
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Architecture Support for Runtime
Integration and Verification of

Component-based Systems of Systems

Alberto González, Éric Piel and Hans-Gerhard Gross

Report TUD-SERG-2008-007

SERG



TUD-SERG-2008-007

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Submitted for review at the 1st ARAMIS Workshop (ASE2008)

c© copyright 2008, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Architecture Support for Runtime Integration and Verification of
Component-based Systems of Systems

Alberto González Éric Piel Hans-Gerhard Gross

Delft University of Technology, Software Engineering Research Group
Mekelweg 4, 2628 CD Delft, The Netherlands

E-mail: {a.gonzalezsanchez,e.a.b.piel,h.g.gross}@tudelft.nl

Abstract

Systems-of-Systems (SoS) represent a novel kind of sys-
tem, for which runtime evolution is a key requirement, as
components join and leave during runtime. Current compo-
nent integration and verification techniques are not enough
for SoS. In this paper we present ATLAS, an architectural
framework that enables the runtime integration and veri-
fication of a system, based on the built-in test paradigm.
ATLAS augments components with two specific interfaces
to add and remove tests, and to provide adequate testability
features to run these tests. To illustrate our approach, we
present a case study of a dynamic reconfiguration scenario
of components, in the Maritime Safety and Security domain,
using our implementation of ATLAS for the Fractal com-
ponent model. We demonstrate that built-in testing can be
extended beyond development-time component integration
testing, to support runtime reconfiguration and verification
of component-based systems.

1. Introduction

The commission of the European communities has recently
pushed for the establishment of a European Network for
Maritime Surveillance [8]. Such a network will provide safe
and secure usage of the seas around Europe, providing bor-
der control, law enforcement assistance, and detection of
maritime pollution, and illegal activities. This will need the
cooperation and coordination between the concerned Mem-
ber States’ security agencies, and an efficient usage and in-
tegration of already existing systems.

This new kind of large-scale component-based system,
in which the components have an operational entity of their
own, and usually a managerial entity as well, is known as
“System-of-Systems” (SoS) [16]. SoS present considerable
engineering challenges that have been acknowledged by the
Dutch Embedded Systems Institute and Thales Nederland.

They have ste up the Poseidon research project [7], commit-
ted to devising engineering best practices for developing,
integrating and deploying such maritime safety and security
(MSS) systems. Current approaches for system integration
and testing are mainly static, inappropriate for the highly
dynamic nature of MSS SoS, where components join and
leave and requirements change at a similar rate.

In this paper we present an architectural framework,
called ATLAS, based on the paradigm of Built-In Test-
ing [10] (BIT). ATLAS allows the SoS integrator to add and
remove test requirements from components at runtime, and
whenever an architectural change happens, inform all the
potentially affected components that their execution context
must be rechecked. We have implemented ATLAS in terms
of the Fractal, a component model with dynamic, intro-
spective capabilities. To realize ATLAS’ distinguishing, dy-
namic features, we extend the Fractal component model [5]
with two extra component interfaces. Furthermore, We have
created an adapter to run integration tests written for JUnit
in the ATLAS framework, so that runtime test cases can be
easily defined. To illustrate our approach, we present a case
study based on the context of MSS systems, demonstrating
and assessing how well runtime testing can be performed
during dynamic reconfiguration, i.e. joining and leaving of
components.

The paper is structured as follows. In Section 2 we study
the challenges of SoS. Section 3 outlines relevant related
work to our research. Section 4 introduces and describes
ATLAS, and its implementation. Section 5 illustrates how
ATLAS is used in a current MSS implementation, discussing
the initial solution and its limitations. Finally, section 6
summarizes and concludes the paper.

2. The Challenges of MSS Systems

Runtime integration and verification strategies are
amongst the most obvious challenges in building and evolv-
ing large-scale MSS SoS, given the large number of differ-

SERG González, Piel, Gross – Arch. Supp. for Runtime Integration and Verification of Component-based SoS

TUD-SERG-2008-007 1



ent systems contributing to them. Most sub-systems in an
SoS have operational and managerial independence [9, 16].
This implies that parts of the SoS may be changed without
the SoS integrator having too much to say in the decision.
In some cases, a sub-system might not even provide detailed
information about the modification (due to political or busi-
ness reasons). In such cases, the integrity of the entire SoS
must still be guaranteed.

