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Abstract: Flexible dynamics in motion systems lead to inherent spatio-temporal system
behavior. The aim of this paper is to develop an unified approach for the identification of modal
models of spatio-temporal overactuated systems. The approach exploits the modal modeling
framework and the overactuated setting to enhance the estimation of the spatial system
behavior. The proposed approach is applied in an experimental case study. The case study
considers an experimental overactuated stage and illustrates the effectiveness of the proposed

approach.
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1. INTRODUCTION

Stringent demands regarding performance in mechatronic
systems require the flexible dynamic behavior to be ad-
dressed explicitly in the control design (Oomen, 2018).
A crucial application includes adaptive optics in satellite
communication and astronomy (Kuiper et al., 2018; Beck-
ers, 1993; Booth, 2007; Roddier, 1999). Adaptive optics
is used to compensate for atmospheric distortions in the
incoming wavefront (Yu and Verhaegen, 2017). A key
component in adaptive optics is the deformable mirror, see
Figure 1. The deformable mirror contains a large number
of spatially distributed actuators that enable the deforma-
tion of the mirror face sheet. Traditionally, the deformable
mirror can be accurately described by an influence matrix,
i.e. static gains, in the frequency range that is relevant
for control (Yu and Verhaegen, 2017). When this static
assumption is valid, static decentralized controllers can
be used. However, the stringent performance requirements
and the increasing size of the deformable mirrors results
in the flexible dynamics being present within the control
bandwidth. As a consequence, the static modeling assump-
tion is no longer valid and the flexible dynamics need to
be addressed explicitly in the control design (Balas and
Doyle, 1994).

The flexible dynamics in next-generation motion systems
lead to spatio-temporal system behavior that needs to be
controlled with a large number of spatially distributed

* This work is part of the research programme VIDI with project
number 15698, which is (partly) financed by the Netherlands Organ-
isation for Scientific Research (NWO).

actuators. At the same time, the measured positions do
not necessarily coincide with the positions of interest.
Furthermore, the number of sensors that measure the
deformation of the deformable mirror is limited with
respect to the number of actuators. An approach that deals
with such spatial-temporal control problems is inferential
control (Oomen et al., 2014a). This control approach
necessitates accurate models that incorporate the spatio-
temporal system behavior. Inevitably, inferential control
relies on accurate modeling techniques that capture the
spatio-temporal nature of the flexible dynamic behavior
(Voorhoeve et al., 2020; Tacx and Oomen, 2022; Voorhoeve
et al., 2016).

A key challenge for next-generation motion systems is
the modeling of the spatio-temporal flexible dynamics
(da Silva et al., 2008). Traditional parametric and non-
parametric identification approaches aim to identify the
temporal behavior of the flexible dynamics (Van de Wal
et al., 2002). Consequently, the response of the system
is modeled at the limited number of sensor locations. As
a result, the flexible dynamic behavior is estimated at a
limited spatial grid which limits the understanding of the
position-dependency of the flexible dynamic behavior.

Spatio-temporal systems are modeled with LPV tech-
niques in Van Wingerden and Verhaegen (2009); Bamieh
and Giarre (2002). Alternatively, in Voorhoeve et al.
(2020), an approach is proposed to identify spatio-
temporal mechanical models. However, a key drawback
of these LPV techniques is that the spatial component
is solely based on the limited amount of sensor locations.

2405-8963 Copyright © 2023 The Authors. This is an open access article under the CC BY-NC-ND license.
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Fig. 1. Working principle of adaptive optics (AO) in a
ground-based telescope. The incoming sample wave-
front is distorted due to atmospheric turbulence.
These atmospheric distortions are corrected by an
adaptive optics system consisting of a deformable
mirror (DM) and a wavefront sensor (WFS) before
the imaging takes place.

This limitation in existing linear parameter varying mod-
eling techniques for motion systems underlines the impor-
tance of exploiting prior knowledge in the identification
of the spatio-temporal behavior of next-generation motion
systems.

Although identifying the spatio-temporal behavior of mo-
tion systems is essential for the control of next-generation
motion systems, and several results are present to identify
such models, at present, a method that allows for accurate
and practical identification of the spatio-temporal behav-
ior with a limited number of sensors is not available. The
aim of this paper is to introduce a unified approach for the
identification of the spatio-temporal system behavior for
the control of next-generation overactuated motion sys-
tems with a limited amount of sensors. This is achieved by
exploiting prior mechanical system knowledge, i.e. exploit-
ing the overactuated setting of next-generation motion
systems. Related work includes the field of experimental
modal analysis and the Maxwell-Betti reciprocal work
theorem, see e.g. (Maxwell, 1864; Betti, 1872; Gawronski,
2004; Ghali and Neville, 1972). In contrast to the field of
experimental modal analysis, this paper aims to identify
and reconstruct the spatio-temporal behavior for spatio-
temporal control of overactuated systems with a limited
number of sensors.

