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A continuous-time distributed generalized Nash equilibrium seeking
algorithm over networks for double-integrator agents

Mattia Bianchi and Sergio Grammatico

Abstract— We consider a system of single- or double-
integrator agents playing a generalized Nash game over a
network, in a partial-information scenario. We address the
generalized Nash equilibrium seeking problem by designing
a fully-distributed dynamic controller, based on continuous-
time consensus and primal-dual gradient dynamics. Our main
technical contribution is to show convergence of the closed-loop
system to a variational equilibrium, under strong monotonicity
and Lipschitz continuity of the game mapping, by leveraging
monotonicity properties and stability theory for projected
dynamical systems.

I. INTRODUCTION

Generalized Nash equilibrium (GNE) problems arise in
several network systems, where multiple selfish decision-
makers, or agents, aim at optimizing their individual, yet
inter-dependent, objective functions, subject to shared con-
straints. Engineering applications include demand-side man-
agement in the smart grid [1], charging/discharging of elec-
tric vehicles [2], formation control [3] and communication
networks [4]. From a game-theoretic perspective, the aim
is to design distributed GNE seeking algorithms, using the
local information available to each agent. Moreover, in the
cyber-physical systems framework, games are often played
by agents with their own dynamics [5], [3], and controllers
have to be conceived to steer the physical process to a
Nash equilibrium, while ensuring closed-loop stability. This
stimulates the development of continuous-time schemes [6],
[7], for which control-theoretic properties are more easily
unraveled.

Literature review: A variety of different methods have
been proposed to seek GNE in a distributed way [8], [9],
[10]. These works refers to a full-information setting, where
each agent can access the decision of all other agents, for
example if a coordinator broadcasts the data to the network.
Nevertheless, there are applications where the existence of
a central node must be excluded and each agent only relies
on the information exchanged over a network, via peer-to-
peer communication. To deal with this partial-information
scenario, payoff-based algorithms for Nash equilibrium (NE)
seeking have been studied, [11], [3]. In this paper, we are
instead interested in a different, model-based, approach. We
assume that the agents agree on sharing their strategies with
their neighbors; each agent keeps an estimate of other agents’
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actions and asymptotically reconstructs the true values, ex-
ploiting the information exchanged over the network. This
solution has been examined extensively for games without
coupling constrains, both in discrete time [12], [13], and
continuous-time [6], [14]. However, fewer works deal with
generalized games. Remarkably, Pavel in [15] derived a
single-timescale, fixed step sizes GNE learning algorithm,
by leveraging an elegant operator splitting approach. The
authors in [16] proposed a continuous-time design for ag-
gregative games with equality constraints. All the results
mentioned above consider single-integrator agents only. Dis-
tributively driving a network of more complex physical
systems to game theoretic solutions is still a relatively un-
explored problem. With regard to aggregative games, a pro-
portional integral feedback algorithm was developed in [5]
to seek a NE in networks of passive nonlinear second-order
systems. In [17], continuous-time gradient-based controllers
were introduced, for some classes of nonlinear systems
with uncertainties. The authors of [3] considered generally
coupled costs games played by linear time-invariant agents,
via a discrete-time extremum seeking approach. NE problems
arising in systems of multi-integrator agents, in the presence
of deterministic disturbances, were addressed in [18]. In all
the references cited, the assumption is made of unconstrained
action sets and absence of coupling constraints.

Contribution: Motivated by the above, in this paper we
investigate continuous-time GNE seeking for networks of
single- or double-integrator agents. We consider games with
affine coupling constraints, played under partial-decision
information. Specifically:
• We introduce a primal-dual projected-gradient controller

for single-integrator agents, which is a continuous-time
version of the one proposed in [15]. We show convergence
of both primal and dual variables, under strong mono-
tonicity and Lipschitz continuity of the game mapping,
We are not aware of other continuous-time GNE seeking
algorithms for games with generally coupled costs, whose
convergence is guaranteed under such mild assumptions.
With respect to the setup (for aggregative game only) in
[16], we can also handle inequality constraints.

• We show how our controller can be adapted to learning
GNE in games with shared constraints, played by double-
integrator agents. To the best of our knowledge, this is the
first equilibrium-seeking algorithm for generalized games
where the agents have second-order dynamics.

