

Delft University of Technology

A Hybrid Recursive Implementation of Broad Learning With Incremental Features

Liu, Di; Baldi, Simone; Yu, Wenwu; Chen, C. L.P.

DOI
10.1109/TNNLS.2020.3043110
Publication date
2022
Document Version
Final published version
Published in
IEEE Transactions on Neural Networks and Learning Systems

Citation (APA)
Liu, D., Baldi, S., Yu, W., & Chen, C. L. P. (2022). A Hybrid Recursive Implementation of Broad Learning
With Incremental Features. IEEE Transactions on Neural Networks and Learning Systems, 33(4), 1650-
1662. https://doi.org/10.1109/TNNLS.2020.3043110

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TNNLS.2020.3043110
https://doi.org/10.1109/TNNLS.2020.3043110

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

1650 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 4, APRIL 2022

A Hybrid Recursive Implementation of Broad
Learning With Incremental Features

Di Liu , Simone Baldi , Senior Member, IEEE, Wenwu Yu , Senior Member, IEEE,
and C. L. Philip Chen , Fellow, IEEE

Abstract— The broad learning system (BLS) paradigm has
recently emerged as a computationally efficient approach to
supervised learning. Its efficiency arises from a learning mecha-
nism based on the method of least-squares. However, the need for
storing and inverting large matrices can put the efficiency of such
mechanism at risk in big-data scenarios. In this work, we propose
a new implementation of BLS in which the need for storing and
inverting large matrices is avoided. The distinguishing features of
the designed learning mechanism are as follows: 1) the training
process can balance between efficient usage of memory and
required iterations (hybrid recursive learning) and 2) retraining is
avoided when the network is expanded (incremental learning). It
is shown that, while the proposed framework is equivalent to the
standard BLS in terms of trained network weights,much larger
networks than the standard BLS can be smoothly trained by the
proposed solution, projecting BLS toward the big-data frontier.

Index Terms— Big data, broad learning system (BLS),
recursive learning, training time.

I. INTRODUCTION

SUPERVISED learning is a branch of machine learning
whose goal is to learn a predictor function (sometimes

called “hypothesis”) from input data and labeled data. The
learning mechanism consists of optimization algorithms that
shape the predictor function, so as to be as accurate and
general as possible [1], [2]. For example, in deep supervised
learning, the predictor function takes the form of a neural
network with many hierarchical layers [3]–[6]. Such deep

Manuscript received November 4, 2019; revised March 8, 2020,
June 24, 2020, and October 7, 2020; accepted November 25, 2020. Date of
publication December 22, 2020; date of current version April 5, 2022. This
work was supported in part by the Special Guiding Funds Double First-Class
under Grant 3307012001A; in part by the Natural Science Foundation of
China under Grant 62073074, Grant 61673107, and Grant 62073076; and in
part by the Jiangsu Provincial Key Lab of Networked Collective Intelligence
under Grant BM2017002. (Di Liu and Simone Baldi contributed equally to
this work.) (Corresponding author: Wenwu Yu.)

Di Liu is with the School of Cyber Science and Engineering, Southeast
University, Nanjing 210096, China (e-mail: liud923@126.com).

Simone Baldi is with the School of Mathematics, Southeast University,
Nanjing 210096, China, and also with the Delft Center for Systems and
Control, Delft University of Technology (TU Delft), 2628 CD Delft, The
Netherlands (e-mail: s.baldi@tudelft.nl).

Wenwu Yu is with the School of Cyber Science and Engineering, Southeast
University, Nanjing 210096, China, and also with the School of Mathematics,
Southeast University, Nanjing 210096, China (e-mail: wwyu@seu.edu.cn).

C. L. Philip Chen is with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510641,
China (e-mail: philip.chen@ieee.org).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2020.3043110.

Digital Object Identifier 10.1109/TNNLS.2020.3043110

structures have been successfully adopted in pattern recog-
nition [7]–[10], biological data analysis [11], [12], adversarial
networks [13], [14], brain activity [15], [16], tomography [17],
finance and trading [18], and many other domains.

A. Background on Broad Learning System

The broad learning system (BLS) paradigm has recently
emerged as a supervised learning method in which the hypoth-
esis is improved by expanding the network in width rather than
depth. Reasons behind the study of BLS come from some
recognized issues of deep structures, such as overcoming the
need for gradient-descent training that might make learning
slow [19]–[21], preventing complete retraining when new
hypotheses must be formulated [22]–[24], and avoiding huge
processing power, such as graphics processing units (GPUs)
that are typically needed in deep structures [25].

Seminal ideas of BLS are in [26] and [27]. In these works,
“one-shot” nonrecursive least-squares training was studied
for flat neural networks (functional-link networks [28]). The
so-called “incremental learning,” i.e., training an expanded
network without retraining the whole network, was proposed
in [29]. The competitive performance of BLS with respect to
many deep learning algorithms was demonstrated in the same
work, via data set benchmarks from MNIST and NYU-NORB.
Furthermore, the nonrecursive least-squares training mecha-
nism of BLS was shown to be extremely faster than gradient-
descent training. Other applications of BLS include leakage
detection [30], traffic flow prediction [31], process monitor-
ing [32], and fault diagnosis [33]. Variants to the standard BLS
have been also proposed in terms of broad-deep (recurrent,
neurofuzzy, and convolutional) combined structures [34]–[37].
Comparative experiments in these works confirm the effective-
ness of BLS and its variants in terms of training speed and
prediction capability: however, BLS does not come without
challenges, as clarified hereafter.

B. Open Challenges and Motivation for This Work

Let us use a standard notation in which R
N×M represents

the space of real matrices of dimension N × M . Vectors and
matrices are boldface italic: the letters X , A, and Y are used to
represent input data, transformed BLS input data, and labeled
data; the transformed BLS data A contain feature nodes and
enhancement nodes, indicated with the letters Z and H ; and
the letter W is used for network weights. The identity matrix is

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0539-9279
https://orcid.org/0000-0001-9752-8925
https://orcid.org/0000-0003-3755-179X
https://orcid.org/0000-0001-5451-7230

LIU et al.: HYBRID RECURSIVE IMPLEMENTATION OF BROAD LEARNING WITH INCREMENTAL FEATURES 1651

Fig. 1. Illustration of a BLS.

indicated with I . Depending on their dimensions and on the
required operations, vectors will be stacked along columns,

as in [Z, H], or along rows, as in

�
W f

W c

�
.

Let us denote a set of N labeled data samples and a set of
N BLS input data samples with

Y =

⎡
⎢⎢⎢⎣

Y(1)
Y(2)

...
Y (N)

⎤
⎥⎥⎥⎦ ∈ R

N×Q A =

⎡
⎢⎢⎢⎣

A(1)
A(2)

...
A(N)

⎤
⎥⎥⎥⎦ ∈ R

N×M (1)

where N is the number of samples, Q is the size of the output
and M is the size of the network. In BLS, the input data A
result from a transformation of the original input X via feature
and enhancement nodes: this is sketched in Fig. 1 and will be
further clarified later. The key learning mechanism of BLS1

requires to invert an M × M matrix, i.e.,

Ŷ = AW
training→ W =

AT A + λI
�−1

AT Y (2)

with W ∈ R
M×Q being the set of weights to be learned, Ŷ

the predicted labels, and λ a positive regularization constant.
Least-squares training in (2) processes all data “one-shot”
at the same time via the matrix inversion. However, for
large/complex data sets requiring large networks, it is prac-
tically impossible to perform the M × M matrix inversion in
(2) to obtain the weights W . In fact, matrix inversion has com-
putational cost O(M3), and in the authors’ experience, out-of-
memory problems are easily faced in standard desktop PCs
(Intel Core i5 Quad-Core—8-GB DDR4—BLS implemented
in MATLAB) when N > 100 000, M > 10 000, and Q > 100.

The main drive behind this work is to explore such training
tradeoffs in order to push the capabilities of BLS toward the
big-data frontier. The objectives of this work are finding an
alternative BLS method with similar training performance as
“one-shot” least-squares, but without requiring the inversion of
large matrices, and retaining the same incremental properties
of BLS, i.e., train only the network portions added to the
original structure.

1Let us neglect, for simplicity, other mechanisms of BLS, such as sparse
autoencoder and SVD simplification.

