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Abstract
Achieving consensus in a network is one of the
most important performance bottlenecks in dis-
tributed computing. This paper takes a look at the
existing protocols for achieving Byzantine Reliable
Broadcast on asynchronous partially connected net-
works and how these protocols change to leverage
the fact that some nodes have access to Trusted Ex-
ecution Environments. Modeling some nodes to be
completely trusted improves the throughput and re-
duces latency but the impact changes heavily de-
pending on the placement of these nodes. The sec-
ond, more realistic approach is having all processes
use a local trusted subsystem implemented in a
TEE. We show that this reduces the upper bound
of faulty nodes from f < N/3 to f < N/2 and re-
ducing the amount of messages sent by up to 64%
(N=30, f=5).

1 Introduction
Distributed systems are used globally to solve all kinds of
tasks in lots of different fields. These days, these systems
are widely used and have to be resilient and fault-tolerant.
This paper looks into the problem of achieving consensus in
a network in the presence of byzantine (faulty) nodes, and
how the usage of trusted execution environments (TEEs) can
improve known solutions.

According to the Byzantine tolerant fault model, some au-
tonomous computing entities may exhibit arbitrary behavior
making it very difficult to agree on a correct message.

Two abstractions have been defined in this context. The
reliable communication (RC) abstraction helps us in some
requirements regarding the reliability of the links between
nodes. When a correct process broadcasts a message, ev-
ery correct node in the network has to deliver that message.
the second requirement is that when a correct node delivers a
message, this has to be sent from a correct process. The next
abstraction is called Byzantine Reliable Broadcast (BRB) and
considers the additional case where the broadcaster may be
arbitrarily faulty.

Dolev’s Reliable Communication algorithm [7] considers a
2f + 1 connected synchronous network, where f is the maxi-
mum number of byzantine nodes. This has been improved by

Bonomi et al. [3]. Bracha’s double echo authenticated broad-
cast [4] assumes a fully connected network with N nodes,
where at most N/3 + 1 nodes are faulty and authenticated
network links. Dolev guarantees RC, while Bracha adheres
to BRB.

Combining the two abovementioned protocols e.g. provid-
ing BRB in a not-fully connected network has been studied
recently by Wang and Wattenhofer [16]. This combination is
improved by Bonomi et al [3] to account for the huge com-
plexity by combining the Dolev and Bracha protocols.

A Trusted Execution Environment (TEE) is a secure area
in the main processor, that can guarantees that the code ran on
it will retain its integrity. The code ran on a TEE guarantees
authenticity, integrity, confidentiality and remote attestation
[12].

The impact of trusted nodes or trusted components in the
network has been studied in various models and with differing
assumptions. In the instance of a fault model that can toler-
ate up to f byzantine neigbors [8][11], Tseng et al. has studied
the performance increase of placing trusted nodes in such net-
works and has shown a significant decrease in latency. [13].

In the model where processes are authenticated and use
replicated state machines (protocols like PBFT) [5], simple
trusted components have been implemented in these systems
to decrease the upper bound of faulty services in the system
from f < N/2 to f < N/3 [6] [9] [14] [15]. In this pa-
per, the access to TEEs is studied to improve the performance
of the Dolev and Bracha algorithms, which assume authen-
ticated links. Firstly, an approach similar to Tseng et al. is
used, where some nodes are assumed to be completely trust-
worthy en how this affects the protocols of Dolev and Bracha.
After that, the improvements MinBFT proposed in the repli-
cated state machine model are studied and translated to im-
provements on Bracha in the authenticated links model.

The report is structured as follows. Sec. 2 discusses the
related work. Sec. 3 explains the system model. Section 4
describes trusted nodes in Dolev and Bracha. Section 5 dis-
cusses trusted components in the authenticated links model,
and how the improvements from MinBFT over PBFT trans-
late to improvements of Bracha’s protocol in this model. Sec-
tion 6 explains the experimental setup and the results. Sec-
tion 7 is about the reproducibility and ethical impact of the
research. Section 8 concludes the paper and discusses future
work.
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2 Related work
Gabriel Bracha described the first BRB protocol [4]. This
protocol assumes a fully connected and reliable network.
This means all processes in the network can connect with ev-
ery other process, and messages can’t get lost. This paper
proposes an algorithm that can tolerate up to f < N/3 faulty
nodes, where N is the number of processes in the network.
Each process in this protocol has three phases send, echo and
ready, and a process will progress through the phase once it
gets enough messages from other nodes in the network.

