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SUMMARY

S
WARMS of tiny Micro Aerial Vehicles (MAVs) are widely sought after in both research

and industry. Pocket drones, which fit on the palm of your hand, are small, agile and

inherently safe. This makes them suitable for several surveillance tasks such as search

and rescue, green-house monitoring and pipe-line inspection. In order for a more ef-

ficient search, a swarm of pocket drones would be ideal to explore these types of ar-

eas faster. For these exploration tasks in GPS-deprived environments, communication

signals over a large distance will be of low quality due to disturbance and interference,

therefore the pocket drones cannot make use of human pilots and/or an external com-

puter that is able to choreograph their every movement. Localization systems like GPS

or motion-capture systems will not be available in these missions. The swarm of pocket

drones must be completely autonomous and only use their on-board sensing and pro-

cessing capabilities. Current methods and techniques like Simultaneous Localization

and Mapping (SLAM), will not be suitable due to their extensive requirements for the

platform’s computational capabilities and memory storage. This dissertation will there-

fore focus on designing a new strategy for a swarm of pocket drones for both low-level

and high-level navigation in an indoor environment.

The first part of this dissertation focuses on the low-level-navigation capabilities of

the swarm of pocket drones, by first looking at the individual. We developed Edge-Flow,

which was able to run on-board an STM32F4-based stereo-camera for the detection of

optical flow. A pocket drone with a downward-facing stereo-camera was able to esti-

mate its own velocity. It was able to use the measurement directly in its own velocity-

based control loop and was able to match it with externally given velocity commands.

We extended Edge-Flow to Edge-FS (Flow & Stereo), which enabled the stereo-camera to

detect both obstacles and the drone’s velocity at the same time. This was implemented

on a pocket drone with a forward-facing stereo-camera and we showed its capabilities in

a typical office-like room. Here it was able to detect and control its ego-motion and avoid

obstacles with a simple finite state machine, and therefore was able to fly autonomously.

A further necessity for swarm operations is for multiple pocket drones to avoid each

other. An on-board relative localization scheme based on the Received Signal Strength

Intensity (RSSI) of the inter-drone communication was developed to make this possible.

Two pocket drones with a downward-facing stereo-camera were communicating with

each other by means of Bluetooth and by fusing the RSSI with their velocity (estimated by

Edge-Flow), they were able to estimate each other’s relative position and perform inter-

drone avoidance. This on-board localization scheme was combined with the capabilities

of Edge-FS. Two pocket drones with a forward-facing stereo-camera now were able to

detect static obstacles and detect each other’s position at the same time. Both obstacles

and drones were added to a collision disk on-board each drone, which indicated the safe

directions to go to. With this, two pocket drones were able to fly together in a room while

avoiding the walls and each other.

ix



x SUMMARY

The second part of this dissertation focuses on high-level-navigation. Since conven-

tional navigation strategies cannot fit on-board the pocket drones, we investigated an

alternative method: bug algorithms. This type of navigation does not require a map and

uses very little memory. The robot has a general goal to navigate towards and once it

hits an obstacle, it will follow its boundary until the path towards the goal is clear again.

We present a literature survey of the existing techniques and evaluation on their suit-

ability for deployment for real-world scenarios. We tested a selection of bug algorithms

in a simulation, which reenacted different types of on-board sensor values. Here we

found that bug-algorithms over-relied on a perfect positioning system. With increasing

sensor errors and estimation drift, all existing bug algorithms’ performances decreased.

This provided us valuable insights for the design of a novel bug algorithm for high-level-

navigation.

Finally, we developed and demonstrated a bug-algorithm-based navigation strategy

for multiple pocket drones for indoor exploration and homing. We named this technique

the swarm gradient bug algorithm (SGBA) and it enabled the pocket drones to explore

a floor of an inside building and return to its original position by the RSSI-gradient of a

radio beacon. Once two pocket drones come into each other’s proximity, one will avoid

the other and coordinate its own preferred search direction based on the information it

has received (from the other). On the 11th floor of the high-rise building of the Aerospace

faculty of TU Delft, up to 6 pocket drones explored the area and returned to their initial

position. This is the first time that such a complex task has been performed by a swarm of

MAVs of this size. Moreover, we showed an application experiment of a "victim" search

task, where 4 pocket drones equipped with cameras searched and found two colored

wooden figures in the rooms.

We were able to achieve the main objective of this dissertation with SGBA on the

pocket drones. The current solution still relies on a beacon, albeit only at the base sta-

tion and not for positioning. Future work should study navigation methods that do not

rely on any external elements. Throughout this dissertation, an important lesson we

learned is that more capabilities inevitably require more sensors / processing / energy,

which with current technology translates to less flight time. Future researchers into this

topic should be aware of this important trade-off for future implementations on pocket

drones.



SAMENVATTING

Z
WERMEN van kleine Micro Aerial Vehicles (MAV’s, microluchtvaartuigen) zijn zeer

gewild in zowel academia als industrie. Pocket drones, die op een handpalm passen,

zijn snel, behendig en inherent veilig. Dit maakt ze geschikt voor verschillende surveil-

lancetaken zoals opsporings- en reddingstaken, het monitoren van kassen en inspectie

van pijpleidingen. Een zwerm pocket drones zou ideaal zijn om dit soort gebieden snel-

ler en efficiënter te verkennen. Bij dit soort verkenningstaken in GPS-arme gebieden

zijn communicatiesignalen die over lange afstanden worden verstuurd van lage kwali-

teit door verstoringen en interferentie. Hierdoor kunnen de pocket drones geen gebruik

maken van een menselijke piloot en/of externe computer die controle heeft over elke

beweging. Lokaliseringstechnieken zoals GPS of motion-capturesystemen zijn niet be-

schikbaar tijdens dit soort missies. De zwerm pocket drones moet volledig autonoom

zijn en kan enkel gebruik maken van de sensoren en rekenkracht die aan boord worden

meegenomen. Huidige methodes en technieken zoals Simultaneous Localization and

Mapping (SLAM, het gelijktijdig lokaliseren en maken van een kaart) zijn niet geschikt

door hun vereisten voor extensieve hoeveelheden rekenkracht en geheugenopslag. Dit

proefschrift zal zich daarom focussen op het ontwikkelen van een nieuwe strategie voor

pocket drones voor navigatie binnenshuis op zowel laag als hoog hiërarchisch niveau.

Het eerste deel van dit proefschrift focust op navigatiecapaciteiten van de zwerm

pocket drones op laag niveau door eerst te kijken naar het individu. We hebben Edge-

Flow ontwikkeld, een algoritme voor het detecteren van optische stroom (het bewegen

van objecten in een beeld) dat kan draaien op een STM32F4 gebaseerde stereocamera.

Een pocket drone met een naar beneden gerichte stereocamera was in staat zijn eigen

snelheid te schatten. Deze meting kon direct worden gebruikt als invoer in zijn eigen

snelheidsgebaseerde regelkring en de drone was in staat deze overeen te laten komen

met extern ingevoerde snelheidscommando’s. We hebben Edge-Flow uitgebreid naar

Edge-FS (Flow & Stereo), waarmee de stereocamera zowel obstakels kon detecteren als

de snelheid van de drone kon bepalen. Dit was geïmplementeerd op een pocket drone

met een naar voren gerichte stereocamera en we hebben diens capaciteiten gedemon-

streerd in een typische kantooromgeving. Hier was de drone in staat zijn eigen beweging

zowel te detecteren als te controleren. Hiernaast konden obstakels worden ontweken

met een eenvoudige eindigetoestandsautomaat, waardoor de drone autonoom kon vlie-

gen.

Een andere voorwaarde voor de operatie van een zwerm is de capaciteit van meer-

dere drones om elkaar te ontwijken. Om dit mogelijk te maken werd een relatief lo-

kalisatieconcept ontwikkeld, gebaseerd op Received Signal Strength Intensity (RSSI, de

intensiteit van het ontvangen signaal) van interdronecommunicatie. Twee pocket dro-

nes met een naar beneden gerichte stereocamera communiceerden met elkaar via Blue-

tooth. Door de RSSI te combineren met hun snelheid (geschat door Edge-Flow), waren

ze in staat elkaars relatieve positie te schatten en elkaar te ontwijken. Dit lokalisatiecon-

xi



xii SAMENVATTING

cept, dat aan boord kan worden verwerkt, werd gecombineerd met de mogelijkheden

van Edge-FS. Twee pocket drones met een naar voren gerichte stereocamera waren nu

in staat gelijktijdig statische obstakels alsmede elkaars positie te detecteren. Zowel ob-

stakels als andere drones werden toegevoegd aan een mogelijke-botsingsveld aan boord

van elke drone, waarmee richtingen die veilig waren om heen te vliegen werden aan-

geduid. Met dit systeem waren twee pocket drones in staat om samen in een kamer te

vliegen terwijl zij de muren en elkaar konden vermijden.

Het tweede deel van dit proefschrift focust op navigatie op hoog niveau. Daar con-

ventionele navigatiestrategieën niet aan boord van pocket drones kunnen worden ver-

werkt, onderzochten wij een alternatieve methode: bug-algoritmes. Dit type navigatie

is niet afhankelijk van een kaart en vraagt zeer weinig van het geheugen. De robot navi-

geert naar een algemeen doel en zodra het een obstakel treft volgt het diens randen tot

het pad richting het doel niet langer geblokkeerd is. We presenteren een literatuurstudie

van de bestaande technieken en een evaluatie van hun mogelijke geschiktheid voor toe-

passing in de echte wereld. We testten een selectie van bug-algoritmes in een simulatie

waarmee verschillende types sensordata van boordsystemen konden worden geëvalu-

eerd. Wij vonden dat bug-algoritmes teveel afhangen van een perfect positioneringssys-

teem. Met toenemende sensorfouten en meer afwijkende schattingen nam de prestatie

van alle bug-algoritmes af. Dit gaf ons waardevolle inzichten voor het ontwikkelen van

een nieuw bug-algoritme voor navigatie op hoog niveau.

Tenslotte hebben we een navigatiestrategie ontwikkeld en gedemonstreerd voor meer-

dere pocket drones voor verkenning en terugkeren binnen een gebouw, gebaseerd op

een bug-algoritme. We noemen deze techniek Swarm Gradient Bug Algorithm (SGBA,

zwerm gradiënt insect-algoritme) en het stelt de pocket drones in staat een verdieping

van een gebouw te verkennen en terug te keren naar hun originele positie door de RSSI-

gradiënt van een radiobaken. Zodra twee pocket drones in elkaars nabijheid kwamen,

ontwijkt één drone de andere, waarna hij een eigen geprefereerde zoekrichting coördi-

neerde op basis van de informatie die hij ontvangen heeft van de andere drone. Tot 6 dro-

nes verkenden een gebied op de 11e verdieping van de faculteit Aerospace Engineering

van de Technische Universiteit Delft waarna zij terugkeerden naar hun initiële positie.

Dit is de eerste keer dat zo’n complexe taak is uitgevoerd door een zwerm MAV’s van dit

formaat. Verder presenteren we een experiment waarin een toepassing wordt bestuurd

om "slachtoffers"te zoeken, waarbij 4 pocket drones uitgerust met camera’s zochten naar

twee houten, gekleurde figuren op de verdieping en deze wisten te lokaliseren.

We zijn er in geslaagd het hoofddoel van dit proefschrift te bereiken met SGBA op de

pocket drones. De huidige oplossing is nog altijd afhankelijk van een baken, ofschoon

enkel bij het basisstation en niet voor positionering. Toekomstig werk zou zich moeten

focussen op navigatiemethodes die onafhankelijk zijn van externe hulpmiddelen. Een

belangrijke les die als rode draad door dit proefschrift loopt is dat meer mogelijkheden

onvermijdelijk meer sensoren/rekenkracht/energie vereisen, wat zich met de huidige

techniek vertaalt in kortere vliegtijd. Toekomstige onderzoekers in dit veld moeten zich

bewust zijn van deze belangrijke afweging voor toekomstige implementaties op pocket

drones.
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H
ONEYBEES are one of nature’s most fascinating creatures. Even though they barely

fit on the tip of your finger and only have approximately 960,000 neurons in their

brain (Menzel and Giurfa, 2001), a single bee can explore a large field of flowers (Ca-

paldi et al., 2000). Yet, to search through an entire field by itself will take a long time.

The bee’s real strength lies in the collective, as a swarm can coordinate the exploration

more efficiently (Seeley, 2009). In the hive, individuals will point out the most profitable

flower patches to their fellow bees, by means of a waggle dance that most likely indi-

cates the direction, range and significance of various food-sources (Menzel and Greg-

gers, 2015, Reinhard and Srinivasan, 2009, Veeraraghavan et al., 2008). The most vividly

recommended nectar-source will most likely be revisited by the observing worker bees

(Menzel et al., 2012). With these skills, the swarm can search the entire field faster than

any single bee ever could (Milius, 2009).

One can imagine how useful a swarm of small Micro Air Vehicles (MAVs) could be

within society (Şahin, 2005, Yang et al., 2018). In this dissertation, we want to use such

(a) Ladybird frame with a Lisa-S autopilot (b) 3D printed frame with a Lisa-MXs au-

topilot

Figure 1.1: Examples of the pocket drones with a 4 g stereo-camera used in this dissertation.
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(a) Photoshopped search-and-rescue scenario (b) Photoshopped greenhouse monitoring sce-

nario.

Figure 1.2: Example of applications for pocket drones.

a swarm of small MAVs for the exploration of indoor environments. To achieve this, we

conducted experiments with pocket drones, which are tiny MAVs that fit in the palm of

your hand (Fig. 1.1). Their small size makes them able to pass through small windows or

holes (Mulgaonkar et al., 2015). For instance, as in Fig. 1.2a, they can explore a collapsed

building, find missing people, and explore a structure’s instability in search-and-rescues

scenarios (Tomic et al., 2012), which would prevent a human search-team to put their

lives unnecessarily at risk. Pocket drones would be valuable for greenhouse monitoring

as well (Primicerio et al., 2012), as their tiny size would make them unlikely to hurt any of

the plants or the workers walking underneath them (Fig. 1.2b), while nobody would feel

comfortable if a 3-kilo Unmanned Aerial Vehicle (UAV) with large rotor blades would be

flying over their heads (McHenry, 2004).

In the aforementioned examples of using pocket drones, many practical difficulties

are involved (Elbanhawi et al., 2017). Controlling them directly over long distances by

a human pilot is challenging, as radio signals will interfere with other radio-sources

and/or interrupted by the materials of the structure (Hashemi, 1993). This indicates

that the pocket drones would need a great deal of autonomy to be able to navigate by

themselves without any external control. As many indoor application environments are

GPS-deprived, their exact location will be unknown (Nirjon et al., 2014). A single pocket

drone should still be capable to explore an indoor building without knowing its current

position. Moreover, it would need to handle the unknown obstacles it encounters as

well. While exploring, it can collect information that will be useful for the completion

of its mission (Toth and Jóźków, 2016). However, transmitting this information back to

a home-station, especially bandwidth-demanding videos, is very challenging for a small

platform (Dunkley et al., 2014, Elbanhawi et al., 2017). A pocket drone should spend all

its energy on flying autonomously, not in compressing and transmitting data over large

distances. Therefore, it is necessary to return to the home position to deliver the neces-

sary information to the end-user. However, a single pocket drone will not be able to cover

much ground all by itself. If multiple MAVs were deployed, they could cover a larger area

in a shorter amount of time (Brambilla et al., 2013). If they meet other pocket drones
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on the way, while sensing and avoiding each other, they can also coordinate their search

based on the information they share.

The examples that nature has provided us, such as the earlier mentioned honeybees,

suggest that there are navigation strategies simple enough to fit on a pocket drone (Col-

lett and Collett, 2006, Collett et al., 2013). The unfortunate truth is that currently, there

is no method or technique that can be fully implemented on-board a tiny, resource-

limited, flying platform. The biggest problem is that traditional techniques are request-

ing that an MAV can carry a considerable amount of computing power. One such tech-

nique, called Simultaneous Localization and Mapping (SLAM) (Durrant-Whyte and Bai-

ley, 2006), starts off by building a high-resolution 3D map, then trying to localize the

robot within it and finally setting out a path for it to follow (Fuentes-Pacheco et al., 2012).

Within a swarm, information can be shared with the others in order to coordinate the

exploration, which can consist of their map or current positions (Weinstein et al., 2018).

This calls for a platform capable of carrying a large on-board computer, high-end sen-

sors and antennas, resulting in a big, crude and most importantly, unsafe MAV. Although

using an external computer seems as a logical step to aid the limited processing capa-

bilities of tiny MAVs like pocket drones, like in (Dunkley et al., 2014), it does also impose

limitations on their operation space. The communication link must be strong, which

means that the MAV needs to always be in close proximity. For indoor exploration, the

signal will deteriorate once the distance increases, due to the scattering and interference

by the walls and obstacles in between (Hashemi, 1993). The pocket drones cannot rely

on the external computer anymore and must do all the processing themselves. More-

over, this independence would also improve the possible scalability of the swarm, since

the communication bandwidth will not be the bottle neck for the number of MAVs (Nun-

nally et al., 2012).

This dissertation will take a novel approach to solve autonomous indoor navigation

of tiny pocket drones, which can also be considered for other non-flying platforms. We

will not wait for the on-board computers to become more powerful to implement SLAM

techniques or any of its equivalents, but we will instead make the navigational package

as simple and efficient as possible. SLAM does provide more navigational freedom, as it

enables MAVs to go from any point to another point in the map. However, we are focus-

ing on the main principles we believe are fundamental for indoor navigation, which are

exploration and the ability to move back to a home-location. This gives us the opportu-

nity to develop extremely computational efficient methods for navigation and to design

strategies to enable multiple pocket drones to explore an indoor environment.

1.1. CHALLENGES AND PREVIOUS RESEARCH

This section will discuss the requirements for autonomous navigation with a swarm of

pocket drones and show what has been already done in the field. Fig. 1.3 shows a vi-

sualization with the necessities that needs to be fulfilled. First of all, the drones would

need a good position and/or velocity estimate in order to hover in place and react on

velocity commands. Quadrotors, like the pocket drones, are inherently unstable and can

easily drift away and collide with obstacles if their velocity is not estimated. It would

be quite challenging to do high-level-navigation without these building blocks properly

taken care off.
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After achieving stable velocity and/or position control, the pocket drones should be

capable to avoid the obstacles and each other. Here is also where the sensors becomes

important for observing the environment and the other (flying) robots around it. In or-

der to take the leap to high-level-navigation, one has to be sure that the drone has an

efficient and robust collision avoidance strategy, since it is much more difficult for a

quad-copter to recover from a collision than a ground-bound wheeled robot. The pocket

drone should now be able to move out, fly within an environment and should be able to

return to its initial location. The next logical step is be able to navigate to any pre-visited

location, which requires the platform to make some kind of environment representation

during exploration. The latter is not in the scope of this dissertation, as we would first

need to solve the behaviors that comes before, however is part of the necessary future

work.

The following sections will go into the sub-modules and present the current state-

of-the-art research. We will evaluate the research done in this field on their suitability

for implementation on pocket drones (< 50 grams, <168 MHz), and therefore will mostly

focus on the hardware requirements, such as weight, processor speed and if they are

relying on any external systems as a positioning or processing aid.

1.1.1. VELOCITY CONTROL AND OBSTACLE AVOIDANCE

A MAV, especially quadrotors, should be able to hover in place, react to velocity com-

ments, and avoid obstacles. In order to do that, it should be able to estimate its own

velocity and/or position and detect the objects surrounding it. The localization of MAVs

can easily be estimated with the help of GPS or a motion capture system (MCS), how-

ever there have been those who tried to make their platforms more independent from

external position systems. For example the work of Kendoul et al. (2009a), where they

implemented velocity estimation and control on an X-3D-BL MAV (53cm �, 650 g) with

a downward-looking camera. They used an external computer to receive the video-

stream and to calculate optical flow at 10 Hz. This was sent back and fused on-board

on a Gumstix autopilot (400 MHz, 64 MB RAM). For an example of an implementation in

the weight-class we address in this dissertation, we found that Dunkley et al. (2014) used

a 26-gram Crazyflie 1.0 (72 MHz, 20KB RAM) with a forward-looking micro PAL camera

system to achieve visual-inertial guidance control. The video was streamed to an exter-

nal computer as well; however, in comparison with Kendoul et al. (2009a), all processing

to retrieve the position and velocity estimates was done off-board. Here they reported a

delay of 40 ms to receive and to pre-process the video footage; nonetheless, the Crazyflie

had a reported drift-free hover.

For indoor exploration, it is essential that the processing of velocity and position

estimations is computed all on-board the MAV. It might be an option to choose ded-

icated software and hardware modules, such as with a camera/sonar combination of

the PX4Flow deck (Honegger et al., 2013) (not suitable for pocket drones), the Crazyflie’s

flowdeck 1 or an ventral optic flow sensor inspired by the facet eyes of insects (Ruffier

and Franceschini, 2015). Briod et al. (2013) implemented four ADNS-9500 optical mouse

sensors on a 46-gram quadrotor. The optical mouse sensors were designed to detect op-

tical flow and were placed facing four different directions on the MAV. With this setup, the

1Bitcraze AB. Flow-deck expansion deck, https://www.bitcraze.io/flow-deck-v2/
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Figure 1.3: Visualization of necessary blocks to achieve high level navigation on resource-limited tiny flying

robots.
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drone was able to estimate its ego-motion and used it directly within the control loop,

all on-board the stm32 processor (120MHz, 16KB RAM). It saved additional processing

by receiving the optical flow directly from the sensors; however, to make the velocity

estimation observable, the quadrotor had to constantly move in an oscillatory fashion.

Therefore, occasional high-level commands were needed to move the small drone away

from obstacles, as the hover was not perfect due to these oscillations. The performance

improved by adding 4 more optical flow sensors, but the final platform ended up weigh-

ing 268 g (Briod et al., 2016). Moore et al. (2014) developed a 2-gram omnidirectional

camera system to also do ego-motion estimation in the loop. A Blade MCX21 mini he-

licopter carried it while flying, totaling the weight to only 30 g. This time, the optical

flow was computed from the camera sensors on-board an Atmel AT32UC3B1256 micro-

processor (60MHz, 32KB RAM) at a rate of 10 Hz, while the control loop of the mini

helicopter existed on a second, parallel, Atmel processor. The present motion-capture-

system was used only to measure and control the height; nonetheless, there was still

noticeable drift of the micro helicopter while it was flying through the test-environment.

The works of Moore et al. (2014) and Briod et al. (2016) have expressed the desire to

also integrate obstacle avoidance into their system – the next step in Fig. 1.3–, but unfor-

tunately no follow-up of the work has been found. There have been bigger MAVs that use

stereo-vision based systems for this purpose, like the reactive obstacle avoiding method

of Oleynikova et al. (2015) and Matthies et al. (2014). However, there is just a handful

of methods that has actually been implemented on tiny MAVs in the same weight-class

as in this dissertation. The 20-gram Delfly in De Wagter et al. (2014) and Tijmons et al.

(2017) uses a 4-gram stereo-camera to detect and avoid obstacle indoors with solely on-

board sensing and processing. The Delfly is an inherently stable platform, therefore it

can skip the step of velocity-estimation and -control in Fig. 1.3. Unfortunately, rotor-

based MAVs like the pocket drone are inherently unstable and therefore need the help

of velocity estimates to function. However, flapping wing MAVs are still limited by a very

small payload, which is less the case for quadrotors.

Within low-level-navigation, this section has shown examples of on-board imple-

mentations of the same weight-class as the pocket drones. Unfortunately, the platforms

that can estimate their own ego-motion and do velocity control in Briod et al. (2016) and

Moore et al. (2014) have not reached the level of robustness necessary for stable flight

and have not incorporated any obstacle avoidance. On the other hand, the research with

the Delfly did focus on obstacle avoidance but did not have the need of any velocity esti-

mation. The challenge in this area is to incorporate both robust velocity estimation and

obstacle avoidance on a pocket drone, solely using its on-board sensing and processing

capabilities.

1.1.2. SINGLE MAV HIGH-LEVEL-NAVIGATION

There is a lot of research covering high-level-navigation strategies for single MAVs. How-

ever, there is one common problem: a large portion of them weigh more than 1 kg. The

majority uses the conventional SLAM techniques to perform navigation, which requires

a significant amount processing and memory capabilities. In Bachrach et al. (2009) and

Grzonka et al. (2012) for instance, they used a 1-2 kilo quadcopter with a Hokuyu laser

range scanner, but still needed the help of an external computer to do the computa-
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tion of the estimation and mapping. Achtelik et al. (2011) used a 2 kg Astec Pelican

with an Intel Atom computer (1.6 Ghz, 1GB RAM), with the same laser-scanner and a

downward-looking camera. This time, all the SLAM processing was done on-board, with

some high-level commands given by an external computer, which they demonstrated in

a stabilization task. Shen et al. (2011) were able, as one of the first, to deploy their drone

to do multi-floor mapping of an inside building with all on-board processing (using a

similar platform as in Achtelik et al. (2011)), with way-points given beforehand to aid the

navigation. A more recent example is the platform presented in Mohta et al. (2018), with

an Intel-i7 based computer (3.1 Ghz, 16 GB RAM), which only needed a goal position and

was able to do all the localization and mapping fully on-board. The total weight of the

platform was just shy of 3 kilos, which is a good indication of the extensive computer-

power it needed to carry.

While in the last section some low-level-navigation examples could be found of plat-

forms weighing less than 50 grams, for single-drone high-level-navigation almost none

can be found at all. The smallest flying platform that was able to do multiple room

exploration was in the work of Scheper et al. (2018). The Delfly, equipped with the 4-

gram stereo-camera, was able to avoid the obstacles as in Tijmons et al. (2017), recog-

nized open doors and navigated through them, all fully on-board the stm32F4 processor

(168MHz, 192kB RAM). Although no 3D mapping was involved, it indicates that a com-

bination of simple behaviors should be enough to go from location A to B. The same

parallels can be found in models describing insect navigation, which inspire new types

of robotic navigation as well. Experiments with real bees can already show interesting

properties, like that they just use a direction and a distance to describe the path towards

the flowers (Menzel et al., 2012) and that they use optical flow to monitor their distance

to a food source (Srinivasan et al., 1997). Cartwright and Collett (1983) takes it one step

further and suggests that bees could also recognize landmarks around them and save

environment "snap-shots" at significant locations.

In essence, if 3D-SLAM is not required for the actual mission, the first step of naviga-

tion can be seen as the exploration phase, where the robot follows a certain strategy to

get familiar with the environment. The next step would be homing, where the platform

is able to return to the home location based on the representation of the environment

it made in the exploration phase. To illustrate an example with a non-flying platform,

Stelzer et al. (2018) deployed a robot that was able to (manually) traverse an outdoor ur-

ban environment, save the snapshots of its surroundings, and was able to get back to its

initial location by creating homing-vectors from the difference between its current view

and its saved view. Denuelle and Srinivasan (2016) showed the snap-shot principle on

a Microkopter platform (2 kg) with a Intel NUC computer (2-core 2.6 GHz). However,

both Stelzer et al. (2018) and Denuelle and Srinivasan (2016) do require quite some pro-

cessing and memory, which is still beyond the reach of the pocket drones used in the

experiments of this dissertation.

Full on-board implementations of navigation of single MAVs currently exist only on

platforms that weigh at least a few kilos and are not suitable for a pocket drone. Bio-

inspired strategies such as the snapshot model are promising options, however, still re-

quire full images to be stored. To enable exploration and homing on a pocket drone, we

need to find even more efficient methods.
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1.1.3. MULTIPLE ROBOT LOCALIZATION AND COORDINATION

Eventually we would like to design exploration strategies for not a single, but a swarm

of autonomous pocket drones. We will therefore need to address the work done in the

field of multi-MAV navigation. First of all, the MAVs should be able to avoid each other,

as it has been depicted in Fig. 1.3. In order to do this, the drones would need to be able

to sense each other’s presence. One way is to share the GPS-coordinates. Duarte et al.

(2016) did this with a swarm of aquatic robots, which were able to do all kinds of swarm-

ing behaviors, such as homing, dispersion, clustering and area monitoring. Vásárhelyi

et al. (2018) showed a decentralized flocking method with 30 Mikrokopters (1kg) within

a 200x200-meter outdoor area, equipped with an extra Odroid C1+ (2-core 1.5Ghz, 1GB

RAM) for processing. Here they communicated directly with each other through a WiFi

protocol; however, the MAVs did experience package-loss when they were further apart.

The separation was necessary due to the 3-4 meters inaccuracy of the GPS position mea-

surements. A more accurate method is to use an MCS. In Preiss et al. (2017), 49 Crazyflie

2.0s (33 g each) were able to do an indoor formation flight in a 6x6-meter area with aid

of a Vicon MCS, reaching an accuracy of 2 cm. However, here the ground station com-

puter handled all the communication and coordination of the Crazyflies, as they were

not directly communicating with each other.

An absolute positioning system cannot be guaranteed for the exploration of an in-

door environment, especially in search- and-rescue scenarios. However, there has been

work in relative inter-drone localization, where the individual can determine the posi-

tion of its neighbors using their own on-board sensors. Roelofsen et al. (2015) imple-

mented this on 3 Asctec Hummingbirds (1 kg, 1.6 GHz), each equipped with forward-

looking cameras. All the MAVs were augmented with a big orange ball for easy recogni-

tion. Unfortunately, they still needed their own position estimate from an MCS and re-

lied on an external computer to do all the vision processing. Saska et al. (2017) deployed

a similar system with 3 Mikrokopters (2kg) with a visible circle pattern, a PX4flow sen-

sor and a forward-looking camera. The vision processing and relative localization were

all done on-board of their Gumstix autopilot (400MHz, 16MB RAM), but some of the

higher-level coordination commands still had to be given by an external computer. Guo

et al. (2017) has added an ultra-wide-band (UWB) module on each of its 3 DJI F450’s (ap-

prox. 1 kilo) with a Beaglebone Black autopilot (1 GhZ, 512Mb RAM), to perform relative

localization. However, the drones would need to keep exact track of their own position,

which is subject to drift in a GPS-deprived environment.

Since the start of this decade, there has been work on collaborative SLAM techniques,

where the MAVs map the environment, communicate and then merge their created maps

with each other. With this updated information, they can localize the other drones with-

out the use of an external positioning system. Forster et al. (2013) was one of the first to

implement this, with two 1.5 kilo Asctec Fireflies with a downward-looking camera. The

MAVs computed their own visual odometry with an embedded Intel CoreDuo processor

(1.86 GHz) but were not communicating directly with each other. They had to send the

key frames to an external computer to create the individual maps and merge those to-

gether in order to retrieve the individual locations. Weinstein et al. (2018) was able to do

more on-board with their 12 Qualcomm Snapdragon-based quadcopters (250 gr, 4-core

2 GHz) with a downward-looking camera. However, the central computer still needed
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or MCS. Works with the Delfly are marked with blue.
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to do the planning for them and handled the inter-drone communication. Forster et al.

(2013) and Weinstein et al. (2018) were not focusing on any obstacle avoidance with a

forward-looking camera, therefore their work is only applicable for open spaces with

known or no obstacles.

Until now, multi-MAV navigation has been mostly focused on the inter-drone local-

ization, which some implemented with formation flight, and has not been merged with

individual navigational capabilities to explore an unknown environment. More exam-

ples can be found for ground-driven robots, for instance the work of Marjovi and Mar-

ques (2011). They had a group of iRobot Roomba robots with an Asus EEPC computer

perform an odor-source localization task. They developed a graph-like compression of

the environment variables, which they enlarged using frontier-based exploration. They

were not using a central computer, did not require GPS or MCS, did all the processing

themselves and were communicating directly with each other whenever another robot

was in range. Cesare et al. (2015) used two custom built quadrotors (1.5 kg, 2-core 1.8

Ghz) for a frontier-based exploration task, while building an Octo-Map of the environ-

ment. If one of the MAVs runs out of battery, it will land and act as a relay for the com-

munication with the others, however they did not share the exploration data with each

other as they build their maps separately and only covered a single room and a corridor.

Current implementation of multi-MAV exploration of an indoor environment has

been distributed over a large set of research, where the focus is mainly on the inter-drone

localization and formation/pattern flying. These capabilities exist on MAVs far outside

the weight-class and processing capabilities of pocket drones. Moreover, the majority of

them still rely on a central computer for processing, high-level monitoring or/and inter-

drone communication. The work of Cesare et al. (2015) shows an example of a multi-

MAV solution for indoor exploration, however, was only able to show a portion of the

mission completion and used 2 kg MAVs. In order to achieve this on the pocket drones,

this would need to be built from the ground up, starting with low-level-navigation.

1.1.4. OVERVIEW

Fig. 1.4 shows an overview of the MAVs used in the discussed literature. Fig. 1.4a shows

the weight of the used platforms, and Fig. 1.4b shows the processor-speed plotted against

the complexity of the navigational task. Note that for some MAVs with 2 on-board au-

topilots, the one with the highest processing speed would be chosen for the graph. The

scatterplot has also been divided in low- and high-level-navigation, and those have been

separated in single- and multiple-MAV applications. A blue bar has been added to indi-

cate both the weight-class and the processing capabilities of the pocket drones, to indi-

cate which of the current work falls inside those limitations. We are interested here in

implementations on unstable (multi-)rotor vehicles, however the works with the stable

Delfly is shown here in blue for comparison. Within the scope of this dissertation, we are

looking for solutions that are suitable for collaborative indoor navigation as depicted in

Fig. 1.3. Very few of the research for multi-MAV, has implemented the necessary building

blocks of low-level-navigation yet, like obstacle and inter-drone avoidance. Moreover,

their movement while building the map has been choreographed beforehand. None of

these solutions focused on the complete picture: the swarm’s ability to avoid physical,

unknown, objects, and each other. We therefore consider them only presenting a part of
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the solution of our main objective.

It can be noticed that only for the single-MAV-low-level-navigation, work can be

found with the same weight- and processor-speed-class as the pocket drone, namely

the work of Moore et al. (2014) and Briod et al. (2013). Here they achieved full on-board

velocity estimation with a dedicated optical flow sensor and an omnidirectional vision

system, however both reported drift and stability issues. Moreover, they have not fo-

cused on merging their solution with obstacle detection to avoid crashes, an essential el-

ement for indoor navigation. For all the other categories, for the exception of the Delfly,

none fall within the necessary requirements. The work of Weinstein et al. (2018) does

hold great potential, as their platform also contain a forward looking stereo-camera and

enough processing to push their solution to multi-MAV high-level-navigation for indoor

environments. Nonetheless, their platform is 5 times heavier and their required process-

ing is 15 times higher than those of pocket drones. At the moment of writing, no work

has been found of a full on-board implementation of indoor exploration with a swarm of

MAVs, without the help of an external positioning system or an external computer, with

the limitations imposed on the objective of this dissertation.

1.2. OBJECTIVES AND APPROACH

1.2.1. RESEARCH QUESTIONS

In this dissertation we would like to have a swarm of pocket drones to explore and navi-

gate through an indoor environment. In the last section we have confirmed that this has

not been developed elsewhere, and that the current solutions work on large platforms

with a lot of computing power, with help of an external localization and/or a central

computer. Due to over-complicated and computationally heavy navigation strategies,

the application of pocket drone swarms cannot yet be realized. Hence the main research

question of this dissertation can be formalized as follows:

MAIN RESEARCH QUESTION

To what extent can we design a robust and computationally efficient method for

multiple pocket drones to explore an unknown, indoor environment and to return

to their initial position?

