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Abstract 
Problem: A biomarker that accurately predicts recovery of ischemic stroke for patients 
with poor baseline Fugl-Meyer Assessment of the Upper Extremity (FMA-UE) is 
lacking. Biomarkers that predict recovery while providing functional insight into the 
underlying neural process are highly desired for optimal clinical care.  
Objectives: This explorative study aims to determine potential biomarkers from 
Somatosensory Evoked Potentials (SEP) using ElectroEncephaloGraphy (EEG).  
Brain asymmetry metrics are derived from high-density EEG recordings of five 
longitudinal stroke patients during the first six months of stroke recovery. In addition, 
EEG sources and their interactions, constrained by anatomical information from 
(d)MRI, are explored for a potential biomarker.  
Results: Subjects with low baseline FMA-UE show a trend of increased recovery as 
the Laterality Index (LI) of the infarcted hemisphere increases, although it is not 
significant within this small group. The LI of the non-infarcted hemisphere shows a 
significant trend of high LI values at baseline that decrease to lower values during 
recovery. This effect was tested on a different dataset of 17 longitudinal stroke patients 
(without dMRI data). The results in this second group showed strong variability 
between subjects and measurements. The non-infarcted hemisphere is able to 
significantly predict the FMA-UE for both datasets. On the other hand, estimated 
effects for the LI of the infarcted hemisphere did not show significant values. 
Biomarkers were not derived from EEG sources and their interactions.  
Conclusion: In this study, we have demonstrated the potential of the LI as a biomarker 
for stroke recovery. Small sample size and absence of controls make hard clinical 
conclusions impossible. However, our findings show that the LI might predict recovery 
of the FMA-UE, even at low baseline FMA-UE.  The LI of the non-infarcted hemisphere 
is able to significantly predict the FMA-UE of the affected hand, a surprising discovery 
that might be attributed to background cortical activity or ipsilateral SEP components. 
Derivations from EEG sources and their interactions might lead to more sensitive 
metrics and novel insights into stroke rehabilitation.  
Significance: If the discovered trends apply to a larger sample size, asymmetry 
metrics from SEP’s have prognostic value in stroke recovery. 
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Introduction 
Background 
Worldwide, stroke is the second most common cause of disability and mortality 
(Feigin et al., 2019). After a stroke, the outcome and degree of impairment depend 
primarily on the stroke severity and patient age (Oliveira-Filho & WJ, 2010). Current 
trends suggest that the global burden of stroke increases with the aging population 
(Feigin et al., 2015). In order to correctly treat the increasing number of stroke 
patients, a fundamental understanding of the mechanisms of stroke recovery is 
needed. 

Many stroke patients suffer from hemiparesis, i.e., weakness or inability to move one 
side of the body. Clinical scores provide information on the degree of hemiparesis, 
with the Fugl Meyer Assessment (FMA) on the motor ability of stroke patients. The 
Erasmus Modified Nottingham Sensory Assessment (EMNSA) determines the 
sensory capabilities after stroke. The FMA at baseline can be used as a predictor for 
recovery six months post-stroke (Prabhakaran et al., 2008; Winters et al., 2015). 
However, the FMA as a predictor for recovery performs poorly when the FMA is low 
at the onset of stroke recovery (Saes et al., 2021). Clinical scores provide a basis for 
quantification of the current situation of the patient. However, clinical scores do not 
quantify the underlying neural process and provide limited functional insight into the 
underlying neural processes of stroke recovery. Therefore, there is a need for a 
biomarker that provides functional insight into stroke recovery, which could predict 
stroke recovery for patients with poor FMA at baseline.  

Several parameters have been derived to predict motor recovery in stroke. Structural 
methods have indicated that corticospinal tract integrity is a predictor of stroke 
recovery (Lin et al., 2019). Other parameters that predict motor recovery have been 
derived from cortical activity. Saes and colleagues (Saes et al., 2021) determined 
brain asymmetry to predict motor recovery in stroke. Other research found that 
features derived from a cortical response to electrical stimuli could predict motor 
recovery after stroke (Kalogianni et al., 2018).  