Basic notation: R (R≥0) denotes the set of (nonnegative)
real numbers. 0 (1) denotes a matrix/vector with all elements
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equal to 0 (1); we may add the dimension as subscript for
clarity. ‖·‖ denotes the Euclidean norm. In ∈ Rn×n denotes
the identity matrix of dimension n. For a matrix A ∈ Rn×m,
its transpose is A>, [A]i,j represents the element on the row
i and column j. A⊗B denotes the Kronecker product of the
matrices A and B. A � 0 stands for symmetric positive def-
inite matrix. If A is symmetric, λmin(A) := λ1(A) ≤ · · · ≤
λn(A) =: λmax(A) denote its eigenvalues. Given N vectors
x1, . . . , xN , x := col (x1, . . . , xN ) = [x>1 . . . x

>
N ]>, and for

each i = 1, . . . , N , x−i := col (x1, . . . , xi−1, xi+1, . . . , xN ).
For a differentiable function g : Rn → R, ∇xg(x) denotes
its gradient.

Operator-theoretic definitions: H denotes the closure of a
set H ⊆ Rn. A set-valued mapping F : Rn ⇒ Rn is (µ-
strongly) monotone if (u − v)>(x − y) ≥ 0 (≥ µ‖x − y‖2)
for all x 6= y ∈ Rn, u ∈ F(x), v ∈ F(y). Given a closed,
convex set S ⊆ Rn, the mapping projS : Rn → S denotes
the projection onto S, i.e., projS(v) := argminy∈S ‖y − v‖.
The set-valued mapping NS : Rn ⇒ Rn denotes the
normal cone operator for the the set S, i.e., NS(x) = ∅
if x /∈ S,

{
v ∈ Rn | supz∈S v

>(z − x) ≤ 0
}

otherwise.
The tangent cone of S at a point x ∈ S is defined
as TS(x) =

⋃
δ>0

1
δ (S − x). ΠS(x, v) := projTS(x)(v)

denotes the projection on the tangent cone of S at x of a
vector v ∈ Rn. By Moreau’s Decomposition Theorem [19,
Th. 6.30], it holds that v = projTS(x)(v)+projNS(x)(v) and
projTS(x)(v)>projNS(x)(v) = 0.

Lemma 1: For any closed convex set S ⊆ Rq , any y, y′ ∈
S and any ξ ∈ Rq , it holds that

(y − y′)>ΠS (y, ξ) ≤ (y − y′)>ξ.

In particular, if ΠS(y, ξ) = 0, then (y − y′)>ξ ≥ 0. �

Proof: By Moreau’s theorem, (ξ −ΠC(y, ξ)) ∈ NS(y),
hence for any y, y′ ∈ C, (y′ − y)>(ξ −ΠC(y, ξ)) ≤ 0.

II. MATHEMATICAL SETUP

We consider a set of noncooperative agents, I :=
{1, . . . , N}, where each agent i ∈ I shall choose its
decision variable (i.e., strategy) xi from its local decision
set Ωi ⊆ Rni . Let x = col((xi)i∈I) ∈ Ω denote the stacked
vector of all the agents’ decisions, Ω = ×i∈IΩi ⊆ Rn
the overall action space and n :=

∑N
i=1 ni. Moreover, let

x−i = col((xj)j∈I\{i}) denote the collective strategy of the
all the agents, except that of agent i. The goal of each agent
i ∈ I is to minimize its objective function Ji(xi, x−i) which
depends on both the local variable xi and on the decision
variables of the other agents x−i.

Furthermore, we consider generalized games, where the
agents’ strategies are also coupled via some shared affine
constraints. Thus the overall feasible set is

X := Ω ∩ {x ∈ Rn | Ax ≤ b} , (1)

where A := [A1, . . . , AN ] and b :=
∑N
i=1 bi, with Ai ∈

Rm×ni and bi ∈ Rm being local data. The game then is

represented by the inter-dependent optimization problems:

∀i ∈ I : argmin
yi∈Rni

Ji(yi, x−i) s.t. (yi, x−i) ∈ X . (2)

The technical problem we consider in this paper is the
computation of a GNE, i.e., a set of strategies from which
no agent has an incentive to unilaterally deviate.

