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Equilibrium analysis for linear and nonlinear aggregation in
network models: applied to mental model aggregation in
multilevel organisational learning
Gülay Canbaloğlua,b and Jan Treurb,c

aDepartment of Computer Engineering, Koç University, Istanbul, Turkey; bCenter for Safety in Healthcare,
Delft University of Technology, Delft, The Netherlands; cSocial AI Group, Department of Computer Science,
Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

ABSTRACT
In this paper, equilibrium analysis for network models is addressed
and applied in particular to a network model of multilevel
organisational learning. The equilibrium analysis addresses
properties of aggregation characteristics and connectivity
characteristics of a network. For aggregation characteristics, it is
shown how certain classes of nonlinear functions enable
equilibrium analysis of the emerging dynamics within the
network like linear functions do. For connectivity characteristics,
by using a form of stratification for the network’s strongly
connected components, it is shown how equilibrium analysis
results can be obtained relating equilibrium values in any
component to equilibrium values in (independent) components
without incoming connections. In addition, concerning
aggregation characteristics, two specific types of nonlinear
functions for aggregation in networks (weighted euclidean
functions and weighted geometric functions) are analysed. It is
illustrated in detail how by using certain function transformations
also methods for equilibrium analysis based on a symbolic linear
equation solver, can be applied to make predictions about
equilibrium values for them. All these results are applied to a
network model for organisational learning. Finally, it is analysed
in some depth how the function transformations applied can be
described by the more general notion of function conjugate
relation, also often used for coordinate transformations.
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1. Introduction

Dynamics in network models described by node states that change over time (for
example, for individuals’ opinions, intentions, emotions, beliefs,…) depend on network
characteristics for the connectivity between nodes, the aggregation of impacts from
different nodes on a given node, and the timing of the node updates; e.g. (Treur,
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2020b). As pictures of networks usually only show connectivity characteristics, the roles of
the aggregation and timing characteristics are sometimes neglected. The aggregation
and timing characteristics also play an important role in the dynamics within a
network; for example, whether or not within a well-connected group in the end a
common opinion, intention, emotion or belief is reached (a common value for all node
states) also, or even mainly depends on them. Often, the tradition is that silent asump-
tions are made about the aggregation and timing characteristics. For timing character-
istics, often it is silently assumed that the nodes are updated in a synchronous manner,
although in application domains this assumption is usually not fulfilled. For aggregation,
in social network models usually linear forms are applied; this fixed choice makes that it is
not investigated how a variation of this choice of aggregation would affect the dynamics
in the network. Only for the fixed linear aggregation type some theorems exist specifying
connectivity conditions under which all node states converge to the same value, in par-
ticular when the network is strongly connected: from every node there is a path to every
other node. In contrast, for (artificial) neural network models traditionally often some type
of logistic sum format (also often not varied) is applied for aggregation.

In this paper, a more diverse landscape is explored which is not limited by the fixed
conditions on connectivity, aggregation or timing as are so often imposed either silently
or explicitly. For connectivity, both acyclic and cyclic networks are considered here, and
for cyclic networks both strongly connected networks and networks that are not strongly
connected. For aggregation, both networks with linear and nonlinear aggregation are
considered and for networks with nonlinear aggregation, networks with logistic aggrega-
tion are addressed but also networks with other forms of nonlinear aggregation that can
be analysed similarly to how networks with linear aggregation can be analysed. Finally, for
timing both synchronous and asynchronous timing are covered.

The often occurring use of linear functions for aggregation for social network models
may be based on a more general belief that dynamical system models can be analysed
better for linear functions than for nonlinear functions. Although there may be some
truth in this if specifically logistic nonlinear functions are compared to linear functions,
in the current paper it is shown that such a belief is not correct in general. It is shown
that also classes of nonlinear functions exist that enable good analysis possibilities
when it comes to the emerging dynamics within a network model. Such classes and
the dynamics they enable are analysed here in some depth, thereby among others not
using any conditions on the connectivity but instead exploiting for any network its struc-
ture of strongly connected components (Bloem et al., 2006; Fleischer et al., 2000; Harary
et al., 1965; Łacki, 2013; Wijs et al., 2016).

As an example, following (Treur, 2020a) in the current paper a theorem is discussed spe-
cifying conditions under which all node states converge to the same value (e.g. achieving a
common decision or belief within a group). This theorem does not impose any conditions
on connectivity and for aggregation applies to some class of nonlinear functions as well as it
applies to linear functions. Moreover, for some (but not all) of this class of ‘well-behaving’
nonlinear functions it is found out that they can be (indirectly) related to linear functions by
some form of function transformation, which then enables application of linear analysis
methods such as symbolically solving sets of linear equations including parameters.

In this paper, as application domain in particular, the domain of multilevel organiz-
ational learning is addressed (Crossan et al., 1999; Kim, 1993; Wiewiora et al., 2019,
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2020). It is shown how the equilibrium analysis methods addressed in the current paper
can be applied to adaptive self-modeling network models for multilevel organizational
learning (Canbaloğlu, Treur, & Roelofsma, 2022a, 2022b; Canbaloğlu, Treur, &
Wiewiora, 2022c). Predictions are obtained on the eventually achieved learning results
in terms of the mental models learnt.

In thispaper, in Section2 thebasicsof themodelingandanalysis approachused from (Treur,
2020b) are briefly introduced. In Sections 3–6 a number of mathematically proven results are
presentedonequilibriumanalysis of networkmodels. These results covermany variations con-
cerning connectivity, aggregation and timing. In particular, these results address both linear
andnonlinear types of aggregation. Section 3 addresses equilibriumanalysis for a specific con-
dition on connectivity (and no condition on aggregation or timing), namely the case of acyclic
networks. It does so by introducing a form of stratification for acyclic networks, thus obtaining
Theorem 1 and Corollary 1, which indeed do not require any condition on the functions used
for aggregation or on the timing. In Section 4, equilibrium analysis is addressed for some
specific conditions on aggregation (on no conditions on connectivity and timing). Some (com-
parative equilibrium analysis) results are obtained for cases of monotonicity of functions used
for aggregation and comparison relations between a number of often considered specific
types of such functions (scaled sum, Euclidean, geometric, logistic, minimium and maximum
functions); here in addition to anumber of propositions for different cases, Theorem2andCor-
ollaries 2 and3 areobtained. Section 5 addresses another conditionon aggregation (andagain
noconditiononconnectivityor timing); it in addition focuseson the roleof being scalar-free for
the functions used for aggregation, leading to results for themore general class of monotonic
and scalar-free functions formulated as Theorem 3.

In Section 6, again only conditions on aggregation are considered and no conditions
on connectivity or timing. Following (Treur, 2020a) the general connectivity structure is
analysed in some more depth by taking into account the strongly connected components
of a network with their mutual connections and the condensation graph based on them,
which is always acyclic; e.g. (Harary et al., 1965). By introducing a stratification of this con-
densation graph similar to the stratification that is introduced in Section 3 for acyclic net-
works, results are obtained that are to a certain extent similar to the results for acyclic
networks: Theorem 4 and Corollaries 4 and 5. In contrast to Section 3, these results do
assume some conditions on the aggregation: the functions for aggregation have to be
strictly monotonic, scalar-free and normalized.

The main results presented in Section 3–6, are applied in Section 7 to obtain equili-
brium analysis results for network models of multilevel organizational learning processes.
Moreover, in Section 8 two other examples are discussed showing how equilibrium analy-
sis based on some types of nonlinear functions can be done in practice by function trans-
formations to linear functions and subsequently using a (symbolic) solver for linear
equations. This function transformation has some similarity to the notion of coordinate
transformation and can be described by conjugate relations between functions. This
type of transformation is investigated in some more depth in Section 9, where a
number of further results are obtained, described by Theorems 5 and 6 addressing
further steps in the characterization of scalar-free functions that can be used for aggrega-
tion and Theorems 7 and 8 addressing conjugate relations between scalar-free functions
and linear functions. Finally, Section 10 is a discussion and Section 11 is an Appendix with
proofs of the presented results.
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2. Modeling and analysis of dynamics and adaptation for networks

In this section, the underlying network-oriented modelling approach used is briefly dis-
cussed and in relation to this the basic concepts used for equilibrium analysis.

2.1. Modeling by dynamic and adaptive networks

Following (Treur, 2020b), a temporal-causal network model is specified by the following
types of network characteristics (here X and Y denote nodes of the network, also called
states, which have state values X(t) and Y(t) over time t):

. Connectivity characteristics.
Connections from a state X to a state Y and weights ωX,Y

. Aggregation characteristics.
For any state Y, some combination function cY(V1,… , Vk) defines the aggregation
that is applied to the single impacts Vi =ωXi ,YXi(t) on Y from its incoming connections
from states X1,… , Xk.

. Timing characteristics.
Each state Y has a speed factor ηY defining how fast it changes.

The following canonical difference equation used for simulation and analysis purposes
incorporates these network characteristics ωX,Y, cY, ηY in a numerical format:

Y(t + Dt) = Y(t) + hY [aggimpactY (t) − Y(t)]Dt (1)

where aggimpactY (t) = cY (vX1,YX1(t), . . . , vXk ,YXk(t)) for any state Y and X1 to Xk are the
states from which Y gets its incoming connections. A combination function is called nor-
malised if this aggregated impact is 1 if all state values in it are 1. This expresses the
general principle that network dynamics is implied (or entailed) by the network’s structure
characteristics.

The timing characteristics specified by speed factors ηY enable to model more realistic
processes for which not all states change in a synchronous manner. Network models that
do not possess this option are less flexible as they silently impose synchronous processing
as an artefact. The aggregation characteristics specified by the choice of combination
functions cY and their parameters provide another form of flexibility to fit better to
specific realistic applications. Also in this case, network models that do not possess
such an option are less flexible and also silently impose artefacts that may make them
fit less to specific applications. For example, for aggregation in social networks often
only linear functions are used for aggregation.

The above concepts enable to design network models and their dynamics in a declara-
tive manner, based on mathematically defined functions and relations. Realistic network
models are usually adaptive: often some of their network characteristics change over
time. By using self-modeling networks (or network reification), a similar network-oriented
conceptualization can also be applied to adaptive networks to obtain a declarative
description using mathematically defined functions and relations for them as well; see
(Treur, 2020b). This works through the addition of new states to the network (called
self-model states or reification states) which represent network characteristics by
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network states. If such self-model states are dynamic, they describe adaptive network
characteristics. In a graphical 3D-format (e.g. see Secion 7), such self-model states are
depicted at a next level (self-model level or reification level), where the original network
is at a base level. As an example, the weight ωX,Y of a connection from state X to state
Y can be represented (at a next reification level) by a self-model state named WX,Y.
During processing based on the canonical difference equation (1), the value of this
state WX,Y is used as the connection weight ωX,Y it represents. Similarly, all other
network characteristics from ωX,Y, cY(..), ηY can be made adaptive by including self-
model states for them. As a self-modeling network model is also a temporal-causal
network model itself, as has been shown in (Treur, 2020b), Ch 10, this self-modeling con-
struction can easily be applied iteratively to obtain multiple self-model levels.

This self-modeling network construction can provide higher-order adaptive network
models, and has turned out quite useful to model, for example, plasticity and metaplas-
ticity in the form of a second-order adaptive mental network with three levels, one base
level and a first-order self-model level for adaptation of connections and a second-order
self-model level for control over such adaptation; e.g. (Abraham & Bear, 1996) and (Treur,
2020b), Ch 4. Recently, a three-level self-modeling network architecture has also been
adopted to successfully model adaptation of internal mental models and its control
(Treur & Van Ments, 2022; Van Ments & Treur, 2021) and to model organizational learning
and its control (Canbaloğlu, Treur, & Roelofsma, 2022a, 2022b; Canbaloğlu, Treur, & Wie-
wiora, 2022a, 2022b). For the latter, see also Section 7.

2.2. Basic concepts for equilibrium analysis of dynamic and adaptive networks

The following types of properties are often considered for equilibrium analysis of dynami-
cal systems in general.

Definition (stationary point, increasing, decreasing, equilibrium)
Let Y be a network state.

. Y has a stationary point at t if dY(t)/dt = 0

. Y is increasing at t if dY(t)/dt > 0

. Y is decreasing at t if dY(t)/dt < 0

. The network model is in equilibrium at t if every state Y of the model has a stationary
point at t.

For network models, the following criteria in terms of the network characteristics ωX,Y, cY,
ηY can be derived from the generic difference equation (1); see also (Treur, 2016, 2018):

Criteria for network model dynamics
Let Y be a state and X1,… , Xk the states connected toward Y. For nonzero speed factors ηY
the following criteria in terms of network characteristics for connectivity and aggregation
apply; here aggimpactY (t) = cY (vX1,YX1(t), . . . , vXk ,YXk(t)):

. Y has a stationary point at t ⇔ aggimpactY (t) = Y(t)

. Y is increasing at t ⇔ aggimpactY (t) . Y(t)

JOURNAL OF INFORMATION AND TELECOMMUNICATION 5



. Y is decreasing at t ⇔ aggimpactY (t) , Y(t)

. The network model is in equilibrium a t ⇔ aggimpactY (t) = Y(t) for every state Y

The above criteria for a network being in an equilibrium (assuming nonzero speed
factors) depend both on the connections weights ωX,Y used for connectivity and on the
combination function cY used for aggregation. Note that in a self-modeling network,
these criteria can be applied not only to base states but also to self-model states. In
the latter case they can be used for equilibrium analysis of learning processes, as will
be illustrated for organizational learning in Section 7.

In subsequent sections the equilibrium analysis is addressed not at the level of specific
network structures and implied dynamics but at a more abstract level of properties of
network structures and properties of dynamics implied by them. More specifically, in
the remainder of this paper, it will be analysed how the criteria relate to certain properties
of the connectivity characteristics and aggregation characteristics:

. For connectivity characteristics:
how the criteria relate to properties of paths based on connections, such as
o whether the network is acyclic or cyclic
o for cyclic networks, the way in which the network is composed of its strongly con-
nected components (the condensation graph of the network)

. For aggregation characteristics:
how the criteria relate to properties of the combination functions defining the net-
work’s aggregation, such as
o monotonicity
o being scalar-free
o comparison relations between combination functions

These properties will not only apply to linear functions but also to a wider class of func-
tions extending the class of linear functions beyond the border with the class of nonlinear
functions. Exploring nonlinear functions in this class and how some of them still may
relate to linear functions is one of the main aims of the current paper.

3. Equilibrium analysis under connectivity conditions: acyclic networks

In the current section a relatively simple case will be addressed where a condition on the
connectivity in the network (but no conditions on aggregation in the network) is con-
sidered: the case of acyclic networks.

