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a b s t r a c t

The linear relation between Kemeny’s constant, a graph metric directly linked with
random walks, and the effective graph resistance in a regular graph has been an incentive
to calculate Kemeny’s constant for various networks. In this paper we consider complete
bipartite graphs, (generalized) windmill graphs and tree networks with large diameter
and give exact expressions of Kemeny’s constant. For non-regular graphs we propose two
approximations for Kemeny’s constant by adding to the effective graph resistance term
a linear term related to the degree heterogeneity in the graph. These approximations
are exact for complete bipartite graphs, but show some discrepancies for generalized
windmill and tree graphs. However, we show that a recently obtained upper-bound
for Kemeny’s constant in Wang et al. (2017) based on the pseudo inverse Laplacian
gives the exact value of Kemeny’s constant for generalized windmill graphs. Finally, we
have evaluated Kemeny’s constant, its two approximations and its upper bound, for 243
real-world networks. This evaluation reveals that the upper bound is tight, with average
relative error of only 0.73%. In most cases the upper bound clearly outperforms the other
two approximations.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Kemeny’s constant, a graph metric first proposed in 1960 [7], links random walks, Markov chains and spectral graph
theory, see for instance [12,14] and [19]. It has already been established that there are several equivalent ways to express
Kemeny’s constant: using effective graph resistance, random walks, spectral graph theory, pseudo inverse Laplacians,
see [6]. An extension of Kemeny’s constant to weighted networks (weighted Kemeny’s constant) has recently found
applications in robotics surveillance [16].

In this paper we consider undirected graphs G(N, L) with N nodes and L links. The adjacency matrix A of a graph G is
an N ×N symmetric matrix with elements aij that are either 1 or 0 depending on whether there is a link between nodes
i and j or not. The Laplacian matrix Q of G is an N × N symmetric matrix Q = ∆ − A, where ∆ = diag(di) is the N × N
diagonal degree matrix with the elements di =

∑N
j=1 aij.

A random walk on the graph G gives rise to a Markov chain, with transition probability matrix P satisfying P = ∆−1A.
The transition probability matrix P of a finite, irreducible Markov chain, and its steady state probability vector π and the
all-ones vector u, satisfy Pu = u and π TP = π T .
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Kemeny defined his constant, in terms of the matrix Z , which, for any two column vectors h and g such that the scalar
products hTu and π Tg are nonzero, is given by

Z ≡
(
I − P + ghT )−1

. (1)

The Kemeny constant is defined, in terms of the trace of the matrix Z , as

K (P) ≡ trace (Z) − π TZu. (2)

For a given transition probability matrix P and with hTg = 1, the Kemeny constant K (P) is the same regardless of the
choice of the matrix Z defined above.

A direct relation between Kemeny’s constant and random walks was given by Kemeny and Snell [7]. In fact, they state
that the expression K̃ defined as

K̃ (P) =

N∑
i=1

πimji, (3)

where πi denotes the stationary probability for node i and mji denotes the mean first passage time (the expected number
of steps before node i is visited, starting from node j), is a constant and hence independent of the starting position j.

The relation between K̃ and K is given by

K̃ (P) = K (P) + 1. (4)

Combining Eqs. (3) and (4) we get

K (P) =

N∑
i=1

πimji − 1. (5)

It is a bit confusing that there are actually two definitions for Kemeny’s constant. This is due to the fact that for
ergodic Markov chains {Xn}, there are two different but related random variables involving time. Hitting time is defined
as Ti = min{n ≥ 0 : Xn = i}, while the recurrence time is given by T+

i = min{n ≥ 1 : Xn = i}. Clearly, E[Ti] = 0 while
E[T+

i ] ≥ 1. It is well-known, see [12], that E[T+

i ] =
1
πi
. Therefore πiE[Ti] = 0 whereas πiE[T+

i ] = 1, while both quantities
may be equivocally be denoted as πimii. In this paper we will follow the definition as given by Eq. (2) for Kemeny’s
constant.

Since Eq. (3) is independent of j, by summing over all nodes, the ‘‘random surfer’’ interpretation of K̃ by Levene and
Loizou [11] follows:

K̃ (P) =

N∑
i=1

πi

∑N
j=1 mji

N
. (6)

Lovasz [12] showed that the right-hand side of (5) can be expressed in terms of the eigenvalues λ1, λ2 . . . λN of the
symmetric matrix S, defined as S = ∆−1/2A∆−1/2, where λ1 = 1 > λ2 ≥ λ2...λN ≥ −1:

K (P) =

N∑
k=2

1
1 − λk

. (7)

The relation between Kemeny’s constant and the effective graph resistance has been made explicit for regular graphs
by Palacios et al. [13]. Recently, Wang et al. [19] presented the following closed-form formula for Kemeny’s constant, in
terms of the Moore–Penrose pseudo inverse Q † of the Laplacian matrix,

K (P) = ζ Td −
dTQ †d
2L

, (8)

where the column vector ζ =

(
Q †
11, Q †

22, . . . , Q †
NN

)
and d = (d1, d2, . . . , dN ) denotes the degree vector for the graph.

