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Higher Order Sinusoidal-Input Describing Function Analysis for a Class
of Multiple-Input Multiple-Output Convergent Systems

Luke F. van Eijk , Dragan Kostić , Mohammad Khosravi ,
and S. Hassan HosseinNia , Senior Member, IEEE

Abstract—This article introduces output prediction methods for
two types of systems containing sinusoidal-input uniformly con-
vergent (SIUC) elements. The first method considers these ele-
ments in combination with single-input single-output linear time-
invariant (LTI) systems before, after, and in parallel to them. The
second method considers a multiple-input multiple-output LTI sys-
tem where each input is controlled by an SIUC element. The output
prediction only requires frequency-response functions of the LTI
elements and is fully accurate for sinusoidal inputs.

Index Terms—Frequency domain, higher order sinusoidal-input-
describing function (HOSIDF), multiple-input multiple-output
(MIMO) systems, uniformly convergent systems.

I. INTRODUCTION

L INEAR time-invariant (LTI) control has played an important role
in shaping the modern world [1]. It has especially proven to be

effective in controlling LTI plants, because closed-loop performance
of the complete system can be analyzed without the need to develop a
parametric plant model. Instead, a frequency-response function (FRF)
can be utilized [2], which can be obtained based purely on measurement
data. Advanced system identification methods have been developed
to identify a highly accurate FRF with only a limited amount of
measurement data [3]. With this FRF, as well as a given LTI controller,
closed-loop system performance can be straightforwardly evaluated
using, e.g., Bode plots, such as sensitivity functions [2], which is
even possible for general multiple-input multiple-output (MIMO) LTI
systems. Therefore, this allows the user to intuitively redesign the
controller in order to obtain more desirable closed-loop behavior, also
known as loop-shaping.

Even though the LTI control regime has enabled numerous tech-
nological advancements, ever-growing system demands make it in-
creasingly difficult for LTI control to meet the desired performance
specifications. This is caused by the fact that LTI control suffers
from inherent limitations, such as Bode’s gain–phase relationship and
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Bode’s sensitivity integral [4]. For control practitioners, this typically
means that they are faced with a tradeoff between speed, accuracy, and
robustness of the system. Loosely speaking, improving one of them
will result in a worsening of (at least one of) the others.

A logical step toward overcoming the inherent limitations of LTI
control is moving to nonlinear time-invariant (NLTI) control strategies.
It has been analytically shown in the literature that certain NLTI control
elements are able to overcome inherent limitations of LTI control, such
as the hybrid integrator-gain system (HIGS) [5], as well as certain types
of variable gain control (VGC) [6] and reset control [7]. However,
intuitively assessing closed-loop performance for these (and many
other) NLTI control strategies based on a nonparametric plant model is
less trivial. Namely, the possibility to create Bode plots of LTI control
systems is driven by the fact that providing a sinusoidal input to an LTI
system results in a sinusoidal output. This does not hold for general
NLTI systems.

A tool that is often utilized for FRF-based closed-loop perfor-
mance analysis of control systems containing NLTI elements, such as
HIGS [8], [9], VGC [10], and reset control [11], is the sinusoidal-input
describing function (SIDF) method [12]. In essence, this method can
be utilized for any NLTI element that, provided a sinusoidal input,
uniformly converges to a periodic output with the same period as
the input sinusoid. When these types of systems are provided with a
sinusoidal input, their output signal can be modeled as a Fourier series,
containing not only the harmonic of the input sinusoid, but also higher
order harmonics of it (and potentially a constant offset). In the SIDF
method, the effect of the higher order harmonics is neglected, and it is
assumed that the output of the NLTI element only consists of the first
harmonic. Subsequently, closed-loop performance can be intuitively
assessed using Bode plots, based purely on the first harmonic of the
NLTI elements and FRFs of other (potentially MIMO) LTI elements
that are in the loop. However, since the SIDF method only provides an
approximation of the NLTI elements’ behavior, one can imagine that
the predicted closed-loop performance can be inaccurate, see, e.g., [13].

