radius rp = 2σPSF and pinhole spacing r = 1.5σPSF were used. The pinhole masks were discretized with NM,x ,
NM,y = 100 mesh pixels in each direction. (c) Example of fluorescent response in the region of interest, result-
ing from illumination and emission through each pinhole in (b). (d) CRLB in the x-direction as a function of
the emitter-focus x-distance. Simulations show SpinFlux with varying pinhole spacing and widefield SMLM.
(e) Improvement of the SpinFlux CRLB over SMLM as a function of the emitter-focus x-distance for varying
pinhole spacing. (f ) Average amount of signal photons after compensation for non-maximum illumination in-
tensity as a function of the emitter-focus x-distance, for SpinFlux with varying pinhole spacing and widefield
SMLM. (g) Average amount of background photons per pixel as a function of the emitter-focus x-distance, for
SpinFlux with varying pinhole spacing and widefield SMLM. (h) CRLB in the x-direction as a function of ex-
pected signal photon count for varying values of the expected background photon count. The pinhole radius
rp = 3σPSF and pinhole spacing r = 2σPSF were used and (xf, yf) = (θx ,θy ).
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Table 2.S1: Model parameters used in the SpinFlux localization precision simulations with Gaussian illumina-
tion patterns and with a Gaussian emission point spread function.

Quantity Symbol Value
Wavelength of excitation light λex 546 nm
Wavelength of emission light λem 600 nm

Amount of pixels in x- and y-direction Nx , Ny 10 pixels
Total amount of pixels Npixels Nx Ny = 100 pixels

Pixel size (x- and y-direction) ∆x, ∆y 65 nm

Emitter x-position θx
Npixels

2 ∆x = 325 nm

Emitter y-position θy
Npixels

2 ∆y = 325 nm
Expected signal photon budget θI 2000 photons

Expected background photon count θb 8 photons/pixel
Numerical aperture NA 1.35

Standard deviation of illumination PSF in x- and y-directions σillum 0.21λex
NA = 84.9 nm

Standard deviation of emission PSF in x- and y-directions σPSF 0.21λem
NA = 93.3 nm

Amount of discretization mesh pixels in x- and y-direction Nx,M , Ny,M 100 pixels
Total amount of discretization mesh pixels NM NM,x NM,y = 10000 pixels
Discretization mesh pixel size (x-direction) ∆xM

Nx
NM,x

·∆x = 6.5 nm

Discretization mesh pixel size (y-direction) ∆yM
Ny

NM,y
·∆y = 6.5 nm
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Abstract
Single-molecule localization microscopy requires sparse activation of emitters to circum-
vent the diffraction limit. In densely labelled or thick samples, overlap of emitter images
is inevitable. Single-molecule localization of these samples results in a biased parame-
ter estimate with a wrong model of the number of emitters. On the other hand, multi-
ple emitter fitting suffers from point spread function degeneracy, which increases model
and parameter uncertainty. To better estimate the model, parameters and uncertainties, a
three-dimensional Bayesian multiple emitter fitting algorithm was constructed using re-
versible jump Markov chain Monte Carlo. It reconstructs the posterior density of both the
model and the parameters, namely the three-dimensional position and photon intensity,
of overlapping emitters. The ability of the algorithm to separate two emitters at vary-
ing distance was evaluated using an astigmatic point spread function. We found that for
astigmatic imaging, the posterior distribution of the emitter positions is multimodal when
emitters are within two times the in-focus standard deviation of the point spread func-
tion. This multimodality describes the ambiguity in position that astigmatism introduces
in localization microscopy. Biplane imaging was also tested, proving capable of separat-
ing emitters up to 0.75 times the in-focus standard deviation of the point spread function
while staying free of multimodality. The posteriors seen in astigmatic and biplane imag-
ing demonstrate how the algorithm can identify point spread function degeneracy and
evaluate imaging techniques for three-dimensional multiple-emitter fitting performance.

Significance
This chapter addresses the fundamental challenge of degeneracy in three-dimensional
multiple emitter fitting. Degeneracy occurs when different spatial configurations of flu-
orophores produce nearly indistinguishable image data, making it impossible to uniquely
identify their true positions. By applying Bayesian posterior density estimation, we reveal
the conditions in which such ambiguities appear, for example in astigmatic imaging. Our
method reconstructs the full posterior distribution of the emitter position estimates, mak-
ing it possible to identify cases where point estimates may provide misleadingly confident
results. With this, we show the necessity of using probabilistic frameworks that can cap-
ture degeneracy in three-dimensional multiple emitter localization.
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3.1. Introduction

S ingle-molecule localization microscopy (SMLM) [1, 2] circumvents the diffraction
limit through localization of sparsely activated emitters and reaches theoretical min-

imum uncertainty [3]. For localization, SMLM assumes a single molecule is contained
in a region of interest (ROI). Overlap of emitter signal is inevitable in densely labelled
samples and thick samples for 3D imaging. In SMLM, denser ROIs result in inaccurate
estimates that have to be discarded.

Multiple emitter fitting [4–8] mitigates this problem by extending the model to ac-
count for more than one emitter in the ROI. For two-dimensional localization, various
high density localization methods exists, including temporal correlation [4], compressed
sensing [5, 6], deep learning [7], and posterior density reconstruction [8]. These methods
work by simultaneously estimating the model and parameters, or by making a model-
free reconstruction. In [8], reversible jump Markov chain Monte Carlo (RJMCMC) is
used, which is a Bayesian method to sample directly from the posterior distribution, re-
constructing the posterior by making a histogram of the samples. Bayesian approaches
have the added advantages of including prior information and more accurately repre-
senting the uncertainty of model and parameter estimates. The RJMCMC sampler also
makes model space jumps, changing the number of parameters while estimating the
model.

However, PSF degeneracy [9] complicates multiple emitter fitting in three-dimen-
sional localization. Fig. 3.1, b-d, illustrates these problems with high density imaging
and PSF degeneracy. As the PSF changes over depth, the image of an emitter at a given
depth may match that of a sum of emitters at different depths. Fig. 3.1e shows how an
astigmatic and tetrapod PSF change over depth. This ambiguity increases model and pa-
rameter uncertainty, where a k-emitter model can be represented by a different number
of emitters at different positions. It thus complicates the use of most 2D multiple emitter
fitting methods for 3D, as they misrepresent these uncertainties.

In this chapter, we use Bayesian posterior density estimation to identify the PSF de-
generacy in 3D multiple emitter fitting. To do so, we construct a 3D Bayesian localization
algorithm using RJMCMC [10]. The algorithm is described in detail in Section 3.S1 and
extends the approach from [8] to 3D. It provides an accurate reconstruction of the esti-
mation uncertainty through posterior density sampling, constructing probability distri-
butions for the number of emitters and their parameters. The reconstructed posteriors
are used to quantify the circumstances in which 3D PSF degeneracy occurs in multiple
emitter imaging.

Using this method, we show that multiple emitter fitting on two emitters with an
astigmatic PSF results in degeneracy when the separation between the emitters is smaller
than 2 standard deviations of the in-focus PSF (σPSF). Between 2σPSF and 1σPSF, the mul-
tiple emitter fitting problem has two statistically equivalent solutions. Below 1σPSF, the
emitters are no longer individually identifiable. Additionally, we show that degeneracy
in three-dimensional multiple emitter fitting can be avoided using biplane imaging.

Fig. 3.1a shows a schematic of the algorithm. After gathering the frames and correct-
ing for the camera gain, the user sets priors and hyperparameters that are appropriate for
the imaging conditions. Then, an RJMCMC localization algorithm is ran on each of the
frames, finding the posterior of the parameters and number of emitters given the data.
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Figure 3.1: Schematic of the algorithm and problem description. (a) 3D RJMCMC localization flowchart.
Frames are gathered and converted to photon counts. Then, priors and hyperparameters are set. An initial
run of RJMCMC samples from the joint posterior of the parameters and model, from which the MAP num-
ber of emitters is determined. Using this MAP model, another MCMC run is used to condition the parameter
distribution on the estimated model. Finally, the image is reconstructed by plotting histograms of the MCMC
chains. The dashed rectangle demonstrates the (RJ)MCMC algorithm. Each loop, a move is randomly selected
(RJMCMC moves that act on model space are highlighted in red) and used to propose a new set of parame-
ters. This jump in parameters is accepted or rejected based on the ratio of posteriors. The algorithm repeats
this loop, storing the parameters at each iteration to finally output the chain of iterations. (b) Diagram of two
overlapping emitters separated by distance d and under angle β. (c) Ideal image of two nearby emitters. (d)
Simulated data and reconstruction using astigmatic and tetrapod PSFs. Frames are shown in rows 1 and 3,
while the reconstructed posterior distribution is shown in rows 2 and 4. (e) Z-scan of the PSFs used in (d) to
generate and reconstruct the data.

Using the posterior, the maximum a posteriori (MAP) number of emitters is selected, and
the estimates within this model are used to start a Markov chain Monte Carlo (MCMC)
localization run. The MCMC output is used to form the histogram that reconstructs the
object.
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3.2. Results
3.2.1. Two emitter separability for astigmatic imaging
We first evaluate the posterior distribution of multiple emitter fitting using an astigmatic
PSF, as it is the most commonly used PSF for 3D localization. Two emitters were simu-
lated at varying distance to one another, from 3.0 σPSF to 0.75 σPSF, to analyse the abil-
ity to separate emitters. This is shown in Fig. 3.2. As MCMC generates samples from
the posterior distribution, the reconstructions are made by plotting histograms of the
MCMC chains for all of the 100 simulated frames.
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Figure 3.2: Two emitter separability using an astigmatic PSF, collecting 100 simulated frames into one recon-
struction while varying emitter distance. (Columns 1 and 4) Example frames. (Columns 2 and 5) Zoomed in
XY plane reconstruction. (Columns 3 and 6) Zoomed in XZ plane reconstruction. Emitters were placed in
focal plane, with an intensity of 2000 photons each and a background of 20 photons. The ROI is 20 by 20 pix-
els, scalebars assume an effective pixel size of 100 nm. The reconstructed image consists of histograms from
MCMC chains which used the MAP number of emitters as model.

From Fig. 3.2, we see that the algorithm can separate the two emitters up to a dis-
tance of 2.5σPSF, as the histogram of the reconstructed posterior distribution shows two
isolated peaks. For separations between 2 σPSF and 1 σPSF, four peaks can be distin-
guished in the reconstructed posterior distribution, despite the MAP model finding two
emitters. At a distance less than 1 σPSF, the four individual peaks collapse into one clus-

123



3

ter. Running a k-means clustering algorithm on the chain outputs for two clusters finds
both clusters at the same position, in the middle of the frame. This shows the emitters
can no longer be separated at distances lower than 1 σPSF.

We further investigate the multimodal posterior distribution between 2 σPSF and 1
σPSF. To investigate the multimodality, a single frame with four peaks in the reconstruc-
tion was analysed as shown in Fig. 3.S12. The four peaks formed two pairs of possible
modes, one at the true positions and one perpendicular to those. A chi-squared test was
done to determine if either mode was representative of the frame. Interestingly, the chi-
square values of 408 and 407 showed that both modes are representative for the frame,
as the chi-square value at the 95% confidence interval is 456. We tested the probability
of selecting the correct mode under both of these hypotheses. The probability of error
was found to be 49.8%, making the modes indistinguishable in terms of likelihood. This
confirms that the posterior distribution of the emitter position is indeed multimodal.

While the true mode localizations find the ground truth, the alternate mode localiza-
tions (at least for this particular astigmatic PSF model) are placed not just perpendicular
to the ground truth, but also at a greater depth. At a separation of 0.75 σPSF, the alter-
nate mode is found at a depth of -600 nm. This can be explained by the astigmatic PSF
characteristics. When moving below the focal plane, the astigmatic PSF stretches along
the same axis that separates the emitters. Thus, two emitters in the focal plane sepa-
rated along the x axis can be represented by a pair on the y axis far below focal plane.
This same problem occurs when emitters are separated along the y axis, resulting in
an alternative pair along the x axis above the focal plane. These results show that pos-
terior density reconstruction can be used to analyse 3D PSF suitability for high density
localization microscopy. Specifically, these two special cases in which degeneracy occurs
increase the maximum error that can be expected from 3D localization. This allows us
to bound the worst-case localization error. Note that with randomly oriented emitters,
only a subset of emitter pairs will be separated along a vector close to the x or y axis, so
the impact on the mean squared error over all localizations will be limited.

From the X Z plots in Fig. 3.2, it can be seen that as the separation increases, the al-
ternative mode starts to fall outside the provided PSF range of [-1.3, 1.3] µm, disappear-
ing at large emitter separation. As the PSF range gets constrained further, this alternative
mode disappears faster. This is consistent with the multimodality we found as a result of
the PSF degeneracy, as constraining the PSF range decreases the solution space, thereby
excluding ambiguous solutions.

3.2.2. Influence of priors on multimodality
In [8], it is identified that the intensity prior plays a critical role in multiple emitter fit-
ting using RJMCMC. We therefore study the dependency of the multimodality on the
intensity prior, as shown in Fig. 3.3. The image data from Fig. 3.2 was used for localiza-
tion with four different intensity priors, P0(I ) to P3(I ). P0(I ) and P1(I ) combine a sloped
and uniform probability at lower intensities with a Gaussian distribution around the ex-
pected count of 2000 photons, similar to what is done in [8]. The intention of this prior
is to increase the convergence speed of 3D RJMCMC by improving the ability to escape
from local minima and to increase inter-model jumps. Priors P2(I ) and P3(I ) are strictly
Gaussian. The standard deviation of the Gaussian peak in the intensity prior was var-
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Figure 3.3: Two emitter separability using an astigmatic PSF, varying the width of the intensity prior, using the
same frames as shown in Fig. 3.2. (a) XY plane reconstructions, each column using a different intensity prior.
Images were formed by constructing histograms of the MCMC chains. (b) Plots of the respective intensity
priors used in each column in (a). (c) Accuracy of the found model as a function of the emitter separation
plotted for each intensity prior used. Accuracy is found using Nframes,k̂=k /Nframes with Nframes,k̂=k the frames

where the estimated model matches the ground truth and Nframes the total frame count. The widths of the
Gaussian peaks in the priors are 150, 300, 500, and 1000 photons, for P0(I ) up to P3(I ), respectively. P0(I ) and
P1(I ) additionally use a uniform and sloped probability at lower intensities to facilitate model space moves.
Priors were set to 0 at intensities beyond 2000+3σprior.

ied from 150 up to 1000 photons, as shown in Fig. 3.3b. The first column of Fig. 3.3a
matches the results of Fig. 3.2, as it uses the same priors and data. The algorithm sepa-
rates emitters up to 2.5 σPSF, multimodality is present from 2 σPSF down to 1 σPSF, and
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emitters are no longer separable within 1 σPSF. Using P1(I ), column 2 again shows mul-
timodality from 2 down to 1 σPSF, with failure to separate emitters within 1 σPSF. Using
P2(I ), multimodality is now observed at distances from 2 down to 1.25 σPSF, failing to
separate emitters within 1.25 σPSF. Finally, using P3(I ), multimodal reconstructions are
found from 2 σPSF down to 1.5 σPSF. Within this distance, the correct number of emit-
ters is not found consistently. Fig. 3.3c plots the accuracy of the estimated model for
the priors used, calculated by counting the number of correct estimates and dividing by
the frame count. For P0(I ) and P1(I ), the model accuracy is greater than 98% over the
range of tested distances. For P2(I ), model accuracy only goes below 95% at a distance
of 0.75 σPSF. Prior P3(I ) decreases in model accuracy from a distance of 1.5 σPSF, going
from 94% down to 5% at a distance of 0.75 σPSF. This shows that Gaussian intensity pri-
ors wider than 500 photons cannot consistently separate emitters within 1.5 σPSF of one
another. While three out of four used priors can retrieve the model over 3 σPSF down to
0.75 σPSF distance, all of the used priors returned multimodal posterior densities within
the range of 2 σPSF down to 1.5 σPSF.

3.2.3. Two emitter separability using biplane imaging
Biplane imaging was tested for its ability to separate emitters and the multimodalities
that may occur when doing so. For biplane imaging, the PSF can be approximated by a
Gaussian. Unlike the astigmatic PSF, the 3D Gaussian PSF stays radially symmetrical over
its range. It can therefore be expected that the same multimodality shown in astigmatic
imaging will not be present here. Fig. 3.4 shows that is indeed the case. As the emitter
distance varies over the same range of 0.75 to 3 σPSF, the algorithm consistently finds a
model of two emitters while the reconstruction also consists of just two peaks. Under
these conditions, biplane imaging can separate two emitters up to a distance of 0.75
σPSF, entirely free of multimodality. This not only validates the idea that multimodality
is caused by 3D PSF degeneracy, it also demonstrates how the algorithm can be used
to determine which PSFs suffer the least from this problem and which are best used in
dense 3D imaging.

3.3. Conclusion
3D localization microscopy suffers from overlapping emitter images, often not being
able to determine the number of active emitters in the ROI and leading to inaccurate
position estimates. Multiple emitter fitting algorithms can find the number of emitters,
but the added complexity of 3D PSF degeneracy means that these algorithms often mis-
represent the uncertainty of their estimates.

We constructed 3D RJMCMC to identify PSF degeneracy in multi-emitter fitting prob-
lems, by using the reconstructed posterior density of emitter positions. For astigmatic
and biplane imaging, 3D RJMCMC is capable of separating emitters up to a distance of 1
σPSF and 0.75 σPSF, respectively, localizing emitters in 3D where SMLM methods would
fail. However, astigmatic imaging at these densities will result in multimodal reconstruc-
tions. This is an accurate representation of the posterior and a consequence of the 3D
PSF structure. Therefore, posterior density reconstruction is the tool of choice to identify
potential PSF degeneracy problems in dense 3D localization.
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Figure 3.4: Two emitter separability using biplane imaging with planes separated by 300 nm. 100 pairs of
frames were simulated and used to make one reconstruction. As photons are split evenly among the planes,
the intensity prior was changed to be a Gaussian with mean 1000 photons and width 150 photons. (Columns 1
and 2) Example frames at both the positive and negative depth. (Column 3) XY plane reconstruction. (Column
4) XZ plane reconstruction. Emitters were placed in focal plane, with an intensity of 2000 photons each and
a background of 20 photons. The ROI is 30 by 30 pixels, scalebars assume an effective pixel size of 100 nm.
The reconstructed image consists of histograms from MCMC chains which used the MAP-estimated number
of emitters.
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3.4. Discussion

As a main result of our 3D RJMCMC analysis, we found that single-frame astigmatic mul-
tiple emitter fitting can result in a multimodal posterior distribution. Due to the practi-
cality of astigmatic imaging and its ability to acquire high-density data, this should serve
as an important warning when using it for multiple emitter localization.

Fortunately, the multimodality in multiple emitter fitting using astigmatic imaging
can be reduced by analysing a larger time window or by limiting the PSF depth range.
Constraining the range reduces the variety of shapes the PSF can take on, limiting PSF
degeneracy. Multimodality may also be reduced by encoding the axial position in inten-
sity. Modifying the algorithm to work with total internal reflection fluorescence (TIRF)
[11, 12] is therefore a promising method to image without multimodality. Modulation
enhanced localization microscopy (meLM) [13] techniques such as ModLoc [14], SIM-
FLUX [15], and ROSE [16] could all be decoded with 3D RJMCMC localization and a
position-dependent intensity prior. A combination of these techniques with RJMCMC
may result in a posterior distribution free of multimodality.

With our analysis, we show the importance of including the localization uncertainty
in localization algorithms. In multiple emitter fitting, 3D RJMCMC reveals the multi-
modality of the posterior. This allows us to reveal degeneracy, whereas traditional point
estimates would have resulted in overconfident position estimates. Furthermore, 3D
RJMCMC also shows that the position uncertainty for individual emitters is not well-
represented by Gaussian uncertainty ellipses with a diagonal covariance matrix. Future
research should therefore look at incorporating the full uncertainty covariance matrix
into the localization algorithm.

The 3D RJMCMC algorithm is best used to analyse imaging techniques for their ef-
fectiveness in 3D multiple emitter fitting. Though no multimodality was revealed when
testing biplane imaging with 3D RJMCMC localization, orientations of emitter pairs were
not exhaustively tested. Furthermore, 3D RJMCMC assumes the PSF model to be accu-
rately known during localization. In the case of PSF uncertainty, we expect this results in
an increase in the localization uncertainty contained in the posterior. Within the current
methodological framework of 3D RJMCMC, there is however no obvious way to incor-
porate a PSF mismatch. This combined with the slow and memory intensive nature of
RJMCMC means we do not recommend using the algorithm for localization.

However, it should be used to analyse PSFs for possible multimodality in dense sam-
ples. Specifically, it remains an open question which PSF allows for both the evasion of
degeneracy and an accessible implementation. Additionally, we recommend studying
the occurrence of multimodality of the tetrapod PSF, as it is a popular choice for 3D imag-
ing. Our initial study (see Section 3.S6) suggests that multimodality occurs for multiple
emitter localization with the tetrapod PSF at 45-degree angles with respect to the x axis.
Further study is needed into the conditions, such as the emitter separation, in which this
multimodality occurs. 3D RJMCMC is the method of choice to study this. Testing imag-
ing techniques that would require a position dependent intensity prior, such as TIRF or
meLM techniques, is also a topic of great interest.
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3.5. Methods
3.5.1. Image formation model and key probabilities
For multiple emitter fitting, the expected photon count per camera pixel can be de-
scribed as:

µi =
k∑

j=1
θI , j

∫
Ak

H(θx, j ,θy, j ,θz, j )dxdy +θb , (3.1)

with µi the photon count in pixel i , θI , j the intensity of the j th emitter in the frame, k
the amount of emitters in the frame, Ak the pixel area, H(x, y, z) the PSF, θx, j , θy, j , θz, j

the 3D position of the j th emitter, and θb the background photon count.
For a high gain camera, such as an electron multiplying charge coupled device (EM-

CCD), the readout noise is negligible and thus the likelihood function has a Poisson dis-
tribution:

P (Di |θ,k) = µ
Di
i exp

(−µi
)

Di !
, (3.2)

with P (Di |θ,k) the likelihood of observing measured data D on the i th pixel as function
of parameter vector
θ = [

θx,0 θy,0 θz,0 θI ,0 . . . θx,k θy,k θz,k θI ,k θb
]

and number of emitters
k. Given the pixels are independent, the likelihood of one frame becomes:

P (D|θ,k) =
Np∏
i=1

µ
Di
i exp

(−µi
)

Di !
, (3.3)

with Np the pixel count. The joint posterior distribution of the parameters and model
can then be found using Bayes’ rule:

P (θ,k|D) = P (D|θ,k)P (θ|k)P (k)

P (D)
, (3.4)

with P (k) the model prior, P (θ|k) the parameter prior given the model, and P (D) the ev-
idence. The priors can be formulated from earlier attained knowledge of labelling den-
sity or emitter intensity, however the evidence term, P (D) = ∫

P (D|θ,k)P (θ|k)P (k)dθdk,
only has a closed form solution when the prior distribution is conjugate to the posterior.
This is often not the case [17], therefore RJMCMC [10] is employed to asymptotically
sample from the posterior.