3.1. Stratification for acyclic graphs or networks

A relatively simple but still very useful structure that can be added to any acyclic graph or
network is the following form of stratification.

Definition (stratification for an acyclic graph or network)
For an acyclic graph or network, stratification levels 0, 1, .. are (inductively) assigned to the
nodes such that the following hold:

6 G. CANBALOĞLU AND J. TREUR



. For a node Y without incoming connections from other nodes: level(Y ) = 0

. For a node Y with incoming connections from nodes X1,… , Xk: level(Y ) =
1 +maxi(level(Xi))

A simple example of an acyclic network with 7 states is shown in Figure 1. Based on
their connectivity, the four indicated stratification levels are obtained. Note that for
each state Y, the longest path from any level 0 state to Y determines its stratification
level. For example, in Figure 1 state X6 has level 2 since its longest path from any level
0 state is from X2 via X5, and X7 has level 3 since its longest path from a level 0 state is
from X2 via X5 and X6.

3.2. Using stratification for equilibrium analysis of acyclic networks

Stratification is a useful instrument to analyse equilibria of acyclic networks; the following
theorem can easily be obtained. It shows how for acyclic networks equilibrium values of
states (with nonzero speed factor) for all levels i > 0 depend on equilibrium values of
states at a lower level < i. This dependency across levels can directly be expressed by a
mathematical function expression using the network characteristics for connectivity
(the connection weights ωX,Y) and aggregation (the combination functions cY(… )); see
Section 11 for proofs of all results in this paper.

Theorem 1 (relating equilibrium values for an acyclic network from different
stratification levels)

Suppose a network is acyclic and all states with incoming connections from other
states have nonzero speed factors. Then the following hold.

a) In any equilibrium for each state Y of any stratification level i > 0, its equilibrium value
Y depends by some mathematical function on the equilibrium values X of states X of
level < i.

Figure 1. Example acyclic network with connectivity that induces the indicated stratification levels.
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b) More specifically, in any equilibrium for any state Y of stratification level i > 0, its equi-
librium value Y can be determined from equilibrium values Xj of states Xj at lower
levels < i by:

Y = cY (vX1,YX1, . . . , vXk ,YXk)

By iterating the dependency relations across stratification levels described in
Theorem 1, the equilibrium values of all states from all levels can be related to equili-
brium values of states at level 0. This dependency can be described again by a math-
ematical function expression using the network characteristics for connectivity (the
connection weights ωX,Y) and aggregation (the combination functions cY(… )). This is
expressed in Corollary 1.

Corollary 1 (relating all equilibrium values for an acyclic network to those of the
level 0 states)

Suppose a network is acyclic and all states with incoming connections from other
states have nonzero speed factors. Then the following hold.

a) By applying Theorem 1b) iteratively according to the stratification levels, in a straight-
forward manner for each state Y of the network, a mathematical expression can be
obtained showing how its equilibrium value depends on the equilibrium values of
states of level 0.

b) The mathematical expression in a) defines a mathematical function for Y in terms of
the equilibrium values X of some states X of level 0 with as parameters connectivity
and aggregation characteristics vZ1,Z2 and cZ(..) of the network relating to states Z,
Z1, Z2 on the paths from the involved level 0 states X to state Y. This mathematical
function essentially is based on an iterated composition of combination functions
of the states on the paths to Y in the network, nested according to the (inverse)
branching structure of these paths to Y.

Note that although the mathematical functions to describe the dependencies for equi-
librium values still can be expressed directly based on the connectivity and aggregation
characteristics ωX,Y and cY(… ) of the network, in Corollary 1 they get a more complex,
nested structure. First, for the example acyclic network of Figure 1 (assuming the combi-
nation function alogistic; for a definition of this function, see Section 4.2), by Theorem 1
the following relations between the equilibrium values of states at stratification levels 0–3
are obtained (here the Xi are the equilibrium values of states Xi):

Level 3 equilibrium value X7: dependence on Level 1 and 2 equilibrium values X5 and X6

X7 = alogisticσ,τ(X5, X6)

Level 2 equilibrium value X6: dependence on Level 0 and Level 1 equilibrium values X3,
X4, and X5

X6 = alogisticσ,τ(X3, X4, X5)

Level 1 equilibrium value X5: dependence on Level 0 equilibrium values
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X5 = alogisticσ,τ(X1, X2)

Next, applying the iteration indicated in Corollary 1, this leads to the following func-
tions for how the equilibrium values for the level 2 and 3 states X6 and X7 depend on
the ones of the level 0 states:

X6 = alogisticσ,τ(X3, X4, X5)

= alogisticσ,τ(X3, X4, alogisticσ,τ(X1, X2))

X7 = alogisticσ,τ(X5, X6)

= alogisticσ,τ(alogisticσ,τ(X1, X2), alogisticσ,τ(X3, X4, X5))

= alogisticσ,τ(alogisticσ,τ(X1, X2), alogisticσ,τ(X3, X4, alogisticσ,τ(X1, X2)))

Note that these are indeed nested combination functions according to the paths in the
network to X6 and X7. This illustrates how in an acyclic network, the equilibrium values
of all states of the entire network are determined by the equilibrium values of the level
0 states. In Section 7, other examples of expressions of nested combination functions
as indicated in Corollary 1 will be shown for the application to a network model for organ-
izational learning.

Note also that for realistic domains, networks are often not acyclic: usually they include
at least some cycles or even many of them. Then the above Theorem 1 and Corollary 1 are
not applicable to the network as a whole. However, even for such cyclic networks, some-
times it can be useful to consider subnetworks that still are acyclic and apply the above
Theorem 1 and Corollary 1 to them. As an example, this will be illustrated for the appli-
cation to organizational learning addressed in Section 7.

Moreover, following (Treur, 2020a) in Section 6 it will be shown how the approach
based on stratification applied for Theorem 1 and Corollary 1 to the nodes of the
(acyclic) network can also be applied not to the nodes but to (the condensation graph
of) the strongly connected components of any network. In that section, some further
results are obtained for networks with any type of (possibly cyclic) connectivity. The
results there also show relations between equilibrium values of states from different stra-
tification levels (and with the states at level 0) and in that sense are to a certain extent
similar to those of Theorem 1 and Corollary 1 but much more general.

4. Equilibrium analysis under aggregation conditions: monotonicity and
comparison for combination functions

In this section, some conditions on the aggregation in the network (but no conditions on
the connectivity in the network) are considered. More specifically, it is explored how specific
properties of the type of aggregation used in a network model enable to derive some
further results for equilibrium analysis. As aggregation characteristics of a network model
are defined by combination functions, this means that certain properties of these functions
are considered here. In particular, it is discussed how monotonicity of combination func-
tions and comparison (order) relations between them can be used to obtain specific (com-
parative) equilibrium analysis results. As the obtained results do not assume any conditions
on the connectivity of the network, they apply both to acyclic and cyclic networks.
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4.1. Equilibrium analysis using monotonicity and comparison relations for
aggregation

The following monotonicity and comparison relations for the functions used for aggrega-
tion are considered.

Definition (monotonicity and comparison of functions)
Let a subset R ⊆ ℝ be given.

a) A function f : Rk → ℝ is called (monotonically) increasing if for all
U1, … , Uk,V1, … , Vk ∈R such that Ui≤ Vi for all i it holds f (U1,… , Uk)≤ f (V1,… , Vk).

b) A function f : Rk → ℝ is called strictly (monotonically) increasing if for all
U1, … , Uk,V1, … , Vk ∈R such that Ui≤ Vi for all i and Uj < Vj for at least one j it holds
f (U1,… , Uk) < f (V1,… , Vk).

c) For two functions f,g: Rk→ℝ, by f≤ g the function comparison relation is denoted that
for all V1, … , Vk ∈R it holds f (V1,… , Vk)≤ g(V1,… , Vk)

When these general properties of mathematical functions are applied in particular to the
combination functions defining the aggregation characteristics of a network model, for
any network model with any type of connectivity characteristics, the following theorem
on equilibria can be derived.

Theorem 2 (preservation of comparison relations over time and for equilibria)
Suppose Xi are the states of a network model (with only positive connection weights

and at least some nonzero speed factors) and all are using monotonically increasing com-
bination functions ci. Assume 0 < Δt≤ 1/maxY(hY ); e.g. assume hY ≤ 1 for all Y and 0 <
Δt≤ 1. Then the following hold.

a) Suppose two simulation traces Xi(t) and X’i(t) are given with initial values Xi(0)≤ X’i(0).
Then it holds Xi(t)≤ X’i(t) for all t and i and for any achieved equilibrium, for the equi-
librium values Xi and X’i of Xi and X’i it holds Xi≤ X’i for all i.

b) Moreover, suppose X’i are again the states of the same network model but this time
using monotonically increasing combination functions c’i. Then the following hold:
(i) If ci≤ c’i for all i and for the initial values it holds Xi(0)≤ X’i(0) for all i, then it holds

Xi(t)≤ X’i(t) for all t and i.
(ii) If ci≤ c’i for all i and for the initial values it holds Xi(0)≤ X’i(0) for all i, then for any

achieved equilibrium for all i for the equilibrium values Xi and X’i of Xi and X’i it
holds Xi≤ X’i.

4.2. Equilibrium analysis based on monotonicity and comparison for specific
functions

Next, for a number of often used types of combination functions, which all are monoto-
nically increasing, their comparison (order) relations are identified, so that it becomes
clear how Theorem 2 can be applied to them for equilibrium analysis.

10 G. CANBALOĞLU AND J. TREUR



Definition (weighted euclidean functions, weighted geometric functions, logistic
functions, and max and min functions)

a) A function g is a weighted euclidean function of order n if

g(V1, . . . , Vk) =
�����������������������
w1Vn

1 + . . .+ wkVn
k

n
√

for some weights w1, .., wk. If the sum of its weights is 1, it is called a weighted
euclidean average function. A weighted euclidean function of order n = 1 is called a
linear function.

b) A function g is a weighted geometric function if

g(V1, . . . , Vk) = Vw1
1 . . . . Vwk

k

for some weights w1, .., wk. If the sum of its weights is 1, it is called a weighted geo-
metric mean function.

c) The scaled euclidean function eucln,l of order n is defined by

eucln,l(V1, . . . , Vk) =
����������������
Vn
1 + . . .+ Vn

k

l

n

√

and the scaled geometric mean function sgeomeanl is defined by

sgeomeanl(V1, . . . , Vk) =
�������������
V1∗ . . . ∗ Vk

l

k

√

Moreover, the scaled sum function is defined as

ssuml(V1, . . . , Vk) = eucl1,l(V1, . . . , Vk)

When λ = 1, the latter two are also denoted by geomean and sum.

d) The simple and advanced logistic functions slogisticσ,τ and alogisticσ,τ are defined
by

slogistics,t(V1, . . . , Vk) = 1
1+ e−s(V1+...+Vk−t)

alogistics,t(V1, . . . , Vk) = 1
1+ e−s(V1+...+Vk−t)

− 1
1+ est

[ ]
(1+ e−st)

e) The scaled minimum and maximum functions smin and smax are defined by

sminl(V1, . . . , Vk) = min(V1, . . . , Vk)/l

smaxl(V1, . . . , Vk) = max(V1, . . . , Vk)/l
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When λ = 1, they are also denoted by min and max.

All above-defined functions are monotonically increasing in V1, … , Vk, as they are built
in a suitable way as compositions of basic monotonic functions such as sum, product and
division functions, power functions and exponential functions. Note that as
alogisticσ,τ(0,… , 0) = 0, from this it follows in particular that alogisticσ,τ(V1, … , Vk)≥ 0
for all V1, … , Vk≥ 0.

Next, in subsequent propositions some comparison relations between these functions
are identified, first for the logistic functions.

Proposition 1 (comparison for logistic functions)

a) Suppose τ’<τ and σ>0. Then for any V1, . . . , Vk ≥ 0 it holds

0 ≤ alogistics,t(V1, . . . , Vk) , slogistics,t(V1, . . . , Vk)

, slogistics,t′ (V1, . . . , Vk) , 1

b) Moreover, for any σ>0, and V1, . . . , Vk ≥ 0 it holds

lim
t�1 alogistics,t(V1, . . . , Vk) = lim

t�1 slogistics,t(V1, . . . , Vk) = 0

lim
t�−1 slogistics,t(V1, . . . , Vk) = 1

Next comparison relations between Euclidean functions and minimum and maximum
functions are identified.

Proposition 2 (comparison between euclidean and min and max functions)

a) Suppose the scaling factor is set at λ = k, then for any V1, . . . , Vk ≥ 0 it holds

min(V1, . . . , Vk) ≤ eucln,k(V1, . . . , Vk) ≤ max(V1, . . . , Vk)

and

lim
n�1 eucln,k(V1, . . . , Vk) = max(V1, . . . , Vk)

b) More in general, for any λ>0 it holds

min(V1, . . . , Vk).

��
k
l

n

√
≤ eucln,l(V1, . . . , Vk) ≤ max(V1, . . . , Vk).

��
k
l

n

√

and

lim
n�1 eucln,l(V1, . . . , Vk) = max(V1, . . . , Vk)

Similarly, comparison relations between geometric functions and minimum and
maximum functions are identified.
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Proposition 3 (comparison between geometric mean and min and max functions)

a) Suppose the scaling factor is set at λ = 1, then for any V1, . . . , Vk ≥ 0 it holds

min(V1, . . . , Vk) ≤ sgeomeanl(V1, . . . , Vk) ≤ max(V1, . . . , Vk)

b) More in general, for any λ>0 and any V1, . . . , Vk ≥ 0 it holds

min(V1, . . . , Vk)

��
1
l

k

√
≤ sgeomean

l
(V1, . . . , Vk) ≤ max(V1, . . . , Vk).

��
1
l

k

√

Based on the comparison relations for combination functions identified in the three
above propositions, Theorem 2 can be applied. As an example, in this way the following
two corollaries of Theorem 2 are obtained on comparative equilibrium analysis: they
compare equilibrium values obtained for various types of functions.