To accomplish these objectives, a novel recursive least-
squares method is tailored to the needs of BLS. Different
from the standard recursive least-squares algorithms proposed
in the signal processing literature, the distinguishing features
of the proposed one are embodying a hybrid nature that
can trade between efficient usage of memory and number of
recursions, which is achieved by exploiting a hybrid version of
the matrix inversion lemma, and enjoying incremental learning
capabilities that avoid a complete retraining process when the
BLS network is expanded, which is achieved by appropri-
ately exploiting the linear-in-the-parameter structure of BLS.
We call the proposed framework hybrid recursive BLS
(HR-BLS). We show that the learning accuracy of HR-BLS
is equivalent to the standard BLS, implying that all compar-
isons between BLS and deep algorithms shown in [29], [34],
[37], and [38] are inherited by HR-BLS. However, regression
experiments on a data set with more than 100 000 samples
show that HR-BLS smoothly accomplishes training on huge
networks where the standard BLS exhibits out-of-memory
problems. We further show that the incremental learning
speed of the proposed formulation is faster than incremental
learning of the original BLS due to more efficient usage of
memory. This work is focused on the BLS framework, but
we expect the proposed ideas to find application in other
learning frameworks where the inversion of large matrices
places a crucial rule. An example in this sense is the weights
and structure determination (WASD) framework [39], [40],
where matrix inversion is achieved via pseudoinverse and used
to determine the network weights and the network structure
(e.g., number of hidden-layer neurons) [41].

The rest of this article is organized as follows. Section II
presents the BLS with recursive and hybrid recursive
training. Section III extends such tools for incrementally
training BLS when the network architecture is expanded.
Section IV presents the experiments, with concluding remarks
in Section V.

II. HYBRID RECURSIONS IN BROAD LEARNING

Given input data X , a broad learning network takes the form

Ŷ = �
Z1, Z2, . . . , Zn

⎡⎢⎣
W f1

...
W fn

⎤
⎥⎦ + �

H1, H2, . . . , Hm
⎡⎢⎣

W c1

...
W cm

⎤
⎥⎦
(3)

where Zn = [Z1, Z2, . . . , Zn] are the mapped features

Zi = ϕi

X W ei + βei

�
, i = 1, . . . , n (4)

and Hm = [H1, H2, . . . , Hm] are the enhancement nodes

H j = ζ j

�
Zn Wh j + βh j

�
, j = 1, . . . , m. (5)

The weights W ei , βei
, Wh j , and βh j

, are the weights of
the activation functions ϕi and ζ j that are selected randomly
according to the functional network architecture [28]. The
activation functions ϕi and ζ j are sigmoid functions as in

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

1652 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 4, APRIL 2022

standard neural networks. After defining

W n
f =

⎡
⎢⎣

W f1

...
W fn

⎤
⎥⎦ Wm

c =
⎡
⎢⎣

W c1

...
W cm

⎤
⎥⎦ (6)

the model (3) can be written in a compact way as

Ŷ = �
Zn, Hm

� �� �
A

�
W n

f

Wm
c

�
� �� �

W

(7)

which has the structure in (2) and can be trained using the
one-shot training in (2). Different from one-shot training,
in the following, we will explain how recursive training can
be formulated, giving the same results as (2), but avoiding the
inversion of large matrices.

A. Recursive Learning

The training in (2) is referred to as “one-shot” since the
data X are collected a priori over large intervals of time,
transformed into A and processed together offline to generate
the network weights W . This strategy is also referred to as
nonrecursive and can be written as

W = f (A, Y)

where f (·) is the transformations performed by the BLS net-
work in (2) using all data. Different from this strategy, recur-
sive algorithms aim to generate new network weights W(k) at
discrete steps k, using data that can be collected/transformed at
step k and also using the previous network weights W(k − 1).
Updating past W(k) from W(k −1) requires a set of recursive
equations (i.e., difference equations), which can be written as

W(k) = fW (W(k − 1), P(k − 1), A(k), Y(k))

P(k) = f P (P(k − 1), A(k), Y (k))

W(0) = W0, P(0) = P0

where P is an auxiliary variable used for the recursive update
(i.e., the covariance matrix). The recursions must initialized
with W(0) and P(0), representing the initial values of the
network weights and covariance matrix. Because fW and f P

only use current data A(k) and Y (k), recursions are more
suited for real-time online processing. In particular, they well
suit the purpose of incremental learning where the structure
of the network can grow online as new data arrive.

To more clearly present the recursive equations, consider an
input data set X(1), . . . , X(k), and create the BLS transformed
input A(1), . . . , A(k) as in (7). Also, consider the labeled data
Y(1), . . . , Y (k), and define, for compactness

Y k =

⎡
⎢⎢⎢⎣

Y(1)
Y(2)

...
Y(k)

⎤
⎥⎥⎥⎦ ∈ R

k×Q Ak =

⎡
⎢⎢⎢⎣

A(1)
A(2)

...
A(k)

⎤
⎥⎥⎥⎦ ∈ R

k×M . (8)

Let us formulate the training task via the minimization of the
following cost at step k:

Jk(W) = 1

2
(Y k − Ak W)T (Y k − Ak W)

+ 1

2
(W − W0)

T P−1
0 (W − W0) + 1

2
λW T W (9)

where the first term refers to the approximation of Y k via the
estimate Ŷ k = Ak W (regression task); the last term with λ
is used for regularization to avoid overfitting; and the second
term with W0 and P0 also plays the role of a regularization
term and can be further used for initialization purposes (in fact,
it allows to initialize the network weights W(0) = W0 and the
covariance matrix P(0) = P0). The network weights W are to
be determined as a result of training. Due to the linear-in-the-
parameter structure, the cost (9) is convex in W and can be
minimized by setting ∇ Jk(W) = 0, giving the optimal W∗(k)

W ∗(k) =

AT

k Ak + P−1
0 + λI

�−1

P−1

0 W0 + AT
k Y k

�
. (10)

In the following, we consider for simplicity P−1
0 = q−1

0 I , for a
design scalar q0 > 0. Let us also consider (10) in place of (2)
because, for large q0, W∗(N) from (10) tends to the solution
in (2) [42, Sec. 4.6]. The following result can be derived.

Proposition 1: The recursive algorithm

�(k) = Y(k) − A(k)W(k − 1)

P(k) = P(k − 1) − P(k − 1)AT (k)A(k)P(k − 1)

1 + A(k)P(k − 1)AT (k)

W(k) = W(k − 1) + P(k)AT (k)�(k) (11)

with W(0) = W0 and P(0) = (q0 + λ−1)I , makes W(k) =
W∗(k) at each step k. That is, W(k) resulting from the
recursions (11) coincides with the “one-shot” solution W∗(k)
in (10) that processes k data at the same time.

Proof: Let us define

P−1(k) = AT
k Ak + P−1

0 + λI

⇒ P−1(k) = P−1(k − 1) + AT (k)A(k). (12)

Let us apply the matrix inversion lemma (or the Woodbury
matrix identity [43, Sec. 2.7.3])

(D + BC)−1 = D−1 − D−1 B

I + C D−1 B

�−1
C D−1 (13)

to (12), by taking D = P−1(k − 1), B = AT (k), and
C = A(k). This results in

P(k) = P(k − 1) − P(k − 1)AT (k)

·
1 + A(k)P(k − 1)AT (k)
�−1

A(k)P(k − 1). (14)

Note that the inversion involved in (14) is the inversion of a
scalar. Substitute (14) into (10), so as to obtain

W ∗(k) = P(k)

P−1
0 W 0 + AT

k Y k
�

= P(k)

P−1
0 W 0 + AT

k−1Y k−1 + AT (k)Y(k)
�
. (15)

From using (10), at step k − 1, we obtain

P−1
0 W0 + AT

k−1Y k−1

=

AT

k−1 Ak−1 + P−1
0 + λI

�
W∗(k − 1)

= P−1(k − 1)W∗(k − 1) (16)

which, substituted in (15), leads to

W ∗(k) = P(k)
�

P−1(k) − AT (k)A(k)
�
W∗(k − 1)

+ AT (k)Y(k)

= W∗(k − 1)

+ P(k)AT (k)
�−A(k)W∗(k − 1) + Y(k)

(17)

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: HYBRID RECURSIVE IMPLEMENTATION OF BROAD LEARNING WITH INCREMENTAL FEATURES 1653

which is a recursive relation between W∗(k) and W∗(k − 1).
Therefore, it can be seen that (11) makes W(k) = W∗(k),
provided that the initial conditions are selected as P(0) =
(q0 + λ−1)I and W(0) = W0. This concludes the proof.

Remark 1: Even though W∗(k) and W(k) both arise from
minimization of the same cost function (9), it is important
to remark the difference between calculating W∗(k) from
(10) and calculating W(k) from (11). When new data are
considered at step k + 1, (10) requires to process all data
“one-shot” again by inverting an M×M matrix. The algorithm
(11) only needs to process the new samples.

Algorithm (11) is known in the signal processing literature
as the recursive least-squares algorithm [42, Sec. 4.6]. In what
follows, we want to tailor its mechanism to BLS.