After attaining samples from P (θ,k|D), the MAP number of emitters, k̂, is used as
the true model to condition the parameter estimate on, running a MCMC algorithm to
find P (θ|k̂,D). This is done to avoid introducing bias in the parameter estimates coming
from models of different dimension.

3.5.2. Priors and hyperparameters
The algorithm takes in priors for 3D position, emitter intensity, background intensity,
and emitter count. Throughout the tests, the prior on the lateral emitter position is kept
uniform over the ROI plus four extra pixels, to account for the influence of emitters out-
side the ROI. The axial position prior is uniform over the presumed depth range of the
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PSF. Emitter intensity was set as a Gaussian distribution, enabling the algorithm to sepa-
rate the emitters. In practice, it is recommended [8] to estimate the intensity prior using
kernel density estimation on intensity data of a previous SMLM run. Finally, the emit-
ter count prior is also kept uniform. Although it is possible estimate the emitter count
within a sample given the label density, it can still vary widely on a local scale, thus we
keep the prior uniform for smaller ROIs.

Each iteration, the move was randomly selected using user-determined selection
probabilities [Psingle, Pgroup, Pbackground, Psplit, Pmerge, Pg-split, Pg-merge, Pbirth, Pdeath].
Throughout the tests, the RJMCMC burn-in portion uses [1/5, 1/5, 1/5, 1/15, 1/15, 1/15,
1/15, 1/15, 1/15], while post burn-in [1/4, 1/4, 1/4, 0, 0, 3/32, 3/32, 1/32, 1/32] are used.
The burn-in portion uses higher model space move probabilities to ensure more model
space mixing, while post burn-in focuses more on parameter space moves. The MCMC
portion uses [2/5, 2/5, 1/5, 0, 0, 0, 0, 0, 0], focusing mainly on emitter parameters. Each
test runs for 30,000 RJMCMC iterations, using 10,000 of those as burn-in and follow-
ing them up with 5000 MCMC iterations. The parameter space moves use random walk
samplers, leaving jump sizes [σx , σy , σz , σI , σb] as parameters for tuning. For good
mixing, lateral jump size may vary from 0.05 to 0.1 pixels, axial jump size from 0.07 up to
0.12 µm, emitter intensity between 10 and 40 photons, and background intensity of 1 to
3 photons.

3.5.3. Convergence and precision
To verify convergence of the algorithm, 100 frames with a single active emitter were lo-
calized. Emitters in the centre of the ROI sampled their intensity randomly from the
matching prior and were given a random sub-pixel displacement. Figs. 3.S3 and 3.S5
show the model and parameter autocorrelation as well as the time series and histogram
of the model, for a high and low signal to background, respectively. The algorithm man-
ages to converge to the correct model 100% of the time, while also converging in param-
eter space. By using only uniform priors, the algorithm yields an unbiased estimate that
can be compared to the Cramér-Rao lower bound (CRLB) [3] to verify the precision. For
non-uniform priors, the Van Trees inequality (VTI) [18, 19] can be used as a Bayesian
Cramér-Rao bound to find the theoretically minimum localization error. Fig. 3.S8 shows
a violin plot of the precisions found with 3D RJMCMC localization compared to the CRLB
over varying emitter intensity. It can be seen that the localization precision matches the
CRLB over the plotted intensity range. Fig. 3.S9 shows violin plots for the root mean
squared error (RMSE) of the same data. The results show that the algorithm reaches the
minimum theoretical uncertainty for low emitter density.

3.5.4. Synthetic data and results
For Fig. 3.2, two emitters were placed in focus and simulated using an astigmatic PSF,
their centre of mass in the middle of the ROI. The PSF was evaluated using a 3D Gaussian
approximation [3], with parameters [s0,x , γx , dx , Ax ] and [s0,y , γy , dy , Ay ] of [σPSF, 2,
3, 0] and [σPSF, -2, 3, 0], respectively. Here σPSF is the width in focal plane, set at 1.2
pixels. The PSF range was set at [-1.3, 1.3] µm, with a ROI size of 20 by 20 pixels. Emitter
intensity was fixed at 2000 photons, with a background intensity of 20 photons. A total
of 100 frames were simulated and their 5000 iteration MCMC chains were merged to
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finally form the histogram reconstructions of the X Y and X Z planes. The histograms
were magnified in x and y direction by a factor 2.5 with respect to the sample frames.
Move selection probabilities were as in Subsection Priors and hyperparameters, while
the jump size hyperparameters were set to [0.1, 0.1, 0.08, 15, 1]. All priors were kept
uniform except the emitter intensity, using a Gaussian around 2000 photons with a width
of 150 and a small uniform probability between 0 and 1500 that slopes down to 0, as
shown in Fig. 3.3b. The prior is set to 0 for intensities greater than 2450 photons. The
number of emitters ranges from 0 to 6 and lateral position estimates may exceed the ROI
by four pixels. Background intensity was limited to a range of 1 to 40 photons.

Fig. 3.3 uses the same data and settings as Fig. 3.2, only changing the random num-
ber generator seed and the emitter intensity priors used. Priors P0(I ) to P3(I ) all use
Gaussian distributions centred around 2000 photons, with a width of 150, 300, 500, and
1000 photons, respectively. Again, P0(I ) and P1(I ) keep a uniform probability sloping to
0 at lower intensities to help facilitate splitting of emitters.

Fig. 3.4 uses 100 frames simulated with biplane imaging, splitting the response of
a Gaussian PSF between planes at +150 and -150 nm depth relative to the focal plane.
A depth range of [-1, 1] µm was used. Again, the PSF was evaluated with a 3D Gaussian
approximation [3] of an experimentally measured astigmatic PSF on the setup described
in [20], with [1.70, −4.64, 8.34, 0.00] for the x and y parameters. Emitter intensities and
background photons were split evenly across the planes. The ROI is now expanded to 30
by 30 pixels. All hyperparameters and priors used were identical to the previous experi-
ments, except the emitter intensity prior, which is a Gaussian with mean 1000 and width
150 photons. The intensity prior is set to 0 for intensities greater than 1450 photons and
again is uniform between 200 and 500 photons, sloping upwards from 0 to 200 photons.

Data and Code Availability
The data and code that support the findings of this study are openly available on GitHub
[21].
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Three-Dimensional Multiple

Emitter Localization

3.S1. Reversible jump Markov chain Monte Carlo localiza-
tion algorithm

To both estimate the model and find the parameters, reversible jump Markov chain
Monte Carlo (RJMCMC) is employed. The RJMCMC algorithm makes jumps in model
space, making it possible to recover a distribution of possible model and parameter pair-
ings. For 3D localization, the model only varies in number of emitters active per frame,
in which we try to estimate the parameters of the emitters, that being the x, y , and z
positions as well as the intensity I , and the background photons present in the frame,
b. With the use of smart priors, 3D RJMCMC localization can retrieve the correct model
and localize the emitters.

Localization in 3D using RJMCMC is done as follows:

1. An emitter is initialized randomly;

2. RJMCMC is run with the burn-in move probabilities;

3. The move probabilities are adjusted for the fraction of the chain that follows the
burn-in;

4. From the post burn-in RJMCMC chain, the MAP model is selected from the distri-
bution to be used with MCMC;

5. MCMC is initialized using the last element from the RJMCMC chain in which the
model corresponds to the MAP model;

6. MCMC is run with the parameter space move list;

7. K-means clustering is used to perform label switching and retrieve the localiza-
tions from the chains, setting the cluster count to the MAP model.
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The RJMCMC and MCMC runs undergo the following steps internally:

1. A move is randomly selected from the move list;

2. The move is executed on each frame, generating new parameters and models (if
the move is not valid for the frame, the parameters stay fixed);

3. The acceptance rate is calculated and the jump is either accepted or rejected, up-
dating the chain;

4. Steps 1 to 3 are repeated until the desired chain length is achieved.

3.S1.1. Priors
The algorithm takes in priors for the emitter position, emitter intensity, background in-
tensity, and the number of emitters present. Though the prior for number of emitters
can be set as a Poisson distribution if the user has knowledge of the labelling density, we
keep the prior P (k) uniform as the local density when evaluating small regions of interest
(ROIs) can differ greatly:

P (k) ∼U (0,kmax), (3.S1)

with kmax the user defined maximum number of emitters expected in the ROI.
For the emitter position, the priors are set to be uniform to avoid bias:

P (θx,i |k) ∼U (−wborder, xROI +wborder), (3.S2)

P (θy,i |k) ∼U (−wborder, yROI +wborder), (3.S3)

P (θz,i |k) ∼U (zmin, zmax), (3.S4)

with θx,i , θy,i , θz,i the 3D position of the i th found emitter, xROI, yROI the x- and y-
dimensions of the ROI, wborder some additional pixels outside the ROI to account for
influence of external emitters, and zmin, zmax the admissible range of z-positions.
The prior on background intensity is kept as a simple uniform distribution:

P (θb) ∼U (bmin,bmax), (3.S5)

with bmin, bmax the user defined minimum and maximum expected background values
for the experiment.

Finally, the prior for the intensity should be either determined experimentally by ker-
nel density fitting SMLM results, or directly defined by the user given sufficient knowl-
edge of the emission response. For the testing on synthetic data, often a Gaussian prior
around the expected emitter intensity is used [1], with an additional flat shoulder at
lower intensities to facilitate model jumps if necessary, such as:

P (θI ,i |k) =



1
150

p
2π

exp

[
− 1

2

(
θI −2000

150

)2
]

if 1600 < θI < 2500,

6 ·10−5 if 500 < θI < 1600,

6 ·10−5 θI
500 if 1 < θI < 500,

0 otherwise.

(3.S6)

The prior on intensity is assumed to be unchanging over depth.
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3.S1.2. Moves
In RJMCMC, the design of the moves is crucial for exploring the model space. The moves
used in 3D RJMCMC localization are:

• A single emitter move, varying the 3D position and intensity of a single emitter;

• A group move, varying the 3D position and intensity of a cluster of emitters;

• A background move, changing the offset background estimate;

• A split move, splitting one emitter into two;

• A merge move, merging two emitters into one;

• A generalized split move, splitting a cluster of N emitters into N +1;

• A generalized merge move, merging a cluster of N emitters into N −1;

• A birth move, spawning an emitter where the difference between measured and
expected intensity is high;

• A death move, removing an emitter at random.

The single emitter, group, and background move work in parameter space while leav-
ing the model space identical. The rest of the moves come in pairs to retain detailed bal-
ance and change both the model and the parameters of the estimate. Fig. 3.S1 shows
schematically how each move changes the parameters or model.

Move proposal At every iteration of the algorithm, a move is selected according to fixed
probabilities defined by the user. Move probabilities can be set separately for the MCMC
portion, as well as both the burn-in phase and the post burn-in phase of the RJMCMC
portion.

An appropriate setting of the move probabilities results in sufficient mixing between
chains. As a result of chain mixing, the algorithm makes jumps between multiple solu-
tion modes, which allows exploration of the full posterior density. Specifically for our
problem, this allows us to explore ambiguous localization solutions due to PSF degener-
acy.

To facilitate sufficient mixing, the following procedure was used to determine the
move probabilities in Table 3.S1. To choose the probabilities related to 2D moves, the
parameters from [1] were initially chosen. For the 3D probabilities, the starting point
was based on our presumed depth of view. Given the increased complexity when moving
from 2D RJMCMC to 3D RJMCMC, we identified that these parameters needed to be
tuned. As such, these parameters were tuned until sufficient mixing between the chains
was observed. For testing on synthetic data, the move probabilities in Table 3.S1 were
found to work well.

3.S1.3. Single emitter move
The single emitter, group, and background move moves will act on the parameter space
only and their acceptance rates can be determined from the Metropolis-Hastings algo-
rithm for the MCMC case.
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Metropolis-Hastings acceptance rate for parameter space jumps The probability of
accepting parameter space jumps is given as:

α= min

[
1,

P (θ′,k,D)

P (θ,k,D)

∣∣∣∣ ∂(θ′)
∂(θ,u)

∣∣∣∣] , (3.S7)

with α the acceptance rate, using the joint probability P (θ,k,D) = P (D|θ,k)P (θ|k)P (k)
to calculate the posterior ratio (ignoring evidence term P (D) as it gets cancelled in the
division) and the final fraction as the determinant of the Jacobian of the function θ′(θ,u)
that generates the new parameters. Here,

θ = [
θx,0 θy,0 θz,0 θI ,0 . . . θx,i θy,i θz,i θI ,i θb

]
is the parameter vector, containing the positions and intensities of the i emitters used
in the current model along with the background parameter θb . Using a random walk
sampler for the parameter space moves and cancelling the model prior, the acceptance
rate reduces to:

α= min

[
1,

P (θ′,k,D)

P (θ,k,D)

]
= min

[
1,

P (D|θ′,k)P (θ′|k)

P (D|θ,k)P (θ|k)

]
. (3.S8)

The single emitter move randomly selects one of the i current emitters and generates a
new estimate out of its previous parameters as follows:

θ′x, j = θx, j +ux , (3.S9)

θ′y, j = θy, j +uy , (3.S10)

θ′z, j = θz, j +uz , (3.S11)

θ′I , j = θI , j +uI , (3.S12)

with u drawn from the following normal distributions:

P (ux ) ∼N (0,σx ), (3.S13)

P (uy ) ∼N (0,σy ), (3.S14)

P (uz ) ∼N (0,σz ), (3.S15)

P (uI ) ∼N (0,σI ), (3.S16)

and σx , σy , σz , σI some user determined hyperparameters to vary the jump size. The
posterior ratio in Eq. (3.S8) can now be simplified to:

P (D|θ′,k)P (θ′|k)

P (D|θ,k)P (θ|k)
=

[∏
kp

exp
(
µkp −µ′

kp

)(
µ′

kp

µkp

)nkp
(

kmax∏
k

P (θ′I ,k )

P (θI ,k )

)]
. (3.S17)

Assuming the estimated parameters stay within the bounds of the priors, the uniform
position priors cancel out and only the likelihood ratio and intensity prior ratio are left.

138



3

Su
p

p
o

rt
in

g
In

fo
rm

at
io

n
fo

r
C

h
ap

te
r

3

3.S1.4. Group move
The group move first finds a cluster of nearby emitters, and then executes a single emit-
ter move on each of them. It randomly picks one emitter, then searches for emitters
within a 2σPSF sphere around it to form a cluster. This radius can be treated as a hyper-
parameter and tuned, though for Gaussian and astigmatic PSFs it works well when set to
the PSF width in focal plane. More complex 3D PSFs may require a fairly large radius for
clustering.

After finding an eligible cluster and executing the moves, the acceptance rate can be
calculated using the same equations as in the single move, namely as in Eqs. (3.S8) and
(3.S17). If a cluster cannot be found, the move fails.

3.S1.5. Background move
The background move is not coupled to any emitter. It updates a flat offset background
intensity with a random walk sampler as follows:

θ′b = θb +ub , (3.S18)

P (ub) ∼N (0,σb), (3.S19)

with σb another hyperparameter for tuning the background jump size. The acceptance
rate from Eq. (3.S17) can now be reduced even further, assuming the background jump
stays within the bounds of its uniform prior:

P (D|θ′,k)P (θ′|k)

P (D|θ,k)P (θ|k)
=

[∏
kp

exp
(
µkp −µ′

kp

)(
µ′

kp

µkp

)nkp
]

, (3.S20)

which is just the likelihood ratio of the parameters before and after the jump.

3.S1.6. Split and Merge pair
The (generalized) split, merge, birth and death moves come in pairs and may act on both
the parameter and the model space. Their acceptance rates can be determined from the
general acceptance rate used in RJMCMC.

Metropolis-Hastings acceptance rate for model space jumps The probability of ac-
cepting model space jumps in the general case is given as:

α= min

{
1,

P (θ′,k ′,D)rm(θ′)
P (θ,k,D)rm(θ)q(u)

∣∣∣∣ ∂(θ′)
∂(θ,u)

∣∣∣∣} , (3.S21)

with rm(θ) the probability of choosing the move type (selecting either split or merge)
and q(u) the probability density function of the draws from u used to generate the split
weights, means, and standard deviations.

The split and merge move turn one emitter into two and vice versa. By using this
move pair, the algorithm has a move that allows it to distinguish emitters that are in
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close proximity to one another. Split and merge will uphold the following constraints:

θI , j∗ = θI , j1 +θI , j2 , (3.S22)

θI , j∗θx, j∗ = θI , j1θx, j1 +θI , j2θx, j2 , (3.S23)

θI , j∗θy, j∗ = θI , j1θy, j1 +θI , j2θy, j2 , (3.S24)

θI , j∗θz, j∗ = θI , j1θz, j1 +θI , j2θz, j2 . (3.S25)

Split For a split, θ′ is generated from a randomly selected emitter with index j∗ as fol-
lows:

u1 ∼U (0,1), (3.S26)

u2 ∼N (0,σPSF), (3.S27)

u3 ∼N (0,σPSF), (3.S28)

u4 ∼N (0,σPSF), (3.S29)

θI , j1 = θI , j∗u1, (3.S30)

θI , j2 = θI , j∗ (1−u1), (3.S31)

θx, j1 = θx, j∗ +u2, (3.S32)

θy, j1 = θy, j∗ +u3, (3.S33)

θz, j1 = θz, j∗ +u4, (3.S34)

θx, j∗θI , j∗ = θx, j1θI , j1 +θx, j2θI , j2 , (3.S35)

θx, j2 = θx, j∗ − u1u2

1−u1
, (3.S36)

θy, j∗θI , j∗ = θy, j1θI , j1 +θy, j2θI , j2 , (3.S37)

θy, j2 = θy, j∗ − u1u3

1−u1
, (3.S38)

θz, j∗θI , j∗ = θz, j1θI , j1 +θz, j2θI , j2 , (3.S39)

θz, j2 = θz, j∗ − u1u4

1−u1
, (3.S40)

with the two new emitters retaining the 3D centre of mass and total intensity of the emit-
ter they split from. Indices j1 and j2 are used to indicate the emitters resulting from a
split, or those used in a merge, whereas index j∗ is used for the result of a merge or the
target of a split.

The ratio of selecting the move types then becomes:

rm(θ′)
rm(θ)

= Psplit

Pmerge
, (3.S41)

and q(u) is:

q(u) = P (u1)P (u2)P (u3)P (u4). (3.S42)

Knowing the split move only influences these parameters and leaves the other emitters
and background untouched, the emitter to be split and the resulting emitters after the
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split can be moved to the back for both θ′ and (θ,u) vectors. The resulting vectors then
become:

θ′ = [
. . . θI , j1 θx, j1 θy, j1 θz, j1 θI , j2 θx, j2 θy, j2 θz, j2

]
, (3.S43)

(θ,u) = [
. . . θI , j∗ u1 θx, j∗ u2 θy, j∗ u3 θz, j∗ u4

]
. (3.S44)

The Jacobian can then be constructed as:

∂(θ′)
∂(θ,u)

=



Ik−1 0k−1,1 . . . 0k−1,1

01,k−1 u1 0 0 0 −θI , j∗ 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

... 1−u1 0 0 0 −θI , j∗ 0 0 0
0 −u2

(1−u1)2 1 −u1
1−u1

0 0 0 0

0 −u3
(1−u1)2 0 0 1 −u1

1−u1
0 0

01,k−1 0 −u4
(1−u1)2 0 0 0 0 1 −u1

1−u1


,

with identity matrix Ik−1 of dimension k−1 for all the unchanged parameters and 0k−1,1,
01,k−1 column and row vectors containing zeros. This yields the determinant:∣∣∣∣ ∂(θ′)

∂(θ,u)

∣∣∣∣= θI , j∗

(1−u1)3 . (3.S45)

Setting Psplit = Pmerge, the final result is then:

α= min
{
1, Asplit

}
, (3.S46)

Asplit =
P (θ′|D)rm(θ′)

P (θ|D)rm(θ)q(u)

∣∣∣∣ ∂(θ′)
∂(θ,u)

∣∣∣∣= P (θ′,k ′,D)

P (θ,k,D)

θI , j∗

P (u1,u2,u3,u4)(1−u1)3 . (3.S47)

Merge For a merge move, an emitter is selected at random, after which it is randomly
paired with another emitter within 2 σPSF of itself. If no emitter can be found within this
distance, the move fails. The emitters combine their intensity and centre of mass. The
acceptance rate can be set to the inverse of that for the split move, finding u1, u2, u3 and
u4 deterministically from Eqs. (3.S30), (3.S32), (3.S33), and (3.S34):

u1 =
θI , j1

θI , j∗
, (3.S48)

u2 = θx, j1 −θx, j∗ , (3.S49)

u3 = θy, j1 −θy, j∗ , (3.S50)

u4 = θz, j1 −θz, j∗ . (3.S51)

This gives the the acceptance rate:

α= min
{
1, Amerge

}
, (3.S52)

Amerge = A−1
split =

P (θ,k,D)

P (θ′,k ′,D)

P (u1,u2,u3,u4)(1−u1)3

θI , j∗
, (3.S53)
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with θ previously being the parameters before the split and now thus the parameters
after the merge and vice versa for θ′.