In the more common and general case of a not fully con-
nected network, Danny Dolev proposed an algorithm that can
tolerate up to f byzantine nodes if the network is sufficiently
(2f + 1)-connected. Because of the pigeonhole principle,
this means that there must be at least 2f + 1 disjoint paths
from a sender to each receiver. With a maximum of f byzan-
tine nodes, This means that at least f+1 disjoint paths do not
containt a byzantine process, and a process can deliver a mes-
sage once it has received it over f + 1 disjoint paths. Since
this protocol has messages being sent through the whole net-
work, and then has every process solving a disjoint paths
problem, the worst-case complexity of this algorithm is very
high. Bonomi et al [3] has improved the Dolev algorithm
to reduce the number of redundant messages being sent in a
practical sense.

A different approach to the fault assumptions is presented
by Koo, where a broadcast algorithm is described under the
t-bounded fault model [8]. Tseng et al. explained this algo-
rithm and named it CPA (Certified Propagation Algorithm)
[11]. Tseng et al. extend the CPA algorithm with the usage of
trusted nodes, and how they can be most efficiently placed in
the graph [13]. This work shows that placing trusted nodes in
the system does improve the latency in both sparse and dense
networks.

All works described up till now assume a model where pro-
cesses know that messages will be correctly sent over authen-
ticated links. The Byzantine Fault Tolerance problem is also
proposed in the Replicated State Machine model. Castro and
Liskov. [5] popularized this with the PBFT algorithm, which
made these algorithms practical to use. They make use of
the Bracha protocol to tolerate up to 3f + 1 faulty replicas,
but this model differs in that it assumes authenticated pro-
cesses that make use of encryption. This field of research is
important to this paper because the usage of trusted compo-
nents deployed in TEEs has been explored a lot. Chun et al.
propose the use of Attested Append-Only Memory (A2M),
which adds a trusted log to improve the PBFT algorithm to
tolerate up to 2f + 1 faulty processes [6]. Further improving
this abstraction, Levin et al. proposed TrInc to change the log
into a trusted incrementer to reduce overhead [9]. Veronese
et al. present the use of a trusted service named USIG which
not only guarantees the same 2f + 1 faulty processes bound
but also simplifies the trusted service [14]. Veronese et al.
has done a short article explaining the reduction in the num-
ber of byzantine nodes using a trusted service and how this is
achieved [15].

Madsen et al. looked at transforming byzantine faults into
crash-stop faults by placing the entire system into a Trusted

Execution Environment, in a 1-round n = f + 1 transforma-
tion using state machines [10].

3 System model and problem description
The network consists of a set P = {p1, p2, ..., p3} of N pro-
cesses that are interconnected and are uniquely defined by an
ID. Up to f < b(N/3)c of the N processes are byzantine,
which means they can behave arbitrarily. The only informa-
tion the processes have is N , the IDs in the system, and the
fault threshold f . The communication occurs over a undi-
rected graph G = (V,E), where each process pi is repre-
sented by a node in V . Every node also knows its own ID and
the ID of its neighbors.

Nodes only communicate with each other directly over
these edges. Otherwise, they use multi-hop communications
where nodes in between two nodes have to relay the mes-
sage. These communications can either be synchronous or
asynchronous. We assume that up to f processes can behave
arbitrarily faulty, e.g. byzantine.

The Byzantine Reliable Broadcast principle guarantees
a couple of things during the communication between the
nodes.

1. Validity: If a correct process p broadcasts a message m,
then some correct process eventually delivers m.

2. No Duplication: No correct process delivers m more
than once

3. Integrity: If a correct process delivers message m with
correct sender p, then m was broadcast by p.

4. Agreement: If some correct process delivers m, every
correct process has to deliver m eventually.

In sections 4 and 5, some contributions will be presented
that make use of this System Model. In section 4,

3.1 Background on the Bracha protocol
Bracha’s authenticated double echo broadcast describes a
BRB protocol for asynchronous networks. This algorithm as-
sumes the network is fully connected, e.g. every process can
communicate with every other process in the network. It also
assumes authenticated links, and it can tolerate up to f byzan-
tine faults, where f < N/3 and N is the number of nodes in
the network.