In this paper we will determine Kemeny’s constant for a number of families of graphs and real-world networks, by
using either Eqs. (5), (7) or (8).
The paper is organized as follows. Section 2 presents analytic expressions for Kemeny’s constant for three graph families.
The relation between Kemeny’s constant and the effective graph resistance if further explored in Section 3. In Section 4
we evaluate an upper bound for Kemeny’s constant. Section 5 concludes the paper.

2. Graph families

In this section we derive analytic expressions for Kemeny’s constant for three different graph families.
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2.1. Complete bipartite graphs

We start with Kemeny’s constant for complete bipartite graphs, using Eq. (5). A complete bipartite graph KN1,N2 consists
of two disjoint sets S1 and S2 containing, respectively, N1 and N2 nodes, such that all nodes in S1 are connected to all nodes
in S2, while within each set no connections occur.

Theorem 1. Kemeny’s constant for the complete bipartite graph KN1,N2 is given by:

K (P) = N1 + N2 −
3
2
. (9)

Proof. We can prove the theorem from the definition of the Kemeny constant given in Eq. (5). For the complete bipartite
graph KN1,N2 the matrix P = ∆−1A reads

P =

(
0N1×N1

1
N1

JN1×N2
1
N2

JN2×N1 0N2×N2

)
(10)

where J denotes the all-ones matrix. The left-eigenvector of P with eigenvalue 1 is easily seen to be
π T

=

(
1

2N1
. . . 1

2N1
;

1
2N2

. . . 1
2N2

)
, which contains N1 times 1

2N1
and N2 times 1

2N2
We can now apply the definition given by Eq. (5). As the Kemeny constant does not depend on j, we may set j = 1,

which we assume corresponds to a node in the set S1. Then we find

K (P) =

N1+N2∑
i=1

πim1i − 1 =
1
2
m1S1 +

1
2
m1S2 − 1, (11)

where m1S1 denotes the mean passage time from node 1 (which belongs to S1) to a specific node in S1. Likewise, m1S2
denotes the mean passage time from node 1 to a specific node in S2. Then, conditioning on the first jump, we obtain

m1S2 =
1
N2

+ (1 −
1
N2

)(2 + m1S2 ), (12)

which leads to

m1S2 = 2N2 − 1, (13)

In a similar way we obtain

mS21 = 2N1 − 1, (14)

where mS21 denotes the mean passage time from any node in S2 to node 1 in S1. Finally,

m1S1 = 1 + mS21 = 1 + 2N1 − 1 = 2N1. (15)

Combining Eqs. (11), (13) and (15) gives

K (P) = N1 + N2 −
3
2
. □

2.2. Trees with a large diameter

In recent work [8] Kirkland and Zeng have derived a general expression for Kemeny’s constant on trees in terms of
the degree sequence and distance matrix, in order to demonstrate that Kemeny’s constant will increase upon inserting
an edge between so-called twin pendent vertices. The expression for K in [8] was only made explicit, in terms of the
number of nodes, for the path graph PN . Therefore, we give such explicit expressions for K for a number of trees with
large diameter here.
The path graph PN is obviously a tree with N nodes and diameter N − 1. To determine Kemeny’s constant for PN we use
Eq. (5). We will need the following well-known facts, see [12], about the stationary distribution π and the average return
time mii:

πi =
di
2L

, mii =
2L
di

. (16)

An expression for the mean hitting times for the path graph is also given in [12]: for 1 ≤ i < k ≤ N it satisfies:

mik = (k − 1)2 − (i − 1)2. (17)
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Fig. 1. The graph DN .

Fig. 2. The graph EN,2 .

Theorem 2. Kemeny’s constant for the path graph PN is given by:

K (P) =
1
3
N2

−
2
3
N +

1
2
. (18)

Proof. We apply Eq. (5) and take j = 1. Then, we have K (P) =
∑N

i=1 πim1i − 1 = π1m11 +
∑N−1

i=2 πim1i + πNm1N − 1.
Applying, Eqs. (16) and (17) this leads to K (P) =

1
N−1

∑N−1
i=2 (i − 1)2 +

1
2 (N − 1). Finally, using the identity

n∑
i=1

i2 =
n(n + 1)(2n + 1)

6
, (19)

leads to Eq. (18). □

Next we consider trees with diameter N − 2. First we look at trees which are sometimes denoted as DN , see [2]. The
graph consists of a path of length N − 2, with the nodes labeled, from left to right, from 1 to N − 1. Node N is connected
to node N − 2, see Fig. 1.

