

Helio tracker

P.V. integrated shading device By Shefalika Sukhen Padmanabha

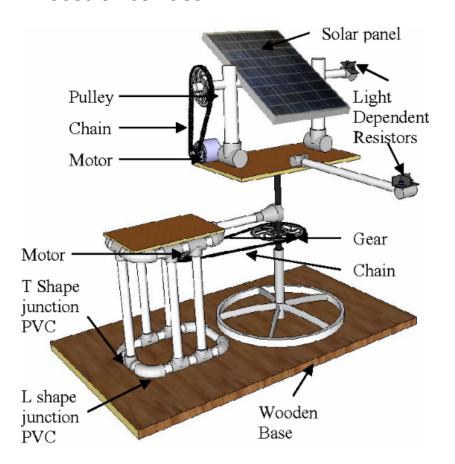
Delft University of Technology

Theme: Sustainable structures

Mentor 1: Prof.dr. Mauro Overend Mentor 2: Dr. Eleonora Brembilla Board of examiner: Field of study: Structural Design Field of study: Climate Design Dr.ir. MGAD (Maurice) Harteveld

Solar tracking P.V. integrated shading device

Problem


Rotatory Motor

Rotor

Solar tracking device Used since 1989

Source:K.E. Kanyarusoke, J. Gryzagoridis, Gr. Oliver. (2015, February). Active solar tracker [Image]. Are Solar Tracking Technologies Feasible for Domestic Applications in Rural Tropical Africa? http://www.scienci.org.an/order.php/science/antersea

Gear

Source: Jared Owen. (2020, June 10). How does an Electric Motor work? (DC Motor). YouTube. https://www.youTube.com/watch?u-CWulQIZSE3&ab_channel-JaredOwen

Problem

• Solar tracking Rotation system

• Contain multiple gears

• Wear and tear

• Balancing the load of monocrystalline P.V.

• Voluminous rotational system

Source: https://doi.org/10.1016/j.apenergy.2019.04.033

How do you solve this problem?

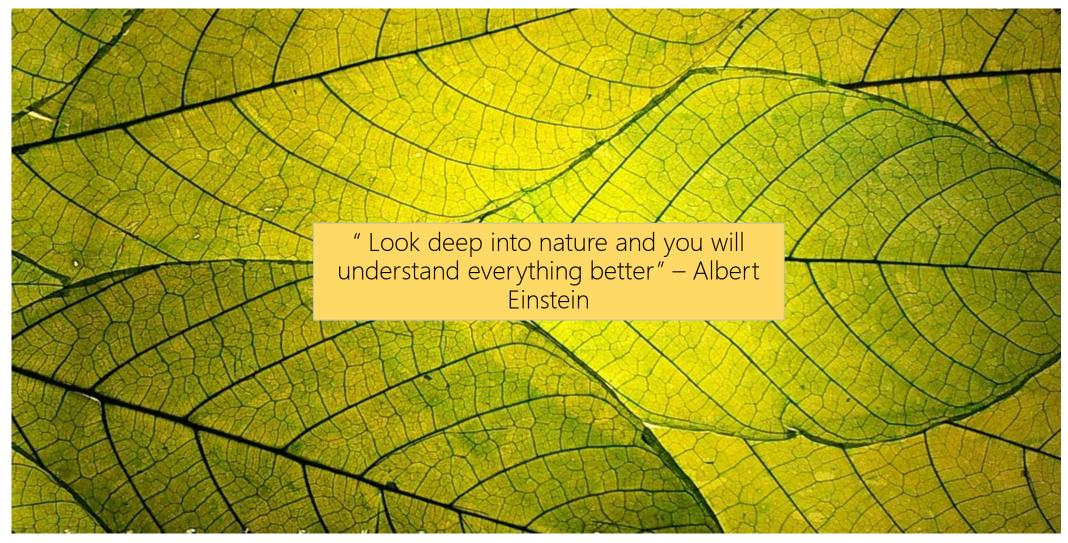


Image Source: Robert Dickinson. (2015). Every Leaf a Flower [Image]. https://in.pinterest.com/pin/669840144581489085/

Source: Hoffer, B. (2018). Sunflower [GIF]. http://www.podk.com/acm/seconf-sunflower/SON2007000-gibtenice/Bit-endber-ingt/Sol-WestPV118j0/dmb/cis12104F_endb65888888484ved-dcCAQuBBhdEw4j07bab_ak http://www.podk.com/acm/seconf-seconf-seconf-acm/seconf-

Heliotropic plants

Heliotropism - It is a response of an organism towards the direction of the sun

Example Sunflowers- follow the sun from east to west to increase the amount of solar radiation falling on it.

Research question

How can P.V. integrated sun shading devices utilize the mechanisms (external stimuli and internal mechanics) of heliotropic plants?

Literature study

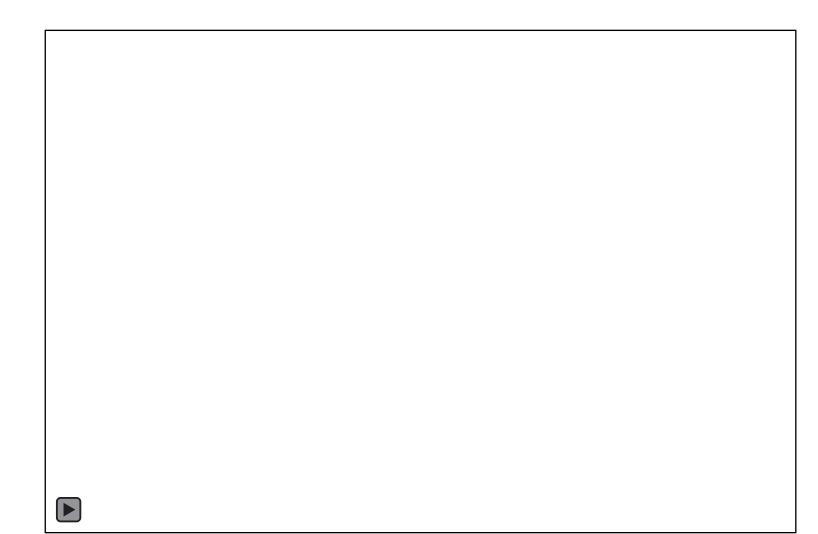
Literature study	Case study	Experiment		Optimization
			3	

Tropism in plants

Tropism is an orienting response of an organism to a stimulus

Source: Make a gif. (2013). Touch-me-not plant (Mimosa pudica) in action. https://makeagif.com/gif/touch-me-not-plant-mimosa-pudica-in-action-QIPeDW

Heliotropism – form of tropism.


A positive heliotropism is a response of an organism towards the direction of the sun

Design

Literature study

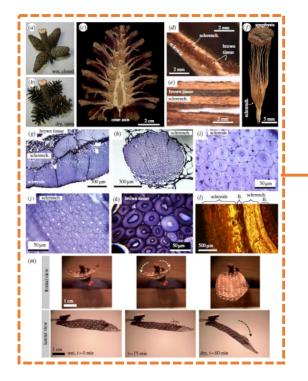
Case study

How does the sunflower track the sun?

- East to west Morning
- West to east night
- Circadian rhythm
- No sensor in the night

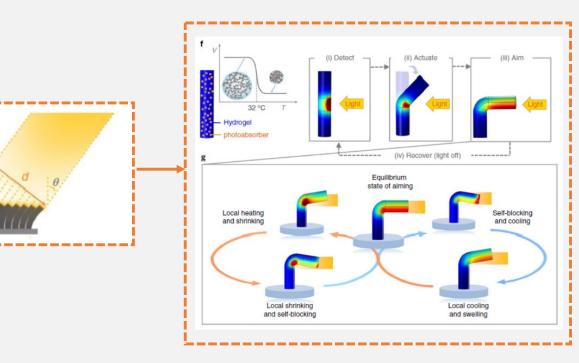
Energy

• Stem is responsible for it's movement


Source: doi:10.1126/science.aaf9793.