Corollary 2 (comparison relations for equilibrium values: logistic and sum functions)
Assume only positive connection weights and at least some nonzero speed factors and

Δt≤ 1/maxY(hY ) (e.g. assume hY ≤ 1 for all Y and Δt≤ 1).

a) Suppose Xi are the states for a network model using advanced logistic combination
functions ci = alogistic and X’i for the same network model using simple logistic com-
bination functions c’i = slogistic with the same parameters σi and τi for each state Xi.
Moreover, suppose two simulation traces Xi(t) and X’i(t) are given with initial values
Xi(0)≤ X’i(0) for all i, then for any achieved equilibrium with equilibrium values Xi

and X’i it holds Xi≤ X’i for all i.
b) Suppose Xi are the states for a network model using simple logistic combination func-

tions ci = slogisticwith parameters σi and τi and X’i for the same network model using
simple logistic combination functions c’i = slogistic with the parameters σi and τ’i for
each state Xi such that τ’i≤ τi. Moreover, suppose two simulation traces Xi(t) and X’i(t)
are given with initial values X’i(0)≤ Xi(0) for all i, then for any achieved equilibrium
with equilibrium values Xi and X’i it holds Xi≤ X’i for all i.

c) Suppose Xi are the states for a network model using advanced logistic combination
functions ci = alogistic with parameters σi and τi and X’i for the same network
model using scaled sum combination functions c’i = ssum with the parameters λ’i
for each state Xi. Moreover, suppose two simulation traces Xi(t) and X’i(t) are given
with initial values X’i(0)≤ Xi(0) for all i. If 0≤ λ’i≤ τi or λ’i≤ 2min(σi, τi), and an equili-
brium is achieved with equilibrium values Xi and X’i then it holds Xi≤ X’i for all i.

Corollary 3 (comparison relations for equilibrium values: Euclidean, geometric,
minimum and maximum functions)

Assume only positive connection weights and at least some nonzero speed factors and
Δt≤ 1/maxY(hY ) (e.g. assume hY ≤ 1 for all Y and Δt≤ 1).

a) Suppose Xi are the states for a network model using as combination functions ci Eucli-
dean combination functions eucln,k(V1, . . . , Vk) with scaling factor λ = k or geometric
mean combination functions sgeomeanl(V1, . . . , Vk) with scaling factor λ = 1 and
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X’i for the same model using maximum combination functions c’i. If for the initial
values it holds Xi(0)≤ X’i(0) for all i, then for any achieved equilibrium with equilibrium
values Xi and X’i it holds Xi≤ X’i for all i.

b) Suppose Xi are the states for a network model using as combination functions ci Euclidean
combination functions eucln,k(V1, . . . , Vk) with scaling factor λ= k or geometric mean
combination functions sgeomeanl(V1, . . . , Vk) with scaling factor λ= 1 and X’i for the
same model using combination functions minimum functions c’i. Moreover, suppose
two simulation traces Xi(t) and X’i(t) are given with initial values X’i(0)≤ Xi(0) for all i. If
an equilibrium is achieved with equilibrium values Xi and X’i, then it holds X’i≤Xi for all i.

5. Equilibrium analysis under aggregation conditions: scalar-freeness

In this section, equilibrium analysis is addressed for networks satisfying another aggrega-
tion condition: the combination functions are assumed scalar-free.

5.1. Functions for aggregation that are scalar-free

It is sometimes believed that for dynamical models the borderline between linear and
nonlinear functions is also the borderline between well-analyzable behavior and less
well-analyzable behavior. In contrast to this, it has been found that this borderline
between well-analyzable behavior and less well-analyzable behavior lies somewhere
within the domain of nonlinear functions: between one class (called monotonic scalar-
free functions) covering both linear and nonlinear functions and another subclass of
the class of nonlinear functions not satisfying these.

More specifically, whether or not combination functions are scalar-free is an important
factor determining whether or not by social contagion all members of a well-connected
social network converge to the same level of emotion, opinion, information, belief, inten-
tion, or any other mental or physical state; e.g. (Treur, 2020a) and (Treur, 2020b), Ch 11
and 12. The class of scalar-free functions includes all linear functions but also includes
a number of types of nonlinear functions, such as the weighted euclidean functions
and weighted geometric functions. In this section some further analysis is made of
scalar-free functions, thereby also using a weakened variant of them called weakly
scalar-free functions. The definitions are as follows.

Definition (weakly scalar-free and scalar-free functions)
Consider functions f : Rk → ℝ and θ: R → ℝ for some subset R⊆ℝ which is ℝ or ℝ>0.

a) A function f : Rk → ℝ is called weakly scalar-free for function θ if for all V1, … , Vk ∈R
and all α∈ R it holds f(αV1, … , αVk) = θ(α) f(V1, … , Vk)

b) A function f : Rk → ℝ is called scalar-free if for all V1, … , Vk ∈R and all α∈ R it holds
f(αV1, … , αVk) = α f(V1, … , Vk)

Examples (weakly scalar-free functions)
There are many examples of weakly scalar-free functions. For example, the following func-
tions f(V) = Vk and f(V1, … , Vk) = V1* … *Vk on proper domains are weakly scalar-free with
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function θ(α) = αk. The example f(V1, V2, V3) = w1 V1V2 + w2 V2V3 + w3 V3V1 is weakly scalar-
free with function θ(α) = α2.

5.2. Properties and comparative equilibrium analysis for scalar-free functions

The following basic properties can easily be verified (see Section 11 for proofs).

Proposition 4 (scalar-free and increasing functions)

a) Suppose f is increasing and weakly scalar-free for function θ. Then for all V1, … , Vk ∈R
it holds

f(1, … , 1) θ(min(V1, … , Vk))≤ f(V1, … , Vk)≤ f(1, … , 1)θ(max(V1, … , Vk))
When moreover f is scalar-free, then
f(1, … , 1) min(V1, … , Vk)≤ f(V1, … , Vk)≤ f(1, … , 1) max(V1, … , Vk)

b) Any weighted Euclidean or geometric function with positive weights wi is monotoni-
cally increasing and scalar-free.

c) If

g(V1, . . . , Vk) =
�����������������������
w1Vn

1 + . . .+ wkVn
k

n
√

is a weighted Euclidean function with positive weights wi, then g is scalar-free and
increasing; moreover, it holds�����������������
w1 + . . .+ wk

n
√

min (V1, . . . , Vk) ≤ g(V1, . . . , Vk) ≤
�����������������
w1 + . . .+ wk

n
√

max (V1, . . . , Vk)

If g is a weighted Euclidean average function (i.e. the sum of the weights wi is 1), then

min(V1,… , Vk)≤ g(V1,… , Vk)≤max(V1,… , Vk)

d) If
g(V1, . . . , Vk) = Vw1

1 . . . . Vwk
k

is a weighted geometric function with positive weights wi, then g is scalar-free and
increasing; moreover, it holds.

min(V1,… , Vk)≤ g(V1,… , Vk)≤max(V1,… , Vk)

Note that Proposition 4 places some of the specific types of functions considered in
Section 4 (weighted Euclidean and weighted geometric functions) in the wider perspec-
tive of scalar-free functions.

Proposition 5 (scalar-free and strictly increasing functions)

a) Any function composition of scalar-free functions is scalar-free
b) Any function composition of strictly increasing functions is strictly increasing
c) All linear functions with positive coefficients are scalar-free and strictly increasing
d) Any scalar-free function f is weakly scalar-free for θ = id, the identity function.
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Theorem 3 (comparison for any scalar-free function to min and max)
Suppose Xi are the states for a network model (with only positive connection weights

and at least some nonzero speed factors) using monotonically increasing combination
functions ci and X’i for the same model using monotonically increasing combination func-
tions c’i. Assume 0 < Δt≤ 1/maxY(hY ); e.g. assume hY ≤ 1 for all Y and 0 < Δt≤ 1.

a) If for the initial values it holds Xi(0)≤ X’i(0), the ci are monotonically increasing and
scalar-free with ci(1,… , 1) = 1, and c’i is the maximum function c’i =max then for
any achieved equilibrium with equilibrium values Xi and X’i it holds Xi≤ X’i for all i.

b) If for the initial values it holds X’i(0)≤ Xi(0), the ci are monotonically increasing and
scalar-free with ci(1,… , 1) = 1, and each c’i is the minimum function c’i =min then
for any achieved equilibrium with equilibrium values Xi and X’i it holds X’i≤ Xi for all i.

Note that Theorem 3 generalizes to the class of scalar-free functions, the comparative
equilibrium analysis that was found in Section 4 for specific examples of scalar-free func-
tions: weighted Euclidean and weighted geometric functions.

6. Equilibrium analysis under aggregation conditions: using the strongly
connected components

In this section an equilibrium analysis approach is discussed that takes into account how
the network is composed of its strongly connected components.

6.1. Introducing stratification for the stronly connected components of a
network

As an illustration, consider the example of a mental network model with connectivity
depicted in Figure 2. This is a mental network model for how a person is sensing
(sensor state sss) a stimulus s in the world (word state wss), represents this (representation
state srss), and is triggered to prepare (preparation state psa) and perform (execution state
esa) action a, after evaluation of the predicted (predicted effect representation state srse)
effect e of this action. In simulations it can be seen that as a result of a constant value a of
stimulus wss all state values are increasing until they reach an equilibrium value a as well.
The question then is whether these observations based on one or more simulation

Figure 2. Connectivity of the example network model.
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experiments are in agreement with a mathematical equilibrium analysis. This will be
addressed in two ways.

In the current section a general perspective is followed and theorems are discussed
that have been found based on the network’s strongly connected components
described in (Treur, 2020a). The perspective is based on the notion of (strongly con-
nected) component of a network; this is a maximal subnetwork C such that every
node within C can be reached from every other node via a path following the direction
of the connections; e.g. (Bloem et al., 2006; Fleischer et al., 2000; Harary et al., 1965;
Łacki, 2013; Wijs et al., 2016). From this literature, it is known that these components
partition the set of nodes in disjoint subsets and the connections between them
induce a socalled condensation graph with the components as nodes which is always
acyclic. In Figure 3 these components are shown for the example network: C1 to C5.
In (Treur, 2020a) the notion of stratification was introduced for the condensation
graph based on this a partition of a network so that each component gets a level (or
stratum) assigned; see Section 3 for a more precise definition of this notion of stratifica-
tion of an acyclic network or graph in general. In this case the levels are 0–4 as indicated
in Figure 3.

6.2. Using the stratification to relate equilibrium values for different
components

Based on the levels defined by this notion of stratification, a number of general theorems
and corollaria have been found and proven and presented in (Treur, 2020a); see also
(Treur, 2020b), Ch 12 and 15. For aggregation these are not limited to linear functions
and for connectivity no condition at all is demanded; some of these results are the
following.

Theorem 4 (relating equilibrium values of states in components at different levels)
If the following aggregation conditions are fulfilled

. The combination functions are normalized, scalar-free and strictly increasing
then in an achieved equilibrium the following hold:
a) In any level 0 component C

. All states in C have the same equilibrium value V

Figure 3. Stratified strongly connected components for the example network model.
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. This V is between the highest and lowest initial value of the states within C
b) If for any level i > 0 component C the components C1, .., Ck are the strongly connected

components from which C gets an incoming connection, then
. The equilibrium values of the states in C are between the highest and lowest

equilibrium values of the states in C1, .., Ck
. If all states in C1, .., Ck have the same equilibrium value V, then also all states in C

have this same equilibrium value V

Corollary 4 (dependence of all equilibrium values on the values in level 0 components)
If the following aggregation conditions are fulfilled

. The combination functions are normalized, scalar-free and strictly increasing
then in an achieved equilibrium:
a) The equilibrium values of all states in the network

. are between the highest and lowest equilibrium values of the states in the level
0 components

. are between the highest and lowest initial values of the states in the level 0
components

b) If all states in all level 0 components C have the same equilibrium value V, then all
states of the whole network have that same equilibrium value V

For the special case of a strongly connected network (consisting of one component),
this implies:

Corollary 5 (strongly connected networks)
If the following connectivity and aggregation conditions are fulfilled

. The network is strongly connected

. The combination functions are normalized, scalar-free and strictly increasing
then in an achieved equilibrium:

. All states have the same equilibrium value V

. This equilibrium value V is between the highest and lowest initial values of the states

Given that in the example network model there is only one level 0 component with
constant value a, by Theorem 4 or Corollary 4 above it can be concluded that all states
will have equilibrium value a, as long as the aggregation conditions are fulfilled.

Note that in an acyclic network, each state forms a (singleton) strongly connected com-
ponent. Applying Theorem 4 and its corollaries to this special case will again provide
Theorem 1 and Corollary 1 from Section 3. That shows that the above results generalize
the results from Section 3.

7. Application for equilibrium analysis of multilevel organisational
learning

In this section a number of the results from the previous sections will be applied to equi-
librium analysis for the domain of multilevel organizational learning (Crossan et al., 1999;
Kim, 1993; Wiewiora et al., 2019, 2020). In particular, this will be addressed for the type of
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adaptive computational network models for multilevel organizational learning based on
self-modeling networks (Treur, 2020a, 2020b) as addressed in (Canbaloğlu, Treur, & Roe-
lofsma, 2022a, 2022b; Canbaloğlu, Treur, and Wiewiora, 2022a, 2022b); see also
(Canbaloğlu, Treur, & Wiewiora, 2022c). The relations for equilibrium values found are
confirmed by the simulations that were performed.

7.1 Computational modeling of multilevel organisational learning

In recent work (Canbaloğlu & Treur, 2021a, 2021b; Canbaloğlu, Treur, & Roelofsma,
2022a, 2022b; Canbaloğlu, Treur, & Wiewiora, 2022a, 2022b), it has been found out
how multilevel organizational learning processes can be modeled in a systematic and
conceptually transparent manner by self-modeling networks. To illustrate how the equi-
librium analysis methods from the previous sections can be applied, the model
described in (Canbaloğlu, Treur, & Roelofsma, 2022b) is considered in particular. A
picture of the overall connectivity of this second-order adaptive network model is
shown in Figure 4. Here, mental models (Craik, 1943; Treur & Van Ments, 2022) are
used to represent what is learnt. They are relational structures describing (by nodes
and connections) blueprints of processes in the world that may occur or that are
suggested to be followed in certain circumstances; for example, they can be used to
specify medical protocols or workflow. Within an overall model for mental or social pro-
cesses, mental models are modeled according to different levels, in relation to what is
done with them:

. at the base level, the use of mental models by internal simulation

. at the first-order self-model level, the learning or adaptation (e.g. revision or forget-
ting) of them

. at the second-order self-model level, the control of the adaptation.

The focus is here on the learning by the first-order self-model level in the middle plane.
This level includes 21 W-states representing the connection weights for seven mental
models (each with three connections: a→b, b→c, c→d). From these seven mental
models, four are from individuals A, B, C, D (left-hand side), two of them are shared
mental models from teams T1 and T2 (middle), and one is the shared mental model
from the organization O (right-hand side).