The main contribution of this paper is the development of
a unified approach for the identification and reconstruction
of spatio-temporal system dynamics in next-generation
motion systems with a limited number of sensors. In ad-
dition, an experimental case-study with an experimental
overactuated beam setup which is representative of next-
generation overactuated motion systems confirms the ef-
fectiveness of the proposed approach.

The paper is organized as follows. Section 2 describes the
industrial application motivation and the problem formu-
lation. In Section 3, the proposed modeling framework
is introduced. An experimental case study is presented
in Section 4 to illustrate the proposed approach. The
conclusions are provided in Section 5.
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Fig. 2. Computer render of a deformable mirror designed
by TNO. The deformable mirror is designed for the
University of Hawai’i 88-inch telescope.

2. SYSTEM DESCRIPTION

In Figure 2, a next-generation deformable mirror is de-
picted. Compared to an earlier version of the deformable
mirror see e.g. Hamelinck et al. (2008), the deformable mir-
ror depicted in Figure 2 has an increased diameter which
leads to flexible dynamics being present within the control
bandwidth. Also, the number of actuators increased to
207. Furthermore, for a future observatory engineers are
planning to build a deformable mirror with approximately
2000 actuators.

The increasing complexity necessitates the need for mod-
eling the flexible dynamic behavior explicitly. If the de-
formable mirror is integrated into a telescope, the large
grid of the wavefront sensor can be used for system iden-
tification. However, to focus specifically on the flexible
dynamic behavior and to validate the deformable mirror
design, the deformable mirror is identified before integra-
tion in the telescope. As a consequence, a limited amount
of position sensors can be located in front of the mirror
face sheet during experimentation. In addition, global con-
trol performance is required on the mirror surface. As a
consequence, the performance variables and the measured
variables do not necessarily coincide. As a consequence,
a spatio-temporal control problem is encountered. This
motivates the identification of a spatio-temporal model
with a limited amount of sensors.

The aim of this paper is to identify the spatio-temporal
behavior of overactuated motion systems by exploiting
prior mechanical system knowledge. A frequency-domain-
based approach is pursued, and the structure of mechanical
systems is exploited to reconstruct the temporal behavior
at an increased set of spatial locations.

3. APPROACH

In this section, the method for identifying the spatio-
temporal behavior in next-generation motion systems is
introduced. First, the modeling of flexible structures is
discussed. Second, the modal form of mechanical systems is
introduced. Lastly, the approach for identifying the spatio-
temporal behavior of next-generation motion systems is
introduced, which constitutes contribution C.1.
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3.1 Modeling Flexible Structures

The aim of this paper is to address high-precision motion
systems, which are typically designed for linear system
dynamics, e.g. low damping, lack of backlash, and lack
of friction. For this reason, the flexible dynamics are
dominating the overall system dynamics which allow these
systems to be modeled as a flexible body.

The key variable is the out-of-plane deformation u(p,t) €
R which is defined by partial differential equations
Gawronski (2004). The spatial domain S € R? of the vari-
able p is the three-dimensional point in the geometry of the
flexible body. The spatio-temporal behavior is typically
described by space-time-separated basis functions

MNm

> wi(p)a(). (1)
k=1

The temporal contribution is determined by the gener-
alized coordinates q(t) and the spatial contribution is
determined by wg(p). The solution in Eq. (1) converges
for n,, — oo for appropriate basis functions. Analytical
solutions are not available in general and only exist for
specific cases. For this reason, the solution often is limited
to finite element method-based models that use a finite set
of points in space. Given the separation of space and time
in Eq. (1), the dynamics can be formulated as a coupled
set of second-order ordinary differential equations

u(p,t) =

Mg+ Dg+ Kq= f(t) (2)
where the mass matrix M € R™m*"m ig positive definite,
D € R *™m denotes the damping matrix, K € R"m*"m
the stiffness matrix, and f(t) € R"*! the input function
at actuation locations p, = {pa1, .- Pan.} C S.