Every process in the network goes through three phases.
When a process wants to broadcast the message, it does so by
sending the message to every other node in the network. this
first message is a SEND message. Upon receiving a SEND
message, a process then sends an ECHO message to all nodes
in the network. When a process has reached a quorum of⌈
N+f+1

2

⌉
received ECHO messages, the process proceeds

to the last phase and sends out a READY message to all
other processes. A READY message will also be sent once
a process receives f+1 READY messages, indicating that at
least one non-faulty process has moved to the READY phase.
Once a process receives 2f + 1 READY messages, it knows
the payload is correct and delivers the message. In the end,
all the correct processes will have delivered the message.
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Algorithm 1: Bracha’s protocol at process pi
Result: Write here the result

1 On event initialization:
2 sentEcho = sentReady = delivered = false;
3 echos = readys = ∅;
4 On event broadcastMessage, m:
5 forall p ∈ thesetofprocesses do
6 send(p, (SEND, m));
7 end
8 On event receiveSENDMessage, p, m and not

sentEcho:
9 sentEcho = true;

10 forall q ∈ setofprocesses do
11 send(q, ECHO, m)
12 end
13 On event receiveECHOMessage, p, m:
14 echos.insert(p);
15 On event echos.size > quorumandnotsentReady:
16 sentReady = True;
17 forall q ∈ setofprocesses do
18 send(q, READY, m)
19 end
20 On event receiveREADYMessage, p, m:
21 readys.insert(p);
22 On event echos.size > quorumandnotsentReady:
23 sentReady = True;
24 forall q ∈ setofprocesses do
25 send(q, READY, m)
26 end
27 On event echos.size > quorumandnotsentReady

2:
28 delivered = True;
29 Bracha.deliver();

Algorithm 2: Dolev’s protocol at process pi
Result: Write here the result

1 On event initialization:
2 delivered = false;
3 paths = empty;
4 On event broadcastMessage, m:
5 forall px ∈ neighbours(pi) do
6 send(px, (m, []);
7 delivered = true;
8 deliver;
9 end

10 On event receiveMessage, (m, path), pj:
11 paths.insert(path + pj);
12 forall px ∈ neighbours(pi) do
13 send(px, (m, path+ pi));
14 end
15 On event pi is connected to the broadcaster
through f+1 disjoint paths and delivered
= false:

16 Dolev.Deliver();
17 delivered = True;

3.2 Dolev’s algorithm
Dolev’s protocol is not used for BRB, but for a weaker ab-
straction called RC (reliable communication). This also as-
sumes authenticated links, but it assumes the broadcaster is
not faulty. This is why Dolev’s algorithm is also called ”com-
munication with Honest dealer”. The network also doesn’t
have to be fully connected, but at least (2f+1)-connected. In
this algorithm, the broadcaster sends the message to all neigh-
bors, which they also forward to all neighbors except the one
who sent the message. This makes the message get flooded
over the network, and every message also contains the path of
nodes it traversed through. A process will use these paths to
compute the maximum number of disjoint paths. Once a pro-
cess has received at least f+1 disjoint paths with a content, it
will deliver it. This can be verified through Mengers theorem,
which says that if a network is k-connected there exist at least
k disjoint paths through all nodes. This means that at least
2f + 1 disjoint paths exist between all nodes and that since
at most f nodes are byzantine a process will at least correctly
get a message through f + 1 disjoint paths.

Bonomi et al. improved on Dolev’s theorem in a practi-
cal sense, introducing 5 modifications to reduce redundancy
of the number of messages sent. These modifications are as
follows:

• Mod 1. If a process p receives a content directly from
the source s, then it is directly delivered by p

• Mod 2. If a process p has delivered a content, then it
can discard all the related pathsets and relay the content
only with an empty pathset to all of its neighbors

• Mod 3. A process p relays pathsets related to a content
only to the neighbors that have not delivered yet

• Mod 4. If a process p receives a content with an empty
pathset from a neighbor q, then p can discard from re-
laying and analyzing any further pathset related to the
content that contains the label q