Definition 1: A collective strategy x∗ = col ((x∗i )i∈I) is
a generalized Nash equilibrium if, for all i ∈ I,

x∗i ∈ argmin
yi

Ji
(
yi, x

∗
−i
)

s.t. (yi, x
∗
−i) ∈ X .

Next, we postulate standard regularity assumptions for the
constraint sets and cost functions, [15, Ass. 1], [14, Ass. 1].

Standing Assumption 1: For each i ∈ I, the set Ωi is
non-empty, closed and convex; X is non-empty and satisfies
Slater’s constraint qualification; Ji is continuously differen-
tiable and Ji (·, x−i) is convex for every x−i. �

Among all the possible GNEs, we focus on the subclass
of variational GNE (v-GNE) [20, Def. 3.11]. Under the
previous assumption, x∗ is a v-GNE of the game in (2)
if and only if there exist a dual variable λ∗ ∈ Rm such
that the following Karush-Kuhn-Tucker (KKT) conditions
are satisfied [20, Th. 4.8]:

0n ∈ F (x∗) +A>λ∗ + NΩ (x∗)

0m ∈ − (Ax∗ − b) + Nm
R≥0

(λ∗) ,
(3)

where F is the pseudo-gradient mapping of the game:

F (x) := col ((∇xiJi(xi, x−i))i∈I) . (4)

We will assume strong monotonicity of the pseudo-gradient
[6, Ass. 2], [10, Ass. 3], [14, Ass. 4], which is a sufficient
condition for the existence of a unique v-GNE for the
game in (2) [21, Th. 2.3.3]. This condition requires strong
convexity of the functions Ji(·, x−i), for every x−i, but not
necessarily convexity of Ji in its full argument.

Standing Assumption 2: The pseudo-gradient mapping in
(4) is µ-strongly monotone and θ0-Lipschitz continuous, for
some µ, θ > 0: for any pair x, y ∈ Rn, (x − y)>(F (x) −
F (y)) ≥ µ‖x− y‖2 and ‖F (x)− F (y)‖ ≤ θ0‖x− y‖. �

III. DISTRIBUTED GENERALIZED EQUILIBRIUM SEEKING

In this section, we consider the game in (2), where each
agent is associated with a dynamical system:

∀i ∈ I : ẋi = ΠΩi (xi, ui) , xi(0) ∈ Ωi. (5)

Our aim is to design the inputs ui to seek a v-GNE in a
fully distributed way. Specifically, agent i does not have
full knowledge of x−i, and only relies on the information
exchanged locally with neighbors over a communication
network G(I, E), with weighted symmetric Laplacian L ∈
RN×N . The unordered pair (i, j) belongs to the set of edges,
E , if and only if agent j and i can exchange information.

Standing Assumption 3: The communication graph
G(I, E) is undirected and connected. �

To cope with partial-information, each agent keeps an
estimate of all other agents’ actions. We denote xi =
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Algorithm 1 Distributed GNE seeking

ẋi = ΠΩi (xi, ui)

ui = −
(
∇xiJi(xi,xi−i) +A>i λi + c

∑
j∈Ni wij(xi − x

j
i )
)

ẋi−i = −c
∑
j∈Ni wij(x

i
−i − x

j
−i)

żi =
∑
j∈Ni wij(λi − λj)

λ̇i = ΠRm≥0

(
λi, Aixi − bi −

∑
j∈Ni

wij (zi − zj + λi − λj)
)

col((xij)j∈I) ∈ RNn, where xii := xi and xij is i’s estimate
of agent j’s action, for all j 6= i; xj−i = col((xj`)`∈I\{i}).
Also, each agent keeps an estimate λi ∈ Rm≥0 of the La-
grangian multiplier and an auxiliary variable zi ∈ Rm to al-
low for distributed consensus of the multiplier estimates. Our
closed-loop dynamics are shown in Algorithm 1, where c > 0
is a global constant parameter, W = [wij ]i,j∈{1,...,N} ∈
RN×N is the weighted adjacency matrix of the graph G,Ni is
the set of neighbors of agent i and xi−i(0) ∈ Rn−ni , λi(0) ∈
Rm≥0, zi(0) ∈ Rm can be chosen arbitrarily.