3.S1.7. Generalized Split and Merge

Whereas split and merge work on a single emitter, their generalized versions are help-
ful for very densely packed frames, allowing the splitting and merging of emitters within
clusters of N emitters. Generalized split jumps from N to N +1 emitters, while general-
ized merge does the opposite. These moves use the same clustering as was used for the
group move, picking one random emitter and forming an eligible cluster within 2σPSF of
itself.

Generalized Split Now, instead of distributing the intensity of one emitter to two, the
combined intensity of N emitters is distributed over N +1, again retaining the centre of
mass:

N∑
j=1

θI , j =
N+1∑
j=1

θ′I , j , (3.S54)

N∑
j=1

θI , jθx, j =
N+1∑
j=1

θ′I , jθ
′
x, j , (3.S55)

N∑
j=1

θI , jθy, j =
N+1∑
j=1

θ′I , jθ
′
y, j , (3.S56)

N∑
j=1

θI , jθz, j =
N+1∑
j=1

θ′I , jθ
′
z, j . (3.S57)

Putting up some additional constraints to remove the same fraction of intensity for each
emitter in the cluster and to let the new emitter be formed close to the centre of mass of
the cluster:

θ′I , j = (1−u1)θI , j , (3.S58)

θ′x, j =
θx, j −u1

(
1
N

∑N
j=1θx, j +u2

)
1−u1

, (3.S59)

θ′y, j =
θx, j −u1

(
1
N

∑N
j=1θx, j +u3

)
1−u1

, (3.S60)

θ′z, j =
θy, j −u1

(
1
N

∑N
j=1θz, j +u4

)
1−u1

. (3.S61)
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The new emitter is then generated as follows:

θ′I ,N+1 = u1

N∑
j=1

θI , j , (3.S62)

θ′x,N+1 =
1

N

N∑
j=1

θx, j +u2, (3.S63)

θ′y,N+1 =
1

N

N∑
j=1

θy, j +u3, (3.S64)

θ′z,N+1 =
1

N

N∑
j=1

θz, j +u4. (3.S65)

Applying the general acceptance rate from Eq. (3.S21), the result is similar to Eq. (3.S47)
except the Jacobian now expands to:∣∣∣∣ ∂(θ′)

∂(θ,u)

∣∣∣∣=
∑N

j=1θI , j

(1−u1)2N+1
. (3.S66)

The acceptance rate then becomes:

Ag-split =
P (θ′,k ′,D)

P (θ,k,D)

∑N
j=1θI , j

P (u1,u2,u3,u4)((1−u1)2N+1
. (3.S67)

Generalized Merge The generalized merge selects an emitter and then distributes its
intensity evenly over the N emitters in the corresponding cluster. As with the merge, the
randomly sampled parameters can now be found deterministically:

u1 =
θ′I ,N+1∑N

j=1θ j
, (3.S68)

u2 = θ′x,N+1 −
1

N

N∑
j=1

θx, j , (3.S69)

u3 = θ′y,N+1 −
1

N

N∑
j=1

θy, j , (3.S70)

u4 = θ′z,N+1 −
1

N

N∑
j=1

θz, j . (3.S71)

The new parameters become:

θI , j =
θ′I , j

1−u1
, (3.S72)

θx, j = u1θ
′
x,N+1 + (1−u1)θ′x, j , (3.S73)

θy, j = u1θ
′
x,N+1 + (1−u1)θ′y, j , (3.S74)

θz, j = u1θ
′
x,N+1 + (1−u1)θ′z, j . (3.S75)

(3.S76)
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Inverting the acceptance rate of the generalized split yields:

Ag-merge = P (θ,k,D)

P (θ′,k ′,D)

P (u1,u2,u3,u4)((1−u1)2N+1∑N
j=1θI , j

. (3.S77)

3.S1.8. Birth and Death pair
The birth and death pair can increase and decrease the number of emitters independent
of the positions of the currently found emitters. Birth will generate an emitter anywhere
in the volume covered by the support of the position priors, using the residual of the
frame and the expected image as the probability distribution for selecting the new lateral
emitter position. Death randomly chooses any of the current emitters and removes it.

Birth The first task of the birth move is finding probable locations for yet unmodelled
emitters. It calculates the expected image from the current model and parameters and
subtracts this from the ROI. Any negative values are fixed to zero, and the values are
normalized to give a per pixel probability of an undetected emitter:

P (knew,kp ) =
nkp −µkp∑Np

kp=1 nkp −µkp

, {kp : nkp −µkp ≥ 0}, (3.S78)

with P (knew,kp ) the pixel probability of a yet undiscovered emitter residing in pixel pk .
After randomly selecting a pixel, a subpixel position is generated from a uniform distri-
bution and the z-position is uniformly sampled from the entire depth range. The inten-
sity of the new emitter is sampled directly from the intensity prior distribution.

This sampling of the z-position may result in a lot of ineffective proposals, however
there are little effective alternatives to effectively finding the z-position that do not also
impact calculation times or convergence. Some tests have been run where the residual
image was filtered with the 3D PSF to return a probability distribution for pairs of x-
, y- and z-position. It unfortunately resulted in some chains getting stuck, while only
marginally improving convergence speed overall.

Fixing the birth and death selection probabilities to be equal, just as for the (general-
ized) split and merge moves, yields the acceptance rate:

Abirth = P (θ′,k ′,D)

P (θ,k,D)

zmax − zmin

P (k∗
new,kp

)
, (3.S79)

with P (k∗
new,kp

) the probability of sampling from pixel k∗
p and zmax, zmin the depth range

from which the z-position is sampled. Note that since birth and death work indepen-
dently from the current emitters, the determinant of the Jacobian ∂θ′/∂(θ,u) is 1.

Death Death is the most straightforward move of them all, simply removing one emit-
ter from the model at random. This move helps remove unnecessary emitters that may
have a low intensity or contribute little to a cluster of emitters. It also helps remove emit-
ters spawned by birth that do not necessarily fit the data, but went through despite a low
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acceptance rate. The acceptance rate for death is:

Adeath = P (θ′,k ′,D)

P (θ,k,D)
= P (θ′|D)

P (θ|D)
, (3.S80)

where the second simplification holds as long as the model prior is kept uniform.

3.S2. Single emitter localization convergence for an astig-
matic PSF

To verify if the algorithm works correctly, it is first tested on frames where only a single
emitter is active. Synthetic data is generated for an emitter in focal plane of a 20 by 20
pixel ROI, assuming an effective pixel size of 100 nm. Simulated emitters are placed in
the centre of the ROI, generating 50 frames, each with a random subpixel shift in x and
y drawn from a uniform distribution and intensities drawn from a normal distribution:

θx ∼U (9.5,10.5), (3.S81)

θy ∼U (9.5,10.5), (3.S82)

θI ∼N (Isim,150), (3.S83)

with the position in pixels, and Isim the mean intensity for the synthetic dataset. The
background photon count is fixed at 20 photons. The algorithm is tested on data with
Isim = 2000 and Isim = 500 to demonstrate convergence at varying SBR.

The hyperparameters used for localization are as follows. The RJMCMC portion ran
for 20000 burn-in iterations, followed by another 10000 iterations from which the model
is determined. MCMC is then run for another 5000 iterations, from which the final po-
sitions of the emitters are determined. The parameters for the random walk samplers
within the RJMCMC and MCMC portions are detailed in Table 3.S2, while the move prob-
abilities were taken from Table 3.S1. The depth was constrained to a range of

[−1, 1
]

µm.
The priors for position and background are uniform, with a custom prior used for

intensity. The number of emitters was constrained to kmax = 6. The algorithm was ini-
tialized randomly with kmax active emitters drawn from the priors, ensuring the initial
model is incorrect and allowing for meaningful conclusions from the model time series
and autocorrelation.

High SBR results
For Isim = 2000, the prior on intensity is given as follows:

P (I ) =


0, if I > 2500,

1
150

p
2π

exp
{
− 1

2

( I−2000
150

)2
}

/1.08, if 1600 < I < 2500,

6.6 ·10−5, if 500 < I < 1600,

( I
500 ) ·6.6 ·10−5, if I > 500.

(3.S84)

The prior is plotted in Fig. 3.S2.
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Model convergence To verify the model has converged, the time series of the models
over all frames as well as the average autocorrelation of the model is studied.

In Fig. 3.S3, the model time series and autocorrelation are plotted. From the time se-
ries, we can see that from the initialization at kmax = 6 emitters, the estimated model
rapidly reduces to a two or one emitter model. There is notably little mixing in the
model chain. This may be due to the simplicity of localizing a single emitter, the algo-
rithm therefore having infinitesimal probabilities of jumping to models with 3 emitters
or more. Note that after the burn-in fraction, the split and merge move are turned off and
there is no more change in the model found. With split and merge disabled, and G-split
and G-merge failing since no clusters can be made out of one emitter, the only moves
capable of changing the model are birth and death. At this point, the RJMCMC seems to
have converged strongly. Evaluating the average model chain autocorrelation, it is clear
that after 2000 RJMCMC iterations, the autocorrelation has gone to zero. This gives an
idea of the chain length required to estimate the model distribution under these condi-
tions. Some multiple of 2000, say 6000 RJMCMC iterations, may already be sufficient for
model convergence on this problem. From the histogram in Fig. 3.S3d it is clear that on
average, the estimates spend nearly all their time in a model with one active emitter.

Parameter convergence Again, we look to the autocorrelation of the parameters to as-
sess convergence. In Fig. 3.S3b, the average autocorrelations of all parameters for their
MCMC chains are plotted. Note that the MCMC chain was initialized from the last RJM-
CMC iteration that had the correct model, therefore the parameters can be expected to
converge quickly and there is no need to discard the initial part of the chain. The auto-
correlations of the lateral position and background decrease almost immediately to zero.
Note that while the autocorrelation for axial position drops to zero in the same time,
there are some slower transients visible in the plot. The same holds for the autocorre-
lation of intensity, which also takes significantly longer to reach zero. The acceptance
rates for the moves are [

0, 0.47±0.02, 0.28±0.01
]

for the group move, single emitter move, and background move, respectively. The group
move cannot find a cluster and is therefore never executed, meanwhile the single emitter
move has a good acceptance rate ensuring proper mixing. The background move has low
acceptance, though it should still be enough for proper mixing.

Calculating the lateral and axial RMSE results in 0.05 pixels and 120 nm errors, re-
spectively, giving us an accurate estimate of the emitter position.

It can be concluded that the initial position found from RJMCMC was sufficiently
close to the optimum and the chosen hyperparameters and chain length were appropri-
ate, though the sampling of intensity still shows correlation andσI may need to be tuned
more.
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Low SBR results
For Isim = 500, the prior on intensity is given as follows:

P (I ) =
0, if I > 950,

1
150

p
2π

exp
{
− 1

2

( I−500
150

)2
}

, if I < 950.
(3.S85)

The prior is plotted in Fig. 3.S4. This dataset samples intensities from N (500,150) pho-
tons, with a background of 20 photons.

Model convergence In Fig. 3.S5, a and c, the model time series and autocorrelation
are plotted. Again, from the incorrect initialization the estimated model rapidly reduces
to a two or one emitter model. There is less mixing and faster convergence compared
to the simulations with Isim = 2000. The lower SBR results in more uncertainty when
determining the model. Even after the burn-in, some frames still make jumps in model
space. Looking at the average autocorrelation, it reaches zero with a lag of just 250. This
is in line with the increased mixing in the first 3000 steps. After a lag of about 1250, the
autocorrelation seems to settle at zero. Again, this indicates that the 30000 RJMCMC
iterations are more than sufficient for determining the model. The histogram in Fig.
3.S5d again shows that the chain spends virtually all its time in a single emitter model.

Parameter convergence In Fig. 3.S5b, the average parameter autocorrelation for the
50 frames is shown. The autocorrelations of the position chains take longer to reach zero
compared to the high SBR case. This time, the axial chain is actually slower than the
intensity chain, and now even the lateral chain displays some slow transient behaviour.
The background converges first, followed by intensity and lateral position, and finally
axial position. Under these conditions, convergence is limited by the sampling of the
z-position instead of the intensity. The acceptance rates for the moves are[

0, 0.73±0.04, 0.270±0.009
]

.

The single emitter move has a high acceptance rate and the corresponding random walk
hyperparameters may be increased for better mixing and less correlation between sam-
ples.

Calculating the lateral and axial RMSE results in 2 pixels and 360 nm errors, respec-
tively, which is a lot less accurate especially in lateral direction compared to the high SBR
case. This is due to some of the outliers in the sampled intensity, for instance frames 18
and 45 having an intensity less than 100 photons (79 and 83, respectively). Not consider-
ing these two frames, intensities still range from 200 to 700 photons (covering about 85%
of the interval), and the lateral and axial RMSE become 0.14 pixels and 340 nm each.

This test has shown that though the chain length is sufficient, tuning of the single
emitter move may lead to faster convergence.

Finally, it can be concluded that the hyperparameters provided here generally re-
sult in convergence, though it is best practice to adjust them to the imaging conditions
of your system, ideally making use of autocorrelation plots to identify sub-optimal be-
haviour.
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3.S3. Single emitter localization convergence for a tetrapod
PSF

The same test is run for a tetrapod PSF, under similar conditions, simulating 50 frames of
in-focus emitters in the centre of the ROI with some subpixel shift, for varying SBR. The
size of the ROI was set to 28 by 28 pixels, to account for the wider PSF. The same move
probabilities were used, while adjusting the hyperparameters and PSF width, which was
estimated from a Gaussian fit of the width in focal plane. The hyperparameters can be
found in Table 3.S3.

High SBR results
For Isim = 2000, using the intensity prior shown in Fig. 3.S2, the results are as follows.

Model convergence Studying the autocorrelation in Fig. 3.S6a, it appears that model
convergence is slightly slower with the tetrapod PSF. This may be related to use of a fixed
clustering radius, after all the tetrapod PSF greatly changes in width over depth. There is
a lot more mixing in the chain of Fig. 3.S6c this time, with two or three emitter models
existing up to around 3000 iterations into the run.

Beyond 5000 iterations, the RJMCMC run seems to have converged strongly. Evaluat-
ing the average model chain autocorrelation suggests that a minimum of 2600 RJMCMC
iterations is needed. Some multiple of 2600, say 7800 RJMCMC iterations, should be
sufficient for model convergence on this problem. From the histogram in Fig. 3.S6d it is
clear that on average, the estimates spend nearly all their time in a model with one active
emitter.

Parameter convergence Fig. 3.S6b plots the average parameter autocorrelation for the
50 frames. The lateral, axial, and background autocorrelation converge rapidly. The in-
tensity chain takes the longest to reach zero after a lag of 500 and still shows some more
slow transient behaviour. The acceptance rates for the moves are[

0, 0.18±0.02, 0.205±0.009
]

for the group move, single emitter move, and background move, respectively. The single
emitter move has a low acceptance rate, possibly due to poor intensity sampling. The
background move performs similarly to the runs on astigmatic data.

Calculating the lateral and axial RMSE results in 0.09 pixels and 20 nm errors.
It can be concluded that the chosen hyperparameters and chain length can converge,

though the sampling of intensity still shows correlation and σI may need to be tuned
more.

Low SBR results
For Isim = 500, the prior in Fig. 3.S4 was used. The results are as follows.

Model convergence In Fig. 3.S7, a and c, the model time series and autocorrelation
are plotted. Again, from the incorrect initialization the estimated model rapidly reduces
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to a two or one emitter model. More mixing seems to be happening in the first 10000
iterations compared to the simulations with Isim = 2000. The lower SBR gives more un-
certainty when determining the model. The average model autocorrelation reaches zero
at a lag of about 200, as expected from the increase in mixing. This again indicates that
the 30000 iterations used were more than sufficient. The histogram in Fig. 3.S7d shows
that the chains generally stay in a single emitter model.

Parameter convergence In Fig. 3.S7b, the average parameter autocorrelation for the
50 frames is shown. This time, the lateral and axial position chains are slowest to con-
verge, around a lag of 1500, while the background and intensity chains still reach zero in
about 400 steps. Under these conditions, convergence is limited by the emitter position
sampling instead of the intensity. The acceptance rates for the moves are[

0, 0.55±0.08, 0.198±0.009
]

.

Both the single emitter and background move show appropriate acceptance rates, the
single emitter move even on the higher side. The high acceptance rates in combination
with the strong correlation in parameter jumps suggestsσx ,σy , andσz may be increased
to reduce sample correlation and get faster convergence.

The lateral and axial RMSE are in 1.6 pixels and 200 nm errors, respectively. Again,
removing some outliers with intensities less than 200 returns precisions of 0.3 pixels and
70 nm, which is appropriate for these conditions.

Again, these tests have shown that extensive tuning of the single emitter move may
lead to faster convergence in both scenarios.

Finally, the hyperparameters used for imaging with the tetrapod PSF will converge
to an accurate estimate, though not as rapidly as astigmatic imaging with its respective
hyperparameters.

3.S4. Single emitter precision and accuracy for an astigmatic
PSF

To further verify the accuracy and precision of the algorithm, another set of synthetic
data was generated using the same PSFs from the convergence test. Again, single emit-
ters with random subpixel shifts were simulated with a background of 20 photons and
intensities ranging from 600 to 3000 photons, in steps of 100. 50 emitters were simulated
at each intensity. Move probabilities were the same as in the convergence tests, while
the hyperparameters can be found in Table 3.S4.

The intensity prior is now set to be uniform, fixing the range of the intensity prior
from 100 to 4000 photons. This makes all the priors uniform, effectively only serving
as loose constraints. It is now possible to compare our results to the CRLB, as the algo-
rithm is virtually unbiased. Fig. 3.S8 plots the CRLB against the localization precision
found directly on individual frames, calculated from the MCMC chain under a Gaussian
assumption. This indicates that for the astigmatic PSF, the histograms from individual
frames give an accurate representation of the achievable precision. Fig. 3.S9 plots the
resampled RMSE for the same results. The RMSE roughly matches the CRLB from Fig.
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3.S8, showing that the algorithm can find a precise and accurate estimate under these
conditions.

3.S5. Single emitter precision and accuracy for a tetrapod
PSF

The same testing was done for a tetrapod PSF, using the same hyperparameters as in Ta-
ble 3.S4 but with a PSF width of 2.1 pixels. At emitter intensities less than 1000 photons,
some frames failed to converge, showcasing the difficulty of using a complex PSF at a
low SBR. This may be due to the flat intensity prior yielding poor initializations and dif-
ficulty escaping local minima. The accuracy and precision are thus plotted over a range
of 1000 to 3000 photons. Fig. 3.S10 shows the CRLB and localization precision found as
above. Note that the found precision for intensity breaks the CRLB, especially at higher
intensity, despite the other parameter precisions tracking the CRLB well. The precision
found when assuming a Gaussian distribution is thus not representative of the informa-
tion present in the frame, at least not for the emitter intensity. Fig. 3.S11 again shows the
resampled RMSE for the same data. This time, all estimates behave as expected, broadly
tracking the CRLB.

3.S6. Multimodality in two emitter imaging
During testing of two emitter separability, under some conditions four peaks were found
in the reconstruction of the emitter position. This occurred despite the chains in those
situations converging to the correct MAP number of emitters. This phenomenon was
observed at smaller distances between emitters, using the astigmatic PSF under relative
angles of 0 and 90 degrees with respect to the x-axis, and for the tetrapod PSF under an-
gles of 45 degrees. To understand if this was due to pseudo-convergence or if this was
representative of the underlying posterior, a multimodal frame was analysed, shown in
Fig. 3.S12. K-means clustering was used to find four potential localizations, shown to-
gether with the ground truth in Fig. 3.S12a. Then, by picking fixing one of these emitters
and moving the other around the ROI at the same depth and intensity, the log likelihood
was mapped, shown in Fig. 3.S12c. Fixing the rightmost emitter finds the global opti-
mum to be a pair of emitters near the ground truth, while fixing the bottom emitter finds
an alternate mode of the solution, a pair perpendicular to the ground truth. Note that
this local optimum has virtually the same likelihood. To investigate if either mode could
be representative of the data, a χ-squared test was done on a 95% confidence interval.
The χ2 value is calculated as follows:

χ2 =
Np∑
i=1

(Di −µi )2

µi
, (3.S86)

with Np the number of pixels, Di the measurement of the i th pixel, and µi the expected
value. As the frames are subject to Poisson noise, the χ2 threshold for a 95% confidence
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interval can be found with:

χ2
threshold = Np +1.96

√√√√2Np +
Np∑
i=1

1

µi
. (3.S87)

Applying it to this frame results in χ2
threshold = 456, with the true and alternate modes

returning a χ2 of 407 and 408, respectively. Both modes thus are well within the 95%
confidence interval and are representative of the frame.

To test whether it is possible to select the true mode from these hypotheses, the log
likelihood ratios of the hypotheses are used to calculate the probability of error. This log
likelihood ratio can be approximated by a Gaussian distribution:

LLRq,r = ln

(
P (D|Hq )

P (D|Hr )

)
, (3.S88)

µq,r,s =
Np∑
i
µs

i ln

(
µ

q
i

µr
i

)
−µq

i +µr
i , (3.S89)

σq,r,s =
Np∑
i
µs

i ln

(
µ

q
i

µr
i

)2

, (3.S90)

with LLRq,r the log likelihood ratio of hypothesis q over hypothesis r , µq,r,s the mean of
LLRq,r assuming hypothesis s is true, and σq,r,s the corresponding width. For the two
hypotheses H0 and H1, P (LLR0,1|H0) and PLLR0,1|H1) can now be calculated, as shown
in Fig. 3.S12b. To retrieve the probability of error, we now use the probability of making
a correct selection:

Pc = P (LLR0,1 > 0|H0)−P (LLR0,1 < 0|H1), (3.S91)

Pe = (1−Pc)/2, (3.S92)

with Pc the probability of being correct and Pe the probability of error. Applying this to
the two modes from Fig. 3.S12 results in a probability of error of 0.498. It is therefore not
possible to select the right mode solely given the data.