In order to address the global system dynamics explicitly,
the modeling of mechanical systems should focus specifi-
cally on global structure variables, i.e. the modal param-
eters. The modal parameters include the eigenfrequencies
wy and modeshapes ¢x(p) : S — R. These modal param-
eters are obtained by solving the undamped generalized
eigenvalue problem

[K - WI%M] (ba,k =0. (3)
The eigenvalues, w,%, are the squared undamped eigen-
frequencies and the eigenvectors ¢, denote the mode-
shape sampled at the actuator locations, i.e. &a,k =

[0k(Pa,1), s Pk(pan,)]. Throughout this paper,
mass-normalized generalized eigenvectors are considered.

The coupled set of differential equations in Eq. (2) can
be decoupled by introducing the coordinate transforma-
tion to modal coordinates, i.e. ¢ = ®n, where ¢, =
[¢a,1,...,¢a7na]. Substituting the coordinate transforma-

tion and multiplying Eq. (2) with ®, leads to

Iﬁ'i_Dmﬁ"_Kmn:q);f(t)’ (4)
Nm
u(p,t) = Z D ()i (t) (5)
k=1
where D,, = ®]D®, = diag(dmn.1,-dmn,), Km =

¢! K®, = diag (wf, e wna)z). In this paper, modal damp-
ing is considered which leads to the decoupled set of
differential equations in Eq. (4) and which is known to be
representative of many lightly-damped systems in practice.
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Motion systems including deformable mirrors measure the
spatio-temporal system behavior at a limited amount of
sensor locations. Consider a motion system G(s) € R"s*"=
with n, actuators at the actuator locations p, and ng
sensors located at ps = {ps1,..., psn.} C S. The finite
number of sensor locations and the application of the
modal expansion theorem allows the reformulation of the
system of equation in Eq. (4) to a summation of spatio-
temporal contributions

> ©
— §2 4+ dp ks + w3

where Ry denotes the modal participation matrix that is
based on the sampled modeshape vectors

Ry = és,k(blky (7)
Here, q?)a,k denotes the modeshape sampled at the actuator

locations, and ¢sx = [k (ps.1); -, Ok(pPsn.)] denotes the
modeshape sampled at the sensors.

G(s) =

Summarizing, the modal system description of mechanical
systems provides a significant amount of insight into the
flexible dynamics since the resulting set of decoupled
equations is directly related to the underlying flexible
dynamic behavior. Specifically, the modeshapes express
the manner in which the flexible dynamic behavior is
position dependent.

3.2 Identifying Mechanical Systems

The modeling of the spatio-temporal system dynamics
requires the identification of a parametric modal model

G(0, s) which is defined by the modal form in Eq. (6). The
parameterization is fully defined by the parameter vector

0 = vec {c_lm,fbm,‘i‘a,q)s} (8)
Here, the eigenfrequencies @w,, = [wm,l,---,wm,nm]» the

damping constants dp, = [dy.1, - dm.n,, ], and the mode-
shape vectors from the actuators ®, and the sensors ®5 =

[¢s,1» eeey d)s,ns} .

The key identification aim is to find the parameter vector
f that minimizes the Frobenius norm-based cost function

0 = arg meini HW(jwv) o (G‘(jwv) - @(Q,jwv)) Hi .

v=1

(9)
Here, W(jw,) denotes a frequency-dependent weighting
matrix and o denotes the Hadamard product. The modal
form G(6,s) is a non-linear function of the parameter
vector . For this reason, Eq. (9) is solved iteratively
using Sanathanan-Koerner iterations and Gauss-Newton
iterations, see e.g. Voorhoeve et al. (2020) for the details.

In view of identification for control, low-order models are
desired that are sufficiently accurate in the frequency
range of interest for control. This means that only a
limited number of modal coordinates n,, are required. In
sharp contrast, the modeling of the spatial component, i.e.
modeshape, ¢ (p) in Eq. (7) typically leads to high model
complexity. At the same time, the deformable mirror
contains only a limited number of ng sensor locations.
Thus, a limited portion of the spatial domain S is covered
which limits the spatial modeling of the flexible dynamics
of the mechanical systems. In the next subsection, an
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approach is proposed that allows for the evaluation of
the modeshape at an increased set of spatial locations by
combining sensor and actuator data.