The agents exchange {xi, zi, λi} with their neighbors
only, therefore the controller can be implemented distribut-
edly. In steady state, the agents should agree on their
estimates, i.e., xi = xj , λi = λj , for all i, j ∈ I. This
motivates the presence of consensual terms for both the
primal and dual variables. We denote Eq := {y ∈ RNq :
y = 1N ⊗ y, y ∈ Rq} the consensual subspace of dimension
q, for some q > 0, and E⊥q its orthogonal complement.
Specifically, En is the estimate consensus subspace and Em

is the multiplier consensus subspace. To write the dynamics
in compact form, let us define x = col((xi)i∈I), and, as in
[15, Eq. 13-14], for all i ∈ I,

Ri :=
[

0ni×n<i Ini 0ni×n>i
]
, (6a)

Si :=

[
In<i 0n<i×ni 0n<i×n>i

0n>i×n<i 0n>i×ni In>i

]
, (6b)

where n<i :=
∑
j<i,j∈I nj , n>i :=

∑
j>i,j∈I nj . In simple

terms, Ri selects the i-th ni dimensional component from an
n-dimensional vector, while Si removes it. Thus, Rixi = xi
and Sixi = xi−i. We define R := diag ((Ri)i∈I), S :=
diag ((Si)i∈I). It follows that x = Rx, col((xi−i)i∈I) =
Sx ∈ R(N−1)n, and x = R>x + S>Sx. Let λ :=
col((λi)i∈I), Λ := diag ((Ai)i∈I), b := col ((bi)i∈I),
Lx := L ⊗ In, Lλ := L ⊗ Im, z := col ((zi)i∈I). Further,
we define the extended pseudo-gradient mapping F as:

F (x) := col
(
(∇xiJi

(
xi,x

i
−i
)
)i∈I

)
. (7)

The overall closed-loop system, in compact form, reads as:

ẋ =R>ΠΩ

(
Rx,−

(
F (x) + Λ>λ+ cRLxx

))
+

S> (−cSLxx) (8a)
ż =Lλλ (8b)

λ̇ =ΠRNm≥0
(λ, (ΛRx− b −Lλλ−Lλz)). (8c)

The following Lemma relates the equilibria of the system in
(8) to the v-GNE of the game in (2).

The proof is analogous to [15, Th. 1], hence it is omitted.
Lemma 2: The following statements hold:
i) Any equilibrium point ω̄ = col

(
x̄, z̄, λ̄

)
of the dynam-

ics in (8) is such that x̄ = 1N ⊗ x∗, λ̄ = 1N ⊗ λ∗,
where the pair (x∗, λ∗) satisfies the KKT conditions in
(3), hence x∗ is the v-GNE of the game in (2);

ii) The set of equilibrium points of (8) is nonempty. �

Remark 1: When considering Algorithm 1 in absence of
coupling constraints, we retrieve the controller in [6, Eq. 47].
In Algorithm 1, each agent evaluates the gradient of its cost
function in its local estimate, not on the actual collective
strategy. In fact, only when the estimates belong to the con-
sensus subspace, i.e., x = 1⊗x (i.e., the estimate xi of each
agent coincide with the real actions x, for example in the case
of full-information), we have that F (x) = F (x). It follows
that the operator R>F is not necessarily monotone, not even
if the pseudo gradient F in (4) is strongly monotone, as in
Standing Assumption 2. This is the main technical difficulty
that arises in (G)NE problems under partial-information. �

Lemma 3: The extended pseudo-gradient mapping F in
(7) is θ-Lipschitz continuous, for some µ ≤ θ ≤ θ0: for any
x,y ∈ RNn, ‖F (x)− F (y)‖ ≤ θ‖x− y‖. �

Proof: See Appendix VI-A.
Under Lipschitz continuity of F , the work [15] showed

the following restricted strong monotonicity property, which
is crucial to prove convergence of the dynamics in (8).