Case Study

1	ТÈ	tei	na i		c^+	
				C	Sι	


Case study

Hygroscopic pine cones

Nanostructured light responsive polymers

Composition of layers (3 D- printed moisture layer/ stiffness layer) Calculated blocking force using a load cell Fluorescent microscope Gom Armis Bends in any direction (poly *N*-isopropylacrylamide) Bends to any angle Inbuilt stimuli Material expands loss stiffness 2. https://doi.org/10.1038/s41565-019-0562-3 .

Literature study

Case study

Experimental study using microscope

L	iŧ	0	ra	tu	ire	stu	ıdı	1
-	1.0	. C	I a	ιu	i e	Stu	iu j	У

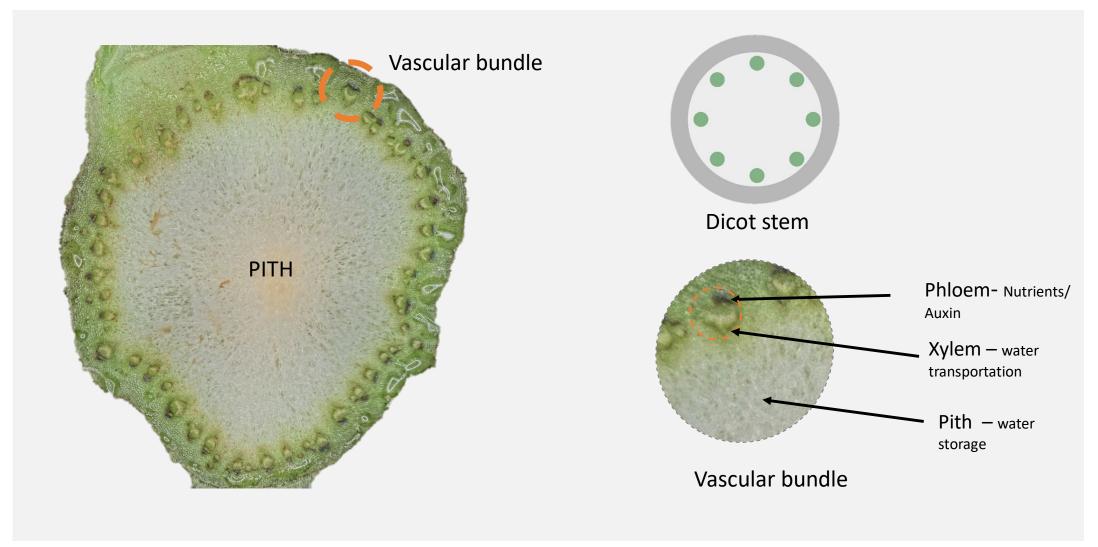
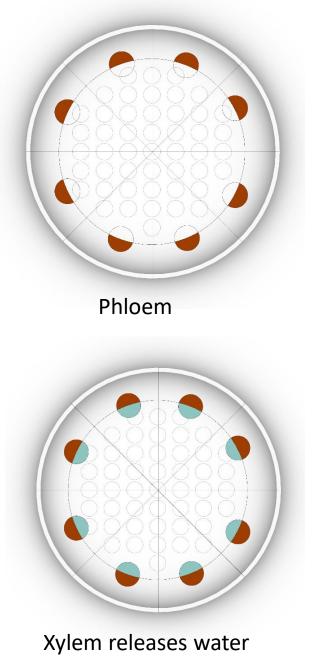
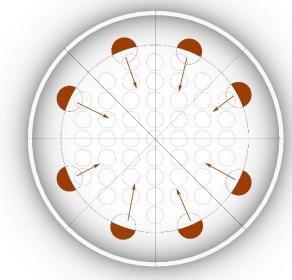
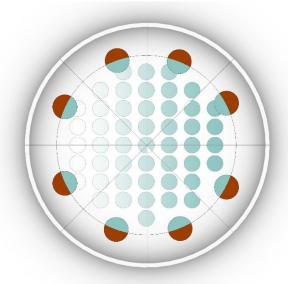


Image Source: Krystal, M. (2000). How to Collect & Observe Snowflakes Under a Microscope [Image]. https://stemeducationguide.com/snowflakes-under-microscope-science-activity/