Theorem 3. Kemeny’s constant for the tree DN is given by:

K (P) =

2
3N

3
− 2N2

−
5
3N + 11

2(N − 1)
. (20)

Proof. Again we will apply Eq. (5) with j = 1, leading to K (P) =
∑N−3

i=2 πim1i + πN−2m1,N−2 + πN−1m1,N−1 + πNm1N .
Applying, Eqs. (16) and (17), and the observations that πN=1 = πN =

1
2N−1 and m1,N−1 = m1N , leads to K (P) =

1
N−1

∑N−3
i=2 (i − 1)2 + 3 (N−3)2

2(N−1) +
1

N−1m1N .
It is easy to see that m1N = m1,N−2 + mN−2,N . From Eq. (16) we have m1,N−2 = (N − 3)2. Because mN−2,N satisfies

mN,N = 1 + mN−2,N , where mN,N = 2(N − 1) according to Eq. (16), we have mN−2,N = 2N − 3. Using the above identities
and Eq. (19) leads to Eq. (20). □

Next we look at a broader class of trees with diameter N − 2, which we will denote as EN,M . The graph consists of a
path of length N − 2, with the nodes labeled, from left to right, from 1 to N − 1. Node N is connected to node N −M − 1.
For example, Fig. 2 displays the graph EN,2.

The path PN and the tree DN are special cases of EN,M , as PN = EN,0 and DN = EN,1.

Theorem 4. Kemeny’s constant for the tree EN,M is given by:

K (P) =
1
3
N2

−
2
3
N +

1
2

−
2(M(N − 3) − M(M − 1))

N − 1
. (21)

The proof of Theorem 4 is basically the same as the proof of Theorem 3, although a bit more elaborate. We leave it to
the reader as an exercise.

2.3. Generalized windmill graphs

In this subsection we will consider a generalization of the class of so-called windmill graphs. A windmill graph W (η, k)
consists of η copies of the complete graph Kk, with every node connected to a common node, see Fig. 3.

Recently Estrada [4] studied windmill graphs and showed that the clustering coefficient and the transitivity index of
such graphs diverge, when the graph size tends to infinity. It is shown in [4] that windmill graphs are better suited
to model certain real-world networks, then classical network models such as Erdős–Rényi and Barabási–Albert (BA)
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Fig. 3. Illustration of some windmill graphs W (η, k).

Fig. 4. Some generalized windmill graphs W ′(η, k, l) of Type I.

Fig. 5. Some generalized windmill graphs W ′′(η, k, l) of Type II.

networks. Estrada [4] also studied the spectra of the adjacency and the Laplacian matrices of these graphs. In this paper
we will determine Kemeny’s constant both for the windmill graphs and for two generalizations of these graphs, recently
suggested by Kooij [10]. Generalized windmill graphs can be used to described public transportation networks in so-called
P-space [10]. For both generalizations we replace the central node, connecting all η copies of the complete graph Kk, by l
central nodes. For the first generalization, we assume the l central nodes are all connected, i.e. they form a clique Kl. We
call this a generalized windmill graph of Type I and denote it by W ′(η, k, l). Obviously, it holds that W ′(η, k, 1) = W (η, k).
For the second generalization, we assume the l central nodes have no connections among each other. We will refer to it
as a generalized windmill graph of Type II and denote it by W ′′(η, k, l). Figs. 4 and 5 depict examples of the generalized
windmill graphs of Type I and II, respectively. Note that the generalized windmill graph of Type I was introduced recently
also independently by Estrada and Benzi [5], who refer to it as a core-satellite graph.
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We will now determine Kemeny’s constant for the generalized windmill graph W ′(η, k, l) of Type I. As a starting point
we will give the adjacency matrix for W ′(η, k, l) and denote it byA′(W ′).

A′(W ′(η, k, l)) =

⎡⎢⎢⎢⎣
(J − I)l×l Jl×k Jl×k . . . Jl×k

Jk×1 (J − I)k×k 0k×k . . . 0k×k
Jk×1 0k×k (J − I)k×k . . . . . .

. . . . . . . . . . . . . . .

Jk×1 0k×k . . . . . . (J − I)k×k

⎤⎥⎥⎥⎦ . (22)

The degree distribution for W ′(η, k, l) is bi-modal: the l core nodes all have degree dcore = ηk + l − 1, while the ηk
nodes in the η cliques have degree dclique = k − 1 + l.

From this it follows that the degree matrix ∆′ satisfies

∆′
=

[
dcoreIl×l 0l×ηk
0ηk×l dcliqueIηk×ηk

]
. (23)

Combining this with (22), we obtain the expression for the symmetric matrix S ′:

S ′
=

⎡⎢⎢⎢⎣
r(J − I)l×l sJl×k sJl×k . . . sJl×k

sJk×1 t(J − I)k×k 0k×k . . . 0k×k
sJk×1 0k×k t(J − I)k×k . . . . . .