Lemma 4 ([15, Lem. 3]): Let

M :=

[
µ
N − θ0+θ

2
√
N

− θ0+θ

2
√
N

cλ2(L)− θ

]
, c := (θ0+θ)2+4µθ

4µλ2(L) . (9)

For any c > c, for any x and any x′ ∈ En, it holds that
M� 0 and that

(x− x′)>
(
R> (F (x)− F (x′)) + cLx (x− x′)

)
≥ λmin(M) ‖x− x′‖2 .

By leveraging Lemma 4, we can now prove the main result
of this section, i.e., the convergence of the dynamics in (8)
to a v-GNE.

Theorem 1: Let c > c, with c as in (9), and let Ω :=
{x ∈ RNn | Rx ∈ Ω}. For any initial condition in
Ξ = Ω× RmN × RmN≥0 , the dynamics in (8) have a unique
Carathéodory solution, which belongs to Ξ for all t ≥ 0.
The solution converges to an equilibrium col

(
x̄, z̄, λ̄

)
, with

x̄ = 1N⊗x∗, λ̄ = 1N⊗λ∗, where the pair (x∗, λ∗) satisfies
the KKT conditions in (3), hence x∗ is the v-GNE of the
game in (2). �

Proof: See Appendix VI-B.
Remark 2: In Algorithm 1, each agent keeps and ex-

changes an estimate of the strategies of all other agents. Thus,
the computation and communication costs increase with the
number of agents. An open research direction is to design
dynamics that allow each agent to estimate the strategies of
only some of its competitors, when the inference graph is
sparse (i.e., when the cost of each agent only depends on
the action of a limited subset of other agents). �
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IV. DOUBLE-INTEGRATOR AGENTS

In this section, we make the following additional assumption.

Assumption 1 ([18, Ass. 1]): Ω = Rn. �

Moreover, we model each agent as a double integrator:

∀i ∈ I :

{
ẋi =vi

v̇i =ui,

(10a)
(10b)

where (xi, vi) is the state of agent i, and ui ∈ Rni its control
input. Our objective is to drive the agents’ actions, i.e., the xi
coordinates of their state, to a v-GNE of the game in (2). We
emphasize that in (10) we cannot directly control the agent’s
action. Moreover, at steady state, the velocities vi of all
the agents must be zero. This scenario has been considered
recently in [18], for games without coupling constraints.

In (10), we consider the input ui = 1
hi

(ũi − vi), where
hi > 0 is a positive scalar and ũi has to be chosen
appropriately, for all i ∈ I; moreover, as in [18], let us
define the coordinates transformation

ζi := xi + hivi. (11)

The quantity ζi can be interpreted as a prediction of the
position of agent i, given a forward step hi. The closed-loop
system in the new coordinates then reads as

∀i ∈ I :

{
v̇i = 1

hi
(ũi − vi)

ζ̇i =ũi.

(12a)

(12b)

We note that the dynamics of the variable ζi in (12b),
under Assumption 1, are identical to the single-integrator
in (5), with translated input ũi. As such, we are are able
to design the input ũi, according to Algorithm 1, to drive
ζ := col((ζi)i∈I) to an equilibrium ζ̄ = x∗, where x∗

is the v-GNE for the game in (2). Moreover, the velocity
dynamics (12a) are Input-to-state-stable (ISS) with respect to
the input ui [22, Lemma 4.6]. Finally, we remark that, at any
equilibrium of (10), vi = 0ni , hence ζi = xi, for all i ∈ I.
Building on this considerations, we propose Algorithm 2 to
drive the double-integrator agents (10) towards a v-GNE.

Differently from Algorithm 1, the agents are not keeping
an estimate of other agents’ actions, but of other agents
predictions. Here, ζi = col((ζij)j∈I), and ζij represents
agent i’s estimation of the quantity ζj = xj+hjvj for j 6= i,
while ζii := xi + hivi = ζi. Let us denote ζ = col((ζi)i∈I),
ζj−i = col((ζj`)`∈I\{i}), H = diag((hiIni)i∈I).