In order to obtain more accurate closed-loop performance predic-
tions compared to the SIDF-method, it is first necessary to obtain an
accurate representation of the open-loop system performance. A crucial
step toward this goal are the works in [14] and [15, Ch. 2], where
the higher order SIDF (HOSIDF) method is developed. This method
allows to analytically compute the output signal of a sinusoidal-input
uniformly convergent system—provided a sinusoidal input—with full
accuracy, taking the effect of all the higher order harmonics into
account. By means of the HOSIDF method, one can also visualize
the behavior of each harmonic in the frequency domain. The HOSIDF
method has proven itself as an intuitive tool for redesigning certain
types of nonlinear controllers in order to obtain desired closed-loop
behaviour, as shown in [13] for reset controllers, and in [16], for
HIGS-based controllers.

However, the open loop does usually not only consists of a
sinusoidal-input uniformly convergent element, but also contains LTI
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elements around it. A method for accurate output prediction of systems
consisting of a static nonlinearity and a single-input single-output
(SISO) LTI postfilter is given in [12, Ch. 3], even prior to the devel-
opment of the HOSIDF method in [15, Ch. 2]. In [17], the same has
been done for systems with multiple parallel lines containing a static
polynomial nonlinearity and SISO LTI prefilters and postfilters. In the
same work, an explicit expression for the HOSIDFs is given, allowing
for an intuitive frequency-domain analysis. The HOSIDF-method has
also been extended for two types of dynamic nonlinearities. The first
being reset controllers, for which the effect of SISO LTI postfilters
is investigated in [13]. Several works have also attempted to extend
the HOSIDF method for reset controllers by including the effect of
SISO LTI prefilters, such as [18], [19], and [20]. However, these only
give the correct magnitude of the HOSIDFs and not its phases, hence
not allowing for a correct output prediction. The second dynamic
nonlinearity is HIGS, for which the HOSIDF method has been extended
in [16] to include the effect of SISO LTI postfilters and parallel filters.
To the best of the author’s knowledge, the HOSIDF method has thus
far not been extended toward MIMO control systems. It is however
interesting to note that, in [21], a method has been developed that allows
for an accurate output prediction for systems with MIMO LTI plants
controlled on each input by an ideal relay.

The aim of this work is to extend upon the existing literature related
to the HOSIDF method by means of two contributions. As a first minor
contribution, we show that the HOSIDF method for sinusoidal-input
uniformly convergent elements, as developed in [15, Ch. 2], can be
extended to include the effect of SISO LTI elements before, after, and
in parallel to them. This result naturally covers all existing extensions
that we discussed, except the one with multiple static polynomial
nonlinearities. However, the developed HOSIDF method can also be
utilized to study many other types of NLTI elements, as long as they
are sinusoidal-input uniformly convergent. As the second and primary
contributions, we extend the HOSIDF method toward MIMO LTI
elements for which each input is controlled by a SISO sinusoidal-input
uniformly convergent element.

The rest of this article is organized as follows. In Section II, the
necessary preliminaries into the HOSIDF method are provided. Sub-
sequently, the main results of this work are presented in Section III.
In Section IV, two illustrative examples are given that illustrate the
benefits of our work. Finally, Section V concludes this article.

II. PRELIMINARIES

In this work, we deal with systems containing a SISO NLTI element
that is sinusoidal-input uniformly convergent, which is surrounded by
various LTI elements. The former element is uniformly convergent (see,
e.g., [22, Def. 2.3]) for the class of sinusoidal inputs given by

r0(t) = r̂ sin (ωt) (1)

with amplitude r̂ ∈ R>0, excitation frequency ω ∈ R>0, and time t ∈
R. This means that—given a sinusoidal input—the element’s output
will (uniformly) converge to a stationary output v0s (t).

Remark 2.1: Note that there is a broad range of nonlinearities that
are sinusoidal-input uniformly convergent. This property holds for all
static nonlinearities, such as saturation, deadzone, ideal relays, and
VGC. Furthermore, it holds for several dynamic nonlinearities, such
as reset controllers and HIGS.

