

Facade optimisation for visual comfort by controlled daylight distribution in high rise office buildings

Primary Mentor : Dr. Michela Turrin

Secondary Mentor : Dr. Alejandro Prieto Hoces

External Examiner : Diego Andres Sepulveda Carmona

Framework

Literature

Computation Design

Façade Scheme

Facade is part of building envelope that allows the penetration of light and influences the performance of daylight. (Rush, 1986)

Framework

Urbanisation

Population Rise

Growth of High-Rise

Urbanisation

Population Rise

Growth of High-Rise

(Thermal, Air quality, Acoustic, Visual)

Major issue in high rise

Poor Daylighting

Visual discomfort

Daylight in high-rise building is challenging

Side walls are the only option

In deep floor plans of Office Buildings in a high-rise

Figure showing

Gradient of intensity of light going dark towards greater depth

Non-uniform distribution of daylight

Visual Discomfort

Need more Balanced distribution of light

Solution is difficult **Daylight is Dynamic in Nature Complexity** in designing **Difficult with conventional Design method Computational Design method**

Improve Performance

Main Objective

With help of Computational Design Methods

Bring balance of light intensity by distributing light homogeneously throughout the depth

Adapts to different daylight conditions

Design Objective

Design a facade system that control both aspects:

Based on computational design methods and techniques, how can a façade system allow for indoor visual comfort, by daylight's controlled distribution throughout the depth of a room, in a high rise office building?

Based on computational design methods and techniques, how can a façade system allow for indoor visual comfort, by daylight's controlled distribution throughout the depth of a room, in a high rise office building?

Sub Questions

Literature

1. What are the parameters and requirements that characterize the space and its occupants for visual comfort?

Based on computational design methods and techniques, how can a façade system allow for indoor visual comfort, by daylight's controlled distribution throughout the depth of a room, in a high rise office building?

Sub Questions

	Visual Comfort
Literature	Criteria

2. How a façade system can be assessed that control daylight's distribution along the depth coping with dynamic behaviour of daylight?

Based on computational design methods and techniques, how can a façade system allow for indoor visual comfort, by daylight's controlled distribution throughout the depth of a room, in a high rise office building?

Sub Questions

Literature	Criteria	 <u>Case</u>
Literature	Cilteria	Study

- 3. What is the state of art in facades to control daylight distribution?
 - 2a. What are the façade systems that deals with daylight enhancement in an indoor space?
 - 2b. What are the façade systems that deals with daylight reduce/diffuse in an indoor space?

Cub Questions

Based on computational design methods and techniques, how can a façade system allow for indoor visual comfort, by daylight's controlled distribution throughout the depth of a room, in a high rise office building?

Sub Questions			

Literature — Criteria — Case — Design Concept

4. What design approach could be best to avoid glare at the same time while gaining more daylight? Or how to bring balance between over-lit and under-lit situation through the design?

Based on computational design methods and techniques, how can a façade system allow for indoor visual comfort, by daylight's controlled distribution throughout the depth of a room, in a high rise office building?

Sub Questions		

Lito	rature ———	Criteria	 Coso	 Concont	Computational
— Lite	rature ———	Citteria	Case	Concept	Workflow

5. How computational design method will help to achieve the most optimal solution in this case?

Based on computational design methods and techniques, how can a façade system allow for indoor visual comfort, by daylight's controlled distribution throughout the depth of a room, in a high rise office building?

Sub Questions

					Performance
Literature ———	Criteria	Case	Concept	Workflow —	Evaluation

5. To what extent a balanced distribution of daylight within a spaces can be achieved throughout the depth for indoor visual comfort through the designed facade?

Sub Questions

Based on computational design methods and techniques, how can a façade system allow for indoor visual comfort, by daylight's controlled distribution throughout the depth of a room, in a high rise office building?

Literature ———	Critoria	Coso	Concont	Workflow ———	Evaluation ———	Final	
Literature ———	Criteria ———	case	concept	WOIKIIOW —	Evaluation ———	Facade	

Final Result as Façade Product

Literature Criteria	— Case — Concept —	——— Workflow ——— Evaluation ———	— Final Facade ————

Literature

What are the factors that defines Visual comfort in a space?