Algorithm 2 Distributed GNE seeking (double-integrators)

ẋi =vi, v̇i = ui

ui =− 1
hi

(
∇xiJi(ζ

i
i, ζ

i
−i) +A>i λi

+ c
∑
j∈Ni wij(ζ

i
i − ζ

j
i )
)
− 1

hi
vi

ζ̇
i

−i =−
∑
j∈Ni wij(ζ

i
−i − ζ

j
−i), ζii = xi + hivi

żi =
∑
j∈Ni wij(λi − λj)

λ̇i =ΠRm≥0

(
λi, Aiζ

i
i − bi −

∑
j∈Ni

wij(zi − zj + λi − λj)
)

In compact form, the closed-loop system reads as

ẋ =v (13a)

Hv̇ =− (F (ζ) + Λ>λ+ cRLxζ)− v (13b)

Sζ̇ =− cSLxζ, Rζ = x+Hv (13c)
ż =Lλλ (13d)

λ̇ =ΠRNm≥0
(λ, (ΛRζ − b −Lλλ−Lλz)). (13e)

Theorem 2: Let Assumption 1 hold. For any initial condi-
tion with λ(0) ∈ RmN≥0 , the equations in (13) have a unique
Carathéodory solution, such that λ(t) ∈ RNm≥0 , for all t ≥ 0.
The solution converges to an equilibrium col

(
x̄, v̄, ζ̄, z̄, λ̄

)
,

with x̄ = x∗, v̄ = 0n, ζ̄ = 1N ⊗ x∗, λ̄ = 1N ⊗ λ∗, where
the pair (x∗, λ∗) satisfies the KKT conditions in (3), so x∗

is a v-GNE for the game in (2). �
Proof: See Appendix VI-C.

Algorithm 2 is derived by choosing ũi in (12) according
to Algorithm 1. The proof of Theorem 2 is not based on the
specific structure of Algorithm 1, but only on its convergence
properties, hence the result still holds if another controller
with similar features is selected in place of Algorithm 1.
In [18], the authors addressed NE problems and chose the
inputs ũi according to the algorithm presented in [6, Eq. 47].
The controller in [6] achieves exponential convergence to a
NE, hence ISS with respect to possible additive disturbances
[22, Lemma 4.6]. Therefore, in [18], the authors were able
to tackle the presence of deterministic disturbances, via
an asymptotic observer and by leveraging ISS arguments.
We have not guaranteed this robustness, i.e., exponential
convergence, for the primal-dual dynamics in (8). However,
the controller in [18] is designed for games without any
constraints (local or shared). On the contrary, the controller
in Algorithm 2 drives the system in (10) to a v-GNE of a
generalized game, and ensures for the coupling constraints to
be satisfied asymptotically. Also, like in [18], we assumed the
absence of local constraints (Assumption 1). Nevertheless,
if some are present, they can be included in the coupling
constraints, hence dualized and satisfied asymptotically.

V. NUMERICAL EXAMPLE: MOBILE SENSOR NETWORK

We consider a numerical example, inspired by connectivity
control problems for sensor networks [3], [18]. Each of five
agent is represented by a robot/vehicle, moving in a plane,
designed to optimize some private primary objective related
to its position, provided that overall connectivity is preserved
over the network. For each agent i ∈ I = {1, . . . , 5}, its cost
function is Ji (pi, p−i) := p>i pi + p>i ri +

∑
j∈I ‖pi − pj‖

2
,

with pi = col(xi, yi) its cartesian coordinates, ri ∈ R2

a local parameter. We assume the local constraints 0.1 ≤
yi ≤ 0.5, ∀i ∈ I. In order for all the agents to main-
tain communication with their neighbors, we impose the
Chebyschev distance between any two neighboring robots to
be smaller than 0.2m. Hence the (affine) coupling constraints
are represented by max{|xi−xj |, |yi− yj |} ≤ 0.2,∀(i, j) ∈
E . As common for autonomous vehicles, we model the agents
as single- or double-integrators.
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Fig. 1. Results of Alg. 1 for single- and double-integrator agents.
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Fig. 2. Velocity-actuated and force-actuated robots trajectories.

Velocity-actuated robots: each agent is modeled as in (5)
and we apply Algorithm 1.

Force-actuated robots : Each agent has a dynamic as in
(10), under Algorithm 2. The local constraints are dualized
and will be satisfied asymptotically (see Section IV).