Detecting Brain Signals 
Several imaging modalities and strategies can be used to quantify changes in brain 
activity during stroke recovery. ElectroEncephaloGraphy(EEG) can be used to 
measure brain signals. Despite the poor spatial resolution, EEG boasts a temporal 
resolution in the millisecond's range (O. G. Filatova et al., 2018). Taken together, this 
allows EEG to be an excellent method to study fast dynamics in the brain. EEG 
signals can be studied directly but can also be used for source localization, where 
the cortical sources are mapped from measured scalp EEG signals. However, the 
number of sources generally outnumbers the number of electrodes used for source 
localization. As such, source localization is an ill-posed problem, and correctly 
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identifying sources remains a key challenge in EEG research (Jatoi et al., 2014). 
Functional Magnetic Resonance Imaging (fMRI), a different imaging method, suffers 
from the opposite problem. fMRI provides excellent spatial resolution in the order of 
3-4 mm, but even 500 microns or less can be reached (Glover, 2011). It is important 
to note that fMRI determines the location of the hemodynamic response resulting 
from brain activity instead of the location of the brain activity itself. However, this 
distance is generally less than 25 µm (Kim & Fukuda, 2008). The spatial resolution of 
fMRI allows viewing of source activity much more precisely compared to EEG. 
However, the peak of the hemodynamic response in fMRI is around 5-6s after 
stimulus, giving a much lower temporal resolution (Glover, 2011). This time 
resolution can be used to compare functional differences in the brain, but cannot 
discern the activity of quick neuronal processes in the order of milliseconds, which 
are a common target in neuroscientific research (O. G. Filatova et al., 2018). 

Alternatively, anatomical imaging methods are used extensively in brain research 
(Owen et al., 2017; Soulard et al., 2020; Yeh et al., 2013). T1 MRI images can be 
used to view high-resolution anatomical images of the (lesioned) brain. Diffusion-
weighted MRI (dMRI) is a variant of MRI imaging. dMRI can be used to infer white 
matter connections between brain regions (Owen et al., 2017). MRI and dMRI 
provide excellent high-resolution images but provide no insight into functional 
changes in the brain (Boyd et al., 2017). 

The integrity of the somatosensory system has been a neglected area in predicting 
stroke recovery. However, somatosensory impairment is associated with stroke 
severity (Laaksonen et al., 2012). In a proof of principle study investigating the 
somatosensory system, Filatova and colleagues (O. G. Filatova et al., 2018) found 
the healthy brain to be highly lateral, i.e., most activity is confined to a single 
hemisphere. In contrast, hemiparetic individuals have been known to recruit the non-
infarcted hemisphere during movement (Buma et al., 2010; Johansen-Berg et al., 
2002). It is unclear if this translates to the somatosensory system. Research into the 
relationship between the somatosensory system and stroke found differences in 
laterality based on stroke severity after stimulating the sensory system using a wrist 
perturbation robot (Vlaar et al., 2017). In addition, increased inter-hemispheric 
connections were found in a study of source interactions in the somatosensory 
system (O. G. Filatova et al., 2018). These findings suggest that the somatosensory 
system's recruitment of the non-infarcted hemisphere is possible and should be 
investigated further. 