. . . . . . . . . . . . . . .

sJk×1 0k×k . . . . . . t(J − I)k×k

⎤⎥⎥⎥⎦ . (24)

with r =
1

ηk+l−1 , s =
1

√
ηk+l−1

√
k−1+l

and t =
1

k−1+l .

Lemma 5. The spectrum of the matrix S ′
= (∆′)−1/2A′(∆′)−1/2, for the generalized windmill graph W ′(η, k, l) of Type I, is

{(−
1

k + l − 1
)η(k−1), (

k − 1
k + l − 1

)η−1, (−
1

ηk + l − 1
)l−1,

(
l − 1

ηk + l − 1
−

l
k + l − 1

)1, (1)1}
(25)

The proof of Lemma 5 is given in Appendix A.
We are now in the position to determine Kemeny’s constant for the generalized windmill graph of Type I.

Theorem 6. Kemeny’s constant for the generalized windmill graph of Type I W ′(η, k, l) is given by:

K (P) =
η(k − 1)(k + l − 1)

k + l
+

(η − 1)(k + l − 1)
l

+
(l − 1)(ηk + l − 1)

ηk + l

+
(ηk + l − 1)(k + l − 1)

ηk(k + l − 1) + l(ηk + l − 1)
. (26)

Proof. The theorem follows directly from plugging the eigenvalues given in Eq. (25) into Eq. (7). □

Corollary 1. Kemeny’s constant for the windmill graph W (η, k) is given by:

K (P) =
k2(2η − 1)

k + 1
. (27)

Proof. Because W (η, k) corresponds to W ′(η, k, l) with l = 1, the result follows from the substitution of l = 1 into
Eq. (26). □

We will now derive Kemeny’s constant for the generalized windmill graph of Type II, W ′′(η, k, l). As a first step we
will give the form of the symmetric matrix S ′′

= (∆′′)−1/2A′′(∆′′)−1/2, where A′′ denotes the adjacency matrix of the
generalized windmill graph of Type II W ′′(η, k, l). Analogous to the case of the generalized windmill graph of Type I, we
can show that

S ′′
=

⎡⎢⎢⎢⎣
0l×l s′Jl×k s′Jl×k . . . s′Jl×k
s′Jk×1 t ′(J − I)k×k 0k×k . . . 0k×k
s′Jk×1 0k×k t ′(J − I)k×k . . . . . .

. . . . . . . . . . . . . . .

s′Jk×1 0k×k . . . . . . t ′(J − I)k×k

⎤⎥⎥⎥⎦ , (28)

with s′ =
1

√
ηk

√
k−1+l

and t ′ =
1

k−1+l .
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Lemma 7. The spectrum of the matrix S ′′
= (∆′′)−1/2A′′(∆′′)−1/2, for the generalized windmill graph W ′′(η, k, l) of Type II, is

{(−
1

k + l − 1
)η(k−1), (

k − 1
k + l − 1

)η−1, (0)l−1, (−
l

k + l − 1
)1, (1)1} (29)

The proof of Lemma 7 is given in Appendix B.
Again Kemeny’s constant for the generalized windmill graph of Type II follows from application of Eq. (7).

Theorem 8. Kemeny’s constant for the generalized windmill graph of Type II W ′′(η, k, l) is given by:

K (P) =
η(k − 1)(k + l − 1)

k + l
+

(η − 1)(k + l − 1)
l

+ l − 1 +
k + l − 1
k + 2l − 1

. (30)

Proof. The theorem follows directly from plugging the eigenvalues given in Eq. (29) into Eq. (7). □

3. Relation with effective graph resistance

For a regular graph on N nodes with degree r , the relation between Kemeny’s constant and the effective graph
resistance was shown [15] to be

K (P) =
r
N
RG, (31)

where RG denotes the effective graph resistance. In this section we will propose two approximations for Kemeny’s constant
for non-regular graphs, inspired by Eq. (31).

3.1. A first approximation for kemeny’s constant

Before we give our first approximation, we introduce some notation. For a graph on N nodes and L links we denote
by D the average degree of the nodes, i.e. D =

2L
N . The heterogeneity index H , a metric which quantifies the variability of

the degree distribution, see [1], is defined as follows:

H =
1
N

N∑
i=1

(di − D)2, (32)

where di denotes the degree of node i. Now, we assume that the approximation for Kemeny’s constant takes the following
form:

K ∗(P) =
D
N
RG + Hf (N, L), (33)

where f (N, L) is a function that still needs to be determined. For regular graphs with degree r , Eq. (33) simplifies to
Eq. (31) because for that case D = r and H = 0.