We will hereby focus on the requirements necessary for search-and-rescue applica-

tions. In this scenario, it would not be possible to use a ground station for coordina-

tion and processing, and there is no external position system available as well. Also, the

pocket drones should be able to disperse in an unknown environment and should be

able to return to their initial position. The pocket drones can only use on-board sens-

ing and processing and need to have direct inter-drone communication. For the main

research question and all the upcoming sub-questions, the following requirements are

necessary:
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REQUIREMENTS

The pocket drones can only rely on their on-board sensors and processing, which

implies that:

• there cannot be any use of an external localization system, e.g. GPS, motion

capture system

• there cannot be any use of an external computer for additional processing

and giving specific local commands

Before the pocket drones are ready for swarm-exploration, they would first need to

perform stable velocity control. Once that has been achieved, they would need to avoid

obstacles and each other. Therefore, we will first start with the low-level-navigation of

pocket drones by formulating the following sub-question:

SUB-RESEARCH QUESTION I

To what extent can we achieve low-level navigation capabilities on multiple

pocket drones, e.g. ego-motion estimation, obstacle avoidance and inter-drone

avoidance?

Once the latter sub-research question is solved, we can step into a higher level of

intelligence with the following sub-question:

SUB-RESEARCH QUESTION II

To what extent can we achieve high-level navigation capabilities on multiple

pocket drones, e.g. exploration, coordination and homing?

This will be done with a "bottom-up" approach. The individual pocket drone needs

a purpose, e.g. a goal to navigate to. It will need a method that enables it to do so, while

meeting its low computational and memory requirements. Implementing this strategy

on a swarm of pocket drones can enhance the exploration process, where they will coor-

dinate their search once they come in close proximity.

These (sub-)research questions will be the red thread within this dissertation. In the

next section, the outline will be discussed, where the objectives will be addressed by the

content of the main chapters.

1.2.2. DISSERTATION OUTLINE AND HARDWARE

Based on the levels of navigational intelligence discussed earlier, a general outline has

been developed for this dissertation (Fig. 1.5). It will be divided into two parts: Part I will

present work on low-level-navigation and Part II will be about the high-level-navigation

of both a single and multiple pocket drone(s).

In Chapter 2, we will describe a new efficient computer vision technique to compute

optical flow, called Edge-Flow, that we developed in McGuire et al. (2016). Edge-Flow

enables a small micro-processor to compute otherwise computationally heavy tasks.
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Figure 1.5: The outline of the dissertation
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(e) 33 g, Chapter 5: High-level-navigation (f ) 35.7 g, , Chapter 5: Application platform

Figure 1.6: Overview of the platforms used in this dissertation.
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Here we demonstrate Edge-flow by letting the pocket drone estimate its own velocity

and compensate for it. Fig. 1.6a shows the platform used for this chapter. On a Walkera

ladybird-frame with a Lisa-S autopilot (75 MHz,16 kB), we mounted a downward-looking

stereo-camera with its own stm32F4 processor (168 MHz, 192 kB RAM). With the imple-

mentation of Edge-Flow on the stereo-camera’s microprocessor, the pocket drone was

able to react on high-level velocity commands given by a remote controller and match

it with its own. We have extended Edge-Flow to Edge-FS (McGuire et al., 2017), which

was able to compute both optical flow and stereo vision simultaneously. Fig. 1.6b shows

the platform with a forward looking stereo-camera and an upgraded autopilot: the Lisa-

MXs (168MHz, 192kB). With this assembly, the pocket drone was able to both estimate

its own velocity and detect obstacles. In this chapter we also show an experiment where

the pocket drone is able to autonomously fly with a simple wall-avoiding finite-state-

machine in an indoor, office-like room, without the help of an external positioning sys-

tem or computer.

In the last chapter of Part I, Chapter 3, we explain the Bluetooth-based inter-drone lo-

calization scheme developed in Coppola et al. (2018). Using the received signal strength

intensity from the Bluetooth connection and the velocity estimation (by Edge-Flow of

Chapter 2), two versions of the platform in Fig. 1.6c were able to localize and avoid each

other. Fig. 1.6d, shows the pocket drone now with a forward facing camera, were we com-

bined Edge-FS (Chapter 2) with the relative localization scheme (McGuire et al., 2017).

The estimated bearing of the other drones is added on top of the detected obstacles by

the stereo-camera on a collision detection disk. With this, two pocket drones were able

to fly autonomously inside a room and avoid both the walls and each other by determin-

ing the safe directions to go.

Part II will focus on high-level-navigation, and therefore will start with Chapter 4, a

survey of Bug Algorithms and its application for robotic platforms (McGuire et al., 2019).

As explained in the last sections, the common SLAM techniques are too computational

extensive to fit on the stm32f4 processors of the pocket drones. Bug algorithms are ideal

candidates as it gives a simple solution to go from A to B with little memory and with-

out the requirement of a map. It does not know the intermediate obstacles, but it will

deal with them by following their border. Unfortunately, current implementations of

bug algorithms do rely on external positioning systems, and once those are replaced

with realistic sensor noise and estimation drift, the simulations in Chapter 4 show that

the performances drop dramatically.

Eventually, we developed our own Bug Algorithm technique that was suitable for

real-world navigation. With the new platform shown in Fig. 1.6e, the pocket drone was

able to navigate based on the signal strength of a single home-beacon, in order to ex-

plore and come back to its starting position. Moreover, this method was also extended

to multiple pocket drones, where they were able to avoid each other and coordinate the

exploration phase. This method is called the swarm gradient bug algorithm (SGBA) and

we were able to deploy up to 6 drones to navigate completely autonomously in a multi-

room exploration scenario. In this chapter, we also show an application with 4 pocket

drones as in Fig. 1.6f, where they reenacted a victim-search scenario and captured two

"people" on their on-board cameras.
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2
LOW-LEVEL NAVIGATION OF A

SINGLE POCKET DRONE

Before we can think about designing autonomy for a swarm of pocket drones, we must first

handle the individuals most fundamental ability: estimating its own motion. A quadro-

tor, like the pocket drone, is inherently unstable and should therefore be able to compen-

sate for any side-ways drift. To move forward, it would also need to see obstacles and walls,

and react upon it. No adequate technique yet exists to achieve this all on-board the 40g

platform.

This chapter will introduce a new, efficient, computer vision technique called Edge-FS.

This can run on a small 4g stereo-camera with a separate microprocessor and calculates

stereo-vision (for obstacle-detection) and optical flow (for ego-motion-estimation), while

matching the cameras frame rate of 25 Hz in speed. We will first go into the specifics of

Edge-Flow, where we explain the utilization of a compressed image representation called

Edge-Distributions and how to calculate optical flow from a downward-facing camera.

We will then show the extension to Edge-FS, which is able to do the same with a forward-

facing stereo-camera, and detect obstacles at the same time. By implementing this on a

pocket drone, we will demonstrate a full-autonomous flight within a room, without a

global localization system, where the pocket drone avoids the walls while maintaining a

constant speed.

Parts of this chapter have been published in :

K.N. McGuire, G.C.H.E. de Croon, C. De Wagter, B. Remes, K. Tuyls & H. Kappen Local histogram matching for efficient optical

flow computation applied to velocity estimation on pocket drones, IEEE International Conference on Robotics and Automation

(ICRA) 3255-3260, (2016)

K.N. McGuire, G.C.H.E. de Croon, C De Wagter, K. Tuyls & H. Kappen, Efficient Optical Flow and Stereo Vision for Velocity

Estimation and Obstacle Avoidance on an Autonomous Pocket Drone, IEEE Robotics and Automation Letters 1070 - 1076, 2

(2017).
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Figure 2.1: a) shows a pocket drone with velocity estimation using a downward-looking stereo-vision system.

A novel efficient optical flow algorithm, Edge-Flow, runs on-board the stereo-camera with an STM32F4 pro-

cessor running at only 168 MHz and with only 192 kB of memory. The optical flow and height, as determined

with the stereo-camera, provide the velocity estimates necessary for the pocket drone’s low-level-control. b)

shows a pocket drone with the same forward-looking stereo-camera, which determines velocity and depth by

Edge-Flow’s extension, Edge-FS, which are the necessary components for the pocket drone’s visual low-level-

navigation.

2.1. INTRODUCTION

D
EPLOYMENT of Micro Aerial Vehicles (MAVs) is important for indoor tasks such as in-

spections, search-and-rescue operations, green house observations and more. Tiny

MAVs, also called pocket drones (<50 g, as in Fig. 2.1), are ideal for maneuvering through

very narrow spaces, as often occurs in indoor environments. In order for them to au-

tonomously navigate through a GPS-deprived area, there are several on-board sensors

to consider (laser rangers, motion sensors, infrared rangers, sonar). The pocket drone’s

sensor of choice is an RGB camera. It is the most energy efficient and versatile sensing

option, as multiple variables can be observed from the image stream: obstacles, motion,

object recognition and more.

Using cameras enables the Micro Air Vehicle (MAV) to extract essential information

for autonomous navigation. A stereo vision setup with two cameras has been partic-

ularly successful, for instance for obstacle avoidance (Hu and Mordohai, 2010). Since

there are strict limitations on energy expenditure, sensing, and processing capabilities

on a pocket drone, even relatively efficient stereo vision methods (Geiger et al., 2011,

Hirschmuller, 2008) are computationally too heavy to run on-board a microprocessor.

Therefore, an even more efficient stereo vision algorithm was developed, which is able

to run at 10 Hz on a 20 g flapping wing MAV, the DelFly Explorer (De Wagter et al., 2014).

It is still the lightest fully autonomous MAV to this date, which can fly through a room

and avoid obstacles with purely onboard sensing and processing (Tijmons et al., 2017).

Since tailed flapping wing MAVs such as the DelFly Explorer are passively stable,

there is no need to compute their velocity to compensate for drift. However, for in-

herently unstable platforms like a quadcopter, velocity estimation is necessary for sta-

bilization when navigating in constrained areas. Optical flow is the way in which objects

move in two sequential images and is the most important visual cue for velocity esti-

mation. It can be calculated in a dense manner (Farnebäck, 2003, Horn and Schunck,

1981) or a sparse manner, e.g., by tracking features such as Shi-Tomasi (Jianbo Shi and
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Tomasi, 1994) or FAST (Rosten and Drummond, 2005) over time with a Lucas-Kanade

tracker (Bouguet, 2001). These types of techniques have proven themselves on numer-

ous occasions (Honegger et al., 2013), nonetheless, do require a platform with a decent

amount of computing power. On a pocket drone such standard optical flow methods ei-

ther cannot run in real-time and will occupy a large percentage of its processing power,

leaving little to no room for other types of processing. Especially when autonomous

flight is the final goal, optical flow determination will only constitute a part of what the

MAV has to do, as much more information can be retrieved from the image stream.

In order to design a computationally much more efficient optical flow algorithm, we

have drawn inspiration from the study in Lee et al. (2004), which proposed using spatial

edge distributions to track motion in the image. This chapter presents Edge-Flow, which

improved upon the work in Lee et al. (2004) by introducing a variable time horizon for

determining sub-pixel flow. Edge-Flow runs embedded at 30 Hz on a lightweight stereo-

camera positioned underneath a pocket drone (Fig. 2.1a). The stereo-camera is pointing

down and detects optical flow and a global height estimate, assuming that it is looking at

a flat ground surface. With these, the MAV determined its own velocity and used this in

a guided control, where it autonomously matched externally-given velocity references.

However, a 4 g stereo-camera for a 40 g pocket drone is a significant weight, so it is a

waste to have this “heavy” sensor looking downward and not using it to avoid obstacles

in the flight direction.

This chapter also presents a major extension of Edge-Flow, which enables the stereo-

camera to face forward on a MAV, so it can be used for navigation purposes (Fig. 2.1b).

As the pocket drone will now be facing hallways, rooms, doors etc., the assumption of

looking straight at a flat plane will not hold anymore. The same matching paradigm

used to determine Edge-Flow, will now be used to not only calculate optical flow but

also stereo depth over the entire image. Edge-Stereo, as called for convenience, uses the

so-determined distances to properly scale the locally observed optical flow in order to re-

trieve a velocity estimate. This combination of Edge-Flow and Edge-Stereo will be called

Edge-FS.

Our main contribution is that the presented method provides both velocity and dis-

tance estimates, while still being computationally efficient enough to run close to the

frame rate on a very limited embedded processor. As such, the method enables unstable

MAVs such as tiny quadcopters to perform fully autonomous flights in unknown envi-

ronments. The Edge-Flow and Edge-Stereo methods will be explained in more detail in

section 2.2.1. Off-line results for velocity estimates with a set of images is shown in sec-

tion 2.3. From here, the algorithm is embedded on the lightweight stereo-camera and

placed on 40 g pocket drone for velocity estimation (section 2.4.3). Finally, the velocity

estimate is used together with Edge-Stereo-based obstacle detection to perform fully au-

tonomous navigation in an environment with obstacles (section 2.4.4). This is followed

by some concluding remarks.

2.1.1. RELATED WORK

In related research, several works have achieved optical flow based control of a MAV

(e.g., Grabe et al. (2015), Kendoul et al. (2009a), Romero et al. (2009)). As mentioned in

the introduction, the standard optical flow methods are computationally too heavy to
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run on a quadcopter of less than 50 g. For instance, Dunkley et al. have flown with a 25 g

quadcopter before, while computing optical flow for visual odometry (Dunkley et al.,

2014). However, this was done on an external computer. As miniaturization of hardware

also poses a limitation on communication bandwidth, this can result in a significant

delay in the controls. To obtain full autonomy, it would be wise to uncouple a MAV of

any external dependencies.

To design extremely lightweight MAVs for autonomous flight, some researchers

looked into EMD sensors (Ruffier et al., 2003) and other 1D signal sensors (Green and

Oh, 2008). Briod et al. (2013) proposed the design of a 45 g quadcopter for optical flow

based control with 1D flow sensors. They followed up with this research on a heavier

278 g platform containing 8 of these sensors pointing in all directions (Briod et al., 2016).

With this they could hover the quadcopter in various cluttered environments. The re-

sults are impressive, nevertheless they were achieved by using multiple single purpose

sensors. As they can only sense motion, it does not leave much room to detect other

variables necessary for navigation.

More similar to our research, Moore et al. implemented an efficient optic flow algo-

rithm on a small lightweight (2 g) omnidirectional camera system on a 30 g helicopter

(Moore et al., 2014). With a ring of 8 low-resolution image chips (64 x 64 pixels), the MAV

could compute optical flow. It did this by computing the edges, compressing the images

and calculate the displacement by block matching which resulted in translational op-

tical flow. The vision calculations where done on-board the helicopter with 10 Hz, yet

the flight controls where computed off-board. Although the potential of a full on-board

implementation is there, the redundancy lies in the ratio of cameras to sensed variables.

One camera has the potential of detecting flow in 3 directions; they used 8 to only detect

2 (forward and sideways velocity).

Optical flow can also be used to detect obstacles (Mori and Scherer, 2013), however

the MAV needs to be constantly on the move. This is not required if stereo vision is used

for depth information. With this, Oleynikova et al. developed a reactive avoidance con-

troller for a quadcopter (30 cm in diameter) (Oleynikova et al., 2015). From the obtained

stereo disparity map, they accumulated the values along the columns to get a summed

disparity factor. Assuming that the obstacles are vertical and long, these can be detected

quickly. The stereo map was calculated over the entire image first before accumulation

to a vector. This significantly impacts the amount of computation making it less suitable

for implementation on a smaller MAV.

2.2. VELOCITY AND DEPTH FROM EDGES

To achieve autonomous navigation with a camera on an unstable pocket drone, we need

to obtain two variables: velocity and depth. In the introduction we mentioned that many

of the mainstream computer vision techniques will be computationally too heavy to run

on the pocket drone. Edgeflow is able to detect optical flow within the image in a semi-

dense but computationally efficient manner, as it reduces the 2D image search problem

to 1D signal matching by the use of edge-feature distributions. For a down-ward looking

stereo-camera, it can estimate the pocket drone’s forward and sideways velocity. This

section will also explain the modifications that are necessary to make the stereo-camera

point forward and still be able to measure those variables. Edgeflow will be explained in
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Figure 2.2: a) The vision loop with for creating the edge feature distributions and b) the velocity estimation by

measuring optical flow with one camera and height with both cameras of the stereo-camera.

this chapter and subsequently, we will present its extension with Edge-Stereo to Edge-FS,

which will be used for obstacle detection in the experiment part of this chapter.

2.2.1. FROM DOWNWARD-LOOKING CAMERA TO VELOCITY

The generated edge distributions are created by first calculating the gradient of the im-

age on the vertical and horizontal axis using a Sobel filter (Fig. 2.2a). From these gradient

intensity images, the distribution can be computed for each of the image’s dimensions

by summing up the intensities. The result is an edge feature distribution of the image

gradients in the horizontal and vertical direction of the image coordinates.

From two sequential frames, these edge distributions can be calculated and matched

locally with the Sum of Absolute Differences (SAD). In Fig. 2.2b, this is done for a window

size of 18 pixels and a maximum search distance of 10 pixels in both ways. The displace-

ment can be fitted to a linear model with least-square line fitting. This model has two

parameters: a constant term for translational flow and a slope for divergence. Transla-

tional flow stands for the translational motion between the sequential images, which is

measured if the camera is moved sideways. The slope/divergence is detected when a

camera moves to and from a scene, however this will be revisited later in this section.

Due to the image sensor’s resolution, existing variations within pixel boundaries can-

not be measured, so only integer flows can be considered. However, this will cause com-

plication if the camera is moving slowly or is well above the ground. If these types of

movements result in sub-pixel flow, this cannot be observed with the current state of the
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edge flow algorithm. This sub-pixel flow is important to ensure velocity control on an

MAV.

To ensure the detection of sub-pixel flow, another factor is added to the algorithm.

Instead of the immediate previous frame, the current frame is also compared with a cer-

tain time horizon n before that. The longer the time horizon, the more resolution the

sub-pixel flow detection will have. However, for higher velocities it will become neces-

sary to compare the current edge distribution to the closest time horizon as possible.

Therefore, this time horizon comparison must be adaptive.

Which time horizon to use for the edge distribution matching, is determined by the

translational flow calculated in the previous time step (ot−1):

n = min

(

1

|ot−1|
, N

)

(2.1)

where n is the number of the previous stored edge distribution that the current frame

is compared to. The second term, N , stands for the maximum number of edge distribu-

tions allowed to be stored in the memory. It needs to be limited due to the strict memory

requirements and in our experiments is set to 10. Once the current distribution and time

horizon distribution are compared, the resulting flow must be divided by n to obtain the

flow per frame.

As seen in Fig. 2.3a, the velocity estimation Vest can be calculated by means of Edge-

Flow combined with the height of the drone and the angle from the center axis of the

camera:

Vest =

h · tan(oT
t ·

αFOV

w
)

∆t
(2.2)

where oT
t is the translational flow as calculated by the linear model fit, h is the height

of the drone relative to the ground, and w stands for the pixels size of the image (now

shown in the y-direction). αFOV stands for the Field of View (FOV) of the image sensor.

A MAV can monitor its height by means of a sonar, barometer or GPS. In our case we do it

differently, as we match the left and right edge distribution from the stereo-camera with

global SAD matching. The results for velocity estimation and control with Edge-Flow

with a downward camera can be found in section 2.4.2.

2.2.2. FROM FORWARD-LOOKING CAMERA TO VELOCITY AND OBSTACLES

When looking orthogonally at a planar ground surface while moving, the optical flow

field is rather simple and allows for easy determination of the forward and sideways ve-

locities with the help of a single height measurement. But to navigate without bumping

into anything, the MAV needs to see objects in the direction of motion, which is typically

forward. Due to the likely non-planar (3D structure) of the environment in forward di-

rection, the optical flow field will become more complex. Moreover, the forward velocity

now can only be observed by means of the divergence of optical flow, which is more dif-

ficult to determine, especially close to the focus of expansion. Here we delve into how

we determine the velocities with the help of forward facing stereo-images. In principle,
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Figure 2.3: a) Velocity estimation by measuring optical flow with one camera and height with both cameras of

the downward-looking stereo-camera. b) For a forward-looking stereo-camera: the MAV’s body fixed coordi-

nates with respects to the camera axis, shown for the left camera (XYZ). The conventional aircraft coordinates

of east-north-up is used for the MAV as the camera. The image coordinates in width and height are represented

as u and v respectively.

the unscaled velocities and the rotation rates can be determined from the image alone,

according to the paper of Longuet-Higgins and Prazdny (1980). They theorized that mea-

sured flow (ou) is the summation of a translational flow (oT
u ) and rotational component

(oR
u ). Before estimating the horizontal planar velocity, we first have to determine oR

u .

Although Longuet-Higgins and Prazdny (1980) assume rotations in all directions, we

can make simpler assumptions for the pocket drone. Fig. 2.3b shows the placement and

axis definition of the drone and camera. For obstacle avoidance it is essential to look in

the direction of motion, which in this case is the direction of the positive x axis. Here,

correctional pitch and roll motion for drift compensation will be relatively small, but yaw

rotations will be more common. Assuming that the latter only has significant effect on

the optical flow, oR
u can be approximated (assuming small angles) using the gyroscopes

on the on-board IMU of the pocket drone:

oR
u,i ≈ωZ ·

w

αFOV
(2.3)

oR
u = [oR

u,1, . . . ,oR
u,w ] (2.4)

where w is the width of the image, αFOV is the angle of the FOV and ωZ is the yaw rota-

tion measured from the gyroscopes.

Now that oR
u is known, we can isolate oT

u to determine the pocket drone’s forward (vx )

and sideways velocity (vy ). With the coordinate system we use in this chapter (Fig. 2.3b),

Longuet’s equation of oT
u is expressed as:

oT
u = (−vy +xvx )/dx (2.5)

dx oT
u =−vy +xvx (2.6)

Where x is an array of indices of the image columns. Depth, dx , scales the optical

flow resulting in motion parallax, as close objects appear to move faster than objects far
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away. In section 2.2.2, a global height estimate was used to scale the optical flow back

to velocities, which is sufficient if the camera is looking at a flat floor or perpendicular

to a straight wall. This assumption will not hold when the MAV is flying towards a wall

at an angle or whenever obstacles at different distances are in the field of view. This

non-constant depth needs to be accounted for when scaling the optical flow, therefore

the stereo depth is needed over the entire size of the image for a better velocity estimate.

Local right-left image disparity from a stereo-camera can be transformed to actual depth

in meters by using the camera parameters, with the following approximation:

dx ≈
w · r

αFOV ·su
(2.7)

where r is the baseline between the two cameras, and the stereo disparities in pixels

along the image columns is su .

With depth dx and translational optical flow oT
u , it is now possible to calculate the

MAV’s sideways and forward velocity by fitting a linear model to (2.6). In the next section

we will explain how to obtain both optical flow and stereo depth from a stream of low

resolution stereo-images.

2.2.3. PROCEDURE FOR EDGE-FS
If image A and B from Fig. 2.2a are two temporal sequential images (t with t −1) in time,

this will result in the pixel flow, thus Edge-Flow as explained in Section 2.2.1. Based on

the previous flow value, Edge-Flow adaptively chooses how far in time (t −n) it will com-

pare the current edge distribution to. On top of that, the flow shift predicted by a yaw

rotation (oR
u , as calculated in equation (2.4)) will shift the start of the block matching

scheme. This and the adaptive time horizon will be present for the experiments in this

chapter. Note that in section 2.2.2, also the direction along the image height was used to

estimate the forward velocity (as the camera was looking down). For a forward-looking

camera, it will not be used as the forward velocity (vx ) will be subtracted from the diver-

gence of Edge-FS.

Previously in Section 2.2.1, the entire edge distribution of the left and right image

were matched to obtain a global depth estimate. To get a better velocity estimate with a

forward camera, we need to use pixel disparity per column. To calculate both column-

wise optical flow and stereo vision and keep the algorithm computationally efficient, the

exact same matching principle of Edge-Flow (Fig. 2.2a) is used, resulting in Edge-Stereo.

Disparity to depth in meters is calculated with the known camera parameters and (2.7)

from the last section. Sequentially, Edge-Stereo scales Edge-Flow to compensate for the

motion parallax (see Fig. 2.4d), which results in the left side of (2.6). These values will

then be fitted to a linear model (Fig. 2.4e), which gives us the slope and intercept of the

line. With the camera parameters, the forward and sideways velocities are estimated

(Fig. 2.4f).

2.3. OFF-LINE VISION EXPERIMENTS

Before implementing the algorithm on the actual stereo board, Edge-Flow was run on a

set of stereo-images in MATLAB (version R2015b on a Dell Latitude E7450, i7-5600U CPU

@ 2.60GHz processor). Fig. 2.5a shows screen shots of the data set used in this section,
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Figure 2.4: The temporal pixel disparities per column of Edge-Flow is a) scaled by Edge-Stereo. Following (2.6),

b) a line fit is done on this array of values, c) from which the forward and sideways velocities can be extracted

from the slope and intercept, respectively.

where the camera moves towards obstacles at different distances. In Fig. 2.5b, Edge-Flow

scaled by Edge-Stereo, now dubbed as Edge-FS, results in the velocity estimates.

Edge-FS is contrasted against the well-known optical flow method developed by

Farnebäck (2003), a dense optical flow method (Fig. 2.5). Although less used than a more

conventional KLT-tracker (Bouguet, 2001), preliminary analyses indicated it to be more

suited for the low-resolution images used here. With its default parameters set as in

MATLAB R2015b, the sparse magenta line illustrates that the KLT-tracker indeed has dif-

ficulties with the low-quality, low-resolution images (128 x 96 pixels).

For Färneback, depth is determined by matching the stereo-images with each other

and converting the resulting pixel disparity to a distance. To get velocity, the same line-fit

is used as for Edge-Flow1, but here the whole image is considered rather than the com-

pressed form like the edge distributions. After comparison of the methods with different

parameters, both Edge-FS and Färneback are set up with a window size of 11 pixels and a

search range of 15 pixels (Färneback’s pyramid level at 1). Both forward (x) and sideways

1The Edge-Flow code as embedded on the stereo-camera has a mean computation time for Edge-Flow is

0.00134 seconds (compiled for Linux) and for Färneback is 0.00466 seconds on the same stereo-image data

set.
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Figure 2.5: a) Several screen shots of the set of images used for off-line estimation of the velocity. Here the

diversity in amount of texture can be seen. b) Off-line velocity estimate calculated by Edge-FS and Färneback,

held against the ground truth for the forward moving stereo-camera’s data set.

(y) velocity measurements, shown in Fig. 2.5, are compared against the “ground truth”

as obtained with an OptiTrack motion capture system2, with 24 infrared cameras. The

plots also include several values to determine the quality of the velocity estimates: Mean

Squared Error (MSE), Variance (VAR) and Normalized Maximum Cross-Correlation Mag-

nitude (NMXM). A low MSE indicates greater similarity and low VAR is a smaller spread

of the measurement from the ground truth. A high NMXM stands for a better shape cor-

relation between the two. All these metrics indicate Edge-FS to obtain more accurate

results on this data set than the computationally more expensive Färneback method.

It is important to note that because of the nonlinear relation between pixel disparity

and depth in stereo vision, far distances are measured less accurately. The disparities

for further distances will become sub-pixel and hard to determine. This is especially

relevant to the small stereo board used in this study, which we set up to use 128 x 96 pixel

images for the 57.4 x 44.5 deg FOV . Also, the translational optical flow of objects is harder

to measure when they are further away, since it becomes sub-pixel as well. Hence, both

terms on the left in (2.6), su and dx become less accurate at far distances. This correlation

between distance and accuracy can be seen in the box plot of Fig. 2.6.

2www.optitrack.com
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Figure 2.6: Boxplot of the absolute velocity estimate error of Edge-FS, compared against the mean observed

depth.

Besides the difficulty with larger distances, which is fundamental to stereo vision,

Edge-FS also has some difficulty determining the forward flow when there is a large lat-

eral motion. Sideways velocity has a 0th order effect on the flow, while forward velocity

information is captured by the divergence of the flow field, which is a 1st order effect.

Therefore, the forward velocity is more subject to noise and harder to estimate (this can

be observed in Fig. 2.6 as the errors are generally higher for the x-direction than the y-

direction). In this work, the MAV will mostly fly forward. In this situation lateral flow is

kept very small while the divergence is larger and more observable. A larger SAD window

size and filtering are used to correct for the remaining noise.

2.4. EXPERIMENTS ON THE POCKET DRONE

In this section, we explain the implementation of Edge-FS on-board a pocket drone

and how it is used in an autonomous obstacle avoidance task. We will first present a

guided control with the velocity estimate with the downward-looking stereo-camera by

Edge-Flow. We will then present the velocity estimates by Edge-FS during flight with

the forward-looking stereo-camera. Subsequently, a closed loop flight is shown, where

the drone autonomously navigates through a room, while maintaining its velocity and

avoiding obstacles.

2.4.1. HARDWARE SPECIFICS

Edge-Flow and Edge-FS runs embedded on the stereo-camera (as introduced in De

Wagter et al. (2014)). Fig. 2.7 displays the stereo-camera with 1/6 inch image sensors,

with a baseline of 6 cm and an FOV of 57.5o x 44.5o . The stereo-camera has an embed-
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Figure 2.7: The 4 g stereo-camera mounted on the pocket drone in a) a down-ward looking position and b) a

forward looking position.

ded microprocessor, an STM32F4 with a speed of 168 MHz and 196 kB of memory in

which the largest consecutive memory block spans 128 kB. The cameras are configured

to output stereo-images with a size of 128 x 96 pixels to fit within memory and processing

constraints. The maximum reachable frame rate of the stereo-camera is 30 Hz, which is

not much affected by the computation of Edge-FS (approx. 0.0175 sec).

For the experiments, a pocket drone will be first equipped with a single bottom-

facing stereo-camera in Fig. 2.7a (see Section 2.4.2) and then with a front-facing stereo-

camera in Fig. 2.7b (see Section 2.4.3 and 2.4.4)). A frame of a Walkera QR LadyBug3 is

adopted as a base. An adapted smaller variant of the Lisa-MX4 will be used as the auto-

pilot5. The Lisa-MXs also carries an STM32F4 microprocessor, with a speed of 168 Hz

and 1 MB of flash memory. With an ESP-09 WiFi module, telemetry can be broadcasted

to the computer to receive all the measured variables required for validation6. The entire

assembly, including stereo-camera and battery, weighs exactly 41.9 g.

The auto-pilot program flashed on the Lisa-MXs is Paparazzi7. The software runs en-

tirely on-board the microprocessor which governs all the basic flight controls. An adap-

tive Incremental Nonlinear Dynamic Inversion (INDI) controller (Smeur et al., 2016) is

used for the attitude stabilization of the MAV. The guidance controller resides on top of

the stabilization control, to calculate the desired pitch and roll angle, to achieve a desired

altitude position or airspeed. In this chapter, it will be applied to maintain a desired ve-

locity. It will need the measurements from the stereo-camera, operating in parallel with

the Lisa-MXs.

3http://www.walkera.com/
4http://wiki.paparazziuav.org/wiki/Lisa/MX
5Fig. 2.7a had the previous version of the autopilot, the Lisa-S
6Fig. 2.7a had instead a Blue-giga BLE211 module for telemetry
7http://wiki.paparazziuav.org/
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2.4.2. ON-BOARD VELOCITY ESTIMATION AND CONTROL WITH THE

DOWNWARD-FACING CAMERA.
With the platform shown in Fig. 2.7a, we first showed a flight with Edge-Flow’s velocity

estimate, as in Section 2.2.2, in the control-loop. During a guidance control task with ex-

ternally given speed references, the pocket drone’s flight lasted for 370 seconds. Mostly

speed references where given in the x-direction (forward), however occasional speed ref-

erences in the y-direction (sideways) were necessary to keep the pocket drone flying over

the designated testing area. A sample of the velocity estimates during that same flight is

displayed in Fig. 2.8a and b. From the MSE and NMXM quality values for the x-direction,

it can be determined that Edge-Flow’s estimated velocity correlates well with the ground

truth. The pocket drone obeys the speed references given to the guidance controller

Fig. 2.8d.

Noticeable in Fig. 2.8b is that the NMXM for y-direction is lower than for the x-

direction. As most of the speed references sent to the guidance controller were for the

x-direction, the correlation in shape is a lot more eminent, hence resulting in a higher

NMXM value. Overall, it can be concluded that pocket drone can use the 4g stereo-board

for its own velocity controlled guidance. Fig. 2.8b gives a screen-shot of the video of the

experiments8, where it can be seen that the pocket drone is flying over a feature-rich

mat.

2.4.3. VELOCITY ESTIMATION WITH THE FORWARD CAMERA

We have shown in section 2.3 that Edge-FS can measure the camera velocity based on

a collection of images. Now implemented in the forward-looking 4 g stereoboard fixed

on the pocket drone, the question remains if it can still retain its quality with all the

additional effects caused by motion and vibrations during flight.

Fig. 2.9a, presents the velocity estimates of Edge-FS, during a manually controlled

flight in front of a textured screen (screen shot in Fig. 2.9b and position in Fig. 2.9c ).

The same OptiTrack system used for the image data set (Fig. 2.5a), is monitoring its real

velocity. The raw unfiltered velocity measurements of Edge-FS are contrasted with this

ground truth with NMXM, VAR and MSE . Noticeable is that the forward velocity shows

more noise peaks than the sideways velocity, as expected (see Section 2.3). However, in

both directions, Edge-FS matches the ground truth adequately, which should be suffi-

cient for the closed-loop flight.

To use the actual raw measurements in flight is undesirable. The most common way

is to fuse these vision-based velocity estimates with the accelerometers. On a larger MAV

than the pocket drone, this would be possible because of the damping. However, many

vibrations are generated by the small propellers, which are in close proximity with the

autopilot, the accelerometers readings contain too much noise. Therefore, in this chap-

ter, we use a vision-only approach applying a median filter to the 5 last velocity measure-

ments, to keep the delay to a minimum.

8YouTube playlist:

https://www.youtube.com/playlist?list=PL_KSX9GOn2P9TPb5nmFg-yH-UKC9eXbEE
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Figure 2.8: Velocity estimates calculated by the pocket drone and stereo-board assembly, now using estimated

velocity in the control in the a) x and b) y-direction. MSE and NMXM values are calculated for the entire flight

which lasted for 370 seconds, where several external speed references were given for guidance. a) A screen-shot

of the video of the flight and b) the control scheme of the velocity control.
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Figure 2.10: a) Velocity control on pocket drone with a wall force field and b) the control scheme used, explain-

ing the hierarchy of the on-board sensors and controllers.
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2.4.4. AUTONOMOUS OBSTACLE AVOIDANCE

In the previous subsection, we showed validation of the velocity estimate as calculated

by Edge-FS on a forward-looking stereo-camera. Now we will present a closed-loop

flight, where the pocket drone avoids obstacles identified by means of its stereo vision,

while guided by its velocity estimates. The main goal of this experiment is to show the

potential of the proposed algorithms for full autonomous navigation. In this section, the

vertical position as measured by OptiTrack is exclusively used for height control, as no

position measurement is used in the horizontal plane (solely for validation afterwards).

This is where the MAV uses its velocity estimates by Edge-FS.