3.8 Extending Modal Models

The main objective of this section is to introduce a unified
approach for the construction of spatio-temporal models
of overactuated motion systems with a limited number of
sensors. The key drawback of conventional spatio-temporal
modeling techniques is that these techniques fully rely
on the sensor data. The key idea in this paper is that
in the modal description, e.g. Eq. (6), the modeshape is
encountered twice. Specifically, the modeshape is sampled
at the sensor and actuator locations. To enhance the spa-
tial density of the estimated modeshape, the modeshapes
sampled by the sensors and actuators are combined

¢9Xt,k = ¢k: (pext) (10)

where pext = pa U ps denotes the combined actuator and
sensor location vector. The extended modeshape ¢ext i
provides additional information about the spatial nature
of the flexible dynamic behavior to the control and design
engineers.

Moreover, the combined sampled modeshape allows the
reconstruction of the spatio-temporal system behavior by
enhancing the spatial density of the modal description,
i.e. Eq. (6). This is achieved by the introduction of the
extended plant

Nm

o Rext k
Gouls) =Y 5otk 11
oxt(5) £ 5% dyy s + 07 (11)
Rext,k = ¢ext,k¢lk- (12)

The key step in the formulation of the extended plant is to
uniquely identify ¢ and ¢, from the rank-one matrix
Ry in Eq. (6). The key requirement is that at least one
collocated sensor is required to uniquely identify the mass-
normalized modeshapes. This means that p, N ps should
be a non-empty set. An additional requirement is that the
collocated sensor should not be located at a node of any
relevant modeshape.

4. EXPERIMENTAL CASE STUDY

In this section, the method proposed in this paper is
illustrated in an experimental case study. The case study
includes an experimental overactuated beam setup, see
Figure 3. The full-system behavior will be identified while
only using a single sensor. The case study encompasses all
steps from frequency response function identification to
the formulation of the extended plant. The experimental
setup is explained first. Second, the identification proce-
dure is discussed. Lastly, the extended plant is estimated
and the results are discussed. This section constitutes
contribution C.2.

4.1 Setup

The experimental overactuated beam setup is depicted in
Figure 3. The considered system is designed to exhibit
out-of-plane flexible dynamic behavior. For this reason,
this system is considered to be representative of next-
generation motion systems, including future deformable

8787

Fig. 3. Experimental overactuated beam setup. Three
degrees of freedom are constrained by four vertical
wire flexures, and one degree of freedom is constrained
by a horizontal wire flexure on the left. The beam
is actuated by three voice coil actuators (red), one
position sensor (blue) is considered by the proposed
method and 2 sensors (grey) are used for validation
purposes.

mirrors. The system consists of a flexible beam with di-
mensions 2 x 20 x 500 mm. The system operates in 2
degrees of freedom, one translation, and one rotation. Four
degrees of freedom are constrained by wire flexures. Due to
the limited out-of-plane stiffness of the beam, the system
contains a significant amount of flexible dynamics. The
system is operating with a sampling frequency of 4 kHz.
The setup is equipped with three voice-coil actuators and
five collocated fiber-optical sensors. To facilitate exposi-
tion, only the three collocated sensors are considered in
the experimental case study.

To illustrate the effectiveness of the proposed approach,
an overactuated setting with limited sensing capabilities
is created. Specifically, only the first position sensor is
used by the proposed method. It is emphasized that
the remaining two sensors are only used for validation
purposes.

4.2 Identification Procedure

The aim of this section is to identify the full system
behavior

Go = [ur us us]' = [y1 y2 3] (13)
while only having access to the first sensor, i.e.
T T
= [y (14)

This is achieved by applying the method proposed in
Section 3.

Gy = [u1 ug usg]

Step 1: Non-parametric model A frequency domain-
based procedure is pursued to identify a parametric model
of G;. To identify the model, first, a non-parametric
model is estimated. Since the system is stable, open-loop
experiments are performed. A ful-MIMO random phase
multisine with a flat amplitude spectrum is injected into
all inputs up to a frequency of 1000 Hz. The identified
element-wise Bode magnitude plot of the non-parametric
model of G; and the full system G, is depicted in Figure
4.

Step 2: Modal model  This subsection aims to identify
a parametric modal model of G;. Modal models are esti-
mated of the form
3 A
n Ry
G = _—
! ; $2 + dm s + W}

(15)
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Fig. 4. Element-wise Bode magnitude (left) and phase (right) plot of the non-parametric estimate of the full system G,
and the subset G, (grey), the parametric modal model of the subsystem Gy (blue), and extended plant Goxt (dashed
red). It is emphasized that the extended plant is estimated using the non-parametric estimate of the subsystem G|
only and the full system G, is only visualized for validation purposes.
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Fig. 5. The first (top), second (center), and third (bottom)
modeshape of the flexible beam. Visualized are the
modeshape based on the full system ¢, (grey),
the modeshape based on G in view of the actuators
¢ak (red) and sensors ¢g;x (blue). The position
coordinate p is normalized with respect to the length
of the beam.