The fact that MSS SoS evolve dynamically during op-
eration time also brings implications for quality assurance,
in particular for testing. Systems can join or leave the SoS,
meaning that offered services may vary in terms of func-
tion, as well as quality. When a sub-system joins or leaves
the SoS, the other sub-systems may have to be reconfigured
to take advantage of new services and improved quality of
service, or they may have to be notified that services are de-
graded. This process should be mostly seamless for the sys-
tem operators and should be executed within a short time,
without any major disruption of the rest of the SoS.

The tests used to verify and validate the system have
to evolve simultaneously as the SoS evolves. In particular,
functionalities of a component which were not exercised in
the initial configuration of the SoS may be required by com-
ponents inserted at runtime. These functionalities have to
be tested before being used, even though no tests were orig-
inally provided to verify them. Verification and validation
techniques need not to be restricted to testing, nor to a fixed
set of techniques. Therefore, the platform must support dif-
ferent types of verification and validation techniques (static
contracts, monitoring of resources, etc.), and dynamic in-
sertion and removal of these, in the same way it supports
joining and leaving of components.

By their very nature, SoS are large-scale systems, with a
large number of components, contained in the sub-systems.
After each reconfiguration, the integration of the SoS has to
be re-checked. It is, therefore, necessary to devise an ap-
propriate verification and validation strategy that not only
achieves this goal, but also minimizes the cost of check-
ing after each modification. Re-checking must be as little
disruptive as possible for the running configuration and the
latency between the moment a reconfiguration is requested
and the moment it is accepted and deployed must be mini-
mal.

Due to the huge size of the SoS, the limited access to
the system’s code or executables, the need to keep SoS al-
ways available, or the fact that some components use re-
sources that cannot be duplicated, (a) testing will have to be
executed concurrently with the working configuration, and
(b) some component instances will be shared between the
tested and the working configurations. Therefore, runtime
testing [21], the ability to test a component while it is also
performing normal work, is the only realistic option when
verifying an MSS SoS at operation time.

3. Related Work

To our best knowledge, there is no visible research be-
ing carried out specifically addressing the domain of MSS
Systems-of-Systems. However, there has been an active re-
search community addressing the main topics of interest re-
lated to integrating and verifying component-based systems
since the publication of Weyuker’s landmark article on com-
ponent testing [22].

Built-In Testing is an important paradigm, key in under-
standing our approach in the following sections. BIT refers
to any technique used for equipping components with the
ability to check their execution environment, and their abil-
ity to be checked by their execution environment [10], dur-
ing runtime. These built-in tests may be invoked before de-
ployment when a system is assembled, or during system up-
dates, when existing components are replaced or new com-
ponents added, so that the pair-wise client-server relations
can be assessed. That way, the components can perform
much of the required system validation effort automatically
and by “themselves” [4]. This distribution of the responsi-
bility of verifying the component’s environment to the com-
ponents themselves is very interesting for MSS SoS. It can
help us to maintain the independence of each of the partici-
pating systems.

Having components carry information useful for verify-
ing the context they are being deployed in, has already been
proposed [6, 11, 18], and has been extended to perform this
verification at runtime [20]. However, these approaches are
static, and do not allow for redefinition or evolution of the
tests if required, or are mostly focused on monitoring. With
ATLAS, we tackle the dynamic evolution of test require-
ments, and the verification of these on the running system.
Moreover, although the main focus of our contribution is
to be able to detect integration problems between a com-
ponent and the other components before it is used in the
system, ATLAS can also accommodate monitoring, as it is
an integral part of the integration verification process.

In the line of dedicated infrastructure to automate inte-
gration testing, research work has also been demonstrated
before [3, 14].