In the rest of this article, we assume that the sinusoidal-input uni-
formly convergent element satisfies Assumption 2.1, which we consider
to be a mild assumption on control elements.

Assumption 2.1: The stationary output of the sinusoidal-input uni-
formly convergent element is a piecewise continuous periodic function
with period T = 2π

ω
.

As shown in [15, Ch. 2], when Assumption 2.1 holds, the stationary
output of a sinusoidal-input uniformly convergent element can be
described by the Fourier series

v0s (t) = |H0(ω, r̂)|r̂ + · · ·
∞∑

n=1

|Hn(ω, r̂)|r̂ sin (nωt+ ∠Hn(ω, r̂)) (2)

with Hn the nth-order SIDF, n ∈ N. Note that H0 ∈ R and Hn ∈
C∀n �= 0. Next, consider the case in which the element is subject to a
time-shifted sinusoidal input r(t) := r0(t+ ϕr

ω
), ϕr ∈ R, such that

r(t) = r̂ sin (ωt+ ϕr). (3)

Since the nonlinear element is time-invariant, its output converges to a
(time-shifted) solution v(t) := v0s (t+

ϕr
ω
), such that

v(t) = |H0(ω, r̂)|r̂ + · · ·
∞∑

n=1

|Hn(ω, r̂)|r̂ sin (n(ωt+ ϕr) + ∠Hn(ω, r̂)). (4)

Visually, in the stationary case, one can think of such an element as a
virtual harmonics expander (VHE) [15, Ch. 2], as portrayed in Fig. 1.
When k ∈ N goes to infinity, one obtains the stationary output (4).

III. MAIN RESULTS

Consider the SISO NLTI system K, as depicted in Fig. 2. SISO LTI
system C1 has signal e ∈ R as its input and r as its output. SISO NLTI
system N has r as its input and v as its output. SISO LTI system C2

has r as its input and w ∈ R as its output. Finally, SISO LTI system
C3 has z := v + w as its input and u ∈ R as its output. Note that
the input–output relations of C1, C2, and C3, can be described in the
frequency domain by

R(s) = C1(s)E(s) (5)

W (s) = C2(s)R(s) (6)

U(s) = C3(s)Z(s) (7)

respectively, where s ∈ C is the Laplace variable, and the capitalized
variables E, R, W , Z, U ∈ C are the Laplace transforms of the respec-
tive noncapitalized time-domain signals. In Lemma 3.1, an analytical
expression is presented to describe the stationary solution to which
output u converges when the open-loop SISO NLTI system in Fig. 2 is
subject to a sinusoidal input.

Lemma 3.1: Consider the system depicted in Fig. 2 with SISO LTI
elements C1, C2, and C3, and SISO NLTI element N , subject to a
sinusoidal input

e(t) = ê sin (ωt+ ϕe) (8)

with amplitude ê ∈ R>0 and phase ϕe ∈ R, and with any initial condi-
tions for C1, C2, C3, and N . Then, if LTI elements C1, C2, and C3 are
Hurwitz, NLTI element N is sinusoidal-input uniformly convergent,
and Assumption 2.1 holds, the system’s output converges to a unique
2π
ω

-periodic solution

u(t) = |K0(ω, ê)|ê+ · · ·
∞∑

n=1

|Kn(ω, ê)|ê sin (n(ωt+ ϕe) + ∠Kn(ω, ê)) (9)
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Fig. 1. Schematic representation of a SISO NLTI element N that is sinusoidal-input uniformly convergent, modeled as a VHE (adapted from [15]).

Fig. 2. Schematic representation of a SISO NLTI system K with SISO
LTI elements C1, C2, and C3, and SISO NLTI element N .