The initial conditions are chosen randomly and we fix c =
30 to satisfy the condition in Theorem 1. Figure 1 illustrates
the results for the two cases and shows convergence the
GNE of the game and asymptotic satisfaction of the coupling
constraints. Finally, in Figure 2, we compare the trajectories
of the five robots in the velocity-actuated and force-actuated
scenario. In the two cases, the agents are converging to
the same, unique v-GNE. However, the local constraints
are satisfied along the whole trajectory for single integrator
agents, only asymptotically for the double integrator agents.

VI. CONCLUSION AND OUTLOOK

Generalized games played by double-integrator agents
can be solved via a fully distributed primal-dual projected-
pseudogradient dynamic controller, if the game mapping is
strongly monotone and Lipschitz continuous. Seeking an
equilibrium in games with compact action sets or constrained
dynamics is currently an unexplored problem. The extension
of our results to networks of heterogeneous dynamical sys-
tems is left as future research.

APPENDIX

A. Proof of Lemma 3

Let us define x = col((xi)i∈I), y = col((yi)i∈I). By
Standing Assumption 2, we have, for all i ∈ I, ‖∇xiJi(xi)−
∇xiJi(yi)‖ ≤ ‖F (xi) − F (yi)‖ ≤ θ0‖xi − yi‖. Therefore
it holds that

‖F (x)− F (y)‖2 =
∑
i∈I ‖∇xiJi(xi)−∇xiJi(yi)‖2

≤ θ2
0

∑
i∈I ‖xi − yi‖2 = θ2

0‖x− y‖2.

That θ ≥ µ follows by choosing Sx = Sy, x 6= y.

B. Proof of Theorem 1

Under Standing Assumption 3, we have, for any q > 0,

Null (L⊗ Iq) = Range (1N ⊗ Iq) = Eq. (14)

We first rewrite the dynamics as

ω̇ = ΠΞ(ω,−B(ω)− Φω), (15)

where ω = col (x, z,λ),

Φ =

[
0 0 R>Λ>

0 0 −Lλ
−ΛR Lλ 0

]
, B(ω) =

[
R>F (x)+cLxx

0Nm
Lλλ+b

]
.

B is Lipschitz continuous by Standing Assumption 2 and Ξ is
closed and convex by Standing Assumption 1. We conclude
that that there exists a unique Carathéodory solution to (15),
that belongs to Ξ for every t ≥ 0, Consider the quadratic
Lyapunov function

V (ω) = 1
2‖ω − ω̄‖

2,

where ω̄ := col(x̄, z̄, λ̄) is any equilibrium of (8). We
remark that, by Lemma 2, an equilibrium exists, and x̄ =
1N ⊗ x∗, λ̄ = 1N ⊗ λ∗, with (x∗, λ∗) satisfying the KKT
conditions in (3). We can apply Lemma 1 to obtain

V̇ (ω) :=∇V (ω)ω̇ = (ω − ω̄)>ΠΞ(ω,−B(ω)− Φω)

≤(ω − ω̄)>(−B(ω)− Φω). (16)

By Lemma 1, it also holds that (ω−ω̄)>(−B(ω̄)−Φω̄) ≤ 0.
By subtracting this term from (16), we obtain

V̇ ≤ −(ω − ω̄)> (B(ω)− B(ω̄) + Φ(ω − ω̄))

=− (x− x̄)>R> (F (x)− F (x̄))

− (x− x̄)>cLx(x− x̄)− (λ− λ̄)>Lλ(λ− λ̄),
(17)

where, in the last equality, we used that, Φ> = −Φ. By (14)
and [19, Cor. 18.16], we have that (λ − λ̄)>Lλ(λ − λ̄) ≥

1
2λmax(L)‖Lλλ‖

2. Finally, by Lemma 4, we obtain

V̇ ≤ −λmin(M)‖x− x̄‖2 − 1
2λmax(L)‖Lλλ‖

2 ≤ 0, (18)

with M � 0 as in (9). By noticing that V is radially
unbounded, we conclude that the solution to (8) is bounded.
Besides, by [14, Th. 2], the solution converges to the largest
invariant set O contained in Z := {ω s.t. V̇ (ω) = 0}.