4. The ATLAS Framework

The ATLAS component integration and verification
framework is our solution for an architectural framework
that addresses the challenges of runtime integration and ver-
ification presented in Section 2. Its verification concepts
build upon those of Built-In Testing (when used for integra-
tion testing), where the framework queries the requirements
of components, expressed in terms of tests, and checks them
by issuing checking requests to dedicated components.

2

González, Piel, Gross – Arch. Supp. for Runtime Integration and Verification of Component-based SoS SERG

2 TUD-SERG-2008-007



As defined in BIT, components have a Testing
port that offers functionality for querying and exer-
cising a component’s testability features through the
TestingController interface [10]. However, in AT-
LAS, the tests are not permanently built into the compo-
nents. Components in the ATLAS framework also provide
an Acceptance port with an AcceptanceController
that offers enhanced capabilities over BIT. The acceptance
controller has two roles, (a) dynamic addition and removal
of the tests that the component will use to validate the con-
text it is deployed in, and (b) receiving notifications inform-
ing that a part of the architecture has been changed and
needs re-checking. Figure 1 shows the basic UML repre-
sentation of an ATLAS component, with a port for testing
and a port for acceptance. The normal service ports and
interfaces (i.e. the component’s proper functionality) are
component-dependant. They are labelled Provided and
Required.

Acceptance

Provided Required

Testing

AcceptanceController

TestingController

AtlasComponent

Figure 1. A generic UML Atlas component

In order to make the definition of tests as flexible and
generic as possible, ATLAS also defines the concept of Ac-
ceptance Providers: special components dedicated to test
other components. Each acceptance provider is available
for all the components in the system, and it is targeted to one
specific type of test (e.g.: JUnit, TTCN-3). What exactly an
acceptance provider can test, depends on the technology it
relies on. It can be designed to test functional (the outputs
generated from specific inputs), as well as non-functional
(e.g.: execution time, memory usage) properties.

The generic UML representation of an acceptance
provider and test component is depicted in Figure 2. The
testing port interface, which requires the TestingController
interface of the component under test, is used for set up and
clean up tasks. The Provider port is designed to be ac-
cessed by the framework components that issue the tests.
As we will later see, in our implementation this is the task
of the Management Console. No assumption is made nei-
ther about the way the provider and test components inter-
act nor how test components look like. In the figure we
show a test component that provides and requires the same
interfaces as the ATLAS component that requires this test
(e.g. AtlasComponent in Fig. 1), and “impersonates”
the component during testing. This corresponds to the way
in which tests in the example in Section 5 are designed.

ProviderAtlasProvider

AcceptanceProvider

TestingControllerTesting

TestComponent

Provided Required

<<create>>

Figure 2. Atlas Provider in UML

The usual usage scenario starts with a component that
needs to check the components on which it depends, ei-
ther just after deployment, or after a modification of the
system. The system integrator will see this, and use the
Management Console to issue requests to the appropriate
acceptance providers. The providers will create the corre-
sponding test component, set up the test environment, fire
the test case, and collect the results when this has finished.

The tests run by acceptance providers can be hand-coded
specifically for one component or generated from compo-
nent models and specifications. It is also possible to write
or generate the tests in a notation dedicated to testing, such
as TTCN-3 or the UML Testing Profile, and then have a
generic tester component read these specifications and run
the tests [12].

4.1. Interface Specifications

The most important part in the ATLAS Framework is
the AcceptanceController interface. It defines three
operations to query, add and remove test requirements.
Test Requirements are descriptions of tests that have to be
run when something changes. They contain information
about what test component to use, results of past runs, and
whether the test is pending, i.e. it has to be tested again or
not.

It further defines two other operations: isAccepted
and notifyChange. The first one returns true if no re-
quirement is pending, and all of them have passed in their
last run. Calling the second operation informs the compo-
nent that there has been a change in its context (i.e. every
part of the system which might influence directly or indi-
rectly the component’s behaviour, typically the components
from which it requires services and the platform). These
changes are usually architectural modifications [19] that af-
fect the component’s context. However, they can also be
generated, for example, in case of a degradation of the per-
formance of one of the component’s servers. A call to this
operation invalidates all test requirements, setting them as
pending.