Fig. 3. Schematic representation of an NLTI system with SISO LTI
elements C1, C2, C4, and C5, and SISO NLTI element N .

where the open-loop HOSIDFs are given by

Kn(ω, ê) :=⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C3(0)H
0(ω, r̂)C1(jω), forn = 0

C3(jω) [H
1(ω, r̂) + C2(jω)]C1(jω)

forn = 1
C3(njω)H

n(ω, r̂)C1(jω)e
j(n−1)∠C1(jω)

forn > 1

(10)

r̂ = |C1(jω)|ê (11)

with an imaginary number j :=
√−1, Hn the nth-order SIDF of N ,

and C1, C2, and C3 as in (5)–(7), respectively.
Proof: See Appendix A.
Several conclusions can be drawn from Lemma 3.1. First of all,

the lemma provides an intuitive link between open-loop time-domain
and frequency-domain behavior for the considered class of systems, by
means of the HOSIDF method. This also allows to compute the time-
domain solution based purely on the FRFs of the LTI elements, as well
as the HOSIDFs of the sinusoidal-input uniformly convergent element.
Second, note that any of the SISO LTI elements C1, C2, or C3 in Fig. 2
can also consist of multiple cascaded SISO LTI elements. As an exam-
ple, consider Fig. 3, where SISO LTI element C3 contains a cascade of
SISO LTI elementsC4 andC5. Therefore,C3(s) = C5(s)C4(s) in (7),
such that Lemma 3.1 can still be utilized. Third, when the conditions

Fig. 4. Schematic representation of a MIMO LTI system P controlled
by multiloop SISO NLTI system K, containing multiple SISO NLTI ele-
ments Ki.

imposed in the lemma on all the elements hold, the entire system K
inherits the property of being sinusoidal-input uniformly convergent
and one can observe that the stationary output given in (9) satisfies
Assumption 2.1. This observation eases the analysis of these types of
systems, since it allows for abstracting away the SISO LTI elements.
This intermediate step helps to simplify the proof of our next result.

Remark 3.1: Note that LTI prefilter C1 serves as a shaping filter
for the input-amplitude r̂ of the NLTI element N . It also serves as a
shaping filter for the phase of the HOSIDFs. Even though shaping this
phase does not change the root mean square value of the output signal
(Parseval’s theorem), it can change other characteristics of the signal,
such as its maximum absolute value.

Next, consider the MIMO NLTI system depicted in Fig. 4, with
MIMO LTI system P controlled by multiloop SISO NLTI system
K. The latter contains multiple SISO NLTI elements Ki, i ∈ [1,M ],
M ∈ N, such that element Ki has input ei ∈ R and output ui ∈ R.
Therefore, e(t) = [e1(t), . . ., eM (t)]T is the input to system K, and
u(t) = [u1(t), . . ., uM (t)]T is its output. We want to note again that
each element Ki can contain a more complicated underlying system,
such as the one in Fig. 3. System P takes u as its input and gives
y(t) = [y1(t), . . ., yM (t)]T as the output. Note that system P can be
described in the frequency domain by

Y (s) = P (s)U(s) (12)

P (s) :=

⎡
⎢⎢⎣
P1,1(s) P1,M (s)

. . .

PM,1(s) PM,M (s)

⎤
⎥⎥⎦ (13)

where the capitalized variables U , Y ∈ C
M×1 are the Laplace trans-

forms of the respective noncapitalized time-domain signals, and
Pj,i ∈ C is the transfer function from input ui to output yj , j ∈ [1,M ].
In Theorem 3.1, an analytical expression is presented to describe the
stationary solution to which output y converges when the system in
Fig. 4 is subject to sinusoidal inputs in e.
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Fig. 5. Schematic representation of an open-loop NLTI system with
MIMO LTI elements C6 and C7, and multiloop SISO NLTI element K.

Theorem 3.1: Consider the system depicted in Fig. 4 with MIMO
LTI system P and multiloop SISO NLTI system K, subject to an input

e(t) = [ê1 sin (ω1t+ ϕe,1), . . ., êM sin (ωM t+ ϕe,M )]T (14)

with excitation frequencies ωi ∈ R>0, input amplitudes êi ∈ R>0,
input phases ϕe,i ∈ R, and any initial conditions for system P and
elements Ki. Then, if LTI system P is Hurwitz, all NLTI elements Ki

are sinusoidal-input uniformly convergent, and Assumption 2.1 holds
for all signals ui, the system output converges to a unique solution,
where

yj(t) =
M∑
i=1

[
|L0

j,i(ωi, ê)|êi + · · ·

∞∑
n=1

|Ln
j,i(ωi, ê)|êi sin

(
n(ωit+ ϕe,i) + ∠Ln

j,i(ωi, ê)
)]

.