B. Hybrid Recursions

Recursive least-squares avoid matrix inversion but need to
span all data one sample at a time. With huge amounts of data,
processing might be slow. In other words, learning tradeoffs
in least-square optimization problems arise from matrix
manipulations, i.e., the time required to store/invert large
matrices needs time (this is the case of the nonrecursive least-
squares (10), where the matrix manipulation time increases
with the network size) and the number of iterations, i.e., the
time required to span the data one sample at a time (this is
the case of the recursive least-squares (11), where the number
of iterations grows with the number of data). In the following,
we would like to find an efficient tradeoff between matrix
manipulations and the number of iterations. That is, we want
to derive a recursive algorithm with efficient usage of memory
but also fast learning capabilities.

The idea is to adopt a hybrid recursive strategy, in which
data are processed in small batches, so that the number of
iterations is smaller. After every batch, the least-square gains
are updated recursively, so no large matrix manipulation is
required. Let us denote with b the size of the batch, and define
the indices spanning from one batch to another: b1 = 1, . . . , b,
b2 = b+1, . . . , 2b, . . . , bk̄ = (k̄ −1)b+1, . . . , k̄b. Define also

Abk̄
=

⎡
⎢⎢⎢⎣

A(b1)
A(b2)

...
A(bk̄)

⎤
⎥⎥⎥⎦ ∈ R

k̄b×M , A(bi)=

⎡
⎢⎢⎢⎣

A((i −1)b+1)
A((i −1)b+2)

...
A(ib)

⎤
⎥⎥⎥⎦ (18)

with i = 1, 2, . . . [note that k̄b = k, with k as in (8)].
Proposition 2: The recursive algorithm

�(bk̄) = Y (bk̄) − A(bk̄)W

bk̄−1

�
P(bk̄) = P

bk̄−1

� − P

bk̄−1

�
AT (bk̄)

·
Ib + A(bk̄)P

bk̄−1

�
AT (bk̄)

�−1
A(bk̄)P

bk̄−1

�
W(bk̄) = W

bk̄−1

� + P(bk̄)AT (bk̄)�(bk̄) (19)

with W(0) = W0 and P(0) = (q0 + λ−1)I , makes W(bk̄) =
W∗(bk̄) at each batch index bk̄ . That is, W(bk̄) resulting from
the recursions (19) coincides with the “one-shot” solution
W∗(bk̄) in (10) that processes k data at the same time.

Proof: In place of (14), let us consider

P−1(bk̄) − P−1

bk̄−1

� = AT
bk̄

Abk̄
− AT

bk̄−1
Abk̄−1

= AT (bk̄)A(bk̄). (20)

The proof follows similar steps as the proof of Proposition 1,
provided that the matrix inversion lemma (13) for (20) is used
with D = P−1(bk̄−1), B = AT (bk̄), and C = A(bk̄). This
results in

P(bk̄) = P

bk̄−1

� − P

bk̄−1

�
AT (bk̄)

·
Ib + A(bk̄)P

bk̄−1

�
AT (bk̄)

�−1
A(bk̄)P

bk̄−1

�
.

(21)

Then, an analogous recursive relation as (17) between W ∗(bk̄)
and W ∗(bk̄−1) can be obtained, leading to W(bk̄) = W∗(bk̄),
provided that the algorithm (19) is initialized with P(0) =
(q0 + λ−1)I and W(0) = W0. This concludes the proof.

We refer to algorithm (19) as hybrid recursive least-square
algorithm. The algorithm suggests a different implementation
to the standard BLS framework stemming from (14). This
implementation will be explored in Section III. Compared with
(14), the matrix inversion in (21) has now dimension b × b,
which leads to some remarks.

Remark 2: The relation (21) reveals a tradeoff between
matrix manipulations and the number of iterations: for b = 1,
one has the standard recursive least-squares (11) (low cost for
matrix inversion but needs to span one sample at a time). For
b > 1, one can span faster all data, at the price of increasing
the cost for matrix inversion. We will see, in the simulation
experiments and from computational considerations, that there
is an optimum batch size b for which training time is mini-
mized (see Figs. 2 and 3).

Remark 3: The benefit of the inversion lemma (13), result-
ing in (21), is to transform the M × M matrix inversion in
(10) into a b × b matrix inversion, where b can be chosen
independently on the network size.

III. RECURSIONS FOR INCREMENTAL TRAINING

Let us assume that a linear-in-the-parameter model has been
trained in the form

Y ≈ AW (22)

where the notation ≈ is used to indicate that AW is an
approximation of Y after training. Let us now assume that
the incremental learning phase involves augmenting the model
(22) with some extra regressor elements, thus resulting in the
incremental learning model

Y ≈ AW + AincrW incr (23)

where Aincr refers to the incremental regressor, and W incr

refers to the new weights to be trained. That is, we want to
keep the same W and find only W incr. One idea for performing
such an incremental training is to rearrange (23) as

Y − AW� �� �
Ȳ

≈ AincrW incr. (24)

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

1654 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 4, APRIL 2022

At the beginning of the incremental learning phase, Ȳ is
perfectly known since the labels data Y are known and AW
was obtained in the previous learning phase. The incremental
learning can, thus, be performed by applying the recursive
algorithm (11) to the linear-in-the-parameter model

ˆ̄Y = AincrW incr (25)

where ˆ̄Y approximates Ȳ in (24). Let us now discuss how to
transfer such concepts into the training process of BLS.

A. Case 1: Additional Enhancement Nodes

Consider the following incremental model to be trained:
Y ≈ �

Zn, Hm
�Wn

f

Wm
c

�
+ Hm,m̄ Wm,m̄

c (26)

where Hm,m̄ = [Hm+1, Hm+2, . . . , Hm+m̄] represents the
additional (incremental) enhancement nodes

H j = ζ j

�
Zn Wh j + βh j

�
, j = m + 1, . . . , m + m̄ (27)

and Wm,m̄
c are the new weights to be trained (without retraining

Wn
f and W m

c). Then, (26) can be rearranged as

Y − �
Zn, Hm

�Wn
f

Wm
c

�
� �� �

Ȳ

≈ Hm,m̄ Wm,m̄
c (28)

and attain incremental training after applying the recursive
least-squares to (28). The details of the incremental algorithm
can be found in Algorithm 1.

Remark 4: In the proposed formulation, M × M inversion
is avoided both in the first and the incremental learning
phases. In the original BLS formulation, both the first and the
incremental phases require inversion of large matrices. The
first phase of the standard BLS requires to invert the M × M
matrix in

A = �
Zn, Hm

W =

�
Wn

f

Wm
c

�
W =

AT A + λI
�−1

AT Y (29)

while the incremental phase of the standard BLS requires to
solve the following problem:

([A, Aincr])+ =
�

A+ − ��T

�T

�
(30)

with � = A+ Hm,m̄ and

�T =
�

�+, if � �=0

I + �T �

�−1
�T A+, if � = 0

(31)

� = Hm,m̄ − A�. (32)

The standard BLS does not solve (30) explicitly, but it shows
that the incremental weights W incr can be calculated as�

W
W incr

�
=

�
W − ��T Y

�T Y

�
. (33)

Even though (30) is not solved explicitly, it can be seen that
the incremental phase of the standard BLS still involves a
new matrix inverse ((I + �T �)

−1
or (I + �T �)

−1
), while

Algorithm 1 HR-BLS With Additional Enhancement Nodes
1: INPUT

Training data X(k) and labels Y(k), k = 1, . . . , N
Testing data X t(k) and labels Y t (k), k = 1, . . . , Nt

2: INITIALIZATION
P0 = q0 I , W0 = 0
design parameters λ, n, m, m̄, b

3: FIRST TRAINING PHASE
4: for i = 1, . . . , n

Randomly initialize W ei , βei

Compute Zi = ϕi (XW ei + βei
)

Collect the feature nodes Zn = [Z1, Z2, . . . , Zn]
5: for j = 1, . . . , m

Randomly initialize Wh j , βh j

Compute H j = ζ j(Zn Wh j + βh j
)

Collect the enhanc. nodes Hm = [H1, H2, . . . , Hm]
6: for k = 1, . . . , N

Perform the hybrid recursive least-squares

Y ≈ �
Zn, Hm

�Wn
f

Wm
c

�
7: OUTPUT

Obtain the weights W n
f , Wm

c
8: TESTING
9: for i = 1, . . . , n

Compute Zt,i = ϕi (X t W ei + βei
)

Collect the feature nodes Zn
t = [Zt,1, Zt,2, . . . , Zt,n]

10: for j = 1, . . . , m
Compute H t, j = ζ j(Zn

t Wh j + βh j
)