We will determine f (N, L) by considering the case of complete bipartite graphs KN1,N2 , discussed in Section 2.1.
For KN1,N2 we have N = N1 + N2 and L = N1N2. Therefore

D =
2N1N2

N1 + N2
. (34)

An elementary calculation further shows that

H =
N1N2(N1 − N2)2

(N1 + N2)2
. (35)

The Laplacian spectrum for KN1,N2 , satisfies {01,N1
N2−1,N2

N1−1, (N1 + N2)1}, see [17].
Hence the effective graph resistance for KN1,N2 satisfies:

RG = (N1 + N2)(
N2 − 1
N1

+
N1 − 1
N2

+
1

N1 + N2
). (36)

Plugging the result of Theorem 1 and the above expressions into Eq. (33) we get

N1 + N2 −
3
2

=
2N1N2

N1 + N2
(
N2 − 1
N1

+
N1 − 1
N2

+
1

N1 + N2
) +

N1N2(N1 − N2)2

(N1 + N2)2
f . (37)

After some manipulation of Eq. (37) we obtain an explicit expression for f :

f =
1 − 2N1 − 2N2

2N1N2
. (38)
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Given that for KN1,N2 we have N = N1 + N2 and L = N1N2, we assume the following expression for f (N, L) for general
graphs:

f (N, L) =
1 − 2N

2L
. (39)

Hence, we have established the following result.

Theorem 9. For a graph on N nodes and L links, denote the heterogeneity index and effective graph resistance by H and RG,
respectively. Let

K ∗(P) =
2L
N2 RG + H

1 − 2N
2L

. (40)

Then, for complete bipartite graphs, K ∗(P) is equal to Kemeny’s constant.

3.2. Applying the approximation K ∗(P) to windmill graphs

In this section we will show that the approximation K ∗ is also exact for windmill graphs i.e. graphs W (η, k). According
to [4] for W (η, k) we have N = ηk + 1 and L =

ηk(k+1)
2 . Therefore

D =
ηk(k + 1)
ηk + 1

. (41)

An elementary calculation further shows that

H =
η(η − 1)2k3

(ηk + 1)2
. (42)

The Laplacian spectrum for W (η, k) satisfies
{01, 1η−1, (k + 1)η(k−1), (ηk + 1)1}, see [4]. Hence the effective graph resistance for W (η, k) satisfies:

RG = (ηk + 1)(η − 1 +
η(k − 1)
k + 1

+
1

ηk + 1
). (43)

Now, using the expressions for N , L, H and RG, we can show that for W (η, k) Eq. (40) gives

K ∗(P) =
(2η − 1)k2

k + 1
. (44)

Hence we have also proved the following result.

Theorem 10. For a graph on N nodes and L links, denote the heterogeneity index and effective graph resistance by H and RG,
respectively. Let

K ∗(P) =
2L
N2 RG + H

1 − 2N
2L

. (45)

Then, for the windmill graphs W (η, k), K ∗ is equal to Kemeny’s constant.

We have chosen to use the heterogeneity index H to quantify the heterogeneity of the degree distribution. However,
there are several other heterogeneity metrics, see [3]. In the next subsection we derive another approximation for K (P)
based upon a variant of the so-called irregularity index.

3.3. A second approximation for Kemeny’s constant

An alternative to the heterogeneity index H , is a variant of the irregularity index, see [18], defined as

I = λ2
1 − D2, (46)

where λ1 denotes the largest eigenvalue of the adjacency matrix. Note that the original index was defined as λ1 − D and
that I = 0 for regular graphs. Then, in a way similar to the proof of Theorem 9, we can obtain the following result:

Theorem 11. For a graph on N nodes and L links, denote the irregularity index and effective graph resistance by I and RG,
respectively. Let

K ∗∗(P) =
2L
N2 RG + I

1 − 2N
2L

. (47)

Then, for complete bipartite graphs, K ∗∗(P) is equal to Kemeny’s constant.
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Table 1
Kemeny’s constant and its approximations K ∗ and K ∗∗ for several graphs.
Graph N L K (P) K ∗(P) K ∗∗(P)

K10,15 25 150 23.50 23.50 23.50
P10 10 9 27.17 29.53 29.23
D10 10 9 25.61 28.06 27.27
E10,2 10 9 24.50 27.16 26.71
W (3, 10) 31 165 45.45 45.45 43.88
W ′(3, 10, 5) 35 295 35.49 33.77 30.51
W ′′(3, 10, 5) 35 285 35.54 34.67 33.30

Table 2
Kemeny’s constant and the upper bound KU (P), for several graphs.
Graph K (P) KU (P)

K10,15 23.50 23.50
P10 27.17 27.28
D10 25.61 25.71
E10,2 24.50 24.61
W (3, 10) 45.45 45.45
W ′(3, 10, 5) 35.49 35.49
W ′′(3, 10, 5) 35.54 35.54

3.4. Evaluation of the approximations for other graphs

In the previous two subsections we have shown that the approximations K ∗ and K ∗∗ equal Kemeny’s constant for the
cases of complete bipartite graphs, while K ∗ also equals Kemeny’s constant for windmill graphs.