The AtlasProvider interface is much simpler. It
has only one operation: check, that receives as parame-
ters the test requirement to be checked (which is provider-

3

SERG González, Piel, Gross – Arch. Supp. for Runtime Integration and Verification of Component-based SoS

TUD-SERG-2008-007 3



dependent), and the component that contains the require-
ment (so that its context can be passed to the test compo-
nent).

The TestingController provides a number of op-
erations to let a component be aware of the testing process,
so that testing does not interfere with the normal working
of the component. In particular, it permits the component to
tell whether a call originates from the working or the testing
configuration. It also provides operations such as begin
and end for setup and cleanup of the component’s internal
state.

4.2. Implementation in Fractal

An implementation of the ATLAS framework specifica-
tion has been developed based on the Fractal component
model [5]. Instead of implementing the acceptance and
testability features directly as interfaces in the functional
components, we have exploited the possibility to wrap com-
ponents using “component membranes” offered by Fractal.
Membranes encase components, adding special controller
objects that can be used to manage infrastructural aspects
of a component, such as binding, content and life cycle.
Membranes provide a convenient way of adding our spe-
cial ports to the Fractal component platform, so that com-
ponent developers do not have to care about these additional
aspects, consequently enabling a more clear separation be-
tween functionality and testability.

The current implementation of ATLAS takes into account
the following set of architectural modifications to trigger
notifications: instantiation of a component; addition of a
component to a composite component; removal from the
composite component; binding of a required interface; un-
binding of a required interface. This has been achieved by
programming an extension of the behaviour of the standard
Fractal Binding and Content controllers [5], so that they call
notifyChange.

Currently, to keep the implementation simple, the com-
ponent framework only allows modifications of the archi-
tecture if the components are in stopped state (paused).
Therefore, to ensure all tests have passed in the current
implementation, we do not allow components to transition
to started state unless all of their test requirements (and
all their children’s in case of composite components) are
marked as passed. The behaviour of Fractal’s standard Life-
Cycle controller [5] has been extended to provide this func-
tionality.

So far, we have focused on devising and validating the
architecture of ATLAS and the management of test require-
ments. The testing port of the ATLAS model, used to make
the component test-aware during runtime testing, has not
yet been fully implemented. For now, the components un-
der test are duplicated by the acceptance provider so that the

tests do not disrupt the working configuration.

ADL Extension. In order to allow an easy association of
components to test requirements, we extended Fractal’s Ar-
chitectural Description Language (ADL) parser to permit
the specification of test requirements inside components.
Each requirement is expressed as one additional informa-
tion about the component. An example of a component’s
architectural description is presented in Listing 1. It shows
how to specify test requirements (the test tag), indicating
which test infrastructure has to be used (the provider
attribute) and which test definition has to be loaded by
the provider (the definition attribute) In this example
we are using an tester component called MonitorTest,
which is supported by the JUnit acceptance provider ex-
plained in the following Section.

When a component is instantiated, our extension of the
ADL compiler will use the AcceptanceController
interface of the component to add the specified test require-
ments before the component is started.

<definition name="Visualiser">
<interface name="monitor" role="client"

signature="AISMonitor" />
<test provider="JUnit"

definition="DupTest" />
<test provider="JUnit"

definition="MonitorTest" />
<content class="Visualiser" />

</definition>

Listing 1. Test requirements in the ADL file

JUnit Provider. JUnit [2] is a well-known and widely
supported testing framework. We have implemented an ac-
ceptance provider based on it, that adapts the way test cases
are normally written for it. This adapts the way in which
tests are run in JUnit, to the requirements of runtime inte-
gration testing.

Traditional JUnit tests are different in comparison with
integration tests, in that they have to create their own test
system, whereas in runtime testing, the test system is al-
ready running. Hence, a new type of test case was defined,
that is able to access the running system. Note that, in the
current implementation, the system they access is a copy
of the original one, created by the provider. By simulating
how the component would use its context, the JUnit test is
then able to do integration testing. The results obtained can
be further analysed by tools cooperating with JUnit such as
IBM’s Eclipse [1].