Fig. 2.10b displays the basic control scheme for the navigation task. It determines a

desired velocity to avoid collisions. The error between the estimate and the desired ve-

locity is the input to the velocity guidance controller, which sets an attitude set-point for

the stabilization. Subsequently, Edge-Stereo determines the nearest object to camera. If

too close, it will produce a backward velocity reference to the guidance controller (a force

field), therefore preventing the pocket drone from hitting the wall face-on. Fig. 2.10a

shows the readings from a short flight of a simple hover with the obstacle force field.

When encountering a wall/obstacle, the pocket drone will need to move away from

the situation. The avoidance scheme is a simple finite state machine (FSM) with 4 behav-

ioral states (see Fig. 2.11b). It starts in check mode, where the pocket drone will check if

there is a detected obstacle within 1 meter by Edge-Stereo. If the way is clear, the pocket

drone moves forward with a constant speed (set now to 0.3 m/s), guided by the velocity

estimate from Edge-FS. If it detects an object on its path, the MAV will first hover for 1

second actively controlling the forward velocity to zero. Then it will turn quickly with a

constant angle relative to the heading (here ∆ψ= 60o). Immediately thereafter, the MAV

will evaluate the situation in the check mode and proceeds from there.

We conducted multiple autonomous flights with the pocket drone. Fig 2.11a shows

the result of 3 representative flights of the pocket drone with the forward looking stereo-

camera. The pocket drone has to navigate in a small room of 4 x 4 meter with varying

textured surfaces (screen shot of camera footage). All the flights lasted longer than 90

seconds, from which the longest duration was 122 seconds (flight 3). When the pocket

drone brushed against the wall, the safety pilot took over the flight with a remote control

for a safe landing. The most common failure case during the test flights, is that the MAV

will approach the wall with a small angle. After the turn with constant angle, the drone

will fly almost parallel to the wall which it can not detect due to its limited FOV . This

is the case for flight 2 and 3, except for flight 1, in which case the pocket drone was fac-

ing the observer after a turn. Several flights of the pocket drone have been done within

a real-world environment (Fig. 2.11c), which can be observed with the accompanying

video and YouTube list9.

The mentioned failure case for the autonomous flights is difficult to overcome. If the

MAV would turn and face a large open space, the distance for Edge-Stereo could be far

enough to compromise the quality for the velocity estimate due to the small base line of

the stereo-camera. As we already observed in Fig. 2.6, this would cause the pocket drone

to drift, which is problematic when near a wall/obstacle after the turn. If an obstacle is

not in its FOV , the chances of collision significantly increases. This could be solved by

9https://www.youtube.com/playlist?list=PL_KSX9GOn2P812tmddfrTlURHNieRe6YY
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Figure 2.11: a) A position plot of 3 flights, from which the first lasted 91 seconds, the second 101 seconds and

the third 122 seconds. b) shows screen shots of the experiments in the flight arena (left) and in a real-world

office (right). Some posters were added to the latter to provide extra texture.

merging the check and turn node of the FSM, so it will only stop turning at a significant

clear path. Another solution is to add a lightweight short range sensor on the sides of

the pocket drone, so it will detect immediately if the drone is flying close and aside an

obstacle.

The obstacle avoidance logic will need some additional work, however the experi-

ments show that Edge-FS can be used in navigation overall. During the autonomous

flight, the pocket drone was stabilizing itself using the velocity estimates of its forward

camera alone.
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2.5. CONCLUSION

A computationally efficient optical flow and stereo algorithm is presented in this chapter,

called Edge-FS. It runs embedded on a very lightweight stereo-camera and can be carried

by a 40 g pocket drone for determining velocity and depth. The presented algorithm

allows the stereo-camera to face forward, a direction in which a complex 3D structure

can be expected.

We presented experiments where the pocket drone with the stereo-camera autono-

mously navigated and avoided obstacles in an area of 4 x 4 meters. A simple finite state

machine controller showed that the velocity estimates and the depth measurement can

be used for fully autonomous flight. The current work lays the basis for stabilization and

collision avoidance on pocket drones with a single, small stereo vision system.
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LOW-LEVEL NAVIGATION OF

MULTIPLE POCKET DRONES

Besides estimating their own velocity and avoiding obstacles (Chapter 2), the pocket

drones should also be capable of detecting and avoiding each other. Relative intra-drone

localization could be done with a global localization system, of which the global coordi-

nates can be communicated among the MAVs, however we have already established in the

introduction that there is no guarantee to apply this in real-world indoor applications.

The pocket drones should therefore be able to do the relative localization and avoidance

in a decentralized manner. However, no method exists to achieve this on the small scale of

the pocket drones.

This chapter will present a complete on-board localization and avoidance scheme for

pocket drones. First, we will show a solution based on the received signal strength inten-

sity (RSSI) of Bluetooth, from which the pocket drones can determine their relative position

with respect to each other. We will then demonstrate an inter-drone collision avoidance

task with 2 pocket drones. We have combine this with wall-avoidance as in Chapter 2,

which will enable a team of pocket drones to fly autonomously within an indoor office-

like environment, using solely their on-board sensors and computational capabilities.

Parts of this chapter have been published in:

K.N. McGuire, M. Coppola, C. De Wagter & G.C.H.E. de Croon, Towards Autonomous Navigation of Multiple

Pocket Drones in Real-World Environments, IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS) 244-249 (2017)

M. Coppola, K.N. McGuire, K.Y.W. Scheper & G.C.H.E. de Croon, On-board communication-based relative

localization for collision avoidance in Micro Air Vehicle teams, Autonomous Robots 1787–1805 42-8 (2018)

Contribution: The initial research leading to majority this chapter’s work was the result of a MSc. graduation

project done by Mario Coppola. He mainly developed the relative localization scheme with Bluetooth and con-

ducted the experiments on the ARdrones. I helped him by porting his method on pocket drones for additional

experiments. Section 3.2 of this chapter has been adopted from the paper of Coppola et al. (2018) to provide the

necessary background information for the rest of the chapter. Although I was the main author of the McGuire

et al. (2017)’s paper, Mario helped out significantly with the concept and experiments.
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Figure 3.1: Two pocket drones (40 g each) flying autonomously in a real-world indoor environment using only

on-board sensing and processing.

3.1. INTRODUCTION

P
OCKET DRONES are Micro Aerial Vehicles (MAVs) characterized by their low mass and

small size. These attributes make them safe for flight near humans and allow ma-

neuvering through narrow indoor areas like corridors, windows, or rooms (as shown

in Fig. 3.1). Pocket drones are thus ideal for indoor exploration and surveillance tasks,

such as green-house observations or search-and-rescue operations (Scaramuzza et al.,

2014). However, real-world applications of pocket drones are limited by the short flight

duration and range of a single platform. By using multiple pocket drones together, ex-

ploratory tasks would be performed more efficiently and transcend the individual limi-

tations (Brambilla et al., 2013).

In order for teams of pocket drones to perform tasks in indoor spaces, they must be

able to avoid collisions with static obstacles and with each other. While solutions with

a centralized computer or external sensors are possible (e.g. using a motion tracking

system (Mulgaonkar et al., 2015) or fixed ultra wide-band beacons (Ledergerber et al.,

2015)), they are not applicable to exploration scenarios, where the link to a possible base

station can easily be interrupted. Furthermore, the need to set up an external sensor

suite would inherently defeat the purpose of the exploration task. It follows that the

drones must operate fully autonomously using on-board sensors.

The challenge tackled in this work is to achieve this on real-world pocket drones. This

challenge may be broken down into three sub-challenges. The pocket drones must: 1. fly

autonomously indoors, 2. detect and avoid obstacles in the environment, and 3. localize

and avoid each other. The hardware to achieve this must be small, light-weight, and

energy-efficient.

The first and second sub-challenges require an efficient method for own-state esti-

mation and environment detection. Computer vision is often used for such purposes, as

it can turn a simple camera into a versatile sensor, capable of measuring multiple vari-

ables. Examples are the detection of ego-motion with optical flow, successfully demon-

strated by Honegger et al. (2013) and creating 3D maps by stereo-vision, as in Geiger

et al. (2011). Many of the latest computer vision techniques do not scale well for small
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micro-processors and low resolution cameras. Nevertheless, some efficient methods

exists, which are able to run on-board miniature MAVs of 40 grams or less (De Wagter

et al., 2014, Moore et al., 2014). Recent work by McGuire et al. (2017), as presented in

Chapter 2 demonstrated successful real-world flight by a pocket drone in a room using

a light-weight stereo camera. However, the pocket drone was unable to control its own

height and, in case of side-wards drift, could collide into obstacles that were not seen

by the camera due to its limited Field-Of-View (FOV). The third sub-challenge requires

an efficient method for relative localization. In literature, typical methods rely on: high-

resolution cameras (Shen et al., 2011) (Conroy et al., 2014), infra-red sensors (Roberts

et al., 2009), or mounted microphone arrays (Basiri et al., 2016). Recently, Coppola et al.

(2018) have shown that it is possible to use communication between MAVs to achieve

relative localization to a sufficient accuracy for collision avoidance (this relative local-

ization scheme will be revisited in this chapter). However, the tests were only performed

in a controlled environment. Furthermore, their collision avoidance strategy (a variant

of Velocity Obstacle (VO) (Fiorini and Shiller, 1998, Wilkie et al., 2009)) did not account

for heading change by a drone.

The main contribution in this chapter is a system for fully autonomous flight by a

small group of pocket drones, with active avoidance of static obstacles and other drones.

The system is demonstrated in a real-world office with two pocket drones. The work

from McGuire et al. (2017) and Coppola et al. (2018), described above, were used as start-

ing points. In this work, we add a binary collision avoidance structure to efficiently store

the bearing of static obstacles (as sensed by the camera) and the other drones (as sensed

via communication). Furthermore, to allow the drones to control their height and avoid

drift, we also introduce a range sensor array. This new light-weight sensor provides accu-

rate ranging data sideways, downwards, and upwards, which allows the drone to control

its own height and detect & react on obstacles outside of the stereo camera’s FOV.

This chapter is structured as follows. First the method for the communication-based

relative localization will be recapped and explained in section 3.2, showing inter-drone

avoidance experiments of 2 pocket drones with a downward looking camera. The ap-

proach for both obstacle and inter-drone avoidance is explained in detail in section 3.3.

The drone’s behavior was first tested in simulation, as discussed in section 3.4. Finally,

section 3.5 shows the results of the real-world experiments. Section 3.6 provides con-

cluding remarks.

3.2. COMMUNICATION-BASED RELATIVE LOCALIZATION

This section will go into the specifics of relative localization via wireless communication

between MAVs, which will be demonstrated with an inter-drone collision avoidance on

two pocket drones later on. The MAVs communicate the following states to each other:

planar velocity in the body frame, orientation with respect to North, and height from

the ground. When communicating, the MAVs can also measure the signal strength; this

acts as a measure of distance. For Bluetooth Low Energy (BLE), the technology chosen

in our implementation, signal strength measurements are referred to as Received Signal

Strength Indication (RSSI). Each MAV fuses the received states, the RSSI, and its own on-

board states to estimate the relative position of another MAV. When multiple MAVs are

present, each MAV can run multiple parallel instances of the fusion filter so as to keep
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Figure 3.2: Top view of the relative localization framework (xB and yB are the planar axis of FB , while zB is

positive down (conventional aircraft coordinate system of North-East-Up).

(a) RSSI measurements with

respect to distance and fitted

LD model

(b) Error about LD model

with respect to relative bear-

ing fitted with a second order

Fourier series

(c) Noise distribution about

the LD model without and

with lobe effects

Figure 3.3: Results of RSSI measurements during an experiment whereby a Ladybird MAV was carried in circles

around a fixed Bluetooth antenna.

track of all others. This section details the design and implementation of the relative lo-

calization scheme and presents some preliminary localization results that were obtained

in early stages of the research.

3.2.1. FRAMEWORK DEFINITION FOR RELATIVE LOCALIZATION

Consider two MAVs Ri and R j with body-fixed frames FBi
and FB j

, respectively. We de-

fine the relative pose of R j with respect to Ri as the set P j i =
{

ρ j i ,β j i , z j i ,ψ j i

}

, where:

ρ j i represents the range between the origins of FBi
and FB j

, β j i is the horizontal planar

bearing of the origin of FB j
with respect to FBi

, z j i is the height of R j with respect to

Ri and ψ j i is the yaw of F j with respect to Fi . See Fig. 3.2 for an illustration. Note that

ρ j i and β j i are related to their Cartesian counterparts via:

ρ j i =

√

x2
j i
+ y2

j i
+ z2

j i
, (3.1)

β j i = atan2(y j i , x j i ). (3.2)

x j i , y j i , and z j i are the Cartesian coordinates of the origin of R j in FBi
.
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3.2.2. SIGNAL STRENGTH AS A RANGE MEASUREMENT

Let S j i be the RSSI measurement in dB . It is correlated with ρ j i by a function L (ρ j i ).

We define this function based on the Log-Distance (LD) model (Seybold, 2005):

S j i =L (ρ j i ) = Pn −10∗γl ∗ log10

(

ρ j i

)

. (3.3)

Pn is the RSSI at a nominal distance of 1 m. γl is the space-loss parameter, which dictates

how much the signal strength decays with distance (for free-space: γl = 2.0). 1 The LD

model is assumed subject to Gaussian noise (Svečko et al., 2015).

In preliminary tests, we analyzed the LD model with a Ladybird MAV (Remes et al.,

2014) (similar as the first platform used in Chapter 2) connected via Bluetooth to a

fixed W1049B omni-directional antenna.2 The MAV was carried in concentric circles

at different distances around the antenna whilst RSSI was being recorded with the

antenna. Its orientation with respect to North was kept constant, thus varying the

relative bearing to the antenna. Ground Truth data was recorded with an Optitrack

Motion Capture System. The results from a representative data sample are shown in

Fig. 3.3, to which the LD model was fitted using a non-linear least squares estimator

as in Fig. 3.3a. Among a set of similar experiments, the Standard Deviation (SD) of the

error about the fitted LD model was found to be between 3 dB and 6 dB . This is in line

with literature (Nguyen and Luo, 2013, Szabo, 2015).

We also observed a change of the error with the relative bearing. This is shown in

Fig. 3.3b, and accounts for the skew in error distributions, see Fig. 3.3c. The disturbances

that can cause this could be: uneven directional propagation lobes, interference by the

reflection of the signal in the environment, the presence of other signals in the 2.4 G H z

spectrum, or other objects that obstruct the signal (Caron et al., 2008, Kushki et al., 2008,

Seybold, 2005, Svečko et al., 2015, Szabo, 2015). Such disturbances could be dependent

on the environment or on the relative bearing between antennas, both of which are un-

known during an exploration task. For this reason, the LD model was not expanded to

include this dependency on bearing.

3.2.3. LOCALIZATION VIA FUSION OF RANGE AND ON-BOARD STATES

Achieving a relative pose estimate requires measuring or inferring all four variables in

P j i . We can directly measure or observe the following three:

• ρ j i (range), available via RSSI as in Sec. 3.2.2.

• z j i (relative height). Each MAV is expected to measure its height above the ground.

This could be done with a pressure sensor (Beard, 2007, Sabatini and Genovese,

2013, Shilov, 2014), sonar, or a downward-facing camera (Kendoul et al., 2009a,b,

McGuire et al., 2017). Two MAVs Ri and R j can share their altitude data, such

that: z j i = z j − zi .

1 Experimentally, it has been found that office buildings can feature 2 ≤ γl ≤ 6 (Kushki et al., 2008). Performing

a sensitivity analysis of the LD model shows that an accurate identification of γl has a low impact on the

distance estimate at small distances.
2Pulse, W1049B Datasheet version 1.1,www.cdiweb.com/datasheets/pulse/W1049B.pdf



3

40 3. LOW-LEVEL NAVIGATION OF MULTIPLE POCKET DRONES

• ψ j i (relative orientation). It is assumed that all MAVs acknowledge a common pla-

nar axis (e.g., magnetic North (Afzal et al., 2011, No et al., 2015)). Through com-

munication, the MAVs exchange their orientation data.

Relative bearing is the only unknown variable. It becomes observable when fusing

the three measurements above with velocity measurements (Martinelli and Siegwart,

2005, Martinelli et al., 2005). 3 We chose to perform sensor fusion with a discrete-time

Extended Kalman Filter due to its efficient processing and memory requirements (De

Silva et al., 2014). The filter uses Cartesian coordinates so that it can directly take the

difference between velocities in each axis. The state transition model from time-step k

to k +1 was defined as in Eq. 3.4.
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+~vk (3.4)

~p j i =
[

x j i y j i

]T
holds Cartesian equivalents of bearing and range. ~̇pi =

[

ẋi ẏi

]T

is a vector of the velocity of Ri in FBi
(see Fig. 3.2). ~̇p j Ri is ~̇p j rotated from FB j

to FBi
.

∆t is a discrete time-step between updates, equal to the time between k and k +1. ~vk

represents the noise in the process at time-step k. This model assumes that all current

velocities and orientations remain constant between time-steps. The observation model

for the EKF is given by Eq. 3.5.
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R2D(∗) is a 2D rotation matrix that uses the relative heading ψ j i to rotate the state esti-

mate ~̇p j Ri from FBi
to FB j

. ~wk represents the noise in the measurements at time-step

k. Note that ρ j i is expanded as per Eq. 3.1 so as to observe x j i and y j i .

The EKF cannot be initialized with a correct relative location estimate, since this is not

known; it must converge towards the correct value during flight. Appropriate tuning of

the EKF noise covariance matrices is key to achieving this. In the EKF, the measurement

3 An intuitive explanation of the observability is as follows: if robot Ri is moving towards North with 1 m/s and

its distance to R j (which, in this example, remains stationary) increases by 1 m each second, then R j could

infer that Ri is to its North. Similarly, Ri would know that R j is to its South. This logic can be extended for

all directions.
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noise matrix R is a diagonal matrix with the form shown in Eq. 3.6.

R =









σ2
m

σ2
v ∗ I4×4

σ2
ψ∗ I2×2

σ2
z ∗ I2×2









(3.6)

σm is the assumed SD of S j i . σv is the assumed SD of ~̇pi and ~̇p j . σψ is the assumed

SD of the magnetic orientation measurements. σz is the assumed SD of the height

measurements. In×n is a n ×n identity matrix. Based on our preliminary RSSI noise

analysis, σm is tuned to 5 dB . Throughout this chapter, all other SDs were tuned to 0.2,

unless otherwise stated. This was based on the measurement noise, either simulated or

expected from the sensors.

The process noise matrix Q is the diagonal matrix presented in Eq. 3.7.

Q =


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
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σ2
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σ2
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σ2
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(3.7)

σQp is the SD of the process noise on the relative position update. σQv , σQψ , and σQz are

SDs for the expected updates in velocity, orientation, and height, respectively. By tuning

Q we can define the validity of the process equations (Malyavej et al., 2013). In this

chapter, unless otherwise stated: σQp = 0.1, while σQv =σQψ =σQz = 0.5. We tuned σQp

to 0.1 so as to have a relatively low process noise on the relative position update. This

forces the filter to rely less on the (noisy) range measurements and more on other data,

which encourages convergence and helps discard the high noise and disturbance in

the RSSI measurements. σQv , σQψ , and σQz were then tuned higher (to 0.5) to enhance

the difference, while staying within the order of magnitude of the expected standard

deviations of the measurements.

This filter is limited by flip and rotation ambiguity as defined by Cornejo and Nagpal

(2015). When the motion of R j perfectly matches the motion of Ri , range-only mea-

surements remain constant and are not informative for bearing estimation. Unless the

(a) Message Intervals (b) Distribution

Figure 3.4: Messaging rate over a test flight.
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MAVs are flying in formation, the probability of this event will be low (Cornejo and Nag-

pal, 2015). The same ambiguity takes place when both Ri and R j are static. Motion by

at least one MAV is required, as the filter operates by taking the difference in velocity. The

performance of the filter thus increases as the average difference in velocity between the

MAVs increases (and/or the accompanying measurement noise decreases).

3.2.4. IMPLEMENTATION DETAILS AND TESTING THE ON-BOARD LOCAL-

IZATION ON POCKET DRONES

We used BLE to enable communication between the MAVs. The data is sent and received

by means of advertising messages scheduled using a Self-Organized Time Division Mul-

tiple Access (STDMA) algorithm, as described by Gaugel et al. (2013). This enables ad-

hoc communication and circumvents the Master-Slave paradigm otherwise enforced by

the BLE standard (Townsend et al., 2014), as each antenna alternates between advertis-

ing and listening. The messaging rate is tuned to 5 H z, which is a compromise between

the amount of STDMA communication slots (8 slots) and an acceptable communication

rate. 5 H z keeps the congestion low. Nevertheless, the messaging rate can be affected by

differences in clock rates and possible packet losses. Fig. 3.4 shows the interval between

received messages over approximately 3 minutes of recording from the point of view of a

single antenna in a group of two or three participating antennas. Approximately 80% of

messages are received and parsed within 0.25 s and 95% within 0.45 s. A slight increase

in packet loss was observed when increasing the number of antennas to three, with 128

missed messages as opposed to 120 when two antennas were used. This corresponds to

an increase in packet loss from 13.4% to 14.2%.

An exploration task was developed where multiple MAVs fly in a room at the same

altitude and attempt to pass through the center. It was designed to provoke collisions,

which the drones would handle by means of the collision-cone avoidance tactic as ex-

plained in section 4 of Coppola et al. (2018), The sample task was used to test the per-

formance of the relative localization and collision avoidance, separately and combined.

In section 7 of Coppola et al. (2018), experiments were done up to 3 AR.Drones, who

were communicating by separate Bluetooth modules. To show that the proposed solu-

tion scales to smaller MAVs, we ported the technology to pocket drones. A test-ready

MAV and its components are shown in Fig. 3.5. The platform is similar to the pocket

drone used in Chapter 2 and McGuire et al. (2017), with an addition of the Bluetooth

module.4 The conclusion of experiments done with the pocket drones in Coppola et al.

(2018) is that it did result in a slightly lower performance than the AR.drones. This is due

to the worse velocity estimation (lower resolution camera), to the fact that two commu-

nication modules (WiFi and Bluetooth) were right next to each other and to the smaller

flying space. Nonetheless, the pocket drones were able to adequately avoid each other

and therefore we used the same Bluetooth-based relative positioning explained in this

section for the remainder of this chapter.

4Videos of the experiments are available at: https://www.youtube.com/playlist?list=PL_

KSX9GOn2P9f0qyWQNBMj7xpe1HARSpc.
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Figure 3.5: Pocket-drone used in the experiments.

3.3. METHOD OBSTACLE AND INTER-DRONE AVOIDANCE

This section explains the separate sub-systems that were implemented on the pocket

drone to enable inter-drone and obstacle avoidance. To efficiently select a safe flight

direction, we implemented a binary disk array where directions are marked as either

safe or unsafe. This is as a substitute of the collision cone-based strategy used in the last

section. This array will be referred to as Collision Disk. It is depicted in Fig. 3.6a. The disk

is continuously updated using information coming from both the stereo-camera and the

inter-MAV localization, as in Fig. 3.6b.

3.3.1. VELOCITY ESTIMATION AND STATIC OBSTACLES DETECTION

Velocity estimation and static obstacle detection can be performed simultaneously with

a stereo-camera running Edge-Flow Stereo (Edge-FS). Edge-FS, earlier explained in

Chapter 2, stems from the work in Lee et al. (2004). It was followed up by McGuire et al.

(2016) and applied for an autonomous flight of a pocket drone in McGuire et al. (2017).

This computer vision algorithm is efficient thanks to the use of edge distributions. Its

working principle is depicted in Fig. 3.7. First, the gradients of an image are computed

using a Sobel filter. Then, these gradients are compressed to an edge distribution. This

can be either compared to one of a previous time-step, to compute optical flow (Edge-

Flow), or with a stereo camera, to compute depth (Edge-Stereo). By scaling Edge-Flow

with Edge-Stereo we can estimate velocity along all axes of the drone’s coordinate sys-

tem in North-East-Down (NED). Using Edge-Stereo, a disparity map can be used to also

detect obstacles such as walls or objects (within the FOV of the stereo-camera). If the dis-

tance to the obstacle is below a threshold, it is added to the Collision Disk with the angle

relative to the current heading of the pocket drone (see Fig. 3.6a). This work currently

only considers the closest obstacle.



3

44 3. LOW-LEVEL NAVIGATION OF MULTIPLE POCKET DRONES

Obstacle

Intended

 motion

New 

motion

 

Projected position 

of other MAVs

Clock-wise

scan

(a) Visualization of the Collision Disk.

Edge-FS

Intra-MAV

Localization

BluetoothStereo Camera

RSSI + 

Heading +

Velocity of

other MAVs

 

Own velocity

estimate

Cone

Matrix

New desired

direction

Obstacle

Detection

Bearing to

obstacles

Bearing to

MAVs

Disparity

Map

(b) Update flow diagram.

Figure 3.6: Schematic explanation of Collision Disk.

3.3.2. POCKET-DRONE RELATIVE LOCALIZATION

In this Chapter, we use the relative localization method explained in Section 3.2 and

Coppola et al. (2018), achieving inter-drone localization via communication between

the pocket drones. The height, and the estimated velocity in the horizontal plane (as

from Edge-FS) are communicated between drones while the RSSI is measured. Albeit

coarse (Root Mean Squared Error (RMSE) was of ≈ 0.8r ad), the method efficiently pro-

vides data on un-safe flight directions to include in the Collision Disk. It was experimen-

tally demonstrated that the accuracy is sufficient for collision avoidance even in small

rooms.

A finding from Coppola et al. (2018) was that too high cautiousness in collision avoid-

ance leads to a restriction in motion, which is ultimately detrimental. To avoid this, the

collision cone only considers drones at an estimated distance below a threshold ddr one .

To account for the relative motion of the drones, the Collision Disk does not directly use

the estimated location, but a projected location of the other MAV a certain time into the

future (Fig. 3.8). This is based on the angular velocity of the drone, such that

∆β≈ κt ·
v⊥

d
, (3.8)

where: d is the distance to another drone; v⊥ is the perpendicular velocity of the moving

drone about the observing drone; and κt is a factor equal to the amount of seconds in

the future that are estimated. In its current implementation, κt is set manually. In all the

experiments in this chapter κt = 1.
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Figure 3.7: Schematic explanation of Edge-FS.

3.3.3. HEIGHT CONTROL AND DRIFT COMPENSATION

The pocket drones will be equipped with four range-sensors, pointed toward the top,

bottom, right and left (see Fig. 3.9). The top and bottom range-sensors will be used for

basic height control, where the option exist to transverse along the ceiling of an indoor

environment. For the sides it will act like a fail safe in case the pocket drone drifts to-

wards an obstacle outside of the stereo-camera’s FOV. Here a simple force-field principle

is applied with an inner- and outer-border, as illustrated in Fig. 3.9. If the drones drift to

a distance between the obstacle and the outer-border, it will get an extra velocity com-

mand to get out of this situation. From here on, the magnitude of this command is lin-

early dependable on the distance between pocket drone and obstacle, which is bounded

with a maximum velocity command from the inner-border on. For the experiments, the

d

Prediction

Estimated location

Figure 3.8: MAV location prediction in the Collision Disk
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Figure 3.9: Visualization about the forcefield generated by the range sensors where the red lines illustrate their

direction of gaze.

inner- and outer border are set on 0.8 and 1.2 meters respectively and the maximum

bounded velocity is 0.3 m/s.

3.3.4. BEHAVIOR

To navigate within the FOV of the camera, the MAVs should always be in forward flight

so that they can visually detect obstacles (e.g. walls). The avoidance behavior then per-

forms the following operations, in order: 1. velocity is reduced to zero, 2. the MAV rotates

to face a new direction that it deems safe, 3. the MAV resumes forward flight in the new

direction. If the MAV is flying towards a region marked as unsafe, it will stop and turn

clock-wise until it is facing a direction marked safe. This is depicted in Fig. 3.6a.

3.4. SIMULATION

Prior to real-world tests, the behavior was tested in simulation using the Robotics Op-

erating System (ROS)5 and the hector-quadrotor simulator within Gazebo6 (Fig. 3.10a).

The simulated MAVs fly at the same height in an arena. The simulated MAV diame-

ter was 0.2m. The RSSI noise and lobes were set to 5dB , which is similar to the real-

world Bluetooth performance. No simulated range-sensors and stereo-camera were

used here, so the height and velocity were taken directly from the ground truth. The ve-

locity and height estimation error were set at 0.2m/s and 0.2m, respectively. The arena

was 6m ×6m.

In the first test, one drone was held static while the other was let lose in the space.

Repeated simulations of 500 s showed no collisions. The log of a simulation is shown in

Fig. 3.10b. The moving MAV could successfully combine knowledge of the other drone

and the walls to choose a safe path.

To test out the scalability of the method, trials were conducted with 2 and 3 MAVs

in the same arena. The threshold distance from the drone to the wall was 1.2m. The

maximum trial duration was 500s, but an inter-drone collision will end the trial prema-

5Robot Operating System (ROS),http://www.ros.org/
6Gazebo, http://gazebosim.org/
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(a) Screen-shot of a simula-

tion trial. (b) Simulation log with a

static drone over a 500s

flight.

Figure 3.10: Set-up of simulation environment.

No Avoidance ddr one = 2m ddr one = 5m

2 MAVs 194s & 10 coll. 266s & 8 coll. 421s & 4 coll.

3 MAVs 66s & 10 coll. 103s & 9 coll. 177s & 10 coll.

Table 3.1: Simulation statistics (mean flight time and number of collisions). 10 simulated flights were run for

each parameter pair.

turely. ddr one was set to 2m (Fig. 3.11a and 3.11c) and 5m (Fig. 3.11b and 3.11d). For each

parameter pair, 10 trials were run. An overview of the results can be found in Tab. 3.1.

For the 2 and 3 MAVs scenarios, the average flight times (over 10 flights) increased with

ddr one = 5m instead of 2m and the number of collisions went down, except for 3MAVs

with dd r one of 5 meters. However, the trajectories (see Fig. 3.11) show that increasing

ddr one restricts freedom of movement. In 3.11d), MAV 1 and MAV 3 were stuck in one

corner and could not move out of their position. To favor unrestricted movement, a

smaller ddr one would be preferred, although this inherently increases collision risk.

Overall, the results from this behavior do not improve the average flight-times if com-

pared to the simulated results from Coppola et al. (2018). One of the added complication

is that now the MAV behaviour is highly non-holonomic, as it constantly stops to change

its own heading. Instead, Coppola et al. (2018) simply changed direction of flight. Stop-

ping to change heading decreases the accuracy of the relative localization, which relies

on motion. Finally, adding the real wall detection to the Collision Disk adds further com-

plexity. Nevertheless, the simulation results show that 2 pocket drones can fly within a

room for the almost full duration of their battery (approx. 5mi n), which will be demon-

strated in a real-world environment in the next section.
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(a) 2 MAVs with ddr one = 2.

Flight duration = 500s.

(b) 2 MAVs with ddr one =

5m. Flight duration = 500s.

(c) 3 MAVs with ddr one = 2m.

Flight duration = 163s.

(d) 3 MAVs with ddr one =

5m. Flight duration = 437s.

Figure 3.11: Simulation logs with 2 and 3 MAVs for ddr one = 2m and ddr one = 5m.

3.5. REAL-WORLD EXPERIMENTS

The system was implemented in real pocket drones. In this section, the hardware and

software specifics are presented and the experiments are shown of the pocket drones

flying autonomously in a real-world environment.

3.5.1. HARDWARE AND SOFTWARE SET-UP

A single pocket drone consists of a Lisa-MXs auto-pilot module (a smaller variant of the

Lisa-MX7), similar to the one used in McGuire et al. (2017) (see Fig. 3.12). It carries an

STM32F4 microprocessor with a speed of 168M H z and 1MB of flash memory. The 4

gram stereo-camera also features an embedded STM32F4 microprocessor with a speed

of 168M H z and 196kB of memory in which the largest consecutive memory block spans

7Lisa MX Paparazzi Wikipedia manual, http://wiki.paparazziuav.org/wiki/Lisa/MX
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128 kB. The processed images are 128×96px and the camera has a 57.4×44.5deg FOV.

With this hardware, the Edge-FS algorithm can run in parallel with the regular flight con-

trollers of the Lisa-MXs. Everything is mounted on a Walkera QR LadyBug quad-copter

frame.8 The inter-drone communication and RSSI measurement is done by a Bled112

Bluetooth smart dongle9 (as used in Coppola et al. (2018)). For testing and validation

purposes, an ESP-09 WiFi module was used to broadcast high-speed telemetry to the

ground computer. It was not used to send any prior information about the testing area

as the pocket drones interprets the environment (by Edge-FS) and perform the inter-

MAV localization (RSSI) all on-board.

Finally, a 0.2mm thick, 7mm wide and 88mm long Polyimid Flex-PCB with four

VL53L0X Time-of-Flight ranging sensor10 was designed. The flexible board is bent into a

ring and attached to the pocket drone resulting in ranging sensors pointing towards the

sides and towards the bottom and the ceiling. By configuring the range sensors into long

range mode, they can measure an absolute range up to 2m at 8H z. A local ATmega328P-

MLF28 microcontroller interfaces with all the sensors and sends the combined measure-

ments to the Lisa-MXs over a single wire. The total weight of the board is 0.25g .With ev-

erything combined, the MAV’s total mass is approximately 43 gram (including a 11 gram

battery).

The auto-pilot program flashed on the Lisa-MXs is Paparazzi UAV.11 All algorithms

and controllers of the software runs entirely on the microprocessor. The basic low levels

controllers regulate the attitude of the pocket drone. On top of this, a PID guidance

controller coordinates the MAV’s velocity in the X (forward) and Y (sideways) direction.

In this chapter, the velocity estimated in the X-Y-Z is given by Edge-FS and is actively

controlled in the horizontal plane. Since the range sensors provide an accurate position

of the altitude of the pocket drone, it can maintain a fixed height for the duration of the

flight. The side range sensors will not be used for the main navigation, since individually

they have a very narrow receptive angle, but will act as a velocity force field. If the pocket

drone comes too close to a wall or obstacle at the sides — which is beyond the FOV of the

camera — it will give an opposite velocity commands that is added to the one from the

main navigation and steers the MAV away from the lateral obstacle. In the experiments,

only one pocket drone (PD1) is equipped with the range sensors and the other one is not

(PD2).

3.5.2. EXPERIMENT RESULTS

The experiments with two pocket drones were conducted in a real-world environment:

an office at the faculty of Aerospace Engineering from the Delft University of Technology

(Fig. 3.13). This office’s dimensions are 5.0 × 4.0 × 2.7m in length, width, and height,

respectively. The office features varying types texture as commonly found in such areas.

The glass cabinets were given a bit of additional coverage as this is still a difficult scenario

8Walkera QR LadyBug quad-copter, http://www.walkera.com/
9Scilabs Bled112 Bluetooth smart dongle, http://www.silabs.com/products/wireless/bluetooth/

bluetooth-low-energy-modules/ble121lr-bluetooth-smart-long-range-module
10STMicroElectronics, VL53L0X Time-of-Flight ranging sensor, http://www.st.com/content/st_com/en/

products/imaging-and-photonics-solutions/proximity-sensors/vl53l0x.html
11PaparazziUAV Wikipedia manual, http://wiki.paparazziuav.org/



3

50 3. LOW-LEVEL NAVIGATION OF MULTIPLE POCKET DRONES

Stereoboard

Bluetooth

BLE121LR

WiFI

ESP-09

Lisa-MXs

Auto-pilot

ToF Flex PCB

Figure 3.12: Picture of the pocket drone and its hardware.