In this subsection we will show that in general K ∗ and K ∗∗ do not equal Kemeny’s constant, by comparing K ∗, K ∗∗ and
K , for some realizations of graphs we have studied in Section 2. Table 1 shows the results of this comparison.

Table 1 illustrates that for the considered trees and generalized windmill graphs, K ∗ and K ∗∗ do not equal Kemeny’s
constant. For the trees both approximations overestimate Kemeny’s constant while for the generalized windmill graphs
they give an underestimation.

4. An upper bound for kemeny’s constant

In [19] not only Eq. (8) was derived but also a closely connected upper bound:

K (P) ≤ ζ Td −
H

Dµ1
≡ KU (P), (48)

where µ1 denotes the largest Laplacian eigenvalue. In this section we will evaluate how tight the upper bound KU (P) is.
We will again consider the graph models considered in the previous sections.

Table 2 gives the considered graphs, Kemeny’s constant and the upper bound KU .
Table 2 shows that, for the considered graphs, the upper bound KU (P) is rather tight. The largest relative error for KU (P)

in Table 2 is only 0.4%, which occurs for E10,2.
For both the windmill and generalized windmill graphs, Table 2 contains numerical evidence that for these graph

families, KU (P) actually equals Kemeny’s constant. The proof this is indeed the case for any generalized windmill graph
hinges on the fact that all eigenvectors of the Laplacian matrix Q , except the one corresponding to the largest eigenvalue,
are orthogonal to the degree vector d of the graph.

Proposition 1. For the graphs W (η, k), W ′(η, k, l) and W ′′(η, k, l) the upper bound given in Eq. (48) is tight.

Proof. We will proof the statement that for generalized windmill graphs the Kemeny constant reduces to ζ Td−
H

Dµ1
. For

that we need to calculate the pseudo inverse Laplacian Q †, which can be easily done once the eigenvalues and eigenvectors
of the Laplacian matrix are known. The Laplacian spectra for generalized windmill graphs are given by Kooij [10] and
generalize the results of Estrada [4]. Starting with generalized windmill graphs of Type I (where l = 1 reduces to the
ordinary windmill graph), the spectrum in this case is

Sp(Q (W ′)) = {(ηk + l)l, (k + l)η(k−1), lη−1, 01
},

where the superscript denotes the multiplicity. The corresponding eigenvectors can be found by inspection. The first
normalized eigenvector v1, with eigenvalue ηk + l, is

v1 = (ηk, . . . , ηk, −l, . . . ,−l)/
√

ηkl(ηk + l) = (ηk1×l, −l1×ηk)/
√

ηkl(ηk + l). (49)
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The other (l − 1) orthogonal eigenvectors belonging to this eigenvalue are of the form

(α1, α2, . . . , αl, 0, . . . , 0),

with α1+α2+· · ·+αl = 0, and not all αi equal to zero. The eigenvectors for the other eigenvalues are direct generalizations
of the ordinary windmill graphs studied in [4], that is, the all-ones vector u is an eigenvector with eigenvalue 0, and the
eigenvalue k+ l has eigenvectors of the form t = (01×l, α11 , . . . , α1k , α21 , . . . α2k , αη1 . . . αηk ), with

∑k
j=1 αmj = 0 for all m

and αmj ̸=0 for some m and j. Finally, the vector t , with the entries satisfying αmj = αm for all m and α1 + · · · + αη = 0
with αm ̸=0 for some m, induces a family of (η − 1) eigenvectors with eigenvalue l.

One can easily verify that all eigenvectors are orthogonal to the degree vector d, except the eigenvector v1. If we next
use the representation of Q † in the eigenbasis, that is

Q †
=

N−1∑
i=1

1
µi

viv
T
i ,

we find that in the term dTQ †d only a single term survives, which gives

dTQ †d =
(vT

1d)
2

µ1
.

The last step consists of showing that (vT
1d)

2
= HN . This follows from the fact that d = Du + δ and δ =

∑N−1
i=1 (vT

i δ)vi, as
the eigenvectors form a orthogonal basis of the complement of uT , which implies immediately that

δT δ =

N=1∑
i=1

(vT
i δ)2 =

N∑
i=1

(di − D)2,

see also [19]. For the generalized windmills of Type II, the spectrum is

Sp(Q (W ′′)) = {(ηk + l)1, (ηk)l−1, (k + l)η(k−1), lη−1, 01
},

with largest eigenvalue ηk + l, whose eigenspace is spanned by

w1 = (ηk, ηk, . . . , ηk, −l, . . . ,−l)/
√

ηkl(ηk + l).