In the literature on multilevel organizational learning such as (Crossan et al., 1999; Kim,
1993; Wiewiora et al., 2019, 2020), feed forward learning indicates how shared teammental
models can be learned from individual mental models and how shared mental models of
the organization can be learned from shared team mental models (or in some cases also
directly from individual mental models, in particular when there are no teams). This is
modeled by the connections from left to right in the middle plane in Figure 4. In addition,
in such literature, feedback learning indicates how teams can learn their mental models
from a shared organization mental model and how individuals can learn their mental
models from shared team mental models (or in some cases also directly from a shared
organization mental model, in particular when there are no teams). This is modeled by
the connections from right to left in the middle plane in Figure 4.
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Such learning processes depend on some forms of control, for example, involving
(among others) managers to initiate or approve certain steps or proposed steps; e.g.
(Canbaloğlu, Treur, & Wiewiora, 2022b). For the equilibrium analysis addressed here,
for the sake of presentation it is assumed that all required control actions are posi-
tive: they indicate green lights for all considered learning processes. Next, in sub-
sequent sections it is shown how the equilibrium analysis results presented in
the previous Sections 3–6 can be illustrated for this type of organizational learning
model.

7.2. Applying equilibrium analysis under connectivity conditions to a network
model for multilevel organisational learning

In this section, the equilibrium analysis approach discussed in Section 3 is applied to the
example network model for multilevel organizational learning with connectivity depicted
in Figure 4. In particular, this means application of Theorem 1 and Corollary 1. However, a
similar analysis can also be obtained by applying Theorem 4 and Corollary 4 from Section
6 as they generalise Theorem 1 and Corollary 1 as noted at the end of Section 6. Sub-
sequently, feed forward learning, feedback learning, and a sequential combination of
them are addressed.

Feed forward learning
For equilibrium analysis of feed forward learning, the subnetwork depicted in Figure 5 is
considered. Here it is assumed that due to the control that is applied the backward con-
nections (from right to left) have weights 0. As this provides an acyclic network, Theorem
1 and Corollary 1 apply. Therefore, the following can be concluded for an equilibrium:

. Expressing equilibrium values of shared team mental models in terms of those of
individual mental models

Figure 4. Example of an adaptive network model for organizational learning.

20 G. CANBALOĞLU AND J. TREUR



o The equilibrium value of stateWa_T1,b_T1 for team T1’s shared teammental model is
a function (the combination function of Wa_T1,b_T1) of the equilibrium values of
states Wa_A,b_A and Wa_B,b_B for the individual mental models of A and B; for the
case of connection weights 1 this is:

Wa T1,b T1 = cWa T1,b T1 (Wa A,b A, Wa B,b B)

Here, cWa_T1,b_T1
(..) is the combination function used for aggregation for state

Wa_T1,b_T1. Similarly, this can be done for Wb_T1,c_T1 and Wc_T1,d_T1, and for T2
instead of T1.

. Expressing equilibrium values of a shared organization mental model in terms of
those of shared team mental models
o The equilibrium value of state Wa_O,b_O for the organization O’s shared mental
model is a function (the combination function of Wa_O,b_O) of the equilibrium
values of states Wa_T1,b_T1 and Wa_T2,b_T2 for the team mental models for T1 and
T2; for the case of connection weights 1 this is:

W a O,b O = cWa O,b O (W a T1,b T1, W a T2,b T2)

Here, cWa_O,b_O(..) is the combination function used for aggregation for state
Wa_O,b_O. Similarly, this can be done for Wb_O,c_O and Wc_O,d_O.

. Expressing equilibrium values of a shared organization mental model in terms of
those of individual mental models
o The equilibrium value of state Wa_O,b_O for the organization O’s shared mental
model is a function (the combination function of Wa_O,b_O composed with
those of Wa_T1,b_T1 and Wa_T2,b_T2) of the equilibrium values of states Wa_A,b_A,
Wa_B,b_B, Wa_C,b_C, and Wa_D,b_D for the individual mental models of A, B, C, and
D; for the case of connection weights 1 this is:

Wa_O,b_O = cWa_O,b_O
(Wa_T1,b_T1, Wa_T2,b_T2)

= cWa_O,b_O
(cWa_T1,b_T1

(Wa_A,b_A, Wa_B,b_B), cWa_T1,b_T1
(Wa_C,b_C, Wa_D,b_D))

Here, cWa_O,b_O(..) is the combination function used for aggregation for stateWa_O,

b_O and cWa_T1,b_T1
(..) and cWa_T2,b_T2

(..) are those forWa_T1,b_T1 andWa_T2,b_T2. Similarly,
this can be done for Wb_O,c_O and Wc_O,d_O.

Figure 5. Only feed forward learning. TheW-states of the four persons A to D form stratification level
0, the W-states of the two teams T1 and T2 form level 1, and the W-states of O form level 2.
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For example, if the max function is used as combination function for all states and
the connections in Figure 5 all have weight 1, then following the network connectivity
the equilibrium value Wa_O,b_O for state Wa_O,b_O can be expressed in terms of the equili-
brium values Wa_T1,b_T1, Wa_T2,b_T2, Wa_A,b_A, Wa_B,b_B,… for the teams and individuals as
follows:

Wa_O,b_O = max(Wa_T1,b_T1, Wa_T2,b_T2)

= max(max(Wa_A,b_A, Wa_B,b_B), max(Wa_C,b_C, Wa_D,b_D))

= max(Wa_A,b_A, Wa_B,b_B, Wa_C,b_C, Wa_D,b_D)

In this way, it is predicted that the model will form a shared organization mental model
by maximally incorporating the knowledge of each of the individuals.

Feedback learning
For equilibrium analysis of feedback learning, the subnetwork depicted in Figure 6 can be
considered. Here it is assumed that due to the control that is applied the forward connec-
tions (from left to right) have weights 0. Again, as this provides an acyclic network,
Theorem 1 and Corollary 1 apply. Therefore the following can be concluded for any
equilibrium:

. Expressing equilibrium values of shared team mental models in terms of those of a
shared organization mental model
o The equilibrium value of stateWa_T1,b_T1 for team T1’s shared teammental model is
a function (the combination function ofWa_T1,b_T1) of the equilibrium value of state
Wa_O,b_O for the organization O’s shared mental model; for the case of connection
weights 1 this is:

Wa_T1,b_T1 = cWa_T1,b_T1
(Wa_O,b_O)

Here, cWa_T1,b_T1
(..) is the combination function used for aggregation for state

Wa_T1,b_T1. Similarly, this can be done for Wb_T1,c_T1 and Wc_T1,d_T1, and for T2.

. Expressing equilibrium values of individual mental models in terms of those of
shared team mental models
o The equilibrium value of state Wa_A,b_A for the individual mental model of A is a
function (the combination function of Wa_A,b_A) of the equilibrium value of state

Figure 6. Only feedback learning. Each W-state is by itself a strongly connected component as sin-
gleton. The W-states of O form stratification level 0, the W-states of the two teams T1 and T2 form
level 1, and the W-states of the four persons A to D form level 2.

22 G. CANBALOĞLU AND J. TREUR



Wa_T1,b_T1 for team T1’s shared team mental model; for the case of connection
weights 1 this is:

Wa_A,b_A= cWa_A,b_A
(Wa_T1,b_T1)

Here, cWa_A,b_A
(..) is the combination function used for aggregation for state

Wa_A,b_A. Similarly, this can be done forWb_A,c_A andWc_A,d_A, and for persons B, C,
and D instead of A.

. Expressing equilibrium values of individual mental models in terms of those of a
shared organization mental model
o The equilibrium value of state Wa_A,b_A for the individual mental model of A is a
function (the combination function of Wa_A,b_A composed with the one of
Wa_T1,b_T1) of the equilibrium value of state Wa_O,b_O for the organization O’s
shared mental model; for the case of connection weights 1 this is:

Wa_A,b_A = cWa_A,b_A
(Wa_T1,b_T1) = cWa_A,b_A

(cWa_T1,b_T1
(Wa_O,b_O))

Here, cWa_A,b_A
(..) is the combination function used for aggregation for state Wa_A,b_A

and cWa_T1,b_T1
(..) is the combination function used for aggregation for stateWa_T1,b_T1.

Similarly, this can be done for forWb_A,c_A andWc_A,d_A, and for persons B, C, and D
instead of A.

As a more specific example, if themax function is used as combination function for all
states as was done in (Canbaloğlu, Treur, & Roelofsma, 2022b) and the connections in
Figure 6 all have weight 1, then the equilibrium value Wa_A,b_A for state Wa_A,b_A can
be expressed in terms of the equilibrium values Wa_T1,b_T1 and Wa_O,b_O for the teams
and individuals as follows:

Wa_A,b_A = max(Wa_T1,b_T1)

= max(max(Wa_O,b_O))

= Wa_O,b_O

This shows how each person gets a perfect individual mental model based on perfect
knowledge transfer from the shared mental model of the organization. This perfection
depends on the connection weights 1. If (some of) these connection weights are < 1,
less perfect learning can be modeled.

Feedforward learning until equilibrium followed by feedback learning until
equilibrium:
Next a scenario is considered where by applying control in a first phase feed forward
learning takes place (forward connections weight 1, backward connections weight 0)
until an equilibrium is reached and subsequently in a second phase feedback learning
(forward connections weight 0, backward connections weight 1) until again an equili-
brium is reached. In this case, we can combine the two equilibrium analyses above in a
sequential manner. Then nesting of combination functions of 4 levels deep takes place
as follows.

Wa_A,b_A = cWa_A,b_A
(Wa_T1,b_T1)

= cWa_A,b_A
(cWa_T1,b_T1

(Wa_O,b_O))
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= cWa_A,b_A
(cWa_T1,b_T1

(cWa_O,b_O
(Wa_T1,b_T1, Wa_T2,b_T2)))

= cWa_A,b_A
(cWa_T1,b_T1

(cWa_O,b_O
(cWa_T1,b_T1

(Wa_A,b_A, Wa_B,b_B), cWa_T2,b_T2
(Wa_C,b_C, Wa_D,b_D))))

For example, specifically assuming the max function for all combination functions:

Wa_A,b_A = max(Wa_T1,b_T1)

= max(max(Wa_O,b_O))

= max(max(max(Wa_T1,b_T1, Wa_T2,b_T2)))

= max(max(max(max(Wa_A,b_A, Wa_B,b_B), max(Wa_C,b_C, Wa_D,b_D))))

= max(Wa_A,b_A, Wa_B,b_B, Wa_C,b_C, Wa_D,b_D)

This predicts that using this type of aggregation, every individual gets a mental model
representing equal knowledge, based on the maximal knowledge available among indi-
viduals A, B, C, and D.

7.3. Application of equilibrium analysis for comparison relations

Next, it is illustrated how equilibrium analysis based on comparison relations as presented
in Sections 4 and 5 can be applied to the considered network model for multilevel organ-
izational learning. In particular, this involves application of Theorem 2 and 3 and Corol-
laries 2 and 3. For example:

. Theorem 2a) indicates that higher initial values will lead to higher equilibrium values.
For example, applied to feed forward learning as considered in Section 7.2, this makes
that for monotonically increasing combination functions used for aggregation, higher
initial values for all W-states will lead to higher equilibrium values for all W-states.

. As another example, Corollary 2a) expresses that when slogistic is used, then a
higher threshold value will lead to lower equilibrium values. Applied to feed
forward learning as considered in Section 7.2, this provides the following:
Wa_O,b_O≤W’a_O,b_O

when W’a_O,b_O is achieved using a lower threshold value

. Theorem 3 expresses, for example, that all normalised monotonically increasing
scalar-free functions lead to equilibrium values Wa_O,b_O between the equilibrium
values W"a_O,b_O and W’a_O,b_O obtained when min or max functions are used:
W"a_O,b_O≤Wa_O,b_O≤W’a_O,b_O

7.4. Application of equilibrium analysis based on strongly connected
components

Finally, it is discussed how Theorem 4 and Corollary 4 from Section 6 can be applied. As
these can be considered generalisations of the results for acyclic networks in Section 3,
they can also be used to obtain what is discussed in Section 7.2 (noticing that in these
cases each state of the network forms a strongly connected component). However,
here they are applied to the case that feed forward and feedback learning take place in
a fully integrated manner. Then the picture with both left-to-right and right-to-left
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arrows shown in Figure 7 applies. Now not each state forms a strongly connected com-
ponent but there are only three larger strongly connected components (each consisting
of 7 W-states), indicated in Figure 7 by different colours:

C1 = { Wa_Z,b_Z | Z∈{A, B, C, D, T1, T2, O}} (highlighted purple in Figure 7)

C2 = { Wb_Z,c_Z | Z∈{A, B, C, D, T1, T2, O}} (highlighted green in Figure 7).

C3 = { Wc_Z,d_Z | Z∈{A, B, C, D, T1, T2, O}} (highlighted yellow in Figure 7)

It can be noted that there are no mutual connections between these three com-
ponents; therefore all three have stratification level 0. By Theorem 4a) it follows that in
an equilibrium, for each of the three components Ci all states in it will have the same equi-
librium value:

C1: Wa_Z,b_Z=Wa_Z’,b_Z’ for all Z, Z’ ∈{A, B, C, D, T1, T2, O}

C2: Wb_Z,c_Z=Wb_Z’,c_Z’ for all Z, Z’ ∈{A, B, C, D, T1, T2, O}

C3: Wc_Z,d_Z=Wc_Z’,d_Z’ for all Z, Z’ ∈{A, B, C, D, T1, T2, O}

But note that these common equilibrium values within each of the three components
may differ for different components due to the lack of mutual connections between the
components.

8. Equilibrium analysis for nonlinear aggregation: two examples

In this section, it is discussed how some specific nonlinear scalar-free functions introduced
for aggregation can somehow be transformed by a kind of coordinate transformation into
linear functions and how based on that their equilibrium equations can be solved analyti-
cally by applying a symbolic linear solver to the transformed equations. These transform-
ations apply instances of the underlying mathematical concept of conjugate relation
between functions, a concept that will be analysed in more depth in Section 9.

8.1. Symbolic Solving of nonlinear equilibrium equations for Euclidean
functions

It was found that two specific types of scalar-free functions can be related to linear func-
tions by a socalled function conjugate relation. This is not only a theoretical result (which

Figure 7. Full integration of feed forward learning and feedback learning. Three strongly connected
components C1 for all connections a→b (purple highlighted), C2 for all connections b→c (green high-
lighted), C3 for all connections c→d (yellow highlighted). These three components have no mutual
connections and therefore have mutually independent but internally common equilibrium values.
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will be addressed in more depth in Section 9) but can also be used in practice to solve
equilibrium equations for them. The idea is to transform the equilibrium equations of non-
linear functions into linear equations, solve these linear equations by a symbolic solver
and transform the found solutions back. This will be illustrated for two examples, for a
euclidean function eucln,λ in the current Section 8.1 and for a geometric function in
Section 8.2. The euclidean combination function is defined by:

eucln,l(V1, . . . , Vk) =
����������������
Vn
1 + . . .+ Vn

k

l

n

√

As analysed further in Section 9, this function can be written as a conjugate relation.

eucln,λ = θ −1 o f o θ where θ(X) = Xn and f(V1,… , Vk) = (V1 +… + Vk)/λ

and θ(V1,… , Vk) = (θ(V1),… , θ(Vk)).