Figure 3.13: Panorama of testing site.

for Edge-FS as well for the proximity sensors. Four infrared OptiTrack cameras12 were

placed near the ceiling of the room to measure a (sparse) trajectory for determining their

coverage, but is used for post flight analysis only.

The pocket drones started out with a manual take-off, from which they switch to au-

tonomous control mid-air. The thresholded distance for both the range for the other

MAV as the obstacles was set to 1.5m. The pocket drone (PD1) carrying the range sen-

sors, would start out first as it is able to maintain its own attitude (which it maintains

at 1.5m, taking the ceiling as a reference). Once PD1 is flying autonomously for a few

seconds, the second MAV (PD2) takes off and switched to guided mode. As the drone

does not contain the range sensor PCB ring, its height has to be controlled manually. In

the horizontal plane however, the same avoidance logic for the turning exists as with the

first drone, with some extra velocity guidance of the remote control. This means that

only the preferred velocity is given by the remote control, from which it has to match

with its own velocity estimate of Edge-FS, and not the exact angle set points as with the

12OptiTrack, http://www.optitrack.com/
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Figure 3.14: Top view flight tracking of flight 2-2 and 3-2

common attitude manual control. However, the difficulty in guiding PD2, is that it is

controlling its own heading based on obstacles and the location of PD1. Since this and

its velocity control (given by the remote control) are decoupled, the safety pilot had a

hard time controlling PD2, resulting in a longer average flight duration for the full au-

tonomous PD1.

Based on the full duration of PD1’s flight, 4 tests were performed, with a duration of

119s, 311s, 321s and 103s respectively. PD1 crashed in the 1st flight because of an unde-

tected static obstacle. In the 2nd and 3r d flight, PD1 flew autonomously until the end of

its battery life. In the 4th flight, PD1 was caught in between two pillars and facing a wall,

and was unable to escape from this dead-lock. For now, this chapter will focus on flight

2 and 3 specifically because of their length, as more inter-MAV collision avoidance situa-

tions can be analyzed. The flights contain multiple restarts of PD2, therefore can be split

up in sub-flights (2-1 to 2-3 and 3-1 to 3-4). In Fig. 3.14, the trajectory by the OptiTrack

cameras is shown for flight 2-2 and 3-2. The motion capture system was undersized

for full room coverage, and was thus unable to track the drones the entire time due to

occlusion and their small size. This resulted in some artifacts in the tracked position.

However, some moments were identified where the pocket drones came in proximity of

each other, which are annotated in the plots of Fig. 3.14.

We shall discuss three representative scenarios, which have been recorded on video

and their screen-shots can be found in Fig. 3.15. These images show the moments of

close proximity, as annotated in Fig. 3.14. The first screen-shot shows Scenario A, where

both drones were able to see each other and changed their heading accordingly. In the

Scenario B, PD2 failed to locate PD1 correctly as it is not shown in the Collision Disk.

However, PD1 successfully detected PD2 and changed its heading to an obstacle free di-

rection. In the last screen-shot, Scenario C, PD2 did see PD1 (as indicated in the Collision

Disk), and only had to adjust its heading slightly. PD1 did also detect PD2, but since it is

not on its planned trajectory it did not go into an evasive maneuver at first. However, as

it was heading towards an obstacle, it will plan a turn into an collision-free direction. All
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A)
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Figure 3.15: Screen shots of flight 2-2 at A) 2:21 sec and flight 3-2 at B) 2:46 and C) 2:54 sec.
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video recorded flights can be find in a dedicated YouTube play-list.13

3.6. CONCLUSION

To the best of our knowledge, this chapter presents the first attempt to fly a fully au-

tonomous team (duo) of pocket drones in a real-world environment. We combined

state-of-the-art methods for own-state estimation and inter-drone tracking for pocket

drones, and added additional range sensors to control height and side-ways drift. With

this set-up, the pocket drones can achieve stable flight. Using a binary structure called

Collision Disk, they could efficiently select collision free paths (from static obstacles

and other drones) while exploring their environment. The experiments showed that the

pocket drones made the right maneuvers at close proximity of each other. By means of

simulation, there are indications that this method can scale to teams of three or more

drones. However, the accuracy of the relative localization and the avoidance behavior

needs to be developed further in order to achieve this successfully. Nevertheless, this

work takes a step closer towards achieving a team of pocket drones, which is able navi-

gate indoor without any external sensors or prior knowledge of the environment.

13https://www.youtube.com/playlist?list=PL_KSX9GOn2P9CdtNz_p_tv1cpEs1E3KUx
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4
BUG ALGORITHM LITERATURE

SURVEY

In part I, we have covered the low-level-navigation of the pocket drones, for the individual

drone in Chapter 2 and for multiple drones in Chapter 3. Now we will take a step towards

a higher level of navigation. In the introduction we covered several high-level naviga-

tion methods, including several SLAM and insect-inspired navigation techniques, some

of which we have also tried to implement ourselves in van Dalen et al. (2018). However,

these algorithms were still not fit to be implemented on-board the limited autopilot of the

pocket drone as they still require significant memory and processing requirements.

In this chapter, we will dive into a potential alternative, called Bug Algorithms. The gen-

eral idea is that the robot will have a goal position, while not knowing anything about the

obstacles/walls on its way. It will start moving towards its goal, and if it encounters an

obstacle, it will follow its boundary until it comes across the possibility to move towards

the goal again. Such a strategy only requires limited processing and memory capabilities

and is therefore promising for pocket drones. In this chapter, we will provide a survey of

Bug Algorithms, their current implementation on robotic platforms and simulation tests

which will assess their ability to deal with real-world sensor noise. The conclusion of this

chapter’s study is that existing bug algorithms rely too much on perfect positioning. The

performance drops dramatically once realistic estimation drifts are included. Based on

the results, we will develop a novel bug navigation strategy in Chapter 5.

Parts of this chapter have been submitted to

K McGuire, G.C.H.E. de Croon & K. Tuyls , A Comparative Study of Bug Algorithms for Robot Navigation.,

Robotics and Autonomous Systems 103261, 121 (2019).
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Target

Start

Agent

Figure 4.1: An example of an agent performing a Bug Algorithm-like behavior, while navigation in an indoor

environment. From a starting position (bottom-right), it moves towards the target (top-left), where it tries

to move towards the target whenever it can and follows the obstacles’ boundary when it hits an obstacle. Its

trajectory is given in green.

4.1. INTRODUCTION

R
OBOTIC indoor navigation of robots has been a sought-after topic for the last few

decades within the robotic community. An important stimulus for this interest is its

potential for a wide range of scenarios, e.g. search-and-rescue, greenhouse observation,

industrial inspection. Indoor navigation also comes with a wide range of issues, such as

the absence of a reliable GPS-signal and wall interference in long-range communication.

An indoor robot should preferably be autonomous and able to navigate based on its on-

board sensors and computational capacity.

There has been tremendous progress in autonomous robotic navigation, up to

a point that some researchers believe this to be an already solved problem. With

the emerging autonomous cars, simultaneous localization and mapping (SLAM) has

reached high maturity in development (see Bresson et al. (2017) for a review). SLAM is a

notoriously complex and expensive algorithm, consuming much of the robot’s on-board

processing power. To strive towards computationally efficient methods is advantageous

for any robot, but it becomes vital when the application requires the use of tiny, light-

weight robots. For instance, small Micro Aerial Vehicles (MAVs), in the order of 50 grams

and 15 cm diameter, could be ideal for exploring small and confined spaces. However,

their on-board computational resources are so limited that they cannot make use of the

current SLAM methods.

Given these strict computational requirement for tiny robotic platforms, an impor-

tant question is raised: does the actual simple principle of navigation, going from point

A to point B, need the computational and memory requirements for constructing and

maintaining high-resolution metric maps? Should the complexity of the strategy not be

proportional to the simplicity of the task?

There are several light-weight alternatives to SLAM to consider, such as Topological
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SLAM (see Boal et al. (2014) for a review). Biologically inspired techniques like the Snap-

shot Model (Cartwright and Collett (1983)) and the Average Landmark Vector (Lambri-

nos et al. (2000)) can also be considered. These efficient methods, however, still have the

tendency to scale up the memory requirements, when navigating in more complex and

large environments.

In this chapter, we will look at a navigation method of a different kind: Bug Algo-

rithms. Although the name suggests a biological origin, it is a path-planning technique

that evolved from maze-solving algorithms. The main principle of Bug Algorithms is that

they do not know the obstacles in their environment and only know their target’s rela-

tive position. They will locally react only upon contact with obstacles and walls, in a way

that lets the agents progress towards their goal, by following the obstacle’s boundaries

("wall-following"), as illustrated in Fig. 4.1. The nature of Bug Algorithms is ideal for in-

door navigation on tiny, resource-limited, robotic systems, as their potential memory

and processing requirements are low, therefore expected to take up little space on the

on-board computer.

In this chapter we will delve into Bug Algorithms in more detail, by providing an

overview of the techniques existing today. Although there have been two comparative

studies on Bug Algorithms before (Noborio et al. (2000), Ng and Bräunl (2007)), our dis-

tinctive contribution is that we will evaluate how suitable Bug Algorithms are in for be-

coming a new navigational standard within robotics. Here we will investigate the as-

sumptions for real-world scenarios. An important conclusion of our study is that Bug

Algorithms tend to heavily rely on a perfect position estimation, which cannot be taken

for granted in a GPS-deprived indoor environment. Global positioning systems could

be set up beforehand, such as a motion capture or Ultra-Wide-Band (UWB) localization

system (like in Mueller et al. (2015)). However, in cases like search-and-rescue scenar-

ios, it is undesirable to have humans prepare the robot’s environment. The robots would

need to rely on their estimated position, obtained by their own, noisy, on-board sensors.

With ground-bound robots, wheel slippage (Borenstein and Liqiang Feng (1996)) can

cause an increasing error between the real and estimated position. The same goes for

visual odometry (Scaramuzza and Fraundorfer (2011)), used by MAVs or hovercraft-like

vehicles, where the error of the noisy velocity estimate will get accumulated over time.

This is especially the case in a texture-poor environment.

We will compare a representative subset of Bug Algorithms in the ARGoS simulator,

which is capable of modeling realistic physical interactions with objects in the environ-

ment. Although we will not implement as many Bug Algorithms as Ng and Bräunl (2007)

did, we will test them in more realistic real-world conditions, containing elements such

as odometry-drift or recognition-failures. We investigate their behaviors on hundreds

of procedurally generated indoor environments, to compare their performance statisti-

cally. Here it is shown that the increased measurement noise on the on-board sensors

causes a dramatic drop in overall performances of the Bug Algorithms. We will discuss

how this affects the potential of Bug Algorithms in robotic navigation and what type of

assumptions we can make about the environment, which can point us to the variations

that are the most suitable.

An overview of Bug Algorithms is given in section 4.2, starting from their "maze-

solver" origins, to the fundamental contact-based Bug Algorithms, to the more recent
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Figure 4.2: The behavior of simple Bug Algorithms: a) Com, b) Bug1 and c) Bug2. The S and T depicts the start

and target position respectively.

extended range-based versions and hybrid solutions. This is followed by a sum-up of

the methods already used in robotic navigation in section 4.3. Subsequently, we per-

form a quantitative comparison of the Bug Algorithms performances, of which the setup

is explained in section 4.4. The experiments themselves are discussed in section 4.5, and

involve various degrees of sensor-noise and -failures. The findings of this chapter will be

discussed in section 4.6, from which we will present our conclusions in section 4.7.

4.2. THEORY AND VARIANTS OF BUG ALGORITHMS

The late 80s is when the term Bug Algorithms (BAs) first came into existence, evolv-

ing from the existing path planning algorithms like Dijkstra (Dijkstra (1959)) and A*

(Hart et al. (1968)). However, the latter methods need to know their environment in ad-

vance, which includes start and goal positions, all obstacles and their position along the

way. Maze-solving algorithms first explored the navigational problem without knowl-

edge about the environment for enclosed spaces with walls and only one entrance and

exit. If the target is reachable through a series of interconnected walls, a wall-follower

would guarantee a quicker solution than a random walker (Mishra and Bande (2008)).

As long as its left or right side is constantly in contact with a wall while moving through

the maze, it will always reach the exit. However, if the environment is not an intercon-

nected maze and contains disjoint obstacles between the start- and end-location, the

wall-follower might get stuck in an endless loop. For typical indoor, non-maze, environ-

ments with disjoint obstacles, Bug Algorithms will be more suitable for the task.

4.2.1. CONTACT BUG ALGORITHMS

Lumelsky and Stepanov (1986) were the pioneers in developing bug algorithms. At first,

they described a very simplistic BA, called the "common sense algorithm" which can be

abbreviated as Com. Its behavior is illustrated in Fig. 4.2a. The position where a BA hits

the obstacle for the first time is called a hit-point, and it has a leave-point as soon as

the direction to the target is free. Intuitively, Com could solve many situations; however,

Lumelsky and Stepanov (1986) pointed out that there are scenarios in which it cannot

reach the goal. This happens when introduced to a more complex environment as, for

instance, the one illustrated in Fig. 4.3a.

In the same paper of Lumelsky and Stepanov (1986), the Bug1 algorithm was intro-

duced, following a different strategy to overcome the issues that Com is facing. Every

obstacle Bug1 comes across, it first has to "explore" the obstacle by following its entire

border, while simultaneously keeping track of which position is the closest to the tar-
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Figure 4.3: Generated paths by the Bug Algorithms a) Com, b) Bug1, c) Bug2, d) Com1, e) Alg1, f) Alg2, g)

DistBug, h) Rev1 and i) Rev2 in a more challenging environment. The S and T depicts the start and target

position respectively and Hi means the ith hit-point. x is the current position of the agent and CW and CCW

stand for Clock Wise and Counter Clock Wise respectively.

get, as shown in the simple environment in Fig. 4.2b. After it encounters its original

hit-point, Bug1 will continue and move towards the position closest to the target, from

which it will leave the obstacle. Bug1 is able to handle environments where Com failed

(as seen in Fig. 4.3b); however, it is a less intuitive approach. As it needs to know the

entire border of the obstacle, this will naturally create unnecessary long paths. Lumelsky

and Stepanov (1987) therefore proposed an alternative: Bug2. Between the beginning

and end position, an imaginary line is drawn, called the M-line. In the simple scenario

of Fig. 4.2(c), this means that the bug will follow the obstacles border until it hits the

same M-line at the other side. As long as that point is closer towards the target than the

hit-point’s position, it will depart from the obstacle, as illustrated by Fig. 4.3c.

Sankaranarayanar and Vidyasagar (1990) were able to reduce the path length even

further by adding memory. They extended the Bug2 algorithm with the following princi-

ple: to change its wall-following direction if it comes across a previously visited hit-point

along the border of the obstacle. It has been dubbed as Alg1. It is true that in some situa-

tions a shorter path will be generated, however in others it will increase the path length,

as can be seen in Fig. 4.3e. Sankaranarayanar and Vidyasagar (1990) also suggested an

extended version of Com, Com11, which remembers the previous hit-point’s distance to

the target. Com1 will utilize this as an extra argument to initiate the departure from the

obstacle boundary, as seen in Fig. 4.3d. Based on Com1, Alg2 was created in the same pa-

1This is also being referred to as Class1 in the studies of Noborio et al. (2000) and Ng and Bräunl (2007)
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Figure 4.4: An alternative complex environment to show a case that would produce a long path-length for a)

DistBug, b) Rev1 and c) Rev2.

per of Sankaranarayanar and Vidyasagar (1990) as well, where it, similar to Alg1, reverses

the wall-following direction if it encounters a previous saved hit-point. Alg2 therefore

needs to keep track of all previous hit-points on its way for the reverse local direction

condition, as this will occasionally occur (Fig. 4.3f). Kamon and Rivlin (1997) created a

BA quite similar to Alg2, DistBug2. The only difference is that it will not remember the

positions of all the previous hit-points, but solely the last one, therefore making it more

memory efficient. Another intriguing aspect of DistBug, is that the local wall-following

direction depends on the orientation with which the BA touches the hit-point. Most

times, this will naturally lead it to the target and result in a shorter path, which is no-

ticeable in the environment illustrated in Fig. 4.3g. However, there are situations where

such a policy will fail, as in Fig. 4.4a. At the first hit point, it would be better to follow

the wall in the other direction. The same goes for Rev1 and Rev2, extensions to both Alg1

and Alg2 respectively, proposed by Horiuchi and Noborio (2001). Both BAs will alternate

their local direction at each (new) hit-point, which is a good strategy for environments

like in Fig. 4.3h and i. However, Fig. 4.4b and c show a situation where alternating the lo-

cal wall-following direction is not the best policy. These examples do show that the best

choice of local direction depends on the environment. It is, therefore, difficult to find a

generic strategy for determining the best wall-following direction.

4.2.2. BUG ALGORITHMS WITH A RANGE SENSOR

What if the robot is able to sense obstacles already at a certain range and therefore act

before touching the obstacles physically? Lumelsky and Stepanov (1986) already men-

tioned this idea in their first paper, which has been materialized in the papers of Lumel-

sky and Skewis (1988) and Lumelsky and Skewis (1990) as VisBug 21 & 22. Both are based

on Bug2, but are now equipped with a range sensor able to sense up to a given maxi-

mum range. The BA will still follow the M-line but they can detect "short-cuts" to the

next obstacle which should reduce the total path traveled, as can be seen in Fig. 4.5a.

Kamon et al. (1996) introduced a successful version of the range-based Bug Algo-

rithms, called TangentBug. Within the maximum range of its sensor, a local tangent

graph (LTG) is constructed, as illustrated in Fig. 4.5b. The LTG represents the disconti-

nuities/borders of the detectable obstacle field around the robot. It starts out by moving

towards the target while traversing the LTG edge that results in the quickest path D to the

target (T ) from its current position (x). However, if D of that edge increases, it will save

2Here we are referring to the extended DistBug algorithm of the same paper, with the search manager and

local-direction choice based on the slope of the wall.
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Figure 4.5: The Bug Algorithms developed with obstacle detection with range sensors: a) VisBug and b) Tan-

gentBug. The S and T depicts the start and target position respectively. r stands for radius of the range sensor.

LTG stands for local tangent graph and OL and OR stand for the left and right border of the detected obstacle

within the range sensor respectively. d(OR ,T ) and (d(OL ,T ) stand for the distance between the left and right

obstacle boundary to the target, respectively. c) A close up of a scenario in which Tangent bug is able to handle

local minima.

the current range to the target as a local minimum (dmi n) and will continue following

the remaining boundary of that obstacle. If the robot senses a node on the boundary of

the obstacle that is smaller than dmi n , it trigger a leave-condition and, if possible, moves

directly to the target (see Fig. 4.5c). Kamon et al. (1999) extended TangentBug to operate

in 3D-environments as well (3DBug).

TangentBug is probably the most referred work in the field of BAs and many variants

of it exists. The 360° range sensor assumption is changed to a sensor with a limited field

of view with WedgeBug (Laubach and Burdick (1999)), for instance, to represent a stereo

camera. Magid and Rivlin (2004) developed a BA which will actively search for the right

local wall-following direction, to prevent a long-path length. Their CautiousBug will not

choose a direction based on the angle of attack on the hit-point, as DistBug, but will first

do a spiral search along the border, with the hit-point in the center. A disadvantage of

this method seems that the spiral search by itself will also produce a long path, therefore

it has less of an advantage over Tangentbug. A newer variation is InsertBug by Xu and

Tang (2013), which navigates by means of way-points, placed on a safe distance from the

obstacle’s boundary. This could be seen as a version of TangentBug that adds a safety

margin to each obstacle detected.

4.2.3. SPECIAL BUG ALGORITHMS

Some BAs either take a special approach or are combined with other existing methods

(HybridBugs). Lee et al. (1997) used fuzzy logic with an adjusted Com method, a.k.a

FuzzyBug. Assuming the BA is equipped with two single-beam sensors, pointed forward

on both sides, it can detect if an obstacle is closer to its right or left. Based on a fuzzy

membership function, FuzzyBug decides to follow the obstacle’s boundary on its right or

left, which a similar approach to DistBug’s strategy. Noborio et al. (1999) developed HB-I,

which is another HybridBug. After each hit-point of the obstacle, HB-I moves along the

border in both directions until it hits a corner. It will then select the best direction first,

based on the best-first search of a decision tree. Xu (2014) used a different approach with

RandomBug. Once it detects an obstacle, it generates random points within the range of
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its sensor. From these points, RandomBug selects the optimal one, dependent on how

close the point is to the target, and generates a motion vector towards it. This produces

a path quite similar to InsertBug, but the process is highly related to rapidly-exploring

random trees (LaValle and James J. Kuffner (2001)).

Taylor and LaValle (2009) developed IBug, which is short for Intensity-bug. Its only

information about its target is a wireless beacon on a specified location, of which it will

navigate towards by means of the signal strength. Since they assume that IBug can make

use of a "tower-orientation" sensor, the agent will move towards the beacon location.

When it leaves the obstacle, IBug will temporarily save the value of the intensity (iH ) at

that very moment. Here, a high intensity (signal strength) means a short distance to the

target and a low intensity a large distance. While the robot follows the obstacle’s bound-

ary (always with a predefined Local direction of CW or CCW), it compares the current

intensity level with iH , as well as the current intensity and of time-steps back. If the sig-

nal strength decreases after increasing, the agent will have detected a local minima and a

leave-condition is triggered, but only if the current measured intensity is larger than iH .

Although the leave condition is different, the latter comparison of intensity levels at the

hit- and leave-points is quite similar in approach to Com1, with intensities substituted

for distances.

4.2.4. OVERVIEW BUG ALGORITHMS

The BAs discussed in the previous sections are visualized in the overview of Fig. 4.6,

where they are connected based on their development and added features. We subdivide

the algorithms in a few major categories. The main division already started in the paper

of Lumelsky and Stepanov (1986), where they presented Com, Bug1 and Bug2. Com led

to a series of Bug Algorithms that navigated in an azimuth angle towards the goal when-

ever it had the chance to do so. Hence, here we categorize them as Angle-Bugs. Lumelsky

and Stepanov (1986) realized that their next creation, Bug1, would create long trajecto-

ries by default. The community seems to have agreed as no extension or variation of

Bug1 was developed here after, so therefore no similar Bug Algorithms have emerged

since. Lumelsky and Stepanov (1986)’s alternative solution, Bug2, did have more poten-

tial, so new variations of M-line-Bugs have been presented, leading to a separate cate-

gory of BAs in the overview.

Com is arguably the simplest BA, as it uses no memory, nor determines any M-line.

With Com1, Sankaranarayanar and Vidyasagar (1990) added a distance-based leave con-

dition, where it will only leave the obstacle if it reaches a position closer to the goal than

before. Sankaranarayanar and Vidyasagar (1990)’s Alg1 and 2 are given additional mem-

orization tasks as increments. Not only do these BAs remember the previous minimal

distance to the goal, but all the hit-points’ locations in between as well to reverse their

local direction. Horiuchi and Noborio (2001) made Rev1&2 remember their last local

wall-following direction, together with the local direction chosen at each hit-point. Dis-

tBug uses a more memory-friendly approach to determine its local wall-following direc-

tion, which is purely based on the detected slope of the approached obstacle. Eventually,

the BAs started to use range-sensors at one point, creating the Range-Bugs category.

We can make some general observations about the overview in Fig. 4.6. Firstly, there

are more Angle-bug-based BAs than M-line bugs. This is likely thanks to their more in-
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Figure 4.6: An overview of all the discussed Bug Algorithms (BAs) in section 4.2. These BAs are presented in a

development tree of increasing complexity. It makes a distinction between Angle-Bugs, BAs that move to the

target’s azimuth direction, M-line-Bugs, BAs that use an M-line to navigate, and Range-Bugs, which use a range

sensor to detect obstacles. The BAs noted in a dotted circle are special/ hybrid-bugs. The gray blobs indicate

the type of memory and leave-condition added to the method. The latter is only shown until Rev1&2.

tuitive and less restrictive navigation strategy towards the target. Secondly, more and

more features are added to the BAs as time progresses. Each new BA builds on top of

an other, adding new leaving conditions and memory capabilities, therefore increasing

the bug’s complexity in the hope to find more efficient paths. The sole exception is the

more recent Ibug, which is a recent BA variation, but is only one step away from Com1

in complexity.

4.3. BUG ALGORITHMS FOR ROBOTIC NAVIGATION

The BAs presented in the last section are considered as a potential new robotic path

planning paradigm, because of their simplicity and low memory footprint. We first will

discuss how the principle of BAs translates to realistic operating conditions. Afterwards,

existing BA robotic implementations will be presented and discussed on how well these

studies represent real-world scenarios.
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Table 4.1: Robotic implementations of various Bug Algorithms (BAs). These are evaluated on the type of plat-

form used, whether the environment was real or simulated and which BA type was used. Moreover, it shows

the used local sensors for obstacle detection and the used global sensor for a position estimate.

Paper Platform Environment Bug algo-

rithm

Local sensors Global sensors

Kamon and Rivlin

(1997)

Wheeled

robot

Real DistBug Range sensors Global localiza-

tion

(system not

given)

Laubach and Bur-

dick (2000)

Microrover Real RoverBug

(wedgebug

extended)

Stereo images Guiding opera-

tor (First person

view)

Mastrogiovanni

et al. (2009)

Wheeled

robot

Hexapod

robot

Real µNAV Ultrasound range

sensor

Wheel odometry

Azimuth angle

by photo diodes

(only for hexa-

pod)

Zhu et al. (2010) Wheeled

robot

Real Bug2 and

a DistBug

variant

Laser scanner (180

deg)

Global localiza-

tion

(system not

given)

Kim et al. (2013) Wheeled

robot

Real Tangentbug

(adjusted)

Ultrasound range

sensor

Wheel odometry

Global localiza-

tion

(system not

given)

Taylor and LaValle

(2014)

Wheeled

robot

Real Ibug Touch sensors IR Beacon

Ebrahimi et al.

(2014)

Quadcopter Simulation UavisBug Camera Motion Capture

System

Gulzar et al. (2015) Wheeled

robot

Real Not Given Ultrasound Motion Capture

System

Marino et al.

(2016)

Quadcopter Simulation Bug2 Laser scanner (180

deg)

UWB localiza-

tion

4.3.1. BUG ALGORITHMS IN REAL-WORLD CONDITIONS

In the earlier literature overview in section 4.2, it seems to be the case that BAs heavily

rely on perfect localization. They almost all assume that the BA does not know the ex-

act location and shape of the obstacles, however they almost all need to know the exact

coordinates of their goal and their own position. The latter is used for more aspects of

BAs than first meets the eye. Angle Bugs need to know the distance and azimuth angle to

the target at any point. M-line-Bugs (i.e. Bug2, Alg1, Rev1) both remember the exact line

(and direction) between the starting position and the goal, and recognize if they have

reached it. Hit-point memorizing BAs (i.e Alg1&2) need to match their current position

estimate with previously hit-point coordinates. In a typical indoor GPS-deprived en-

vironment, obtaining and maintaining a world position is a significant challenge. Real-

world robots that do not have maps then will need to rely on odometry, which is prone to

errors and has the tendency to drift in time from the ground truth. Some BAs (i.e. Alg1&2

and Rev1&2) have to remember the exact coordinates of where they have been, which

ensures a convergence to the target. This could be done by odometry as well, or by mem-

orizing features in the environment with scene descriptors locally with SIFT (Goedemé

et al. (2007)) or globally with Bag-of-Words (Fraundorfer et al. (2007)). As with visual
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odometry, the descriptor’s performance highly depend on the texture of the environ-

ment. Most BAs use a Distance-to-Target (DT) measurement in their leave-condition.

Next to using the drift-susceptible odometry, they could also retrieve the DT in ways such

as received signal strength intensity (RSSI) of Bluetooth (Bargh and de Groote (2008)) or

Ultra-Wide Band (UWB, Guo et al. (2017)). This does of course require the placement

of a wireless transmitter at the target location. Moreover, none of these sensors have a

perfect ranging measurement, with errors ranging from 10 cm to 5 meters.

4.3.2. EXISTING IMPLEMENTED BUG ALGORITHMS FOR ROBOTIC NAVIGA-

TION

This section will look at current robotic BA implementation, either in a real-world envi-

ronment or a simulated scenario. An overview of these methods is presented in Tab. 4.1,

which lists the platform they used and shows the sensors the robot was equipped with

for local obstacle sensing and global position estimations. Several works have focused

on implementation of simulated systems. The work of Ebrahimi et al. (2014) developed

UavisBug for a simulated MAV for visual guided navigation. However, they combined

the BA with SLAM for the obstacle detection and boundary following, from which they

used a potential force field to navigate around the obstacle. Moreover, they mentioned

the requirement of a motion-capture-system if their technique would be implemented

in the real world. Marino et al. (2016) also mentioned that they assumed the existence of

an UWB-localization system. Moreover, if the agent believes it is at the right goal posi-

tion but on a different floor, it will use the Dijkstra method to compute the shortest path.

Even though Ebrahimi et al. (2014) and Marino et al. (2016) acknowledged the limited

sensing, computing and energy capability of MAVs, they still combine the efficient BAs

with computationally-heavy navigation techniques.

With DistBug, Kamon and Rivlin (1997) showed, as one of the first, a BA implemented

on an actual wheeled robot, a Nomad200. In their paper they mention that the robot,

while moving to the target, only responds to local measurements by the contact sensors.

However, the robot always moves towards the target after boundary following, therefore,

it must also know its own and the targets position in global coordinates. Although the

paper of Kamon and Rivlin (1997) has not specified this, their BA would need to use a

global localization system. Zhu et al. (2010), Kim et al. (2013) and Gulzar et al. (2015) have

implemented a BA on autonomous real-world wheeled robots without a tele-operator.

In all cases, they were using single beam range sensors and/or a laser scanner. Again, the

exact location of the robots is needed in order for the BA to move towards the target.

Mastrogiovanni et al. (2009) acknowledged that a robot would not be able to know its

exact position, but would need to infer it from its noisy on-board sensors. They imple-

mented µNav on a real-world wheeled robot, AmigoBot and a hexapod, Sistino. The first

platform used ultra-sonic sensors for obstacle detection and wheel-odometry for global

localization. Since the wheeled robot combined its wheel-odometry with the azimuth

angle toward the target, it could reach the target location from one room to another,

even if the orientation was manually perturbed by the researchers. However, the opera-

tion area only spanned across 2 rooms and no notion was given of what the navigational

limit was, based on accumulated errors of odometry drift. Their second robot, the hexa-

pod, was not able to use odometry, so the azimuth angle had to be given by an external
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source through photo diodes.

Taylor and LaValle (2014) implemented IBug on a small wheeled robot for several

small-scale environments. In their previous work (Taylor and LaValle (2009)), they de-

scribed the BA to be suitable for navigating towards a single wireless beacon. Neverthe-

less, for the test on a real robot, a Lego-Mindstorm-based platform, Taylor and LaValle

(2014) used an infra-red (IR) beacon instead. It proved to be challenging for their tests to

use the signal strength of i.e. a WiFi beacon at a large range. The use of the IR beacon did

necessitate a constant line of sight, which required the obstacles and walls to be lower

than the robot itself.

If we look at the existing implementations of BAs in real or simulated robots, they all

assume or need explicit global localization, either by a UWB localization system, a mo-

tion capture system or a guiding navigator, for the exception of IBug, which used a visual

beacon. Mastrogiovanni et al. (2009) is actually the only one that used the odometry of

a (bigger) wheeled robot to recover its own position and to update the azimuth angle to-

wards the target; however, the real-life test was too small to draw any conclusions about

the suitability of BAs for robotic navigation. In the comparative study, presented in the

next sections, we will test various BAs with varying amounts of odometry drift, recogni-

tion failures and distance noise. This will show that these real-world conditions will have

significant effect on the BAs’ performances.

4.4. EXPERIMENTAL SET-UP COMPARATIVE STUDY BUG ALGO-

RITHMS

In this chapter, we study whether BAs could be used for real-world robotic navigation.

Most indoor environments have more complex obstacle configurations than an open

environment with a few convex obstacles. There are many situations where the robots

could get stuck on their way, particularly in rooms. In this section, we will present our

motivation for this study and the chosen set of BAs to be evaluated. We will then provide

the details of the simulation used and the procedural environment generator for typical

indoor environments. Afterwards, the implementation specifics of the BAs will be pre-

sented, by explaining a wall-following paradigm, which is the foundation for all BAs to

be implemented.

4.4.1. MOTIVATION AND CHOICE BUG ALGORITHMS

There have been previous comparative studies between existing BAs. In the paper of No-

borio et al. (2000), Class1, Bug2, Alg1, Alg2 and HB-I, were compared and evaluated on

their generated path-length within a complex maze. They based their observations on

just one indoor environment. A newer comparative study was performed by Ng and

Bräunl (2007), on: Bug1, Bug2, Alg1, Alg2, DistBug, TangentBug, OneBug, LeaveBug,

Rev1, Rev2 and Class1. They presented the BAs with four types of environments and

recorded the total path length for each run. However, the performance could not be ad-

equately compared due to the inconsistent results. In this chapter, we test a set of BAs in

hundreds of procedurally generated environments, so we can statistically evaluate their

performances. Moreover, set up the simulation environment to include the possibility

to simulate real-world properties such as sensor noise and odometry drift.
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(a) Generated environment in ArGos

(b) Modified ArGos Foot-bot

Figure 4.7: a) The resulting environment from Fig. A.1f generated within the ARGoS simulator and b) a modified

Foot-bot simulated robot with range sensors (red lines) used for wall following.

In the overview of the BA-methods existing today (section 4.2.4), it can be seen that

many of the methods are natural increments of one another with increasing complex-

ity. If the fundamental BAs can be tested with these real-world conditions, we would

automatically find the issues that their descendants are facing as well. Specifically, we

have selected Com, Com1, Bug2 and Alg1&2. Range-bugs will not be considered as

the selected BAs are the base of those more complex versions. Moreover, the selected

BAs presents a mix of different types of strategies (Angle-Bugs and M-line-Bugs) and

memory-use (distance and/or hit-points). We will exclude bugs that determine a local

wall-following direction, as the policy for this choice is heavily influenced by the struc-

ture of the environment, as previously discussed in section 4.2.1. Moreover, any special

bugs will not be considered either, since they contain aspects and enhancements that no

other BA-related research followed up on.

4.4.2. SIMULATION AND PROCEDURALLY ENVIRONMENT GENERATOR

It is our ambition to test the earlier mentioned BAs in a simulator with realistic and

swift physics calculations. ARGoS, a multi-physics robot simulator developed by Pin-

ciroli et al. (2012), is used for our comparative study. Its main trait is its efficiency, which

enables the simulator to run many times faster than real-time, which will be essential if

the BAs are evaluated in many environments. Although ARGoS does have the capability

to incorporate its own, C++ based, controller for the robots, the ROS framework is used

to enable Python-based controllers. The ROS messaging system is also ideal to modulate

whether a new environment needs to be generated, to vary the measurement noise and

select the right bug algorithm.

Since the BAs will be evaluated in many indoor environments, it would be unfeasi-

ble to design these by hand. Therefore, a procedural indoor environment generator will

automatically generate a new arena for the bugs to navigate in. This process is depicted

in appendix A.2, where a standard indoor environment with corridors and rooms can be

generated in different configurations. Rooms are especially challenging, as they can lead
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to agents getting stuck in loops, which will showcase the strengths and weaknesses of the

evaluated BAs. The resulting environment in the ARGoS simulation is shown in Fig. 4.7a.