(15)

Here, the MIMO open-loop HOSIDFs are given by

Ln(ω, ê) := P (njω)Kn(ω, ê) (16)

Kn(ω, ê) :=

⎡
⎢⎢⎣
Kn

1 (ω, ê1) 0

. . .

0 Kn
M (ω, êM )

⎤
⎥⎥⎦ (17)

with excitation frequency ω ∈ R>0, input amplitudes ê = [ê1, . . .,
êM ], P as in (13), Kn

i the nth-order SIDF of Ki, and Ln
j,i the

matrix-entry of Ln in the jth row and ith column.
Proof: See Appendix B.
Several interesting conclusions can be drawn from Theorem 3.1.

First of all, the theorem provides an intuitive link between open-loop
time-domain and frequency-domain behavior for the considered class
of systems, by means of the developed HOSIDF method. This also
allows to compute the time-domain solution based purely on the FRF
of the MIMO LTI system P , as well as the HOSIDFs of the sinusoidal-
input uniformly convergent elements Ki. Second, note that MIMO LTI
system P in Fig. 4 can also consist of multiple cascaded MIMO LTI
systems. As an example, consider Fig. 5, where MIMO LTI system
P contains a cascade of MIMO LTI elements C6 and C7. Therefore,
P (s) = C7(s)C6(s) in (12), such that Theorem 3.1 can still be utilized.
In addition, any sinusoidal-input uniformly convergent element Ki can
internally contain SISO LTI prefilters, postfilters, and parallel filters,
since this again yields a sinusoidal-input uniformly convergent element
according to Lemma 3.1. Third, the theorem allows for different types
of sinusoidal-input uniformly convergent elements in one system. For
example, one input of MIMO LTI system P can be controlled by a
reset controller, whereas another input is being controlled by means of
VGC. Finally, the theorem shows that the system output can still be
predicted when multiple separate sinusoids are simultaneously applied
to multiple inputs ei, as in (14). Namely, in that case, the inputs to all of

Fig. 6. Numerically computed system output compared to the an-
alytical solution using the SIDF-method, for the considered example
with P , K1, and K2, as in (18)–(20), and a sinusoidal input (21) with
ω1 = 0.81 · 2π, ω2 = 10 · 2π, ê1 = 1, ê2 = 10, ϕe,1 = π

4 , and ϕe,2 = π
8 .

the nonlinear elements remain sinusoidal, hence, allowing a HOSIDF
analysis.

IV. ILLUSTRATIVE EXAMPLE

Consider the case in which the double-input double-output LTI
system P in Fig. 4 represents a double mass–spring–damper system,
given in the frequency domain by

P (s) =

[
mfss

2 + cfss+ kfs −mfss
2

cfss+ kfs mcss
2 + ccss+ kcs

]
G−1

den(s) (18)

Gden(s) = (mfss
2 + cfss+ kfs)

(
mcss

2 + · · ·
(cfs + ccs)s+ kfs + kcs)− (cfss+ kfs)

2 (19)

where mcs = 2.34, ccs = 17, kcs = 2000, mfs = 0.57, cfs = 0.28, and
kfs = 146. The parameter values are based on the one degree of freedom
dual precision stage considered in [23]. The NLTI elements are both a
Clegg integrator (CI) [24], given in state-space representation by

Ki :=

⎧⎨
⎩
ẋi(t) = ωi

CIei(t), if ei(t) �= 0
xi(t

+) = 0, if ei(t) = 0
ui(t) = xi(t)

(20)

with state xi ∈ R, t+ := limτ→t,τ>t τ , and integrator frequencies
ω1

CI = 2π and ω2
CI = 10 · 2π. We now look at the case in which the

system is subject to a sinusoidal input

e(t) = [ê1 sin (ω1t+ ϕe,1), ê2 sin (ω2t+ ϕe,2)]
T (21)

where ê1 = 1, ê2 = 10, ϕe,1 = π
4

, and ϕe,2 = π
8

. In Sections IV-A
and IV-B, we consider two examples in which different sets of input
frequencies are used.