Three modes are considered since the aim of this paper
is to identify the spatio-temporal behavior for the control
of next-generation motion systems. Specifically, the setup
considered in the case study contains three actuators,
hence, at most three modes can be explicitly controlled.
In addition, for control, low-order models are desired that
are sufficiently accurate in the control-relevant frequency
range Oomen et al. (2014b). For these reasons, the first
three modes are considered in this case study.

To identify the modal model in Eq. (15), the optimization
algorithm based on a weighted Frobenius norm-based cost
function in Eq. (9) is used. The weighting filter in Eq.
(9) is selected to emphasize accurate identification of the

flexible dynamic behavior. This is achieved by an inverse
weighting filter, see e.g. Voorhoeve et al. (2020). Alterna-
tively, control-relevant approaches may be considered to
identify low-order models in view of the control goal, see
e.g. Oomen et al. (2014b).

The resulting Bode plot of the modal model G, is depicted
in Figure 4. The Bode plot reveals that the modal model
accurately fits the frequency response measurement. How-
ever, the analysis of the modal model G, in the current
form is limited to a temporal analysis at the first sensor.
As a consequence, the spatial component of the flexible
dynamics is unclear.

Step 3: Extended model The key step in the reconstruc-
tion of the full system G, using the subsystem G is to
exploit the modal modeling framework. Since the first
sensor is collocated with the first actuator, the matrix Ry,
in Eq. (15) is uniquely decomposed into modeshape vectors

Rk = &s,k(};—,k (16)
where g?)ch € R and cﬁmk € R3. These modeshape vectors
are visualized in Figure 5. The extended plant is formu-
lated by combining the modeshapes in Eq. (16)

. Nm B 1 B
GCX == ex S . 7 9 T
t ;Qﬁ t7k32+dm,k3+wi¢a7k
where q@ext,k = (ﬁa,k. The resulting Bode plot is depicted
in Figure 4.

(17)

Spatio-temporal analysis When analyzing the non-
parametric estimate of G; in Figure 4, the analysis of the
flexible dynamic behavior is limited to a temporal analysis
in view of the first sensor only. In sharp contrast, the
approach proposed in this paper allows identifying the
full response Geyy by exploiting the modal framework.
In particular, the approach allows analyzing the spatio-
temporal behavior with limited sensing capabilities with
Figure 5 and 4.
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Firstly, it is observed that the first mode occurs at 2.5
Hz in Figure 4. The first modeshape in Figure 5 indicates
that the flexible beam is not deforming, i.e. a rigid-body
motion. Specifically, the beam is mainly translating with
a limited rotation which is an effect of the wire flexures
connected to the left of the beam, see Figure 3. Secondly,
the second mode occurs at 4 Hz which corresponds to the
second rigid-body mode. Figure 5 confirms the rigid-body
motion and indicates that the system is mainly rotating.
Interestingly, the second mode is almost not observable in
the second row and column of the Bode plot. This can
be explained by the second actuator being located at a
node of the second modeshape, see Figure 5. The third
mode occurs at 50 Hz. This mode corresponds to the first
bending mode of the flexible beam which is confirmed in
Figure 5.

5. CONCLUSIONS

The identification of the spatio-temporal behavior is an
essential step for the control of future motion systems,
especially motion systems with a limited sensing capac-
ity. This paper provides a unified approach for the iden-
tification the spatio-temporal system behavior of next-
generation motion systems, including the identification of
the flexible dynamic behavior of deformable mirrors, with
a limited number of sensor locations. An essential step
in the proposed approach is to exploit prior mechanical
systems knowledge which is incorporated into the modal
modeling framework. In particular, the overactuated set-
ting is used to gather additional knowledge regarding the
spatial system behavior. An experimental case study with
an experimental overactuated motion system is used to
illustrate the proposed approach.

The proposed modeling approach can be applied in various
applications including, e.g., position-dependent modeling
techniques, inferential control, and global spatio-temporal
feedforward control. The main benefit of the proposed
approach for these spatio-temporal modeling and control
techniques is the enhanced estimation of the spatial com-
ponent of the spatio-temporal system behavior, especially
for systems with a limited number of sensors.
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