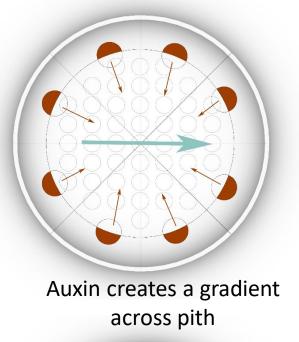
Literature study

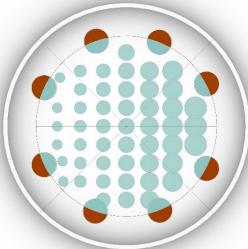

Experiment


Parts of the stem


Source: Own work

Literature study





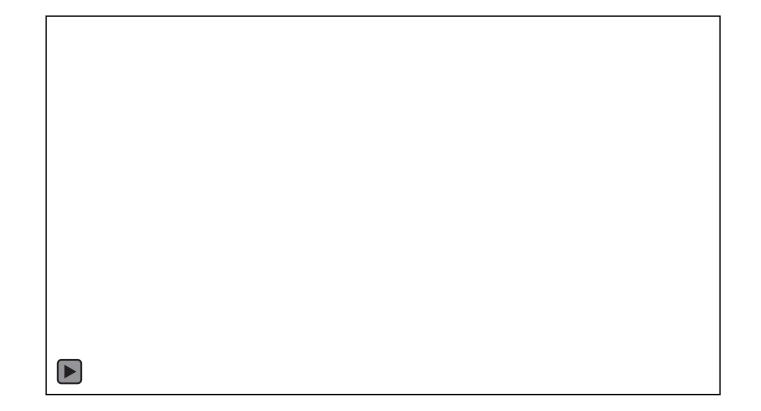
Phloem Releases Auxin

Cells absorb water based on the Auxin

Some cells absorb more water and enlarge

Energy

Source: Own work

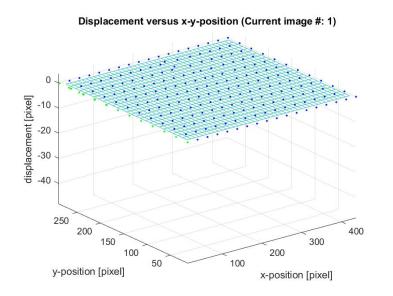

Literature study

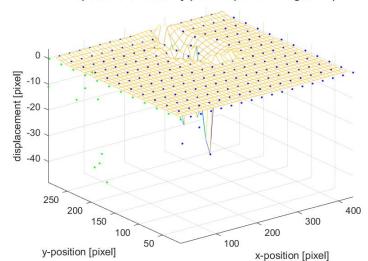
Case stud

Experiment

timization

Movement of Sunflower




Source: Own work

Literature study

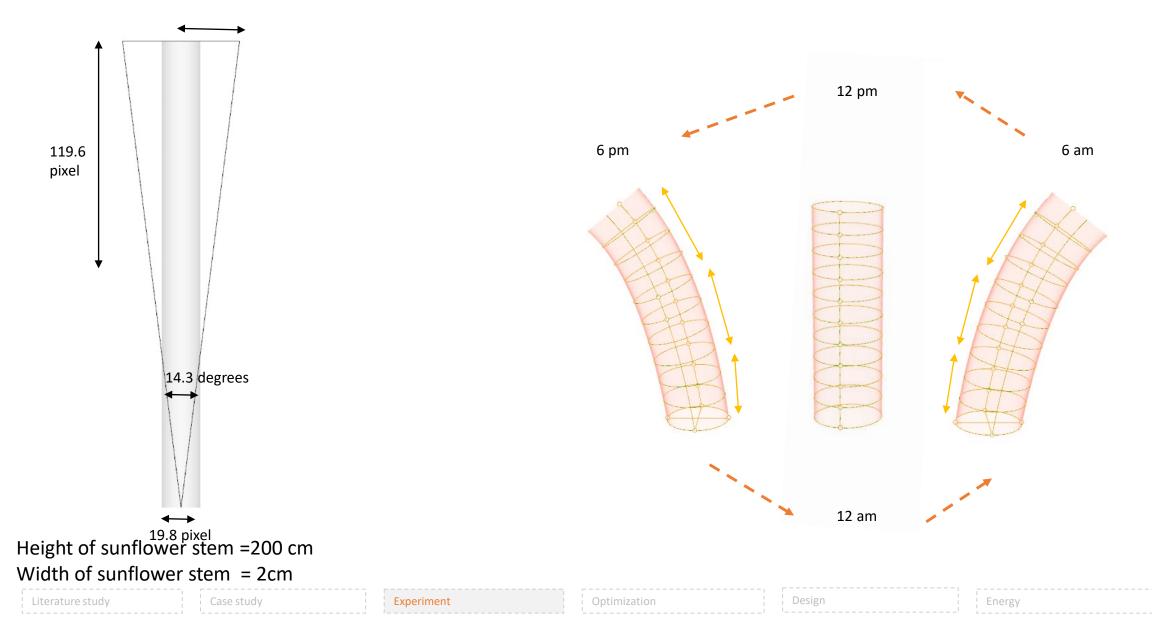
Energy

Mat lab analysis for stem movement

Displacement versus x-y-position (Current image #: 17)

Source: Own work

Literature study

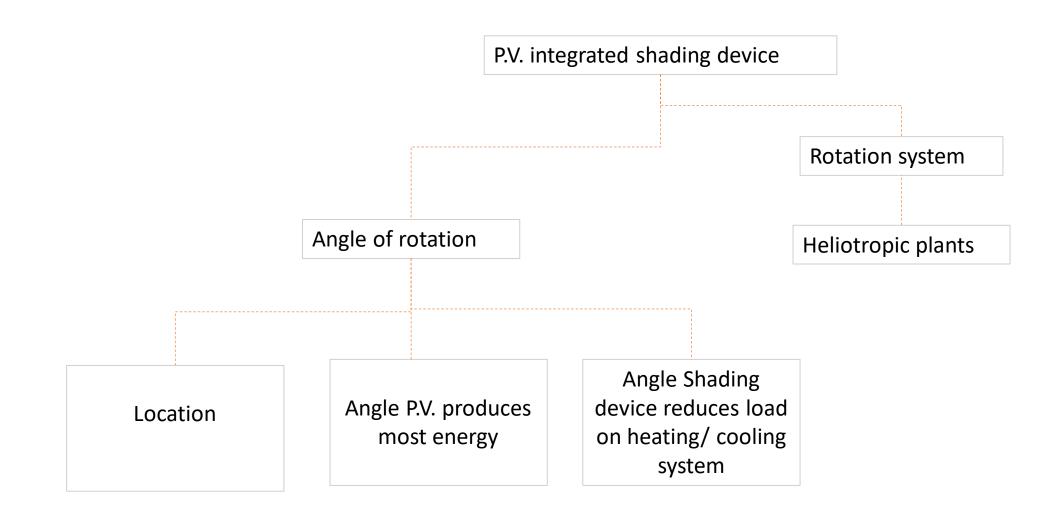

Experiment

Optimization

Angle of movement

30 pixel

Compression and Tension

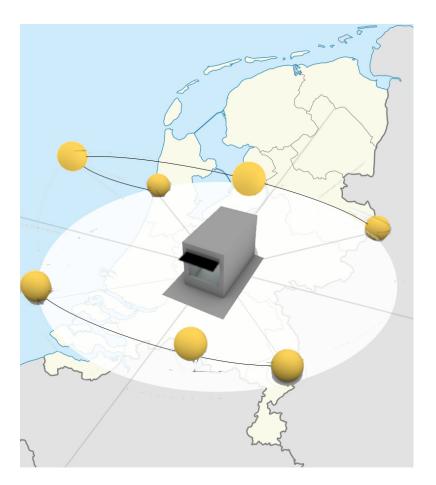


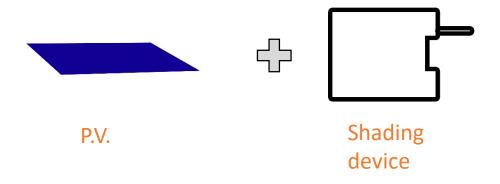
22

P.V. Integrated shading device

Literature study

Case study

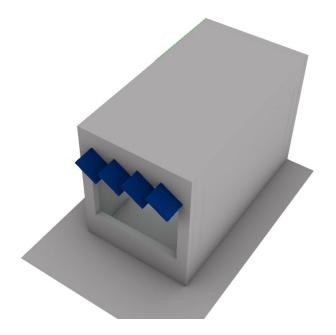

Literature study

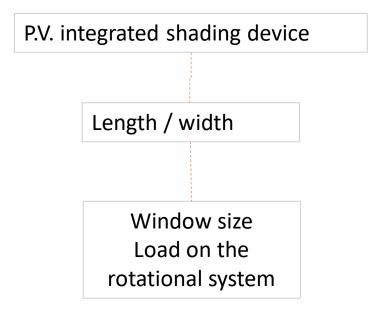

Case stu

Experiment

Optimization

Scope


- Netherlands
- Summer higher sun position
- Winter lower sun position
- South facing wall
- Room size 15m²
- Window- 2m²
- Set point temp for cooling is 24 C° and heating is 21 C°.


Energy

Literature study

xperiment

Shape and Size

Literature study

Case study

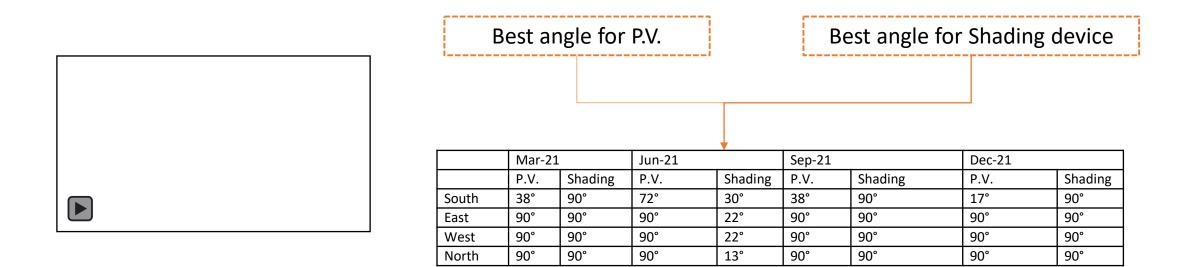
Experiment

Optimization

Types of rotation

Literature study

Energy used by different rotational systems


	Fixed horizontally	Single axis (east west)	Single axis (altitude)	Dual axis			
		March 21st	I				
P.V. energy (W/day)	2.2	2.69	2.516	3.076			
Radiation on glass (kW)	3.74	3.75	3.75	3.76			
		June 21st		1			
P.V. energy (W/day)	4.045	4.030	4.073	4.659			
Radiation on glass (kW)	11.07234	11.0723	11.07232	11.0724			
		Sept 21st					
P.V. energy (W/day)	2.04	2.79	3.08	3.67			
Radiation on glass (kW)	3.46	3.46	3.45	3.47			
		Dec 21st					
P.V. energy (W/day)	0.582	0.652	1.445	1.431			
Radiation on glass (kW)	1.27368	1.27367	1.27368	0.98169			