We first characterize any point col(x̂, ẑ, λ̂) ∈ Z , for
which the quantities in (16)-(18) must be zero. By (18),
x̂ = x̄ = 1N ⊗ x∗, and λ̂ ∈ Em, i.e. λ̂ = 1N ⊗ λ̂, for

1478

Authorized licensed use limited to: TU Delft Library. Downloaded on February 19,2021 at 08:42:17 UTC from IEEE Xplore.  Restrictions apply. 



some λ̂ ∈ Rm≥0. Also, by expanding (16), and by x̂ = x̄,
Lλλ̂ = 0, we have

0 = (λ̂− λ̄)>(ΛRx̄− b−Lλẑ) = (λ̂− λ∗)>(Ax∗ − b)

= λ̂>(Ax∗ − b) = λ̂
>

(ΛRx̄− b−Lλλ̂−Lλẑ), (19)

where in the second equality we have used (14) and the
fourth equality follows from the KKT conditions in (3). This
concludes the characterization of the set Z .

By invariance, any trajectory ω(t) = col(x(t), z(t),λ(t))
starting at any col(x, z,λ) ∈ O must lie in Z ⊃ O for
all t ≥ 0. Therefore, x(t) ≡ x̄ and λ(t) ∈ Em for all t.
Moreover, ż(t) = 0, for all t, by (8b), or z(t) ≡ z. Hence the
quantity v := (ΛRx(t)− b−Lλλ(t)−Lλz(t)) is constant
along the trajectory ω. Suppose by contradiction that vk > 0,
where vk denotes the k-th component of v. Then, by (8c),
λ̇(t)k = vk for all t, and λ(t) grows indefinitely. Since
all the solutions of (8) are bounded, this is a contradiction.
Therefore, v ≤ 0, and λ(t)>v = 0 by (19). Equivalently,
v ∈ NRNm≥0

(λ(t)), hence λ̇(t) = 0, for all t. We conclude
that all the points in the set O are equilibria.

The set Λ(ω0) of ω-limit points1of the solution to (8) start-
ing from any ω0 ∈ Ξ is nonempty (by Bolzano-Weierstrass
theorem, since all the trajectories of (8) are bounded) and
invariant (as in proof of [14, Lemma 5]). By V̇ ≤ 0 it follows
that V must be constant on Λ(ω0), hence Λ(ω0) ⊆ Z (see
proof of [14, Th.2]). Also Λ(ω0) is invariant, so Λ(ω0) ⊆
O. Since the distance to any equilibrium point along any
trajectory of (8) is non-increasing by (18), it follows that if
a solution of (8) has an ω-limit point at an equilibrium, then
the solution converges to that equilibrium.

C. Proof of Theorem 2

By applying the coordinate transformation x 7→ Rζ =
x+Hv to the system in (13), we obtain:

v̇ =−H−1(F (ζ) + Λ>λ+ cRLxζ)−H−1v (20a)

ζ̇ =−R>(F (ζ) + Λ>λ+ cRLxζ)− cS>SLxζ (20b)
ż =Lλλ (20c)

λ̇ =ΠRNm≥0
(λ, (ΛRζ − b −Lλλ−Lλz)). (20d)

The system (20) is in cascade form for (20a) with respect
to (20b)-(13d). Notice also that, under Assumption 1, the
subsystem (20b)-(13d) is exactly (8). Hence, there exists a
unique solution to (20b)-(13d), that is bounded and converges
to an equilibrium point col (1N ⊗ x∗, z̄,1N ⊗ λ∗), where
the pair (x∗, λ∗) satisfies the KKT conditions in (3), by
Theorem 1. On the other hand, the dynamic (20a) is ISS with
respect to the input ũ := −H−1(F (ζ) + Λ>λ + cRLxζ)
[22, Lemma 4.6], and this input is bounded, by boundedness
of the trajectory (ζ,k, z,λ) and Lemma 3. Moreover, since
ζ̄ = 1N ⊗ x∗, λ̄ = 1N ⊗ λ∗, by the KKT conditions in (3)
and by continuity, we have ũ → 0n for t → ∞. Therefore,
v(t) → 0n for t → ∞ [22, Ex. 4.58]. By definition of
ζi = Riζi in (11), we can also conclude that x→ x∗.

1z : [0,∞) → Rn has an ω-limit point at z̄ if there exists a nonnegative
diverging sequence {tk}k∈N such that z (tk) → z̄.
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