Testing the multimodal reconstructions found under different angles for the astig-
matic and tetrapod PSF yielded similar results, where both pairs of emitter locations
pass the chi-squared test and have greater than 49.5% probability of error.

In conclusion, while both modes are representative of the data, there is no distinction
to be made based on their likelihood. This indicates that pseudo-convergence is not the
case and the posterior distribution in this scenario is multimodal. As both PSFs show
this multimodality under different conditions, this indicates PSF degeneracy.
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3.S7. Supporting figures and tables

ihgfe

yx

coordinate
system

residual
image

background

cluster

emitter

dcba

z

Figure 3.S1: A collection of diagrams visualising the proposals that each move makes. (a) The single emitter
move changes the 3D position of an emitter, as well as its intensity. (b) The group move finds a cluster of
emitters and randomly and independently changes their positions and intensities. (c) The background move
changes the estimated background photon count. (d) Split distributes the intensity of a random emitter over
two new emitters. (e) Merge randomly selects an emitter and searches within a given radius for an emitter
to merge it with, combining intensities. (f ) Generalized split finds a cluster of N emitters and splits them
off into N +1 emitters. (g) Generalized merge finds a cluster of N +1 emitters to merge into N emitters. (h)
Birth constructs a residual image to use as a probability distribution for possible undetected emitter positions,
generating a new emitter with a random position. (i) Death removes a randomly selected emitter from the
model.
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Figure 3.S2: Prior on intensity. Used for synthetic data with intensities drawn from N (2000,150).
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Figure 3.S3: Model and parameter space convergence of the algorithm for high SBR frames. (a) Autocorrelation
of the model chain. (b) Autocorrelation of the parameters. (c) Time series plot of the model for all frames.
(d) Histogram of all visited models across all frames. Emitter intensities were sampled from N (2000,150),
background was set to 20 photons. Emitters were placed in focal plane at the centre of the region of interest
(ROI) and given a sub-pixel shift drawn from U (−0.5,0.5). 100 frames were used.
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Figure 3.S4: Prior on intensity for low SBR. Used for synthetic data with intensities drawn from N (500,150).
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Figure 3.S5: Model and parameter space convergence of the algorithm for low SBR frames. (a) Autocorrela-
tion of the model chain. (b) Autocorrelation of the parameters. (c) Time series plot of the model for all frames.
(d) Histogram of all visited models across all frames. Emitter intensities were sampled from N (500,150), back-
ground was set to 20 photons. Emitters were placed in focal plane at the centre of the ROI and given a sub-pixel
shift drawn from U (−0.5,0.5). 100 frames were used.
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Figure 3.S6: Model and parameter space convergence of the algorithm for high SBR frames. (a) Autocorrelation
of the model chain. (b) Autocorrelation of the parameters. (c) Time series plot of the model for all frames.
(d) Histogram of all visited models across all frames. Emitter intensities were sampled from N (2000,150),
background was set to 20 photons. Emitters were placed in focal plane at the centre of the ROI and given a
sub-pixel shift drawn from U (−0.5,0.5). 100 frames were used.
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Figure 3.S7: Model and parameter space convergence of the algorithm for low SBR frames. (a) Autocorrela-
tion of the model chain. (b) Autocorrelation of the parameters. (c) Time series plot of the model for all frames.
(d) Histogram of all visited models across all frames. Emitter intensities were sampled from N (500,150), back-
ground was set to 20 photons. Emitters were placed in focal plane at the centre of the ROI and given a sub-pixel
shift drawn from U (−0.5,0.5). 100 frames were used.
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Figure 3.S8: Violin plots of parameter estimates over intensity using astigmatic imaging, compared to the
CRLB. (a) Lateral precision violin plot, using an effective pixel size of 100 nm. (b) Axial precision violin plot. (c)
Violin plot of the emitter intensity precision. (d) Violin plot of the background intensity precision. Precisions
were calculated from the MCMC chain of individual frames, assuming a Gaussian distribution. With a back-
ground of 20 photons, 50 frames were used per datapoint from 500 to 3000 emitter intensity photons. Emitters
were placed in focal plane at the centre of the ROI and given a sub-pixel shift drawn from U (−0.5,0.5).
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Figure 3.S9: Bootstrap resampled RMSE results for the parameter estimates plotted over intensity using astig-
matic imaging. (a) Violin plot of the lateral RMSE. (b) Violin plot of the axial RMSE. (c) Violin plot of the emitter
intensity RMSE. (d) Violin plot of the background intensity RMSE. Results were resampled using 50% of the
available data and 1000 runs. With a background of 20 photons, 50 frames were used per datapoint from 500
to 3000 emitter intensity photons. Emitters were placed in focal plane at the centre of the ROI and given a
sub-pixel shift drawn from U (−0.5,0.5).
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Figure 3.S10: Violin plots of the parameter estimates over intensity using a tetrapod PSF, compared to the CRLB.
(a) Lateral precision violin plot, using an effective pixel size of 100 nm. (b) Axial precision violin plot. (c) Violin
plot of the emitter intensity precision. (d) Violin plot of the background intensity precision. Precisions were
calculated from the MCMC chain of individual frames, assuming a Gaussian distribution. With a background
of 20 photons, 50 frames were used per datapoint from 500 to 3000 emitter intensity photons. Emitters were
placed in focal plane at the centre of the ROI and given a sub-pixel shift drawn from U (−0.5,0.5).
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Figure 3.S11: Bootstrap resampled RMSE results for the parameter estimates using a tetrapod PSF, plotted over
intensity. (a) Violin plot of the lateral RMSE. (b) Violin plot of the axial RMSE. (c) Violin plot of the emitter
intensity RMSE. (d) Violin plot of the background intensity RMSE. Results were resampled using 50% of the
available data and 1000 runs. With a background of 20 photons, 50 frames were used per datapoint from 500
to 3000 emitter intensity photons. Emitters were placed in focal plane at the centre of the ROI and given a
sub-pixel shift drawn from U (−0.5,0.5).
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Figure 3.S12: Analysis of multimodality in astigmatic PSF 3D reconstructions for the two emitter problem.
Ground truth positions are marked with blue dots, while localizations are marked with green crosses. (a) Sin-
gle frame reconstruction for the two emitter problem. (b) Plots of the log likelihood ratios between the hy-
pothesised modes of the reconstruction in a), using a Gaussian approximation. (c) Left: fixing the rightmost
localization, an emitter is shifted over the ROI, imaging the log likelihood and marking the maximum (red star).
Right: the bottom emitter is fixed, and a local optimum is found in the black cross. This finds the pair of modes
used in b), one on the ground truth and one perpendicular to it. Calculating the probability of error yields a
49.8% chance of selecting the wrong hypothesis. The expected value of either mode passes a chi-squared test
on a 95% confidence interval.
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Figure 3.S13: Probability of error between modes for the two emitter problem using astigmatic and biplane
imaging. Plotted for varying emitter and background intensities. (a) Probability of error when selecting modes
with astigmatic imaging. (b) Probability of error when selecting modes using biplane imaging. Emitters were
placed in focal plane, separated by 5/4 σPSF along the x-axis. All uniform priors except for emitter intensity,

which used N (Isample,3.5
√

Isample). Probability of error was calculated using the same methods as for Fig.

3.S12 described in Section 3.S6. Reconstructions without alternate mode used a probability of error of 0, while
reconstructions that could not separate emitters used a probability of error of 1.
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Table 3.S1: Move proposal probabilities.

Move type Probability
RJMCMCburn RJMCMC MCMC

Single Emitter 1
5

1
4

2
5

Group Move 1
5

1
4

2
5

Background 1
5

1
4

1
5

Split 1
15 0 0

Merge 1
15 0 0

Generalized Split 1
15

3
32 0

Generalized Merge 1
15

3
32 0

Birth 1
15

1
32 0

Death 1
15

1
32 0

Table 3.S2: RJMCMC hyperparameters for astigmatic PSF, single emitter convergence test.

Parameter RJMCMC MCMC Units
σx 0.05 0.05 pixels
σy 0.05 0.05 pixels
σz 0.08 0.07 µm
σI 18 15 photons
σb 1 1 photons
σPSF 1.3 1.3 pixels

Table 3.S3: RJMCMC hyperparameters for tetrapod PSF, single emitter convergence test.

Parameter RJMCMC MCMC Units
σx 0.1 0.1 pixels
σy 0.1 0.1 pixels
σz 0.08 0.08 µm
σI 30 30 photons
σb 1 1 photons
σPSF 2.1 2.1 pixels

Table 3.S4: RJMCMC hyperparameters for astigmatic PSF, single emitter precision test.

Parameter RJMCMC MCMC Units
σx 0.08 0.08 pixels
σy 0.08 0.08 pixels
σz 0.08 0.08 µm
σI 30 30 photons
σb 1 1 photons
σPSF 1.3 1.3 pixels
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Abstract
Modulation enhanced single-molecule localization microscopy (meSMLM) methods im-
prove the localization precision by using patterned illumination to encode additional po-
sition information. Iterative meSMLM (imeSMLM) methods iteratively generate prior in-
formation on emitter positions, used to locally improve the localization precision during
subsequent iterations. The Cramér-Rao lower bound cannot incorporate prior informa-
tion to bound the best achievable localization precision because it requires estimators to be
unbiased. By treating estimands as random variables with a known prior distribution, the
Van Trees inequality (VTI) can be used to bound the best possible localization precision of
imeSMLM methods. An imeSMLM method is considered, where the positions of in-plane
standing-wave illumination patterns are controlled over the course of multiple iterations.
Using the VTI, we analytically approximate a lower bound on the maximum localization
precision of imeSMLM methods that make use of standing-wave illumination patterns.
In addition, we evaluate the maximally achievable localization precision for different il-
lumination pattern placement strategies using Monte Carlo simulations. We show that
in the absence of background and under perfect modulation, the information content of
signal photons increases exponentially as a function of the iteration count. However, the
information increase is no longer exponential as a function of the iteration count under
non-zero background, imperfect modulation, or limited mechanical resolution of the il-
lumination positioning system. As a result, imeSMLM with two iterations reaches at most
a fivefold improvement over SMLM at 8 expected background photons per pixel and 95%
modulation contrast. Moreover, the information increase from imeSMLM is balanced by
a reduced signal photon rate. Therefore, SMLM outperforms imeSMLM when consider-
ing an equal measurement time and illumination power per iteration. Finally, the VTI
is an excellent tool for the assessment of the performance of illumination control and is
therefore the method of choice for optimal design and control of imeSMLM methods.

Significance
One of the fundamental questions in single-molecule localization microscopy is at what
precision the position of a single molecule can be determined. In this chapter, we show
that iterative localization microscopy obtains its precision improvement through incor-
poration of prior information, thereby reducing the number of photons needed for precise
localization. In this situation, the Van Trees inequality quantifies the best possible local-
ization precision that can be achieved. The approach presented here can be generalized to
evaluate the best possible localization precision obtainable for different imaging tasks and
with different illumination patterns, point spread functions, and/or control strategies.
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4.1. Introduction

I n single-molecule localization microscopy (SMLM), sparsely activated fluorescent e-
mitters are localized sequentially to obtain a resolution higher than the diffraction

limit [1–3]. Modulation enhanced SMLM (meSMLM) increases the localization preci-
sion using patterned illumination to sparsely activate emitters in a sample, after which
emitter positions are estimated from the sparsity in the emission light [4]. Methods such
as SIMFLUX [5], SIMPLE [6] and repetitive optical selective exposure [7] use a standing-
wave intensity pattern for the illumination, while MINFLUX [8] uses a doughnut-shaped
intensity pattern. Axial resolution was also increased through modulated localization
[9, 10] and axial localization with repetitive optical selective exposure [11], which use
patterns with structure in lateral and axial directions.

Localization precision can be increased locally around the emitter by iteratively a-
dapting meSMLM methods through using prior information on the emitter position
that was generated from previous measurements, which we call iterative meSMLM (ime-
SMLM). In [12], an iterative variant of MINFLUX is discussed, where the position of an
emitter is estimated through triangulation with doughnut-shaped illumination patterns.
This estimate and its localization uncertainty are used as prior information to reposi-
tion and shrink the region of triangulation, after which the emitter position is estimated
again. This procedure locally improves precision in the neighbourhood of the emitter.
Furthermore, it is argued that distributing the limited signal photon budget over many
iterations is preferred over increasing the amount of signal photons per iteration, as the
information content of signal photons increases over the course of iterations.

To characterize the localization precision of (me)SMLM methods, the Cramér-Rao
lower bound (CRLB) is often used [13]. Under mild assumptions (see [14]) on the likeli-
hood function of the acquired data, it holds for any unbiased estimator θ̂ of the param-
eter vector θ that

(
Cθ̂− I−1(θ)

)
is positive semi-definite. Here, Cθ̂ denotes the estima-

tor covariance, I (θ) is the Fisher information, and I−1(θ) is the CRLB. In particular, the
CRLB thus bounds the estimator variance from below. It is shown in [15] that in SMLM,
the covariance of the maximum likelihood estimator (MLE) converges to the CRLB for
increasing signal photon counts. As MLEs attain the CRLB asymptotically, the CRLB can
be used to quantify the best possible localization precision that can be obtained through
(me)SMLM.

imeSMLM methods iteratively update prior information on emitter positions. This
prior information locally improves the localization precision during subsequent itera-
tions. Additional prior information can be gained from photoactivation, as is done in
iterative MINFLUX [12] or MINSTED [16], as only a pool of molecules is activated. To
quantify the best possible improvement of the localization precision in imeSMLM, a
suitable error bound should be able to incorporate prior information. The CRLB requires
estimators to be unbiased, which means that it is not able to incorporate a prior distri-
bution on the estimands into the localization precision.

In this chapter, we use the Van Trees inequality (VTI) as a Bayesian alternative to
the CRLB because prior information on the estimands, such as the emitter position, is
available. We use the VTI to develop a fundamental limit on the localization precision of
imeSMLM methods, for example, where standing-wave illumination patterns are used
for the localization. Furthermore, we simulate the effects of illumination pattern posi-
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tioning on the localization precision. We show that in the absence of background and
under perfect modulation, the information content of signal photons increases expo-
nentially as a function of the iteration count. Under non-ideal conditions such as non-
zero background or imperfect modulation, this favourable scaling is lost, which shows
that optimal design of an imeSMLM method is a complex problem, requiring knowledge
of the practical imaging conditions. The VTI is the performance metric of choice to de-
sign optimal control strategies in silico.

4.2. Methods
In this section, we describe the VTI as a lower bound on the precision of arbitrary es-
timators in case prior information is available. We describe how to apply the VTI on
an imeSMLM method with sinusoidal intensity patterns. Furthermore, we describe the
maximum a posteriori (MAP) estimator as a method to iteratively fuse prior information
with measurements from the current iteration (see Fig. 4.S1).

4.2.1. Van Trees inequality
The VTI [17–19] is a Bayesian variant of the CRLB. By treating the estimand vector θ as
a random variable with a known prior distribution, it can incorporate prior information
into the localization precision bound. Because of this, the VTI can bound the localization
precision of biased and unbiased estimators from below, while the CRLB only bounds
the localization precision of unbiased estimators.

The VTI can be used to bound the localization precision of any estimator θ̂ of the pa-
rameter vector θ from below. For this, the measurements x ∈Rn are modelled as inde-
pendent realizations from a model distribution, which depends on the parameter vector
θ through the likelihood function L(θ|x). Additionally, a prior distribution λk−1(θ) on
the parameter vector is available in each iteration k of the localization procedure [17,
18]. Under regularity conditions on the likelihood function L(θ|x) and the prior distri-
bution λk−1(θ) (see Section 4.S2), the mean squared error matrix

MSE
(
θ̂k

)=Eλk−1

[∫
Rn

(θ̂k −θ)(θ̂k −θ)T L(θ|x)dx
]

(4.1)

of any estimator θ̂k of θ during iteration k satisfies:

MSE
(
θ̂k

)− (JD,k + JP,k )−1 ⪰ 0. (4.2)

Here, Jk = JD,k + JP,k is called the Bayesian information matrix, which is the Bayesian
equivalent of the Fisher information matrix. The data information matrix JD,k describes
the Fisher information of the data, averaged over the prior. It is given by:

[JD,k ]i , j =Eλk−1

[
[Ik (θ)]i , j

]
. (4.3)

Here, Ik (θ) denotes the Fisher information in iteration k (see Section 4.S1).
The prior information matrix JP,k describes the information contained in the distri-

bution of the prior information. It is given by:

[JP,k ]i , j =Eλk−1

[
∂ log(λk−1(θ))

∂θi

∂ log(λk−1(θ))

∂θ j

]
. (4.4)
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In many practical scenarios, the data information matrix in Eq. (4.3) is difficult to com-
pute analytically. Aside from certain special cases (see Subsection 4.3.1), one generally
resorts to numerical methods to evaluate the VTI [20, 21].

4.2.2. Localization precision for iterative modulation enhanced single-
molecule localization microscopy

In imeSMLM, prior information on the emitter position that was generated during pre-
vious iterations is used to maximize the information content of signal photons in the
next iteration. The CRLB cannot incorporate prior information on estimand vector θ
and therefore the Bayesian VTI is needed.

To be able to formulate the VTI for the described imeSMLM method, a prior distri-
bution on the parameter vector θ needs to be chosen during each iteration. Here, θ
consists of the emitter position (θx ,θy ), the expected signal photon count θI and the
expected background photon count per pattern θb .

We choose the asymptotic Gaussian distribution of the MLE as a prior. It is shown
in [17, 22] that the MLE asymptotically follows a multivariate normal distribution, with
mean θ and with the covariance given by the CRLB I−1(θ). Alternatively, one can say
that for an increasing amount of signal photons, the MLE becomes unbiased and attains
minimum covariance given by the CRLB. As a result of this choice, the VTI for imeSMLM
is approximately equal to the CRLB, computed over all iterations (see Fig. 4.S2). This
shows that the information increase in imeSMLM is derived from Gaussian prior infor-
mation.

Using this prior, we iteratively compute the best localization precision as follows (see
Fig. 4.S3). In the first iteration, the CRLB I−1

1 (θ) is evaluated. The corresponding MLE θ̂1

will approximately be Gaussian distributed, with mean θ and covariance I−1
1 (θ).

We use this distribution as prior information on the next iteration. In iteration 1, we
take the prior distribution λ1(θ) to be the probability density function of a multivariate
Gaussian distribution. To simulate the best possible localization precision, ignoring the
effects of estimation errors made during earlier iterations, the true estimand vector θ is
used as the mean of the Gaussian prior. We then evaluate JD,2 and JP,2. The new prior
λ2(θ) is chosen to be Gaussian, with mean θ and covariance (JD,2 + JP,2)−1.

In each new iteration k, we take the prior distribution λk−1(θ) to be the probability
density function of a multivariate Gaussian distribution, with mean θ and covariance
(JD,k−1 + JP,k−1)−1. We then evaluate JD,k and JP,k . The new prior λk (θ) is chosen to be
Gaussian, with mean θ and covariance (JD,k + JP,k )−1. This continues until M iterations
are completed.

4.2.3. Choice of pattern positions
We consider standing-wave intensity patterns with controllable spatial phase shiftsφ±

x,k ,

φ±
y,k in two orthogonal orientations. In each iteration of the localization procedure, two

x-oriented pattern phases, φ+
x,k , φ−

x,k , and two y-oriented pattern phases, φ+
y,k , φ−

y,k , are

used to illuminate the sample. The superscripts +, − describe the pattern placement
with respect to the emitter position. Using prior information on the emitter position, the
pattern positions can be selected to maximize the information content of signal photons.
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In the initialization step, no prior information is available. Therefore, the pattern
positions are chosen to beφ±

x,1 =φ±
y,1 = 0 by default. A parameter estimate θ̂1 is obtained,

and the CRLB can now be computed, which results in a N (θ, I−1
1 (θ)) prior distribution

for the next iteration.
If the modulation contrast of the pattern is perfect, the intensity minima of the stand-

ing-wave patterns should ideally be placed on the true emitter position (θx , θy ) during
subsequent iterations k for the information content of signal photons to be maximal. A
similar result was found for iterative MINFLUX, where a doughnut-shaped illumination
pattern was used [8, 12]. This result can be explained intuitively using a thought experi-
ment, as was done in [4]. If we assume that the modulation contrast m = 1, the intensity
minimum has true zero intensity. Suppose that the pattern positions are chosen such
that each intensity minimum is placed exactly on the emitter position. As the emitter is
illuminated with zero-intensity light, it will not emit any photons. We therefore need to
wait infinitely long to receive any non-zero amount of signal photons.

For this to happen, two scenarios are possible. Either the emitter is located perfectly
in the intensity minimum or nothing is located in the intensity minimum. The prior in-
formation expresses confidence that there is indeed an emitter located in this position,
resulting in a decrease of the mean squared error. The prior information thus adds in-
formation to signal photons in case an emitter is illuminated with (near-)zero intensity
light.

In practice, the true emitter positions have to be estimated, so this pattern place-
ment cannot be implemented. An implementable pattern placement strategy could re-
place the true emitter positions with their currently known estimates θ̂x,k−1 and θ̂y,k−1.
However, this can cause the localization precision to become sensitive to estimation er-
rors. If the current position estimate is imprecise, intensity minima will be placed away
from the true emitter position, and the newly obtained prior distribution will add little
information.

To decrease the sensitivity to estimation errors of the iterative localization method,
the intensity minima of two patterns, φ+

k and φ−
k , can be placed symmetrically around

the current estimate of the emitter position, as shown in Fig. 4.1 (also see Fig. 4.S4). In
each iteration, the distance between the intensity minima is decreased, thereby locally
improving the localization precision around the current estimate of the emitter position.