Collect the enhancement nodes
Hm

t = [H t,1, H t,2, . . . , H t,m]
11: Calculate the testing error from

Ŷ t = �
Zn

t , Hm
t

�Wn
f

Wm
c

�
12: INCREMENTAL TRAINING PHASE
13: for j = m + 1, . . . , m + m̄

Randomly initialize Wh j , βh j

Compute H j = ζ j(Zn Wh j + βh j
)

Collect the enhancement nodes
Hm,m̄ = [Hm+1, Hm+2, . . . , Hm+m̄]

14: for k = 1, . . . , N
Perform the hybrid recursive least-squares

Y − �
Zn, Hm

�Wn
f

Wm
c

�
≈ Hm,m̄ Wm,m̄

c

15: INCREMENTAL OUTPUT
Obtain the weights W m,m̄

c
16: INCREMENTAL TESTING
17: for j = m + 1, . . . , m + m̄

Compute H t, j = ζ j(Zn
t Wh j + β̄h j

)
Collect enhancement nodes

Hm,m̄
t = [H t,m+1, H t,m+2, . . . , H t,m+m̄]

18: Calculate the incremental testing error from

Ŷ t = �
Zn

t , Hm
t , Hm,m̄

t

⎡⎣ Wn
f

Wm
c

Wm,m̄
c

⎤
⎦

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: HYBRID RECURSIVE IMPLEMENTATION OF BROAD LEARNING WITH INCREMENTAL FEATURES 1655

A+ should be kept in the memory (or recalculated). In the
proposed recursive Algorithm 1, no large matrices must be
inverted, and there is no need for storing past matrices other
than the current weights Wn

f and Wm
c . We will see that this

more efficient usage of memory significantly speeds up the
incremental phase compared with the standard BLS.

B. Case 2: Additional Feature Mappings

Consider the following incremental model to be trained:

Y ≈ �
Zn, Hm

�Wn
f

Wm
c

�
+ �

Zn,n̄, Hm,m̄
� Wn,n̄

f

Wm,m̄
c

�
(34)

where Zn,n̄ = [Zn+1, Zn+2, . . . , Zn+n̄] are the additional
(incremental) feature mapping

Zi = ϕi

XW ei + βei

�
, i = n + 1, . . . , n + n̄ (35)

and Hm,m̄ = [Hm+1, Hm+2, . . . , Hm+m̄] are the additional
(incremental) enhancement nodes

H j = ζ j

�
Zn,n̄ Wh j + βh j

�
, j = m + 1, . . . , m + m̄. (36)

Correspondingly, Wn,n̄
f and Wm,m̄

c are the new feature and
enhancement weights to be trained (without retraining Wn

f
and Wm

c). Then, one can rearrange the model (34) as

Y − �
Zn, Hm

�W n
f

Wm
c

�
� �� �

Ȳ

≈ �
Zn,n̄, Hm,m̄

� Wn,n̄
f

Wm,m̄
c

�
(37)

and attain incremental training after applying the recursive
least-squares to (37). The details of the incremental algorithm
can be found in Algorithm 2.

C. Case 3: Additional Labeled Data

New labeled data might arise whenever a new sensor is
placed in the system. This case can be divided into two sub-
cases. In the first subcase, one requires the network structure
to “evolve” with the data, requiring new feature/enhancement
nodes to be trained when more and more data arrive. In the
second subcase, one may not desire new feature/enhancement
nodes, but still the new labels require to train the extra weights
of the output layer. For the first subcase, consider the following
incremental model:
[Y , Y x] ≈

��
Zn, Hm

�W n
f

Wm
c

�
+ �

Zn,n̄
x , Hm,m̄

x

� Wn,n̄
f

W m,m̄
c

�
,

�
Zn,n̄

x , Hm,m̄
x

� Wn,n̄
fx

Wm,m̄
cx

��
(38)

where Zn,n̄
x = [Zn+1, Zn+2, . . . , Zn+n̄] are the additional

(incremental) feature mapping

Zi = ϕi

X x W ei + βei

�
, i = n + 1, . . . , n + n̄. (39)

Y x are new labels, X x are new data, and Hm,m̄
x =

[Hm+1, Hm+2, . . . , Hm+m̄] are the additional (incremental)
enhancement nodes

H j = ζ j

�
Zn,n̄

x Wh j + βh j

�
, j = m + 1, . . . , m + m̄. (40)

Algorithm 2 HR-BLS With Additional Feature Nodes
1: INPUT

Training data X(k) and labels Y(k), k = 1, . . . , N
Testing data X t(k) and labels Y t (k), k = 1, . . . , Nt

2: INITIALIZATION
P0 = q0 I , W0 = 0
design parameters λ, n, m, n̄, m̄, b

3: FIRST TRAINING PHASE
Same as Algorithm 1

4: OUTPUT
Obtain the weights W n

f , Wm
c

5: TESTING
Same as Algorithm 1

6: Calculate the testing error from

Ŷ t = �
Zn

t , Hm
t

�Wn
f

Wm
c

�
7: INCREMENTAL TRAINING PHASE
8: for i = n + 1, . . . , n + n̄

Randomly initialize W ei , βei

Compute Zi = ϕi (XW ei + βei
)

Collect the features Zn,n̄ = [Zn+1, Zn+2, . . . , Zn+n̄]
9: for j = m + 1, . . . , m + m̄

Randomly initialize Wh j , βh j

Compute H j = ζ j(Zn,n̄ Wh j + βh j
)

Collect the enhancement nodes
Hm,m̄ = [Hm+1, Hm+2, . . . , Hm+m̄]

10: for k = 1, . . . , N
Perform the hybrid recursive least-squares

Y − �
Zn, Hm

�Wn
f

Wm
c

�
≈ �

Zn,n̄, Hm,m̄
� Wn,n̄

f

Wm,m̄
c

�
11: INCREMENTAL OUTPUT

Obtain the weights W n,n̄
f , Wm,m̄

c
12: INCREMENTAL TESTING

13: for i = n + 1, . . . , n + n̄

Compute Zi = ϕi (X t W ei + βei
)

Collect the feature nodes

Zn,n̄
t = [Zt,n+1, Zt,n+2, . . . , Zt,n+n̄]

14: for j = m + 1, . . . , m + m̄

Compute H t, j = ζ j(Zn,n̄
t Wh j + βh j

)

Collect the enhancement nodes

Hm,m̄
t = [H t,m+1, H t,m+2, . . . , H t,m+m̄]

15: Calculate the incremental testing error from

Ŷ t = �
Zn

t , Hm
t , Zn,n̄

t , Hm,m̄
t

⎡
⎢⎢⎣

Wn
f

W m
c

Wn,n̄
f

Wm,m̄
c

⎤
⎥⎥⎦

Correspondingly, Wn,n̄
f , Wm,m̄

c , Wn,n̄
fx

, and Wm,m̄
cx

are the
new feature and enhancement weights to be trained
(without retraining Wn

f and Wm
c). Then, (38) can be

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

1656 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 4, APRIL 2022

rearranged as�
Y − �

Zn, Hm
�Wn

f

Wm
c

�
, Y x

�
� �� �

Ȳ

≈ �
Zn,n̄

x , Hm,m̄
x

� Wn,n̄
f Wn,n̄

fx

Wm,m̄
c W m,m̄

cx

�
(41)

and attain incremental training by applying the recursive least-
squares to (41). In the second subcase when no new nodes are
desired, an incremental model can be written as

[Y , Y x] ≈
��

Zn, Hm
�Wn

f

Wm
c

� �
Zn, Hm

� Wn,n̄
fx

W m,m̄
cx

��
(42)

in which the new labeled data Y x that were not available
before still require to retrain part of the output layer (without
modifying the network structure). The details of the incre-
mental algorithm can be found in Algorithms 3 (if new
feature/enhancement nodes are desired) and 4 (if no new
feature/enhancement nodes are desired).

Some remarks are given in the following.
Remark 5: Algorithms 3 and 4 deals with new labeled data

being available: if new data are made available (both input
labels X x and labels Y x), one can treat them straightforwardly
due to the recursive nature of the algorithm. Different from the
standard BLS algorithm (including the incremental versions),
as in [29], the proposed algorithm avoids the inversion of large
matrices at all stages. For example, the incremental learning
for the increment of input data in [29] requires the following
calculations:

(Aincr)
+ = �

A+ − ��T , �

(43)

with �T = (Ax
T)A+, Ax being the increment of mapped

feature nodes and the enhancement nodes, and

� =
�

�T
�+

, if � �=0

I + �T �

�−1
A+�, if � = 0

(44)

�T = Ax
T − �T A. (45)

Therefore, similar to what discussed in Remark 4, the incre-
mental phase of the standard BLS still involves a new matrix
inverse, while A+ should be kept in the memory (or recalcu-
lated). In the proposed recursive algorithms, no large matrices
must be inverted, and there is no need for storing past matrices
other than the current weights. This marks the major difference
between the state-of-the-art “incremental learning” and the
proposed “recursive learning.” In this sense, all state-of-the-art
BLS algorithms in [29], [34], [37], and [38] are incremental
but not recursive.