An equilibrium equation involving this combination function for a state Y = Xj typically is
of the form

Xj =
����������������
Vn
1 + . . .+ Vn

k

l

n

√
where Vi = vXi ,Xj Xi(t) are single impacts of Xi on Xj

This can be rewritten into

Xn
j
= (vX1,Xj

n X1n + . . .+vXk ,Xj
n Xk

n) / l

Now take Yi= θ(Xi) = Xin (with inverse relation Xi = θ −1(Yi) =
��
Yin

√
) and rewrite the above

equation into a linear equation in Yi; this obtains

Yj = (vX1,Xj
n Y1 + . . .+vXk ,Xj

nYk) / l

lYj = vX1,Xj
n Y1 + . . .+vXk ,Xj

n Yk

According to the criterion in Section 2, for the linear case of a sum function, for the
example shown in Figure 3 the equation expressing that state psa is stationary at time
t is.

ωresponding X3(t) +ωamplifying X5(t) = X4(t)

which in a simplified notation is the following equation for the state values X3, X4, X5 for
the three states:

ωresponding X3 +ωamplifying X5 = X4

Now, consider that for psa (which is X4) and the other states a weighted Euclidean com-
bination function eucl2,λ(V1,V2) of order 2 is used. Remember from the above analysis
that:

eucl2,λ = θ −1 o f o θ where θ(X) = X2 and f(V1,V2) = (V1 + V2)/λ

Note that

V1=ωresponding X3
V2=ωamplifying X5
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According to this, putting Yi= θ(Vi) = V2
i , the above equation for X4 becomes

√((ωresponding X3)
2 + (ωamplifying X5)

2)/λ= X4

((ωresponding X3)
2 + (ωamplifying X5)

2)/λ= X4
2

(ωresponding
2 Y3 +ωamplifying

2 Y5)/λ= Y4

Using Yi= θ(Vi) = V2
i , all equations become

Y1 wss Y1 = Y1

Y2 sss ωsensing
2 Y1 = Y2

Y3 srss ωrepresenting
2 Y2 = Y3

Y4 psa ωresponding
2Y3 +ωamplifying

2 Y5 = λ Y4

Y5 srse ωpredicting
2 Y4 = Y5

Y6 esa ωexecuting
2 Y5 = Y6

This transforms the quadratic equations in the Xi into linear equations in Yi. These linear
equations can be solved symbolically in an automated manner by a Linear Solver, such as
the WIMS solver available online at URL https://wims.univ-cotedazur.fr/wims/en_tool~
linear~linsolver.en.html.

In Figure 8 it is shown how this set of equations was entered in this Linear Solver and
(in the shaded lower area) what solutions are found. These solutions are (note that a is
used as a parameter for an assumed stimulus level represented by X1) translated back
from the Yi to the solutions in terms of the Xi as follows:

X1
2 = a2

X2
2 =ωsensing

2 a2

X3
2 =ωrepresenting

2 ωsensing
2 a2

X4
2 =ωresponding

2 ωrepresenting
2 ωsensing

2 a2 / (λ - ωamplifying
2 ωpredicting

2)

X5
2 =ωpredicting

2 ωresponding
2 ωrepresenting

2 ωsensing
2 a2 / (λ - ω2

amplifying ω
2
predicting)

X6
2 =ωexecuting

2 ωpredicting
2ωresponding

2 ωrepresenting
2 ωsensing

2 a2 / (λ - ωamplifying
2 ωpredicting

2)

Figure 8. Using the WIMS Linear Solver to solve the nonlinear equilibrium equations for weighted
Euclidean functions used for aggregation within the example network.
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Therefore, the solutions are (assuming all are nonnegative):

X1 = a

X2 =ωsensing a

X3 =ωrepresenting ωsensing a

X4 =ωresponding ωrepresenting ωsensing a / √(λ - ωamplifying
2 ωpredicting

2)

X5 =ωpredicting ωresponding ωrepresenting ωsensing a / √(λ - ω2
amplifying ω2

predicting)

X6 =ωexecuting ωpredicting ωresponding ωrepresenting ωsensing a / √(λ - ωamplifying
2 ωpredicting

2)

This provides explicit predictions for the equilibrium values that are reached. In particular,
for all connection weights 1 except ωresponding and ωamplifying which are 0.5 and λ = 0.5
(which a guarantees normalisation), the predicted values are Xi= a for all i, which is
confirmed from a practical perspective by example simulations performed.

8.2. Solving nonlinear equations for geometric functions

In this section the scaled geometric mean combination function sgeomeanλ is addressed.
For this, the following conjugate relation holds:

sgeomeanλ = c θ −1 of o θ where c = 1/
��
lk

√
holds for θ = log and

f(V1,… ,Vk) = (V1 +… +Vk)/k and θ(V1,… , Vk) = (θ(V1),… , θ(Vk)).

An equilibrium equation involving this combination function for state Y = Xj typically is of
the form

Xj =

����������
V1 . . . Vk

l

k

√
where Vi = vXi ,Xj Xi(t) are single impacts

This can be rewritten into the following set of equilibrium equations (assuming all argu-
ments positive):

Xk
j = (vX1,XjX1 . . .vXk ,XjXk)/l

lXk
j = vX1,XjX1 . . .vXk ,XjXk

log (lXk
j ) = log (vX1,XjX1 . . .vXk ,XjXk)

log (l)+ k log (Xj) = log (vX1,Xj )+ log (X1)+ . . .+ log (vXk ,Xj ) + log (Xk)

Take Yi= log(Xi) (with inverse relation Xj = exp(Yj)) and rewrite into a linear equation in
variables Yi:

log(l)+ k Yj = log(vX1,Xj )+ Y1 + . . .+ log(vXk ,Xj )+ Yk

Y1 + . . .+ Yk − kYj = log(l)–(log(vX1,Xj ) + . . .+ log(vXk ,Xj ))

Y1 + . . .+ Yk − kYj = log(l/(vX1,Xj . . . vXk ,Xj ))

As an illustration, assume in the example of Figure 3 for psa (which is X4) the combination
function sgeomeanλ is used, with k = 2 and λ = 0.5 and for the other states X2, X3, X5, X6 the
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function sgeomeanλ(V1) is used, with λ = 1, which is the identity function. Then the
equation for X4 becomes.

Y3 + Y5 − 2Y4 = log (l/(vrespondingvamplifying))

Using Yi= log(Xi) for all states all equations are transformed into the following set of linear
equations in the variables Yi:

Y1 wss Y1= Y1

Y2 sss log(ωsensing) + Y1 = Y2

Y3 srss log(ωrepresenting) + Y2= Y3

Y4 psa Y3 + Y5 − 2Y4 = log (l/(vrespondingvamplifying))

Y5 srse log(ωpredicting) + Y4 = Y5

Y6 esa log(ωexecuting) + Y5 = Y6

Again applying the Linear Solver to them, as shown in Figure 9, provides the following
solutions (See the lower, shaded part of Figure 9):

b = log(l/(vresponding
∗vamplifying) )

log(X1) = log(a)

log(X2) = log(ωsensing) + log(a)

log(X3) = log(ωrepresenting) + log(ωsensing) + log(a)

log(X4) = log(ωresponding) + log(ωrepresenting) + log(ωsensing) + log(a) - b

log(X5) = 2log(ωpredicting) + log(ωrepresenting) + log(ωsensing) + log(a) - b

log(X6) = log(ωexecuting) + 2log(ωpredicting) + log(ωrepresenting) + log(ωsensing) + log(a) – b

Therefore, the solutions are:

Figure 9. Using the WIMS Linear Solver to solve the nonlinear equilibrium equations for weighted
geometric functions used for aggregation within the example network.
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X1 = a

X2 =ωsensing a

X3 =ωrepresentingωsensing a

X4 =ωrespondingωrepresentingωsensing a/b
=ωrespondingωrepresentingωsensingωrespondingωamplifying a/λ

X5 =ωpredicting
2 ωrepresentingωsensing a/b

=ωpredicting
2 ωrepresentingωsensing ωrespondingωamplifying a/λ

X6 =ωexecutingωpredicting
2 ωrepresentingωsensing a/b

=ωexecutingωpredicting
2 ωrepresentingωsensing ωrespondingωamplifying a/λ

Substituting 0.5 for ωresponding, ωamplifying, and λ and 1 for the other connection weights,
again provides Xi= a for all i, which again is confirmed from a practical perspective by
example simulations.

9. On conjugate relations used for function transformation

In Section 8 it was found how some specific types of nonlinear functions (weighted Eucli-
dean and geometric functions) used for aggregation can be transformed by some kind of
coordinate transformation into linear functions and how that can be used to obtain equi-
librium analysis for those nonlinear functions. In the setting of linear algebra, coordinate
transformations are often formulated as B = θ−1Aθ, where A is the matrix of some linear
map under the original coordinate system, B the one for a new coordinate system and
θ (which in this setting is also a matrix) defines the transformation from the original to
the new coordinate system; e.g. (Anton, 1987; Nering, 1970).

In a more general setting of algebra within mathematics, such a relation B = θ−1Aθ
between A and B is often called a conjugate relation; e.g. (Dummit & Foote, 2004). In
Section 8, it was found that in a different setting of (k-ary) functions on the real
numbers such conjugate relations also occur in a useful manner in the ways in which
some types of nonlinear functions can be related to linear functions. So, this concept
of conjugate relation at least for some cases appears to provide a bridge to cross the
border between linear and nonlinear functions for aggregation. Therefore it deserves
investigation in some more depth in the current section.

9.1. Additive, multiplicative, log-like, and exp-like functions and their
characterisation

In this section a few basic types of functions (additive, multiplicative, log-like, exp-like)
that are relevant for what has been found in previous sections are discussed in more
detail. They are the types of functions θ that can be useful in particular to define conjugate
relations between functions used for aggregation in networks. Again, proofs can be found
in the Appendix section.

Below, the subset R ⊆ ℝ used as domain for the considered functions θ in principle will
be ℝ or an interval within ℝ of the form ℝ>0 = (0, ∞), although in some cases also other
intervals may be considered. Note that the symbol o is used to denote function compo-
sition (g o f is read for functions f and g as ‘g over f’ or ‘g on f’). Sometimes it is left out: gf

30 G. CANBALOĞLU AND J. TREUR



means g o f. The domain of a function f is denoted by Dom( f ) and the range f(Dom( f )) by
Range( f ).

Definition (additive, multiplicative, log-like, exp-like)

a) A function θ: R → ℝ is called additive if θ(α + β) = θ(α) + θ(β) for all α, β ∈R.
b) A function θ: R → ℝ is called multiplicative if θ(αβ) = θ(α)θ(β) for all α, β ∈R.
c) A function θ: R → ℝ is called log-like if θ(αβ) = θ(α)+θ(β) for all α, β ∈ R.
d) A function θ: R → ℝ is called exp-like if θ(α+β) = θ(α)θ(β) for all α, β ∈ R.
e) The standard (natural, based on the number e) exponential and logarithmic functions

will be denoted by exp and log, respectively.

Note that multiplicative and log-like functions are typically used for domains R that
are closed under multiplication and division such as R =ℝ>0, whereas additive and
exp-like functions are typically used for domains R that are closed under addition
and subtraction such as R =ℝ. The following proposition shows some properties for
these functions.

Proposition 6 (relating additive, multiplicative, log-like, and exp-like functions)
Let θ: R → S be any function for a finite or infinite interval R in ℝ, then it holds:

a) If θ is multiplicative and S ⊆ ℝ>0, then log o θ is log-like.
b) If R ⊆ ℝ>0 and θ is log-like, then θ o exp is additive.
c) If θ is exp-like, then log o θ is additive.
d) If θ is multiplicative and S ⊆ ℝ>0, then log o θ o exp is additive.
e) For any multiplicative function such that θ(α) = 0 for some α ≠ 0, it holds that θ(α) = 0

for all α. For any nonzero multiplicative function θ it holds θ(1) = 1 and θ(α −1) = θ(α)−1

for all α.
f) If a multiplicative θ is injective on Dom(θ), then it has an inverse θ −1 with Dom(θ −1) =

Range(θ) and Range(θ −1) = Dom(θ); this inverse θ −1 is also multiplicative.

The following theorem provides characterisations of these different types of functions.

Theorem 5 (characterisation of additive, multiplicative, log-like and exp-like)
Let ν: R → ℝ be continuous. Then the following hold.

a) Assume R ⊆ ℝ is closed under addition and subtraction with 1 ∈ R, then it holds
θ is additive ⇔ for some c∈ ℝ for all X it holds θ(X) = c X.

b) Assume R ⊆ ℝ>0 is closed under multiplication and division with e ∈ R, then it holds
θ is multiplicative ⇔ for some c∈ ℝ for all X it holds θ(X) = Xc.

c) Assume R ⊆ ℝ>0 is closed under multiplication and division with e ∈ R, then it holds
θ is log-like ⇔ for some c∈ ℝ for all X it holds θ(X) = c log(X )

d) Assume R =ℝ is closed under addition and subtraction with 1 ∈ R, then it holds
θ is exp-like ⇔ for some c∈ ℝ for all X it holds θ(X) = exp(cX )
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9.2. Relating weakly scalar-free functions and scalar-free functions

In this section, it is explored in some depth how weakly scalar-free functions and scalar-
free functions can be related to each other.

Definition (cartesian product function)
For functions θ1, .., θk: R→ℝ their cartesian product function Xi = 1

kθi: R
k →ℝk is defined by

Xi = 1
kθi (V1, … , Vk) = (θ1(V1), … , θk(Vk))

When all θi are equal to one θ, this cartesian product function Xi = 1
kθi is also denoted by

Xkθ, and then is also called a cartesian power function of θ; moreover, in that case Xi = 1
kθi is

often denoted simply by θ, by considering the function θ as being extended to multiple
variables by θ(V1, … , Vk) = (θ(V1), … , θ(Vk)).

The following theorem describes some properties of scalar-free and weakly scalar-free
functions. Again, proofs can be found in the Appendix section.