Amount of Daylight/ **Distribution of Daylight** Glare

Contrast

Colour Temperature

View to outside

Evaluation

Evaluation Criteria

Distribution of Daylight

1.Average Illuminance (Lux)

: 300 - 750 Lux

: 300-2000 lux for >95%

(Criteria 01)

Minimum lux >100

(Criteria 02)

3. Uniformity Ratio

2.Daylit Area (%)

: > 0.3

Glare

4. Daylight Glare Probability, DGP

: 0.45 - 0.35 or

< 0.35

Contrast

5. Contrast Ratio

: < 3.0

Design Standards- NEN EN 17037 (2018) and BREEAM (2016); and Design Guidelines

Daylight Range by Chauvel (1982)

Under-lit < 300 lux

Daylit (Useful Daylight) 300 – 2000 lux

> >2000 lux Over-lit

What are the external factors that influences Daylight levels?

W

S

Ε

Orientation (Façade)

Hour of the Day

(Sun's Azimuth)

Sky Condition

(Luminance Distribution of sky)

Concept

Computation —

Evaluation

Final Facade

Instances and Objective

Case Study

Criteria

Case 01
(Samadi et al., 2019)

Case 02 (Sheikh, 2014)

Case 03
(Tabadkani et al., 2019)

Parameters

Configuration

Material

Design Concept

iterature — Criter

Case

Geometry Selection

Origami based octagonal Kaleidocycle

Opening up the Kaleidocycle

Geometry Modification

Adding Fold

Adding a cut Folding Motion Geometry after fold

Geometry Modification

Adding Fold

Adding a cut Folding Motion Geometry after fold

Geometry Modification

Separating Fold

Fold/Unfold Separate Fold

Geometry Variations

Module Types

Percentage of Openness/Closeness – To control Penetration of light inside

• Percentage of Surface available – to control redirecting or blocking of incoming light

• Light Redirecting Benefit

Material Variations

Geometry's Advantages

1- Material

2- Material

- 4- Material
- All surface with separate material

Façade Configuration

Façade Configuration

Percentage of Openness

Façade Modification

Dividing façade into two parts

• Material Applied - Based on Optical Properties

Two- set of Material

Redirecting Modules (Panels 1-2)

Diffusing Modules (Panels 3-7)

Computation Design

Computational Workflow

— Literature ——— Criteria ——— Case ——— Concept —— Computation —— Evaluation ——— Final Facade —

01

Parametric Modelling

Room Setup

window

Narrow and Deep Room

Depth (d) : 9m Width (w) : 3m

Height (h) : 3m clear

:Office Typology

Activity :Workplace Interior :Open plan

Façade Parameters – Possibilities

Uniform

Similar Rotation

Non Uniform

Opposite Rotation

Spacing between Modules

Non-Uniform

Separate Rotation

Non Uniform

Opposite Rotation

Literature — Criteria

Case

Concept

Computation

Evaluation ———

Final Facade

Façade Parameters – Finalised

01

Rotation Separated by Row 02

Module Type
Change Individually

03

Material Set 2- Options

Literature ——— Criteria ——— Caso ——— Concent

Computation

Evaluation — Final I

02

Daylight Simulation

Daylight Simulation Tool

HB+/LB+

Environmental Design Tools

Daylight Simulation Workflow

Illuminance GridBased Output

Reference Plane : 0.7m (Desk height)

• Grid : 0.5x0.5m

Computation Criteria Literature Concept Final Facade Case Evaluation ———

Daylight Availability

Literature — Criteria — Case — Concept — Computation Evaluation — Final Facade —

03

Optimisation

Optimisation Engine

Wallacei

Evolutionary engine – NSGA II Algorithm

Optimisation Workflow

Criteria

01

02

03

Rotation Separated by Row Module Type Change Individually

Material Set 2-Options

Objectives

One-Main Objective

1. Maximise overall Daylit area % (300-2000 lux)

Two-Supportive Objective

- 2. Maximise Illuminance where lux is <300
- 3. Minimise Illuminance where lux is >2000

Attempt	Facade Segment	Optimisation Parameters		Population	Optimisation Run Time	Daylit % Achieved
01	Redirecting	Rotation Module Material	Separated by Row Individual M11/M22	2500	3+ Days	57%
	Diffusing	Rotation Module Material	Separated by Row Individual M11/M22			

Wegdy (2016)