The ARGoS FootBot is used for our experiments, which is a simulated wheeled mo-

bile platform (see Pinciroli et al. (2012) for specifications). The FootBot contains many

options to attach various types of sensors, however for our experiments we will only use

the proximity sensors. We adapted FootBot to turn the proximity sensors into single

beam range sensors with a maximum measurable distance of two meters, placed in the

configuration shown in Fig. 4.7b. The robot has two separate single beam range sensors

located on each side and 20 range sensors pointing to the front in a wedge shape. This

is to simulate a depth sensor/stereo-camera for obstacle detection with a few additional

range sensors on the side. Since the robot must move towards the range-wedge configu-

ration, its movement will be non-holonomic.

4.4.3. IMPLEMENTATION DETAILS BUG ALGORITHMS

The most important element of any BA, is the ability to follow a boundary of an obsta-

cle or wall. Based on the robot configuration in Fig. 4.7b, we developed a wall following

principle. Fig. 4.8a-f shows the wall following of the footbot for a right-sided local direc-

tion and Fig. 4.8g shows the state machine, which can also be found as pseudo code in

appendix A.3.2, Alg. A.3.1. If the robot moves forward and hits a wall, like in Fig. 4.8a,

the angle of the wall can be estimated by using a RANSAC line-fit method (Fischler and

Bolles (1987)) in the wedge of range sensors.3 This is done so that the true distance

d(x,O⊥)R can be estimated from the robot to the wall.4 If this distance becomes smaller

than dr e f , the preferred distance from the wall, it will keep turning either CW or CCW

3Since RANSAC uses random samples to determine the slope of the plane, some stochasticity is expected in

the wall-following behavior.
4This only goes with the assumption that the robot will always encounter walls and no single objects, such as

plants. The later will not be simulated in ARGoS; however, a classifier able to distinguish walls from small

obstacles, must be added if this principle is implemented on a real robot.
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(a) WF (200.10 sec)
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Figure 4.9: The results of a) the wall-following only (WF) and the implemented bug algorithms that use the

same WF b)-e) as part of their navigation strategy. The time limit is 200 sec.

until it is aligned with the wall. Fig. 4.8b and c shows this alignment for a right-side local

direction. This will be the case if the measurement of the side range sensor rs is equal

r f ·cosβ, where r f is the element from the range wedge that is the closest to rs and β is

the angle between rs and r f .

After the robot is aligned, it will need to follow the wall, as in Fig. 4.8c. Now the true

distance to the wall (d(x,O⊥)C )5 will be calculated as follows:

d(x,O⊥)C =
rs · r f sinβ

√

r 2
s + r 2

f
−2 · rs · r f cosβ

(4.1)

The derivation of the latter equation can be found in appendix A.3.1. The FootBot will

maintain d(x,O⊥)C to be near dr e f , and to keep being aligned in the process. However,

since the robot’s heading and the measurements of rs and r f are coupled, a separate

control heuristic is developed to make the wall alignment possible. The details of this

wall-alignment method can be found in appendix A.3.2, Alg. A.3.2.

When the FootBot hits another wall during its forward motion, as in the corner in

Fig. 4.8d, while in its wall-following state, it will turn away from the wall until it is aligned

(similar condition as with Fig. 4.8b). If during a forward motion, the front-range sensor

is out of range, as in Fig. 4.8e, the foot-bot will initiate a wide turn, to find the wall on the

other side as in Fig. 4.8f. The state machine for the wall-following behavior can be found

in Fig 4.8g, of which the pseudo code can be found in appendix A.3.2, Alg. A.3.1.

This control heuristic should result in a robust wall-following behavior, in particu-

lar for indoor environments with straight walls. The resulting wall-following behavior is

shown in Fig. 4.9a. Here it can be seen that the wall-following produces a smooth path all

5The R and C subscript of d(x,O⊥) enables separation of the two methods (RANSAC or only 2 ranges) of re-

trieving the true distance to the walls.
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Figure 4.10: Behaviors of the implemented a) wall-follower (WF) and Bug Algorithms (BAs): b) Com, c) Com1,

d) Bug2, e) Alg1 and f) Alg2 in one generated environment. The BA starts in the top left corner at Start (S) and

ends withing 1 meter radius from the Target (T), with a time-limit of 300 seconds.

along the walls of the mirrored "G". All the implemented bug algorithms, from which the

pseudo-code can be found in appendix A.1.1, will make use of this exact same wall fol-

lowing behavior in their state machine. 6 The resulting trajectories of the implemented

BAs in the ARGos simulated environment are shown in Fig. 4.9b-f.

4.5. EXPERIMENTAL RESULTS OF BUG ALGORITHMS IN REAL-

WORLD CONDITIONS

In this section, the BAs will be compared against each other on a wide range of proce-

durally generated environments. Moreover, we will investigate how sensitive these algo-

rithms are to real-world conditions, subjecting them to the experimental setup explained

in section 4.4. The selected BAs: Com, Com1, Bug2, Alg1 and Alg2, will be evaluated first

with perfect localization. After that, they will be subjected to increasing odometry drift,

varying hit-point recognition failures and Distance-to-Target (DT) noise. From this, we

hope to properly evaluate the BAs ability to handle real-world conditions.
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4.5.1. EXPERIMENTS WITH PERFECT LOCALIZATION

The implemented BAs’ performances are evaluated in 200 procedurally generated en-

vironments, with a constant size of 14 by 14 meters. Each BA will have one chance to

navigate through the same environment with a time limit of 300 seconds. This should

be sufficient to reach the target, while preventing the simulation to run endlessly, if one

of the BAs gets stuck in a loop. Each BA’s success percentage is recorded, which is the

percentage of when the target is reached out of the 200 environments. Fig. 4.11a shows

the percentage of BAs that made it to the goal within the required 300 seconds with per-

fect localization (indicated with σ=0.00), where the goal is considered reached if the BA

is able to get within one meter radius.

The BA’s total trajectory length is recorded as well, which is normalized by dividing

by the optimal path length as calculated by the A* path planning algorithm. A* will get

an occupancy grid identical to the procedurally generated environment and is able to

visit all the 8 neighboring cells at each step.7. Note that the grid not available to the bug

algorithms by any means. The normalization is applied in order to compare the perfor-

mances adequately across the generated environments, as the optimal path will be dif-

ferent at each iteration. Fig. 4.11b shows a box-plot of the length of the BAs’ trajectories

with perfect localization. For all BAs, all path-lengths are taken into account, including

the ones that did not reach the goal. Although this skews the statistics, a time limitation

of 300 seconds will be held constant throughout the experiments to ensure consistency.

In the simulation set-up, the BA would need to leave the walls physically in order to

reach the goal, which results in the wall-follower (WF) to not be able to complete the

experiment at all. Com is only capable to reach the goal about 60 % of the time with

perfect localization. Com does not use memory and this results in it occasionally getting

stuck in loops as shown in Fig. 4.10b. The last four BAs, Com1, Bug2, Alg1 and 2, have a

success percentage of around 90% in Fig. 4.11a with perfect localization.

In Fig. 4.10d and e, it can be seen that Alg1 and its ancestor Bug2 need to find the M-

line first before it can leave the wall. However, this restriction results in longer trajecto-

ries. Com1 and Alg2, on the other hand, will move towards the target if the chance arises,

hence have more leave-opportunities along their path (Fig. 4.10c and f). The outcome is

that in the 200 generated environments, Com1 and Alg2 have a shorter path-length than

Bug2 and Alg1 in average (Fig. 4.11b).8

4.5.2. EXPERIMENTS WITH ODOMETRY DRIFT

In this chapter, we test the BAs’ potential for real-world navigation purposes. Therefore,

we have added more realistic elements to the simulation, based on our discussion in

section 4.3.1. In the absence of an exact global position, BAs will need to rely on odome-

try. Therefore, this section will investigate the effects of odometry drift. We assume that

6The bug algorithms are implemented in Python, but to test the claim of the computational efficiency of bug

algorithms, we have also implemented Com1 on a STM32F4 processor (specs: 168MHz processor speed and

128kB RAM memory). The average computation time is 0.04 milliseconds.
7An 8-connection A* will cause the path to go through a corner of an obstacle. The grid that is available A*,

will include padded wall and obstacles compared to the actual environment where the Bug Algorithms will

navigate in.
8A bootstrapping based statistical similarity analysis of both the success rate and the trajectory length can be

found in appendix A.4.1.
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Figure 4.11: The a) percentage of the Bug Algorithms Com, Com1, Bug2, Alg1 and Alg2, which made it to the

goal of increasing velocity measurement noise (σ) which causes odometry drift, and b) the trajectory length

normalized by the optimal path calculated by A*.

the BA will know its own and the target’s position at the start of the experiments, but it

has to keep them up-to-date with its own, noisy, velocity measurements. For these ex-

periments, we assume that the position estimate is acquired by the latter assumption,

namely:

x̃t = x̃t−1 + ˙̃xt−1 (4.2)

, where x̃t is the x- and y-position estimate at a given time. ˙̃xt−1 is assumed to be

N (ut−1,σ), where u is the actual velocity, from which the outcome on the system con-

sists of noise with a standard deviation of σ.

Fig. 4.11 shows the impact on the performances of the BAs when exposed to odome-

try drift due to noisy velocity estimates, with a σ of 0.05, 0.10, 0.15 and 0.2. In Fig. 4.11a

indicates a significant drop in all the BAs’ success percentage with an increasing σ. In

Fig. 4.11b we see that it has a large effect on the trajectory length overall, although there

is a less significant degeneration of the Angle-Bugs’ performance (Com, Com1 and Alg2).

Bug2’s and Alg2’s performances took the deepest dive with a relatively small increment of
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Figure 4.12: Example of Alg2 in environment # 123 of the experimental testing, with increasing noise variance

of σ = a) 0.05, b) 0.10, c) 0.15 and d) 0.20. The BA starts in the top left corner at Start (S) and ends withing 1

meter radius from the Target (T), with a time-limit of 300 seconds. In d) Alg2 suddenly turns 180 degrees on

the left side of the environment, without having seen that hit-point before.

the odometry drift, whereas Com’s performance only gradually decreased. As Com does

not save any position or distance-to-goal at hit-points, only its bearing estimate towards

the goal is affected by faulty velocity estimates, resulting in the simplest BA outperform-

ing the rest with σ> 0.05. Alg2 already lost its advantage to recognize previously visited

places, as its success-rate is similar, if not lower, than Com1 at a σ of 0.2.

However, both Alg1 and Alg2 show signs of stagnation from σ = 0.15 and on, as their

performances does not seem to decrease any further and even seem to improve slightly.

At that point, it could be that it would accidentally recognize a previously hit-point at

a location where it has not been before due to the odometry drift. Although seemingly

unwanted, this randomness could have helped the BA to get out of difficult situations,

as in Fig. 4.12 with Alg2.9

4.5.3. EXPERIMENTS WITH FALSE POSITIVE AND FALSE NEGATIVE RECOG-

NITION RATE

BAs can also recognize previous hit-points based on scene-recognition. In this chap-

ter, we will not use the techniques and descriptors discussed in subsection 4.3.1, but

will simulate their performance through false-negative (FN) and false-positive (FP) re-

call rates. With an increasing probability (p) of a uniform distribution, the chances of

a previously visited hit-point being falsely recognized at a different location (FP) or not

9Statistical correlation analysis of the effect of the increasing odometery noise both the success rate and tra-

jectory length can be found in appendix A.4.2.
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being recognized at the right position (FN) will increase.

Of the implemented BAs, only Alg1 and Alg2 specifically use previously visited lo-

cations to change their local wall-following direction from right- to left- sided. In

Fig. 4.13, they are being evaluated with an increasing p(FP) in Fig. 4.13a&b or p(FN)

in Fig. 4.13c&d over 100 generated environments. At a p(FP)=0.005, there is a chance of

FP occurring 1-2 times (0.5 %) during the run-time of 300 seconds and at p(FP)=0.025

a chance of 7-8 times (2.5 %). At p(FN) = 0.2, every time the BA encounters a previ-

ous hit-point, there is a 20 % chance that it will not recognize it and at p(FN)=1.0, the

hit-point will never be recalled. Fig. 4.13a and b shows that increasing the p(FP) has

more effect on the performance of Alg1 than Alg2. This can be due to Alg2’s fewer leave-

restrictions, which makes it less sensitive to more frequent occurrences of FP. Fig. 4.13c

and d show that both Alg1 and Alg2 seemed to be hardly effected by an increasing p(FN).

The only trend that could be noticed is for Alg2 as the variance of the trajectory length

slowly creeps up with an increasing p(FN) in Fig. 4.13c. With p(FN) = 1.0, Alg1 and Alg2

are not able to recall previous hit-points, which makes them identical to their ancestors

Bug2 and Com1. However, no significant difference can be noticed in the success rate of

Fig. 4.13d with p(FN) = 0.0 and 1.0 for both Alg1 and Alg2.10

4.5.4. EXPERIMENTS WITH DISTANCE MEASUREMENT NOISE

BAs could also use a Distance-to-Target (DT) measurement, so here we assume that the

agents are carrying a sensor able to determine this. Com1 and Alg2 both save previous

DT measurements to prevent getting stuck in a loop in some situations. In Fig. 4.14, we

are showing the (a) trajectory length and (b) success rate of the BAs subjected to increas-

ing DT noise, while keeping both the velocity measurement noise (odometry drift) and

the FP & FN rate at 0.0. The noisy DT measurements (d̃(x,T )t ) at time t are modeled by

d̃(x,T )t = N (d(x,T )t ,σ), where d(x,T )t is a scalar that stands for the true DT at time t

and σ is the standard deviation of the noise. The degrading performance in both trajec-

tory length and success percentage for increasing σ is more noticeable for Com1 than

for Alg2. Com1’s only mechanism to get out of a potential loop is to compare its cur-

rent DT with a saved one to decide when to leave the wall. Once it is gradually losing

this capability with the noisier DT measurements, its behavior will become more and

more similar to Com’s, as observed in Fig. 4.15. Moreover, Com1’s success percentages

in Fig. 4.15b drops to around 60 percent at a σ=6 meters, which is equivalent to Com’s

score in Fig. 4.11b with perfect localization. Alg2 is less affected by the increasing DT

noise, which is likely because it can rely on memorized position as an additional leave

condition.11

10Statistical correlation analyses of the effect of the increasing recognition failure rate on both the success rate

and trajectory length can be found in appendix A.4.3.
11Statistical correlation analysis of the effect of the increasing DT measurement noise on both the success rate

and trajectory length can be found in appendix A.4.4.
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Figure 4.15: An example environment with the trajectories of Com1 with increasing distance measurement

noise variance (σ) in meters of a) 0, b) 1, c) 2, d) 3, e) 4 and f) 5 meters. The BA starts in the top left corner at

Start (S) and ends within 1 meter radius from the Target (T), with a time-limit of 300 seconds.
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4.6. DISCUSSION

This section will discuss both the experimental set-up and results and will accommo-

date the observations made in section 4.3. The modeled real-world conditions will be

discussed first, including the implementation details of the simulation and the chosen

noise-models and Bug Algorithms (BAs). Here we will give some suggestions for future

development in this topic. Afterwards, we will discuss the results from our experiments,

from which we will determine which aspects of BAs are suitable for real-world scenarios.

4.6.1. MODELING REAL-WORLD CONDITIONS

BAs are potentially an ideal indoor navigation paradigm for tiny robotic platforms with

limited resources. Although the results show that the paths generated are sub-optimal

compared to path-planning algorithms as A*, no map is needed for navigation. Never-

theless, we established that the BAs, presented in section 4.2, tend to over-rely on a per-

fect localization, which cannot be guaranteed for all indoor environments. If no global

localization system is available, the BA needs to rely on its noisy on-board sensors to

know where it is and integrate this knowledge with the target’s position. In section 4.3,

we reflected on several issues that a robotic implementation of a BA will come across.

This includes: an increasing odometry drift, a mismatch between its measured position

and the ground truth; recognition failures, i.e. when it fails to recognize a previous lo-

cation or falsely detects one; and noisy distance to target measurements, which could

interfere with the suitable leaving-condition. There are other types of sensor-noise and

failures to consider, such as the noise in the laser-range sensors or (stereo-)cameras for

(local) boundary/wall following. However, in this chapter, we focused on the global po-

sition estimation instead, as this is an issue that all bug algorithms must deal with.

For the experiments themselves in section 4.5 we used simple noise models, i.e. us-

ing a Gaussian probability distribution for the odometry drift and noisy range measure-

ments, and a pseudo-random number generator for FNs and FPs occurrences. Future

work could look at more realistic noise characteristics. For ground-bound robots, for

instance, wheel slippage is determined by the materials used and the friction with the

floor. If visual-odometry is used, Gaussian noise could very well be applied, however

the texture of the environment is crucial to the variance. The FP & FN occurrences are

also very much determined by the features of the environment, as aliasing could occur

at areas that are very similar. There is no equal probability of these failures to happen

throughout the trajectory of the bug. Moreover, distance measurements by radio bea-

cons not only suffer from regular noise around the mean, but have to endure a whole

range of disturbances. This includes uneven directional propagation noise, the reflec-

tion off the walls and interference of other signals. For the experiments in this chapter,

we wanted to have more control over the noisy measurements to find a clear correlation

between the noise severity and the performance of the BAs, so we restricted ourselves to

use the basic versions of the noise models.

The ARGoS simulator and environment generator was very useful for this chapter’s

experiments, as it generated new environments at a high pace and run the experiments

faster than real-time. This enabled us to test the BAs on hundreds of environments, lead-

ing to more reliable results. Nevertheless, further development of these experiments

must be performed in a more realistic simulation, with more types of obstacles and
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visual representations, to induce more challenges of a typical indoor navigation task.

Moreover, as mentioned earlier, we should also include more realistic sensor models to

further increase the realism of the simulation.

4.6.2. BUG ALGORITHMS PERFORMANCE IN SIMULATED REAL-WORLD

CONDITIONS

Generally, our experiments showed that all BAs performed worse with a higher odome-

try drift, noisier range measurements and increasing failure cases. The most noticeable

feature, is that the BAs did not all have a similar drop in performance, which is especially

noticeable with increasing odometry drift in Fig. 4.11. Some had a more severe response

than others, namely those using memory. Com, being the simplest of all BAs, started out

as the worst one of the six, to the best performing with only standard deviation of 0.1

m/s in the velocity estimation. As it only uses the odometry to get a range and bearing to

the goal and nothing else, there are less "bad" decisions it could make. Since odometry

is likely to be noisy on very small robots, such simplicity may be the better strategy. Nev-

ertheless, although Com is less influenced by odometry drift, it success rate still drops to

40%, which is a low score. In general, it is ill-advised to have BAs solely rely on odometry

alone.

In this chapter we have not experimented with different environment sizes. How-

ever,this could also affect the performance of the BAs dealing with sensor noise. In

smaller environments for instance, the odometry drift will be less severe since the op-

timal paths to the goal will be shorter than for larger environments. The focus of this

chapter was on the onboard sensors used for position estimation and to fix elements

like the environment dimensions in order to properly isolate and evaluate the associat-

ing issues with real-world-like conditions. However, for future research we should also

experiment with varying sizes of the experiment space.

In section 4.5.3 and 4.5.4, we also assumed that the BAs will also have access to mea-

surements other than odometry. Although a decrease in performance was noticed in all

the tested BAs with these specific features (Com1, Alg1 and Alg2), it became evident that

Alg2 is the most resilient algorithm. With increasing FN & FP occurrences, Alg1’s per-

formance was noticeably decreasing but Alg2 was hardly affected. This indicates that

the M-line-Bugs, as Alg1, seem to have a disadvantage over Angle-Bugs, as Alg2, due to

their restrictive leave-condition. This is also noticeable in section 4.5.2, as M-line-Bugs

suffered the most from increasing odometry drift. If real-world conditions apply, BAs

should rather be able to leave the wall/obstacle whenever there is the possibility to do

so.

The same goes for noisy distance-to-target measurements (section 4.5.4), where

Com1 is performing worse than Alg2. The reasoning behind this observation is simple:

Alg2 is using more mechanisms to get out of complex situations, namely remembering

range measurements and locations of previous hit-points. If one of these mechanisms

perform badly, then Alg2 can fall back on the other one. Now these measures are op-

erating separately and have a different behavioral outcome; however, it could be more

beneficial to a BA if they were fused together or used for cross validation and checking

if the BA is stuck in a loop. Nevertheless, it is of great interest to have multiple types

of measurements to rely on, either concerning position of the robot itself or the relative
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position of the goal.

4.7. CONCLUSION

This chapter investigates the potential of Bug Algorithms as a computationally efficient

method for robotic navigation. Although the general idea behind the methods seems

ideal for implementation of light-weight robots, the literature survey shows that many

of their variants rely on either a global localization system or perfect on-board sen-

sors. Our simulation experiments evaluated several implemented Bug Algorithms with

varying noisy measurements and failure cases, which showed a significant performance

degradation of all algorithms. This indicates that Bug Algorithms cannot simply be im-

plemented as they are on a navigating robot, which has to rely on only on-board sensors

without any external help. The experimental results did, however, shed some light on

how these techniques can be enhanced. Simplicity is a key element, as the most basic

Bug Algorithm, Com, was also the one that was the most resilient to odometry drift. An-

other crucial element is a robust loop detection system, where the robot should not just

rely on one but on multiple measured variables, especially in realistic, noise-inducing,

environments. Considering these observations in the design of new Bug Algorithms, will

make them suitable for the autonomous navigation of tiny robotic platform with limited

computational resources.





5
SWARM GRADIENT BUG

ALGORITHM

In Chapter 4, we have looked into a potential navigation strategy for a pocket-drone,

namely Bug Algorithms. We did find that previous implementation of this technique

over-relied on perfect localization. The navigation strategy would need to fit on-board

the pocket drone, should not use any external localization system for positing and not use

an external computer as a processing aid. We would therefore need to modify the bug al-

gorithm principle to better adhere realistic sensor noise in the real-world and therefore be

suitable for an indoor exploration task.

We developed the Swarm Gradient Bug Algorithm (SGBA), which enables a pocket drone

to explore a building and return to the initial position based on the signal strength of

the home beacon. Moreover, the pocket drones can avoid each-other based on the signal

strength of the intra-drone communication, and — based on their transmitted preferred

exploration direction— can also locally coordinate their search. This is the first time that

a group of 6 small pocket-drones were able to perform an indoor exploration task, while

adhering to all the requirements of full on-board autonomy we have established for this

dissertation.

Parts of this chapter have been submitted to:

K. N. McGuire, C. De Wagter K. Tuyls, H. Kappen & G.C.H.E. de Croon, Minimal navigation solution for a

swarm of tiny flying robots to explore an unknown environment, Science Robotics (2019) [In press].
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5.1. INTRODUCTION

S
WARMS of tiny autonomous flying robots hold great promise in the field of robotics.

Tiny flying robots can move in narrow spaces, can be so cheap that they may become

disposable, and are safe in the presence of humans (Floreano and Wood, 2015, Ma et al.,

2013). Moreover, while the individual robots may be inherently limited in their abilities

both in terms of cognition and in terms of actions, together they may solve very complex

problems. This kind of problem-solving ability is abundant in nature. Perhaps the most

well-known examples are the shortest path finding by swarms of ants (Reid et al., 2011)

and the food location communication by waggle dances of honeybees (Menzel et al.,

2012).

The core principle of swarming is that the individual robots obey simple control

rules, merely based on their local sensory inputs and local communication with their

neighbors. This principle fits well with the limited resources of tiny robots. Moreover,

not relying on any central processing promises a high robustness of the system. A sin-

gle failing robot will not endanger task execution, as its role will be fulfilled by one of

the many other robots. In addition, together, small robots will potentially be able to

perform tasks quicker and more robustly, such as surveillance, construction, or explo-

ration. In the past few decades, a large body of research has been formed investigating

swarm robotics. For instance, in the Swarm-Bots project, controllers have been evolved

for small driving robots to complete tasks such as gap-crossing, which requires them

to attach themselves to each other to form a bridge, and to move objects that are big-

ger than each individual (Mondada et al., 2005). Moreover, swarms of robots have been

demonstrated in applications ranging from constructing small pre-planned structures

(Durrant-Whyte et al., 2012) to forming shapes with their own bodies (Kushleyev et al.,

2013, Rubenstein et al., 2014), or performing tasks such as dispersion, aggregation, and

surveillance (Duarte et al., 2016).

Concerning swarms of flying robots, the major challenge lies in achieving au-

tonomous robot navigation and coordination between the robots in real-world environ-

ments. There are already impressive commercial shows with many simultaneously flying

robots, such as Intel’s Shooting Star drones1 that were used in the 2017 super bowl half

time and in the 2018 winter Olympics. However, the robots in these shows purely follow

pre-programmed GPS-based trajectories, so they do not take local decisions based on

their surroundings. In contrast, in Hauert et al. (2011), Vásárhelyi et al. (2014) and, more

recently, Vásárhelyi et al. (2018), a swarm of flying robots performed coordinated swarm-

ing behaviors together in outdoor environments. In the latter study, the main behavioral

parameters were optimized with an evolutionary process such that robots would stay to-

gether, even in the presence of no-fly-zones. The studies (Hauert et al., 2011, Vásárhelyi

et al., 2014, Vásárhelyi et al., 2018) all still crucially rely on GPS. The flying robots com-

municate their GPS-locations to each other in order to determine the relative locations

to other robots that serve as input to the local controllers. In all the above studies, the

swarms essentially fly in open environments, or in the case of Vásárhelyi et al. (2018)

have access to a global map of where no-fly-zones are.

Navigation of a swarm of tiny flying robots in a cluttered, GPS-denied environment is

1https://newsroom.intel.com/news-releases/intel-drone-light-show-breaks

-guinness-world-records-title-olympic-winter-games-pyeongchang-2018
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pansion decks and b) the autopilot (STM32F4) compared to the specifications of the Nvidia TX2, Odroid-C2

and a laptop (Dell Latitude E7450). Please note that the Dell specifications do not fit within the chart (as indi-
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until now an unsolved problem. The major challenge derives from the highly restricted

nature of these tiny robots. The mainstream solution to navigation consists of Simul-

taneous Localization And Mapping (SLAM) based on camera images (Fuentes-Pacheco

et al., 2012) or laser range finders (Lázaro et al., 2013). However, typical, metric SLAM

methods make detailed 3D maps, which is very demanding in terms of computational

and memory resources. State-of-the-art SLAM methods like LSD-SLAM (Engel et al.,

2014) often need to be computed by an external ground station computer (López et al.,

2017). Multi-robot SLAM, in which a group of robots jointly creates and maintains a

shared map of the environment (Forster et al., 2013), places an additional load on the

communication bandwidth. One can also opt for the slightly more efficient visual iner-

tial odometry (VIO) (Weinstein et al., 2018). However, this is subject to drift. To illustrate

the challenge of navigating with tiny flying robots, Fig. 5.1 shows the processing power

of the robot used in our experiments (Bitcraze’s Crazyflie 2.0) besides two recent, state-

of-the-art embedded processing units used in SLAM approaches. Flying robots like the

Crazyflie use approximately 7 Watt to fly. To not significantly affect their flight time, the

processing should therefore use only a fraction of this power. The Crazyflie carries an
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STM32F4 microprocessor, with a clock speed of 168MHz and 192kB of RAM memory.

Typical state-of-the-art robots used for autonomous flight (e.g. Jung et al. (2018), Sanket

et al. (2018)) use processors like the NVidia TX2, which has a 6-core CPU each with a

clock speed of 2GHz, a 256-core NVidia GPU, and 8GB of RAM. Hence, we need to solve

the navigation problem with orders of magnitudes less memory and processor-speed.

This calls for a completely different navigation strategy.

One solution avenue to efficient navigation is to draw inspiration from biology, for

instance by looking at the navigation strategies of honeybees. Honeybees navigate by

combining path integration with landmark recognition (Srinivasan, 2011). Path integra-

tion is well understood and can be implemented with very limited systems, as in the re-

cently presented AntBot (Dupeyroux et al., 2019). While walking insects can count their

steps for path integration, flying insects such as honeybees rely more heavily on the inte-

gration of optical flow (Srinivasan et al., 1997). Path integration alone does not suffice for

navigation, since it drifts over time. This drift can be canceled by means of landmark de-

tection and visual homing, but it is not obvious how landmark recognition is performed

by biological systems. The dominant model is the snapshot model (Cartwright and Col-

lett, 1983), in which pictures are stored of the surroundings and later compared to the

visual inputs. Unfortunately, current implementations of landmark recognition still re-

quire substantial processing and memory (e.g., Denuelle and Srinivasan (2016)), making

it unsuitable for navigation by tiny robots. Moreover, they mostly thrive on texture-rich

environments, which is more commonly found in nature, but not as much in repetitive

man-made environments.

Biological systems do provide interesting suggestions for arriving at the minimal re-

quirements for navigation. It is evident that the maps created by metric SLAM can be

used for navigating from any point to any other point in the map. The navigation strate-

gies followed by insects suggest that it may be possible to save on computation and

memory by requiring less accurate maps. Indeed, biological navigation strategies show

a parallel with topological SLAM (Garcia-Fidalgo and Ortiz, 2015), in which a robot only

stores important landmarks and their relations in terms of distance and direction. This

no longer allows a robot to travel anywhere in the explored space with high accuracy, but

it is questionable if this is necessary for successful behavior. In fact, in some cases, it may

only be important to explore and come back to the “nest”, i.e., to only perform accurate

homing. A navigation strategy that only demands homing and does not rely on compu-

tationally complex visual navigation would have a strong potential for downscaling to

tiny robots.

5.1.1. A MINIMAL NAVIGATION SOLUTION

The main contribution of this chapter is a minimal autonomous navigation solution

for a swarm of tiny flying robots to explore an unknown, unstructured environment,

and subsequently come back to the departing point. “Exploration” here means to move

through as large a part of an unknown environment as possible, with as goal to gather

application-dependent information. The proposed navigation solution is implemented

in a swarm of tiny flying robots and is shown to work in a large real-world indoor en-

vironment that has no external infrastructure for exact positioning. Moreover, in the

same environment we illustrate how the solution enables a specific proof-of-concept
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Figure 5.2: Main concept swarm gradient bug. a) A simplified state machine of SGBA derived from the one

presented in Materials and Methods. b) The outbound travel of SGBA. The purple shading illustrates the local

signal strength around each drone, used for intra-swarm avoidance. c) The inbound travel. The pink shading

represents the signal strength of the wireless beacon at the ground station, to which the drones navigate. Note

that the intra-swarm avoidance is still active on the inbound flight but is not depicted. The fuchsia arrow at

each drone’s position illustrates the robot’s estimated direction to the beacon.

search-and-rescue exploration mission, in which the swarm has to gather images to find

“victims” in the environment.

In particular, we introduce the swarm gradient bug algorithm (SGBA). As the name

suggests, the method is inspired by “bug algorithms” (Kamon and Rivlin, 1997, Lumel-

sky and Stepanov, 1986, Sankaranarayanar and Vidyasagar, 1990), which originated as

simple maze solving algorithms. The core concept behind these algorithms is that nav-

igating from A to B is not performed by planning in a global map with known obstacles,

but by reacting to obstacles on-the-fly as they come within range of the sensors. This way

of dealing with obstacles results in a computationally highly efficient type of navigation.

However, existing bug algorithms in the literature remain rather theoretical and are not

suitable for application to navigation in real, GPS-denied environments since they typi-

cally rely on either a known global position or perfect odometry. Examples are the works

in Mastrogiovanni et al. (2009), Nguyen et al. (2018), where real-world robots used their

wheel odometry for navigation within an indoor environment; nevertheless, the testing

environments were too small to experience the full extent of the possible odometry drift.

A flying robot typically relies on visual odometry, and due to the vibrations and texture-

dependence, is even more prone to odometry inaccuracies than driving robots. When

realistic levels of odometry drift are introduced, the navigation performance of bug al-

gorithms from the literature drops steeply (McGuire et al., 2019).

The bug algorithm proposed in this chapter, SGBA, departs significantly from exist-

ing bug algorithms, since it has been designed explicitly for allowing a swarm of tiny

robots to explore a real-world, GPS-denied environment. Fig. 5.2b shows the main con-

cept: A swarm of robots departs at a base station for their outbound travel. Each robot

has a different preferential direction, towards which it will try to go. When robots en-

counter obstacles, they will follow the obstacles’ contours. This process is called “wall-

following” in the bug algorithm literature. When the robots’ preferred direction is free of

obstacles again, they will continue to follow that direction. As soon as the robots’ battery
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is around 60%, they start their inbound travel (Fig. 5.2c). To come back to the original

location, the robots use a mix of (coarse) odometry and – on longer time scales – an ob-

servable gradient to the base station. In our experiments, we will use the received signal

strength intensity (RSSI) to a radio beacon located at the base station. Both during the

outbound and the inbound travel, the odometry is also exploited to detect short-term

loops that could result in robots getting stuck in a particular part of the environment.

The robots also need to avoid each other and communicate their desired direction to

each other. In the experiments, we will use wireless onboard intra-robot communication

to both these ends. Specifically, for the intra-swarm collision avoidance the intra-robot

RSSI is used, instead of communicating a global position (which is not known by the

robots). Moreover, when robots notice the presence of other robots in the direction of

their preferred heading, they will adapt their preference, thus enhancing the exploration

for the outbound flight.

A simplified version of the finite state machine (FSM) of SGBA can be found in

Fig. 5.2a. The SGBA method and the FSM are presented in more detail in Materials and

Methods. The innovation of SGBA lies in its suitability for the real-world properties of

tiny, computationally extremely restricted robots, and in the combination of the various

sub-components. Many of the sub-components themselves have already been proposed

in the literature. For instance, traveling towards a wireless beacon with a bug algorithm

was also proposed by Taylor and LaValle (2009), Taylor and LaValle (2014). However, the

proposed methods in those studies were too sensitive to the real-world noise of RSSI

measurements. Due to the difficulties of real-world interference, refraction and scatter-

ing of the signal, the experiments eventually involved an infrared beacon instead, which

was visible from all locations in the environment. This setup would not be useful in a

real scenario. The work in Twigg et al. (2012) does use the gradient of real-world, noisy

RSSI values to guide exploration on a real robot (without a bug algorithm type of behav-

ior). However, the platform still required a full SLAM method on-board, as the precise

positions of the RSSI samples were needed to estimate the location of the Wi-Fi source.

In contrast to these methods, we have implemented a home-beacon search tactic that is

able to deal with real-world, noisy, 2.4 GHz, Wi-Fi RSSI values and does not rely on exact

positioning. Another example is SGBA’s use of multiple robots. The idea of using multi-

ple robots for bug algorithms was first forwarded and studied in simulation by Chinnaa-

iah et al. (2018). However, they used it to explore the local obstacle boundary and not

for efficiently exploring the environment. The swarming mechanisms of SGBA involve

(i) the imprinting of different initial preferential directions, (ii) collision avoidance, and

(iii) the adaptation of preferential directions when robots notice that their preferred di-

rection overlaps too much with that of another robot. More elaborate swarming mech-

anisms are possible, but the results will show that these straightforward mechanisms,

which do not require accurate relative positions between the robots, already significantly

increase the exploration efficiency.