Literature study

Optimization

Design

Energy

Literature study

Experiment

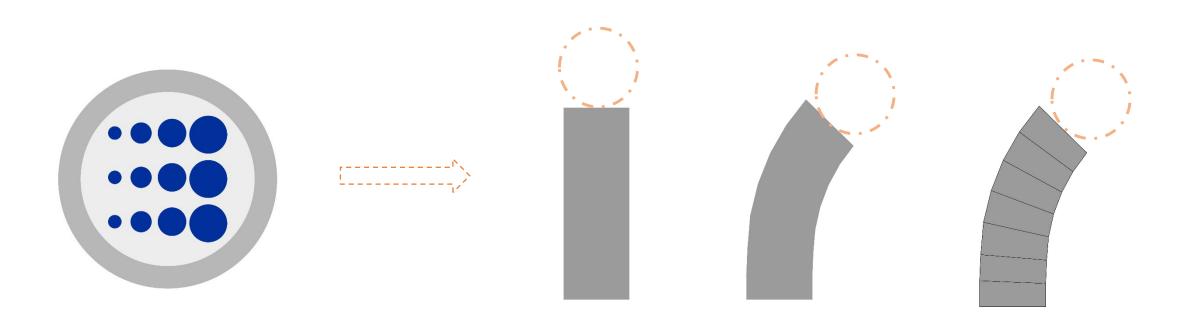
Optimization

South facade	Angle	PV	Energy for heating/ cooling			
Units	Degree	kW/day	kW/day	difference		
Mar 21 st	38 °	0.066	5	-4.93		
Mar 21 st	90°	0.044	4.86	-4.81		
Jun 21 st	72°	0.087	0	0.087		
Jun 21 st	30°	0.069	0	0.068		
Sep 21 st	38 °	0.066	0.032	0.033		
Sep 21 st	90°	0.044	0.029	0.015		
Dec 21 st	17°	0.02	2.73	-2.71		
Dec 21 st	90°	0.01	2.39	-2.38		

Office- 15m₂

Energy

Angle for P.V. panel and shading device


	Spring	Summer	Fall	Winter
South	90°	72°	38°	90°
East	90°	50°	90°	90°
West	90°	50°	90°	90°

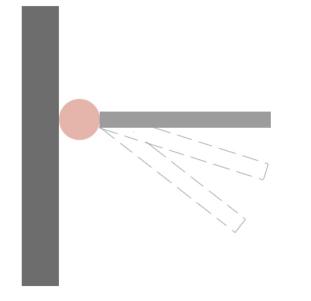
Literature study

Design of rotational system

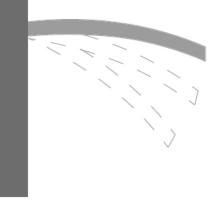
Literature study

Concept

Aim of rotational system : To understand heliotropic movement of plants and incorporate it into a solar tracking P.V. integrated shading device. To check if three is another method for rotation, and to analyse the load it can carry and the energy it can produce with the existing system.


Optimization Design

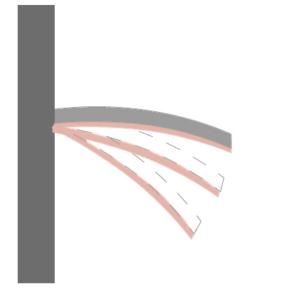
Utilizing compression and tension



L	Li	t		r	2	t		r		C	ŀ		d	17	
1		U	C	1	a	L	u	1	-	5	L	u	u	У	

Load transfer

Hinge system


Movement of arm

Optimization

35

Energy

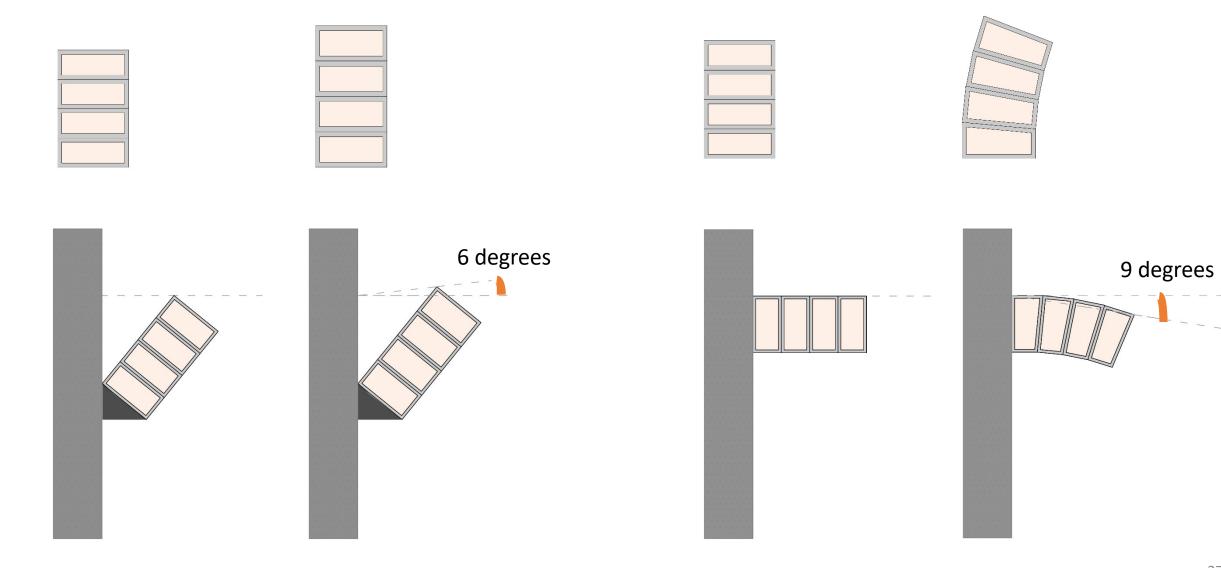
Types of supports

Support below panel

Support at an angle to panel

Literature study

Case stud


Experiment

Optimization

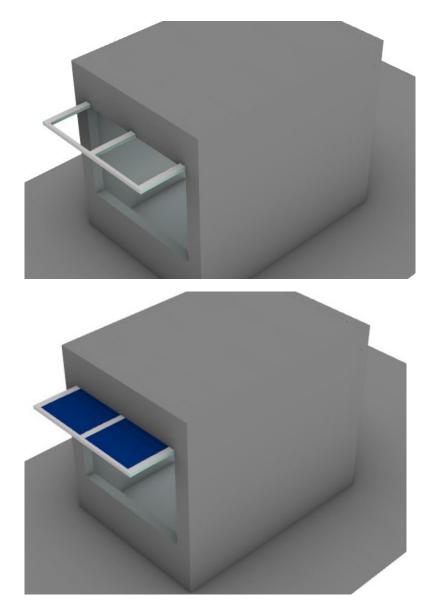
Design

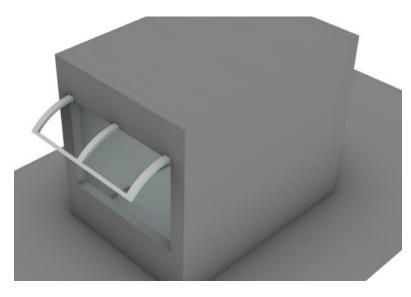
36

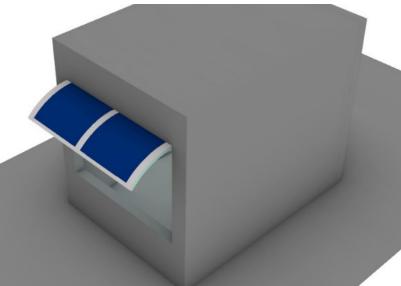
Position of the strut

Mechanism for movement

	Hygroscopy	Soft robotics	Piezoelectricity
Control of	Difficult to control as the	Easy to control	Easy to control
movement	reaction is very dependent on	But utilizes gears to	Crystal converts
	the moisture level	move	electrical to mechanical
Precision of	Precise up to cm	Precise up to mm	Precise up to µm
movement			
Energy utilized	Low energy	Heavy energy	Medium energy
	consumption(Dependent on	consumption.	consumption
	water)		
Element used	Hygroscopic material	Electric Motor	Piezoelectric material
for motion			
Development	Still in primary stages of	Developed, Used in	Very advanced, Used in
	development	manufacturing units	actuators


Literature study


Optimization


38

Energy

Piezo electric struts

Literature study

Case study

riment

Optimization

Compression and tension

- Piezo electric size 8mm- blocking force of 750 N
- Strut is broken into smaller segments
- Load distributed on two struts.
- Requires constant electricity to stay in position
- Ball pen mechanism, so that it can stay in place.
- 365*30yrs = 10,950 times