A. Example I: Nonnegligible Higher Order Harmonics

In this first example, we use the input frequenciesω1 = 0.81 · 2π and
ω2 = 10 · 2π. In Fig. 6, the system output is portrayed that is obtained
from a numerical simulation, where the initial conditions are all set to
zero.

When the SIDF-method is utilized to create a quasi-linear ap-
proximation of the NLTI elements, one can subsequently utilize LTI
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Fig. 7. Magnitude and phase characteristics of the MIMO open-loop HOSIDFs for the example system in (18)–(20), computed based on (16) and
(17) in Theorem 3.1.

reasoning for MIMO systems [25]. In that case, the open-loop output
can be predicted as

yj(t) =
2∑

i=1

|L1
j,i(ωi, ê)|êi sin

(
ωit+ ϕe,i + ∠

(
L1

j,i(ωi, ê)
))

(22)

with L1
j,i as in Theorem 3.1. Note that the HOSIDFs Hn of a CI can

be computed using [13, Th. 3.1]. The resulting output signal is also
portrayed in Fig. 6. It can be easily observed that the predicted signals
do not correspond with the system output obtained from numerical
simulation. This is because the effect of higher order harmonics is
neglected in the output signal.

Next, we utilize Theorem 3.1 to compute the open-loop output.
Note that P is Hurwitz. Furthermore, K1 and K2 are sinusoidal-input
uniformly convergent [11, Prop. 2] and Assumption 2.1 holds for all
ui [11]. Therefore, the MIMO open-loop HOSIDFs of this system can
be computed using (16) and (17) in Theorem 3.1. The magnitude and
phase characteristics of the first five odd-order HOSIDFs are portrayed
in Fig. 7. The even-order HOSIDFs have been omitted. Namely, the
even-order HOSIDFs of a CI are all equal to zero, implying that the
even-order open-loop HOSIDFs are also equal to zero. The solution
to which the system’s output converges can then be computed using
(15). The resulting signal is visualized in Fig. 8, where the first five
odd-order harmonics have been taken into account. The output signal
is again compared with the one obtained numerically, which is also
portrayed in Fig. 8. It can be concluded from the figure that the analytical
result from Theorem 3.1 matches with the numerical result, validating
Theorem 3.1.

Fig. 8. Numerically computed system output compared to the analyti-
cal solution based on Theorem 3.1 (k = 9), for the considered example
with P , K1, and K2, as in (18)–(20), and a sinusoidal input (21) with
ω1 = 0.81 · 2π, ω2 = 10 · 2π, ê1 = 1, ê2 = 10, ϕe,1 = π

4 , and ϕe,2 = π
8 .

In this example, including the first five odd-order harmonics was
sufficient for the analytical output to visually converge to the numerical
output. Practically, one can use the HOSIDF’s magnitude characteristics
to determine the amount of harmonics that should be taken into account
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Fig. 9. Numerically computed system output compared to the analyti-
cal solution using the SIDF-method, for the considered example with P ,
K1, and K2, as in (18)–(20), and a sinusoidal input (21) with ω1 = 5 · 2π,
ω2 = 5 · 2π, ê1 = 1, ê2 = 10, ϕe,1 = π

4 , and ϕe,2 = π
8 .

for an accurate prediction. One can observe in Fig. 7 that at the consid-
ered input frequencies, the magnitude generally decreases for higher
order harmonics. When the magnitude of a harmonic is negligible
compared with the (dominant) harmonic with the largest magnitude, its
influence on the prediction also becomes negligible. It is important to
note that the HOSIDF’s magnitudes depend on the characteristics of the
system under consideration, as well as the amplitudes and frequencies
of the input sinusoids. Therefore, the amount of harmonics that should
be taken into account depends on the use case.