In this chapter, we consider a pattern position control strategy where illumination
minima are placed symmetrically around the current estimate of the emitter position, in
which the distance between the emitter position and an intensity minimum scales with
the localization precision of the previous iteration. This control strategy is given by{

φ±
x,k = ω

(
θ̂x,k−1 ±ασx,k−1

)−π,

φ±
y,k = ω

(
θ̂y,k−1 ±ασy,k−1

)−π.
(4.5)

Here, ω denotes the spatial pattern frequency. As the illumination pattern is at best
diffraction limited, it must hold that ω≤ 2π · 2NA

λex
, where λex is the excitation wavelength

and NA is the numerical aperture. The localization precisions σx,k−1 and σy,k−1 are the
square roots of the first and second diagonal elements of J−1

k−1, respectively. The aggres-
siveness parameter α determines how close the pattern minima are placed to the esti-
mated emitter position.
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Figure 4.1: Pattern position control strategy (see Eq. (4.5)) to iteratively increase information content of signal
photons. (a) Example of one period of a sinusoidal intensity pattern in the x-direction, with the intensity
minimum centred at a global phase zero. (b) Individual illumination patterns placed during iteration 2. In each
iteration, four sinusoidal illumination patterns are placed, such that current estimate of the emitter position is
enclosed between the illumination minima of the patterns. (c) Summed illumination patterns over the course
of three iterations. The distance between the intensity minimum of the summed patterns and the emitter
position reduces iteratively as a result of adjusting the search region based on prior information about the
achieved precision in the previous iteration. (d) Expected signal photon response from the emitter in (b) and
(c) over the course of three iterations, using the illumination placement from (c). (e) Illustration of the expected
signal photon budget for one, two, and three iterations. Two scenarios are considered in this chapter, namely
the case where the signal photon count is kept constant over the course of all iterations and the case where the
imaging time and illumination intensity are kept constant over the course of all iterations. In the latter case, the
signal photon budget is only exhausted by imeSMLM in case the single emitter is illuminated with maximum
intensity during all iterations. If the intensity pattern minima are placed close to the emitter, a reduced number
of photons is recorded within the same time window.

4.2.4. Maximum a posteriori estimation
Estimators used for iterative localization microscopy should be able to recursively fuse
measurements with prior knowledge on estimands that was obtained during earlier it-
erations. In each iteration k, we compute the MAP estimator θ̂k , which is given by the
maximizing argument of the posterior distribution p(θ|x1, . . . , xk ). As the measurements
x1, . . . , xk are independent, the posterior satisfies the following recursion:

p(θ|x1, . . . , xk )
θ∝ p(xk |θ)p(θ|x1, . . . , xk−1)

θ∝ p(xk |θ)p(x1, . . . , xk−1|θ)p(θ).
(4.6)

Here, p(θ|x1, . . . , xk ) denotes the posterior from the previous iteration, p(xk |θ) repre-
sents the likelihood of the measurements from the current iteration, and p(x1, . . . , xk−1|θ)
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represents the likelihood of the accumulated measurements from previous iterations. If
prior information is available, such as in photoactivation [12, 16], it can be included in
p(θ). To keep the analysis as general as possible, we choose p(θ) to be a uniform (im-
proper) prior over R4 to represent the lack of prior information on θ before measure-
ments are done. For this choice, the estimation error of the MAP estimator is guaranteed
to converge to the VTI if the likelihood reflects the underlying distribution of the data.
The MAP estimate can then be computed as follows:

θ̂k = argmax
θ

[
log(p(x1, . . . , xk−1|θ))+ log(p(xk |θ))

]
. (4.7)

4.2.5. Simulations and parameter values
The VTI and MAP estimates for the described imeSMLM method were obtained using
representative in silico experiments. The VTI was evaluated using simple Monte Carlo
integration (see Section 4.S3), where 50,000 Monte Carlo samples were used for conver-
gence. 50,000 realizations of regions of interest were simulated by realizing the image
formation model (see Section 4.S1), where the emitter was located in the centre of the
camera pixel array and where its subpixel position was uniformly randomized. MAP
estimates were obtained from Eq. (4.7) using Levenberg-Marquardt optimization [23,
24]. The model parameters (see Table 4.S1) are considered to be representative of an
imeSMLM experiment where standing-wave intensity patterns are used to illuminate the
sample. We choose the pattern frequency ω and the standard deviation of the Gaussian
point spread function (PSF) to be diffraction limited. This maximizes the information
contained in the illumination pattern. For the chosen parameters, the pattern pitch is
approximately equal to twice the standard deviation of the Gaussian PSF. This is consis-
tent with earlier work on modulation enhanced localization microscopy with sinusoidal
illumination [5].

4.3. Results and Discussion
In this section, we present the theoretical and numerical results of this study. We de-
scribe a closed-form expression of the VTI, assuming one-dimensional localization, no
image discretization by the camera, and zero background. Simulations explore the ef-
fects of the number of iterations and the choice of pattern positioning on the localization
precision. In Figs. 4.2 and 4.3, the effects of the iteration count and pattern positioning
on the localization precision are simulated, respectively assuming a fixed photon count
per iteration and a fixed imaging time and illumination power per iteration.

4.3.1. Analytical approximation of Bayesian lower bound on the local-
ization precision

Under some assumptions on the image formation model, analytical expressions for the
localization precision can be derived using the VTI. We derive an analytical approxima-
tion of the Bayesian VTI on the localization precision of an imeSMLM method where
sinusoidal intensity patterns are used, given a Gaussian PSF and a sequence of pattern
positions.

We limit ourselves to one-dimensional localization where we disregard the effect of
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Figure 4.2: Simulated iterative localization and precision bound using a fixed expected signal photon budget
per iteration. In (a)-(d), the pattern positioning of Eq. (4.5) was used with aggressiveness parameter α= 3. In
(d) and (e), the results are compared with the theoretical limit of Eq. (4.9) and the precision approximation
of Eq. (4.10), which assume perfect modulation and zero background. Error bars denote the standard devi-
ation of the root-mean-square error, obtained by comparing 200 batches of 250 MAP estimates. (a) Example
of simulated regions of interest during three iterations of an iterative localization experiment. Contrast was
enhanced for visualization purposes. The divergence in emitter intensity from iteration 1 to iteration 3 is the
result of shrinking the distance between pattern minima while enforcing a fixed expected signal photon budget
per iteration in simulation. As a result, the pattern minima that are placed furthest from the emitter position
(due to position estimation errors in the previous iteration) will use a larger share of the signal photon bud-
get. (b) Two-dimensional histogram of MAP localizations on 50,000 simulated regions of interest during three
iterations of an iterative localization experiment at an expected signal photon count of θI = 2000 photons. (c)
Histogram of MAP localizations projected on the x-direction. A Gaussian with standard deviation σx is fitted
on the histogram. (d) Simulated localization precision in x-direction as a function of the expected signal pho-
ton count when one, two, or three iterations are used. (e) Simulated localization precision in x-direction as
a function of the aggressiveness parameter α, and the distance between the pattern minima using the same
values of the aggressiveness parameterα, for different expected signal photon counts and assuming a constant
signal photon count per iteration.
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Figure 4.3: Simulated iterative localization and precision bound using a fixed imaging time and illumination
power per iteration. In (a)-(d), the pattern positioning of Eq. (4.5) was used with aggressiveness parameter
α= 3. In (d) and (e), results are compared with the theoretical limit of Eq. (4.9), which assumes perfect modu-
lation and zero background. Error bars denote the standard deviation of the root-mean-square error, obtained
by comparing 200 batches of 250 MAP estimates. (a) Example of simulated regions of interest during three
iterations of an iterative localization experiment. Contrast was enhanced for visualization purposes. (b) Two-
dimensional histogram of MAP localizations on 50,000 simulated regions of interest during three iterations of
an iterative localization experiment at an expected signal photon budget of θI = 2000 photons. (c) Histogram
of MAP localizations projected on the x-direction. A Gaussian with standard deviation σx is fitted on the his-
togram. (d) Simulated localization precision in x-direction as a function of the expected signal photon budget
θI , when one, two, or three iterations are used. (e) Simulated localization precision in x-direction as a function
of the expected signal photon budget for different pattern positioning strategies.
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discretization of the image due to the finite size of camera pixels. In addition, we do
not estimate the expected signal photon count θI and we ignore background such that
θb = 0. Under these assumptions, the derived analytical approximation serves as a fun-
damental limit on the localization precision. That is, the localization precision of the
described imeSMLM method for two-dimensional localization, under the effects of im-
age discretization, estimation uncertainty on θI and θb , and non-zero background, can
only be worse than the analytical approximation.

The approximation of the best possible localization precision is given by (see Section
4.S4):

σx,k ≥ (Jk )−
1
2 ≥ σx,k−1√

1+σ2
x,k−1(FPSF +Fillum)

, (4.8a)

FPSF = θI ck

σ2
PSF

(
2+

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))
,

(4.8b)

Fillum = θI ckω
2

(
2−

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))
.

(4.8c)

Here, ck models the expected photon count per iteration under imperfect illumination
(see Section 4.S1). Furthermore, σPSF denotes the standard deviation of a Gaussian PSF,
and m denotes the modulation contrast of the illumination pattern. In the denominator,
the term “1” accounts for the prior information. The terms FPSF and Fillum describe the
information derived from the spot centre estimation and the information derived from
the illumination pattern modulation, respectively. Note that Eq. (4.8) is an exact repre-
sentation of the VTI for m = 1 and φ+

x,k =φ−
x,k and a lower bound on the VTI for m < 1 or

φ+
x,k ̸=φ−

x,k .
If the pattern positions of Eq. (4.5) are substituted into Eq. (4.8), we obtain:

σx,k ≥ (Jk )−
1
2 ≥ σx,k−1√

1+σ2
x,k−1(FPSF +Fillum)

, (4.9a)

FPSF = θI ck

σ2
PSF

(
2−2m cos

(
ωασx,k−1

)
exp

(
−
ω2σ2

x,k−1

2

))
, (4.9b)

Fillum = θI ckω
2

(
2+2m cos

(
ωασx,k−1

)
exp

(
−
ω2σ2

x,k−1

2

))
. (4.9c)

Assuming that the modulation contrast is perfect and that zero background photons are
recorded, Eq. (4.9) can be used to derive the optimal distribution of the signal photon
budget (see Section 4.S5). This proves that it is optimal to isotopically distribute the
signal photon budget over the number of iterations from iteration 2 onwards.

From Eq. (4.9) with m = 1, it can be seen that the contribution of the expected signal
photon count θI to the localization precision grows exponentially as σx,k−1 decreases.
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This implies that the information content per signal photon grows as the number of it-
erations increases. Assuming that the modulation contrast is perfect and that zero back-
ground photons are recorded, it is thus favourable to increase the number of iterations
as much as possible within the limited photon budget.

However, increasing the number of iterations results in a lower amount of signal pho-
tons per iteration, lowering the signal-to-background ratio in each iteration. The expo-
nential scaling is therefore destroyed by background. Furthermore, we assume here that
the mechanical resolution of the illumination positioning system is not limiting, such
that every illumination-pattern position between −π and π can be reached. In practice,
this becomes increasingly difficult for small σx,k−1, preventing the exponential limit to
be reached for high amounts of iterations. Because of these factors, it makes sense to
limit the number of iterations in practical applications.

4.3.2. Effect of iterations on localization precision
From the theoretical limit of Eq. (4.8) it was found that illumination pattern control can
exponentially increase the information content of signal photons under perfect modu-
lation and zero background, making an increase in the iteration count preferable over
an increase in the number of photons per iteration. The effect of the iteration count
and pattern positioning on the localization precision for imperfect modulation and zero
background will be simulated in this subsection.

In Fig. 4.2, the effect of the iteration count on the localization precision is simulated
assuming a fixed expected signal photon count per iteration. The aggressiveness param-
eterαwas set to 3 for these simulations. For each simulation, the VTI was evaluated, and
MAP estimates were computed for 50,000 randomly generated regions of interest (see
Section 4.S1). These results are compared with the theoretical limit of Eq. (4.8), where
we assume perfect modulation to reflect the best achievable localization precision. We
also compute the CRLB reported in [12], where the illumination minimum is approxi-
mated by a quadratic profile. Assuming that N signal photons are collected during each
iteration, this approximation of the CRLB is given by

σx,k ≳

∣∣∣φ+
x,k −φ−

x,k

∣∣∣
4ωN 1/2

= 2ασx,k−1

4N 1/2
. (4.10)

In Fig. 4.2a, examples of simulated regions of interest are shown assuming a fixed ex-
pected signal photon count per iteration. From iterations 1 to 3, the emitter intensity
appears to diverge. This effect is caused by enforcing a fixed expected signal photon
budget per iteration in simulation. Due to this assumption, the emitter intensities rep-
resent the share of the expected signal photon budget used during each measurement.
As the distance between pattern minima shrinks over the course of iterations, the signal
photon budget is distributed increasingly unevenly over the measurements.

In iteration 1, pattern minima are placed far from the true emitter position, so the
emitter is illuminated with high intensity from all patterns. As such, the illumination
patterns will use an approximately equal share of the signal photon budget.

In subsequent iterations, pattern minima are placed increasingly close to the es-
timated emitter position. Because we make an estimation error, pattern minima are
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placed asymmetrically around the true emitter position. As a result, the pattern min-
ima that are placed furthest from the emitter position will use a larger share of the signal
photon budget. As the expected signal photon budget is constant over the iterations, the
emitter intensities appear to diverge.

From Fig. 4.2d, it can be seen that iterative localization using the pattern placement
of Eq. (4.5) results in improved localization precision over SMLM. For eight background
photons per pixel and 95% modulation, we found that around a fivefold improvement
over SMLM can be reached by doing two iterations at a signal photon count of 644 signal
photons per iteration. When doing three iterations, the maximum improvement over
SMLM is around four, reached at 240 signal photons per iteration.

These findings are in contrast with the results under perfect modulation and zero
background, as described by the analytical approximation. As expected from the ear-
lier analysis, we find that the localization precision is proportional to θ−1

I when doing
two iterations and θ−3/2

I when doing three iterations. This difference is explained by the
fact that the precision loss due to background, imperfect modulation, and discretization
accumulates as the number of iterations increases, as the lowered precision σx,k−1 in a
previous iteration is carried over to the next iteration. In practice, the favourable expo-
nential increase in information over the course of the iterative procedure is thus lost.

When recording 315 or more photons per iteration, using two iterations rather than
three results in a better localization precision. To investigate the cause, Fig. 4.S5 shows
the localization precision as a function of the cumulative signal photon count at a to-
tal signal photon count of 2000 photons. For eight background photons per pixel and
95% modulation, we see that using three iterations is still preferred when the second out
of three iterations ends at 1333 signal photons. At this moment, using three iterations
results in a 4.5-fold precision increase over using SMLM. During the third out of three
iterations, the localization precision improves only marginally, resulting in a decrease of
the precision improvement to 3.7 with respect to SMLM. This is not expected from the
analytical approximation under perfect modulation and zero background, where the lo-
calization precision improvement over SMLM increases from 13 to 190 during the third
iteration.

Simulations show similar results for different settings of the modulation contrast and
the background count. Specifically, we find a stagnation of the localization precision
during the third iteration for 80% and 90% modulation contrast (see Fig. 4.S6) and back-
ground counts of 1, 4, and 12 photons per pixel (see Fig. 4.S7), in contrast to the results
for perfect modulation and zero background.

We can conclude that imperfect modulation and non-zero background limit the best
possible localization precision when the illumination pattern minima are placed closer
to the emitter position. When distributing photons equally over the iterations, increas-
ing the number of iterations indefinitely does not necessarily lead to increasingly infor-
mative signal photons.

Additionally, we see an ill-convergence of the MAP estimator at perfect modulation
when patterns are placed close to the true emitter position (see Figs. 4.S6 and 4.S10).
This is caused by a (near-)zero signal photon response under perfect modulation. For
pattern minima that are close to the true emitter position, the signal photon response is
low or zero for perfect modulation. This causes low signal-to-background ratios, which
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means that the shape of the PSF is poorly represented in the data. Analogous to existing
results on the MLE [15], the MAP estimator fails to consistently estimate the emitter po-
sition with minimum uncertainty. For 95% modulation, we do not see ill-convergence
for expected background counts of one or more photons per pixel, although the maxi-
mum localization precision is not reached forα< 2 due to the low signal-to-background
ratio (see Fig. 4.S11).

In the simulations of Fig. 4.2d, the aggressiveness parameter α was kept constant at
three. For zero background and perfect modulation, it is expected that reducing the ag-
gressiveness improves the localization precision independently from the expected signal
photon budget (see Fig. 4.S8). For eight background photons per pixel and 95% modu-
lation, we see that α = 2 improves the localization precision fourfold over SMLM when
recording 518 signal photons.

The optimal choice of the aggressiveness parameter depends on the expected back-
ground photon count, the modulation contrast, and the expected signal photon count.
Fig. 4.2e shows that the optimal α decreases for a decreasing signal photon count. For
95% modulation and eight background photons per pixel, α = 2.5 is optimal at a signal
photon budget of 2000 photons, while α = 5.5 is optimal at a signal photon budget of
5000 photons. We also see that the optimal α decreases for increasing background (see
Fig. 4.S11). That is, as the signal-to-background ratio increases, the optimal α increases
as well.

For perfect modulation, we have already argued that the localization precision can
be optimized by placing pattern minima directly on the emitter. However, this optimum
shifts when the modulation contrast is imperfect (see Fig. 4.S10). Specifically, this shows
that the localization precision does not improve from infinitely reducing the distance
between pattern minima in case the pattern modulation is imperfect. This indicates
that the prediction from [8] does not hold for imperfect modulation.

Therefore, a practical way of choosing α is needed to optimize imeSMLM. If prior
knowledge about the signal photon count, the background, and the modulation contrast
is available, the theoretically optimalα should be found by optimizing the VTI. It remains
an open question how to do this systematically. A practical solution could be to choose
α from a lookup table, constructed in silico from optimizing the VTI under a range of
practical experimental conditions.

In Fig. 4.3, the effect of the iteration count and pattern positioning on the localization
precision is simulated, assuming a fixed imaging time and illumination power per iter-
ation. As a consequence of using patterned illumination, the use of the available signal
photon budget varies between iterations (see Fig. 4.1e). Identically to the previous sim-
ulations, the aggressiveness parameter α was set to three and the MAP estimates were
computed for 50,000 regions of interest.

From Fig. 4.3, d and e, we see that SMLM outperforms imeSMLM over a range of
signal photon budgets and for different pattern positioning strategies. For eight back-
ground photons per pixel and 95% modulation, SMLM outperforms imeSMLM with three
iterations by a factor 1.2 at a signal photon budget of 518 signal photons.

To investigate the cause of this performance loss, we simulate the localization pre-
cision per recorded photon under the illumination strategy of Eq. (4.5) (see Fig. 4.S9, a
and c). It can be seen that imeSMLM still enables an increase in the information content
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per recorded signal photon. For eight background photons per pixel and 95% modula-
tion, the localization precision is improved 1.4-fold over SMLM when the first 411 signal
photons are recorded using two iterations. When doing three iterations, the maximum
improvement over SMLM is 1.5, reached after 422 signal photons.

However, SMLM uses more of the available signal photon budget within the same
time span, ultimately resulting in a better localization precision over imeSMLM (see Fig.
4.S9, b and d). For SMLM, all 2000 signal photons within the budget are collected. For
imeSMLM, all signal photons available in first iteration are collected, as the illumina-
tion intensity equals that of SMLM. In subsequent iterations, pattern minima are placed
closer to the emitter position, resulting in a reduced signal photon response. When do-
ing three iterations in total, 60 signal photons are collected on average during the second
iteration, and 40 signal photons are collected on average during the third iteration. While
these photons are more informative than those obtained with SMLM, the total amount
of information is not enough to outperform SMLM.

These effects are further exemplified by the analytical approximation, as pattern min-
ima are placed even closer to the emitter position when the effects of background and
imperfect modulation are removed. For three iterations with a photon budget of 2000
photons, eight signal photons are collected on average during the second iteration, and
one signal photon is collected on average during the third iteration. As the amount of
signal photons with increased information is so limited, the localization precision ap-
proximately scales with θ−1/2

I for imeSMLM, with a constant improvement factor of 1.6
over SMLM when doing two iterations and 1.7 when doing three iterations.

In the simulations of Fig. 4.3d, the aggressiveness parameter α was kept constant at
three. Fig. 4.3e shows that for zero background and perfect modulation, it is expected
that the aggressiveness does not significantly influence the maximum localization pre-
cision, as on average less than 15 signal photons are collected during the second and
third iterations for α = 2, 3, or 4. As such, the precision improvement from aggressive
localization is balanced by a reduction of the signal photon count. For eight background
photons per pixel and 95% modulation, we see that aggressive localization with α = 2
results in a 1.3- to 1.8-fold reduction in localization precision for signal photon budgets
θI between 200 and 10,000 photons.

4.4. Conclusion
In imeSMLM, resolution is improved locally around an emitter position by using prior
information that was derived from measurements in earlier iterations. The CRLB can-
not incorporate prior information, as it requires estimators to be unbiased. By treating
estimands as random variables with a known prior distribution, the Bayesian VTI can be
used to bound the maximally achievable localization precision from below. The VTI is
useful for bounding the localization precision in imeSMLM as it is able to account for
the effect of prior information that is generated over the course of iterations.

We derived an analytical approximation of the Bayesian lower bound on the localiza-
tion precision of imeSMLM methods that make use of standing-wave illumination pat-
terns in the absence of image discretization by the camera, estimation uncertainty on the
signal photon count, and background fluorescence. This fundamental limit cannot be
surpassed, as relaxing the aforementioned assumptions can only worsen the localization
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precision of imeSMLM methods. Using this limit, we have shown that the information
content of signal photons increases exponentially as a function of the iteration count
when the modulation contrast is 100%. Additionally, we prove that for perfect modula-
tion, it is optimal to isotopically distribute the single-molecule’s photon budget over the
number of iterations from iteration 2 onwards.

We demonstrate a practical imeSMLM pattern control strategy using the VTI. The VTI
was simulated to assess the performance of imeSMLM under eight photons per pixel
background and 95% modulation contrast. By using two iterations in total, imeSMLM
reaches at most a fivefold improvement over SMLM. This indicates that the exponential
localization improvement as a function of the iteration count cannot be achieved in most
experiments, as it breaks down for slight imperfections in the modulation contrast.