Management Console. Finally, in order to provide a
graphical overview of the acceptance status for all the com-

4

González, Piel, Gross – Arch. Supp. for Runtime Integration and Verification of Component-based SoS SERG

4 TUD-SERG-2008-007



(a) Management console (b) AIS Visualiser screen

Figure 3. Screen captures of the Management Console and the example system interface.

ponents of the system, we have extended the Fractal man-
agement console to support querying the acceptance con-
troller interface, and interpreting test results from JUnit.
Our tool also provides a way to access all the aspects that
are not yet automated, like instantiating the acceptance
providers, querying the acceptance controllers and starting
tests. The management console is shown in Figure 3a. In
the left pane, the acceptance status of each component is
displayed. A detailed report of the selected test requirement
is shown on the right hand side pane. How the console is
used during testing, is depicted in Figures 4b and 5, and
explained in the next Section.

5. Case Study: Join and Leave of AIS Monitors

To demonstrate the process of integration testing and to
validate our proposal on a realistic scenario, we will present
an experiment with a sub-system component leaving the
MSS SoS and a new one joining it. This scenario repre-
sents a system re-configuration during operation. We show
the integration and verification procedure and the artefacts
to be provided by the framework in order to be able to per-
form the modification of the system at runtime. This exper-
iment focuses on the integration verification of one given
component in a new context.

5.1. AIS: Automatic Identification System

The Automatic Identification System (AIS) is a world-
wide adopted International Telecommunication Union stan-
dard used for vessel identification [15]. Ships broadcast
over radio information about their status and position with
a variable report rate that depends on various parameters of
the ship. Several AIS base stations are distributed along the
coast of The Netherlands. The messages received by these
stations are then relayed to the coast authority, who can then

use the data for traffic control, collision avoidance, and as-
sistance. One particular automated task is the monitoring
of the messages to identify ships with a malfunctioning AIS
transponder, or ships whose captain has forgotten to cor-
rectly adjust the transmitted information.

For our experiment, we will use a simulator which re-
plays a dump of a week’s worth of AIS data covering the
whole coast of The Netherlands. Because AIS messages are
broadcasted and can be received by many base stations, du-
plicates of the same message will be received. Our recorded
data is no exception to this.

5.2. Case Study

In our experiments we used an example system com-
posed initially of three components, shown in Figure 4a.
It comprises a replayer component, a visualiser component
and an AIS conformance monitor. The visualiser receives
AIS data coming from the base stations through the AIS
Base port, and draws the position of the ships on screen. It
has an additional Monitor port for connecting a monitor-
ing component that detects anomalies in the AIS messages.
Anomalies in the AIS data will be displayed on the map as
a warning message next to the ship. The anomalies being
watched are of two kinds: inconsistencies in the data, and
incorrect transmission rates of the AIS messages. Figure 3b
shows what an operator would see in the control room.

5.2.1 Initial Deployment

Using the ATLAS management console (shown in Fig-
ure 3a), the three initial system components are instantiated.
Two test requirements are associated with the visualiser via
the acceptance interface, as can be seen in the UML 2.0 di-
agram note in Figure 4a. The first one checks that when
the AIS stream contains no duplicates, the right warnings

5

SERG González, Piel, Gross – Arch. Supp. for Runtime Integration and Verification of Component-based SoS

TUD-SERG-2008-007 5



Monitor

AIS Visualiser

AIS Base Source

Monitor

Mon. 1

Replayer

Monitor

AIS Visualiser

AIS Base

Filter Mon. 2

MonitorIn Out

Source

Replayer

Acceptance

Acceptance

Mon2Test
DupTest

Mon1Test
DupTest

Replaced tests

Monitor

AIS Visualiser

AIS Base

Filter Mon. 2

MonitorIn Out

Source

Replayer

Mon2Test
DupTest

Mon. 2

Monitor

Test

Manager

Filter

In OutTesting

Provider

AcceptanceController

(a) Initial configuration

(b) Test context during verification(c) Final configuration

JUnitP

Provider

<<create>>

Figure 4. Component diagram before, during, and after the replacement of the monitor.

are generated; the second one checks that the monitor can
correctly handle duplicate messages.