	_		
in the second			
den en e	1		

Literature study

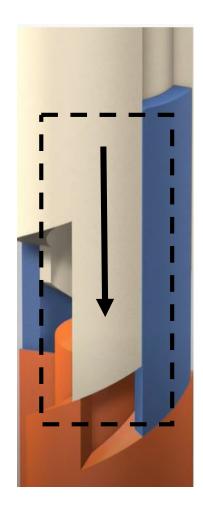
Experiment

Optimization

40

Click pen mechanism

Literature study


Case study

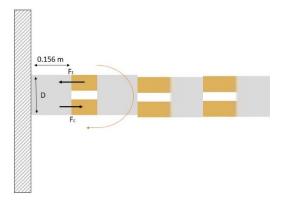
iment

Optimization

Design

Load transfer in a Click pen

Literature study

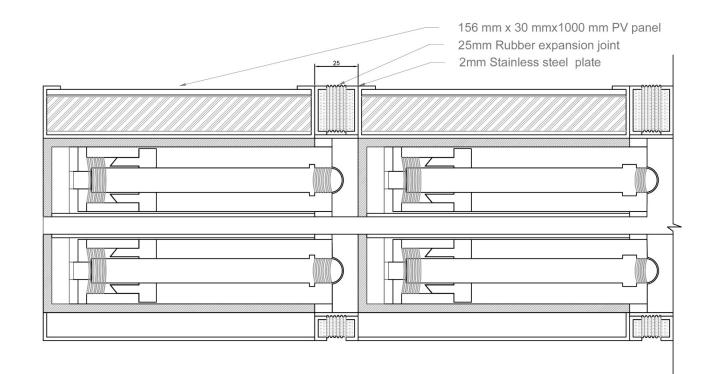

Case stud

Experiment

Optimization

Design


Dimension of module

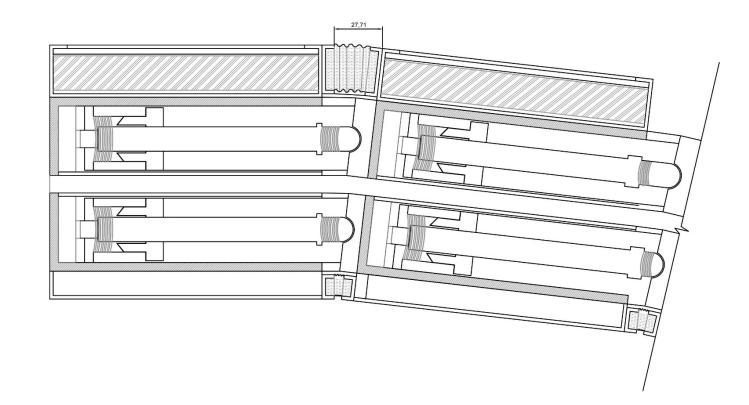

- Ra= 2180 N
- M =1090 Nm
- To move a shading device of one m² more than 1090 Nm to move it
- 5 mm strut to counteract the moment
- There are two forces Fc and Ft are the resisting forces as these are the points through which the force is passed. This will help determine the forces in these two struts. (F_c = force in compression)

• utilizing a depth of 0.05 for the body of the structure stainless steel will not fail