The (l−1)-dimensional eigenspace corresponding to ηk is spanned by (α1, α2, . . . , αl, 0, . . . , 0) with α1+α2+· · ·+αl = 0.
We note again that also in this case all eigenvectors are orthogonal to the degree vector d, except the eigenvector w1. The
proof is therefore analogous to that of the generalized windmill graphs of Type I. For completeness we give the expression
for Q †:

Q †
=

1
µ1

w1w
T
1 +

ηk+l∑
i=l+1

1
µi

wiw
T
i .

Analogous to the Type I case we can prove that dTQ †d equals
∑N

i=1(di − D)2/µ1. □

5. Kemeny’s constant, its approximations and upper bound, for real-world networks

So far, we have determined Kemeny’s constant K (P), its approximations K ∗ and K ∗∗ and the upper bound KU , for some
families of highly structured graphs, such as trees, complete bipartite graphs and (generalized) windmill graphs. In this
section we will study Kemeny’s constant and its approximations, for a large number of real-world networks. As data
source we use the Internet Topology Zoo [9], a collection of more than 250 IP (Internet Protocol) network topologies
from around the world. The dataset is available at http://www.topology-zoo.org/. After discarding the networks that are
disconnected, we wind up with 243 connected networks.

In Table 3 we show the number of nodes and links of the three smallest and largest networks in our dataset, together
with the values of K (P) and its two approximations and upper bound. Kemeny’s constant has been determined using
Eq. (8).

It can be observed that the approximations and the upper bound are exact for the Renam and Mren networks. This
is because both networks are star topologies, and hence this observation follows from Theorems 9 and 11. In a similar
fashion we can conclude from Table 3 that Arpanet2012 is not a ring topology, as the approximations are not exact. Finally,
we remark that for the large networks, the upper bound KU is very tight, with relative error below 0.1%, and it clearly
outperforms K ∗ and K ∗∗.
Table 4 shows some statistics related to the absolute values of the relative errors for the two approximations and upper
bound, evaluated over all 243 real-world networks.

Again we see that KU is a tight upper bound and in general it outperforms the two approximations K ∗ and K ∗∗. In
the list of 243 real-world networks, for 8 networks, the two approximations and the upper bound give the exact value of
Kemeny’s constant. The reason is that these networks are either regular (Globalcenter, a complete graph and Sanren and
Telecomserbia, which are both cycle graphs) or either form a star topology (Basnet, Itnet, Mren, Renam and Singaren).

http://www.topology-zoo.org/
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Table 3
Kemeny’s constant, the approximations K ∗ , K ∗∗ and the upper bound KU , for the smallest and largest networks in the
Internet Topology Zoo.
Graph N L K (P) K ∗ K ∗∗ KU

Arpanet196912 4 4 2.54 2.73 2.55 2.60
Renam 5 4 3.50 3.50 3.50 3.50
Mren 6 5 4.50 4.50 4.50 4.50
UsCarrier 158 189 1175.99 1265.48 1263.39 1176.68
Cogentco 197 245 1082.45 1197.24 1191.59 1083.35
Kdl 754 899 5907.29 6264.78 6261.74 5908.32

Table 4
Statistics for the absolute value of the relative errors for the approximations K ∗ , K ∗∗ and
the upper bound KU , for 243 real-world networks.
Metric K ∗ K ∗∗ KU

Average absolute rel. error 27.25% 19.86% 0.73%
Maximum absolute rel. error 122.60% 60.26% 8.05%

For the remaining 235 networks, the following statistics have been found:

• In 230 cases, KU is the closest to K (P), while in the remaining 5 cases, K ∗ is the closest to K (P).
• In 3 out of the 235 cases K ∗ is a better approximation than K ∗∗.
• In 1 out of the 235 cases it holds that K ∗ < K (P), while in 8 out of the 235 cases it holds that K ∗∗ < K (P).

6. Conclusion

First we have studied Kemeny’s constant for several highly structured graphs, including trees with large diameter,
(generalized) windmill graphs and complete bipartite graphs. These graphs allow exact evaluation of Kemeny’s constant
K (P). Using the known relation between the effective graph resistance and Kemeny’s constant for regular graphs,
we propose two generalizations of this relation by taking into account the presence of degree heterogeneity. The
generalization K ∗, which depends linearly on the heterogeneity index H , leads to an exact expression for Kemeny’s
constant, for the case of windmill graphs and complete bipartite graphs. The generalization K ∗∗, which depends linearly
on a variant of the irregularity index I , leads to an exact expression for Kemeny’s constant, for the case of complete
bipartite graphs. Next it is proved that an upper bound KU for Kemeny’s constant found by Wang et al. [19], is tight
for (generalized) windmill graphs. Finally, we have evaluated Kemeny’s constant, its two approximations and its upper
bound, for 243 real-world networks. This evaluation reveals that KU is a tight upper bound, with average relative error of
only 0.73%. In most cases KU clearly outperforms the other two approximations.
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Appendix A. Proof of Lemma 5