• Mod 5. A process p stops relaying further pathsets re-
lated to a content after it has been delivered and the
empty pathset has been forwarded

3.3 BRB in 2f+1 connected networks
Byzantine Reliable Agreement in 2f+1-connected networks
can be implemented by layering Bracha’s algorithm with a
second algorithm that takes care of the not-fully connected-
ness of a network. In this paper, we will focus on the combi-
nation of Bracha and Dolev, since this takes the global fault
model into account. This combination was recently described
by Wang and Wattenhofer [16] by designing a random-
ized agreement protocol on sufficiently connected networks.
These protocols can be combined by replacing the broadcast-
to-all operations from Bracha with a Dolev-broadcast, and a
link-deliver from Bracha with a Dolev-deliver. Bonomi et al.
[2] Improved this algorithm with 12 modifications each ei-
ther addressing the latency or the number of bits sent over
the network. The modifications are either improvements on
the Bracha layer or they are cross-layer improvements and
they include combining messages of various types, optimiz-
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Figure 1: A Network with a connectivity of 3 and one trusted node

ing messages, and ignoring messages when they are redun-
dant.

4 Trusted nodes in the system
We are going to study the use of trusted execution environ-
ments in the authenticated links model in two ways.

1. Nodes that are deployed completely in a TEE. This al-
lows the protocols to be modified to take into account
that some nodes are known to be trusted, and thus can-
not behave in a byzantine way. This forces these nodes
to tell the truth, which the other nodes can use to reach
Byzantine reliable agreement faster.

2. Deploy a component in a TEE that all nodes have access
to. This means nodes can still behave arbitrarily faulty
like in the defined system model, but this component will
force Byzantine nodes to follow a stricter protocol. In
section 5 some possibilities of how this can be realized
are explored.

With the first notion, we explore the capabilities of processes
that are deployed in a TEE, and thus cannot lie to other nodes.
These nodes will make use of signatures to let other nodes
know that they are trusted, so every process does in practice
know which nodes are to be trusted in a network.

4.1 Trusted nodes in Dolev
We recall the algorithm that is used in Dolev’s paper, where
nodes propagate a message with a path to all neighbors. Nor-
mally, a process only accepts once it has received f + 1 dis-
joint paths, but with the introduction of honest nodes, this can
change. Figure 1 shows a network with one trusted node.

If a node receives a message with a content, and the path
only consists of nodes that are trusted (including the broad-
caster, since the Dolev algorithm considers an honest-dealer
abstraction), it can deliver. We can represent this modifica-
tion as a additional piece of code at line 11 with if(path only
contains trusted nodes )then{Dolev.deliver()}

This follows through from the first modification of the
Dolev improvements of Bonomi et al. [3] where the nodes
connected directly to the honest dealer immediately deliver.

Since a trusted node will adhere to the protocol, every correct
process will accept the fact that this message must be correct,
and can immediately deliver the message.

Due to the second modification introduced in the above-
mentioned paper, namely a process p relaying an empty path
after delivering a content, this is a good way of confirming
that a content has been delivered by a protocol.

Since a trusted node will always correctly relay a message,
we can conclude that a process p receiving a message contain-
ing a content with an empty path from trusted neighbor q can
immediately deliver. This is true since the trusted node only
relays a message with an empty set after delivering that mes-
sage, which means neighbor q has successfully authenticated
the content.

The more nodes are modified to be trusted, the more ef-
ficient the Dolev algorithm naturally becomes. Since nodes
will deliver earlier depending on the amount and placement
of trusted nodes, we can expect the number of messages
throughout the propagation process to be lower than without
trusted nodes. Since the trusted nodes only provide confir-
mation of contents from already delivered processes, and the
topology of the network is unknown (e.g. nodes cannot just
send all messages specifically to the trusted nodes) the ef-
fect of the trusted nodes might be heavily dependent on how
far away they are placed from the honest broadcaster and the
connectivity of the network.