Moreover, SMLM is able to outperform imeSMLM in case the imaging time and illu-
mination laser power are kept constant between iterations. imeSMLM results in signal
photons with increased information content. However, placing pattern minima close to
the emitter position reduces the signal photon response, while SMLM is able to collect
more signal photons within the same time frame. At a signal photon budget of 2000 pho-
tons, we find that SMLM is around 1.2 times better than three iterations of imeSMLM at
eight expected background photons per pixel and 95% modulation contrast. We con-
clude that imeSMLM is able to increase the information content per signal photon but
that this information increase does not necessarily outweigh the reduced signal photon
response.

From this, we find that the optimal selection of pattern placement, the number of
iterations, and the time spent per iteration in imeSMLM depends on many factors, such
as the photon budget, imperfections in the illumination system, and the expected back-
ground count. Specifically, we show that the smallest step size is most likely not the best
one and that the optimal step size depends on the molecule intensity, modulation con-
trast, and background fluorescence. Furthermore, we demonstrate that the localization
precision only scales with the step size over a small set of experimental conditions.

The VTI can be used to quantify the best possible performance of illumination pat-
tern control strategies and is therefore a promising performance metric in optimal con-
trol of imeSMLM methods. In this chapter, we chose to analyse imeSMLM with four
sinusoidal illumination patterns. This is the most straightforward approach using si-
nusoidal illumination. It remains an open question if other arrangements of sinusoidal
illumination patterns could lead to further imeSMLM improvements. Other illumina-
tion pattern shapes, such as the doughnut-shaped pattern from MINFLUX [8, 12], could
also lead to improvements in imeSMLM. When designing imeSMLM experiments, the
VTI is the preferred tool to tailor the pattern placement strategy to different imaging
conditions.

Data and Code Availability
The data that support the findings of this study are openly available in 4TU.ResearchData
[25]. The code that supports the findings of this study is openly available on GitHub [26].
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Supporting Citations
The following references appear in the supporting information: [27, 28].
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Supporting Information for:
Precision in Iterative Modulation

Enhanced Single-Molecule
Localization Microscopy

4.S1. Image formation model
Here, we discuss the image formation model under consideration in Chapter 4.

We consider an total internal reflection fluorescence (TIRF) microscopy setup, where
a single emitter is illuminated with patterned intensity profiles during M iterations and
for which read-out noise is assumed to be negligible. As in [1], we consider standing-
wave intensity patterns with controllable spatial phase shiftsφ±

x,k ,φ±
y,k in two orthogonal

orientations. The superscripts +, − describe the pattern placement with respect to the
emitter position (see Section 4.2.3).

In each iteration k ∈ {1,2, · · · , M } of the localization procedure, two x-oriented pat-
terns p+

x,k (x, y,φ+
x,k ), p−

x,k (x, y,φ−
x,k ) and two y-oriented patterns p+

y,k (x, y,φ+
y,k ),

p−
y,k (x, y,φ−

y,k ) are used to illuminate the sample. For the sum of the patterns, we denote:

pk (x, y,φ±
x,k ,φ±

y,k ) = p+
x,k (x, y,φ+

x,k )+p−
x,k (x, y,φ−

x,k )+p+
y,k (x, y,φ+

y,k )+p−
y,k (x, y,φ−

y,k ),
(4.S1)

where the patterns can be described by:p±
x,k (x, y,φ±

x,k ) = ck

[
1+m cos

(
ωx −φ±

x,k

)]
,

p±
y,k (x, y,φ±

y,k ) = ck

[
1+m cos

(
ωy −φ±

y,k

)]
.

(4.S2)

Here, m ∈ [0,1] denotes the modulation contrast of the pattern and ω denotes the spa-
tial frequency of the pattern (in rad/m). As the illumination pattern is at best diffraction
limited, it must hold that ω≤ 2π · 2NA

λex
, where λex is the excitation wavelength (in m) and

NA is the numerical aperture. We choose ω to be diffraction limited (see Table 4.S1), as
this maximizes the information contained in the illumination pattern and as it is consis-
tent with earlier work on modulation enhanced localization microscopy with sinusoidal
illumination [1].

The normalization coefficient ck controls the ratio of expected signal photons that
are collected per iteration under imperfect illumination. We consider two choices of ck .
First, we consider a scenario where we distribute a fixed signal photon budget equally
over all iterations. Note that without normalization, the illumination patterns used dur-
ing each iteration do not necessarily sum to 1/M on the position of the emitter, as the
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pattern phases are arbitrary. The normalization coefficient ck compensates for this ef-
fect, to guarantee an emitter is illuminated with a fraction of 1/M signal photons during
each iteration:

Sk (x, y,φ±
x,k ,φ±

y,k ) = 4+m cos
(
ωx −φ+

x,k

)
+m cos

(
ωx −φ−

x,k

)
+m cos

(
ωy −φ+

y,k

)
+m cos

(
ωy −φ−

y,k

)
,

(4.S3)

ck,fixed signal photon count =
1

MSk (x, y,φ±
x,k ,φ±

y,k )
. (4.S4)

In the second scenario, we keep the imaging time and illumination intensity per iteration
constant for all iterations. The normalization constant ck should be chosen as the largest
number for which the sum of the patterns in an iteration equals 1/M , independent of the
chosen pattern phases. This results in the following expression for ck :

ck,fixed time =
1

2M(1+m)
. (4.S5)

The PSF h(x, y)2 is assumed to be Gaussian with standard deviation σPSF (in m):

h(x, y)2 = 1

2πσ2
PSF

exp

(
−x2 − y2

2σ2
PSF

)
. (4.S6)

To maximize the information contained in the Gaussian PSF, we choose the standard
deviation to be diffraction limited. For a diffraction limited PSF, we define σPSF = λem

4NA as
was done in [1], whereλem is the emission wavelength (in m). For the chosen parameters
(see Table 4.S1), the pattern pitch is approximately equal to twice the standard deviation
of the Gaussian PSF.

We consider a rectangular camera pixel array without dead space between pixels,
with nx pixels in the x-direction and ny pixels in the y-direction. In addition, let all
pixels be rectangular, with size ∆x in the x-direction and ∆y in the y-direction and with
the centre of pixel q ∈ {1,2, · · · ,nx ny } located at (xq , yq ).

In the absence of read-out noise, the photons collected on pixel q of the camera dur-
ing iteration k can be modelled as realizations of a Poisson process [2]. The Poisson
mean µq,k for each pixel reads:

µq,k = θI pk (x, y,φ±
x,k ,φ±

y,k )Ex (xq ,θx )Ey (yq ,θy )+θb , (4.S7)

where the coordinates (θx ,θy ) (in m) denote the emitter position. θI (in photons) and
θb (in photons/pixel) respectively denote the expected signal photon count over all it-
erations and the expected background photon count per pixel and pattern. These esti-
mands are collected in the parameter vector θ = [θx ,θy ,θI ,θb]T . Eu(uq ,θu) (with u = x
or u = y) is given by:

Eu(uq ,θu) = 1

2
erf

(
uq −θu + ∆u

2

σPSF
p

2

)
− 1

2
erf

(
uq −θu − ∆u

2

σPSF
p

2

)
. (4.S8)
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Using this image formation model, the Fisher information for individual iterations can
be computed. It is shown in [1, 2], that for a parameter vector θ, the entries of the Fisher
information matrix Ik (θ) during each iteration k are given by (with npixels = nx ny ):

[Ik (θ)]i , j =
npixels∑

q=1

1

µq,k

∂µq,k

∂θi

∂µq,k

∂θ j
. (4.S9)

4.S2. Van Trees inequality
In this section, we state the multivariate VTI and its assumptions, based on its formula-
tion in [3, 4].

Let x = [x1, x2, ..., xn]T represent a data set, which can be seen a realization of inde-
pendent and identically distributed random variables [X1, X2, ..., Xn]T with a distribution
depending on an estimand vector θ ∈Rm . Suppose that the likelihood function L(θ|x) is
continuously differentiable with respect to θ and that its support {x |L(θ|x) > 0} does not
depend on θ.

Let a prior probability density function λ(θ) on the estimands θ be known. Suppose
that λ(θ) is absolutely continuous and that λ converges to zero at the endpoints of its
domain fast enough, such that θλ(θ) → 0 if θ approaches the endpoints of the domain
of λ.

Then, the mean squared error matrix, MSE(θ̂) =Eλ,L[(θ̂−θ)(θ̂−θ)T ] of any estimator
θ̂ of θ satisfies: (

Eλ,L[(θ̂−θ)(θ̂−θ)T ]− (JD + JP )−1)⪰ 0. (4.S10)

That is, Eλ,L[(θ̂−θ)(θ̂−θ)T ]− (JD + JP )−1 is positive semi-definite, where the data infor-
mation matrix JD is given by

[JD ]i , j = [Eλ[I (θ)]i , j ] =Eλ
[
EL

[
∂ℓ(θ|x)

∂θi

∂ℓ(θ|x)

∂θ j

]]
=Eλ

[∫
Rn

∂ℓ(θ|x)

∂θi

∂ℓ(θ|x)

∂θ j
L(θ|x)dx

]
,

(4.S11)
and where the prior information matrix JP is given by

[JP ]i , j = [I (λ)]i , j =Eλ
[
∂ log(λ(θ))

∂θi

∂ log(λ(θ))

∂θ j

]
=

∫
Rm

∂ log(λ(θ))

∂θi

∂ log(λ(θ))

∂θ j
λ(θ)dθ.

(4.S12)
Furthermore, (JD+JP ) can be rewritten as J with Ji , j =Eλ,L

[
∂ log(p(x ,θ))

∂θi

∂ log(p(x ,θ))
∂θ j

]
, where

p(x ,θ) denotes the joint probability density function of x and θ. The matrix J is called
the Bayesian information matrix.

4.S3. Monte Carlo evaluation of Van Trees inequality
In many practical scenarios, the data information matrix of Eq. (4.S11) is difficult to com-
pute analytically or it results in complicated expressions for the localization precision.
Aside from certain special cases (see Section 4.S4), one generally resorts to numerical
methods to evaluate the VTI [5, 6].

Due to the fact that we use a Gaussian prior, an appropriately chosen numerical in-
tegration method should be able to cover an infinite domain of integration, to ensure
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convergence to the true data information matrix. Furthermore, as we consider a multi-
variate integral overR4, the curse of dimensionality may cause slow convergence. There-
fore, numerical integration methods that efficiently distribute function evaluations are
preferred.

As we can easily sample from a multivariate Gaussian distribution, simple Monte
Carlo integration (SMC) is a suitable method to evaluate Eq. (4.S11). In short, SMC in-
tegration methods sample from a probability distribution of choice. These samples are
used to evaluate the integrand, after which the value of the integral is estimated by av-
eraging the obtained integrand values [7]. If the domain of the sampling probability dis-
tribution equals or contains the domain of integration, asymptotic convergence to the
integral value is guaranteed [8].

Using the imeSMLM prior λk−1(θ), the VTI requires the following two expectations
to be computed:

[JD,k ]i , j =Eλk−1

[
[Ik (θ)]i , j

]= ∫
Rm

[Ik (θ)]i , jλk−1(θ)dθ, (4.S13)

[JP,k ]i , j =Eλk−1

[
∂ log(λk−1(θ))

∂θi

∂ log(λk−1(θ))

∂θ j

]
=

∫
Rm

∂ log(λk−1(θ))

∂θi

∂ log(λk−1(θ))

∂θ j
λk−1(θ)dθ.

(4.S14)

By randomly sampling [θ1,θ2, · · · ,θnMC ]T from the independent and identically distribut-
ed random variables [Θ1,Θ2, · · · ,ΘnMC ]T , each of which has the density functionλk−1(θ),
the SMC-estimates ĴD,k and ĴP,k of Eqs. (4.S15) and (4.S16) can be used to estimate JD,k

and JP,k , respectively.

[ ĴD,k ]i , j = 1

nMC

nMC∑
s=1

[Ik (θs )]i , j , (4.S15)

[ ĴP,k ]i , j = 1

nMC

nMC∑
s=1

([
∂ log(λ(θ))

∂θi

]
θ=θs

[
∂ log(λ(θ))

∂θ j

]
θ=θs

)
. (4.S16)

4.S4. Analytical approximation of Van Trees inequality
In this section, theoretical limits on the localization precision are derived using the VTI.
We limit ourselves to one-dimensional localization, where we ignore the effects of im-
age discretization due to finite camera pixel size. Furthermore, we assume the expected
signal photon count θI is a known constant (i.e. we do not estimate it) and we ignore
background such that θb = 0. Lastly, we assume that the point spread function is a Gaus-
sian with standard deviation σPSF.

In the one-dimensional case when pattern positions φ+
x,k and φ−

x,k are used, the illu-
mination pattern in iteration k is given by:

px,k (x) = ck [2+m cos(ωx −φ+
x,k )+m cos(ωx −φ−

x,k )]. (4.S17)

Under the presented assumptions, we find the expected photon count of Eq. (4.S18),
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with its first partial derivative with respect to θx being given by Eq. (4.S19):

µk (x) =
θI ck (2+m cos(ωθx −φ+

x,k )+m cos(ωθx −φ−
x,k ))

σPSF(2π)1/2
exp

(
− (x −θx )2

2σ2
PSF

)
, (4.S18)

∂µk

∂θx
(x) = θI ck exp

(
− (x −θx )2

2σ2
PSF

)−mω
(
sin

(
ωθx −φ+

x,k

)
+ sin

(
ωθx −φ−

x,k

))
σPSF(2π)1/2

+
(
(x −θx )

(
2+m cos

(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

)))
σ3

PSF(2π)1/2

 .

(4.S19)

The Fisher information in iteration k is then given by:

Ik (θx ) =
∫
R

1

µk (x)

(
∂µk

∂θx
(x)

)2

dx (4.S20)

=
θI ck

(
2+m cos

(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

))
σ2

PSF

+
θI ckω

2
(
m sin

(
ωθx −φ+

x,k

)
+m sin

(
ωθx −φ−

x,k

))2

2+m cos
(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

) .

(4.S21)

We choose the prior information available in iteration k ≥ 1 to be normally distributed
with mean θ̂x,k−1 and variance σx,k−1 = 1p

I1(θx )
(for k = 2) or σx,k−1 = 1p

Jk−1
(for k ≥ 3).

The resulting prior information, its natural logarithm and its partial derivative with re-
spect to θx are given by Eqs. (4.S22)-(4.S24):

λk−1(θx ) = 1

σx,k−1(2π)1/2
exp

(
− (θx − θ̂x,k−1)2

2σ2
x,k−1

)
, (4.S22)

log(λk−1(θx )) = log

(
1

σx,k−1(2π)1/2

)
− (θx − θ̂x,k−1)2

2σ2
x,k−1

, (4.S23)

∂ log(λk−1(θx ))

∂θx
=−2(θx − θ̂x,k−1)

2σ2
x,k−1

. (4.S24)

The Bayesian prior information in iteration k is given by:

JP,k =
∫
R

(
∂ log(λk−1(θx ))

∂θx

)2

λk−1(θx )dθx (4.S25)

= 1

σx,k−1(2π)1/2

∫
R

(
2(θx − θ̂x,k−1)

2σ2
k−1

)2

exp

(
− (θx − θ̂x,k−1)2

2σ2
x,−1

)
dθx (4.S26)

= 1

σ2
x,k−1

. (4.S27)
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The Bayesian data information in iteration k is given by:

JD,k =
∫
R

Ik (θx )λk−1(θx )dθx (4.S28)

=
∫
R

θI ck

(
2+m cos

(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

))
σ2

PSF

λk−1(θx )dθx

+
∫
R

θI ckω
2
(
m sin

(
ωθx −φ+

x,k

)
+m sin

(
ωθx −φ−

x,k

))2

2+m cos
(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

) λk−1(θx )dθx

(4.S29)

= θI ck

σ2
PSF

(
2+

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))

+
∫
R

θI ckω
2
(
m sin

(
ωθx −φ+

x,k

)
+m sin

(
ωθx −φ−

x,k

))2

2+m cos
(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

) λk−1(θx )dθx .

(4.S30)

We rewrite
(
m sin

(
ωθx −φ+

x,k

)
+m sin

(
ωθx −φ−

x,k

))2
:

(
m sin

(
ωθx −φ+

x,k

)
+m sin

(
ωθx −φ−

x,k

))2
(4.S31)

=m2 sin2
(
ωθx −φ+

x,k

)
+m2 sin2

(
ωθx −φ−

x,k

)
+2m2 sin

(
ωθx −φ+

x,k

)
sin

(
ωθx −φ−

x,k

) (4.S32)

=2m2 −m2 cos2
(
ωθx −φ+

x,k

)
−m2 cos2

(
ωθx −φ−

x,k

)
+2m2 sin

(
ωθx −φ+

x,k

)
sin

(
ωθx −φ−

x,k

) (4.S33)

=
(
2+m cos

(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

))
·
(
2−m cos

(
ωθx −φ+

x,k

)
−m cos

(
ωθx −φ−

x,k

))
−4+2m2 +2m2 cos

(
ωθx −φ+

x,k

)
cos

(
ωθx −φ−

x,k

)
+2m2 sin

(
ωθx −φ+

x,k

)
sin

(
ωθx −φ−

x,k

)
(4.S34)

=
(
2+m cos

(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

))
·
(
2−m cos

(
ωθx −φ+

x,k

)
−m cos

(
ωθx −φ−

x,k

))
−4+2m2

(
1+cos

(
φ−

x,k −φ+
x,k

))
.

(4.S35)
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By substituting this into the expression for JD,k , we get:

JD,k = θI ck

σ2
PSF

(
2+

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))

+
∫
R
θI ckω

2
(
2−m cos

(
ωθx −φ+

x,k

)
−m cos

(
ωθx −φ−

x,k

))
λk−1(θx )dθx

+
∫
R

θI ckω
2
(
−4+2m2

(
1+cos

(
φ−

x,k −φ+
x,k

)))
2+m cos

(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

)λk−1(θx )dθx

(4.S36)

= θI ck

σ2
PSF

(
2+

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))

+θI ckω
2

(
2−

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))

+
∫
R

θI ckω
2
(
−4+2m2

(
1+cos

(
φ−

x,k −φ+
x,k

)))
2+m cos

(
ωθx −φ+

x,k

)
+m cos

(
ωθx −φ−

x,k

)λk−1(θx )dθx .

(4.S37)

In the remaining integral, the integrand is non-positive. Furthermore, for good modula-
tion m ≈ 1 and for close pattern positions φ+

x,k ≈φ−
x,k , the contribution of the remaining

integral to the Bayesian data information is negligible. We thus approximate JD,k from
above by neglecting the remaining integral:

JD,k ≤ θI ck

σ2
PSF

(
2+

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))

+θI ckω
2

(
2−

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))
.

(4.S38)

Then the Bayesian information is given by:

Jk = JP,k + JD,k

≤
1+ θI ckσ

2
x,k−1

σ2
PSF

(
2+

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−ω2σ2

x,k−1
2

))
σ2

x,k−1

+
θI ckω

2σ2
x,k−1

(
2−

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−ω2σ2

x,k−1
2

))
σ2

x,k−1

.

(4.S39)
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By the VTI, we find for the localization precision:

σx,k ≥ (Jk )−
1
2

≥σx,k−1

(
1+

θI ckσ
2
x,k−1

σ2
PSF

(
2+

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))
+θI ckω

2σ2
x,k−1

·
(

2−
(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

)))− 1
2

.

(4.S40)

This expression can be rewritten as:

σx,k ≥ (Jk )−
1
2 ≥ σx,k−1√

1+σ2
x,k−1(FPSF +Fillum)

, (4.S41a)

FPSF = θI ck

σ2
PSF

(
2+

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))
,

(4.S41b)

Fillum = θI ckω
2

(
2−

(
m cos

(
ωθ̂x,k−1 −φ+

x,k

)
+m cos

(
ωθ̂x,k−1 −φ−

x,k

))
exp

(
−
ω2σ2

x,k−1

2

))
.

(4.S41c)

If the pattern positions of Eq. (4.5) are substituted into Eq. (4.S41), we obtain:

σx,k ≥ (Jk )−
1
2 ≥ σx,k−1√

1+σ2
x,k−1(FPSF +Fillum)

, (4.S42a)

FPSF = θI ck

σ2
PSF

(
2−2m cos

(
ωασx,k−1

)
exp

(
−
ω2σ2

x,k−1

2

))
, (4.S42b)

Fillum = θI ckω
2

(
2+2m cos

(
ωασx,k−1

)
exp

(
−
ω2σ2

x,k−1

2

))
. (4.S42c)

4.S5. Optimal distribution of signal photons
Using the analytical approximation of the VTI (see Section 4.S4), we can derive the op-
timal distribution of the signal photon budget under the assumptions that the pattern
modulation is perfect and that ωσx,k ≪ 1 for all iterations k. As discussed in Section
4.S1, the coefficient ck models the ratio of expected signal photons that are collected

under imperfect illumination. We therefore parametrize θI ck ∝ θI ,k

α2 J−1
k−1

, where θI ,k de-

scribes the signal photon budget used in iteration k. The VTI given in Eq. (4.S42), written
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for the final iteration M , now reduces to:

σ2
x,M ≥ J−1

M = J−1
M−1

1+C J−1
M−1

θI ,M

α2 J−1
M−1

(4.S43a)

= J−1
M−1 ·

1

1+ θI ,M

β2

, (4.S43b)

where C is a numerical coefficient and where β= αp
C

.