Attempt	Facade Segment	Optimisation Parameters		Population	Optimisation Run Time	Daylit % Achieved
01	Redirecting	Rotation Module Material	Separated by Row Individual M11/M22	2500	3+ Days	57%
	Diffusing	Rotation Module Material	Separated by Row Individual M11/M22			
02	Redirecting	Rotation Module Material	Separated by Row Separated by Row (Fixed M11)		2+ Days	61%
	Diffusing	Rotation Module Material	Separated by Row Separated by Row (Fixed M11)			
03	Redirecting	Rotation Module Material	Separated by Row (Fixed Type D) (Fixed M11)	2500	1+ Days	72%
	Diffusing	Rotation Module Material	Separated by Row (Fixed Type D) (Fixed M11)			

Computation

Optimisation in two steps

12- instances Twice

Workflow-limited to this study

Solution from Optimisation

Literature — Criteria — Case — Concept — Computation — Evaluation — Final Facade

741Lux 75%

Literature — Criteria — Case — Concept — Computation Evaluation — Final Facade

741Lux

75%

741Lux

Rotation Daylight Reach

75%

Optimisation Step-01

Optimisation Step-01

Results

Panel No.	su								
	10		1	.3	16				
	CS	ОС	CS	ОС	CS	ОС			
1	-56	-18	-37	-36	-38	-15			
2	-26	-27	-32	-22	-27	-13			
3	2	3	0	83	4	2			
4	19	20	33	68	30	1			
5	21	4	0	8	2	17			
6	20	35	8	32	9	33			
7	1	18	45	74	77	7			

Daniel	WI								
Panel No.	1	.0	1	.3	16				
	CS	ОС	CS	ОС	CS	ОС			
1	-8	-36	-60	-30	-22	-32			
2	-5	-25	-85	-12	-10	-18			
3	1	0	27	12	42	7			
4	13	3	34	23	69	8			
5	66	2	56	10	59	20			
6	81	2	0	20	39	4			
7	6	83	14	10	32	15			

Step-02 Manual Adjustments

Final Optimised Solution and corresponding modified solutions

—— Literature —— Criteria —— Case —— Concept — Computation Evaluation — Final Facade

Illuminance Distribution along Depth– Summer Condition

———— Literature ——— Criteria ——— Case ——— Concept — Computation —— Evaluation —— Final Facade -

Illuminance Distribution along Depth– Winter Condition

2501Lux UDI - 41%

With only Glazing

With final solutions of Facade

Literature — Criteria

Concept

Computation

Evaluation

Final Facade

Winter Condition – Overcast Sky

Available Daylight – without Facade

Façade with material set M11/M22

With Higher reflective material (Making diffusive panels 3-7 more reflective)

Redirecting Panels, Diffusing Panels, Reflectance = 0.9 Reflectance = 0.5 Specularity Specularity = 0.97 = 0.07 Roughness = 0.1 Roughness = 0.1 Redirecting Panels, Diffusing Panels, Reflectance = 0.9 Reflectance = 0.8 Specularity = 0.97 **Specularity** = 0.5 Roughness Roughness = 0 = 0.1

Criteria — Case — Concept — Workflow Evaluation — Final Facade —

Evaluation

Result Values

	Distribution of Daylight		DGP		Contrast]						
Instances	Avg Lux	Daylit%	Uniformity Ratio	011	012	C1	C2	Highest lux	lowest lux	Avg lux/mt.	Overlit	Underlit	Material Set
SU-10-CS	506	95	0.56	0.25	0.26	2.3	2	915	284	59	0	5	M11
SU-13-CS	723	100	0.62	0.24	0.23	2.59	0.96	1002	447	50	0	0	M11
SU-16-CS	462	71	0.55	0.23	0.25	2	2.5	807	252	52	0	29	M11
SU-10-OC	538	95	0.53	0.23	0.23	2	2	979	286	75	0	5	M11
SU-13-OC	695	100	0.51	0.23	0.23	1.86	2	1336	353	98	0	0	M22
SU-16-OC	475	80	0.54	0.22	0.23	1.9	2	846	258	57	0	20	M11
WI-10-CS WI-13-CS WI-16-CS WI-10-OC WI-13-OC WI-16-OC	573 611 497 367 724 176	71 97 60 100 100	0.35 0.5 0.3 0.89 0.88 0.89	0.2 0.2 0.21 0.12 0.19 0.03	0.22 0.21 0.2 0.12 0.19 0.03	1.98 0.85 2.98 1.89 2.12 1.4	2.24 0.37 1.97 1.56 2.1 1.21	1137 607 1483 441 863 211	200 305 147 326 640 156	62 4 40 12 24 6	0 3 0 0 0	29 0 60 0 0 100	M22 M11 M22 Higher reflectivity Higher reflectivity Higher reflectivity
Average*	561	88	0.57	0.21	0.22	2.04	1.79	946	318	48	0	13	-