B. Example II: Negligible Higher Order Harmonics

In this second example, we use the input frequencies ω1 = 5 · 2π
and ω2 = 5 · 2π. One can observe in Fig. 7 that the magnitude of the
first-order harmonic is dominant over the other harmonics in all four
input–output relations. This indicates that an accurate prediction can
already be obtained based only on the first harmonic. The system output
that is obtained from a numerical simulation is portrayed in Fig. 9, where
it is compared to the output obtained from a first-order approximation
using the SIDF. The figure shows that the first-order approximation
indeed matches with the numerical result, which illustrates the potential
of the developed MIMO HOSIDF method. Namely, it can be used as
an intuitive tool to assess whether an SIDF-approximation is accurate
or not.

V. CONCLUSION

In this article, output prediction methods are developed for a class of
(open-loop) systems containing sinusoidal-input uniformly convergent
elements in combination with various LTI elements around them. The
prediction methods are based on a HOSIDF-analysis, which assumes
that each of the input signals is sinusoidal. Theoretically, a fully
accurate output prediction can be obtained when an infinite amount of
higher order harmonics is taken into account. However, the considered
example illustrates that an accurate prediction can already be obtained
by taking only a few higher order harmonics into account. An important
benefit of this method is the fact that it allows performance prediction
based on a nonparametric model of the various LTI components, i.e.,
FRFs.

The developed prediction methods can be applied to a broad range
of nonlinearities. Namely, all static nonlinearities—such as saturation,
deadzone, ideal relays, and VGC—are sinusoidal-input uniformly con-
vergent. The same holds for several dynamic nonlinearities, such as
reset controllers and HIGS. In terms of application, the HOSIDFs
can potentially be utilized in control design procedures, providing an
intuitive frequency-domain based representation of the system. Namely,
this has also been achieved with existing HOSIDF-methods in, e.g., [13]
and [16].

As part of future work, we want to extend the HOSIDF-method
toward closed-loop output prediction for systems containing sinusoidal-
input uniformly convergent elements, while still being able to do this
based purely on FRFs of the various LTI elements. Results into this
direction have already been obtained for MIMO control systems with
ideal relays in [21] and for SISO reset control systems in [13].
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APPENDIX

TECHNICAL PROOFS

A. Proof of Lemma 3.1

Consider a SISO LTI element C1 with any initial condition, which
is subject to a sinusoidal input e as in (8). Then, if C1 is Hurwitz, its
output converges to a unique solution as in (3), with

r̂ = |C1(jω)|ê (23)

ϕr = ϕe + ∠C1(jω). (24)

Next, consider a SISO LTI elementC2 with any initial condition, which
is subject to a sinusoidal input r as in (3), with (23) and (24). Then, if
C2 is Hurwitz, its output converges to a unique solution

w(t) = ŵ sin (ωt+ ϕw) (25)

ŵ = |C2(jω)|r̂ (26)

ϕw = ϕr + ∠C2(jω). (27)

Subsequently, consider a SISO NLTI element N with any initial condi-
tion, which is also subject to a sinusoidal input r as in (3), with (23) and
(24). IfN is sinusoidal-input uniformly convergent and Assumption 2.1
holds, then its output converges to a unique solution v as in (4), which
can be rewritten into

v(t) = v̂0 +

∞∑
n=0

vn(t) (28)

vn(t) = v̂n sin (nωt+ ϕn
v ) (29)

v̂n = |Hn(ω, r̂)|r̂ (30)

ϕn
v = nϕr + ∠Hn(ω, r̂). (31)

From (25)–(31), it follows that signal z := v + w converges to a unique
solution:

z(t) = ẑ0 +
∞∑

n=1

zn(t) (32)

zn(t) = ẑn sin (nωt+ ϕn
z ) (33)

ẑn =

{|H1(ω, r̂) + C2(jω)|r̂, forn = 1
v̂n, forn �= 1

(34)
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ϕn
z =

{
ϕr + ∠ (H1(ω, r̂) + C2(jω)) , forn = 1
ϕn

v , forn �= 1.
(35)