Before initiating the system operation by starting every
component, both test requirements have to be checked. As
both tests have been successfully executed, the system is al-
lowed to start. Should a test fail, it is still the architect’s re-
sponsibility to decide what actions to take to solve the situ-
ation. A scenario of this situation is shown in Section 5.2.2.

5.2.2 Rejected Modification

The first version of the monitor had been developed to check
strict compliance to the AIS standard. However, in practice
the monitor overwhelms the visualiser with too many warn-
ings, rendering it useless for the operator. This comes as
the result of the combination of a number of factors, that in-
clude skewed timing information caused by delays in the re-
laying between the base stations and the central coastguard
facilities, and AIS transponder misuses and abuses by the
ship’s captains [13]. In this case, we cannot make the rest
of the system adapt to the component since we have no au-
thority over ships, nor the AIS relay network. Instead, we
decide to replace the monitor by a more relaxed one, that
only reports in case of a clear violation of the AIS regula-
tions. This represents a runtime evolution of the system.

Because the expectations on the warnings generated by
the monitor change, the test requirements have to change
accordingly. Therefore, the first test suite is removed, and a
new, adapted one is inserted using the acceptance controller
of visualiser. Replacing the first monitor by the second
monitor causes the acceptance interface of the visualiser to
receive the notifyChange call, which invalidates the test
requirements. If we want to start the components again,
we must re-check them. Unfortunately, when they were
checked again, the second test requirement was not satis-
fied, because the new monitor does not handle duplicates
correctly. As pointed out in Section 5.2.1, a decision must
be made on which part of the system should be adapted. In
this case, inserting a new component to perform the missing

functionality, as seen in Section 5.2.3.
Due to space constraints, this intermediate configuration

is not shown in Figure 4. A sequence diagram showing
the interactions during the testing process can be seen in
Figure 5. As noted on Section 4, the Management Con-
sole queries the acceptance interface of the component, cre-
ates the corresponding provider and requests the test to be
checked. When the check finishes, the result of the test is
stored back in the requirement. This is done in a completely
automated way.

5.2.3 Accepted Modification

In order to solve the component rejection problem, the du-
plicate filtering functionality of the first monitor was ex-
tracted as a separate component, and added as a preprocess-
ing component before the monitor. This invalidates the test
requirements in the visualiser once more (although one of
them was already invalid as it failed in the previous config-
uration).

After this change, the testing process is run again. Fig-
ure 4b shows the relationship between the manager and the
acceptance controller of the visualiser, as well as the testing
context set up by the provider during the testing process. It
depicts the current status of the implementation, in which
the testing context is replicated for each test case. In this
case, both test requirements are satisfied. The modification
is therefore accepted and the operation of the system is al-
lowed to resume under this third configuration. The final
configuration of the system corresponds to the one in Fig-
ure 4c.

5.3. Evaluation

The experiments performed must be regarded as a proof
of concept. Although they are simple, they demonstrate the
usability of our proposed process to verify the integration
of a given component into a specific context, made of other

6

González, Piel, Gross – Arch. Supp. for Runtime Integration and Verification of Component-based SoS SERG

6 TUD-SERG-2008-007



:Manager cut:Visualiser :Provider :Test

getRequirements()

<<create>>

result = check(cut, def)

<<create>>

loop [for each]

invoking
test methods

:Requirement

getProvider()

duplication
of context

setResult(result)

:Monitor2

<<create>>

provider
dependent

def = getDefinition()

Figure 5. Sequence diagram of the test process in the current implementation.

components. Each component can have a set of require-
ments easily associated with it, and those can be automati-
cally managed by the same platform that manages the com-
ponent integration. The framework also handles the initial-
isation of the system under test, which simplifies the defini-
tion of test cases, focusing on the test scenario. Still, there
are plenty of issues that need further attention, especially
with regard to runtime testing and scaling our approach to a
complex system.