4.2 Trusted nodes in Bracha
Introducing trusted nodes in the Bracha algorithm is quite
straightforward. To leverage the fact that the broadcaster it-
self might be faulty, the protocol should be modified so nodes
only accept messages from a trusted node. Let the broad-
caster be p0, and one trusted node be p1. Since all nodes in
the network know which node is trusted, they will not ac-
cept any incoming message (from potentially byzantine pro-
cesses). The trusted node itself will wait for one message
from the broadcaster, send the message correctly to all nodes,
deliver the message, and refrain from sending anything else.
Every other node waits for this message, and if a potentially
faulty broadcaster refuses to send a message to the trusted
node no process will deliver. When a potentially faulty broad-
caster does send a message to the trusted node, it will make
sure all other correct processes deliver this message, and thus
BRB-Agreement is not violated. Note that the broadcaster
could also be trusted, trivializing the problem even more.

4.3 Trusted nodes in Bracha-Dolev
Since Dolev is just an abstraction layered under Bracha to as-
sure the multi-hop process takes place, the modification to the
Dolev algorithm can directly be implemented in the Bracha-
Dolev and optimized Bracha-Dolev protocols.

5 Processes with a trusted component
In the real world, deploying even a few processes completely
in a TEE is not a feasible solution. Running code on TEEs
is more expensive than running it on another part of the sys-
tem, and assuming some processes in a network are just to
be ”trusted” isn’t always viable. Having nodes in the system
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that all have access to a trusted subsystem may allow nodes
to provide remote attestation, e.g. trust a part of a message
even if the host might be faulty.

5.1 Different models
There are a few options regarding a model where we only
assume the links are authenticated. We first have to make a
few assumptions on how the trusted component is defined. In
the system model defined in section X, we can see that every
process p from the set of all processes is connected to a few
neighbors with authenticated links, all of which make a graph
G. Now we do not assume a few nodes are trusted, and up to
f nodes can still be byzantine. We also assume the processes
themselves cannot sign the messages using encryption. The
addition here is that every process is connected to a form of
a trusted computing base (TCB), deployed in a Trusted Ex-
ecution Environment (TEE) (?). Even if a process that hosts
this component is faulty, it is guaranteed that everything in
the TCB still runs tamperproof.

A1 The host is connected to the network and the trusted
computing base cannot use encryption in communica-
tion with the host.

A2 The host is connected to the network and the trusted
computing base is able to sign messages.

B1 The TCB is the one with the connection to the network,
but it still cannot sign messages. The TCB will commu-
nicate everything to the host

B2 The TCB is connected to the network, and it can authen-
ticate messages.

The different models will be discussed briefly in the following
subsections.

Model A1
This model assumes the host is connected to the network,
with a TCB that cannot sign messages. Having access to a
trusted subsystem is helpful in that it can control messages
sent by other nodes, but it quickly becomes clear how this is
not helpful if the TCB cannot sign messages. Assume pro-
cess p receives a message from a neighbor q. If this message
contains some approval of the TCB of q, the authenticity of
this message cannot be verified since some byzantine process
might have forged this. We can conclude that this model is
not more useful than just leaving out the TCB entirely.

Model A2
Let’s now assume the TCB can sign messages. This brings
the system closer to the authenticated processes model, but
there is a key difference. Since the host itself still cannot sign
any message, the authenticity of each host is still not clear. In
this model, messages that are sent through the network have
to be signed by the TCB before they get sent to the neighbors
of the host.

This might be very helpful since the TCB can make sure
messages that are sent behave more appropriately than a po-
tentially Byzantine host. The TCB cannot create the mes-
sages and only serves as an agent between the authenticated
link and the host, but it can control the messages sent by the
host. We can make some assumptions about this model. The

(a) The host is connected to the
network

(b) The TCB is connected to the
network

Figure 2: The difference between models A1&A2 and B1&B2

TCB can make sure that only one type of message is sent by
the host, which will prevent a potentially malicious host to
send different messages to different neighbors. This does not
prevent a host to change the message before sending it, since
the TCB only serves as a forwarding tool.

Model B1
Here we assume the TCB is connected to the network, but
neither the host nor the TCB can sign the messages. For the
same reasons as in model A1, not allowing the TCB to sign
messages makes this model not helpful.

Model B2
This model works like B1, where the TCB is connected to
the network and can also sign messages. This model is very
powerful since the Trusted Computing Base has access to the
network. This means that the TCB can choose when and how
to broadcast and forward messages, which makes the BRB
problem trivial.