Performance Results

(Average of all Instances)

Daylit Area

Avg. Illuminance

Uniformity Ratio

DGP

Contrast Ratio

Performance Results

(Average of all Instances)

Visually comfortable environment achieved

Performance Results

(Average of all Instances)

Daylit Area

Use of artificial light can be reduced by 88%

Reduces concerning lighting consumption by 88%

Avg. Illuminance

Close to 500 lux

(requirement for an office workplace by CIBSE, 2015)

Uniformity Ratio

0.5 - 0.7 for artificial lighting (BREEAM, 2016)

Use of artificial light can be neglected

Literature — Criteria — Case — Concept — Workflow — Evaluation — Final Facade

Façade Scheme

• Building Segment - (Slab bottom to Slab bottom)

• Building Segment - (Slab bottom to Slab bottom)

• Final Facade Segment

30% surface on Building envelope for PV

• Exploded View

(i) Installation of GMU I Section with Halfen Channel

(i) Installation of GMU I Section with Halfen Channel

(ii) Fixing Curtain wall panels

- (i) Installation of GMU I Section with Halfen Channel
- (ii) Fixing Curtain wall panels

(iii) Installation of GMU C-section

- (i) Installation of GMU I Section with Halfen Channel
- (ii) Fixing Curtain wall panels
- (iii) Installation of GMU C-section

(iv) Installation of Vertical Mullions

- (i) Installation of GMU I Section with Halfen Channel
- (ii) Fixing Curtain wall panels
- (iii) Installation of GMU C-section
- (iv) Installation of Vertical Mullions
- (v) Fixing of Modules in Neutral position

- (i) Installation of GMU I Section with Halfen Channel
- (ii) Fixing Curtain wall panels
- (iii) Installation of GMU C-section
- (iv) Installation of Vertical Mullions
- (v) Fixing of Modules in Neutral position

(vi) Façade in Neutral State

- (i) Installation of GMU I Section with Halfen Channel
- (ii) Fixing Curtain wall panels
- (iii) Installation of GMU C-section
- (iv) Installation of Vertical Mullions
- (v) Fixing of Modules in Neutral position
- (vi) Façade in Neutral State

(vii) Façade in Motion

Tolerances

Module

Exploded view

• Components

Anodised Aluminium (Material) Light Weight

Assembly Instruction Manual

• Folding Mechanism

Linear actuator + 3-link Bar Mechanism

• Folding Mechanism

Linear actuator + 3-link Bar Mechanism

• Folding Mechanism

• Folding Sequence

• Rotation Mechanism

• Rotation Mechanism

Feasibility

(Façade Scheme)

Automation

113

Automation

Automation

Time consumed in motion

- Automation
- Fire Safety

- Automation
- Fire Safety (i) Fire near window

- Automation
- Fire Safety (ii) Fire inside the building

Door like Opening

- Automation
- Fire Safety

Fire Escaping

- Automation
- Fire Safety
- Maintenance Cleaning

Outside – Cradle system (BMU)

Whole envelope cleaning

Inside – Maintenance Walkway

Small cleaning

Two time cleaning required

Surface on both sides of Module

Inside small cleaning

Outside Whole envelop

- Automation
- Fire Safety
- Maintenance
- Energy Performance (PV Modules)

Lighting Energy Consumption (LEC)

(Office Room + Automation)

1498 kWh

PV Potential

1083 kWh

72% of LEC

- Automation
- Fire Safety
- Maintenance
- Energy Performance (PV Modules)
- Structural Performance

Impact of Deflection

Impact of Stress

- Automation
- Fire Safety
- Maintenance
- Energy Performance (PV Modules)
- Structural Performance
- Weight

- Automation
- Fire Safety
- Maintenance
- Energy Performance (PV Modules)
- Structural Performance
- Weight
- Sustainability and Circularity

- Automation
- Fire Safety
- Maintenance
- Energy Performance (PV Modules)

Segment

Weight

- Structural Performance
- Weight
- Sustainability and Circularity

Comparison

FACA-DE-LIT

53%

Lighter

Al Bahr Tower, Dubai

Conclusions

Answer to Main research question

"Based on computational design methods and techniques, how can a façade system allow for indoor visual comfort, by daylight's controlled distribution throughout the depth of a room, in a high rise office building?"