We have shown how ATLAS and its extension of the BIT
paradigm provide a base to automate the runtime integration
and verification of an entire component-based MSS System-
of-Systems. Still, the creation of the test cases, is not auto-
mated.

An advantage of this approach, as shown in the second
experiment, is that the acceptance interface allows us not
only to query and check the required tests at instantiation of
a component, but also to replace them, as it is in the case
of the second experiment. The acceptance controller can be
used to add new requirements or remove obsolete ones dur-
ing the execution of the system, therefore making sure the
SoS requirements are able to evolve and change during run-
time. Implementing a component can be done completely
independently from the requirement definition.

Adding our verification infrastructure in a transparent
way has proved to be fairly straight-forward thanks to Frac-
tal’s introspection and extensibility capabilities. The fact
that the automatic integration and verification mechanisms
are added at runtime by Fractal to the components saves
development effort and cleanly separates testability and ac-
ceptance mechanisms from the functionalities of the com-
ponents. That said, ATLAS can be implemented in other
component frameworks without much effort, as it relies on
constructs present in most of them, such as interfaces, ports,

method calls and component instantiation.

6. Summary, Conclusions and Future Work

In this paper, we have presented some of the challenges
of the integration and verification of large-scale component-
based systems, such as MSS systems. We have described
ATLAS, our solution architecture based on Built-In Testing.
ATLAS not only permits to associate each component with
a set of test cases and dedicated interfaces to request testing
of other components, but also permits these requirements to
evolve dynamically with the system. While the original idea
of BIT was component integration testing at development-
time configuration, before deployment, we have shown in
our example case that, with ATLAS, this can be done during
deployment of a system, as runtime integration testing.

Although, in the current implementation we have
avoided the problems caused by runtime testing, through
replicating the components, these effects are important to
consider. When components are tested during runtime it is
likely that side effects of the tests will propagate into the
rest of the system. Our future work on the implementation
will ensure that every component can be made test-aware
and that it is an easy task for the developer.

In our future work we will also study the usage of our
approach in large-scale systems formed by a large number
of components contained within relatively independent sub-
systems. The following primary issues will have to be con-
sidered.

The first issue concerns the “domino effect”: when a
binding or a component is modified, the modification can
potentially affect every component directly or indirectly
linked to it, as well as all the composite components that
contain this affected components. This means devising a

7

SERG González, Piel, Gross – Arch. Supp. for Runtime Integration and Verification of Component-based SoS

TUD-SERG-2008-007 7



mechanism to notify components other than those adjacent
to the modification, in a scalable and distributed way.

Secondly, since analysing and performing the necessary
verification of the whole system is a costly operation, min-
imizing the disturbance caused by runtime testing will be
essential. This means to reduce the number of tests being
performed. One of the possibilities is to exploit the fact
that between two system configurations, the difference is lit-
tle and the previous configuration has already been entirely
tested. If the notifications carry fine-grained information
about what part of the system has changed, the re-checking
of test cases can be reduced to only those which exercise
the affected part, reducing the cost of the runtime regres-
sion testing.

It is also possible to entirely automate the testing pro-
cess. After a change notification has been received, the test-
ing can be started right away by components themselves (in-
stead of by the system integrator). However, several aspects
must be taken care of. If the reconfiguration involves multi-
ple modifications, usually only the final configuration has to
be tested. The testing must also be ordered in a way that al-
lows to find errors more efficiently, reason about them more
effectively, and avoid the system to be suddenly flooded
with tests.

Another work direction is the inclusion of support for
verification of non-functional requirements, such as re-
source consumption, execution time, etc. Finally, we will
also ensure the applicability of ATLAS to architectures
other than client-server, such as publish-subscribe architec-
tures, which present their own challenges in the testing pro-
cess [17].

Acknowledgements. This work has been carried out as
part of the Poseidon project under the responsibility of the
Embedded Systems Institute (ESI), Eindhoven, The Nether-
lands. We want to thank Niels Willems of the visualization
group of Eindhoven University of Technology, for letting
us use his AISPlotter visualiser component in our example.
This project is partially supported by the Dutch Ministry of
Economic Affairs under the BSIK03021 program.