Having considered these four models, model A2 will be used
in the authenticated links model moving forward in this pa-
per. It provides a model that is quite similar to how TEEs and
TCBs have been used in related work, and that can be imple-
mented realistically. Compared to B2, it does not trivialize
the problem but offers a way for nodes to provide remote at-
testation, e.g. that they do not directly trust processes but can
trust the TCB’s to set limits on what a faulty process can do.

5.2 Trusted component usage in Replicated State
Machine Protocols

Related work has tackled the Byzantine Fault Tolerance prob-
lem with the use of replicated state machines [5]. This model
works with a client who sends a request to a set of servers
who have to reach agreement. These processes are assumed
to be authenticated, which differs from the models described
earlier in this section. However, the communication proto-
cols used in these systems are directly drawn from Bracha’s
double echo protocol [4]. One of the more recent papers de-
scribing using trusted components is the paper by Veronese
et al. [14]. Here, MinBFT is proposed as an improvement of
the PBFT algorithm. To illustrate how the PBFT algorithm
works, a short illustration is provided in figure 2.

1. The client sends a request to the primary.
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Figure 3: Bracha in the PBFT algorithm

2. The primary service then proceeds to send a PREPRE-
PARE message to all services, with a sequence number
and signature.

3. Every service multicasts a PREPARE statement after
validating the PREPREPARE

4. Once a service receives enough PREPARE statements, it
multicasts a COMMIT message

5. After receiving 2f +1 commit messages the service ex-
ecutes the request.

As you can see, PBFT uses Bracha’s algorithm to achieve
their way of reliable broadcast in the replicated state machine
protocol. The pre-prepare, prepare, and commit phases are
direct parallels to the send, echo, and ready phases. To recall
why Bracha’s algorithm works, we refer to the proofs in their
paper [4], but in short, it works like this:

• f nodes could be faulty, and with (N−f) replies a node
knows it should proceed

• Since the (N −f) replies could contain up to f conflict-
ing replies, a node expects at most (N−f)−f = n−2f
correct replies

• in Bracha (and in PBFT), this must be the majority as
nodes do not know whether a faulty broadcaster sent
conflicting messages, which is why N − 2f > f and
therefore N must be bigger or equal to 3f + 1

The trusted component in the MinBFT algorithm provides a
way for nodes to check the broadcasted message since it has a
corresponding counter value that only the trusted component
can verify. With a form of remote attestation, all processes
can trust that every message corresponding to some counter
value and therefore need less confirmation from different pro-
cesses. More specifically, in the regular Bracha protocol, the
amount of nodes that have to agree on a message N − 2f
has to be greater than f since the processes have to agree
on the same message. Since the trusted component in the
MinBFT algorithm prevents equivocation and every node re-
ceives the same request corresponding to the same counter,
N − 2f has to be greater than 1, thus leveraging a network of
size N ≥ 2f + 1.

Trusted Component in MinBFT
The MinBFT protocol uses USIG, Unique Sequential Identi-
fier Generator, to assign a unique identifier to each message
and then signs it. It uses a function to create an unique identi-
fier for a message m, and it has another function to verify the

message using this unique identifier. ”These three properties
imply that the USIG 1) will never assign the same identifier
to two different messages (uniqueness), 2) will never assign
an identifier that is lower than a previous one (monotonicity),
and 3) will never assign an identifier that is not the successor
of the previous one (sequentiality).” [14]

5.3 Trusted Counter in Bracha
Bracha’s algorithm will be modified to leverage the fact that
all processes including the broadcaster have a trusted com-
puting base (TCB) deployed in a TEE, that will behave in the
same way as in the MinBFT algorithm. A short description
of the algorithm is as follows.

1. The broadcaster sends a SEND message to all other pro-
cesses, which apart from the usual contents also contains
a unique identifier signed by the trusted component.

2. When a process receives a SEND message it sends an
ECHO to all other processes. The trusted component
checks whether the unique identifier matches the content
of the message, and when it doesn’t match it does not
send the ECHO.

3. A node will execute the previous step if it receives an
ECHO before a SEND since a faulty broadcaster might
not send the SEND message to all processes.

4. once a process has received f + 1 ECHO messages that
are verified by the trusted component, it delivers.