Theorem 6 (relating weakly scalar-free and scalar-free functions)
Consider functions f : Rk → ℝ and θ: R → ℝ for some subset R⊆ℝ which is ℝ or ℝ>0.

a) If a nonzero function f is weakly scalar-free for function θ, then θ is multiplicative.
If, moreover, f is (strictly) monotonically increasing and has at least one positive value, then
θ is also (strictly) monotonically increasing. Therefore for the strict monotonically increas-
ing case, θ is injective and has an inverse θ −1 on Range(θ), which is also multiplicative.

b) Any nonzero multiplicative function θ is weakly scalar-free for itself.
c) For any weakly scalar-free function f for θ the following are equivalent:

(i) Range( f ) ⊆ Range(θ)
(ii) For all V1, … , Vk an α∈R exists such that f(αV1, … , αVk) = 1

d) For each weakly scalar-free function f : Rk → ℝ for any injective θ, the function g:
Range(θ)k → ℝ defined by g = f θ–1 is scalar-free. If, moreover, Range( f ) ⊆ Range
(θ), then also the function h: Rk → ℝ defined by h = θ–1f is scalar-free. For strictly
increasing f and θ, these functions g,h are strictly increasing too.

e) For each set of strictly increasing and weakly scalar-free functions fi: R
k →ℝ≥0 for the

same strictly increasing θ, for any linear combination f of the fi with positive coeffi-
cients, the function g: Rk → ℝ defined by g = f θ–1 is strictly increasing and scalar-
free. If, moreover, Range( f ) ⊆ Range(θ), then also the function h: Rk → ℝ defined
by h = θ–1f is strictly increasing and scalar-free.

f) If f : Rk → ℝ is scalar-free, θ: R → R is multiplicative and g = f o θ: Rk → ℝ, then g is
weakly scalar-free for θ. This holds in particular if f is linear.

Examples (from weakly scalar-free to scalar-free functions)
From Theorem 6d) it follows that the function.

g(V1, V2, V3) = θ–1f (V1, V2, V3) =√(w1 V1*V2 + w2 V2*V3 + w3 V3*V1)

is scalar-free. Also, by Theorem 6e)
h(V1, V2, V3) = [ V1 + V2 + V3 + √(w1 V1*V2 + w2 V2*V3 + w3 V3*V1) ]/λ

is scalar-free.
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9.3. Using conjugate relations to obtain and analyse scalar-free functions

Next, it is analysed how from given scalar-free functions other scalar-free functions can
be obtained by applying some transformation. The type of transformation applied can
be interpreted as a form of scale transformation or coordinate transformation. It is
done by generating conjugates of scalar-free functions defined as follows.

Definition (function conjugates)
Let subsets R, S ⊆ℝ be given. The function g: Sk→ S is a (function) conjugate of f : Rk→ R by
θ if θ: S → R is a bijective function and g = θ −1 o f o θ.

Proposition 7 (function conjugate operator)
Let subsets R, S ⊆ ℝ be given, and functions g: Sk → S, f: Rk → R, and bijective θ: S → R.

Then the following hold:
a) Then the following are equivalent:

(i) g is a function conjugate of f by θ
(ii) The following commutation rules hold: θ g = f θ and θ −1f = g θ −1

b) If a) (i) and (ii) hold, then for any g such an f is unique and can be denoted by f = Sθ(g)
for a function conjugate operator Sθ; similarly, g = Sθ−1 (f) for function conjugate oper-
ator Sθ−1, so it holds: θ g = Sθ(g) θ and θ −1f = Sθ−1(f) θ

−1

These operators Sθ and Sθ−1 are each other’s inverse and they preserve function
addition and composition: for all f, g, f1, f2, g1 and g2 of proper types it holds:

Sθ−1Sθ(g) = g

SθSθ−1(f) = f

Sθ(g1 + g2) = Sθ(g1) + Sθ(g2)

Sθ(g1 o g2) = Sθ(g1) o Sθ(g2)

Sθ−1(f1 + f2) = Sθ−1(f1) + Sθ−1(f2)

Sθ−1(f1 o f2) = Sθ−1(f1) o Sθ−1(f2)

Moreover, when conjugate operators Sθ1 and Sθ2 for θ1 and θ2 are applied in turn, it
holds

Sθ1Sθ2(g) = Sθ1θ2(g) for all g

In this section, it is established that specific nonlinear functions are scalar-free. First, in a
more general setting in Theorem 7 this will be addressed for weighted euclidean func-
tions. Moreover, it is analysed how weighted euclidean functions can be related to
linear functions: it turns out that they can be interpreted as conjugates of linear functions
via some multiplicative function θ. This is explained by the following:

Theorem 7 (from scalar-free functions to scalar-free conjugates by multiplicative θ)

a. For any scalar-free function f : Rk → R with R =ℝ≥0, all of its conjugates θ
−1 ofo θ by a

multiplicative θ: R → R are also scalar-free.
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b. More specifically, for any scalar-free function f, for any positive real number n the
function g defined by

g(V1, . . . , Vk) =
�����������������
f (Vn

1 , . . . , Vn
k )

n
√

is a conjugate θ −1 ofo θ of f by the multiplicative function θ: X → Xn and therefore is
also scalar-free.

c. All weighted Euclidean functions are conjugates of linear functions by a multiplicative
function θ and therefore are scalar-free. In particular, this holds for all functions
eucln,λ.

Next, in a more general setting in Theorem 8 it is established that weighted geometric
functions are scalar-free and how they can be related to linear functions. Again, it turns
out that they can be considered conjugates of linear functions, this time not via a multi-
plicative function but via a log-like function θ. This is explained by the following:

Theorem 8 (from linear to scalar-free conjugates by log-like θ)

a) For any normalised linear function all of its conjugates θ −1 ofo θ by a log-like θ are
scalar-free.

b) More specifically, for any normalised linear function f, the function g defined by

g(V1, . . . , Vk) = exp (f ( log (V1), . . . , log (Vk))

is a conjugate θ −1 of o θ of a linear function by the standard log-like function θ = log
and therefore is scalar-free.

c) All weighted geometric functions are conjugates of a normalised linear function by a
log-like function θ and therefore are scalar-free. In particular, this also holds for all
functions sgeomeanλ.

Note that in Theorem 8c) the scaled geometric mean function sgeomean1 is scalar-free as
it is a special case of a weighted geometric function with all weights 1 and therefore
sgeomean1 = θ −1 of o θ with f linear and normalised, whereas sgeomeanλ for λ≠1 is
not a weighted geometric function and conjugate itself but it is a constant factor
c = 1/

��
lk

√
times the weighted geometric function, so sgeomeanλ = c θ −1 of o θ; therefore

it follows that sgeomeanλ is scalar-free too (which also can be verified from the formula
for sgeomeanλ).

10. Discussion

In this paper, equilibrium analysis was addressed for network models. A main application
focus was on organizational learning (Crossan et al., 1999; Kim, 1993; Wiewiora et al., 2019;
Wiewiora et al., 2020) and in particular computational network models for it (Canbaloğlu,
Treur, & Roelofsma, 2022a; Canbaloğlu, Treur, & Wiewiora, 2022a, 2022b, 2022c).

In the paper, it was shown how, in contrast to often held beliefs, certain classes of non-
linear functions used for aggregation in network models enable analysis of the emerging
dynamics like linear functions do. One of the methods used is the one from (Treur, 2020a),
describing equilibrium analysis based on stratification for a network’s strongly connected
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components (Bloem et al., 2006; Fleischer et al., 2000; Harary et al., 1965; Łacki, 2013; Wijs
et al., 2016). The presented work adopts elements from (Treur, 2020a), but also includes a
number of new concepts and methods introduced here especially for this type of network
analysis, such as weakly scalar-free functions, conjugate relations for transformations of
functions and the use of a linear solver to solve nonlinear equations via function trans-
formation. These new concepts and methods enable to get more insight in some of
the types of nonlinear functions for which analysis is well-feasible.

Nevertheless, still more work is needed, as no complete classification of all possible
types of nonlinear functions that are scalar-free has been obtained yet; this still stands
as a remaining challenge. Note that from scalar-free functions in a combinatorial
manner new scalar-free functions can be generated easily, using (1) linear combinations
of them, (2) function compositions of them, and (3) conjugates of them. By iteratively
combining these three methods, scalar-free functions can be built of arbitrarily high com-
plexity. This shows that there is a very large space of such nonlinear functions, which all
still are well-suitable for analysis.

Note that the focus of this paper was on behaviour of adaptive network models where
equilibria occur. This is applicable, for example, in situations where some forms of organ-
ization or structuring take place such as in well-organised organizational learning. Of
course, also other situations exist where, for example, influential context factors change
all the time in a random manner and their influences are not well-organised. This will
in general lead to types of (chaotic) behaviour where equilibria do not occur. The disclai-
mer here is that the current paper was not meant to address such situations involving
chaotic behaviour.

11. Appendix: Proofs

In this section the proofs for all theorems, propositions and corollaria from Sections 3–6
and Section 9 are pointed out.

Theorem 1 (dependency of equilibrium values for acyclic networks)
Suppose a network is acyclic and all states with incoming connections from other

states have nonzero speed factors. Then the following hold.

a) In any equilibrium for each state Y of any stratification level, the equilibrium value Y
depends by some mathematical function on the equilbrium values X of states X of
level 0.

b) More specifically, in any equilibrium for any state Y of stratification level i > 0, its equi-
librium value Y can be determined from equilibrium values Xj of states Xj at lower
levels < i by:

Y = cY (vX1,YX1, . . . , vXk ,YXk)

Proof

b) For a given state Y, let X1 to Xk be the states from which Y gets incoming connections
in the network. Due to the definition of stratification, the X1 to Xk will have levels < i.
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Then b) follows from the formulated stationary point and equilibrium criteria for
network models based on the canonical difference equation (1).

a) This follows from b) by induction over the stratification levels. By applying Theorem
1b) iteratively according to the stratification levels, in a straightforward manner for
each state Y of the network, a mathematical expression can be obtained showing
exactly how its equilibrium value depends on the equilibrium values of states of
level 0.

Corollary 1 Suppose a network is acyclic and all states with incoming connections
from other states have nonzero speed factors. Then the mathematical expression in
Theorem 1a) defines a mathematical function for Y in terms of the equilibrium
values X of some states X of level 0 with as parameters connectivity and
aggregation characteristics ωZ1,Z2 and cZ(..) of the network relating to states Z, Z1, Z2
on the paths from the involved level 0 states X to state Y. This mathematical
function essentially is based on an iterated composition of combination functions of
the states on the paths to Y in the network, nested according to the (inverse)
branching structure of these paths to Y.

Proof

This follows from amore detailed inspection of the proof of Theorem 1a). This is illustrated
in Section 3 for the example depicted in Figure 1 and in Section 7 for the examples
depicted in Figure 5 and Figure 6.

Theorem 2 (preservation of comparison relations over time and for equilibria)
Suppose Xi are the states of a network model (with only positive connection weights

and at least some nonzero speed factors) and all are using monotonically increasing com-
bination functions ci. Assume 0 < Δt≤ 1/maxY(hY ); e.g. assume hY ≤ 1 for all Y and 0 <
Δt≤ 1. Then the following hold.

a) Suppose two simulation traces Xi(t) and X’i(t) are given with initial values Xi(0)≤ X’i(0).
Then it holds Xi(t)≤ X’i(t) for all t and i and for any achieved equilibrium, for the equi-
librium values Xi and X’i of Xi and X’i it holds Xi≤ X’i for all i.

b) Moreover, suppose X’i are again the states of the same network model but this time
using monotonically increasing combination functions c’i. Then the following hold:
(i) If ci≤ c’i for all i and for the initial values it holds Xi(0)≤ X’i(0) for all i, then it holds

Xi(t)≤ X’i(t) for all t and i.
(ii) If ci≤ c’i for all i and for the initial values it holds Xi(0)≤ X’i(0) for all i, then for any

achieved equilibrium for all i for the equilibrium values Xi and X’i of Xi and X’i it
holds Xi≤ X’i.

Proof

a) This follows from b) and c) when c’i = ci is chosen.
b) Note that from Δt≤ 1/maxY(hY ) it follows (1− hYDt)≥ 0 for all Y.
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The proof goes by induction over the Δt-steps for Δt≤ 1/maxY(hY ) using (1), where X1 to
Xk are the states from which Y gets its incoming connections:

Y(t + Dt) = Y(t) + hY [cY (vX1,YX1(t), . . . , vXk ,YXk(t))− Y(t)]Dt

= Y(t)− hYY(t)Dt + hYcY (vX1,YX1(t), . . . , vXk ,YXk(t))Dt

= (1− hYDt)Y(t)+ hYcY (vX1,YX1(t), . . . , vXk ,YXk(t))Dt

≤ (1− hYDt)Y
′(t)+ hYc

′
Y (vX1,YX1(t), . . . , vXk ,YXk(t))Dt

≤ (1− hYDt)Y
′(t)+ hYc

′
Y (vX1,YX

′
1(t), . . . , vXk ,YX

′
k(t))Dt

= Y ′(t)− hYY
′(t)Dt + hYc

′
Y (vX1,YX

′
1(t), . . . , vXk ,YX

′
k(t))Dt

= Y ′(t) + hY [c
′
Y (vX1,YX

′
1(t), . . . , vXk ,YX

′
k(t))− Y ′(t)]Dt

= Y ′(t + Dt)

c) This follows from a) by

Xi = lim
n�1 Xi(nDt) ≤ lim

n�1 X ′
i (nDt) = X′

i

Proposition 1 (comparison for logistic functions)

a) Suppose τ’<τ and σ>0. Then for any V1, . . . , Vk ≥ 0 it holds

0 ≤ alogistics,t(V1, . . . , Vk) , slogistics,t(V1, . . . , Vk)

, slogistics,t′ (V1, . . . , Vk) , 1

b) Moreover, for any σ>0, and V1, . . . , Vk ≥ 0 it holds

lim
t�1 alogistics,t(V1, . . . , Vk) = lim

t�1 slogistics,t(V1, . . . , Vk) = 0

lim
t�−1 slogistics,t(V1, . . . , Vk) = 1

Proof

a) First, consider slogistic. Then for its (partial) derivative to τ it holds

∂
1

1+ e−s(V1+...+Vk−t)
/∂t = − 1

[1+ e−s(V1+...+Vk−t)]2
∂(1+ e−s(V1+...+V−t

k ))/∂t
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= − 1

[1+ e−s(V1+...+V−t
k )]

2 ∂ e−s(V1+...+V−t
k )/∂t

= − 1

[1+ e−s(V1+...+V−t
k )]