Expansion joint

Literature study

i i

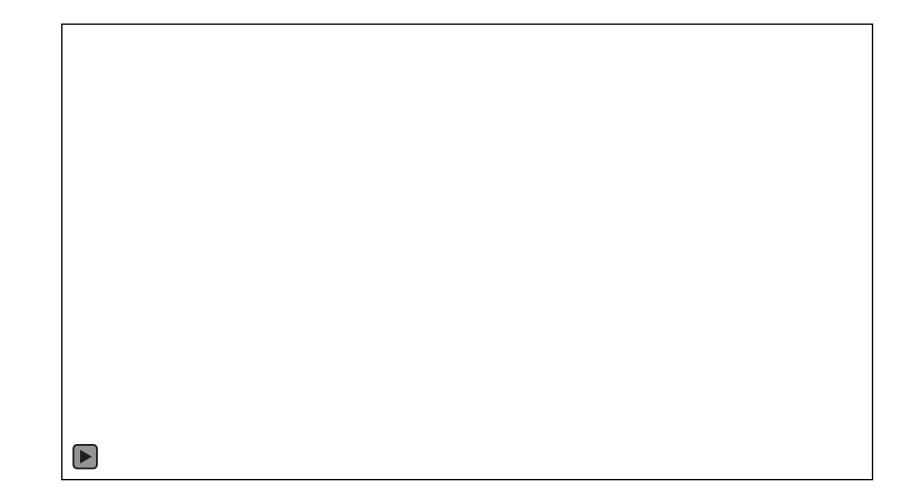

eriment

Optimization

Design

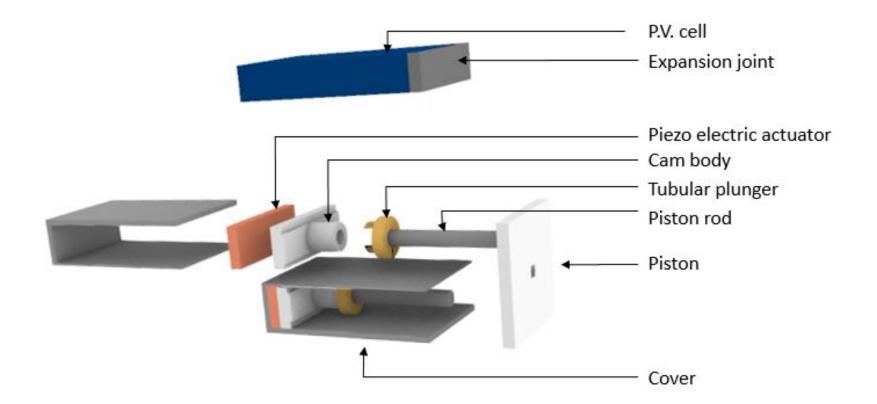
44

Expansion joint

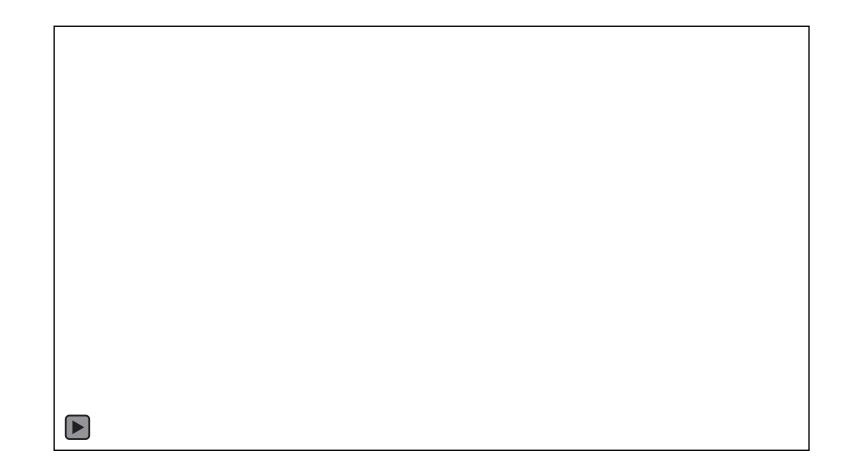

Literature study

Experiment

Optimization

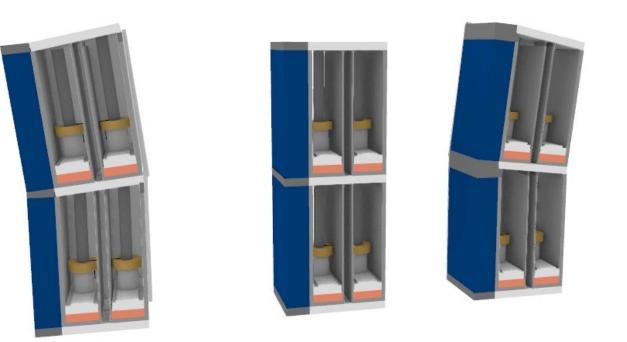

Design

45



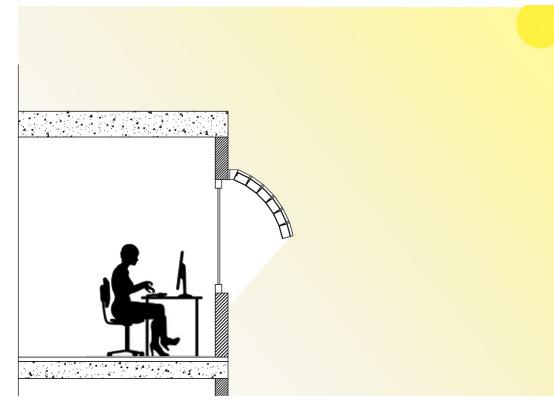
Literature study

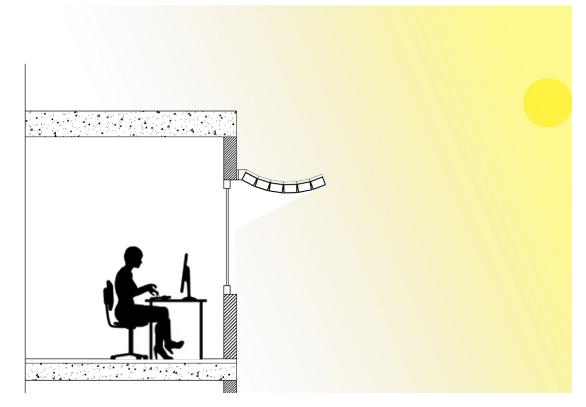
Parts of module



Literature study	Case study	Experiment	Optimization	Design	Energy	47
		//	,			

Literature study


Compression and tension of module


Literature study

Case stu

Optimization

Angle 53 degree

Angle 90 degrees

| Literature study

Case s

Experiment

Optimization

Design

Energy

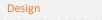
Winter day

Literature study

Case s

¦ Experiment

Optimization



Summer day

Literature study

Optimization

Black Mono crystalline panels

Literature study

ent

Optimization

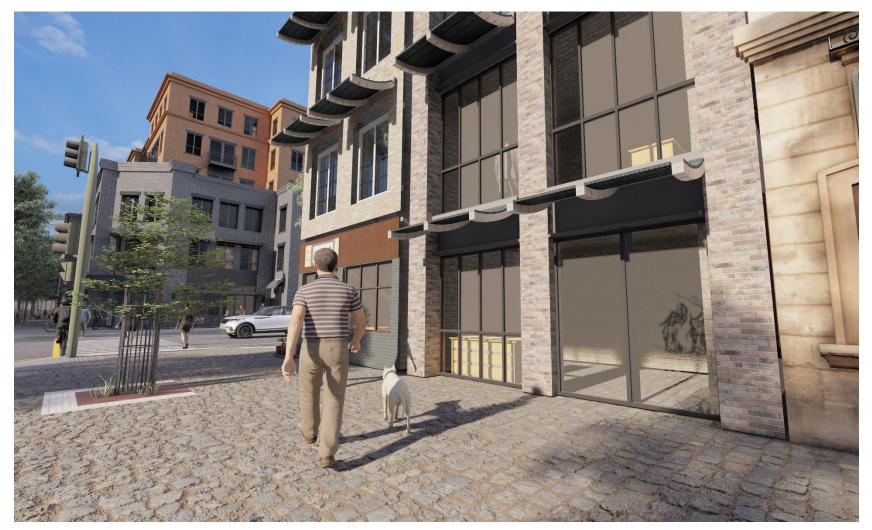
Design

Blue Mono crystalline panels

Literature study

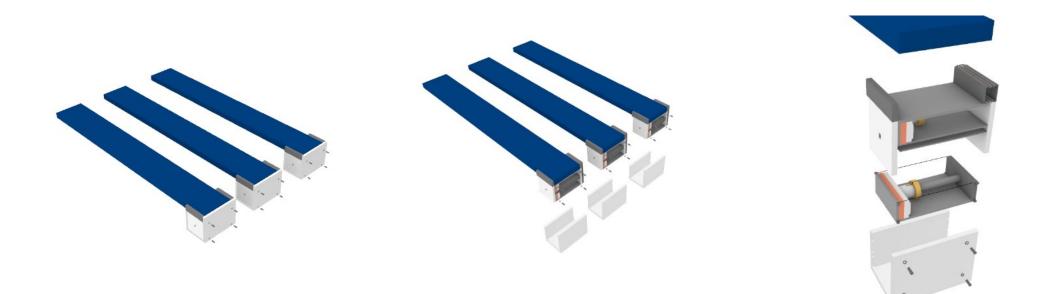
nent

Optimization


Design

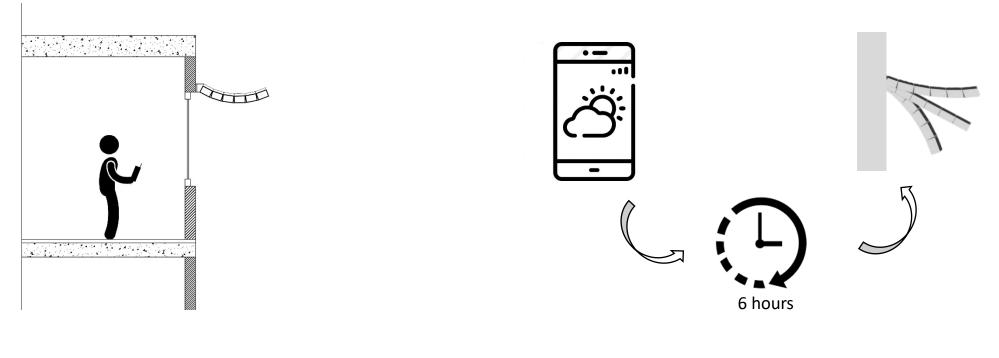
Panel at 71.5 degree

Panel at 53 degree


Winter/Spring panel at 90 degree

Angle limitation to design

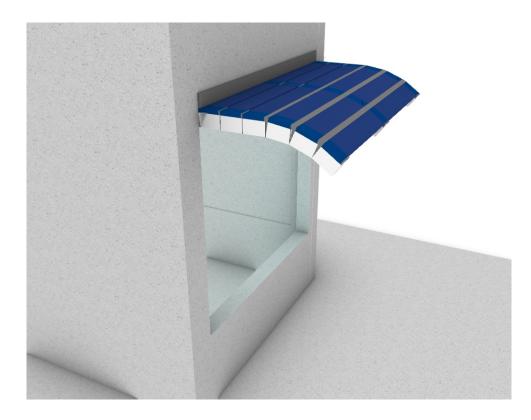
	Spring	Summer	Fall	Winter
South	90°	71.5°	53°	90°
East	90°	53°	90°	90°
West	90°	53°	90°	90°

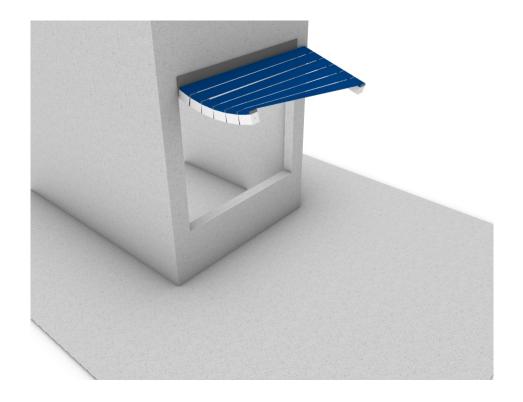


Maintenance

Literature study	Case study	Experiment	 Optimization	Design	Enei	rgy

Control


Manual override control


On cloudy day

1	Lit		ra	t i i	ro	cti	ldv
L	LIU	C	I a	ιu	IC	Sil	i u y

Energy

Advantage

Literature study

Case

Experiment

Optimization

Design

Energy

61

Other applications

Image source: Ankarasolar. (2014). Building Integrated Photovoltaics (BIPV) [Image]. http://www.ankarasolar.com.tr/en/products/buildingintegrated-photovoltaics-bipv-solar-panels/