This algorithm makes use of a single echo authenticated
broadcast because processes do not need to decide on the cor-
rect content of a message as the trusted component forces ev-
ery broadcast to have a unique identifier, which prevents con-
flicting contents of a message. This is why a process p only
needs f+1 messages to know that this message has been for-
warded by at least one other correct process and is not some
fabrication of the faulty nodes (which would lead to for exam-
ple only p delivering the message). Since at least one correct
process has sent this ECHO, process p knows all other correct
processes received this message since a correct process will
correctly relay all messages. It can therefore assume all other
correct processes are eventually going to deliver this message
and deliver this message itself.

Since this protocol only needs one broadcast and then has
all processes forward the message it once, the complexity of
the number of messages is N + N2 instead of N + 2N2.
Needing fewer processes to tolerate f byzantine nodes also
reduces the number of processes needed.

remark An additional optimization if the amount of byzan-
tine nodes isn’t tight, e.g. it is less than

⌊
N
2 − 1

⌋
, is to re-

frain from sending SEND messages to more processes than
needed. Since only one correct process has to receive the
SEND message for it to correctly broadcast its ECHO to all
others, having the broadcaster send f + 1 SEND messages
is enough for one correct process to receive it. However, let
us note that our new algorithm lets processes send their own
ECHO if it receives a correct ECHO before a SEND.

5.4 Trusted Counter in Dolev
The Dolev protocol floods a 2f + 1-connected network with
messages containing their path and then solves the disjoint
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path problem at every node to compute whether it has re-
ceived the same message over f +1 disjoint paths. In related
work, the usage of public-key encryption has shown that this
leads to a protocol tolerating a f + 1 connected network [1].
This works because the broadcaster is assumed to be a correct
process which then encrypts the message. Every process can
then just verify whether the content is unmodified or not, re-
ducing the problem to just having to forward the message to
all processes instead of solving a disjoint path problem. The
network has to be at least f + 1 connected to avoid a faulty
process to not forward the encrypted message to the rest of
the network. Using a trusted Counter here will unfortunately
not leverage such an improvement of the protocol, since it just
provides a way for processes to do remote attestation. This is
a limitation of the model we use, where we assume authen-
ticated links instead of authenticated processes, and does not
allow a Dolev protocol that can assume network connectivity
of f + 1.

5.5 Trusted Counter in Bracha-Dolev
In the combination of the protocols, the changes to Bracha
can be applied to the algorithm. One particular remark is that
since the new algorithm leverages N ≥ 2f + 1 and Dolev’s
algorithm requires the Newtork to be 2f + 1-connected, it
is not possible to test the upper bound of byzantine nodes
without having a fully connected network.

6 Experimental Setup and Results
This section will explain the setup used to get the results and
then explains them.

6.1 Trusted nodes in Dolev
The introduction of trusted nodes into the network will be
simulated using the OMNeT++ Network simulator v.5.6.2
which runs on C++. The experiments are run on random gen-
eralized graphs where the number of nodes, connectivity, and
amount of trusted nodes will differ. The graphs are simulated
using the Networkx python library, where the trusted and
byzantine nodes are selected randomly based on the amount
of them present. Every time a random network is created
the average performance is reported of 5 runs with each run
containing randomly differing IDs of byzantine and trusted
nodes. The amount of nodes K ranges from 10 to 50 nodes,
the amount of trusted nodes is tested at levels of 10%, 30%,
and 50% respectively. Also, the sparsity of the network is
tested, first where f is roughly N/5 and k is 2f + 1 and after
that where f is 1 and k is 4. The payload is 128b.

Fig. 4 shows having trusted nodes in the network improves
the throughput of messages a lot depending on the size of the
network. In small networks, the reduction is from 9% up to
23% depending on the level of trust. In large networks, even
having a small number of trusted nodes (10%) reduces the
number of messages by 58%, and by 92% with a trust level
of 50%. Let us note that during evaluation, a lot of runs had
big outliers in terms of performance. The placement of these
nodes has an enormous impact on how quickly the trusted
nodes let others deliver, and in evaluation the dispersion of
trusted nodes was random every run. Fig. 5 shows that the

Figure 4: Dolev with trusted nodes, f = N
5

and k = f ∗ 2 + 1

Figure 5: Dolev with trusted nodes, f = N
5

and k = f ∗ 2 + 1

impact on the latency is similar, with reductions in big net-
works also ranging from 50% to 92% depending on the level
of trust.