From the explanation above it can be deduced that SGBA requires five main function-

alities: (1) following a given direction, (2) wall-following, (3) odometry, (4) intra-robot

detection, communication and avoidance, and (5) a gradient-based search towards the

departure point. Although we mainly focus on flying robots in this chapter, the five func-

tionalities can be implemented with various types of hardware and software on different



5.2. MATERIALS AND METHODS

5

89

(a)

(b)

(c)

(d)

(e)

Total weight: 35.68 g.

Flight time: 5.5 min

Total weight: 33.02 g.

Flight time: 7.5 min

Transmit
msg to
other
channel

5 x VL53L1x

4 x VL53L0x

Figure 5.3: Hardware and Communication Specifics. a) The Crazyflie used for the outbound and inbound

travel and b) the assembly used for the video recording of the environment. c) The table with all the compo-

nents on the Crazyflie, including weight and battery consumption. d) The total of 6 Crazyflie’s used including

6 Crazyradio PAs and e) the communication scheme shown for the 6-drone experiment. Here a counter is

regulating when the drone will transmit a message (msg) to another drone (for counter 1: drone 1 to 2, drone

2 to 3 etc.). Between the regulated counter, the drone will transmit its message to another drone with a time

offset based on its ID. Note that currently 6 PAs are used for the 6 communication channels to receive logging

of the Crazyflies for the chapter’s statistics, however this can be replaced by only one if no telemetry would be

required.

types of robots. In fact, while in the real-world experiments we will use flying robots,

the simulation experiments detailed below make use of driving robots. The difference in

implementation of SGBA includes for instance that functionality (3) is performed with

optical-flow-based odometry on the flying robot and wheel-based odometry on the driv-

ing robot. Hence, the SGBA algorithm can be applied to different types of mobile robots

with limited resources, as long as they are endowed with the above required functional-

ities.

5.2. MATERIALS AND METHODS

In this section, we will explain the hardware used for the real-world experiments. Af-

terwards we will explain the exploration and homing strategy of SGBA, starting with the

navigation of a single robot and then expanding to larger numbers of robots.
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5.2.1. HARDWARE

For the experiments we used Bitcraze’s platform Crazyflie 2.02, augmented with the flow-

deck v2.03 and the multi-ranger4 expansion decks, which can be seen in Fig. 5.3a. An

alternative battery with more capacity has been added for a longer flight time, namely

the Turnigy Nano-tech 300mAh (1s 45 90C) LiPo battery, providing an average power

supply of 3.7 V. To make sure the entire path in front of the drone is free of obstacles using

the 20 deg FOV laser ranger, the minimum required detection range is 50cm, for which

the VL53L1xs5 on the multi-ranger are sufficient. The flow-deck contains a PMW3901MB

optical flow sensor6 to detect motion, with an additional VL53L1x for height detection

and control. Within the existing state-estimation (Mueller et al., 2017), the Crazyflie can

achieve excellent hover and velocity control, as optical flow can be detected on most

surfaces. Nevertheless, dark colors should be avoided. The dark low-texture floors in

our real-world environment were therefore challenging (Fig. 5.6a), as the flyable height

where motion detection was still reliable was only 0.5 meters.

For the on-board video recording experiments, we designed a custom expansion

board, which included configuration of the lower power VL53L0x ToF7 sensors (the pre-

decessor of the VL53L1xs on Bitcraze’s multi-ranger deck) and a camera module, meant

as a spare part of the Hubsan X4 H107C RC Quadcopter8. This camera module carries

an SD-card, to record the videos captured during the SGBA navigation of the Crazyflies.

This configuration is displayed in Fig. 5.3b. The weight of the platforms and the average

power consumption per expansion board are shown in Fig. 5.3c which results in an ap-

proximate flight time of 7.5 min for the left-hand Crazyflie configuration and 5.5 min for

the right-hand Crazyflie configuration in Fig. 5.3.

To fully execute the SGBA, a communication protocol (Fig. 5.3e) has been flashed

into the NRF51 microprocessor, which handles the Crazyradio communication (2.4 GHz

Wi-Fi protocol and Bluetooth), and the power distribution. Each drone has its own

unique identification number (ID), of which we will consider numbers 1 to 6 in this ex-

planation. This ID will also indicate in which channel (ID*10+20) the Crazyflie will be

communicating with the computer for logging the onboard variables, as can be seen

in Fig. 5.3e. This separation of channels is done to reduce interference between the

Crazyflies. The variable logging of each Crazyflie to the computer was done at 0.5 Hz,

which includes the position estimation, the RSSI of the beacon and other robots, the

SGBA status of the state-machine etc. In our experiments, since we needed to receive

the onboard data of each Crazyflie separately for the statistics in this chapter, each drone

had its own individual Crazyradio PA (Fig. 5.3d). This was to reduce the possibility of

package-loss of the telemetry data; however, technically only one beacon is necessary.

If the Crazyradio PA quickly switches and transmits empty packages on all the available

2Bitcraze AB. Crazyflie 2.0, https://www.bitcraze.io/crazyflie-2/
3Bitcraze AB. Flowdeck, https://www.bitcraze.io/flow-deck-v2/
4Bitcraze AB. Multiranger deck, https://www.bitcraze.io/multi-ranger-deck/
5STMicroelectronics. VL53L1X, https://www.st.com/en/imaging-and-photonics-solutions/

vl53l1x.html
6P. I. Inc. PMW3901MB-TXQT
7STMicroelectronics. VL53L0x, https://www.st.com/en/imaging-and-photonics-solutions/

vl53l0x.html
8Hubsan, HD Camera module 720P
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channels, the SGBA will not require any additional knowledge except for the RSSI value.

The communication between the Crazyflies was done by means of a counter to pre-

vent package-loss due to message collisions (Fig. 5.3e). The counter regulates when one

drone will send a package to another drone, which will be incremented every 0.5 sec-

onds. For this, it switches to the primary transmitter mode (PT), changes its commu-

nication channel to the other drone’s channel, sends the message within a short time-

frame, and switches back immediately to its own channel in primary receiver mode to

receive the messages from the other Crazyflies and receive an RSSI of the home-beacon.

In between the regulating counter increments, the moment to switch to PT depends on

the drone’s ID. This should prevent the Crazyflies to simultaneously send a message,

therefore reducing the possibility of intra-drone package-loss. The information that the

Crazyflies send to each other, are their ID and preferred heading. This is necessary for

changing direction on the outbound travel. At the same time, the receiving drone will

also know the signal strength and hereby have an indication of the proximity of the other

robot. Not all Crazyflies will send a similar number of messages. The highest priority

robots (lower ID = higher priority) transmits to every channel, as all others would need

to avoid it, and the lowest priority robot does not send a message at all, since it needs to

avoid everybody else.

In the experiments, the earlier-mentioned counter is for now regulated by the com-

puter; however, each Crazyflie would be able to do this by themselves after clock syn-

chronization of the autopilots. The separation of channels on the Crazyradio modules is

necessary to enable stable communication between Crazyflies. It should be possible to

put multiple Crazyflies on one channel, however the number of usable channels is lim-

ited, and the number of robots per channel as well. This poses a restriction for the total

number of robots the 2.4 GHz Crazyradio protocol is useful for, however this could be

further scaled by using UWB instead and a more sophisticated scheduling protocol such

as STDMA as in Coppola et al. (2018).

5.2.2. OUTBOUND TRAVEL

We start our explanation of the FSM with the outbound travel of a single robot. Fig. 5.4a

and b illustrate the entire FSM, where the robot starts at “Init”. For the outbound travel,

it is important to realize that the robot just needs to explore the available space and

does not need to go to a specific location. Therefore, it will only be assigned a preferred

heading.9 After it encounters, follows and then leaves an obstacle, it will follow that same

heading again (Fig. 5.4c). Of course, there will be heading drift over time. In the case

of the Crazyflie robots used in the real-world experiments, the drift was 0.10 degrees

/ second (48 degrees over the 8-minute flight time). Still, since the main goal of the

heading estimate is to send multiple robots into roughly different directions, the drift

does not significantly affect SGBA’s performance.

After the robot detects an obstacle with its front laser range sensor, it will start

the wall-following behavior. First, it chooses an initial “local direction”, which decides

9In Chapter 4, we made the distinction between Angle and M-line-bugs. However, the outbound-SGBA falls

in neither of those category, since it only keeps preferred heading and does not adjust it based on its cur-

rent location or only moves away from the obstacle if the M-line is hit. The preferred heading is more of an

exploration driver to get the bug to move through the building than to go from point A to B.
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Figure 5.4: SGBA Finite State Machine. a) The finite state machine of the swarm gradient bug algorithm, with a

legend of symbols in b). Its individual subsystems are explained: c) outbound navigation based on heading, d)

local direction preferences based on angle of attack and the principle of the loop detection. The addition to the

state machine of the gradient search of the beacon home location for the inbound travel is given in blue, with

e) the gradient search method during the straight parts of the wall-following. Here the robot tries to estimate

the direction towards the beacon, by keeping up a score system based on its heading along the way. Swarming

gradient bug additions in the state machine f) for the outbound flight (green), where the robot will change his

goal heading if the other drone (with the highest priority) has its preferred heading in the same direction. In

case the drones are even closer, the one with the lowest priority will move out of the way completely for both

the inbound and outbound travel.
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whether to follow the wall on the right- or left-hand side. We choose a local direction

policy based on the strategies of DistBug (Kamon et al., 1999) and FuzzyBug (Lee et al.,

1997), namely by adopting the “angle of attack” as the robot approaches the wall. With

the current hardware of the 4 laser-range sensors in all 4 directions of the horizontal

plane, the robot can easily determine the angle of the wall by evaluating if the side range

sensors are triggered in combination with the front one. The main assumption here is

that the wall needs to be straight. However, if this is not the case, this does not mean that

the strategy will fail. If the local direction ends up being a less optimal one, this will be

corrected for at a later time. From here on, the robot starts following the boundary of the

obstacle and the wall.

SGBA uses memory for loop detection. Memoryless bug algorithms are prone to get-

ting stuck in loops, because they may encounter an obstacle, perform wall-following,

and then leave the obstacle in a direction which will lead them back to exactly the same

obstacle. This will lead to an endless loop, devastating the navigation performance. This

is why during wall-following SGBA keeps track of its position relative to the location

where the robot first hit the obstacle (termed the “hit-point”). If the robot tracks back,

due to the environment characteristics, and crosses the area behind the hit-point, it will

detect that as a loop. This means that once the robot leaves the obstacle and encounters

another, which is usually the same hit-point as last time, it will not base its local direc-

tion on the current wall-angle, but on the reverse of the direction chosen at the previous

saved hit-point. This position tracking is illustrated in Fig. 5.4d and is done completely

with relative position estimations of the on-board odometry. Since this procedure is only

used for local decision-making within small rooms, this should be a sufficient tactic to

handle loops within our experiment environment. However, this probably will not pre-

vent a potential loop in large areas, as the drift will then be too severe. We have studied

the effect that SGBA’s loop detection has on the return rate (Appendix, Text B.7).

5.2.3. WIRELESS-COMMUNICATION-BASED INBOUND TRAVEL

After a few minutes, either after a time threshold has passed or based on the remaining

voltage of the battery, the robot needs to return to its base station. This is extremely im-

portant for robots that store their measurements onboard and do not stream their results

to the operator. To achieve this, SGBA keeps track of the gradient of the filtered received

signal strength intensity (RSSI, see Text B.3 for raw measurements) while it is performing

the wall following, as seen in Fig. 5.4e. During the straight parts of the procedure, it will

have a circular buffer, corresponding to the heading of the robot, where it will keep track

in which directions the RSSI has increased over time. This weight will be incremented,

while +/- 180o of that direction will be decremented to give it a lower influence. For an

RSSI decrease, the exact opposite procedure will be done and for no RSSI change, the

scores will stay the same. Both incrementation and decrementation, based on the RSSI’s

derivative, is done for every N meter, where N is a decimal number that can be defined

by the user. Every N*k meter, where k is a scalar value, a vanishing function is applied,

to decrease the influence of older RSSI measurements. This RSSI change in function of

the heading allows the robots to estimate the direction to the home beacon, which they
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will use for the return travel any time it is not forced to follow an obstacle or wall.10 As

the RSSI increase is noisy and irregular, this will usually not be an exact angle, but coarse

indication of where the beacon is. This proves to be enough for the robot to return to

its home base. Please note that any drift in the robot’s heading estimate is not problem-

atic for the inbound travel, since the direction to the home beacon is determined with

respect to this internal heading representation.

5.2.4. MULTI-ROBOT COORDINATION

A single robot could use the SGBA-FSM by itself in order to navigate. However, it only

has a limited battery capacity and therefore will not be able to explore the entire envi-

ronment. For this reason, it is more advantageous to use a swarm of robots. However,

using multiple robots poses a new set of problems. Firstly, the robots need to avoid each

other, and secondly, it is better to have them coordinating the search with each other

in order to achieve maximum dispersion and avoid conflicts. This is all done with their

communicated information and the filtered RSSI measurements, and is implemented by

the “move out of way” state in Fig. 5.4a. On the outbound travel, each robot is assigned a

preferred heading, chosen out of K different directions. The robot with the highest prior-

ity (lowest ID) can leave first and always will have right of way. If a second robot comes in

the proximity of another, and the RSSI of the connection exceeds the first threshold and

the other robot has a similar preferred heading, it will change the sign of its preferred

heading and carry on (Fig. 5.4f). The next time it leaves the obstacle, it will therefore

move away from the search area of the robot with the higher priority. This element will

only occur for the outbound travel, as there can only be one preferred heading for the in-

bound travel, namely the one pointing to the home beacon. If the moment would arise

that the robots come even closer to each other, either if the first avoidance strategy illus-

trated in Fig. 5.4f is insufficient or both robots are returning, a second RSSI threshold is

triggered and the robot with the lowest priority will perform an action that will enable

the higher priority robot to smoothly move past it. The avoiding robot will then start

moving towards its preferred direction again.11

5.3. RESULTS

We have performed both simulation and real-world experiments to gauge the perfor-

mance of SGBA as an autonomous navigation solution for exploration missions. Navi-

gation here means spreading out in the environment, covering the environment as much

as possible, and coming back to the departure point. The two main performance met-

rics are 1) the area coverage, and 2) the return rate of the robots. With these metrics,

we mainly assess the navigational characteristics of SGBA, as these are important to ex-

ploration missions in general. We vary the number of robots in order to investigate the

advantages of the swarming aspect of SGBA. After the main simulation and real-world

experiments focusing on the navigation performance, we will also perform an experi-

ment as a proof of concept of a specific exploration mission. In particular, we investigate

10This makes the inbound-SGBA closer to Angle-bugs as depicted in Chapter 5, although the angle towards

the goal estimated and can be slightly different at every leave-point.
11The different implementations for both the simulated and real-world robotic platforms used later in the

experiments can be found in the Appendix as Text B.6
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a search-and-rescue scenario in which the robots have to find possible victims in the en-

vironment. For this scenario, the robots carry onboard cameras and SD cards for storing

images of the environment, since transmitting live streams is not feasible at this scale.

When returning to the base station, the robots can upload the images to the base station

and a human end user can look at the images to find the victims. Hence, only return-

ing robots will provide useful information on the task. Since this will be the case in many

real-world exploration scenarios where SGBA is a suitable method, we consider as a third

performance metric, 3) the area covered by returning robots. In the specific search-and-

rescue experiment we evaluate whether the victims are present in the images.

5.3.1. SIMULATION EXPERIMENT RESULTS

We first implemented the swarm gradient bug algorithm (SGBA) in simulation. The goal

of the simulation experiments is to investigate the performance of the algorithm in many

artificially generated environments. Moreover, in simulation we can perform extensive

experiments for gathering sufficient statistics on trends such as the relation between

the performance and the number of robots. As a simulator, we have chosen ARGoS

(Fig. 5.5a), as it has especially been developed for multi-robot systems (Pinciroli et al.,

2012). A ROS environment is used to connect the SGBA controller, the automatic envi-

ronment generator and the simulator together, in a similar manner as in McGuire et al.

(2019), by using ARGoS for ROS12 (Text ( B.1 in the Appendix explains the procedure

to get the code repositories for the simulation experiments). In simulation the robots

are adapted ARGoS foot-bots, which are originally modeled based on the MarXbot (Bo-

nani et al., 2010). These ground-based, non-holonomic, robots are different from the

airborne, holonomic, robots used in the real-world experiments. See Text B.6 the Ap-

pendix for an overview of how we implemented SGBA’s five functionalities on the sim-

ulated Footbot and on the flying robots used in the real-world experiments. The use of

ground-based robots in the simulation experiments illustrates that SGBA can be applied

to different types of robots.

The simulated robots will start around the home beacon in the middle of the environ-

ment. With SGBA, each of them sequentially starts moving into their preferred direction,

which in this case we consider the angles 45o , 135o , -135o and -45o (the modulus of the

robot’s ID from 4 determines the preferred direction). In simulation, the outbound travel

will last for 5 minutes. After spreading out into the environment, the simulated robots

will try to head back to the home beacon within another 5 minutes (10 minutes of total

simulation time), for which they will use the noisy and locally perturbed RSSI of the base

station beacon. Fig. 5.5b and c show two examples of the simulated experiments with 4

and 6 robots. We experimented with 2, 4, 6, 8 and 10 robots per simulated environment.

Per test configuration, 100 environments were produced with the procedural environ-

ment generator, as developed in McGuire et al. (2019). The coverage statistics can be

found in Fig. 5.5d and the return rates in Fig. 5.5e. Despite their extremely restricted on-

board resources, 10 small robots are able to explore on average 90% of a simulated 20 x

20-meter environment in 10 minutes (dark blue bar in Fig. 5.5d, example trajectory in

Fig. 5.5b and c).

The utility of the collective aspect of SGBA is shown by the dark blue bars in Fig. 5.5d;

12ARGoS Bridge. GitHub repository. from https://github.com/BOTSlab/argos_bridge.
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Figure 5.5: Simulation results. The results of the simulation environments with a) a representation of the AR-

GoS simulator and the modified simulated Footbot. Two example environments and trajectories are shown for

b) 6 robots and c) for 4 robots. d) and e) shows the results of [2, 4, 6, 8 10] robots, in 100 procedurally generated

environments for each configuration, in the coverage (not including non-accessible areas), and the return rate.

Three types of coverage are shown in d): coverage total (area covered by all robots), coverage returned (area

covered only by the robots that have returned) and coverage per robot (area that a single robot has covered).

The exact computation of the covered area can be found in the appendix in Section B.5.1. Finally, in e) the re-

turn rate is shown, i.e., the portion of robots that successfully returns to the base station after exploration. Both

bar graphs of d) and e) show the mean as the standard deviation, of which the specific values can be found in

Appendix B.5.1.
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Adding more robots leads to a higher coverage in the same amount of time. The trend

of the bars indicates that the coverage is subject to a law of diminishing returns; Adding

two more robots has more effect when going from two to four robots than when going

from eight to ten robots. The results suggest that this effect is mainly due to covering

the same areas in the environment and not due to robots getting too much into each

other’s way. Namely, the coverage per robot (Fig. 5.5d, yellow bars) and the return rate

(Fig. 5.5e, light blue bars) do not decrease for the studied numbers of robots. The return

rate is also of interest for the envisaged proof-of-concept search-and-rescue mission, in

which the robots would store images onboard and only robots that return to the base

station provide information on the task. The return rate is lower than 100%, mainly be-

cause SGBA can lead to suboptimal paths back to the base station (too slow for the total

mission time). The coverage by the group of returned robots is shown in turquoise in

Fig. 5.5d. Finally, the variances of all performance characteristics become smaller for

higher number of drones, showing that adding more agents increases the certainty of

the outcome. This seems mainly due to the reduced effect that variations in individual

performance have on the total coverage. For instance, with two robots an early failing

robot could halve the coverage, while with ten robots the effect would be much less no-

ticeable, underlining swarm robustness. The logging data and statistical tests of the sim-

ulation results can be found in Text B.5.1 of the Appendix, which show that the trend of

the total coverage and coverage returned are significantly related to the total number of

robots. This is not the case for the coverage per robot and the return-rate.

Finally, we have studied the contributions of the different swarming mechanisms in

SGBA: (i) sending them off in different directions, (ii) performing an avoidance maneu-

ver when close to another robot, and (iii) changing preferential direction. All three mech-

anisms contribute to reducing collisions and increasing coverage. For example, for the

“full” SGBA with 6 robots there are on average 0.2 collisions per exploration trial. When

sending off all robots in the same direction, this rises to 1.7 collisions. When only switch-

ing off the avoidance maneuvers, there are on average 1.2 collisions per trial. Text B.7 in

the Appendix contains all results of these tests.

5.3.2. REAL-WORLD EXPERIMENT RESULTS

Subsequently, we performed real-world experiments. The goal of these experiments is

to show that SGBA works in the real world, and to investigate if the results align with the

findings from simulation. In particular, we implemented SGBA on the small commer-

cial off-the-shelf (COTS) Crazyflie 2.0 drone developed by Bitcraze AB.13 The hardware

package of the drones consisted of the following modules. The multi-ranger deck14 is

used for obstacle detection and wall-following. It has four tiny laser rangers that point

to the front, left, right, and back. The flow-deck15 is used for coarse visual odometry. It

consists of a downward looking camera that determines translational optical flow and a

downward pointing laser ranger that scales the flow to obtain height and translational

velocity. Bitcraze’s own communication hardware “Crazyradio” with the 2.4 GHz Wi-Fi

13Bitcraze AB. Crazyflie 2.0, https://www.bitcraze.io/crazyflie-2/
14Bitcraze AB. Multiranger deck, https://www.bitcraze.io/multi-ranger-deck/
15Bitcraze AB. Flowdeck 2.0, https://www.bitcraze.io/flow-deck-v2/
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Figure 5.6: Real world results. The results of the real-world experiments with a) a representation of the environ-

ment used and the Crazyflie 2.0’s with the necessary expansion decks. Several example trajectories are shown

for b) 4 robots and c) for 6 robots from their onboard odometry (adjusted by means of the external cameras).

The results of [2, 4, 6] robots for 5 flights in each configuration are shown in d) for the coverage (not including

the non-accessible areas in gray), and in e) for the return rate (cyan bars), with a pie chart additionally indicat-

ing the percentages of real-world related issues which prevented a successful return to the base station. Both

bar graphs of d) and e) show the mean as the standard deviation, of which the specific values can be found in

Appendix in Section B.5.2.



5.3. RESULTS

5

99

band16 is used for ranging to other drones and to the wireless beacon. It also serves as

a communication channel between the drones for exchanging desired headings. These

three light-weight and low-power hardware modules were sufficient for our navigation

solution. We performed the experiments in an empty hallway of the faculty of Aerospace

Engineering at TU Delft, as it allowed us to perform extensive testing in the real world

(Fig. 5.6a and see Text B.2 for a more detailed description). We conducted real-world

tests with 2, 4 and 6 Crazyflies at the same time. For each number of drones, five differ-

ent flights were performed.

As in the simulation experiments, the robots started in the middle of the environ-

ment. From here, they flew with SGBA to their own preferred outbound flight direction

for about 1
3

of their battery life, which was about 2 minutes. Afterwards, they needed to

return, again using the RSSI of the home beacon. Along the entire path, they avoided

each other by using the RSSI of the intra-robot connection, which was handled by the

communication scheme presented in Materials and Methods.

SGBA also allows tiny robots in the real world to successfully explore the environ-

ment, with 6 tiny drones on average flying into 83% of the open rooms in the 40 x 12-

meter environment within 7.5 minutes (dark blue bar, Fig. 5.6d). Fig. 5.6b and c show

two example trajectories with 4 and 6 Crazyflies, respectively. The trajectories show that

when a drone enters a room it typically flies along its complete boundaries. Hence, upon

entry we consider the room “covered”. Please note that the rather accurate trajectories

in Fig. 5.6b and c have only been re-constructed for visualization purposes, and do not

play any role in the navigation. The trajectories are plotted based on the coarse onboard

odometry, adjusted with the video footage of the external cameras on the scene using

post-processing (Appendix’s Text B.4 explains the procedure and shows the difference

between the original and adjusted odometry). The trajectories show how generally, the

drones explore different parts of the environment thanks to the different preferential di-

rections. In Fig. 5.6c, an example can be seen where drone 5 loses connection with the

beacon in the far top-left room of the environment, so therefore the external camera

had to provide the additional trajectory information. Please note that losing the con-

nection was no problem for the autonomous navigation, as the FSM runs onboard of the

Crazyflie. The visual odometry and wall-following behaviors allowed the drone to escape

the room and reconnect with the home beacon. Video compilations will be accommo-

dating with the original publication that this chapter has been based on.

Since we do not have access to ground-truth global coordinates, in the real-world

experiments we determine the coverage performance in terms of the number of visited

rooms, excluding the hallway. Fig. 5.6d shows that, as in simulation, a clear trend can be

seen that the total coverage increases with the number of drones. However, the increase

of the coverage by returned drones seems less steep than in simulation. The reason for

this is that both the coverage per robot and the return-rate (Fig. 5.6e) slightly decrease

when adding more Crazyflies. This is due to many issues that occur in reality, such as

hardware malfunctions, sensing failures and even – for 6 drones – a collision between

two drones (see the pie chart of Fig. 5.6e). Having a limited battery capacity is a real-

world problem as well but was taken into account in the simulation in the form of a time

limit for the results in Fig. 5.5. Concerning the collision avoidance, in all fifteen real-

16Bitcraze AB. Crazyradio PA, https://www.bitcraze.io/crazyradio-pa/
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Figure 5.7: Proof-of-concept search-and-rescue mission. This figure presents the results of the experiment in

which the Crazyflies carry a camera to detect “victims” in the environment. a) and b) shows the screenshots of

the external cameras capturing the MAVs during their flight, c) shows the trajectory of the 4 Crazyflies (inferred

from the onboard and external camera), while d) and e) show the screenshots of the onboard Hubsan camera,

with the two human-shaped silhouettes captured during the exploration flight.

world experiments combined there were 54 encounters between drones and only one

collision. This corresponds to a 98% success rate of the implemented avoidance maneu-

ver. The logged data and statistical tests of the real-world results can be found together

with a table with the numbers of encounters and collisions in the Appendix as Text B.5.2.

Also the real-world results show that the trend of the total coverage is significantly related

to the total number of drones.

5.3.3. PROOF-OF-CONCEPT SEARCH-AND-RESCUE MISSION

Finally, we have performed one experiment in which we applied SGBA to a specific

search-and-rescue exploration mission. The goal of this experiment is to serve as a proof

of concept of how SGBA can be used for a specific exploration mission. To this end, the

light-weight Crazyflies carry a mission-relevant payload. In particular, we additionally

equipped the flying robots with a forward-looking camera and an SD card (see Materials

and Methods for the exact setup), which resulted in a flight-time of 5.5 minutes in total.
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This extra camera allowed storage of images captured during flight on the SD-card, for

inspection by a human end-user. While the proposed navigation solution works with

COTS Crazyflie modules, for the proof-of-concept search-and-rescue mission we had

to make a custom, lighter weight and lower power laser ranging module in order to ac-

commodate the extra camera and SD card. This custom ranging module replaced the

Crazyflie’s multi-ranger module.

The experiments simulated a search-and-rescue scenario, in which two human-size

wooden figures were placed in two different rooms in the hallway. The same starting

position was used for the 4 camera-equipped Crazyflies as in the previous testing set-

up. To cope with the limited flight time of the prototypes, it was chosen to perform only

the outbound flight. The trajectories in Fig. 5.7c were inferred from the onboard-camera

footage, in combination with the external cameras.

Both “victims” were found by the drones. In Fig. 5.7a and b, we can see that Crazyflie

1 and 4 were flying in the rooms where the victims were located. Drone 4 was able to cap-

ture the victim on its onboard camera (Fig. 5.7e). However, Crazyflie 1 suddenly stopped

recording, right before it flew into the room with the victim. Luckily, the victim was spot-

ted by drone 3 from another angle in Fig. 5.7d. This example shows the advantage of

using swarming, which can lead to redundant observations in an exploration task. A

video compilation can be found in the original publication of the source of this chapter.

As explained, the drones do not make a map of their environment for navigation. Af-

ter the drones come back, their collected images can be downloaded to the base station.

A human end-user can then go through the images, and, when finding a “victim”, look

at the video of the robot in fast-forward to find out where the victim is located. If a map

is desired by the end user, the base station computer could also generate a map based

on the onboard images with state-of-the-art SLAM methods (e.g., Engel et al. (2014)).

This map generation may be challenging though, due to real-world factors such as quick

motions, motion blur from vibrations, lack of texture, etc.

5.4. DISCUSSION

The purpose of this chapter was to present an alternative for navigating a group of tiny,

resource-limited flying robots in an unknown, GPS-denied environment. We presented

the SGBA, which fit onboard the commercially available flying Crazyflie robot, weigh-

ing a mere 30 grams. With the STM32F4 microprocessor and added sensing capabilities

(multi-ranger and flow-deck expansion decks), it navigated through a real office envi-

ronment. Moreover, while communicating with its peers, it avoided other Crazyflies and

increased coverage in the overall exploration task. The algorithm enabled a group of

small and limited flying robots to fully autonomously navigate in a real environment by

using their on-board sensors and processing capabilities. Still, there are several elements

to consider for extending this work to bigger and more complex environments as seen

for instance in real-world search-and-rescue scenarios. This section will reflect on the

limitations, their impact on the results and possible improvements, and on the choices

made in terms of sensing, processing and navigational strategies.

There are several options that would allow for a better navigation performance. First,

we expect that using Ultra Wide Band (UWB) instead of the Crazyradio PA would signifi-

cantly improve both the localization with respect to the beacon, and the sensing of other
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drones (see e.g. van der Helm et al. (2019)). The Crazyradio is heavily influenced by

other 2.4 GHz sources (Wi-Fi) and the intra-Crazyflie chatter and the RSSI-based dis-

tance measurements are particularly noisy and heading-dependent. The good overall

results show the robustness of SGBA. Still, communication could be significantly im-

proved by using UWB communication with time-of-flight ranging. For instance, a single

DecaWave DWM1000 module can provide ranging to another such module for a distance

up to 290 meters, through walls and obstacles, with 10 cm accuracy17. Since SGBA only

needs ranging to a single beacon, it can use the full extent of the UWB range to signifi-

cantly improve the inbound flight.

Also, the collision avoidance between drones will benefit from using UWB. The ex-

perimental results showed an increase in coverage when adding more drones to the

swarm. However, the increase follows a law of diminishing returns. We expect this phe-

nomenon to be fundamental, as having more robots necessarily means covering more

of the same area when they start from the same point, and it also means that robots

will spend more time avoiding each other. Still, in our current implementation, using

too many drones also led to communication-overload during the flight. In our current

communication scheme (see Materials and Methods), the more drones there are, the

slower they can communicate with each other. Increasing the number of drones can

cause problems of miscoordination, or even worse, a higher likelihood of inter-drone-

crashes. We saw in the real-world results (Fig. 5.6e) that the latter did not occur with 2

and 4 drones, but it did once with 6 drones. The optimal number of drones will depend

on the size of the environment and – with the current implementation of intra-swarm

avoidance – on the communication hardware and protocol. Due to UWB’s greater ro-

bustness with respect to interference and its higher throughput, we expect it to also im-

prove the scalability of the current proposed scheme for drone collision avoidance.

During the real-world experiments, there was almost always a connection between

the home beacon and all drones. In Fig. 5.6c, a disconnected drone kept executing its

tasks autonomously, since the FSM runs fully on-board. It was therefore able to get out

of a communication dead-zone eventually. However, the question still arises: How will

the robots still be able to get home if the beacon is lost completely? Even with the ear-

lier mentioned UWB improvement, there are situations where the environment is larger

than the range of the beacon. A useful addition to cope with the home-beacon-loss

problem in bigger environments is to make more use of the swarm. As the Crazyflies

are communicating with each-other, they can also be used as a beacon themselves. As

soon as a drone loses connection with the homing beacon, it could try to find another

Crazyflie that is still connected to the beacon and navigate towards that position first,

reconnect with the original home-beacon and resume its navigation to the starting posi-

tion (a strategy that reminds of “chains” of robots as used in, e.g., Dorigo et al. (2013), but

that would be more economic in terms of the number of used robots). Yet, this requires

that at least several Crazyflies always need to stay connected to the home beacon and

therefore are limited in their own mission.

Improving the robots’ sensing capabilities would also improve the results. Specifi-

cally, the multi-ranger deck proved to be sufficient in the environment we tested in, yet

there are limitations. For instance, it cannot see very thin objects and relies on the flow-

17Decawave, "DWM1000 Productbrief p. 1."
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deck to work properly. Although the flow-deck and the existing sensor fusion provided

stable velocity-driven flight, the dark floor in the office environment turned out to be

challenging. Therefore, situations occurred in which the Crazyflie would drift and move

into a direction where obstacles were present in the blind spots of the multi-ranger. Of

course, a higher robustness to collisions by means of a protective cage as proposed in

Mulgaonkar et al. (2018), would help. Still, the wall-following and obstacle detection can

also be made more robust. A possible solution is to add a light-weight vision system, as in

De Wagter et al. (2014), Palossi et al. (2019). Vision can provide distance estimates in an

entire field of view and aid the velocity estimation and odometry by means of frontal op-

tical flow, cf. McGuire et al. (2017). This would reduce problems with textureless floors.

Even so, a fundamental limitation of using the multi-rangers, cameras or optical flow

sensors, is that they will be ineffective if the surroundings are filled with smoke. In that

case, different sensors such as sonar or radar can be used, while the navigation can re-

main identical.

The high efficiency of SGBA in terms of sensing, computation, and memory comes

at the cost of navigation efficiency. Not building a global map and not performing com-

putationally expensive optimal path planning results in suboptimal paths. Drones can

revisit rooms multiple times or can visit rooms that were already visited by other drones.

This could perhaps be solved in a relatively efficient manner, e.g., involving visual land-

mark recognition. Still, the experimental results have shown that multiple measure-

ments from the same area can be beneficial. Camera footage can get temporarily oc-

cluded or even lost, as happened with drone 1 in Fig. 5.7c. Moreover, the fact that drones’

views overlap with each other can make a significant difference in data collection if not

all the robots are able to return.

We illustrated the potential of SGBA by implementing it on the smallest possible

commercially available quadrotor. However, the discussion above suggests that the

method would perhaps be even more successful on a custom-designed drone. One op-

tion is to implement SGBA on a smaller platform, while keeping a similar performance.

Making SGBA work on a smaller drone is possible, since a custom design would not have

to be as modular and easy to use as the Crazyflie decks. That this is possible is already

shown by the lighter and more energy efficient custom laser ranger deck that was made

for the proof-of-concept search-and-rescue mission. Another option is to implement

SGBA on a slightly bigger drone for better performance. We expect that using a slightly

bigger drone with better sensing, communication devices, and more battery capacity

would significantly improve the return rate of the drones, since it would reduce colli-

sions both with obstacles and with other drones, make the inbound flight more efficient,

and extend the flight time available for returning. Even if such a drone could have a

bit more processing available, the current proposed navigation solution remains of high

interest, since it will leave much room for other types of functionalities. This can be

used by vision algorithms to enhance the navigation, or by other algorithms performing

mission-specific tasks.

In the future, more processing power will become available to small robots (see, e.g.,

Jones et al. (2018)). In comparison with 3D SLAM, SGBA will always be available to

smaller robots. For instance, it is not unthinkable that SGBA can one day be applied

to the 80 mg Robobee (Jafferis et al., 2019). Furthermore, small robots will have to use
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their onboard computing power for all tasks they need to perform autonomously. It fol-

lows that it is essential for small robots to have computationally efficient algorithms for

all tasks they perform. Using SGBA implies that there is more computational power and

memory available for other mission-relevant tasks. Hence, we expect SGBA to remain

relevant even with the further progress in the miniaturization of computing devices.