In the first iteration, no prior information is available, so the localization precision
follows from the CRLB:

σ2
x,1 ≥ I−1

x,1 =
σ2

PSF

θI ,1
. (4.S44)

By iteration of Eq. (4.S43), we obtain:

σ2
x,M ≥ J−1

M = J−1
M−1 ·

1

1+ θI ,M

β2

(4.S45a)

= I−1
x,1

M∏
j=2

1

1+ θI , j

β2

(4.S45b)

= σ2
PSF

θI ,1
∏M

j=2

(
1+ θI , j

β2

) . (4.S45c)

To optimize the localization precision σx,k , we should maximize:

G = θI ,1

M∏
j=2

(
1+ θI , j

β2

)
, (4.S46)

subject to the constraint:

θI =
M∑

j=1
θI , j . (4.S47)

We use the method of Lagrange multipliers to solve this problem. The resulting system
of equations is given by:

0 = ∂G

∂θI ,1
−µ= G

θI ,1
−µ, (4.S48a)

0 = ∂G

∂θI , j
−µ= G

β2 +θI , j
−µ,∀ j ∈ {2, ..., M }, (4.S48b)

θI =
M∑

j=1
θI , j . (4.S48c)
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This system can be solved to:

θI ,1 = θI + (M −1)β2

M
, (4.S49a)

θI , j = θI −β2

M
,∀ j ∈ {2, ..., M }. (4.S49b)

Under the discussed assumptions, it is thus optimal to equally distribute the signal pho-
ton budget over iterations 2 to M . The resulting localization precision is given by:

G = (θI ,1)M

(β2)M−1
=β2

(
1+ θI −β2

β2M

)M

, (4.S50a)

σ2
x,M ≥ σ2

PSF

β2
(
1+ θI −β2

β2M

)M
. (4.S50b)

196



4

Su
p

p
o

rt
in

g
In

fo
rm

at
io

n
fo

r
C

h
ap

te
r

4

4.S6. Supporting figures and tables
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𝑇
𝐽𝐷,𝑘

(1)
= 𝐼𝑘 𝜽𝑘

1

𝐽𝑃,𝑘
(1)
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𝜕 log 𝜆𝑘−1 𝜽, 𝜽𝑘
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𝜕𝜽

𝑇

1

𝑛𝑀𝐶
෍  Fisher 

information
𝐼𝑘(𝜽)

New prior

𝒩 𝜽, 𝐽𝑘
−1  

𝑝(𝒙1, … , 𝒙𝑘−1|𝜽)

𝑛𝑀𝐶

Simulate Poisson data

Iteration 𝑘

c

a

d

b

e

f

Accumulate data 𝑝(𝒙1, … , 𝒙𝑘|𝜽)

Maximum a 
posteriori estimate

෡𝜽𝑘

Figure 4.S1: Algorithm for simultaneous evaluation of the VTI and the MAP estimate on simulated Poisson
data. (a) Based on the previous localization precision lower bound Jk−1 and the previous MAP estimate θ̂k−1,
the current illumination patterns are placed. (b) Using the pattern positions determined in (a), the Fisher in-
formation matrix Ik (θ) for the current iteration can be determined up to an unknown parameter θ. (c) SMC
integration is used to approximate the VTI. nMC samples are drawn from the prior distribution λk−1(θ), and
the integrands of JD,k and JP,k are evaluated on each sample. The Bayesian information matrix Jk is approx-
imately given by the average of (JD,k + JP,k ) over all samples. (d) Poisson data is simulated using the pattern

positions determined in (a). (e) The MAP estimate θ̂k is computed, where p(x1, . . . , xk−1|θ) is used as prior
information and where p(xk |θ) describes the likelihood of the data from the current iteration. (f ) The prior
distribution on θ for the next iteration is chosen as a multivariate Gaussian, with mean θ and covariance ma-
trix J−1

k .
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a

b

Figure 4.S2: Comparison of the VTI and the CRLB for different iteration counts. Simulated maximum localiza-
tion precision in the x-direction as a function of (a) the expected signal photon count, and (b) the expected
cumulative signal photon count, for different iteration counts and assuming a constant signal photon count
per iteration. The localization precision limits are respectively simulated from the VTI and the CRLB over all
iterations. In (b), the expected signal photon count θI was set to 2000 photons and markers indicate a transi-
tion between iterations.
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𝐽𝐽𝑃𝑃,2 = 𝐼𝐼(𝜆𝜆1)

𝐽𝐽𝑃𝑃,3 = 𝐼𝐼(𝜆𝜆2)

𝐽𝐽𝑃𝑃,4 = 𝐼𝐼(𝜆𝜆3)

�𝜽𝜽1 ∼ 𝒩𝒩 𝜽𝜽, 𝐼𝐼1−1 𝜽𝜽

�𝜽𝜽2 ∼ 𝒩𝒩 𝜽𝜽, 𝐽𝐽𝐷𝐷,2 + 𝐽𝐽𝑃𝑃,2
−1

⋮ ⋮ ⋮ ⋮

�𝜽𝜽3 ∼ 𝒩𝒩 𝜽𝜽, 𝐽𝐽𝐷𝐷,3 + 𝐽𝐽𝑃𝑃,3
−1

�𝜽𝜽4 ∼ 𝒩𝒩 𝜽𝜽, 𝐽𝐽𝐷𝐷,4 + 𝐽𝐽𝑃𝑃,4
−1

𝜆𝜆1(𝜽𝜽)

𝜆𝜆2(𝜽𝜽)

𝜆𝜆3(𝜽𝜽)

𝜆𝜆4(𝜽𝜽)

Figure 4.S3: Information flow to simulate the maximum localization precision of imeSMLM using the VTI.
In the first iteration, the Fisher information matrix I1(θ) is computed. The resulting MLE is asymptotically
N (θ, I−1

1 (θ)) distributed, and we choose this as a prior on the next iteration. In each subsequent iteration,
the VTI is evaluated using the prior, resulting in the data information matrix JD,k and the prior information

matrix JP,k in iteration k. As the next prior, we choose N (θ, (JD,k + JP,k )−1). This iteration continues until the
maximum amount of iterations M is reached.
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Figure 4.S4: Example of simulated data and illumination patterns during three iterations of an iterative local-
ization experiment. In (b), (c), (e), (f ), (h) and (i), the true emitter position is marked by a star. (a), (d), (g)
Example of simulated regions of interest with 8 expected background photons per pixel, for iteration (a) 1, (d)
2 and (g) 3. (b), (e), (h) 2D projection of illumination patterns on the x y-plane, for iteration (b) 1, (e) 2 and (h)
3. . (c), (f ), (i) Signal photon response as a function of the emitter x-position, for iteration (c) 1, (f ) 2 and (i) 3. .
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4
Figure 4.S5: Simulated localization precision in the x-direction as a function of the cumulative signal photon
count, when 1, 2 or 3 iterations are used at an expected signal photon count of θI = 2000 photons. Markers
indicate a transition between iterations.
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Figure 4.S6: Simulated localization precision in the x-direction as a function of (a) the expected signal photon
count, (b) the expected cumulative signal photon count, and (c) the iteration count, for different modulation
contrasts and assuming a constant signal photon count per iteration. The results are compared with the theo-
retical limit of Eq. (4.8) and the precision approximation of Eq. (4.9), assuming perfect modulation. In (b) and
(c), the expected signal photon count θI was set to 2000 photons. In (b), diamond markers indicate a transition
between iterations.
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Figure 4.S7: Simulated localization precision in the x-direction as a function of (a) the expected signal photon
count, and (b) the expected cumulative signal photon count, for different expected background counts and
assuming a constant signal photon count per iteration. The results are compared with the theoretical limit of
Eq. (4.8) and the precision approximation of Eq. (4.9), assuming perfect modulation. In (b), the expected signal
photon count θI was set to 2000 photons and diamond markers indicate a transition between iterations.
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Figure 4.S8: Simulated localization precision in the x-direction as a function of (a) the expected signal photon
count, (b) the expected cumulative signal photon count, and (c) the iteration count, for different pattern posi-
tioning strategies and assuming a constant signal photon count per iteration. The results are compared with
the theoretical limit of Eq. (4.8) and the precision approximation of Eq. (4.9), assuming perfect modulation. In
(b) and (c), the expected signal photon count θI was set to 2000 photons. In (b), diamond markers indicate a
transition between iterations.
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Figure 4.S9: Simulated localization precision in x direction, for different total iteration counts and pattern po-
sitioning strategies and assuming a constant imaging time and illumination intensity per iteration. The results
are compared with the theoretical limit of Eq. (4.8), assuming perfect modulation. In (b) and (d), the expected
signal photon budget θI was set to 2000 photons and markers indicate a transition between iterations. (a)
Simulated localization precision in the x-direction as a function of the expected signal photon count under
the illumination strategy of Eq. (4.5), when 1, 2 or 3 iterations are used. (b) Simulated localization precision
in the x-direction as a function of the cumulative signal photon count, when 1, 2 or 3 iterations are used. (c)
Simulated localization precision in the x-direction as a function of the expected signal photon count under the
illumination strategy of Eq. (4.5), for different pattern positioning strategies. (d) Simulated localization preci-
sion in the x-direction as a function of the cumulative signal photon count, for different pattern positioning
strategies.
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Figure 4.S10: Simulated localization precision in the x-direction as a function of (a) the aggressiveness param-
eter α, and (b) the distance between the pattern minima using the aggressiveness parameters α shown in (a),
for different modulation contrasts and assuming a constant signal photon count per iteration. The expected
signal photon count θI was set to 2000 photons.
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Figure 4.S11: Simulated localization precision in the x-direction as a function of (a) the aggressiveness param-
eter α, and (b) the distance between the pattern minima using the aggressiveness parameters α shown in (a),
for different expected background counts and assuming a constant signal photon count per iteration. The ex-
pected signal photon count θI was set to 2000 photons.
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Table 4.S1: Model parameters used in the localization precision simulations for sinusoidal illumination with a
Gaussian point spread function.

Quantity Symbol Value
Wavelength of excitation light λex 687 nm
Wavelength of emission light λem 680 nm

Emitter x-position (before randomizing subpixel position) θx 0 nm
Emitter y-position (before randomizing subpixel position) θy 0 nm

Expected background count per pattern θb 8 photons/pixel
Pixel size (x-direction) ∆x 65 nm
Pixel size (y-direction) ∆y 65 nm

Amount of pixels in the x-direction nx 11 pixels
Amount of pixels in y-direction ny 11 pixels

Numerical aperture NA 1.41
Standard deviation of PSF in x- and y-directions σPSF 121 nm

Pattern frequency ω 25.8·106 rad/m
Modulation contrast m 0.95
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5
Conclusion and Outlook

Howl said, “I think we ought to live happily ever after,” and she thought he meant it.
Sophie knew that living happily ever after with Howl would be a good deal more eventful

than any story made it sound, though she was determined to try.

Diana Wynne Jones, Howl’s Moving Castle
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5.1. Conclusion

F luorescence microscopes are an important tool to visualize biology at the nanoscale,
but they are limited by diffraction, which limits their resolution to approximately 200

nm. SMLM successfully circumvents the diffraction limit, by sequentially activating and
subsequently localizing isolated emitters. SMLM reaches a resolution of approximately
20 nm, which makes it a major development in making the invisible visible. Through
modern methods such as RESI or meSMLM, a localization precision in the order of mag-
nitude of nanometres to Ångströms can now be attained.

The price we pay for this improvement is that images are no longer directly observ-
able, but consist of estimated emitter positions. While super-resolution methods allow
us to access the nanoscale, their findings are accompanied by the statistical uncertainty
about whether the molecule positions that we retrieve correspond to the true underly-
ing positions of emitters that are truly present in the sample. A fundamental objective of
super-resolution microscopy is thus to give certainty about the localization uncertainty
with which the position of a single molecule can be determined.

To make the uncertain certain, the CRLB is often used in SMLM literature. The CRLB
represents the theoretical minimum uncertainty with which unbiased estimators can
localize emitters. This makes it a reliable predictor to quantify the best possible local-
ization precision in SMLM, and it can be used to design and optimize new microscopes.
This suggests that the CRLB successfully brings certainty to the localization uncertainty
of state-of-the-art meSMLM.

However, the CRLB leads to narrowly applicable, improperly represented or mathe-
matically incorrect characterizations of the localization precision of meSMLM. Design-
ing and optimizing meSMLM through the CRLB requires method-specific image forma-
tion models, which are not generally available. Furthermore, as the CRLB only bounds
the localization variance, it misrepresents the localization uncertainty when the estima-
tion error has a non-Gaussian distribution. The CRLB is not applicable at all when prior
information is available, such as in iterative meSMLM, as it only applies to unbiased es-
timators. In this dissertation, we addressed these issues by developing new statistical
models and methods for meSMLM, thereby making it possible to quantify the localiza-
tion uncertainty of existing and future meSMLM methods with awareness of the full es-
timator distribution.

In Chapter 2, we derived a new and generalizable image formation model that in-
tegrates meSMLM in existing ISM setups that use a spinning disk in the illumination-
and emission paths, leading to the theoretical design of a new meSMLM method called
SpinFlux [1]. In the SpinFlux analysis, emitters are localized in the recordings from a
sequence of individual pattern acquisitions, taking knowledge about the pattern into
account. The precision improvement of SpinFlux is derived from retrieving the position
of an emitter relative to individual illumination patterns, which adds to existing PSF in-
formation from SMLM.

Using the image formation model, we have derived and evaluated the theoretical
minimum uncertainty of SpinFlux, by applying the CRLB to various illumination pattern
configurations. Using Gaussian illumination patterns, SpinFlux reaches a twofold pre-
cision improvement in the x- and y-directions compared to SMLM, locally around the
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emitter position. We also theorized the inclusion of a phase mask in the illumination
and emission paths, with which illumination patterns with arbitrary diffraction-limited
intensity profiles can be created. On the premise of that, we evaluated the localization
precision of SpinFlux with donut-shaped illumination, and we found that this increases
the maximum improvement over SMLM to a factor 3.5.

Based on these results, we additionally compared SpinFlux with an alternative theo-
retical approach, in which isolated emitters are localized in ISM reconstructions instead.
We theoretically approximated that this approach results in an average global improve-
ment of 1.48 over SMLM, or 2.10 with Fourier reweighting. In a recent publication, these
approximations have been experimentally confirmed, showing a doubling of the local-
ization precision [2]. We conclude that direct localization on ISM reconstructions is the
most straightforward implementation and results in the largest global average improve-
ment of the localization precision. On the other hand, SpinFlux shines when the exci-
tation intensity is modulated to incorporate the maximum amount of information, as
is the case when using donut-shaped patterns. The versatility of the image formation
model makes SpinFlux analysis on arbitrary illumination patterns straightforward. This
makes SpinFlux the method of choice for local refinements of the localization precision.

In Chapter 3, we analysed three-dimensional multiple emitter imaging, thereby dis-
covering that high-density astigmatic imaging suffers from ambiguous solutions to the
localization problem [3]. To show this, we created a Bayesian three-dimensional local-
ization method called 3D RJMCMC. 3D RJMCMC is able to concurrently identify the
amount of emitters in a ROI, as well as their positions. Yet rather than point estimates,
3D RJMCMC reconstructs the posterior density of emitter positions. For astigmatic and
biplane imaging with an in-focus PSF standard deviation σPSF, 3D RJMCMC is capable
of separating emitters up to a distance of respectively 1.0 σPSF and 0.75 σPSF, localizing
emitters in three dimensions where traditional SMLM methods would fail.

The main use for the 3D RJMCMC algorithm is to analyse the estimator distribution
for three-dimensional multiple emitter imaging. This is illustrated by our main finding
that astigmatic multiple emitter imaging results in a multimodal posterior distribution
when two emitters are separated by less than 1.0 σPSF. As astigmatic imaging is a well-
known technique for three-dimensional imaging, it should be used with caution in mul-
tiple emitter localization.

With our analysis, we show the importance of including the appropriate uncertainty
measures in localization algorithms. 3D RJMCMC reveals the full posterior distribution,
which makes it possible to detect cases where the localization uncertainty for individual
emitters is not accurately represented by Gaussian uncertainty ellipses. Traditional MLE
point estimates would have resulted in overconfident position estimates, and the CRLB
would have mischaracterised the localization uncertainty through solely the variance.
Therefore, posterior density reconstruction is the tool of choice to identify potential PSF
degeneracy problems in dense three-dimensional localization.

In Chapter 4, we analysed the localization precision of iterative meSMLM methods,
which are able to locally improve the localization precision around an emitter posi-
tion by using prior information derived from measurements in earlier iterations [4–6].
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The CRLB, which requires estimators to be unbiased, cannot incorporate prior informa-
tion and is thus not applicable to bound the precision of iterative meSMLM. However,
the Bayesian VTI circumvents this mathematical limitation, and is therefore particularly
suited to analyse iterative meSMLM.

We considered an iterative meSMLM method that uses standing-wave illumination
patterns over the course of multiple iterations. We formulated an image formation model
for this method, which includes the effects of imperfect pattern modulation and back-
ground fluorescence. Subsequently we used the VTI to analytically approximate lower
bounds on the maximum localization precision. Using the analytical approximation,
we have shown that for perfect modulation, it is optimal to distribute the signal photon
budget equally over the number of iterations from iteration 2 onwards.

Additionally, we used Monte Carlo approximations of the VTI to determine the max-
imum precision of iterative meSMLM when subject to imperfect modulation of the illu-
mination intensity pattern, as well as non-zero background fluorescence. We compared
our findings to the scaling laws of MINFLUX (see Eqs. (1.12) and (1.13)), which respec-
tively state that the precision is maximized when patterns are separated by the smallest
possible distance, and that the precision increases exponentially as a function of the it-
eration count.

We showed that the smallest pattern separation distance does not lead to the max-
imum precision in a wide range of experimental conditions, which nuances Eq. (1.12)
to only apply for perfect modulation and zero background. The optimal step size that
maximizes the precision depends on the modulation contrast and signal-to-background
ratio.

Secondly, we found that the exponential localization improvement as a function of
the iteration count cannot be achieved in most experiments. This nuances Eq. (1.13)
to only apply for perfect modulation and zero background, as the exponential scaling
breaks down for slight imperfections in the modulation contrast. At 95% modulation
and eight background photons per pixel, iterative meSMLM reaches at most a fivefold
improvement over SMLM by using two iterations.

These findings indicate that established precision limits in MINFLUX and iterative
MINFLUX appear to be more nuanced when viewed through mathematical methods
specialized for the application. By deriving an image formation model containing both
modulation- and background imperfections and by analysing iterative meSMLM with a
Bayesian lower bound, we now know that the optimal selection of pattern positions, the
number of iterations, and the time spent per iteration in iterative meSMLM depends on
many factors, such as the signal photon budget, imperfections in the illumination sys-
tem, and the expected background count. This makes the VTI the tool of choice when
prior information is available for localization, and in particular for the optimal design
and control of iterative meSMLM.

Together, the different findings in this dissertation convey the same message. In an
everlasting pursuit to resolve the smallest possible structures, localization microscopy
faces a fundamental question, namely with what uncertainty the position of a single
molecule can be determined. In order to reflect the statistical uncertainty of the localiza-
tion process, emitter position estimates need to be accompanied by a measure of their
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estimation uncertainty. Defaulting to existing image formation models and the CRLB
leads to narrowly applicable, overconfidently represented or mathematically unjustified
characterizations of the localization uncertainty. Instead, image formation models and
uncertainty quantification should be tailored to the application, letting the particulari-
ties of the application determine the choice of appropriate mathematical tools. As we
have shown here, this treatment leads to new methods to improve the localization pre-
cision, and it advances our fundamental understanding of localization uncertainty in
super-resolution microscopy, making it a necessary step to future-proof its trustworthi-
ness for biological research and medicine development.

5.2. Recommendations
Based on the findings of this dissertation, we see various ways to further improve the
work that transcend the scope of the recommendations that are already part of the in-
dividual chapters. Therefore we use this section to recommend future developments
pertaining to the collection of works in this dissertation.

Perhaps self-evident, but nonetheless tremendously important, we first and fore-
most recommend the experimental realization of the models and methods developed
in this dissertation. As it stands, the contributions in this dissertation remain theoreti-
cal. The advantage of this theoretical approach is that it gives the ability to thoroughly
investigate and optimize models and methods, as computer simulations do not suffer
from the material-, time- and ground truth-constraints of real experimental setups.

However, this disconnect from real life is also the drawback of a computer simula-
tion. Real experiments are subject to one consistent set of physical laws, while computer
simulations are subject to various sets of potentially contradictory assumptions and ap-
proximations made by researchers. Even though the choices made by researchers are
usually explainable, they are not necessarily true.

For example in our work, the Gaussian emission PSF is used as a model as it simplifies
analytical calculations, but we know it to be inaccurate in the case of aberrations [7, 8].
Alternative and more accurate models exist for these cases, such as the vectorial PSF [9]
or data-driven models such as cubic splines [10, 11]. As a second example, we chose
to model pinholes via a multiplicative window in Chapter 2 based on existing literature
[12–14], thereby omitting a contradicting class of models where the pinhole is modelled
as a convolution with the emission point-spread function [15, 16]. While the validity of
our choice is supported by existing literature, only an experiment can show if it is also
correct.

While scientists can come up with different models through rigorous derivations,
thorough explanations and the best intentions, the physics of reality are unmerciful and
will ultimately decide which results are true and which are false. For this reason, we
strongly recommend and look forward to the experimental realization of SpinFlux, three-
dimensional multiple emitter fitting with 3D RJMCMC and iterative meSMLM using the
VTI.

Secondly, we recommend a global analysis of meSMLM, as opposed to a local anal-
ysis focused at isolated emitters. Most of the meSMLM research in this dissertation
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presents results for isolated single-emitters, which is in line with existing theoretical
meSMLM research [16–19]. On one hand, this choice for a local analysis is suitable to the
research, as we look to quantify the maximum possible precision. In meSMLM, the pre-
cision improves locally around the targeted emitter position, so a local analysis is nec-
essary to determine the maximum possible localization precision. Designing meSMLM
for maximum precision through a local analysis therefore results in impressive precision
improvements over SMLM, where nanometre- or Ångström-resolution becomes achiev-
able.

On the other hand, this design approach equivalently means that the precision is
suboptimal on positions different from the targeted emitter position. As the precision
of meSMLM is inhomogeneous as a function of space, local optimization of the preci-
sion comes at the cost of global precision losses. As biological samples do not consist of
isolated emitters, the impressive local precision improvements have limited relevance
to practitioners. To address this problem, we recommend to analyse meSMLM from a
global perspective, taking a field of view with thousands of emitters into account rather
than a single ROI with a single emitter. Such an approach could focus on distributing
the precision of meSMLM over the spatial frequencies present in the sample, rather than
focusing on maximizing the precision on one position only. While this means that we
need to let go of the fundamental, everlasting chase for increasingly better resolution in
SMLM, a global optimization will result in meSMLM methods that have increased prac-
tical relevance.