	 	 ·
rature study	Case study	¦ Ex

Energy generated by P.V. integrated shading device

Netherlands

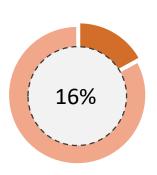
	Mar-21	Jun-21	Sep-21	Dec-21
Energy difference between with shading at the angles mentioned above and no				
shading(kWh)	-0.306	0.002	-0.0002	-0.02
Energy saved for the seasons (kW/ season)	-27.571	0.246	-0.0212	-2.66
Total energy saved by shading device in a year (kW/year)				-30
Energy produced by P.V. panels in a year (kW/year)				234
Total energy produce by P.V. integrated shading device in a year (kW/year)			2	204 kW

Abu Dhabi

	Mar-21	Jun-21	Sep-21	Dec-21
Energy difference between with shading at the angles mentioned above and no				
shading(kWh)	1.76	0.52	1.88	1.02
Energy saved for the seasons (kW/3 months)	164	49.22	174.47	94.58
Total energy saved by shading device in a year (kW/ year)				482.27
Energy produced by P.V. panels in a year (kW/year)				302
Total energy saved by P.V. integrated shading device in a year (kW/ year)			7	84 kW

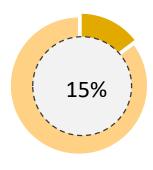
Energy

Literature study


imization

64

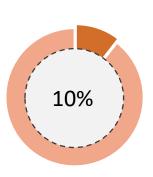
Moved 4 times a year


Netherlands

Energy produced by	+ 203 kW / year
P.V. integrated	
shading device	
Energy utilized by	- 0.43 kW/ year
Piezo actuators	
Clock	-3.3 kW/year
Embodied energy	- 3.1389 KW
Total energy	196 kW / year
produced per year	
Heating / cooling	1,157kW
load	

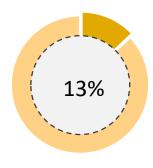
Abu Dhabi

Cooling load	5067 kW
produced per year	
Total energy	777.13 kW / year
Embodied energy	- 3.1389 KW
Clock	-3.3 kW/year
Piezo actuators	
Energy utilized by	- 0.43 kW/ year
shading device	
P.V. integrated	
Energy produced by	+ 784 kW / year



Literatures	tudy	Case stu	dy	- I	Experiment	Optim	ization	D	lesign	Energy

Moved twice everyday


Netherlands

Energy produced by	+ 203 kW / year
P.V. integrated	
shading device	
Energy utilized by	-79 kW/ year
Piezo actuators	
Clock	-3.3 kW/year
Embodied energy	- 3.1389 KW
Total energy	117 kW / year
produced per year	
Heating / cooling	1,157 kW
load	

Abu Dhabi

Cooling load	5067 kW
produced per year	
Total energy	698 kW / year
Embodied energy	- 3.1389 KW
Clock	-3.3 kW/year
Piezo actuators	
Energy utilized by	- 0.43 kW/ year
shading device	
P.V. integrated	
Energy produced by	+ 784 kW / year

66

Literature study	Case study	Experiment	Design	Energy

Comparison

	Helio tracker	Telescopic cylinder	Solar tracker
Load	Blocking force 775N	Upto 30 KN	-
Energy per movement	19.5 W	50 W	17.28 Wh
Weight of panel	20 kg	5kg	14 kg
Weight of actuator	ЗКд	1-3 Kg	5.64kg
Warranty		2 years	5 year
Material	Stainless steel	Aluminium / stainless steel	Aluminium / stainless steel
Components	Piezo electricity and ball point pen mechanism	Hydraulics	Multiple components and parts
Size	0.016 m3	0.015m3	0.5m3
	PV. cell Expansion joint Piezo electric actuator Cam body Tubular plunger Piston rod Piston Cover		Pulley Chain Motor Under Under Under VC Vooden Base

Limitations

- Not tested, problems in scaling up the ball pen mechanism is unknown.
- Glare not considered
- Winter in Netherlands, it is better to have no shading than a shading at 90 degrees. However if the angle is more than 90 the P.V. panel shades itself.
- The size of the device is dependent on the piston size. If it needs to carry a larger weight the piston size will increase and the overall depth of the support increase.
- This device cannot be utilized where straight lines are required. It uses a curvature to rotate.

Future potential

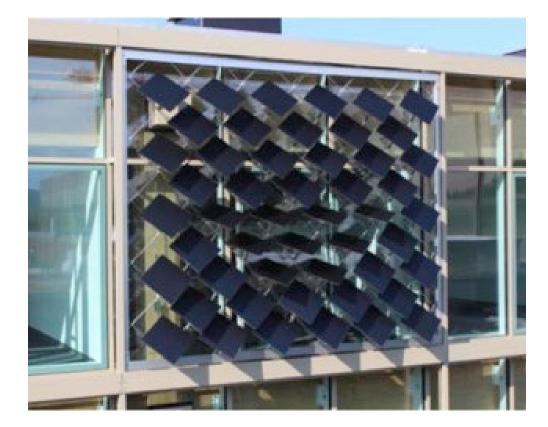
- Analyse in 3D
- The stem shows more possibilities
- Test of mechanisms
- Test the material
- Proto type the product

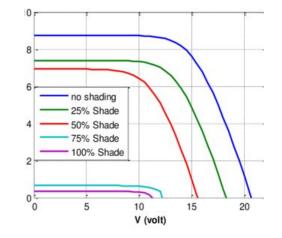
Small 2m² shading device has the ability to reduce the cooling load by up to 15%

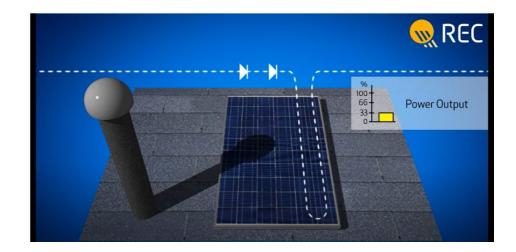
Thank you

	Mechanical	Heliotropic	Soft robotics	Hygroscopy
	rotational system	movement		
Mechanism	Electro magnetic	Pizo electricity and	The arm	The material itself
	motor which uses	a ball point pen		
	gears	mechanism		
Movement	Hinge movement	The structure is	The structure is	The structure is
		utilized to crate the	utilized to crate	utilized to crate
		movement	the movement	the movement
Material	Metal	Stainless steel	Polymer	Wood fibres
Energy	Electricity	Electricity	Electricity	Water
Load	Heavy load	Medium load 2KN	Medium load	Light load
Load	Load concentrated	Supported at two	Supported at	Entire material
transferee	at one point	ends	two ends	takes the load.
Control	Precession to the	Precession to the	Precession to	Dependent on the
	second	minute	the second	water

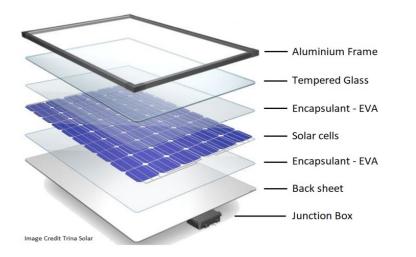
Calculations

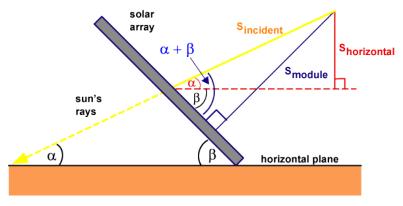

To calculate how much energy this mechanism would require the load on the P.V panel needs to be analysed.