Remark 6: In view of Propositions 1 and 2, all the proposed
HR-BLS Algorithms 1–4 have the same learning accuracy of
the standard BLS, being their network weights W identical
and solving the same optimization problem (9). Crucially,
Algorithms 1–4 differ with the standard BLS with respect to
the tradeoffs associated with the calculation of the weights.
It is also important to remark that any add-on proposed in

Algorithm 3 HR-BLS With Additional Labels and New Nodes
1: INPUT

Training data X(k) and labels Y(k), k = 1, . . . , N
Testing data X t(k) and labels Y t (k), k = 1, . . . , Nt

New training data X x(k) and Y x(k), k = 1, . . . , N̄
New testing data X x,t (k) and Y x,t (k), k = 1, . . . , N̄t

2: INITIALIZATION
P0 = q0 I , W0 = 0
design parameters λ, n, m, n̄, m̄, b

3: FIRST TRAINING PHASE
Same as Algorithm 1

4: OUTPUT
Obtain the weights W n

f , Wm
c

5: TESTING
Same as Algorithm 1

6: Calculate the testing error from

Ŷ t = �
Zn

t , Hm
t

�Wn
f

Wm
c

�
7: INCREMENTAL TRAINING PHASE
8: for i = n + 1, . . . , n + n̄

Randomly initialize W exi , βexi

Compute Zi = ϕi (X x W exi + βexi
)

Collect the feature nodes
Zn,n̄

x = [Zn+1, Zn+2, . . . , Zn+n̄]
9: for j = m + 1, . . . , m + m̄

Randomly initialize Whx j , βhx j

Compute H j = ζ j(Zn,n̄
x Wh j + βh j

)
Collect the enhancement nodes

Hm,m̄
x = [Hm+1, Hm+2, . . . , Hm+m̄]

10: for k = 1, . . . , N
Perform the hybrid recursive least-squares on�

Y − �
Zn, Hm

�Wn
f

Wm
c

�
, Y x

�

≈ �
Zn,n̄

x , Hm,m̄
x

� W n,n̄
f Wn,n̄

fx

Wm,m̄
c Wm,m̄

cx

�
11: INCREMENTAL OUTPUT

Obtain the weights W n,n̄
f , Wm,m̄

c , Wn,n̄
fx

, Wm,m̄
cx

12: INCREMENTAL TESTING
13: for i = n + 1, . . . , n + n̄

Compute Zi = ϕi (X x t W ei + βei
)

Collect the feature nodes
Zn,n̄

x,t = [Zt,n+1, Zt,n+2, . . . , Zt,n+n̄]
14: for j = m + 1, . . . , m + m̄

Compute H t, j = ζ j(Zn
x,t Wh j + βh j

)
Collect the enhancement nodes

Hm,m̄
x,t = [H t,m+1, H t,m+2, . . . , H t,m+m̄]

15: Calculate the incremental testing error from�
Ŷ t , Ŷ x,t

 =
��

Zn
t , Hm

t

�Wn
f

Wm
c

�
+ �

Zn,n̄
x,t , Hm,m̄

x,t

×

�
Wn,n̄

f

Wm,m̄
c

�
,
�
Zn,n̄

x,t , Hm,m̄
x,t

� Wn,n̄
fx

Wm,m̄
cx

��

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: HYBRID RECURSIVE IMPLEMENTATION OF BROAD LEARNING WITH INCREMENTAL FEATURES 1657

Algorithm 4 HR-BLS With Additional Labels, No New Nodes
1: INPUT

Training data X(k) and labels Y (k), k = 1, . . . , N
Testing data X t(k) and labels Y t (k), k = 1, . . . , Nt

New training data X x(k) and Y x(k), k = 1, . . . , N̄
New testing data X x,t (k) and Y x,t (k), k = 1, . . . , N̄t

2: INITIALIZATION
P0 = q0 I , W0 = 0
design parameters λ, n, m, n̄, m̄, b

3: FIRST TRAINING PHASE
Same as Algorithm 1

4: OUTPUT
Obtain the weights Wn

f , Wm
c

5: TESTING
Same as Algorithm 1

6: Calculate the testing error from

Ŷ t = �
Zn

t , Hm
t

�Wn
f

Wm
c

�
7: INCREMENTAL TRAINING PHASE
8: for k = 1, . . . , N

Perform the hybrid recursive least-squares

Y x ≈ �
Zn

x, Hm
x

� W n,n̄
fx

Wm,m̄
cx

�
9: INCREMENTAL OUTPUT

Obtain the weights Wn,n̄
f , W m,m̄

c , W n,n̄
fx

, Wm,m̄
cx

10: INCREMENTAL TESTING
11: Calculate the incremental testing error from�

Ŷ t , Ŷ x,t
 = �

Zn
t , Hm

t

�Wn
f Wn,n̄

fx

Wm
c Wm,m̄

cx

�

the BLS literature, such as sparse encoder regularization or
SVD simplification [29], can be transferred to the proposed
formulation in a straightforward manner. The same applies
to the BLS variants proposed in the literature, in terms of
broad-deep (recurrent, neurofuzzy, and convolutional) com-
bined structures [34]–[37].

IV. COMPARATIVE EXPERIMENTS

The performance measurement system (PeMS) is used as
a benchmark data set for the proposed framework. PeMS is
one of the most popular data sets in the traffic field, managed
and updated by the California Department of Transportation
(Caltrans), with data collected in real-time from nearly 40 000
individual detectors spanning the freeway system across all
major metropolitan areas of California. The data set under
consideration in this work is consistent with the one in [44].
It contains the flow, speed, and occupancy data at 33 different
locations in I405 freeway (North-bound Interstate 405), result-
ing in R = 99. The data are aggregated every 5 min, resulting
in 120 000 data samples. The data set is more than ten times
larger than the MNIST and NYU-NORB data sets used for
benchmarking BLS in [29], and this is the main reason why it
is used here to test the efficiency of the proposed framework
in handling huge numbers of data.

The algorithms will be abbreviated as BLS (standard BLS),
HR-BLS, BLS enh. (standard BLS with added enhance-
ment nodes), HR-BLS enh. (hybrid-recursive BLS with added
enhancement nodes), BLS feat. (standard BLS with added
feature mappings), and HR-BLS feat. (hybrid-recursive BLS
with added feature mappings). The following parameters are
used in the experiments: for BLS and HR-BLS (without
incremental steps), n = 1 600 and m = 3 250; for BLS and
HR-BLS with incremental enhancement nodes, n = 1 600 and
m = 500 (first phase), with m̄ = 500 new enhancement
nodes in four incremental steps; and for BLS and HR-BLS
with incremental feature nodes, n = 650 and m = 1000 (first
phase), with n̄ = 50 and m̄ = 500 new feature/enhancement
nodes in four incremental steps. For all algorithms, we set
the regularization factor λ = 1/64, and for HR-BLS, we set
q−1

0 = λ. Unless specified otherwise, the size of the batch
for HR-BLS is b = 500. The regression task is to predict
the traffic (flow, speed, and occupancy) 15, 25, and 40 min
ahead in time. The training samples are 50 000, and to test
the generalization capabilities of the prediction, 70 000 data
samples are used for testing. All tests are run on a desktop PC
with Intel Core i5 (Quad-Core), 8-GB DDR4, and MATLAB
R2017b. The reported data of computational time and memory
usage are valid for a MATLAB implementation, and it is
likely that different platforms (C++, Python, and so on)
will give slightly different results: however, let us mention
that, in order to make the comparison as fair as possible,
MATLAB is restarted before every simulation, so as to start
from clean memory: furthermore, the code is written in such
a way to clear memory whenever a variable is not being used
anymore, which prevents the garbage collection mechanism
from growing too much.

A. Learning Performance

The results of the comparisons are provided in Table I (for
15-, 25-, and 40-min-ahead predictions, respectively). Some
observations follow about accuracy and training time.

1) Testing Accuracy: The testing accuracies of BLS
and HR-BLS are equivalent. In fact, it can be shown
that they converge to almost identical network weights:
Propositions 1 and 2 highlight that BLS and HR-BLS solve
the same least-squares problem with different methods.
Thus, let us further refer to the PeMS comparison study
in [31] between BLS and other supervised learning algorithms
(shallow and deep neural networks, stacked autoencoders,
and so on). Such a comparison study automatically extends
to HR-BLS.

2) Incremental Versions: As shown in the literature [29],
the nonincremental versions of BLS exhibit better testing accu-
racy than its incremental version when the network structure
of the former is richer than the structure of the latter. The
incremental BLS and HR-BLS improve their accuracy after
some incremental steps.