2 e
−s(V1+...+V−t

k )∂e−s(V1+...+V−t
k )/∂t

= − 1

[1+ e−s(V1+...+V−t
k )]

2 e
−s(V1+...+V−t

k )s

= − e−s(V1+...+V−t
k )

[1+ e−s(V1+...+V−t
k )]

2

, 0

This proves that for τ’<τ it holds

slogistics,t(V1, . . . , Vk) , slogistics,t′ (V1, . . . , Vk)

Finally, for the same values of σ and τ, the functions slogistic and alogistic can be com-
pared as follows:

1

1+ e−s(V1+...+V−t
k ) , 1

1

1+ e−s(V1+...+V−t
k ) ,

est

1+ est
+ 1

1+ est

1

1+ e−s(V1+...+V−t
k ) −

1
1+ est

,
est

1+ est

e−st

[
1

1+ e−s(V1+...+V−t
k ) −

1
1+ est

]
,

1
1+ est

e−st

[
1

1+ e−s(V1+...+V−t
k ) −

1
1+ est

]
− 1

1+ est
, 0

[
1

1+ e−s(V1+...+V−t
k ) −

1
1+ est

]
+ e−st

[
1

1+ e−s(V1+...+V−t
k ) −

1
1+ est

]

,
1

1+ e−s(V1+...+V−t
k )

[
1

1+ e−s(V1+...+V−t
k ) −

1
1+ est

]
(1+ e−st) ,

1

1+ e−s(V1+...+V−t
k )

Therefore, it holds

alogistics,t(V1, . . . , Vk) , slogistics,t(V1, . . . , Vk)
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b) The first part follows from:

0 , lim
t�1 alogistics,t(V1, . . . , Vk)

≤ lim
t�1 slogistics,t(V1, . . . , Vk)

= lim
t�1

1

1+ e−s(V1+...+V−t
k )

= lim
t�1

1
1+ este−s(V1+...+Vk )

= 0

The second part follows from

lim
t�−1 slogistics,t(V1, . . . , Vk) = lim

t�−1
1

1+ e−s(V1+...+V−t
k )

= lim
t�−1

1
1+ est e−s(V1+...+Vk )

= 1
Proposition 2 (comparison between euclidean and min and max functions)

a) Suppose the scaling factor is set at λ = k, then for any V1, . . . , Vk ≥ 0 it holds

min(V1, . . . , Vk) ≤ eucln,k(V1, . . . , Vk) ≤ max(V1, . . . , Vk)

and

lim
n�1 eucln,k(V1, . . . , Vk) = max(V1, . . . , Vk)

b) More in general, for any λ>0 it holds

min(V1, . . . , Vk).

��
k
l

n

√
≤ eucln,(V1, . . . , Vk) ≤ max(V1, . . . , Vk).

��
k
l

n

√

and

lim
n�1 eucln,l(V1, . . . , Vk) = max(V1, . . . , Vk)

Proof:

eucln,l(V1, . . . , Vk) ≥ eucln,l(max(V1, . . . , Vk), . . . ., max(V1, . . . , Vk))

= max(V1, . . . , Vk)

��
k
l

n

√

eucln,l(V1, . . . , Vk) ≥ eucln,l(min(V1, . . . , Vk), . . . ., min(V1, . . . , Vk))

= min(V1, . . . , Vk).

��
k
l

n

√

JOURNAL OF INFORMATION AND TELECOMMUNICATION 39



For

lim
n�1 eucln,k(V1, . . . , Vk) = max(V1, . . . , Vk)

see (Treur, 2020b), Ch 11, Section 11.6.2 and Ch 15, Section 15.6.

Proposition 3 (comparison between geometric mean and min and max functions)
a) Suppose the scaling factor is set at λ = 1, then for any V1, . . . , Vk ≥ 0 it holds

min(V1, . . . , Vk) ≤ sgeomeanl(V1, . . . , Vk) ≤ max(V1, . . . , Vk)

b) More in general, for any λ>0 and any V1, . . . , Vk ≥ 0 it holds

min(V1, . . . , Vk).

��
1
l

k

√
≤ sgeomeanl(V1, . . . , Vk) ≤ max(V1, . . . , Vk).

��
1
l

k

√

Proof:
sgeomeanl(V1, . . . , Vk) ≤ sgeomeanl(max(V1, . . . , Vk), . . . ., max(V1, . . . , Vk))

= max(V1, . . . , Vk).

��
1
l

k

√

sgeomeanl(V1, . . . , Vk) ≥ sgeomeanl(min(V1, . . . , Vk), . . . ., min(V1, . . . , Vk))

= min(V1, . . . , Vk).

��
1
l

k

√

Corollary 2 (comparison relations for equilibrium values: logistic and sum functions)
Assume only positive connection weights and at least some nonzero speed factors and

Δt≤ 1/maxY(hY ) (e.g. assume hY ≤ 1 for all Y and Δt≤ 1).

a. Suppose Xi are the states for a network model using advanced logistic combination
functions ci = alogistic and X’i for the same network model using simple logistic com-
bination functions c’i = slogistic with the same parameters σi and τi for each state Xi.
Moreover, suppose two simulation traces Xi(t) and X’i(t) are given with initial values
Xi(0)≤ X’i(0) for all i, then for any achieved equilibrium with equilibrium values Xi

and X’i it holds Xi≤ X’i for all i.
b. Suppose Xi are the states for a network model using simple logistic combination func-

tions ci = slogisticwith parameters σi and τi and X’i for the same network model using
simple logistic combination functions c’i = slogistic with the parameters σi and τ’i for
each state Xi such that τ’i≤ τi. Moreover, suppose two simulation traces Xi(t) and X’i(t)
are given with initial values X’i(0)≤ Xi(0) for all i, then for any achieved equilibrium
with equilibrium values Xi and X’i it holds Xi≤ X’i for all i.

c. Suppose Xi are the states for a network model using advanced logistic combination
functions ci = alogistic with parameters σi and τi and X’i for the same network
model using scaled sum combination functions c’i = ssum with the parameters λ’i
for each state Xi. Moreover, suppose two simulation traces Xi(t) and X’i(t) are given
with initial values X’i(0)≤ Xi(0) for all i.
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If 0≤ λ’i≤ τi or λ’i≤ 2min(σi, τi), and an equilibrium is achieved with equilibrium
values Xi and X’i then it holds Xi≤ X’i for all i.

Proof

This follows from Theorem 2 and Proposition 1a).

Corollary 3 (comparison relations for equilibrium values: Euclidean, geometric,
minimum and maximum functions)

Assume only positive connection weights and at least some nonzero speed factors and
Δt≤ 1/maxY(hY ) (e.g. assume hY ≤ 1 for all Y and Δt≤ 1).

a) Suppose Xi are the states for a network model using as combination functions ci Eucli-
dean combination functions eucln,k(V1, . . . , Vk) with scaling factor λ = k or geometric
mean combination functions sgeomean1(V1, . . . , Vk) with scaling factor λ = 1 and X’i
for the same model using maximum combination functions c’i. If for the initial values
it holds Xi(0)≤ X’i(0) for all i, then for any achieved equilibrium with equilibrium values
Xi and X’i it holds Xi≤ X’i for all i.

b) Suppose Xi are the states for a network model using as combination functions ci Eucli-
dean combination functions eucln,k(V1, . . . , Vk) with scaling factor λ = k or geometric
mean combination functions sgeomean1(V1, . . . , Vk) with scaling factor λ = 1 and X’i
for the same model using combination functions minimum functions c’i. Moreover,
suppose two simulation traces Xi(t) and X’i(t) are given with initial values X’i(0)≤
Xi(0) for all i. If an equilibrium is achieved with equilibrium values Xi and X’i, then it
holds X’i≤ Xi for all i.

Proof

This follows from Theorem 2 and Propositions 2a) and 3a)

Proposition 4 (weakly scalar-free and increasing functions)
a) Suppose f is increasing and weakly scalar-free for function θ. Then for all

V1, … , Vk ∈R it holds
f(1, … , 1) θ(min(V1, … , Vk))≤ f(V1, … , Vk)≤ f(1, … , 1)θ(max(V1, … , Vk))
When moreover f is scalar-free, then
f(1, … , 1) min(V1, … , Vk)≤ f(V1, … , Vk)≤ f(1, … , 1) max(V1, … , Vk)
b) Any weighted Euclidean or geometric function with positive weights wi is monoto-

nically increasing and scalar-free.
c) If

g(V1, . . . , Vk) =
����������������������
w1Vn

1 + . . .+ wkVn
k

n
√

is a weighted Euclidean function with positive weightswi, then g is scalar-free and increas-
ing; moreover, it holds.����������������

w1 + . . .+ wk
n
√

min (V1, . . . , Vk) ≤ g(V1, . . . , Vk) ≤
����������������
w1 + . . .+ wk

n
√

max (V1, . . . , Vk)
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If g is a weighted Euclidean average function (i.e. the sum of the weights wi is 1), then

min (V1, . . . , Vk) ≤ g(V1, . . . , Vk) ≤ max (V1, . . . , Vk)

d) If

g(V1, . . . , Vk) = Vw1
1 . . . .Vwk

k

is a weighted geometric function with positive weights wi, then g is scalar-free and
increasing; moreover, it holds.

min (V1, . . . , Vk) ≤ g(V1, . . . , Vk) ≤ max (V1, . . . , Vk)

Proof

a) Since for each i it holds

min(V1, … , Vk)≤ Vi≤max(V1, … , Vk)

by monotonic increasing and weakly scalar-free, respectively, it follows.

f (V1,… , Vk)≤ f (max(V1,… , Vk),… , max(V1,… , Vk))

= θ(max(V1,… , Vk)) f (1,… , 1)

f (V1,… , Vk)≥ f (min(V1,… , Vk),… , min(V1,… , Vk))

= θ(min(V1,… , Vk)) f (1,… , 1)

b) is easy to verify
c) and d) follow from a) and b)

Proposition 5 (scalar-free and strictly increasing functions)

a) Any function composition of scalar-free functions is scalar-free
b) Any function composition of strictly increasing functions is strictly increasing
c) All linear functions with positive coefficients are scalar-free and strictly increasing
d) Any scalar-free function f is weakly scalar-free for θ = id, the identity function.

Theorem 3 (comparison for any scalar-free function to min and max)
Suppose Xi are the states for a network model (with only positive connection weights

and at least some nonzero speed factors) using monotonically increasing combination
functions ci and X’i for the same model using monotonically increasing combination func-
tions c’i. Assume 0 < Δt≤ 1/maxY(hY ); e.g. assume hY ≤ 1 for all Y and 0 < Δt≤ 1.

a) If for the initial values it holds Xi(0)≤ X’i(0), the ci are monotonically increasing and
scalar-free with ci(1,… , 1) = 1, and c’i is the maximum function c’i =max then for
any achieved equilibrium with equilibrium values Xi and X’i it holds Xi≤ X’i for all i.

b) If for the initial values it holds X’i(0)≤ Xi(0), the ci are monotonically increasing and
scalar-free with ci(1,… , 1) = 1, and each c’i is the minimum function c’i =min then
for any achieved equilibrium with equilibrium values Xi and X’i it holds X’i≤ Xi for
all i.
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Proof

This follows from Theorem 2b) and Proposition 4a).

Theorem 4 (relating equilibrium values of states in components at different levels)
If the following aggregation conditions are fulfilled.
. The combination functions are normalised, scalar-free and strictly increasing

then in an achieved equilibrium:
a) In any level 0 component C

. All states in C have the same equilibrium value V

. This V is between the highest and lowest initial value of the states within C
b) If for any level i > 0 component C the components C1, .., Ck are the strongly con-

nected components from which C gets an incoming connection, then
. The equilibrium values of the states in C are between the highest and lowest equi-

librium values of the states in C1, .., Ck
. If all states in C1, .., Ck have the same equilibrium value V, then also all states in C

have this same equilibrium value V

Corollary 4 (dependence of all equilibrium values on the values in level 0 components)
If the following aggregation conditions are fulfilled.
. The combination functions are normalised, scalar-free and strictly increasing

then in an achieved equilibrium:
c) The equilibrium values of all states in the network

. are between the highest and lowest equilibrium values of the states in the level 0
components

. are between the highest and lowest initial values of the states in the level 0
components

d) If all states in all level 0 components C have the same equilibrium value V, then all
states of the whole network have that same equilibrium value V

For the special case of a strongly connected network (consisting of one component),
this implies:

Corollary 5 (strongly connected networks)
If the following connectivity and aggregation conditions are fulfilled.
. The network is strongly connected
. The combination functions are normalised, scalar-free and strictly increasing then in
an achieved equilibrium:
. All states have the same equilibrium value V
. This equilibrium value V is between the highest and lowest initial values of the states

Proposition 6 (relating additive, multiplicative, log-like, and exp-like functions)
Let θ: R → ℝ be any function for a finite or infinite interval R in ℝ, then the following

hold:
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a) If θ is multiplicative, then log o θ is log-like
b) If θ is log-like, then θ o exp is additive
c) If θ is exp-like, then log o θ is additive
d) If θ is multiplicative, then log o θ o exp is additive
e) For any multiplicative function such that θ(α) = 0 for some α ≠ 0, it holds that θ(α) = 0

for all α. For any nonzero multiplicative function θ it holds θ(1) = 1 and θ(α−1) = θ(α)−1

for all α.
f) If θ is multiplicative then θ(1) = 1 and θ(α−1) = θ(α)−1. If a multiplicative θ is injective on

Dom(θ), then it has an inverse θ−1 with Dom(θ−1) = Range(θ) and Range(θ−1) = Dom
(θ); this inverse θ−1 is also multiplicative.