6.2 Trusted Components in Bracha and
Bracha-Dolev

The performance improvement of the Bracha protocol is ex-
actly as the theory states it is: the broadcaster sends N mes-
sages, after which every correct process sends N messages
itself instead of 2N representing the double ECHO rounds.
Since it is more interesting to see the results in the Bracha-
Dolev algorithm, Performance has been tested with the OM-
NET++ simulator just like the performance evaluation of the
trusted nodes. The algorithm used to implement the Trust-
Bracha protocol is the Bracha-Dolev protocol with the im-
provements made to Dolev [3]. We leave the modifications
of Bonomi et al. for future research, since the cross-layer
implementations combining messages have to be modified
themselves. Let us note that the results presented in fig. 6-8
show the number of messages and not the throughput in bits.
This is done intentionally since we did not actually imple-
ment a trusted component that sends a signature and a unique
counter with every message. As this performance evaluation
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only benchmarks the performance of the correct processes,
byzantine nodes are not modeled to perform attacks in the
Network Simulator and it is not needed to have redundant
checks on the messages that are sent.

Fig. 6 shows that in regular networks, with N ranging from
10 up to 30, the message reduction ranges from 19% in N=10,
to 39% in N=20, to finally 64% in networks of N=30. In
sparse networks (fig.7) the impact is still high (up to 44% re-
duction in messages). This indicates that the improvements
scale well with bigger networks, and that this effect is higher
the more connected the network is. Fig. 8 confirms this, as the
amount of messages in a N=30 network is tested with varying
degrees of connection. In Networks with k=15 the reduction
is 77%. The latency is not shown, as in almost every graph
the latency was reduced to < 3 ms no matter the size, con-
nectivity or amount of byzantine nodes.

6.3 Discussion
Both models are shown to have a very positive impact on
the message and latency reduction. The placement of trusted
nodes and byzantine nodes has been done randomly, which
could be a realistic approach to modeling actual byzantine
processes who can show up everywhere. This does mean that
no worst case scenarios have been tested. Other graphs could
haven been selected to model worst-case byzantine process
placements, but we chose regular graphs to model realistic
scenarios. Regarding the trusted components, there would
probably be a cost to implementing and using it in the form
of message size. Whether this has a big impact on the perfor-
mance depends on the payload size and the complexity of the
signature, and could have been tested.

Figure 6: Message nr. impact, f =
⌊
N
5

⌋
and k = 2 ∗ f + 1

7 Responsible Research
This research question talks about reducing messages and
latency in the presence of trusted execution environments,
which in itself does not impose any ethical questions. It
merely improves the efficiency of existing algorithms and
protocols, and does not introduce real-world issues.

The code that has been produced during the research will
be published along with this paper, and therefore anyone can

Figure 7: Message nr. impact, f = 1 and k = 3

Figure 8: Message nr. impact, N = 30 and f = k−1
2

reproduce the results. It is written in C++ and works with the
OMNET++ library, which itself is documented online. The
evaluation can be reproduced almost completely, apart from
the fact that we chose random IDs for the byzantine nodes
every run.

8 Conclusions
The assumption of having trusted nodes in the network de-
creases the amount of messages and the latency (up to 92%
in large networks), but the impact heavily depends on the
placement of these trusted nodes in the system. In future
works, the additional assumption of a known topology might
increase the viability of these trusted nodes. Letting processes
make use of a trusted component in the form of a counter like
in MinBFT has a great impact on the theoretical bounds of
Bracha. This has been tested in the Dolev-Bracha algorithm
and the amount of messages sent is reduced from 42% to 70%
in large networks (N=30).

Future research on trusted nodes should look at the most
efficient placement of them in the network. The trusted com-
ponent can be expanded to take into account optimized ver-
sions of Dolev to model a tight bound of Byzantine nodes in
the Bracha-Dolev protocol. Furthermore, the use of trusted
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components can also be tested in CPA, which itself can be
combined with Bracha to take care of not fully connected net-
works.

Combining the findings of this paper with having nodes
know the network topology, let the processes use encryption
or signatures might improve this field of research.
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