5.5. CONCLUSION

To conclude, we presented a minimal navigation solution, the swarm gradient bug al-

gorithm, that allows tiny flying robots to successfully explore a real-world environment.

The flying robots only use 4 tiny one-dimensional laser range finders, 1 optical flow inte-

grated circuit and a very light 2.4 GHz radio. The processing fits easily in the single 32-bit

168MHz 196kB RAM micro controller of the Crazyflie on top of all the flight control code.

Instead of building a map of the environment like conventional SLAM techniques, our

navigation solution consists of an intricate combination of simple behaviors and behav-

ioral transitions, in order to accomplish the complex tasks of autonomous exploration

and homing. The guiding principle here is to trade off properties such as path optimal-

ity and accuracy with resource efficiency, allowing for swarm operations. We believe that

this principle can offer inspiration for solving other complex robotic tasks as well with

swarms of cheap and safe tiny robots.
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DISCUSSION

At the start of the work done in this dissertation, there was no known implementation of

an indoor autonomous navigation strategy for multiple flying robots with a weight less

than 50g. Such a system could have great potential for surveillance tasks such as search

& rescue, green-house monitoring and pipeline inspection. Therefore, the main research

question for this dissertation was formulated in the introduction as follows:

MAIN RESEARCH QUESTION

To what extent can we design a robust and computationally efficient method for

multiple pocket drones to explore an unknown, indoor environment and to return

to their initial position?

The requirements for the main research objective are the following: the pocket

drones are only allowed to use their on-board sensing and processing capabilities.

Therefore, they are not allowed to use any external positioning system and not allowed

to use an external computer for memory, processing or guidance. This discussion will

answer the main research question by first addressing the smaller sub-questions in Sec-

tion 6.1. Afterwards we will step back and discuss the trade-off made in this disser-

tation between capabilities, hardware and energy (Section 6.2). We will then discuss

the choices made in terms of perception (Section 6.3), communication (Section 6.4)

and navigation strategies (Section 6.5). This chapter will end with a conclusion in Sec-

tion 6.6 which will reflect on the achievement of the main research objective, and several

thoughts and ideas on future work in Section 6.7.

6.1. SUB-QUESTIONS

In the introduction we divided the main research-question into two sub-questions,

which we will evaluate by means of their fulfillment of the requirements given in Sec-

tion 1.2.1. The first sub-research question is formulated as follows:

105
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SUB-RESEARCH QUESTION I

To what extent can we achieve low-level navigation capabilities on multiple

pocket drones, e.g. ego-motion estimation, obstacle avoidance and inter-drone

avoidance?

Show-casing Edge-FS on a pocket drone in Chapter 2 is a major contribution of this

dissertation for low-level-navigation of a single pocket drone. Before, optical flow de-

tection and velocity estimation was mostly done with downward-looking sensors and

cameras. Nevertheless, for small limited flying platforms researchers need to be conser-

vative with weight. Adding another sensor for horizontal obstacle avoidance is usually

challenging because of this limitation. Implementing Edge-FS on a front-facing stereo-

camera with the ability of detecting both obstacles and velocity, will open new possi-

bilities for autonomous navigation, as there is simply more to see looking forward than

looking downward. The pocket-drone became a platform capable of flying by itself in

an office-like room, fulfilling almost all autonomy requirements. The side-note here is

that in the horizontal plane, the pocket-drone was fully autonomous, but for the vertical

plane it still needed throttle command from a remote control, as it did not have a reli-

able height estimate. However, in general the ability of forward-looking perception will

enable future researchers to add more functionalities to the vision algorithm to increase

the autonomy.

Chapter 3 added inter-drone avoidance, extending the low-level-navigation to multi-

ple pocket drones. We show-cased several pocket drones localizing each other by means

of a small on-board communication chip. This eliminates the need of using an external

positioning system for multiple MAVs, even for these small and limited platforms. More-

over, we also showed that the on-board relative localization scheme is possible even with

the noisy received signal strength intensity (RSSI) of Bluetooth, as long as on-board ve-

locity estimates are available. The combination of the low-level-navigation of a single

drone (Edge-FS), and the inter-drone localization and avoidance, resulted in two plat-

forms capable of flying autonomously in an indoor environment. However, due to hard-

ware issues, one of the pocket drones needed to be assisted in flight by giving it addi-

tional velocity guidance commands.

Although the low-level-navigation strategy of Part I was only partially fulfilled, we

were still able to go to the next sub-research question, namely:

SUB-RESEARCH QUESTION II

To what extent can we achieve high-level navigation capabilities on multiple

pocket drones, e.g. exploration, coordination and homing?

In Part II, we investigated Bug Algorithms as a computational efficient alternative to

other types of navigation strategies. Although in Chapter 4 no physical tests were per-

formed with real platforms, the simulation experiments were crucial in understanding

this navigational paradigm. We contributed with the first comparative study that really

focuses on the real-world issues in hundreds of procedurally generated environments,

therefore providing statistical analysis that shows the areas of improvement for future
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bug algorithm-based robotic navigation. In Chapter 5, we developed a new bug algo-

rithm, called the swarm gradient bug algorithm (SGBA). We used the knowledge gained

from the previous comparative study to introduce elements to the bug algorithm princi-

ple to make it more suitable for operation in a real-world environment. These elements

include the beacon-based RSSI-gradient navigation and the loop-detection on the fly.

We showed the first full on-board exploration task of 6 pocket drones in an indoor envi-

ronment, and therefore presented the SGBA method as a suitable alternative for naviga-

tion of limited platforms.

Although the two sub-questions were mostly fulfilled, the connection between them

is less apparent. We were not able to use the solutions developed in Part I for the ful-

fillment of sub-research question II. The pocket drone had very little flight-time left and

many robustness issues, which forced us to choose the commercially available Crazyflie

with better low-level-navigation qualities but more limited in its distance perception ca-

pabilities. The transition of hardware for the progression from low-level-navigation to

high-level-navigation seems to be at the core of this discussion. Researchers working

with these limited systems should be made aware of the fundamental trade-offs between

capabilities, hardware and energy.

6.2. CAPABILITIES, HARDWARE AND ENERGY

The build up of the capabilities necessary for autonomous indoor exploration on lim-

ited pocket drones, reflects directly on the used hardware. In Fig. 6.1, the used plat-

forms for Part I are being shown. Each paper presented in Part I used a different sensor-

combination, and the total number increased as time progressed. Immediately notice-

able is that this had a significant effect on the total flight-time. This peaked at around

8 minutes for the first platform (Chapter 2), decreased to 6 minutes for the second, to

3 minutes with the first platform of Chapter 3, to finally end up at a mere 1.5 minutes

of the last Lisa-MXs based platform. The more sensors/hardware we added over time;

the more flight-time needed to be sacrificed. This overview is important matter for the

discussion, since the last state posed to be a significant threat to the final goal of this

dissertation. A mere flight-time of 1.5 minutes means that the pocket drones will not

be able to explore much of the inside of a building, even if they are with a swarm. It

was necessary to maximize the flight-time, which introduced the switch to the Crazyflie

for Part II. The flight-time went back to 8 minutes in Chapter 5. Although the SGBA’s

processing inflicted minimal load on the on-board computer, we still had to make con-

cessions on the hardware. We switched from the camera and the laser-range-ring to only

the multi-ranger deck and combined the communication capabilities of telemetry (for-

merly on Wi-Fi) and inter-drone communication (formerly on Bluetooth) on just one

module (Wi-Fi).

As the low-level navigation and the high-level-navigation are so intertwined with

each other, we will explain the considerations made in terms of perception, commu-

nication and navigation. The first two sections are quite focused on the physical ele-

ment of the project: the evolution of the hardware and the effect it had on the obstacle

avoidance, state estimation and inter-drone coordination. Afterwards, we will inves-

tigate the new navigation strategy we proposed and how this differs with other more

common techniques in terms of optimality. We hope to make the reader understand the
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Figure 6.1: Visualization of the hardware development of the pocketdrone. It shows the combination of

hardware-modules used of the pocket drones per chapter in Part I and the effect it had on the total flight-time.

This is an illustration that marked the choices to go for the Crazyflie platforms in the final chapter.

delicate balance between hardware and software, which is something future researchers

on this topic will need to deal with on a regular basis.

6.3. VERSATILE TO DEDICATED PERCEPTION

Throughout the majority the work of this dissertation’s Part I, the pocket drones have

used the stereo-camera as the main sensor for both state-estimation and perception. In

Chapter 2, it first looked downward to detect the motion while giving a crude estima-

tion of the distance height measurement. Once the stereo-board was looking forward,

the pocket-drone used it to both detect velocity and the obstacles in its path. The rea-

son for this assembly is clear: a camera is able to detect multiple variables and is there-

fore considered a versatile sensor. A versatile sensor, opposed to using several dedicated

(single-purpose) sensors, usually does not require as much energy than the sum of the

single-purpose sensors for the same use. It is usually assumed that designing low-energy

solutions are always beneficial for small platforms as the pocket-drone and the Crazyflie.

Unfortunately, we have experienced that this is not the rule of thumb. Whether

designing low-energy solutions is beneficial or not, is interlinked with the capabilities

necessary for the overall mission. Versatility usually does not coincide with robustness.

Taking an example of motion-detection: a camera can infer optical flow from its video-

stream; however, a dedicated optical flow sensor is much more reliable as it has been

designed optimally to do exactly that. Obviously, it suffers from similar limitations such

as cameras, since they are both optical based and therefore sensitive to low-lighting con-
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ditions. However, usually the dedicated optical flow sensor has a bigger operating range,

as in, it can handle lower texture- and lightning-conditions than the camera could, given

the restriction that it is looking at a flat surface. For a pocket-drone, that means that such

a dedicated sensor can significantly improve the state-estimation and therefore makes

it a more stable platform. Switching from the forward stereo-camera for velocity estima-

tion on the Lisa-MXs based autopilots (Part I), to the optical flow sensor on the flow deck

of the Crazyflie (Part II), enabled to have hover- and velocity-control that the designer

can trust with her/his eyes closed. Since the stereo-camera had to compute both the

obstacle field and velocity at the same time, the velocity estimation’s quality was not as

good and made the pocket-drone drift into the direction were obstacles could not be de-

tected. It must be noted that if this project had more time and resources to invest in per-

fecting forward-facing visual velocity estimation and increase the technology-readiness-

level by thorough testing and bug-fixes, it would have had the preference to keep on us-

ing the stereo-camera for the high-level-navigation. If the stereo-camera would have

needed to detect additional variables, such as the recognition of people or cracks in

buildings, it would have the capability to do so. However, considering the final objec-

tive of the dissertation and the limitation of time and resources, the choice to switch to

dedicated sensors was necessary.

Once stable velocity control is achieved, you can go to the next step, namely obstacle

avoidance. For this we go back to Part I, as the stereo-board performed both the velocity

estimation and stereo vision. The obstacle detection was sufficient for the pocket-drone

in Part I to fly autonomously in a room, and it was able to detect multiple obstacles in

one frame, but it was limited to the field of view (FOV) of the camera. The cameras on the

stereo-board on the lisa-MXs pocket drones, only had a FOV of about 60deg, which re-

duced the stereo-vision’s FOV to only 40 degrees. The imperfect velocity estimation dis-

cussed in the last paragraph, caused the drone to have sideways drift and had a higher

chance to fly into obstacles (Chapter 2), which was especially the case for low-texture

environments. This is still manageable for the navigation flight of one pocket-drone;

however, once more is added to the mix, the robustness of one becomes even more im-

portant. Therefore, in Chapter 3 we added extra laser range sensors as a fail-safe: to

prevent the sideway drift to result in a crash. These laser range sensors we used, did

have problems when it encountered dark and reflective surfaces and had a much smaller

FOV. However, when you look at the total detection range, these sensors can be placed in

any angle and would also work in low texture environments. Moreover, the multi-ranger

deck requires less power than the stereo-camera. Although this switch of the primary

navigating sensor was necessary to achieve the results of Chapter 5, for future applica-

tions it does have value to stick with the camera solution for forward-looking perception,

once the same level of robust flight can be achieved.

Fig. 6.2a shows the evolution of the hardware used for perception. Here it can be

seen that the pocket drone first started out with one versatile sensor for both (primary)

obstacle detection and state estimation, and later added the laser ring for secondary ob-

stacle detection. As this drew too much power and still did not produce a platform that

was robust enough to use in a swarm, I switched up the tasks and priority. For motion

detection, I switched to the optical flow sensor (flow deck) of the CrazyFlie for state-

estimation, and for the laser-range-finders (multi-ranger deck), I switched its task to be
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Figure 6.2: Visualization of the hardware development of certain capabilities of the pocket-drone throughout

this dissertation. a) shows how the pocket drone’s perception went from the use of a single stereo-camera for

primary obstacle detection, to the addition of a laser range ring for extra robustness. Eventually the multi-

ranger was promoted as the solely obstacle detection and the flow deck for only state estimation (versatile

to dedicated sensing). b) shows how the pocket-drone first used a single Wi-Fi-chip for telemetry, and after-

wards an extra Bluetooth module was added for inter-drone communication. These two functionalities were

eventually merged into one Wi-Fi-based module (dedicated to versatile sensing).

the sole obstacle detector. The Crazyflie and its extension decks have a much higher

technology-readiness-level, as they have a large community of hobbyists and researchers

that are using them. This is the main difference compared to the stereo-camera and the

laser-ring used in Part I, as it was mainly developed for the use within our own flight-lab.

However, building the pocket-drone with custom hardware does enable the designer to

optimize its functionalities and save weight. The Crazyflie is meant to be modular, and

therefore use attachment pins, which are easy to use but weigh more than directly sol-

dered light-weight copper wires. Nevertheless, the need to design navigation strategies

for a swarm drew me towards a platform that has been tested by many and proved it-

self to be a stable platform. Although in theory it would have been a better idea to stick

with the stereo-camera for both state-estimation and obstacle detection, the conscious

decision was made to change the platform and to split those functionalities into two

dedicated sensor-modules. Unfortunately, this also resulted in concessions that had to

be made elsewhere, namely communication.

6.4. DEDICATED TO VERSATILE COMMUNICATION

For the experiments of Chapter 2, we only needed a communication scheme to receive

telemetry from the on-board computer with an ESP-09 Wi-Fi chip. However, when
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designing algorithms for a swarm of pocket drones, the inter-drone communication

needed to be dealt with as well. Therefore, in Chapter 3 we implemented on-board

relative localization with a BlueGiga Bluetooth module, which worked both as the sig-

nal strength indicator as the communicator of each-other’s state-estimation. Again, the

separate Wi-Fi-chip was used for telemetry. Unfortunately, there is a limit to the amount

of hardware one can add until the energy threshold is reached, as we experienced during

those experiments. To only have a flight time of 2 minutes was a deal-breaker for the

final objective of this dissertation. Although the setup used in Chapter 3 was sufficient

to show low-level-navigation with multiple pocket drones in a single room, exploring a

building was out of the question with such a flight-time.

In Chapter 5, both the inter-drone communication and the telemetry were per-

formed by the same module. Moreover, the connection with the main computer (teleme-

try) has also changed its functionality. It now governs the navigational drive of the SGBA

algorithm, as it used the signal strength of the telemetry as an indication of progression.

This combination of functionalities and the absence of the 4-gram vision system saved a

significant amount of power that drove the total flight-time of the Crazyflie up to 8 min-

utes, which was a more acceptable time-window for indoor navigation. However, there

was a catch: instead of 10 Hz telemetry and 5 Hz inter-communication in Chapter 3, it

dropped to 2 Hz for both in Chapter 5. Also, in comparison to Chapter 3, the drones

did not know where the other drones were coming from: only that they were close. The

avoidance in Chapter 5 therefore needed to be conservative, which limited the lower-

priority drone in its own ability to explore.

Fig. 6.2b shows the evolution of the communication modules used for the platforms,

from only telemetry with Wi-Fi in Chapter 2, to Wi-Fi + Bluetooth for telemetry + inter-

drone communication in Chapter 3, to doing all of the functionalities only on the na-

tive NRF512188 chip on the Crazyflie in Chapter 5. This was a conscious decision that

was based on the total power supply of the Crazyflie, where the perception was more

important than the communication element of the platform. For my final solution in

Chapter 5, the Crazyflies did not need fast telemetry and exact localization for avoidance.

However, if there is anything on the whole system that I could change if the power supply

would let me, then I would have added an Ultra-Wide-Band (UWB) module to the sys-

tem instead for the inter-drone and home-beacon ranging with a separate Wi-Fi module

specifically for sharing data. Unfortunately, on the current platform, UWB would have

added an extra 120 mAh load on the 3.7 volt battery and would probably have resulted

in a much shorter flight-time. For now, the combined perception and communication

solution in Chapter 5 was to optimize the flight-time and robustness based on the limi-

tations the platform had, in order to achieve the final objective.

6.5. OPTIMAL VERSUS SUB-OPTIMAL NAVIGATION

Once the combination of hardware, sensors and processing has converged to a stable

platform, one can start thinking about a step higher than low-level-navigation: going

somewhere with a purpose. In the introduction we explained in detail on why most

conventional navigation strategies do not qualify for the pocket drones, so we will not

discuss those again in this section. What we will do is to discuss the implications of the

navigational strategy we created, and on how our philosophy can also apply for larger
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vehicles than the ones we flew with during our experiments.

In Chapter 5, we developed the SGBA algorithm as the indoor navigation strategy.

Bug algorithms do not depend on a map-building process. However, such techniques

produce sub-optimal path-planning alternatives. Looking at a flight-time perspective

— the common thread in our discussion — it is seemingly good to have more optimal

path planning to avoid any detours, which would only be possible in the presence of a

known map of the environment. The physical platform used in Chapter 5 could have

implemented a SLAM algorithm since it has visual odometry from the flow deck and

obstacle detection from the multi-ranger deck. However, such a computation would

not have been possible on-board the small STM32F4’s on the Crazyflies. SGBA, on the

other hand, takes up very little space on the on-board computer. A bigger drone or robot

could also use this same principle and easily perform auxiliary tasks in parallel, like in

the application experiments in Chapter 5. This can consist of multiple tasks, dependent

on the capabilities and hardware of the drone, which can range from video-recording

to gas-source localization and victim-search. Any possible map-building can be part of

the sub-tasks but does not exist within the same control-loop as the navigation. In other

words, it has been decoupled of the navigation strategy and therefore leads to having

more room to customize your robot for the tasks and missions required.

We benefited from one of the earlier design choices to deal with the sub-optimality

of the SGBA. Switching to the flow deck instead of the forward stereo-camera, enabled

the Crazyflies to have better visual odometry. Although the eventual drift was too severe

for the total navigation strategy, it enabled the SGBA to detect dead-locks and recognize

if a Crazyflie got into a loop. However, these were solutions on a local level, since on the

macro-level SGBA still needed the signal strength of a home-beacon in order to navigate.

To remove this dependency, it still could have been possible to further correct for the

odometry drift by recognizing scenes and landmarks in the environment. In this case,

it would have been better if a forward-looking or omnidirectional camera was included

on the system. However, for the Crazyflie, the laser-range sensors would have needed

to be sacrificed to save energy, which would have a significant effect on the robustness

against obstacles. For this addition, a slightly larger quadrotor with stronger motors and

a bigger battery would have been necessary.

The sub-optimality was also counteracted by making use of the swarm. Whenever

one Crazyflie would meet another, the one with the highest priority would share its in-

tention and the lower one would change his own preferred heading, which enabled the

Crazyflies to spread out. In comparison with Chapter 3, in Chapter 5 the drones did not

know each-others relative position. This can be a problem when the Crazyflie’s commu-

nicate their intentions to one another. If their coordinate system has diverged from the

original at the start of the experiment due to heading drift, the intention (preferred head-

ing) can be misinterpreted. Chapter 5’s assumption was that for the outbound flight, this

would not have been as severe to cause significant problems. However, for longer flight-

times and if the drones would have also communicated the estimated home-beacons

direction to each other on the inbound flight, this would have become an issue. Relative

localization will be necessary in that case, and the preferred ranging sensor would have

been UWB, like in van der Helm et al. (2019). However, as discussed before, adding an

UWB on the current system would have not been feasible.
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Designing a navigation strategy for such small platforms means that the high-level-

navigation is highly interlinked with all the hardware/processing choices made for the

low-level-navigation. The sensors used for stable flight put limitations on the extent of

the designed navigation strategy. This resulted in a sub-optimal navigation strategy in

terms of flying the shortest path. However, the approach was necessary to get it to work

fully on-board the constrained resources of the platform, and its limitations is counter-

acted by having multiple Crazyflies performing the same task. All these choices were

made in order to extend the flight-time as long as possible and to have a robust flying

platform, given the available hardware, battery and processing capabilities.

6.6. CONCLUSION

In the introduction of this dissertation, we formulated the following main research-

question:

To what extent can we design a robust and computationally efficient method

for multiple pocket drones to explore in an unknown, indoor environment

and to return to their initial position?

We were able to show a swarm of pocket drones navigating through an indoor envi-

ronment in the results of Chapter 5, therefore achieving the final objective of this disser-

tation. There are still a couple of side-notes to these results. First of all, the RSSI gradient

search for homing is still dependent on an external element, namely the home-beacon.

Secondly, there are some limitations involved with the hardware. The flow deck on the

Crazyflie had difficulties with the dark floors and illumination of the environment. The

multi-ranger deck, although it was able to work with the environment we tested in, is not

suitable for all types of obstacles. However, despite these limitations, the final results did

show case that a group of pocket drones is capable of performing such a complex task as

indoor exploration.

Throughout the dissertation I came to experience that achieving the final results was

not simply a matter of solving the low-level-navigation problem of state-estimation and

drone/obstacle avoidance and then move on to the high-level-navigation problem of ex-

ploration, homing and inter-drone coordination without any consequence. Working on

on-board solutions on such limited systems means that each decision made in the ear-

lier phase has a direct influence on the next. With platforms as small as pocket drones,

one should be aware that any enhancement to the elements perception, communica-

tion, behavior and their connections, need to share a limited supply of Energy (Fig. 6.3).

Each of my choices had a cost: focusing more on the perception of a single drone for

robust flight than on the inter-drone communication, had a major influence for the cre-

ation of SGBA. However, for indoor-navigation, the first-most priority is to have a single

pocket-drone that you can trust with your eyes closed, since there is going to be more

obstacles and walls in an indoor environment than inter-drone-encounters. By mak-

ing the necessary choices in terms of hardware & processing and understanding their

consequences, we were able to show a swarm of pocket drones navigating an indoor

environment in the results of Chapter 5, therefore achieving the final objective of this

dissertation.
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Figure 6.3: Balance between capabilities and energy.

6.7. FUTURE WORK

The work done in this dissertation was a case-study in the possibility of autonomous

exploration with a swarm of pocket drones in an indoor environment. This does not

represent the final chapter on autonomous swarm navigation on limited systems and

there are still matters that need to be developed further. The pocket drones could be op-

timized even further in both hardware and software, which should make the very same

techniques discussed in this dissertation available on even smaller platforms. To en-

able more functionalities, it would be good to again investigate the addition of a camera.

We have abandoned this element for Part II, however it would be very beneficial for the

overall system to enable the computation of multiple variables in one image stream and

tested it thoroughly, such that e.g. the optical flow of a forward camera would be as

suitable for state estimation as for a downward camera. For the inter-drone communi-

cation, it would be beneficial to switch to UWB for better ranging properties, so once

light-weight – higher capacity – batteries become available. This is the first hardware

element of SGBA that should be enhanced.

It will also benefit the homing performance by replacing the home-beacon with

UWB. In this dissertation, this minor aid of the high-level navigation was necessary to

counteract the drift of the visual odometry, and although no close to a full external po-

sitioning system, it would be good to make the swarm completely independent of such

elements. There are several alternatives to consider. The Crazyflie will soon have a new

extension deck for AI on the market, complete with a single forward-looking camera and

capable of running a deep neural network onboard (Palossi et al., 2018), which has al-
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ready been shown to perform in obstacle avoidance and corridor following experiments

(Palossi et al., 2019). During the exploration phase, the views experienced during that

flight can be learned and stored in a manner similar to van Dalen et al. (2018), in case

the learning itself can be done online. With an added camera, the pocket drone should

be able to recognizes features in its environment, which can enable it to navigate back

home more swiftly than with SGBA. This would be required to make the swarm of pocket

drones completely autonomous and independent of any system other than themselves.
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APPENDICES: BUG ALGORITHM

LITERATURE SURVEY

A.1. SPECIFIC INFORMATION ABOUT THE EXPERIMENTS WITH

THE BUG-ALGORITHMS

A.1.1. PSEUDO-CODE BUG ALGORITHMS

The pseudo-code for Com, Com1, Bug2, Alg1 and Alg2, is listed in Algorithm A.1.1, A.1.2,

A.1.3, A.1.4 and A.1.5 respectively. T stands for target and sW F is a variable that deter-

mines if the wall-following is right- (sW F =1) or left-sided (sW F =-1). rlocal stand for local

sensor measurements, which can be either contact- or range-sensors. xg lobal stands

for the global position estimate of the Bug Algorithm. d(H ,T )pr ev stands for the previ-

ous distance of the hit-point to target and d(xg l obal ,T ) stands for the current distance

from BA to target. l i sthp stand for a list of previously encountered hit-points. v is the

control output for the forward velocity of the robot and cv is the fixed velocity constant.

ω is the control output for the heading of the robot in rad/s and cω is a fixed rate constant,

to control the speed of the robot’s turns.
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Algorithm A.1.1 The pseudo-code for the state-machine of Com.

Init: st ate = "forward", sW F

Require: cv , cω, xg l obal rlocal , l i sthp
function COM

if st ate is "forward" then

v ← cv

ω← 0

if Obstacle is hit then

st ate ← "wall_following"

else if st ate is "wall_following" then

[v, ω] ← Wall_Following(cv ,cω, sW F ,rlocal ) ⊲ See A.3.2

if Way towards T is free then ⊲ Based on rlocal
st ate ← "rotate_to_target"

else if st ate is "rotate_to_target" then

v ← 0

ω← cω
if Heading BA same as direction T then

st ate ← "forward"
return v,ω

Algorithm A.1.2 The pseudo-code for the state-machine of Com1.

Init: st ate = "forward", sW F = 1

Require: cv , cω,rlocal
function COM

if st ate is "forward" then

v ← cv

ω← 0

if Obstacle is hit then

d(H ,T ) ← d(xg l obal ,T )

st ate ← "wall_following"

else if st ate is "wall_following" then

[v, ω] ← Wall_Following(cv ,cω, sW F ,rlocal ) ⊲ See A.3.2

if Way towards T is free and d(xg l obal ,T )<d(H ,T ) then

st ate ← "rotate_to_target"

else if st ate is "rotate_to_target" then

v ← 0

ω← cω
if Heading BA same as direction T then

st ate ← "forward"
return v,ω
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Algorithm A.1.3 The pseudo-code for the state-machine of Bug2.

Init: st ate = "forward", sW F = 1

Require: M − l i ne,cv , cω, xg l obal rlocal
function COM

if st ate is "forward" then

v ← cv

ω← 0

if Obstacle is hit then

st ate ← "wall_following"

else if st ate is "wall_following" then

[v, ω] ← Wall_Following(cv ,cω, sW F ,rlocal ) ⊲ See A.3.2

if M − l i ne is hit and BA is closer to T then

st ate ← "rotate_to_target"

else if st ate is "rotate_to_target" then

v ← 0

ω← cω
if Heading BA same as direction T then

st ate ← "forward"
return v,ω

Algorithm A.1.4 The pseudo-code for the state-machine of Alg1.

Init: st ate = "forward", sW F = 1, , l i stHP =[ ]

Require: M − l i ne,cv , cω, xg l obal rlocal
function COM

if st ate is "forward" then

v ← cv

ω← 0

if Obstacle is hit then

l i stHP ← [l i stHP , xg l obal ]

st ate ← "wall_following"

else if st ate is "wall_following" then

[v, ω] ← Wall_Following(cv ,cω, sW F ,rlocal ) ⊲ See A.3.2

if xg l obal is in l i stHP then

st ate is "change_local_direction"

if M − l i ne is hit and BA is closer to T then

st ate ← "rotate_to_target"

else if st ate is "rotate_to_target" then

v ← 0

ω← cω
if Heading BA same as direction T then

st ate ← "forward"

else if st ate is "change_local_direction" then

v ← 0

ω← cω
sW F =−1

if BA has rotated 18o then

st ate ← "wall_following"
return v,ω
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Algorithm A.1.5 The pseudo-code for the state-machine of Alg2.

Init: st ate = "forward", sW F = 1, l i stHP =[ ]

Require: cv , cω,rlocal
function COM

if st ate is "forward" then

v ← cv

ω← 0

if Obstacle is hit then

sW F = 1

d(H ,T ) ← d(xg l obal ,T ) f or

l i stHP ← [l i stHP , xg l obal ]

st ate ← "wall_following"

else if st ate is "wall_following" then

[v, ω] ← Wall_Following(cv ,cω, sW F ,rlocal ) ⊲ See A.3.2

if xg l obal is in l i stHP then

st ate is "change_local_direction"

if Way towards T is free and d(xg l obal ,T ) < d(H ,T ) then

st ate ← "rotate_to_target"

else if st ate is "rotate_to_target" then

v ← 0

ω← cω
if Heading BA same as direction T then

st ate ← "forward"

else if st ate is "change_local_direction" then

v ← 0

ω← cω
sW F =−1

if BA has rotated 18o then

st ate ← "wall_following"
return v,ω

A.2. PROCEDURAL ENVIRONMENT GENERATOR

The procedural environment generator specifics is shown in Fig. A.1. First, in a coarse

grid world (a), two entities are initialized on the exact position of the start and target

position to be in the eventual task. They will perform a simple 4-connected path gener-

ation, where they will have a certain chance of going straight (pstr ). The chance of either

going left or right is equal to 1−pstr . Each agent will leave a corridor trace, as can be seen

in (b), until, in (c), the amount of corridors hit a density threshold (tcor = 0.4), which is

the number of grid-cells occupied with a corridor divided by the total number of existing

grid cells in the environment. A connectivity check is performed, to check if the initial

position of the robots are connected by these corridors, which will re-initiate the process

in case it fails. This is to ensure that the BA is always able to reach its final destination.

Next, walls will be added to these corridors (d). The remaining areas will act as rooms

and are divided when they are too large in (e). Finally, in (f), random openings are added

along the border of the corridors to create passages these areas.
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e) Divide rooms f) Create doors

a) Start corridor
agents

b) Corridor
generation

c) Final result
corridors

d) Create corridor
walls

Figure A.1: The steps of the procedural generated environment method will be explained here. The corridor-

generating random agents (blue circles) start in (a) at the same positions as the start and target locations of

the experiment. These will move forward in (b), while occasionally turning left and right, while leaving a cor-

ridor trace (red blocks). Once it reaches the corridor-density threshold in (c), the corridors-cells are tested for

interconnectivity, such that the target position can be reached from the starting position (green circles). The

corridor walls are created in (d) and then, in (e), remaining non-corridor spaces are then divided into rooms

(purple stripes) and random door-openings (gray blocks) are created along the border of the corridors in (f).

A.3. WALL FOLLOWING

A.3.1. CALCULATION REAL DISTANCE FROM WALL

a
b

c

β
h

Figure A.2: Visualization of the triangle configuration for the derivation.

In Fig. A.2, the configurations of the solved triangle is solved, where we want to calculate

h (height triangle) with the triangle sides of a and b and the angle β. c is the triangle side

that will be unknown, so a formula will be derived that will only use a, b and β.

The geometrical equations used to achieve the ranges are the triangle area formula:

A =
c ·h

2
(A.1)

, the SAS triangle rule:

A =
a ·b · sinβ

2
(A.2)



A

122 A. APPENDICES: BUG ALGORITHM LITERATURE SURVEY

, the cosine-rule:

c =

√

a2 +b2 −2 ·a ·b cosβ (A.3)

with A is the area of the triangle.

Substitute A in Eq. A.2 for the right side of Eq. A.1, and solve for h:

h =
a ·b · sinβ

c
(A.4)

Now substitute c in Eq. A.4, for the right side of Eq. A.3, which results in the following

equation:

h =
a ·b sinβ

√

a2 +b2 −2 ·a ·b cosβ
(A.5)

A.3.2. PSEUDO CODE WALL FOLLOWING

The procedure of the wall-following behavior is listed in this appendix in Algorithm A.3.1

and A.3.2. TsW F is a variable that determines if the wall-following is right- (sW F =1) or

left-sided (sW F =-1), d(x,O⊥) is the current distance to the robot calculated perpendicu-

lar from the wall and dr e f is the preferred distance from the wall in meters and td is the

threshold to determine if the robot near dr e f . rs and r f are the side and range sensor’s

measurement in meters and β is the angle between them. If sW F =1, then rs is the right

range sensor and if sW F =-1, then rs is the left range sensor. v is the control output for the

forward velocity of the robot and cv is the fixed velocity constant. ω is the control output

for the heading of the robot in rad/s and cω is a fixed rate constant, to control the speed

of the robot’s turns.
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Algorithm A.3.1 The procedure of the wall-following behavior.

Init: st ate = "rotate_to_align_wall"

Require: sW F , d(x,O⊥), dr e f , rs , r f , cv ,cω, β

β = 60deg

function WALL_FOLLOWING

if st ate is "rotate_to_align_wall" then

v ← 0

ω←−1 · sW F · cω ⊲ Turn away from the wall

if rs ≈ r f ·cos(β) then

st ate ← "wall_following_and_aligning"

if r f = OR then

st ate ← "rotate_around_corner"

else if sW F is "wall_following_and_aligning" then

v ← cv

ω← Wall_Following_and_Aligning() ⊲ See A.3.2

if d(x,Omi n ) < dr e f then

st ate ← "rotate_to_align_wall"

if r f is OR then

st ate ← "rotate_around_corner"

else if st ate is "rotate_around_corner" then

v ← cv

ω← sW F · v/dr e f ⊲ Wide turn, radius = dr e f
if rs ≈ r f ·cos(β) then

st ate ← "wall_following_and_aligning"

if d(x,Omi n ) < dr e f then

st ate ← "rotate_to_align_wall"

return ω

Algorithm A.3.2 The procedure of keeping the heading of the FootBot aligned with the

wall during wall following.

Require: sW F , d(x,O⊥), dr e f , rs , r f , cw , β

function WALL_FOLLOWING_AND_ALIGNING

if |dr e f −d(x,O⊥)| > −td ) then ⊲ If too far from dr e f
if dr e f −d(x,O⊥) > td then ⊲ If too far from wall

ω= sW F · cω ⊲ Turn towards the wall

else ⊲ If too close to wall

ω=−sW F · cω ⊲ Turn from the wall

else if |dr e f −d(x,O⊥)| < td then ⊲ If close to dr e f
if rs > r f ·cosβ then ⊲ Fine tune alignment

ω= sW F · cω ⊲ Turn towards the wall

else

ω=−sW F · cω ⊲ Turn from the wall

else ⊲ Do not adjust the turn

ω= 0

return ω

A.4. STATISTICAL TESTS

A.4.1. BOOTSTRAPPING BUG ALGORITHMS

In Fig. 4.11 for perfect localization (σ= 0), the resulting performance values per bug al-

gorithm was shown. Here, both the success rate and the trajectory length are subjected
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to a bootstrapping test, to evaluate whether the bug algorithms belong to the same dis-

tribution (null-hypothesis). Table A.1 contains the bootstrapping tests from the data

presented in Fig. 4.11(a) and Table A.2 for Fig. 4.11(b) for σ=0.