The main goal of this dissertation was to improve the quantification and understand-
ing of localization precision in SMLM and meSMLM by developing new statistical mod-
els and tools. While this goal was accomplished, our results give rise to new questions
regarding the optimality of experimental design. Therefore we recommend to revisit the
designs of the various microscopy techniques discussed in this work, aimed at minimiz-
ing the localization error using the statistical methods developed in this dissertation. We
will propose suggestions for design improvements for each individual technique.

For SpinFlux we evaluated a large variety of illumination patterns and configurations,
but we limited our analysis to a maximum of four illumination patterns. By strobo-
scopically illuminating the sample through a spinning disk, it is in principle possible
to project hundreds of closely spaced illumination patterns onto emitters. This would
bring it closer to approaches such as RASTMIN [20–23], which are able to extend the
nanometre-level precision of MINFLUX to a larger field of view. We therefore recom-
mend an analysis of SpinFlux when large amounts of illumination patterns are used, to
be compared with RASTMIN.

In three-dimensional multiple emitter localization, we used 3D RJMCMC to identify
cases where estimator distributions become multimodal, leading to ambiguous solu-
tions to the localization problem. However, such cases can be mitigated by constrain-
ing the estimation. For the particular example of astigmatic imaging, we have seen that
identified candidate emitter pairs are perpendicular to each other, belonging to different
axial coordinates. By constraining the imaging depth to exclude one candidate pair, this
multimodality can be fully avoided. If constraining the imaging depth is not a desirable
option, an alternative would be to analyse to occurrence of multimodality when combin-
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ing three-dimensional multiple emitter imaging with meSMLM. By using patterns with
structure in the axial direction, as done in ZIMFLUX [24], ModLoc [25–27] and ROSE-Z
[28], the ambiguity that occurs due to the PSF shape can be resolved by using the depth
information generated by modulated excitation patterns. ZIMFLUX specifically already
combines axial structure with astigmatic imaging, making it the most straightforward
implementation to perform a multimodality analysis on.

For iterative meSMLM, we reached the important conclusions that the precision is
not generally maximized by choosing the smallest possible pattern distance, nor by in-
creasing the amount of iterations [6]. Instead, we discovered that the optimal pattern
distance and iteration counts are both functions of the modulation contrast and signal-
to-background ratio. This is a significant development for our fundamental understand-
ing of precision in (iterative) meSMLM, as we now know which experimental designs do
not optimize the precision. However, it is not a particularly actionable result in practice,
as we did not answer which experimental designs do optimize the precision, given esti-
mates of the modulation contrast and signal-to-background ratio of a microscope. We
suggest to determine this through minimizing the VTI for iterative meSMLM by choos-
ing the pattern separation distance, combined with an exhaustive search over iteration
counts. As our simulations suggest that the localization precision is a convex function
of the pattern separation distance (see Fig. 4.2e), such an optimization could be solved
with global optimality guarantees.

These optimizations of meSMLM pave the way for optimal single-particle tracking
with MINFLUX or other meSMLM-methods. Single-particle tracking aims to follow and
localize a single emitter over time, thereby forming a track of how this molecule has
moved [29]. Due to its ability to locally improve the precision in the neighbourhood
of individual molecules, meSMLM is particularly suited for this task [30, 31] and has also
been successfully used for this [17, 18]. Optimizing meSMLM for tracking maximally
increases the information each signal photon carries about the position of the tracked
molecule. This effectively means that the same localization precision can be retained
with a reduced signal photon budget, thereby reducing the impact of photobleaching
and improving the temporal resolution.

5.3. Future prospects

Based on general insights, literature and discussions throughout the doctoral studies, we
envision recommendations that do not directly relate to the work discussed in this dis-
sertation, but instead apply to the field of quantitative nanoscopy at large. We therefore
use this section to speculate about possible future research directions pertaining to the
research field. We distinguish two kinds of recommendations. Subsection 5.3.1 will con-
tain research forecasts that are expected to be developed in the near future, where we
take 2030 as a reference year. Some of the more grandiose expectations that we foresee
to have a longer development time are discussed in Subsection 5.3.2.
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5.3.1. Expected developments between 2026 and 2030
Starting with a fundamental research direction, we expect to see a concrete definition
of spatial resolution within the coming five years, as well as target samples on which
this spatial resolution can be evaluated. Since the invention of super-resolution mi-
croscopy, the definition of the spatial image resolution has become increasingly bloated.
Already in two dimensions for a stationary target, the lateral resolution is impacted by
aspects such as the spatial frequencies present in the sample, the labelling density, the
diffraction limit of the system, the measurement noise, the detection precision and re-
call, the localization error and visual artifacts [32–36]. While various measures exist to
quantify individual aspects contributing to the spatial resolution, the lack of an overar-
ching method to quantify resolution makes it difficult to compare the performance of
individual methods.

Initiatives such as the SMLM Challenge [37, 38] have been used to compare the per-
formance of specifically localization algorithms, by introducing sets of benchmark mea-
surements as well as a performance score that weighs various aspects contributing to
image resolution. In spirit of the SMLM Challenge, we expect the introduction and
adoption of both a concrete definition of the spatial resolution, as well as standardized
benchmark samples to be used for the end-to-end quantification of the performance of
microscopy methods.

A second development we expect in the near future is the merge of meSMLM with
PSF engineering. While meSMLM uses illumination patterns to increase the informa-
tion content per signal photon, PSF engineering encodes information in the shape of a
PSF instead. For example, a PSF can be designed to encode axial information, such as
in astigmatic imaging [39] or with the double-helix [40] or tetrapod PSFs [41, 42], or it
can be designed to encode both the three-dimensional position as well as the emission
wavelength [43].

While meSMLM and PSF engineering both aim to achieve the same goal of increas-
ing the amount of information per signal photon, they have historically been treated
mostly separately. This seems to resemble the parallel development of illumination-
based and emission-based super-resolution methods, of which we have seen that a syn-
ergistic combination led to the development of meSMLM. As shown in this dissertation,
a combination of meSMLM and PSF engineering can only serve to further increase the
amount of information per signal photon, thereby making it theoretically possible to ex-
tract additional information in the localization step. This is emphasized by, for example,
ZIMFLUX [24], where a combination of modulated excitation and astigmatic imaging re-
sults in a 1.5-fold improvement of the axial localization precision over using solely astig-
matic imaging. We therefore expect an increase in methods that combine meSMLM with
PSF engineering within the coming years.

In line with the previous suggestion, we expect a diversification within the field of
meSMLM to focus on other tasks than localization. For localization, meSMLM has been
great news, as MINFLUX and its follow-up methods breached the barrier to nanome-
tre precision. As the emission intensity carries information about where emitters are
located relative to the illumination pattern, photobleaching can be postponed by illumi-
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nating with a low-intensity part of the pattern. This means that for localization specifi-
cally, it is beneficial to illuminate with low-intensity light.

Yet for other parts of the localization microscopy analysis, such as detection or drift
correction, the reduced emission intensity may decrease the performance. Traditional
algorithms for detection [44] or drift correction [45–47] often rely on the presence of
signal. This becomes a problem when using meSMLM, as optimizing the localization
precision results in low- or zero-intensity emissions. For this reason, maximizing the lo-
calization precision leads to a decreasing performance in other analysis tasks [48]. We
expect that this can be avoided by tailoring detection and drift correction algorithms to
take meSMLM-specific models for patterned illumination into account, as was done for
localization tasks in this dissertation.

Lastly, we expect the field of quantitative nanoscopy to increasingly focus on im-
proving other aspects than spatial resolution. Until RESI [49], MINFLUX [17, 18] and
MINSTED [50, 51], the pursuit of improving the localization precision has been a fun-
damental objective for the field of SMLM. Now that the nanometre- and Ångström-scale
have been reached, we have run into a new limit on the accuracy with which we can
image molecules in fluorescence microscopy. As fluorescence microscopy images emit-
ters that are attached to the molecule of interest, the limiting factor to the localization
accuracy is now the size of the link between the target molecule and the fluorophore [18].

For this reason, we expect the focus of future information-increasing methods to be
on other aspects of SMLM than lateral or axial localization precision. For example, we
expect an increased interest in methods that improve the temporal resolution. One way
to achieve this is to increase the labelling density at which molecules can still be indi-
vidually localized. Deep learning has already made a significant improvement to the re-
solvability of densely-labelled samples in the recent years. With methods such as Deep-
STORM [52, 53] and DECODE [54], approximately a tenfold higher labelling density can
be used while retaining the same localization error as MLE-based SMLM analysis meth-
ods. A recent preprint shows that this can be further enhanced through meSMLM [55].
In the coming years, this research trend will continue, thereby increasing the acquisition
speed of SMLM and improving the spatial and temporal resolution.

Another development aimed at improving the temporal resolution regards the de-
tector. Historically, the electron multiplying charge-coupled device (EMCCD) and the
scientific complementary metal-oxide-semiconductor (sCMOS) camera are commonly
used array detectors for recording measurements. Recently, single photon avalanche
diode (SPAD) arrays have been getting increased attention in SMLM [56–59]. SPAD ar-
rays are sensitive to individual photons and can image with pico-second temporal reso-
lutions. In 2021, we have already shown ourselves that measurements from a SPAD array
can be modelled with a binomially distributed image formation model, which is nearly
indistinguishable from the Poisson image formation model at imaging intensities typical
for SMLM [58]. This makes the SPAD array an ideal detector for localization- or tracking
applications where the temporal resolution matters and we therefore expect an increase
in interest towards SPAD arrays in the coming years.
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5.3.2. Expected developments after 2030
Looking at the next decade, we expect that deep learning has established itself as a domi-
nant factor in SMLM analysis. While the performance of deep learning models for quan-
titative analysis is showing promising results, the black-box nature of deep learned mod-
els currently limits the interpretation of the prediction uncertainty, meaning that there
is a risk of overconfident predictions if the test data contains features that were not in-
cluded in training [60]. This sharply contrasts the fundamental objective of SMLM that
is central to this dissertation, namely to determine the uncertainty with which the posi-
tions of single-emitters can be estimated. With the expected advance of deep learning,
we therefore also expect an increase in scientific interest around the uncertainty with
which deep learning models in SMLM perform their analysis.

To solve this uncertainty problem, machine learning literature is currently showing
promising developments in the form of Bayesian deep learning [61, 62]. In Bayesian
statistics, the prediction uncertainty can be explained as a combination of aleatoric and
epistemic uncertainty. The aleatoric uncertainty describes the contribution to the pre-
diction uncertainty that is caused by the inherent stochasticity of the underlying data
used for the prediction. On the other hand, the epistemic uncertainty describes the con-
tribution to the prediction uncertainty that is caused by uncertainty about the model
itself. In other words, the epistemic uncertainty can be seen as the distribution of pre-
dictions by all possible models of identical structure that have the same performance on
the training data. The objective of Bayesian deep learning is to quantify the epistemic
uncertainty of the predictions made with a neural network, thereby creating a measure
of how sensitive a prediction is to features that were not included in training.

Bayesian deep learning currently shows two main classes of quantification methods
for the epistemic uncertainty. The first class of methods assumes a Gaussian distribu-
tion of the epistemic uncertainty and tries to quantify the variance of this distribution
by enforcing prediction variety in existing neural networks. For example, the Monte
Carlo dropout method randomly switches off network nodes during prediction to en-
sure prediction variety [63], whereas deep ensembling trains an ensemble of networks
with identical architecture and randomized training settings to generate a collection of
predictions [64]. These methods are popular due to them being applicable to existing
neural networks, but they do not formally explain the epistemic uncertainty from a sta-
tistical point of view, nor are they able to represent the full distribution of the epistemic
uncertainty. Nevertheless, these methods are currently finding their way into super-
resolution microscopy, for example by using Monte Carlo Dropout to enhance neural
network-based SIM reconstruction [65].

On the other hand, methods in the second class try to capture the full epistemic un-
certainty distribution through approximate Bayesian inference methods, such as vari-
ational inference [66] or stochastic gradient Hamiltonian Monte Carlo [67, 68]. While
these methods closely follow the statistical definition of epistemic uncertainty, the im-
plementation of approximate Bayesian inference requires replacing classical backpropa-
gation methods in deep learning with computationally more demanding inference meth-
ods. As an alternative to approximate inference, probabilistic circuits are able to effi-
ciently perform exact Bayesian inference on a limited set of network operations [69, 70],
but they currently do not support the architectural scale and diversity of mathematical
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operations that neural networks can offer.

We expect that, after further developments in machine learning literature, Bayesian
deep learning will become an integral part of neural network-based SMLM analysis.
Having access to the prediction uncertainty associated with a network outcome will not
only help in quantifying method performance, but can additionally be used to actively
interact with the microscope hardware to improve the predictions. Namely, a predictor
of the epistemic uncertainty can be used to identify regions of high uncertainty, thereby
indicating a dissimilarity between the acquired measurements and the training data.
Such a region can then be re-imaged experimentally, to reduce the uncertainty specif-
ically in those parts of the sample where it matters.

In this line, a recent literature example used a scanning microscope to adaptively res-
can patches of the sample, based on regions of that were estimated to have high uncer-
tainty after neural network-based denoising [71]. This allows for a more efficient use of
illumination light, thereby improving the imaging speed and reducing the sample dam-
age. Combined with the increased availability of uncertainty predictors, we therefore
also expect an increase in methods that actively use these predictions to locally reduce
the uncertainty.

A second development we expect in the longer term is an increase in the accessibil-
ity of advanced super-resolution microscopes. In the race for ever-increasing resolution,
microscopes are getting increasingly more advanced, using narrowly available, custom
made and expensive components. This increase in setup complexity comes, quite lit-
erally, at a cost: openly available numbers by Abberior state that basic, commercially
available confocal microscopes cost at least 100,000 US dollars, while the most advanced
commercial systems for MINFLUX can cost well over 1 million US dollars [72]. Together,
these factors hamper the reproducibility of results in microscopy, as well as the adoption
of advanced microscopes by practitioners.

Various developments already increase the accessibility of high-resolution imaging.
As we show ourselves with SpinFlux [1] or as shown in iSMLM [2], the localization preci-
sion in existing setups can be improved through alternative analysis with only minimal
changes to the setup. Alternatively, we see research opportunities in cost-effective ini-
tiatives such as cellSTORM [73], which enables dSTORM imaging on a smartphone, or
the miCube [74, 75], which enables SMLM through an open-source platform using com-
monly available parts and free software. As a parallel development, we also expect the
production cost of advanced microscopes to drop throughout the coming centuries as
a result of advances in manufacturing techniques, making commercial microscopes ac-
cessible to a wider variety of users.

Next, we expect the development of new modalities that do not just observe, but
also interact with the sample. Rather than passively observing the sample, light can also
be used to actively interact with the sample through optogenetics [76, 77]. Optogenet-
ics makes it possible do directly influence biological processes through automated con-
trol, rather than having to control the imaging hardware [78, 79]. For example, a recent
preprint shows the possibility of using light to control cell migration, thereby making it
possible to force a cell to follow a predefined reference trajectory [80]. Optogenetic con-
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trol comes with various advantages in medicine development, such as increasing the
cost-effectiveness of drug discovery, or making it possible to better target the applica-
tion area of gene therapy and vaccines [81]. For this reason, we expect an increase in
scientific interest in optogenetic control during the coming century.

As a last prospect, we expect to see microscopy going back to its biological roots. In
the time of Van Leeuwenhoek, the fates of microscopy and biology intertwined and this
bond has been consistent throughout the development of newer and more advanced
microscopes. For this reason, the experimental performance of super-resolution mi-
croscopy methods is typically still demonstrated on biological structures, such as mi-
crotubules or the nuclear pore complex [82]. Nevertheless, the biological application of
super-resolution fluorescence microscopy remains limited to mostly well-characterized,
static biological structures. We have yet to see super-resolution fluorescence microscopy
enable breakthroughs in biology and medicine that are of a similar magnitude as the dis-
coveries seen in (cryogenic) electron microscopy, which provided the first images of cell
sections [83, 84], ribosomes [85] and the hepatitis B virus [86].

To a major degree, we attribute the lack of such breakthroughs to the highly spe-
cialized improvements gained through individual super-resolution modalities, leading
to an absence of an end-to-end solution for biomedical application. Specifically, the
increasing specialization of microscopy methods towards individual, narrowly focused
goals creates a gap between what physicists, statisticians and computer scientists in mi-
croscopy do, and what live-cell biological imaging demands. In this dissertation, we have
discussed the chase for improved lateral and axial localization precision at length, but
this is only one of many factors that determine the applicability to live-cell biological
imaging [30]. For example, biology is dynamic, which means super-resolution micro-
scopes need to be able to track emitters at a high temporal resolution to capture move-
ments. As another example, biology studies interactions between cell structures, pro-
teins and molecules, meaning there is a demand for multicolor [87, 88] or co-localization
[89, 90] approaches that can visualize and correlate these interactions. As a last exam-
ple, biology consists of thick samples, which means there is value in the reduced pho-
tobleaching and background fluorescence offered by optical sectioning methods such
as light-sheet microscopy [91–94], as well as adaptive optics to compensate for sample-
induced aberrations [94–97].

To develop a microscope that is able to super-resolve live-cell biology, we think that a
combination of multiple individual super-resolution modalities is needed. Yet this can-
not be achieved by trying to fuse existing experimental setups, due to fundamental lim-
itations of the individual methods. To motivate this, we consider an example where we
aim to improve the spatio-temporal resolution through somehow experimentally com-
bining SMLM and SIM, as we have seen this combination in meSMLM. From an experi-
mental merge between SMLM and SIM, we would aim to harvest the spatial resolution of
SMLM, and combine it with the temporal resolution of SIM. Namely, SMLM can attain a
localization precision of approximately 20 nm, but the acquisition speed of SMLM is lim-
ited due to its reliance on sparsity in the emission signal. With exposure times between
10 to 100 ms, typical total acquisition times for SMLM can range from 2 to 30 minutes [98,
99]. On the other hand, modern SIM methods show faster acquisition rates of over 130
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megapixels per second, but are limited to a spatial resolution of approximately 100 nm
[100]. Yet a purely experimental merge of SMLM and SIM is not possible without picking
and choosing elements of each modality as done in meSMLM, as SMLM fundamentally
requires spatio-temporally separated emitters under uniform illumination, whereas SIM
fundamentally requires all emitters to be visible under structured illumination patterns.

As such, we see more merit in fusing existing modalities computationally, through
multi-image data fusion [101]. In computer vision, image fusion describes the task of
computationally combining independently acquired images of the same underlying ob-
ject, with the goal of extracting the relevant information from individual images and
merging the information in one compound image. Image fusion is already commonly
employed in applications areas that acquire measurements with multiple sensors. For
example, it is common practice in automated driving to combine image- and depth
data for object recognition [102, 103]. Recent approaches in fluorescence microscopy
also show the advantages of image fusion, for instance through the fusion of ISM with
super-resolution optical fluctuation imaging ISM (SOFISM, [104]). This implementation
resulted in a spatial resolution comparable to that of SOFI and a signal-to-noise ratio
comparable to that of ISM [105].

We therefore see computational image fusion as a promising way to combine the
advantages of existing methods. Specifically, we foresee an implementation in which
multiple individual modalities concurrently image a structure, after which the informa-
tion from the individual sources is merged computationally after the acquisition. Yet this
implementation of image fusion is not straightforward, as it relies on an advanced exper-
imental design that allows for simultaneous imaging of the same structure with multiple
imaging systems, in addition to the alignment of the individual acquisitions. We also
expect that developments in fluorescent label design are needed to enable individual,
independent measurements. In our previous example, a biological structure that is con-
currently imaged with SMLM and SIM needs to be labelled twice with labels that have
separate absorption and emission spectra, as SMLM relies on a blinking emitter while
SIM does not.

In addition to the experimental development, appropriate image fusion algorithms
need to be developed that can computationally combine the advantages of individual
modalities. We expect that deep learning methods will be particularly useful for this
task. No experimental ground truth is available for fusion, which either means that a
simulation needs to be developed to obtain a simulated ground truth, or that the fu-
sion needs to be performed blindly [106, 107]. To accomplish the latter, we see potential
in unsupervised methods that learn the features present in data, which are then used
to fuse images. For instance, this is possible via contrastive learning [105, 108, 109]. In
contrastive learning, a model learns features present in the input data by generating aug-
mentations and subsequently comparing two augmented images that correspond to the
same object. By combining contrastive learning with fusion models, unsupervised im-
age fusion becomes possible, as demonstrated in recent approaches that fuse infrared
and visible image data [108, 110].

We expect that a complete end-to-end solution for super-resolving live-cell biology,
similar to how Van Leeuwenhoek’s microscope solved the magnification problem, is still
far out. Nevertheless, we recommend and look forward to the development of such sys-
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tems, thereby re-bridging the gap between microscopy, biological research and medicine
development, and truly succeeding in making the invisible visible.
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TO WORK HERE BUT IT HELPS
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Sharing quotes and discussing these books with you has been a fantastic diversion to
some of the more mundane days of the doctorate. But on top of that all, you are an
amazing friend with whom I can share everything. You showed me the beautiful nature
of Finland in both summer and in winter, and our cabin trips have strengthened my ap-
preciation of nature and taught me what it means to live in the moment, unplugged from
water and electricity and therefore with full attention and appreciation for the people
around me. Words cannot capture how much you mean me, but know that in my best
moments and in my worst, you make me remember what it means to be alive. Thank
you for always being there for me on this journey, and I appreciate and love you from the
bottom of my heart.

And now, there is only one more person to thank: you, the reader. Thank you for reading
my dissertation and for sticking with me through the story of my doctorate. While I
was only able to give you a condensed overview of five amazing years of research and
teaching, I hope you enjoyed reading it with the same passion as I had living through it.
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