3) Training Time (First Phase): The first training phase of
BLS is from two to four times faster than the first training
phase of HR-BLS. This means that, for N = 50 000 and
M = 5000, solving the least-squares in one-shot is more
efficient than solving the least-squares in a recursive way.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

1658 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 4, APRIL 2022

TABLE I

COMPARISON RESULTS FOR BLS AND HR-BLS. FOR INCREMENTAL
LEARNING, BOTH THE FIRST (1ST) AND THE INCREMENTAL

(INC.) PHASES ARE REPORTED. FOR THE INCREMENTAL

PHASES, THE TRAINING TIME IS SUMMED OVER

ALL FOUR PHASES, WHILE THE TESTING
ACCURACY IS AT THE END OF

THE FOURTH PHASE

4) Training Time (Incremental Phases): Here, HR-BLS
becomes around three times faster than BLS. In fact, the incre-
mental steps of BLS require to calculate/store two pseudoin-
verse matrices (see Remark 4). In HR-BLS, only the new
matrix P associated with the new feature/enhancement node
has to be memorized: the previous P can be deleted from
the memory. This efficient usage of memory leads to faster
incremental learning.

Despite that the training time results suggest using the
standard BLS for the first learning phase and the HR-BLS
for the incremental learning phase, we will now show that the
standard BLS can exhibit out-of-memory problem when the
data/network size is too large.

B. Tradeoff Between Recursions and Memory Usage

Fig. 2 shows the training time of HR-BLS as a function of
the size of the batch: the size of the batch goes from b = 1
to b = 5000. The figure highlights two points: for small sizes
of the batch, the recursive least-squares algorithm has to run
over many iterations, which contributes to high training time;
on the other side, when the size of the batch is very large,
the training time tends to increase due to the computational
cost of inverting large matrices. For intermediate sizes of the
batch, a good tradeoff can be found in terms of training time.
For example, the training time for b ≈ 500 is 30 times faster
than for b = 1 (6000 s versus 200 s).

Fig. 2. Training time as a function of the size of the batch.

Fig. 3. Computational cost resulting from the model (46) as a function of
the size of the batch. The model fits the actual training time in Fig. 2, and its
minimum is located approximately in the same region.

The result in Fig. 2 can be explained by developing the fol-
lowing computational model for the hybrid recursions in (21):
the multiplication of two matrices of dimension M1 × M2

and M2 × M3 has computational cost O(M1 M2 M3); matrix
inversion of dimension M×M has computational cost O(M3);
and we consider that matrix summation and transposition of
dimension M1 × M2 both have computational cost O(M1 M2).
Using this computational model, it is possible to derive that
the hybrid recursions in (21) have computational cost
O

M3
� + O

M2
� + 3O

M2b
� + 2O

Mb2
�

+ 2O(Mb) + O

b2� + O

b3��N/b. (46)

The result of the computational model (46) is reported in Fig. 3
for N = 50 000 and M = 5000 and various sizes of the
batch b: the computational model (46) fits quite well the
computational time observed in Fig. 2, and thus, it can be used
to calculate a tradeoff depending on b in terms of training time
(the tradeoff also depends on M and N). Both the experiments
in Fig. 2 and the computational model in Fig. 3 suggest that a
good tradeoff lies around b ≈ 1000. In the rest of this article,
we will use b = 500 although the values up to b = 1000 give
similar results as the ones that we report.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: HYBRID RECURSIVE IMPLEMENTATION OF BROAD LEARNING WITH INCREMENTAL FEATURES 1659

Fig. 4. Training time during the first learning phase and during the
incremental phases, for BLS and HR-BLS with incremental enhancement
nodes. The last bar represents, for each method, the summation of the training
times.

Fig. 5. Training time during the first learning phase and during the
incremental phases, for BLS and HR-BLS with incremental feature mappings.
The last bar represents, for each method, the summation of the training times.

C. Handling Larger and Larger Data Sets

For 15 min-ahead prediction, Fig. 4 shows two groups of
five bars: the first bar is the training time during the first
learning phase, while the other four bars are the training
times during four incremental phases, for BLS and HR-BLS
with incremental enhancement nodes. It can be seen that
BLS is two times faster in the first phase, while HR-BLS
becomes four times more effective during the incremental
steps. The last two bars on the right of Fig. 4 (summation of
all training times) show that, overall, HR-BLS might be more
effective if many incremental steps are performed (HR-BLS is
2.5 times faster than BLS in total). Similar comments apply to
Fig. 5, where the incremental steps involve incremental feature
mappings: BLS is two times faster than HR-BLS in the first
phase, HR-BLS becomes 2.5 times faster than BLS during
incremental phases, and overall HR-BLS is around two times
faster.

Finally, we would like to study the capabilities of BLS and
HR-BLS when the size of the data set and the size of the net-
work increase. In particular, starting from a data set with N =
50 000 and M = 5000, we repeatedly increase N by 10 000
and M by 1000 and run both BLS and HR-BLS. It can be
noted from Fig. 6 that BLS is put at stake for N = 100 000 and

Fig. 6. Training time as the size of the data set and the size of the network
increase, for BLS and HR-BLS (first learning phase).

Fig. 7. Training time as the size of the data set and the size of the network
increase, for BLS and HR-BLS (first incremental learning step and fourth
incremental learning step).

M = 10 000, values for which out-of-memory problems occur
(due to inverting a matrix whose size is too large). On the other
hand, HR-BLS is never put at stake due to its recursive nature
when processing data (it is clear that, as the size of the data
set/network increases, a larger training time is to be expected).
It is also interesting to note that BLS is initially four times
faster in terms of training time for N = 50 000 and, eventually,
only two times faster for N = 90 000 before running into out-
of-memory issues. Fig. 6 refers to the first learning phase,
while Fig. 7 shows that the incremental versions of BLS
would present out-of-memory issues already for N = 70 000
samples. The figure shows the training time required for
the first incremental step and the fourth incremental step.
Previously, it was already discussed that the incremental steps
of HR-BLS are faster than the incremental steps of BLS: this is
confirmed here as well. Remarkably, the incremental versions
of HR-BLS run smoothly for all experiments. This implies
that all the comparisons in [31] showing that BLS outperforms
many other learning algorithms are valid for HR-BLS as well.

D. Comparisons on MNIST Data Set

In this section, a series of experiments are performed on
the classical MNIST data set, consisting of 70 000 handwritten

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

1660 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 4, APRIL 2022

TABLE II

COMPARISON RESULTS FOR BLS AND HR-BLS ON THE MNIST DATA
SET. FOR INCREMENTAL LEARNING, THE FIRST (1ST)

AND ALL THE INCREMENTAL (INC.)
PHASES ARE REPORTED

digital images partitioned into a training set of 60 000 samples
and a test set of 10 000 samples. Different from the PeMS
data set, the MNIST data set is a classification problem.
This allows us to test the proposed HR-BLS not only as a
regression but also as a classification algorithm. Extensive
experiments on the MNIST data set have been performed
in [29], and the MATLAB source codes of the BLS used in
that article can be downloaded from the website of Prof. Chen:
http://www.fst.umac.mo/en/staff/pchen.html. Two implementa-
tions of the BLS code are provided on the website: BLS
for PCs with low memory and BLS for PCs with high
memory. Because we want to test the capability of HR-BLS to
efficiently use memory, we have used the high memory imple-
mentation with the following settings: for BLS (no incremental
steps), n = 100 and m = 11 000; for BLS with incremental
enhancement nodes, n = 100 and m = 9000 (first phase), with
m̄ = 500 new enhancement nodes in two incremental steps; for
BLS with incremental feature nodes, n = 60 and m = 3000
(first phase), with n̄ = 10, m̄ = 1250 new feature/enhancement
nodes in four incremental steps.

The same settings are applied to HR-BLS. The experiments
run on the same desktop PC as before (Intel Core i5 Quad-
Core and 8-GB DDR4). The results of the experiments are
given in Table II. It is evident that BLS and HR-BLS are
basically equivalent in terms of testing accuracy (this was
shown via Propositions 1 and 2, and furthermore, it can be
verified that the two BLS implementations converge to almost
the same network weights). This makes any comparisons
with other algorithms, such as stacked autoencoders (SAEs),
multilayer perceptron (MLP), multilayer extremely learning
machine structures (MLELM and HELM), deep belief nets
(DBNs), deep Boltzmann machines (DBMs), fuzzy restricted
Boltzmann machine (FRBM), redundant since all such com-
parisons have been recently performed in [29]. Where BLS and
HR-BLS differ is in their usage of memory, resulting in a very

TABLE III

COMPARISON RESULTS FOR BLS AND HR-BLS ON THE NYU-NORB
DATA SET. FOR INCREMENTAL LEARNING, THE FIRST (1ST) AND

ALL THE INCREMENTAL (INC.) PHASES ARE REPORTED

different training time. From Table II, it is crucial to note that
the nonincremental version of BLS and HR-BLS has almost
the same training time, which indicates that inverting a matrix
of large dimension might sometimes be as costly as solving
the least-squares recursively via the inversion lemma. Note
that, in the BLS and HR-BLS with incremental enhancement
nodes, the first phase of the HR-BLS is even faster than the
first phase of BLS.