Now, consider a SISO LTI element C3 with any initial condition, which
is subject to an input z as in (32)–(35). Then, ifC3 is Hurwitz, it follows
from the superposition principle that the system output u converges to
a unique solution:

u(t) = û0 +

∞∑
n=1

un(t) (36)

un(t) = ûn sin (nωt+ ϕn
u) (37)

ûn = |C3(njω)|ẑn (38)

ϕn
u = ϕn

z + ∠C3(njω). (39)

From (36) and (37), it can already be concluded that the unique solution
is periodic with period 2π

ω
. Furthermore, substituting (23), (30), and (34)

in (38), and rewriting, yields

ûn =

⎧⎨
⎩
|C3(njω) [H

1(ω, r̂) + C2(jω)]C1(jω)| ê
forn = 1

|C3(njω)H
n(ω, r̂)C1(jω)| ê, forn �= 1.

(40)
Similarly, substituting (24), (31), and (35) in (39), and rewriting, yields

ϕn
u =

⎧⎪⎪⎨
⎪⎪⎩
ϕe + ∠ (C3(njω) [H

1(ω, r̂) + C2(jω)]C1(jω))
forn = 1

n (ϕe + ∠C1(jω)) + ∠ (C3(njω)H
n(ω, r̂))

forn �= 1

(41)

which, after some algebra, yields

ϕn
u =

⎧⎪⎪⎨
⎪⎪⎩
ϕe + ∠ (C3(njω) [H

1(ω, r̂) + C2(jω)]C1(jω))
forn = 1

nϕe + ∠ (C3(njω)H
n(ω, r̂)C1(jω)) + · · ·

(n− 1)∠C1(jω), forn �= 1.

(42)

Finally, substituting (37), (40), and (42) in (36) yields the same expres-
sion as substituting (10) and (11) in (9), which concludes the proof.

B. Proof of Theorem 3.1

Consider a SISO NLTI element Ki with any initial condition, which
is subject to a sinusoidal input ei(t) = êi sin (ωit+ ϕe,i). Then, ac-
cording to Lemma 3.1, if Ki is sinusoidal-input uniformly convergent
and Assumption 2.1 holds, its output converges to a unique solution

ui(t) = |K0
i (ωi, êi)|êi + · · ·

∞∑
n=1

|Kn
i (ωi, êi)|êi sin (n(ωit+ ϕe,i) + ∠Kn

i (ωi, êi)) .

(43)

Next, substituting (13) in (12), and rewriting, yields

Yj(s) =
M∑
i=1

Gj,i(s) ∀j ∈ [1,M ] (44)

Gj,i(s) = Pj,i(s)Ui(s). (45)

Consider a SISO LTI plant Pj,i that is Hurwitz and can have any
initial condition. When applying an input ui as in (43), by utilizing the

superposition principle, we find that its output converges to a unique
solution

gj,i(t) = |Pj,i(0)||K0
i (ωi, êi)|êi + · · ·

∞∑
n=1

|Pj,i(njωi)||Kn
i (ωi, êi)|êi · . . .

sin (n(ωit+ ϕe,i) + ∠Pj,i(njωi) + ∠Kn
i (ωi, êi)) (46)

gj,i(t) = |Pj,i(0)K
0
i (ωi, êi)|êi + · · ·

∞∑
n=1

|Pj,i(njωi)K
n
i (ωi, êi)|êi · . . .

sin (n(ωit+ ϕe,i) + ∠ (Pj,i(njωi)K
n
i (ωi, êi))). (47)

Subsequently, utilizing (44), (47), and again the superposition principle,
it can be observed that output yj will converge to a unique solution given
by

yj(t) =

M∑
i=1

[|Pj,i(0)K
0
i (ωi, êi)|êi + · · ·

∞∑
n=1

|Pj,i(njωi)K
n
i (ωi, êi)|êi · . . .

sin (n(ωit+ ϕe,i) + ∠ (Pj,i(njωi)K
n
i (ωi, êi)))] . (48)

Finally, writing out (16) explicitly yields

Ln
j,i(ω, ê) = Pj,i(njω)K

n
i (ω, êi). (49)

Substituting (49) in (15) yields (48), which concludes the proof.
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