References

[1] Eclipse. http://www.eclipse.org.
[2] JUnit. http://www.junit.org.
[3] A. Bertolino and A. Polini. A framework for component

deployment testing. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages
221–231, Washington, DC, USA, 2003. IEEE Computer So-
ciety.

[4] D. Brenner, C. Atkinson, R. Malaka, M. Merdes, B. Paech,
and D. Suliman. Reducing verification effort in component-
based software engineering through built-in testing. Infor-
mation System Frontiers, 9(2–3):151–162, 2007.

[5] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B.
Stefani. An open component model and its support in java.
In I. Crnkovic, J. A. Stafford, H. W. Schmidt, and K. C.
Wallnau, editors, CBSE, volume 3054 of Lecture Notes in
Computer Science, pages 7–22. Springer, 2004.

[6] D. Deveaux and P. Collet. Specification of a contract based
built-in test framework for fractal, 2006.

[7] Embedded Systems Institute. The poseidon project.
http://www.esi.nl/poseidon, 2007.

[8] EU Commission. An integrated maritime policy for the
european union. European Commission, Maritime Affairs,
Oct. 2007.

[9] D. Fisher. An emergent perspective on interoperation in sys-
tems of systems. Technical Report CMU/SEI-TR-2006-003,
Software Engineering Institute, 2006.

[10] H.-G. Gross. Component-Based Software Testing with UML.
Springer, Heidelberg, 2005.

[11] H.-G. Gross, M. Melideo, and A. Sillitti. Self-certification
and trust in component procurement. Science of Computer
Programming, 56(1–2):141–156, Apr. 2005.

[12] H.-G. Gross, I. Schieferdecker, and G. Din. Model-based
built-in tests. Electronic Notes in Theoretical Computer Sci-
ence, 111(1):161–182, 2005.

[13] A. Harati-Mokhtari, A. Wall, P. Brooks, and J. Wang. Au-
tomatic Identification System (AIS): Data reliability and hu-
man error implications. Journal of Navigation, pages 373–
389, 2007.

[14] J. Hartmann, M. Vieira, H. Foster, and A. Ruder. A UML-
based approach to system testing. Innovations in Systems
and Software Engineering, 1(1):12–24, 2005.

[15] International Telecommunication Union. Recommendation
ITU-R M.1371-1, 2001.

[16] M. W. Maier. Architecting principles for systems-of-
systems. Systems Engineering, 1(4):267–284, 1998.

[17] A. Michlmayr, P. Fenkam, and S. Dustdar. Specification-
based unit testing of publish/subscribe applications. In
ICDCSW ’06: Proceedings of the 26th IEEE International
Conference Workshops on Distributed Computing Systems,
page 34, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[18] J. Morris, G. Lee, K. Parker, G. A. Bundell, and C. P. Lam.
Software component certification. Computer, 34(9):30–36,
2001.

[19] P. Oreizy, N. Medvidovic, and R. N. Taylor. Architecture-
based runtime software evolution. In ICSE ’98: Proceedings
of the 20th international conference on Software engineer-
ing, pages 177–186, Washington, DC, USA, 1998. IEEE
Computer Society.

[20] D. Suliman, B. Paech, L. Borner, C. Atkinson, D. Brenner,
M. Merdes, and R. Malaka. The MORABIT approach to
runtime component testing. In 30th Annual International
Computer Software and Applications Conference, volume 2,
pages 171–176, Sept. 2006.

[21] J. Vincent, G. King, P. Lay, and J. Kinghorn. Principles of
Built-In-Test for Run-Time-Testability in component-based
software systems. Software Quality Journal, 10(2):115–133,
2002.

[22] E. J. Weyuker. Testing component-based software: A cau-
tionary tale. IEEE Softw., 15(5):54–59, 1998.

8

González, Piel, Gross – Arch. Supp. for Runtime Integration and Verification of Component-based SoS SERG

8 TUD-SERG-2008-007





TUD-SERG-2008-007
ISSN 1872-5392 SERG