As in the PeMS experiments, HR-BLS shows its full poten-
tialities in the incremental phases: in the BLS with incremental
enhancement nodes, an out-of-memory issue arises already in
the first incremental phase, whereas the HR-BLS is able to
complete all incremental phases smoothly. In the BLS with
incremental feature nodes, out-of-memory arises in the third
incremental phase: notably, the first two incremental phases
of HR-BLS are almost ten times faster than the first two
incremental phases of BLS.

E. Comparisons on NYU-NORB Data Set

In this section, a series of experiments are performed on the
classical NYU-NORB data set, which, in another data set for
classification, consists of stereo image pairs of 50 uniform-
colored toys under 36 azimuths, nine elevations, and six light-
ing conditions. We have used the following settings for BLS:
for BLS (no incremental steps), n = 600 and m = 11 000;
for BLS with incremental enhancement nodes, n = 600 and
m = 7000 (first phase), with m̄ = 1250 new enhancement
nodes in four incremental steps; and for BLS with incremental
feature nodes, n = 350 and m = 6000 (first phase), with
n̄ = 50 and m̄ = 1500 new feature/enhancement nodes in four
incremental steps. The same settings are applied to HR-BLS.
The results of the experiments are in Table III. Once more,

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

LIU et al.: HYBRID RECURSIVE IMPLEMENTATION OF BROAD LEARNING WITH INCREMENTAL FEATURES 1661

it is evident that BLS and HR-BLS are basically equivalent
in terms of testing accuracy, whereas the different usage
of memory prevents HR-BLS from getting out-of-memory
problems.

As in the PeMS and MNIST experiments, HR-BLS shows
its full potentialities in the incremental phases: in all incre-
mental phases, HR-BLS is extremely faster than BLS. Overall,
the simulation experiments confirm the capability of HR-BLS
of handling huge data sets in a more efficient way compared
with the standard formulation.

V. CONCLUSION

BLS is a computationally efficient supervised learning
method in which learning is improved by expanding the
network architecture in width. In this work, we have illustrated
how, due to the need of storing and inverting large matrices,
the computational efficiency of BLS might be at risk when
the data or the network structure increase to very large values.
To overcome this issue, we have proposed a recursive imple-
mentation of BLS in which the need of storing and inverting
large matrices was avoided. The proposed framework has two
distinguishing features: a hybrid nature that can trade off
between efficient usage of memory and number of recursion
and incremental learning capabilities that avoid a complete
retraining process (the already trained portion of the network
does not have to be retrained when the width of the network is
expanded). A computational model for the proposed method
has been developed, which explains that the tradeoff between
efficient usage of memory and number of recursion depends
on the size of the batch. Regression experiments on a database
with more than 100 000 training samples, 100 labels, and up
to 10 000 network nodes have shown that the computational
efficiency of the proposed framework overcomes one of the
standard BLS methodologies. Further experiments on the
benchmark data sets have further confirmed the performance
of the method.

In the future, we aim at dedicated comparisons between
HR-BLS and other shallow and deep supervised learning
algorithms. Extensions of the BLS framework in semisu-
pervised or unsupervised settings can be also of interest:
examples include feature extraction, clustering tasks [45],
or unsupervised encoding as a way of learning and reusing
features [37], [46].

REFERENCES

[1] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
NY, USA: Springer-Verlag, 2010.

[2] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill,
2017.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[4] P. P. Brahma, D. Wu, and Y. She, “Why deep learning works: A manifold
disentanglement perspective,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 27, no. 10, pp. 1997–2008, Oct. 2016.

[5] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[6] D. Wu et al., “Deep learning-based methods for person re-identification:
A comprehensive review,” Neurocomputing, vol. 337, pp. 354–371,
Apr. 2019.

[7] D. Liu and S. Yue, “Event-driven continuous STDP learning with deep
structure for visual pattern recognition,” IEEE Trans. Cybern., vol. 49,
no. 4, pp. 1377–1390, Apr. 2019.

[8] J. Xie, G. Dai, F. Zhu, L. Shao, and Y. Fang, “Deep nonlinear metric
learning for 3-D shape retrieval,” IEEE Trans. Cybern., vol. 48, no. 1,
pp. 412–422, Jan. 2018.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[10] Y. Guo and L. Zhang, “One-shot face recognition by promoting
underrepresented classes,” 2017, arXiv:1707.05574. [Online]. Available:
http://arxiv.org/abs/1707.05574

[11] F. Xing, Y. Xie, H. Su, F. Liu, and L. Yang, “Deep learning in
microscopy image analysis: A survey,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 10, pp. 4550–4568, Oct. 2018.

[12] M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli, “Applica-
tions of deep learning and reinforcement learning to biological data,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2063–2079,
Jun. 2018.

[13] H. Tembine, “Deep learning meets game theory: Bregman-based algo-
rithms for interactive deep generative adversarial networks,” IEEE Trans.
Cybern., vol. 50, no. 3, pp. 1132–1145, Mar. 2020.

[14] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks
and defenses for deep learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2805–2824, Sep. 2019.

[15] A. Taherkhani, A. Belatreche, Y. Li, and L. P. Maguire, “A supervised
learning algorithm for learning precise timing of multiple spikes in
multilayer spiking neural networks,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 11, pp. 5394–5407, Nov. 2018.

[16] T. Zhang, W. Zheng, Z. Cui, Y. Zong, and Y. Li, “Spatial–temporal
recurrent neural network for emotion recognition,” IEEE Trans. Cybern.,
vol. 49, no. 3, pp. 839–847, Mar. 2019.

[17] T. Wurfl et al., “Deep learning computed tomography: Learning
projection-domain weights from image domain in limited angle prob-
lems,” IEEE Trans. Med. Imag., vol. 37, no. 6, pp. 1454–1463,
Jun. 2018.

[18] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct rein-
forcement learning for financial signal representation and trading,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 3, pp. 653–664, Mar. 2017.

[19] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[20] G. Pandey and A. Dukkipati, “To go deep or wide in learning?”
2014, arXiv:1402.5634. [Online]. Available: http://arxiv.org/abs/1402.
5634

[21] B. Chandra and R. K. Sharma, “Deep learning with adaptive learning rate
using Laplacian score,” Expert Syst. Appl., vol. 63, pp. 1–7, Nov. 2016.

[22] A. A. Rusu et al., “Progressive neural networks,” 2016,
arXiv:1606.04671. [Online]. Available: https://arxiv.org/abs/1606.04671

[23] H.-T. Cheng et al., “Wide & deep learning for recommender sys-
tems,” 2016, arXiv:1606.07792. [Online]. Available: http://arxiv.org/abs/
1606.07792

[24] C. Yan, L. Li, C. Zhang, B. Liu, Y. Zhang, and Q. Dai, “Cross-modality
bridging and knowledge transferring for image understanding,” IEEE
Trans. Multimedia, vol. 21, no. 10, pp. 2675–2685, Oct. 2019.

[25] G. Marcus, “Deep learning: A critical appraisal,” 2018,
arXiv:1801.00631. [Online]. Available: https://arxiv.org/abs/1801.00631

[26] C. L. P. Chen, “A rapid supervised learning neural network for function
interpolation and approximation,” IEEE Trans. Neural Netw., vol. 7,
no. 5, pp. 1220–1230, Sep. 1996.

[27] C. L. P. Chen and J. Z. Wan, “A rapid learning and dynamic stepwise
updating algorithm for flat neural networks and the application to time-
series prediction,” IEEE Trans. Syst., Man Cybern. B, Cybern., vol. 29,
no. 1, pp. 62–72, 1999.

[28] S. Dehuri and S.-B. Cho, “A comprehensive survey on functional link
neural networks and an adaptive PSO–BP learning for CFLNN,” Neural
Comput. Appl., vol. 19, no. 2, pp. 187–205, Mar. 2010.

[29] C. L. P. Chen and Z. Liu, “Broad learning system: An effective
and efficient incremental learning system without the need for deep
architecture,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 1,
pp. 10–24, Jan. 2018.

[30] D. Ma, J. Wang, Q. Sun, and X. Hu, “A novel broad learning system
based leakage detection and universal localization method for pipeline
networks,” IEEE Access, vol. 7, pp. 42343–42353, 2019.