Proof

a) This follows from
log(θ(αβ)) = log(θ(α)θ(β)) = log(θ(α)) + log(θ(β))

b) This follows from
θ(exp(α+β)) = θ(exp(α)exp(β)) = θ(exp(α)) +θ(exp(β))

c) This follows from
log(θ(α+β)) = log(θ(α)θ(β)) = log(θ(α)) + log(θ(β))

d) This immediately follows from a) and b).
e) Suppose θ(α) = 0 for some α ≠ 0, then for any β it holds

θ(β) = θ(αβα −1) = θ(α)θ(βα −1) = 0.
Next, for any nonzero θ it holds θ(1) = θ(12) = θ(1)2; as it cannot be 0 from this it follows
that θ(1) = 1. The last part follows from θ(α) θ(α −1) = θ(α α −1) = θ(1) = 1.

f) Choose any α‘, β’∈ Range(θ), then α‘ = θ(α) and β‘ = θ(β) for some α,β ∈ Dom(θ)
Then this follows from
θ −1(α’β‘) = θ −1(θ(α)θ(β)) = θ −1(θ(αβ)) = αβ = θ −1(α‘)θ −1(β‘)

Theorem 5 (characterisation of additive, multiplicative, log-like and exp-like functions)
Let θ: R → ℝ be continuous. Then the following hold.

a) Assume R ⊆ ℝ is closed under addition and subtraction with 1 ∈ R, then it holds
θ is additive ⇔ for some c∈ ℝ for all X it holds θ(X) = c X.

b) Assume R ⊆ ℝ>0 is closed under multiplication and division with e ∈ R, then it holds
θ is multiplicative ⇔ for some c∈ ℝ for all X it holds θ(X) = Xc.

c) Assume R ⊆ ℝ>0 is closed under multiplication and division with e ∈ R, then it holds
θ is log-like ⇔ for some c∈ ℝ for all X it holds θ(X) = c log(X )

d) Assume R =ℝ is closed under addition and subtraction with 1 ∈ R, then it holds
θ is exp-like ⇔ for some c∈ ℝ for all X it holds θ(X) = exp(cX )
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Proof

Note that all implications from right to left are easy to verify. The opposite implications
can be found as follows.

a) Note that 0 = 1–1 ∈R and θ(0) = 0 as from additivity it follows
θ(0) = θ(0 + 0) = 2θ(0)

Therefore for any c∈ ℝ it holds θ(X) = cX for X = 0. Now, first for positive rational
numbers X = p/q ∈R with p, q ∈ ℕ with p, q > 0, from additivity it follows

qθ(X ) = θ(qp/q) = θ(p) = p θ(1)

and therefore

θ(X ) = cX

where c = θ(1).Moreover, for any negative rational number X = - p/q∈R with p, q > 0 it
holds

θ(-p/q) + θ(p/q) = θ(0) = 0

and therefore

θ(X ) = θ(−p/q) = -θ(p/q) = -cp/q = c -p/q = c X

This proves that θ(X) = cX for all rational numbers X.
Next, as any real number X is the limit of a sequence rn, n∈ℕ of rational numbers and
both θ and the function X → cX are continuous it holds.

u(X) = u( lim
n�1 rn) = lim

n�1 u(rn) = lim
n�1 c rn = c lim

n�1 rn = cX

b) Note that R’ = log(R) is closed under addition and subtraction and 1 = log(e)∈R’. By
Proposition 1d) the function log o θ o exp on R’ is additive. Therefore, by a) it
follows that there is a c∈ℝ such that for any X∈ R for Y = log(X ) it holds

log o θ o exp (Y ) = cY

From this it follows

exp(log o θ o exp (Y )) = exp(cY )

θ o exp (Y ) = exp(cY )

θ o exp (Y ) = exp(Y )c

θ (X) = Xc

c) Note that R’ = log(R) is closed under addition and subtraction and 1 = log(e)∈R’. By
Proposition 1b) the function θ o exp is additive on R’. Therefore, by a) it follows
that there is a c∈ ℝ such that for any X∈ R for Y = log(X ) it holds
θ o exp(Y ) = cY
θ o exp(log(X )) = c log(X )
θ (X ) = c log(X )
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d) By Proposition 1c) the function log o θ is additive. Therefore, by a) it follows that there
is a c∈ ℝ such that for all X∈ R it holds
log o θ (X ) = cX
exp(log o θ (X )) = exp(cX )
θ (X ) = exp(cX )

Theorem 6 (relating weakly scalar-free and scalar-free functions)

Consider functions f : Rk → ℝ and θ: R → ℝ for some subset R⊆ℝ which is ℝ or ℝ>0.

a) If a nonzero function f is weakly scalar-free for function θ, then θ is multiplicative.

b) If, moreover, f is (strictly) monotonically increasing and has at least one positive value,
then θ is also (strictly) monotonically increasing. Therefore for the strict monotonically
increasing case, θ is injective and has an inverse θ–1 on Range(θ), which is also
multiplicative.

c) Any nonzero multiplicative function θ is weakly scalar-free for itself.
d) (i) For any weakly scalar-free function f for θ the following are equivalent:

(ii) Range( f ) ⊆ Range(θ)
(iii) For all V1, … , Vk an α exists such that f(αV1, … , αVk) = 1

e) For each weakly scalar-free function f : Rk → ℝ for any injective θ, the function g:
Range(θ)k → ℝ defined by g = f θ–1 is scalar-free. If, moreover, Range( f ) ⊆ Range(θ),
then also the function h: Rk →ℝ defined by h = θ–1f is scalar-free. For strictly increas-
ing f and θ, these functions g,h are strictly increasing too.

f) For each set of strictly increasing and weakly scalar-free functions fi: R
k →ℝ≥0 for the

same strictly increasing θ, for any linear combination f of the fi with positive coeffi-
cients, the function g: Rk → ℝ defined by g = f θ–1 is strictly increasing and scalar-
free. If, moreover, Range( f ) ⊆ Range(θ), then also the function h: Rk → ℝ defined
by h = θ–1f is strictly increasing and scalar-free.

g) If f : Rk → ℝ is scalar-free, θ: R → R is multiplicative and g = f o θ: Rk → ℝ, then g is
weakly scalar-free for θ. This holds in particular if f is linear.

Proof

a) Suppose f(V1, … , Vk) ≠ 0, then from
θ(αβ) f(V1,… , Vk) = f(αβV1,… , αβVk) = θ(α) f(βV1,… , βVk) = θ(α)θ(β) f(V1,… , Vk)

it follows that θ is multiplicative.
Suppose, moreover, f is (strictly) monotonically increasing and positive for at least one
point f(V1, … , Vk) > 0 and α ≤β then from
θ(α) f(V1,… , Vk) = f(αV1,… , αVk)≤ f(βV1,… , βVk) = θ(β) f(V1,… , Vk)
and follows that θ(α)≤ θ(β); it works similarly for the strict condition.

b) This follows from θ(αβ) = θ(α)θ(β)
c) (i) ⇒ (ii) suppose Range( f ) ⊆ Range(θ), then for any V1, … , Vk it holds

f(V1, … , Vk) ∈ Range(θ)
f(V1, … , Vk) = θ(β) for some β ∈ Dom(θ)
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Then

θ(β)−1 f(V1,… , Vk) = 1

Now pick α = β −1, then it follows

f(αV1,… , α Vk) = θ(α) f(V1,… , Vk) = θ(β −1) f(V1,… , Vk) = θ(β)−1 f(V1,… , Vk) = 1

(ii) ⇒ (i) Suppose for any given V1, … , Vk an α exists such that f(αV1, … , αVk) = 1, then:

f(V1,… , Vk) = f(α −1αV1,… , α −1α Vk) = θ(α −1) f(αV1,… , α Vk) = θ(α −1) ∈ Range(θ)

d) For g the first part follows from
g(αV1,… , αVk) = f(θ–1(αV1),… , θ–1(αVk))
= f(θ–1(α)θ–1(V1),… , θ–1(α)θ–1(Vk))
= θθ–1(α) f(θ–1(V1),… , θ–1(Vk))
= α f(θ–1(V1),… , θ–1(Vk))
= α g(V1,… , Vk)

and for h from

h(αV1,… , αVk) = θ–1(f(αV1,… , αVk))

= θ–1(θ(α) f(V1,… , Vk))

= θ–1θ(α) θ–1(f(V1,… , Vk))

= α θ–1(f(V1,… , Vk))

= α h(V1,… , Vk)

The second part follows from a).
e) This follows from d) and a).
f) This follows from

g(αV1,… , αVk) = f(θ(αV1),… , θ(αVk))

= f(θ(α)θ(V1),… , θ(α)θ(Vk))

= θ(α)f(θ(V1),… , θ(Vk))

= θ(α) g(V1,… , Vk)

Proposition 7 (function conjugate operator)
Let subsets R, S ⊆ ℝ be given, and functions g: Sk → S, f: Rk → R, and bijective θ: S → R.

Then the following hold:

a) Then the following are equivalent:
(i) g is a function conjugate of f by θ
(ii) The following commutation rules for θ, f and g hold:θ g = f θθ −1f = g θ −1.

b) If a)(i) and (ii) hold, then for any g such an f is unique and can be denoted by f = Sθ(g)
for a function conjugate operator Sθ; similarly, g = Sθ−1(f) for function conjugate oper-
ator Sθ−1, so it holds:θ g = Sθ(g) θθ

−1f = Sθ−1 (f) θ
−1.
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These operators Sθ and Sθ−1 are each other’s inverse and they preserve function addition
and composition: for all f, g, f1, f2, g1 and g2 it holds.

Sθ−1Sθ(g) = g.

SθSθ−1(f) = f.

Sθ(g1 + g2) = Sθ(g1) + Sθ(g2)

Sθ(g1 o g2) = Sθ(g1) o Sθ(g2)

Sθ−1(f1 + f2) = Sθ−1(f1) + Sθ−1(f2)

Sθ−1(f1 o f2) = Sθ−1(f1) o Sθ−1(f2)

Moreover, when conjugate operators Sθ1 and Sθ2 for θ1 and θ2 are applied in turn, it holds.

Sθ1θ2 (g) = Sθ1Sθ2(g) Sθ1(θ2) θ1 θ2
−1 θ1

−1 for all g

If in addition, θ1θ2 = θ2θ1 then Sθ1Sθ2 = Sθ1θ2:

Sθ1Sθ2(g) = Sθ1θ2(g) for all g

Proof

a) (i) ⇒ (ii) This follows from

θ g = θ θ −1 o f o θ = f o θ

and

θ −1 f = θ −1 f θ θ −1 = g θ −1.

(ii) ⇒ (i) This follows from

g = θ−1 θ g = θ−1 o f o θ

b) First, suppose θ g = f1 θ = f2 θ, then from θ bijective it follows f1 = f2. Then an operator
Sθ exists and it holds

θ g = Sθ(g) θ

θ −1f = Sθ−1(f) θ
−1

Furthermore, consider.

θ (g1 + g2) = Sθ (g1 + g2) θ

θ (g1 + g2) = θ g1 + θ g2= Sθ(g1) θ + Sθ(g2) θ = (Sθ(g1) + Sθ(g2)) θ

Then,

Sθ (g1 + g2) θ = (Sθ(g1) + Sθ(g2)) θ

Sθ (g1 + g2) = Sθ(g1) + Sθ(g2)

Also,

θ (g1 o g2) = Sθ(g1 o g2) θ
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(θ g1) o g2 = Sθ(g1)θ g2 = Sθ(g1) Sθ(g2) θ

Here k1k2 = k; therefore,

Sθ(g1 o g2) = Sθ(g1) o Sθ(g2)

And the same applies to θ−1.
When conjugate operators Sθ1 and Sθ2 for θ1 and θ2 are applied in turn, it holds

θ1θ2 g = Sθ1θ2 (g) θ1θ2 = Sθ1θ2 (g) θ1 θ2

θ2θ1 g = θ2 Sθ1(g) θ1 = Sθ2(Sθ1(g)) θ1 θ2

Therefore

Sθ1θ2 (g) = Sθ1Sθ2(g)

By applying this to θ1 = θ and θ2 = θ −1 it follows that

Sθ−1Sθ(g) = Sθ−1θ(g) = Sid(g) = g

SθSθ−1(f) = Sθθ−1(f) = Sid(f) = f

Theorem 7 (from scalar-free functions to scalar-free conjugates by multiplicative θ)

a) For any scalar-free function f : Rk → R with R =ℝ≥0, all of its conjugates by a multipli-
cative θ: R → R are also scalar-free.

b) More specifically, for any scalar-free function f, for any positive real number n the
function g defined by

g(V1, . . . , Vk) =
����������������
f (Vn

1 , . . . , Vn
k )

n
√

is a conjugate of f by the multiplicative function X → Xn and therefore is also scalar-
free.

a) All weighted euclidean functions are conjugates of linear functions by a multiplicative
function θ and therefore are scalar-free. In particular, this holds for all functions
eucln,λ(..).

Proof

a) If f(V1, … , Vk) scalar-free and θ multiplicative and g = θ −1 o f o θ, i.e.
g(V1,… , Vk) = θ −1(f(θ(V1),… , θ(Vk))

then:
g(αV1,… , αVk) = θ −1(f(θ(αV1),… , θ(αVk))

= θ −1(f(θ(α)θ(V1),… , θ(α)θ(Vk))
= θ −1(θ(α)f(θ(V1),… , θ(Vk))
= θ −1(θ(α))θ−1(f(θ(V1),… , θ(Vk)))
= α g(V1,… , Vk)

Therefore g is scalar-free.
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b) Substitute θ(X) = Xn and θ −1(X) = X(1/n), then

g(V1, . . . , Vk) = u−1(f (u(V1), . . . , u(Vk)) =
����������������
f (Vn

1 , . . . , Vn
k )

n
√

Then by a) this function is scalar-free.

c) When starting with a linear function in b), you get a weighted Euclidean function.

Theorem 8 (from linear to scalar-free conjugates by log-like θ)

a) For any normalised linear function all of its conjugates by a log-like θ are scalar-free
b) More specifically, for any normalised linear function f, the function g defined by

g(V1, . . . , Vk) = exp (f ( log (V1), . . . , log (Vk)))

is a conjugate of a linear function by the standard log-like function θ = log and there-
fore is scalar-free.

c) All weighted geometric mean functions are conjugates of a normalised linear func-
tion by a log-like function θ and therefore are scalar-free. In particular, this also
holds for all functions sgeomeanλ(..).

Proof

a) If f(V1, … , Vk) linear and normalised and θ log-like and g = θ −1 o f o θ, i.e.
g(V1,… , Vk) = θ −1(f(θ(V1),… , θ(Vk))

then g is scalar-free:
g(αV1,… , αVk) = θ−1(f(θ(αV1),… , θ(αVk))

= θ−1(f(θ(α)+θ(V1),… , θ(α)+θ(Vk))
= θ−1(f(θ(α),… , θ(α)) + f(θ(V1),… , θ(Vk)))
= θ−1(f(θ(α),… , θ(α))) * θ−1(f(θ(V1),… , θ(Vk)))
= θ−1(θ(α)) * g(V1),… , Vk)
= α g(V1),… , Vk)

b) If

f(V1,… , Vk) = w1 V1 +… + wk Vk

then

g(V1, . . . , Vk) = exp (w1 log (V1) + . . .+ wk log (Vk))

= V
w1

1 . . . . Vwk
k

c) This immediately follows from b). As sgeomeanλ(..) is the weighted geometric func-
tion sgeomean1(..) times a constant factor, it is also scalar-free.
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