Com Com1 Bug2 Alg1 Alg2

Com 1 1 0 0 1

Com1 1 1 0 0 1

Bug2 0 0 1 1 0

Alg1 0 0 1 1 0

Alg2 1 1 0 0 1

Table A.1: Bootstrapping results on the trajectory length of the evaluated bug algorithms with a sample size

10000. The value "1" means that the null-hypothesis (the evaluated data comes from the same distribution)

holds, while "0" means it is rejected.

Com Com1 Bug2 Alg1 Alg2

Com 1 0 0 0 0

Com1 0 1 1 1 0

Bug2 0 1 1 1 0

Alg1 0 1 1 1 0

Alg2 0 0 0 0 1

Table A.2: Bootstrapping results on the success rate of the evaluated bug algorithms with a sample size 10000.

The value "1" means that the null-hypothesis (the evaluated data comes from the same distribution) holds,

while "0" means it is rejected.

A.4.2. CORRELATION ANALYSIS ODOMETRY NOISE

In order to evaluate whether an relationship exists between the increasing odometry

noise and the degeneration of the performances of the bug algorithms, the data pre-

sented in Fig. 4.11 are subjected to regression analysis. Table A.4 contains the logistic re-

gression analysis with a R2 value, from the trajectory length data presented in Fig. 4.11(a)

and Table A.3 contains the logistic regression analysis with a pseudo-R2 value, from the

success rate data presented in Fig. 4.11(b).

Com Com1 Bug2 Alg1 Alg2

Slope 8.081 13.642 13.561 11.857 12.523

Intercept 2.752 2.724 3.152 3.522 2.654

R2 0.076 0.189 0.217 0.173 0.161

Table A.3: Linear regression evaluation of the trajectory lengths against the measurement noise, including the

intercept, slope and R2 value per bug algorithm.

Com Com1 Bug2 Alg1 Alg2

Slope -1.240 -3.100 -3.860 -3.480 -3.110

Intercept 0.587 0.800 0.779 0.706 0.847

R2 0.035 0.189 0.343 0.323 0.198

Table A.4: Logistic regression evaluation of the success rate against the measurement noise, including the

intercept, slope and (psuedo) R2 value per bug algorithm.
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A.4.3. CORRELATION ANALYSIS RECOGNITION FAILURES

In order to evaluate whether an relationship exists between the increasing failing recog-

nition rate and the degeneration of the performances of the bug algorithms Alg1 and

Alg2, the data presented in Fig. 4.13 are subjected to regression analysis. Table A.6 con-

tains the logistic regression analysis with a R2 value, from the trajectory length data

presented in Fig. 4.13(a) and Table A.5 contains the logistic regression analysis with a

pseudo-R2 value, from the success rate data presented in Fig. 4.13(b). Table A.8 contains

the logistic regression analysis with a R2 value, from the trajectory length data presented

in Fig. 4.13(c) and Table A.7 contains the logistic regression analysis with a pseudo-R2

value, from the success rate data presented in Fig. 4.13(d).

Alg1 Alg2

Slope 0.5472 0.1722

Intercept 2.4302 1.8843

R2 0.0112 0.0020

Table A.5: Linear regression evaluation of the trajectory lengths against the False Positive recognition rate,

including the intercept, slope and R2 value per bug algorithm.

Alg1 Alg2

Slope -0.1443 -0.0014

Intercept 0.9105 0.9418

R2 0.4652 0.7773

Table A.6: Logistic regression evaluation of the success rate against the False Positive recognition rate, includ-

ing the intercept, slope and (psuedo) R2 value per bug algorithm.

Alg1 Alg2

Slope 0.1873 1.0584

Intercept 3.2478 2.2733

R2 0.0000 0.0006

Table A.7: Linear regression evaluation of the trajectory lengths against the False Negative recognition rate,

including the intercept, slope and R2 value per bug algorithm.

Alg1 Alg2

Slope 0.0577 0.1010

Intercept 0.8018 0.9192

R2 0.3668 0.7171

Table A.8: Logistic regression evaluation of the success rate against the False Negative recognition rate, includ-

ing the intercept, slope and (psuedo) R2 value per bug algorithm.

A.4.4. CORRELATION ANALYSIS DISTANCE SENSOR NOISE

In order to evaluate whether an relationship exists between the increasing distance mea-

surement noise and the degeneration of the performances of the bug algorithms Alg1

and Alg2, the data presented in Fig. 4.14 are subjected to regression analysis. Table A.10
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contains the logistic regression analysis with a R2 value, from the trajectory length data

presented in Fig. 4.14(a) and Table A.9 contains the logistic regression analysis with a

pseudo-R2 value, from the success rate data presented in Fig. 4.14(b).

Com1 Alg2

Slope 0.0501 -0.0075

Intercept 2.5783 2.4204

R2 0.0019 0.0001

Table A.9: Linear regression evaluation of the trajectory lengths against the distance measurement noise, in-

cluding the intercept, slope and R2 value per bug algorithm.

Com1 Alg2

Slope -0.0557 -0.0225

Intercept 0.8682 0.9283

R2 0.2412 0.5583

Table A.10: Logistic regression evaluation of the success rate against the distance measurement noise, includ-

ing the intercept, slope and (psuedo) R2 value per bug algorithm.
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APPENDICES: SWARM GRADIENT

BUG ALGORITHM

B.1. CODE REPOSITORIES FOR SIMULATION AND REAL-

WORLD TESTING

All repositories can be found by following the instructions of the future publication of:

K. N. McGuire, C. De Wagter K. Tuyls, H. Kappen & G.C.H.E. de Croon, Minimal nav-

igation solution for a swarm of tiny flying robots to explore an unknown environment,

Science Robotics (2019)[In press].

B.2. REAL-WORLD TEST ENVIRONMENT

The environment used for the real-world testing, was the 11th floor of the high-rise

building of the Faculty of Aerospace Engineering, TU Delft (Kluyverweg 1, Delft, the

Netherlands). The floorplan and several photographs of the surroundings can be found

in Fig. B.1. Every second room in the building (grayed out areas in Fig. B.1E) was closed

during testing, in order to be able to track the robot trajectory and register the rooms it

visits from the hall way camera. Moreover, the limited flight-time due to the battery did

not allow exploration of all the available rooms. One room (# 10) was selected to be a

monitor room, where the responsible person was able to initiate the different test con-

figurations. The home beacon location was shown in Fig. B.1H, where the flying robots

took off and tried to return to.

B.3. RSSI MEASUREMENTS

To illustrate the Received Signal Strength Intensity (RSSI) measurements within the

rooms of the environment described in Text B.2, we performed 3 nearly identical flights,

where one Crazyflie performed a wall-following behavior in room numbers 20, 21 and

22. In the meantime, it was communicating with both the home beacon and another

127
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Figure B.1: Overview of the real-world environment. This figure shows the pictures of the environment used

for the real-world testing. E) has the floor plan of the 11th floor of the Aerospace building of the TU Delft,

with A)-D) and F)-I), shows photographs of certain locations. All photographs were taken after the testing took

place, for the exception of H), which shows the starting position of one of the 6-drone test configuration.
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A) B)

C) D)

Figure B.2: RSSI measurements. The RSSI measurements of three flights with the Crazyflie performing wall

following while communicating with A) the home beacon and B) another Crazyflie. The surface plots of the

averaged RSSI measurements over 3 flights with the corrected odometry of the communication of the Crazyflie

with C) the home beacon and D) another Crazyflie. The red circle in C) is the location of the home-beacon and

the red circle in D) is the other Crazyflie.

Crazyflie that lay on the floor of room 21 (the communication rate was higher than dur-

ing the final tests). Fig. B.2A shows the raw RSSI measurements with the home-beacon

where 3 distinct plateaus can be distinguished which indicate the rooms the Crazyflie

has entered, and the difference can also be seen in the surface plot of the average RSSI

in Fig. B.2C. For the RSSI between the two Crazyflies (Fig. B.2B), this is less significant.

Nevertheless, a high RSSI peak can be seen at 130 seconds, which corresponds with pass-

ing near the ground-bound Crazyflie (Fig. B.2D). Interestingly enough, another peak can

also be measured at the other side of the wall at 160 seconds, which is not as high but

possibly could trigger an avoidance maneuver in SGBA if the threshold is not chosen

carefully.

B.4. FROM ODOMETRY TO TRAJECTORY

For the real-world experiments, we connected each drone with a Crazyradio PA to re-

trieve on-board estimates and data. We used it to know the onboard odometry, SGBA’s

state etc. and provide the data for the position plots like Fig. B.3. As to be expected, due to

drift, the position odometry did not correspond to the actual flight trajectory seen on the

external cameras (Fig. B.3A and B). We therefore needed to adjust the odometry-based
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position estimate to fit within the floor plan. We used the following strategy:

1. Transcripts: We made transcripts of the flights by using the hallway camera. For

each drone, the hallway trajectory was approximated. This included information

about which rooms they entered (see Fig. B.4A and B). To be able to see which

rooms the robots entered, especially the flights at the far left, each second room

was closed. Beside the hallway, only room 03 and 06 were equipped with a fixed

camera, so we would need to rely on the odometry data to analyze the robot’s be-

haviors inside most rooms.

2. Global correction: From the odometry, we first made a global adjustment. After a

light Gaussian filter, we translated the starting position, scaled in the x and y axis

and adjusted the heading drift, by rotating the trajectory by a heading increment at

every time-step. This all to make an initial correction in order to get the trajectory

a S3little closer that what we observed in the flight transcripts. These parameters

(translation, rotation and its derivative, and scaling) unfortunately are different for

every drone. See Fig. B.5A for the effects of this correction.

3. Local correction: Although the global correction would be enough for some (short)

flights, the degree of drift is unfortunately not exactly the same throughout the

duration of the flight. Therefore, a local correction needs to be made (Fig. B.5A),

where we need to go through every time-step and see if the trajectory needs addi-

tional adjusting to fit the environment in a realistic manner. We developed a GUI

in Matlab 2017 for this purpose (Fig. B.5B).

Going through these 3 steps enabled us to build the plots we show in Fig.5.6B and C in the

main body of the chapter. Please remark that the above procedure, which takes 30 min-

utes, is only necessary for producing the trajectory plots for the scientific manuscript.

The procedure plays no role whatsoever in the autonomous navigation and is also not

necessary for a future real-world application of SGBA.

B.5. ANALYSIS AND STATISTICS

This section presents the data and analysis of both the simulation and real-world exper-

iments.

All databases can be found by following the instructions in the future publication of:

K. N. McGuire, C. De Wagter K. Tuyls, H. Kappen & G.C.H.E. de Croon, Minimal nav-

igation solution for a swarm of tiny flying robots to explore an unknown environment,

Science Robotics (2019) [In press].

B.5.1. SIMULATION RESULTS ANALYSIS

Table B.1 shows the statistics of the simulation results. For each test configuration, 100

environments were generated. We calculated the coverage by means of a cell grid, as il-

lustrated in Fig. B.6. The statistical analysis results can be found in Table B.1. In the 2nd

to last row, the R2 and P-value of the relationship between the number of drones and the

variables “coverage total”, “coverage returned”, “coverage individual” and “return rate”,

as calculated by the Matlab function Fitml for a quadratic approximation (P-value based
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A)

B)

Figure B.3: Odometry versus trajectory. Here the real on-board calculated odometry data is shown, versus the

corrected version that is used in the main body of this chapter. A) shows the original odometry of Fig. 5.6B and

B) shows the original odometry of Fig. 5.6C.
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Figure B.4: Transcripts Hallway Video. This figure presents the visual transcripts of A) the 4-drone configu-

ration (flight #2 of 5) and B) the 6-drone configuration (flight #3 of 5). These transcripts were drawn from the

hallway video recorder on the far right, so only the trajectory in the hallway and room entering has been noted.

Each room has its number (in black) and also contain the ID of the drone that entered that room (in the color

of its trajectory). The superscript of that ID number stands for the sequence of rooms visited by that very same

drone. The gray rooms had closed doors and were not accessible by the drones and functioned as walls.

A) B)

Figure B.5: Odometry Correction. This figure shows A) the evolution of the original odometry measurements

(in blue), to undergo a global correction (in red) in terms of translation, rotation and a rotation derivative and

scaling in both the x- and y-direction. These correspond in integration error in heading from the gyro bias,

scaling error of the forward optical flow and integration errors in optical flow. For the final result, a time-wise

local correction is applied (in yellow), with help of the developed GUI in B) where those same parameters are

adjusted during each time step.
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A) B)

Figure B.6: Coverage calculation simulation. In A) the trajectory (in yellow) in the procedurally simulated

environment is shown, with the inaccessible areas marked in grey. The trajectory is turned into an occupancy

map in B), which will be used to calculate the coverage, taking into account which areas are not accessible for

the agent.

Configuration Coverage Total Coverage Return Coverage Indiv. Return Rate

Avg Std Avg Std Avg Std Avg Std

2 0.5195 0.1404 0.3594 0.3594 0.3000 0.0987 0.7250 0.3208

4 0.7546 0.1080 0.5601 0.5601 0.3094 0.0775 0.7150 0.2488

6 0.8164 0.1026 0.6838 0.6838 0.3142 0.0681 0.7350 0.2236

8 0.8620 0.0875 0.7378 0.7378 0.3210 0.0647 0.7113 0.2252

10 0.8996 0.0624 0.8060 0.8060 0.3134 0.0555 0.7490 0.1872

Intercept 0.30449 0.14087 0.28396 0.73965

x1 0.13152 0.12524 0.0088293 -0.0088768

x12 -0.00734 -0.00597 -0.00057529 0.00092411

R2 0.6095 0.4472 0.00806 0.0013

P-value 3.28e-102 1.05e-64 0.134 0.724

Table B.1: Statistics of the simulation tests. This table presents the average and standard deviation of the total

coverage, coverage of the returned agents, coverage of the individual agents and the return rate per configura-

tion of 2, 4, 6, 8, 10 drones from the simulation experiments. It also includes the intercept and coefficients of

the quadratic model fit, along with the R2 value and F-test based p-value which indicates the quality and sig-

nificance of the model. These values were calculated with the Matlab function fitml for a quadradic function.

The latter value is indicated in bold if the relationship is considered significant, based on the 5-percentile rule.

on a F-test). The approximation is done on the results of all the 100 environments per

drone-number configuration. This indicated a significant relationship between “cov-

erage total”, “coverage returned” and the increasing number of drones, but not for the

“coverage individual” and “return rate”.

B.5.2. REAL-WORLD RESULTS ANALYSIS

This section explains the statistical data of the real-world experiments. Table B.2, B.3 and

B.4 show the end status per drone after each of the 5 flights, for the 2-, 4- and 6-drone

configurations respectively. There are 5 statuses to consider:

• "Made it”: This status indicates that the drone was able to return safely to the

home beacon for its inbound flight.
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• “Low Battery”: This status indicates that the drone was not able to return to the

home beacon and landed remotely because of a low battery.

• “Crash wall”: This is a failure case that the wall-following was not sufficient to han-

dle a particular obstacle and the drone’s rotors came in contact and crashed be-

cause of it. (If the reason cannot be determined, this is the standard failure mode).

• “Crash drone”: This is a failure case that the drones could not sense each-other in

time and that one or two drones crashed because they collided against each-other.

• “Hardware”: This failure case is due to a hardware error that caused the drone to

not detect obstacles in time or failed to fly. E.g. due to the vibrations, the multi-

ranger deck could get lose during flight, which leaves the drone blind to its sur-

roundings, or the loss of a propeller.

Additionally, we also present the data of the visited rooms per drone per flight in Ta-

ble B.5, B.6 and B.7 for the configuration of 2, 4 and 6 drones. The rooms in the table

are shown in sequence and are based on the video footage that we took per flight (avail-

able at the database mentioned before). The room numbers are the real office numbers,

which are shown in Fig. B.1E. Moreover, the number of unique flights is also listed in

brackets after the room sequence, and the rooms visited by the drones that were able to

return (end-status of “Made it”) are listed in bold.

In Table B.8, we show all the averages for each flight number for each configuration.

The coverage total sums all the unique rooms all the drones have visited from Table B.5,

B.6 and B.7 and divide them by the total number of existing rooms (8). The same is

done for the coverage returned, however only the rooms that the returned robots have

explored are included in the calculations. The coverage per agent is also calculated in a

similar manner, by taking the average of the rooms listed after the sequences in B.5, B.6

and B.7 and dividing it by the total number of agents.

Finally, the return rate is the number of returned drones divided by the total number

of drones flying in the experiment. The average standard deviation per variable and per

configuration is listed in Table B.8. In the 2nd to last row, the R2 value and P-value of the

relationship between the number of drones and the variables “coverage total”, “coverage

returned”, “coverage individual” and “return rate”, as calculated by the Matlab function

Fitml for a quadratic approximation (P-value based on a F-test). Immediately noticeable

is that there is a significant relationship between the number of agents versus total cov-

erage but not with the other performance measures. We also present a collision count

for each of the real-world experiments in Table B.9. Since only one collision occurred out

of the 54 encounters, the collision avoidance success percentage is 98 %.
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Flight number Returned Drone 1 Drone 2

1 2\2 Made it Made it

2 2\2 Made it Made it

3 2\2 Made it Made it

4 2\2 Made it Made it

5 2\2 Made it Crash wall

Table B.2: End status of the real-world tests with 2 drones. The return rate and end-status of the 5 flights of the

2-drone experiment configuration in the real-world environment.

Flight number Returned Drone 1 Drone 2 Drone 3 Drone 4

1 4/4 Made it Made it Made it Made it

2 4/4 Made it Made it Made it Made it

3 2/4 Made it Low battery Made it Hardware

4 3/4 Made it Crash wall Made it Made it

5 3/4 Made it Made it Made it Crash wall

Table B.3: End status of the real-world tests with 4 drones. The return rate and end-status of the 5 flights of the

4-drone experiment configuration in the real-world environment.

Flight number Returned Drone 1 Drone 2 Drone 3 Drone 4 Drone 5 Drone 6

1 4/6 Made it Made it Made it Made it Low b. Crash w.

2 4/6 Made it Made it Low b. Made it Made it Hardware

3 6/6 Made it Made it Made it Made it Made it Made it

4 3/6 Made it Crash w. Hardware Crash D. Made it Made it

5 5/6 Made it Made it Crash w. Made it Made it Made it

Table B.4: End status of the real-world tests with 6 drones. The return rate and end-status of the 5 flights of the

6-drone experiment configuration in the real-world environment.

Flight number Drone 1 Drone 2

1 08→12 (2) 12→21→12→14→19 (4)

2 14 (1) 08→12→14 (3)

3 08→12→12 (2) 03 (1)

4 21→14 (2) 12→14→14 (2)

5 08→12 (2) 19 (1)

Table B.5: Coverage of the real-world tests with 2 drones. This table presents the room numbers visited in the

real-world environment per flight and per drone of the 2-drone experiment configuration, with the number of

unique rooms in brackets. The visited rooms of the flying robots that have returned, are shown in bold.
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Flight number Drone 1 Drone 2 Drone 3 Drone 4

1 01→19 (2) 21→14 (2) 08→08→06 (2) 14→14 (2)

2 01 (1) 14→19 (2) 08→06 (2) 21→19 (2)

3 01→21 (2) 12→14→19→19 (3) 01 (1) - (0)

4 01→03 (2) 21 (1) 08→08 (1) 12→21→19 (3)

5 06→06 (1) 21→19 (2) 08→03 (2) - (0)

Table B.6: Coverage of the real-world tests with 4 drones. This table presents the room numbers visited in the

real-world environment per flight and per drone of the 4-drone experiment configuration, with the number of

unique rooms in brackets. The visited rooms of the flying robots that have returned, are shown in bold.

Flight number Drone 1 Drone 2 Drone 3 Drone 4 Drone 5 Drone 6

1 08 (1) 21→19 (2) - (0) 14 (1) 08→01→08→06 (3) - (0)

2 08→12 (2) 21 (1)

01→01→03

→03→03

→03→01 (2)

14 (1) 08→12 (2) - (0)

3 08→12 (2) 19→14 (2) 01 (1) 21→19→14 (3) 03 (1) 21 (1)

4 08→12 (2) 12 (1) 01 (1) 19 (1) 03→08→03 (2) 19→14→19→14 (2)

5 08→12 (2) 12 (1) 01→21 (2) 21→19→14→14 (3) 03→06→06→06 (2) 21 (1)

Table B.7: Coverage of the real-world tests with 6 drones. This table presents the room numbers visited in the

real-world environment per flight and per drone of the 6-drone experiment configuration, with the number of

unique rooms in brackets. The visited rooms of the flying robots that have returned, are shown in bold.

Flight # Total Coverage Coverage Returned Indiv. Coverage Return rate

p. Conf. 2 4 6 2 4 6 2 4 6 2 4 6

1 0.625 0.750 0.750 0.625 0.750 0.500 0.375 0.219 0.146 1.000 1.000 0.667

2 0.375 0.750 0.750 0.375 0.750 0.500 0.250 0.219 0.167 1.000 1.000 0.667

3 0.375 0.625 0.875 0.375 0.250 0.875 0.188 0.188 0.208 1.000 0.500 1.000

4 0.375 0.750 0.750 0.375 0.750 0.625 0.25 0.219 0.188 1.000 0.750 0.500

5 0.375 0.625 1.000 0.250 0.625 0.875 0.188 0.156 0.229 0.500 0.750 0.833

Average 0.425 0.7 0.825 0.4 0.625 0.675 0.250 0.200 0.188 0.900 0.800 0.733

Std 0.112 0.069 0.112 0.137 0.217 0.187 0.077 0.036 0.024 0.224 0.209 0.190

Interc. 0.0000 0.000 0.33125 10.333

x1 0.2500 0.24375 -0.05000 -0.0750

x12 -0.01875 -0.021875 0.0046875 0.0041667

R2 0.7791 0.3456 0.1943 0.1193

P-value 0.000116 0.0785 0.274 0.467

Table B.8: Statistics of the real-world tests. This table shows the coverage rates (total and of the returned robots)

of each flight and each drone configuration (2, 4, 6 drones), including the return rate. The average and standard

deviation are given, with the R2 value and P-value (bold-type indicates significance) from the quadratic model

fit.

Collisions / Avoid attempts

Trail nr. 2 CFs 4 CFs 6 CFs

1 0/1 0 / 5 0 / 9

2 0/2 0 / 3 0 / 3

3 0/1 0 / 2 0 / 5

4 0/3 0 / 4 1 / 8

5 0/0 0 / 3 0 / 5

Total per config 0/6 0/17 1/30

Total 1/54

Table B.9: Real world collisions. Counted intra drone avoidance attempts and collisions of the Swarm Gradient

Bug Algorithm real-world experiments.
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B.6. SGBA IMPLEMENTATION DETAILS SIMULATION VERSUS

REAL-WORLD

The swarm gradient bug algorithm (SGBA), as explained in the Materials and Methods

section, has been implemented on two different platforms for the results of the main

body of this chapter. Fig. B.7 shows the strategies used for the different sub-modules

of SGBA for the simulated Footbot in ARGoS, and the real-world Crazyflie. These sub-

modules originate from the state-machine presented in Fig. 5.4 of the main body of the

chapter, which are: 1) the initial direction choice, 2) wall-following strategy, 3) odome-

try measurement for loop detection, 4) intra-drone avoidance strategy and 5) gradient

search towards the departure point.

For both the simulation as the real-world experiments, the initial choices for the pre-

ferred direction for the outbound travel are 45o, 135o, -135o and -45o (Fig. B.7A), where

the modulus of the robot’s ID from 4 determines the preferred direction (ID 1 = 45o , ID 2

= 135o , ID 3 = -135o , ID 4 = -45o , ID 5 = 45o , . . . ). This has been implemented the same

for both the Footbot and Crazyflie. Of course, other schemes are possible, such as having

smaller differences between the angles or evenly distributing the robots’ preferential an-

gles over the 360 degrees (then the angle between two robots is 360o / number of robots).

However, this influences the interaction with the other robots, as they change their pre-

ferred direction if they are in proximity of another robot. The current strategy is to flip

the sign of the preferred angle, however, if more choices for the initial preferred direction

become available, other options such as adding 90o to their preferred direction may be

better.

The wall-following strategy is different between the Footbot and the Crazyflie

(Fig. B.7B). The Footbot is a non-holonomic robotic platform which can only move for-

ward/backwards and rotate around its z-axis. Moreover, it uses a different sensor con-

figuration, namely two laser range sensors on its sides and a distance detection wedge

on its front. It therefore uses the side range sensor and the measurement of the range

wedge for to keep its distance from the wall and align its heading with the wall along

the way. The Crazyflie has more freedom of motion as it is a non-holonomic platform.

This means that it can move backwards/forwards, sideways and rotate around its z-axis,

given that it flies at a constant height in our experiments. However, it only uses four laser

range sensors for navigation. This calls for a different wall-following strategy than the

Footbot, as it only uses one side range sensor to keep its distance from the wall. This

means that it can only determine the wall alignment at the beginning when it encoun-

ters the wall and rotates. The wall-following details can be found in the code given in

Text B.1.

For SGBA, it is necessary for both the simulation and the real-world experiments for

the robots to detect if they are moving in an endless loop, which they can determine

by means of odometry (Fig. B.7C). The Footbot is a ground-bound wheeled robot, so

it uses its wheel-odometry to determine its position. In the simulation we added extra

noise to make the odometry less perfect, such that the loop detection will only work

for short distances. The Crazyflie is a flying robot and hence makes use of optical flow

measurement to detect its own motion. In Material and Methods, we explained that

we use the Flowdeck to enable this measurement. The Flowdeck also contains a laser
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range sensor, since the optical flow measurement needs to be scaled to output a velocity

estimate, which can then be integrated to a position. Optical flow based odometry is

known to be more sensitive to drift, due to its reliance on texture, lighting and due to the

platform’s vibrations during flying.

The intra-drone coordination is also handled differently for the Footbot and the

Crazyflie (Fig. B.7D). First let us discuss the determination of the other robot’s proximity.

In ARGoS, that measurement is the plain distance in meters and in the real-world exper-

iments it is the received signal strength intensity (RSSI) of the intra drone communica-

tion. Once this proximity measurement hits a certain threshold, the robot with the lowest

priority will perform an avoidance maneuver to make way for the other. In simulation,

the Footbot with the lowest priority (highest ID) will stand still and let the higher-priority

robot move around it as if the static robot was an ordinary obstacle. This is possible with

the driving robots, as their IR sensors can easily detect the other robot. This will not be

done in the real-world testing as the effective field of view of the four laser range sensors

for detection is much smaller. The laser rangers on the flying Crazyflie robots can eas-

ily miss another robot due to the small robot size and the possible differences in height.

Here, the low priority Crazyflie will physically move out of the way, while the other passes

along the wall. The avoiding robot makes sure that all its four horizontal laser range find-

ers (front, sides and back) are at least a meter away from any obstacle, which is twice the

normal wall following distance (Fig. B.7G). It will stay at its safe position until the intra-

drone RSSI has lowered to a level that indicates that the other, higher priority drone has

passed. The Crazyflies are performing a much more conservative way of avoidance than

the Footbots, since intra-robot collisions are more problematic for flying robots than for

slow-moving wheeled robots.

The gradient search strategy to the starting position for both the simulation exper-

iments and real-world experiments are implemented in the same way (Fig. B.7E). The

main difference is that the RSSI between the Footbots and the home beacon is from a

simulated model of noisy RSSI based on actual distance and the bearing between them

(details can be found in the “Indoor_environment_generator” repository explained in

Text B.1) and the Crazyflie uses actually measured RSSI. The simulated model does not

take into account the local minima as observed in Text B.3, which is due to the environ-

ment’s characteristics. This makes the gradient search more difficult for the Crazyflie

than the Footbot.

Even though most sub-modules of SGBA were implemented differently in the simu-

lated Footbot and the real Crazyflie, the concept as explained in Materials and Methods

stays the same. As long as there is a way to accommodate or replace the functionalities

explained in Fig. B.7A-E, it should be possible to implement SGBA on other robotic plat-

forms than the Footbot and the Crazyflie. All details of the implementation can be found

in the code presented in Text B.1.

B.7. SGBA SUBMODULE ANALYSIS

In order to evaluate the different sub-modules of SGBA and the effect they have on the

performances of the robots, we have redone several simulation experiments where these

are turned off. This has been done on 6 Footbots where we evaluated the different cases

in 30 procedurally generated environments.
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Figure B.7: SGBA simulation vs. real-world. This figure explains the differences of the implementation of the

main functionalities of SGBA in the simulated Footbot and the real-world Crazyflie. A) shows how both the

Footbot and the Crazyflie has four starting directions to choose from. B) The wall-following has to be handled

differently due to difference in motion capabilities and sensor configuration. C) shows that the Footbot has

to use its wheel-odometry for loop detection, and the Crazyflie has to use visual odometry for the same func-

tionality. D) show a difference in intra drone avoidance: The low priority Footbot will stand still and let the

high-priority robot move around it, but the low priority Crazyflie moves away from the wall to make way for

the other. In order to get back to their home position, E) both the Footbots and Crazyflies use the gradient of

the signal strength of a wireless beacon.



140 B. APPENDICES: SWARM GRADIENT BUG ALGORITHM

We first looked at the following scenarios to investigate the effect of some of the

swarming mechanisms on the number of collisions:

• Normal’: This is the unmodified SGBA from the main body of the chapter.

• No dir change’: The same as normal, except that the robots do not change their

preferred direction on the outbound travel when encountering other robots.

• ’No avoid’: The same as normal, except that the robots will not actively avoid each

other when they are in proximity.

• ‘No avoid, No dir change’: Here there is no intra-robot interaction, so no avoidance

and no preferred direction change.

• ’Same init dir’: The same as normal, except that here all robots start off going to

the same preferred direction.

A significant change in the number of collisions can be seen in Fig. B.8, as it increases

by inactivating more sub-modules of SGBA. For the 6 Footbots performances, the colli-

sions will not make a difference as they can still go on continue their journey. However,

collisions will have a significant effect for the real-world experiments, as the Crazyflies

would not be able to recover after a crash.

We also looked at the loop detection sub-module, by turning it on and off for 1 and

6 robots. The resulting return rate can be found in Fig. B.9. Here it can be seen that for

1 robot the return rate drops when there is no loop detection, but for 6 robots there is

no significant drop to be found. Upon detailed inspection, we noticed that intra-robot

encounters are responsible of getting stuck robots out of a loop. With this they can cope

with the lack of a proper loop detection, which is an interesting feature of the swarming

element of SGBA.
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off (yellow). The error bars stand for the standard error.
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Propositions

accompanying the dissertation

INDOOR SWARM EXPLORATION WITH POCKET DRONES

by

Kimberly Nancy MCGUIRE

1. Implementing Edge-FS on a stereo-camera enabled pocket drone, will facilitate more exploration-

based capabilities. However, the sensor’s versatility comes at the price of precision of both

the measured velocity and obstacle field. (this thesis)

2. Bug Algorithms-based navigation strategies are very promising for indoor exploration with

extremely limited platforms, if adapted to the real-world properties of the robots. (this the-

sis)

3. For indoor exploration of multiple pocket drones, it is more important for the individual

pocket drone to fly reliably and avoid obstacles, than to avoid each other. (this thesis)

4. When designing full on-board solutions for autonomous exploration of limited pocket drones,

it is crucial to balance the desired capabilities with energy necessary to execute these capa-

bilities. (this thesis)

5. In robotics, complex strategies to tackle a task based on physical and mathematical mod-

eling are appreciated more than simple strategies, while the latter are more challenging to

design.

6. In order to design robots that are able to operate in the real world, it is necessary for the

designer to combine multiple proven strategies and components, and make them work as a

whole. However, proper system integration is undervalued within the robotics community.

7. Popular media have demonized the applications for swarms of tiny autonomous MAVs. Al-

though it is important to realize the potential dangers, it also makes the public blind for the

potential good they can do in society.

8. It will be difficult to recognize once machine intelligence has surpassed us, because it might

not be the kind of intelligence that we expect.

9. The medical condition of blind-sight shows that the subconsciousness of our brain handles

much more than we want to believe.

10. Learning a new language with limited linguistic capacity, one will sacrifice previously learned

languages for the sake of fluency of the new.

These propositions are regarded as opposable and defendable, and have been approved as such

by the promotors dr. G.C.H.E. de Croon, Prof. dr. K.P. Tuyls and Prof. dr. H.J. Kappen



Stellingen

behorende bij het proefschrift

INDOOR SWARM EXPLORATION WITH POCKET DRONES

door

Kimberly Nancy MCGUIRE

1. Het implementeren van Edge-FS op een met stereocamera uitgeruste pocket drone opent

meer mogelijkheden voor verkenningstaken. Echter, de veelzijdigheid van de sensor gaat

ten koste van metingen van zowel snelheid als obstakelveld. (deze thesis)

2. Navigatiestrategieën gebaseerd op bug-algoritmes zijn zeer veelbelovend voor verkenning

binnenshuis met extreem beperkte platformen wanneer ze aangepast worden aan eigen-

schappen van robots in de echte wereld. (deze thesis)

3. Voor verkenning binnenshuis met meerdere pocket drones is het meer van belang dat in-

dividuele drones betrouwbaar kunnen vliegen en obstakels kunnen ontwijken, dan dat ze

elkaar kunnen ontwijken. (deze thesis)

4. Wanneer men volledige zelfstandig werkende oplossingen ontwikkelt voor autonome navi-

gatie van beperkte pocket drones, is het van cruciaal belang om de gewenste functionaliteit

in balans te houden met het energiegebruik voor het bewerkstelligen van deze functionali-

teit. (deze thesis)

5. In robotica wordt meer waarde gehecht aan complexe strategieën, gebaseerd op fysische

en mathematische modellen, dan eenvoudige strategieën om taken uit te kunnen voeren,

terwijl deze laatste oplossingen uitdagender zijn om te bedenken.

6. Om robots te ontwerpen die kunnen opereren in de echte wereld is het van belang dat de

ontwerper meerdere bewezen strategieën en componenten combineert en samen laat wer-

ken. Dergelijke systeemintegratie is echter ondergewaardeerd in de roboticagemeenschap.

7. Populaire media hebben toepassingen voor zwermen kleine, autonome MAV’s gedemoni-

seerd. Hoewel het van belang is bewust te zijn van potentiële gevaren, maakt dit het alge-

mene publiek blind voor de mogelijke baten voor de gemeenschap.

8. Het zal moeilijk zijn om waar te nemen wanneer kunstmatige intelligentie ons voorbijge-

streefd is, daar het een vorm van intelligentie zou kunnen zijn die we niet verwachten.

9. De medische conditie “blindzien” maakt duidelijk dat het onderbewustzijn van ons brein

meer taken afhandelt dan we willen toegeven.

10. Wanneer men met een beperkt linguïstisch vermogen een nieuwe taal leert, zal men eerder

geleerde talen moeten opofferen voor beheersing van de nieuwe taal.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedgekeurd

door de promotoren dr. G.C.H.E. de Croon, Prof. dr. K.P. Tuyls and Prof. dr. H.J. Kappen.
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