[31] D. Liu, W.-W. Yu, and S. Baldi, “Broad learning for optimal short-term
traffic flow prediction,” in Proc. 16th Int. Symp. Neural Netw. (ISNN),
Moscow, Russia, Jun. 2019, pp. 1–6.

[32] W. Yu and C. Zhao, “Recursive exponential slow feature analysis for
fine-scale adaptive processes monitoring with comprehensive opera-
tion status identification,” IEEE Trans. Ind. Informat., vol. 15, no. 6,
pp. 3311–3323, Jun. 2019.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

1662 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 33, NO. 4, APRIL 2022

[33] S. B. Jiang, P. K. Wong, R. Guan, Y. Liang, and J. Li, “An efficient
fault diagnostic method for three-phase induction motors based on
incremental broad learning and non-negative matrix factorization,” IEEE
Access, vol. 7, pp. 17780–17790, 2019.

[34] C. L. P. Chen, Z. Liu, and S. Feng, “Universal approximation capability
of broad learning system and its structural variations,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 30, no. 4, pp. 1191–1204, Apr. 2019.

[35] W. Yu and C. Zhao, “Broad convolutional neural network based indus-
trial process fault diagnosis with incremental learning capability,” IEEE
Trans. Ind. Electron., vol. 67, no. 6, pp. 5081–5091, Jun. 2020.

[36] S. Feng and C. L. P. Chen, “Fuzzy broad learning system: A novel neuro-
fuzzy model for regression and classification,” IEEE Trans. Cybern.,
vol. 50, no. 2, pp. 414–424, Feb. 2018.

[37] M. Xu, M. Han, C. L. P. Chen, and T. Qiu, “Recurrent broad learning
systems for time series prediction,” IEEE Trans. Cybern., vol. 50, no. 4,
pp. 1405–1417, Apr. 2020.

[38] T.-L. Zhang, R. Chen, X. Yang, and S. Guo, “Rich feature combination
for cost-based broad learning system,” IEEE Access, vol. 7, pp. 160–172,
2019.

[39] Y. Zhang, Y. Yin, D. Guo, X. Yu, and L. Xiao, “Cross-validation based
weights and structure determination of chebyshev-polynomial neural
networks for pattern classification,” Pattern Recognit., vol. 47, no. 10,
pp. 3414–3428, Oct. 2014.

[40] Y. Zhang, D. Guo, Z. Luo, K. Zhai, and H. Tan, “CP-activated WASD
neuronet approach to asian population prediction with abundant experi-
mental verification,” Neurocomputing, vol. 198, pp. 48–57, Jul. 2016.

[41] Y. Zhang, Y. Wang, W. Li, Y. Chou, and Z. Zhang, “WASD algo-
rithm with pruning-while-growing and twice-pruning techniques for
multi-input euler polynomial neural network,” Int. J. Artif. Intell.
Tools, vol. 25, no. 02, Apr. 2016, Art. no. 1650007, doi: 10.1142/
S021821301650007X.

[42] P. Ioannou and B. Fidan, Adaptive Control Tutorial. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2006.

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing. New York, NY,
USA: Cambridge Univ. Press, 2007.

[44] Y. Wu, H. Tan, L. Qin, B. Ran, and Z. Jiang, “A hybrid deep learning
based traffic flow prediction method and its understanding,” Transp.
Res. C, Emerg. Technol., vol. 90, pp. 166–180, May 2018.

[45] C. Yan et al., “STAT: Spatial-temporal attention mechanism for video
captioning,” IEEE Trans. Multimedia, vol. 22, no. 1, pp. 229–241,
Jan. 2020.

[46] Q. Zhou and X. He, “Broad learning model based on enhanced features
learning,” IEEE Access, vol. 7, pp. 42536–42550, 2019.

Di Liu received the B.Sc. degree in electronic
information science and technology from the Hubei
University of Science and Technology, Xianning,
China, and the M.Sc. degree in control science
and engineering from the Chongqing University of
Posts and Telecommunications, Chongqing, China,
in 2014 and 2017, respectively. She is currently
pursuing double Ph.D. degree with the School of
Cyber Science and Engineering, Southeast Univer-
sity, Nanjing, China, and with Bernoulli Institute
for Mathematics, Computer Science and Artificial

Intelligence, University of Groningen, Groningen, The Netherlands.
Her research interests are in adaptive control/robust control and adaptive

learning systems, with application in intelligent traffic systems and automated
vehicles.

Simone Baldi (Senior Member, IEEE) received the
B.Sc. degree in electrical engineering and the M.Sc.
and Ph.D. degrees in automatic control systems engi-
neering from the University of Florence, Florence,
Italy, in 2005, 2007, and 2011, respectively.

He is currently a Professor with the School of
Mathematics, Southeast University, Nanjing, China,
with a guest position at the Delft Center for Sys-
tems and Control, Delft University of Technology,
Delft, The Netherlands, where he was an Assistant
Professor. His research interests include adaptive and

learning systems with applications in networked control systems, smart energy,
and intelligent vehicle systems.

Dr. Baldi was the Awarded Outstanding Reviewer of Applied Energy
in 2016, Automatica in 2017, and the IET Control Theory and Applications
in 2018. Since March 2019, he has been a Subject Editor of the International
Journal of Adaptive Control and Signal Processing.

Wenwu Yu (Senior Member, IEEE) received the
B.Sc. degree in information and computing science
and the M.Sc. degree in applied mathematics from
the Department of Mathematics, Southeast Univer-
sity, Nanjing, China, in 2004 and 2007, respectively,
and the Ph.D. degree from the Department of Elec-
tronic Engineering, City University of Hong Kong,
Hong Kong, in 2010.

He held several visiting positions in Australia,
China, Germany, Italy, The Netherlands, and the
USA. He is currently the Founding Director of the

Laboratory of Cooperative Control of Complex Systems, the Deputy Associate
Director of the Jiangsu Provincial Key Laboratory of Networked Collective
Intelligence, an Associate Dean of the School of Mathematics, and a Full Pro-
fessor with the Young Endowed Chair Honor in Southeast University. He has
published about 100 SCI journal articles with more than 10 000 citations. His
research interests include multiagent systems, complex networks and systems,
disturbance control, distributed optimization, neural networks, game theory,
cyberspace security, smart grids, intelligent transportation systems, and big-
data analysis.

Dr. Yu serves as an Editorial Board Member of several flag journals,
including the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II, the
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, the IEEE TRANSAC-
TIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, Science China
Information Sciences, and Science China Technological Sciences. He was
a recipient of the Second Prize of State Natural Science Award of China
in 2016. He was listed by Clarivate Analytics/Thomson Reuters Highly Cited
Researchers in Engineering from 2014 to 2019

C. L. Philip Chen (Fellow, IEEE) received the
M.Sc. degree in electrical engineering from the
University of Michigan, Ann Arbor, MI, USA,
in 1985, and the Ph.D. degree in electrical engi-
neering from Purdue University, West Lafayette, IN,
USA, in 1988.

He was a Chair Professor and the Dean of the
Department of Computer and Information Science,
Faculty of Science and Technology, University of
Macau, Macau. He is currently a Chair Professor
and the Dean of the College of Computer Science

and Engineering, South China University of Technology, Guangzhou, China.
His current research interests include systems, cybernetics, and computational
intelligence.

Dr. Chen is also a fellow of the American Association for the Advancement
of Science, the International Association of Pattern Recognition (IAPR),
the Chinese Association of Automation (CAA), and the Hong Kong Institute
of Engineers (HKIE). He is also a member of Academia Europaea (AE),
the European Academy of Sciences and Arts (EASA), and the International
Academy of Systems and Cybernetics Science (IASCYS). He received the
IEEE Norbert Wiener Award in 2018 for his contribution to systems and
cybernetics, and machine learnings. He is a Highly Cited Researcher by
Clarivate Analytics from 2018 to 2020. He was the Chair of the TC
9.1 Economic and Business Systems of International Federation of Automatic
Control from 2015 to 2017 and a Program Evaluator of the Accreditation
Board of Engineering and Technology Education of the U.S. He was the
Editor-in-Chief of the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND

CYBERNETICS: SYSTEMS from 2014 to 2019. He is also an associate editor
of several IEEE TRANSACTIONS. He has been the Editor-in-Chief of the
IEEE TRANSACTIONS ON CYBERNETICS since 2019. He was the IEEE SMC
Society President from 2012 to 2013 and the Vice President of the Chinese
Association of Automation (CAA).

Authorized licensed use limited to: TU Delft Library. Downloaded on January 25,2023 at 11:12:27 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1142/S021821301650007X
http://dx.doi.org/10.1142/S021821301650007X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