Assuming the P.V. panel to be a cantilever beam the load can be calculated. Assuming the P.V panel as a Monocrystaline P.V. - (10 kg/m²) 0.0980665KN/m² Polycrystaline P.V. - (8 kg/m²) 0.0784532 KN/m² Thin film- (0.46 kg/m²) 0.004511059 KN/m² Snow load: 0.7 KN per sq/m Wind Load: 0.102 KN per sq/m Total load= 0.098 +0.7+1.5 =2.18KN sq/m


Ra= W*L =2.18*1 = 2.18 KN = 2180 N M =(WL)/2= (2.18*1)/2 = 1.09KN m= 1090 Nm This data shows that to move a shading device one requires more than 449Nm to move it

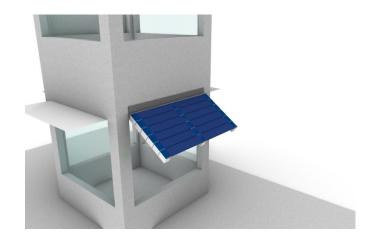
- Blocked force = 775N requires 650 V
- 650V * 0.03 A= 19.5W

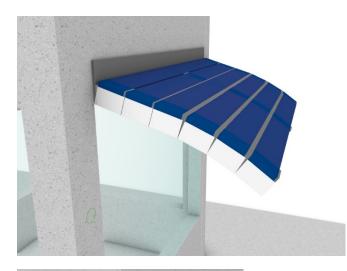

Cannot have smaller segments, As they overlap each other

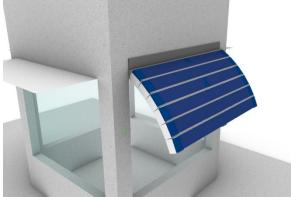


Photovoltaic Panels

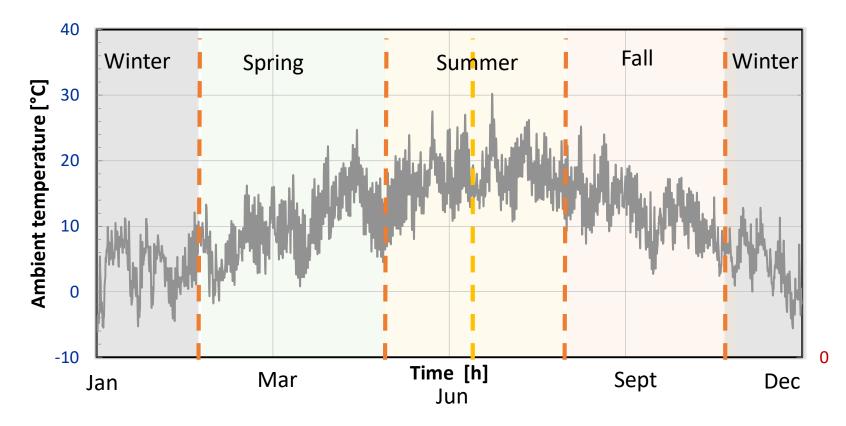
Layers of a P.V. panel


Calculating angle of tilt for P.V. Panels

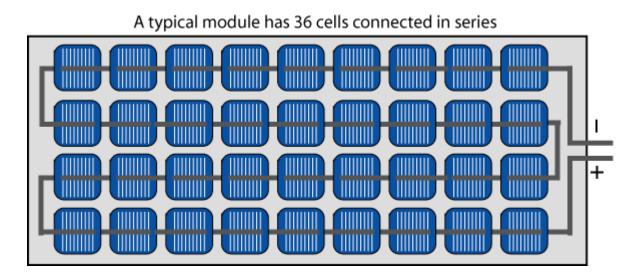

Mono-crystalline	Poly- crystalline	Thin Film
Cut from one piece of silicon	Made of a blend of silicon	Thin conducting layer deposited on a glass or plastic
Maximum energy output per m ² (efficiency 20%)	Medium energy output per m² (efficiency 15%)	Minimum energy output per m ² (efficiency 13%)
Heavy weight (10 kg/m²)	Medium weight (8 kg/m²)	Light weight (0.46 kg/m ²)
Rigid	Rigid	Flexible
Expensive – 0.45 cents per watt	Medium - 0.22 cents per watt	Expensive – 0.5 cents per watt



Range of angle it can perform


Position 1	3.1 degree
Position 2	6.2
Position 3	9.3
Position 4	12.4
Position 5	15.4
Position 6	18.5

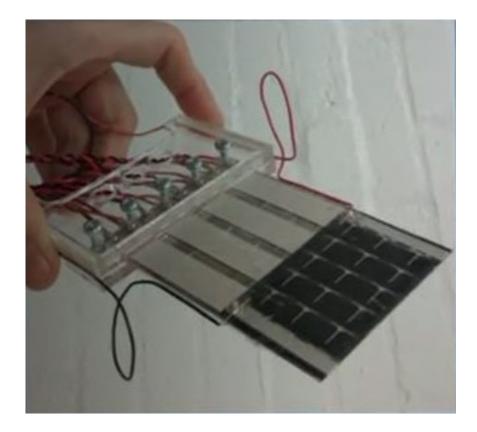
Rotational period



METEOROLOGICAL DATA

Other factors that affect the cooling load

- Moving it up and down- weighed with it energy required to move
- Thermal properties of glass
- Thermal properties of the wall


Can P.V. panels come in strips?

• https://www.pveducation.org/pvcdrom/modules-and-arrays/module-circuit-design

Piezo electric flag

Literature study

Case study

Experiment

Optimization

Design

8.2 Forces acting on the device

In each segment of the support, the compressive and tension forces acting on them play an important role as they determine the load on the device. Below are the calculations.

Assuming the P.V. integrated shading device to be a cantilever beam. The calculations were made for a monocrystalline panel. From the calculations in 7.4 we know that the moment is 1090Nm and the force at Reaction at th junction where the panel meets the wall is 2180N.

The aim is to balance these two equations. To resist the moment there is going to be compression on the top and tension at the bottom. To resist the moment a moment equilibrium equation is used as shown below.

M= moment

 F_c = force in compression

- F_{t} = force in tension
- d = depth of material

```
M = F_c * d
```

```
F_c = Area * yield strength
```

```
1090= A* yield strength*d
```

```
1090= 0.156*d* yield strength*d
```

Assuming the length of each segment as 0.156 m as that is the length of the solar cell. To determine d we use the equation above. From chapter 7.4 we know that the moment is 1090. Utilizing this formula we can balance the equation. To ensure the material doesn't crush. If the moment is larger than Fc it will collapse.

Image 8.2: Forces acting on the turning mechanism in ball point pens.

For the moment the yield strength plays an important role. The yield strength is dependent on the material chosen. In table 8.2.1 4 materials are analysed with their strengths.

There are two forces Fc and Ft are the resisting forces as these are the points through which the force is passed. This will help determine the forces in these two struts. As the system utilizes the ball point mechanism. In chapter 7.6 it is explained how the force is transferred.

Shear stress

```
From chapter 7.4 the shear stress is 2180N
```

 $V = \tau^* A$

 τ = Shear stress

```
A= \pi^* r^2 = Area of the piston where the force is transferred.
```

```
Since there are 2 = A/2
```

Therefore the formula is:

V= τ*(A/2)

From the table 8.2.1, it is clear when you consider all the properties stainless steel is the best option. The CES software was utilized to get the values of Stainless steel AISI 444 annealed For these properties, stainless steel was used. Moment $M = F_c * d$ F_c= Area * yield strength 1090= A* yield strength*d 1090= 0.156*d* yield strength*d 1090= 0.156*d* 290*10⁶ *d $1090 = 45 \times 10^6 \times d^2$ Assuming the depth as 0.05 $1090 = 45 \times 10^6 \times 0.05^2$ 1090 Nm= 1, 13,100 Nm This proves that utilizing a depth of 0.05 for the body of the structure stainless steel will not fail. The structure can utilize a depth of 0.05 or higher. Shear A= *0.075 =0.235 m² $2180 = \tau^*(A/2)$ $2180 = 75*10^{6*}(A/2)$ If you assume area of the strut as A= $\pi^* r^2$ $A = \pi^* 0.005^2$ 85 A= 7.8*10⁻⁵