Let v1 = [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]
T , where the first l entries are zero, be a N-dimensional

vector such that
∑k

j=1 αmj = 0 for all m ∈ {1, . . . , η} and αmj ̸= 0 for some m and j. Then, as a result S ′v1 = −
1

k+l−1v1.
Therefore, there exists a set of η(k − 1) orthogonal eigenvectors v1, implying that −

1
k+l−1 is an eigenvalue of S ′ with

multiplicity η(k − 1).
Next, consider v2 = [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]

T , where the first l entries are zero, be a
N-dimensional vector such that for all m ∈ {1, . . . , η} it holds αmj = αm,

∑η

j=1 αj = 0 and αj ̸= 0 for some j. Then, it
follows that S ′v2 =

k−1
k+l−1v2. Therefore, there exists a set of η − 1 orthogonal eigenvectors v2, implying that k−1

k+l−1 is an
eigenvalue of S ′ with multiplicity η − 1.
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Now, we define the N-dimensional vector v3 = [β1, . . . , βl, 0, . . . , 0]T , such that
∑l

j=1 βj = 0 and βj ̸= 0 for some j.
Hence, S ′v3 = −

1
ηk+l−1v3. Therefore, there exists a set of l − 1 orthogonal eigenvectors v3, implying that −

1
ηk+l−1 is an

eigenvalue of S ′ with multiplicity l − 1.
Next, let v4 = [1, . . . , 1, x, . . . , x]T , where the first l entries are one, be a N-dimensional vector with x = −

l
√

ηk+l−1
ηk

√
k−1+l

.
Then, it can be shown that S ′v4 = ( l−1

ηk−1+l −
l

k−1+l )v4.
It follows that l−1

ηk+l−1 −
l

k+l−1 is an eigenvalue of S ′.
Finally, consider v5 = [1, . . . , 1, y, . . . , y]T , where the first l entries are one, be a N-dimensional vector with y =√

k+l−1
√

ηk+l−1 . Then, it can be verified that S ′v5 = v5.
It follows that 1 is an eigenvalue of S ′.
Because the sum of the multiplicities of the found eigenvalues, i.e. η(k−1)+ (η−1)+ l−1+1+1 equals the number

of nodes ηk + l, we have found all eigenvalues of S ′. This finishes the proof.

Appendix B. Proof of Lemma 7

Let w1 = [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]
T , where the first l entries are zero, be a N-dimensional

vector such that
∑k

j=1 αmj = 0 for all m ∈ {1, . . . , η} and αmj ̸= 0 for some m and j. Then, as a result S ′′w1 = −
1

k+l−1w1.
Therefore, there exists a set of η(k − 1) orthogonal eigenvectors w1, implying that −

1
k+l−1 is an eigenvalue of S ′′ with

multiplicity η(k − 1).
Next, consider w2 = [0, . . . , 0, α11, . . . , α1k, α21, . . . , α2k, . . . , αη1, . . . , αηk]

T , where the first l entries are zero, be a
N-dimensional vector such that for all m ∈ {1, . . . , η} it holds αmj = αm,

∑η

j=1 αj = 0 and αj ̸= 0 for some j. Then, it
follows that S ′′w2 =

k−1
k+l−1w2.

Therefore, there exists a set of η − 1 orthogonal eigenvectors w2, implying that k−1
k+l−1 is an eigenvalue of S ′′ with

multiplicity η − 1.
Now, we define the N-dimensional vector w3 = [β1, . . . , βl, 0, . . . , 0]T , such that

∑l
j=1 βj = 0 and βj ̸= 0 for some j.

Hence,
S ′′w3 = 0w3.
Therefore, there exists a set of l−1 orthogonal eigenvectors w3, implying that 0 is an eigenvalue of S ′′ with multiplicity

l − 1.
Next, let w4 = [1, . . . , 1, x′, . . . , x′

]
T , where the first l entries are one, be a N-dimensional vector with x′

= −
l

√
ηk

√
k−1+l

.
Then, it can be seen that S ′′w4 = −

l
k−1+lw4.

It follows that −
l

k+l−1 is an eigenvalue of S ′′.
Finally, consider w5 = [1, . . . , 1, y′, . . . , y′

]
T , where the first l entries are one, be a N-dimensional vector with y′

=

√
k+l−1
√

ηk .
Then, it can be verified that S ′′w5 = w5.

It follows that 1 is an eigenvalue of S ′′.
Because the sum of the multiplicities of the found eigenvalues, i.e. η(k − 1) + (η − 1) + l − 1 + 1 + 1 equals the number
of nodes ηk + l, we have found all eigenvalues of S ′′. This finishes the proof.
Note that the symmetric matrices S ′ and S ′′ both have eigenvalues −

1
k+l−1 and k−1

k+l−1 , with the same corresponding
eigenvectors.
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