Computational Design methods helps to bring best possible configuration in combination of all three features to achieve visual comfort.

Conclusion

• The outcome of this study is a dynamic façade for an office space, that adheres to visual comfort criteria by adapting to diverse external daylight conditions.

• The façade is Suitable for deep floor plans.

• The façade is feasible for new construction and renovation projects that can withstand extra load of the facade.

Conclusion

Resulted with reduction of using artificial light by 88%.

PV generates energy equivalent to 72% of total lighting consumption.

• Potential gain of +60% of energy above total consumption.

Conclusion

• Computational workflow can be used to evaluate any design and increase performance efficiency of a Façade.

• Computational workflow can be used to develop several alternatives of design solutions that deals with visual comfort.

Future Research Possibilities (All separate or combination of some)

- Rooms at different level of a high rise. As the amount of daylight illuminance could be different for different level.
 Rooms facing in different orientation. Comparative analysis between S/W/E/N and/or SE,SW,NE,NW.
- III. Different Location/ Different climate. Comparative assessment for high rise buildings in different locations and/or different climate zones.
- IV. With surrounding Context. Comparative assessment between high, mid and low dense context around a high rise.
- V. Different Program/function with varied illuminance requirement.
- VI. Different typology. Other than high rises like residential, commercial etc.
- VII. Thermal Insulation for indoor comfort. With the most optimized façade solution.
- VIII. Material Variations for the façade elements.
- IX. Optimizing Interior Ceiling. Shape/slope/material
- X. Module/Panel size variation.
- XI. Different design/geometry/Patterns. Coping with same concept, method and workflow.
- XII. For curved faced facades.
- XIII. For outdoor glare check caused by Façade and its improvement.
- XIV. Optimisation for Better view to outside using same facade system.
- **XV. Make a Tool.** Make computational method smart enough, Code it in python for generative solutions.
- Reduce runtime for optimization.
- Artificial Intelligence (AI), Machine learning (ML), Deep Learning (DL). Can adapt to various parameters like regulations, climate etc.

References

Attia, S. 2017. Evaluation of adaptive facades: The case study of Al Bahr Towers in the UAE. Retreieved from https://www.glassonweb.com/article/evaluation-adaptive-facades-case-study-al-bahr-towers-uae

Brembilla E., Chi D., Hopfe C., Mardaljevic J. (2019). Evaluation of climate-based daylighting techniques for complex fenestration and shading systems. DOI: 10.1016/j.enbuild.2019.109454

Chauvel P., Collins J., Dogniaux R., Longmore J. (1982). Glare from windows: current views of the problem, Lighting Research & Technology 14 (1).

Samadi S., Noorzai E., Beltra L, Abbasi S., (2019). "A computational approach for achieving optimum daylight inside buildings through automated kinetic shading systems". DOI: 10.1016/j.jobe.2015.07.007

Sheikh M., Kensek K. (2014). "Intelligent Skins: Daylight harvesting through dynamic light-deflection in office spaces". https://doi.org/10.17831/rep:arcc%25y340

Tabadkania A., ShoubibM., Soflaeic F., Banihashemid S., (2019). "Integrated parametric design of adaptive facades for user's visual comfort". https://doi.org/10.1016/j.autcon.2019.102857

BREEM, 2016. Hea 01 Viual Comfort. Retrieved from $https://www.breeam.com/BREEAMUK2014SchemeDocument/content/05_health/hea01_nc.htm$

"NEN-EN 17037", (2018). Daylight in buildings, Dutch standards.

Wegdy, A. & Fathy, F. 2016. A Parametric Approach for Achieving Daylighting Adequacy and Energy Efficiency by Using Solar Screens. Retrieved from https://www.researchgate.net/publication/305725870_A_Parametric_Approach_for_Achieving_Daylighting_Adequacy_and_Energy_Efficiency_by_Using_Solar_Screens

"The history of architecture is the history of the struggle for light."

Le Corbusier – Architect

FACA-DE-LIT