Another way to stimulate the sensory system is by using the Somatosensory Evoked 
Potential (SEP) (Al-Rawi et al., 2009; Feys et al., 2000; Huang et al., 2004; Keren et 
al., 1993). A SEP is the brain’s response to an external stimulus. A SEP can be 
measured non-invasively using EEG or fMRI (Arthurs & Boniface, 2003; Kalogianni, 
Daffertshofer, et al., 2018; Schubert et al., 2008). After stimulation, several peaks 
can be detected in the measured EEG, such as the P20, P30, P50, or P100 peaks, 
where the number indicates the general latency of each peak. These peaks can be 
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found in electrodes near the sensorimotor cortex contralateral to the stimulated limb 
(Allison et al., 1989). Changed responses to electrical stimuli are associated with 
impairment, for example, a lower peak-to-peak amplitude was found for stroke 
subjects than healthy controls (Al-Rawi et al., 2009). Most SEP activity is found in 
the hemisphere contralateral to stimulation (Backes et al., 2000). Changes in SEP 
peaks or SEP-related activity in both hemispheres could indicate changes in 
asymmetry. For this reason, SEP-derived metrics can be used as a potential 
biomarker in stroke recovery. 

Nowadays, it has become clear that combining several imaging modalities can 
complement each other. The thought is that the poor spatial resolution of EEG can 
be improved by using information from different imaging modalities. Source 
localization using a Wiener filter (Kajihara et al., 2004) or hierarchical Variational 
Bayesian (hVB) source estimation (Sato et al., 2004) complements source imaging 
using fMRI information. Ideally, not only the location of active sources would be 
determined, but causal relations between sources as well. Inferring relations 
between sources can be done using a directed form of functional connectivity, e.g., 
Granger causality, where statistical causality is inferred by determining whether one 
signal precedes another signal (Bastos & Schoffelen, 2016). However, Granger 
causality is based purely on signal properties and does not consider anatomical 
constraints (Bastos & Schoffelen, 2016). Other methods determine effective 
connectivity. These require an underlying model but can infer a more substantial 
degree of causality than just statistical causality (Bajaj et al., 2015). However, 
effective connectivity methods generally require prior assumptions on the model 
structure. Variational Bayesian Multimodal EncephaloGraphy (VBMEG) has been 
shown to infer effective connectivity with minimal assumptions on the model 
structure (Takeda et al., 2019). VBMEG estimates sources using an hVB source 
localization method. By combining located sources with anatomical information 
estimated from dMRI data, a MAR model is built to determine causal interactions 
between sources and infer information flow through the brain network (Fukushima et 
al., 2015; Takeda et al., 2019). 

Earlier research has shown the potential of the VBMEG method on healthy 
participants (Fukushima et al., 2015; Takeda et al., 2019). Recently, an effort has 
been made to utilize the potential of VBMEG in investigating brain changes during a 
brain disease (O. G. Filatova et al., 2018) and showed the ability of VBMEG to detect 
changes in signal propagation in stroke patients.  

Problem Statement 
The problem is that a biomarker that predicts stroke recovery, especially at low FMA, 
is lacking. Accurate prediction of stroke recovery is essential to ensure optimal 
clinical care. 
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Research Goals 
The goal of this study is to find potential biomarkers for stroke recovery from high-
density EEG recording and EEG source interactions. Based on earlier studies (O. G. 
Filatova et al., 2018; Kalogianni et al., 2018), we hypothesize that a measure of brain 
asymmetry derived from SEP’s could be a potential predictor for stroke recovery at 
baseline. Furthermore, biomarkers derived from EEG source interactions are 
expected to be more sensitive than metrics derived from EEG channel data. Metrics 
derived from EEG source interactions have separated activity of interest from noise, 
increasing the sensitivity.   

In this explorative study, we have the following research goals: 

 Quantify brain asymmetry of SEP’s after an ischemic stroke using EEG and EEG 
source interactions 

 Determine the ability of one of the found brain asymmetry metrics as a potential 
biomarker for motor recovery six months after ischemic stroke  

We investigate quantification of asymmetry using EEG-derived metrics: SEP peak 
amplitudes and laterality index (LI) using EEG recording of five longitudinal stroke 
subjects. In addition, we intend to quantify the degree of asymmetry using the 
VBMEG method. We want to know if VBMEG is more sensitive compared to 
laterality measures derived from regular EEG data. 
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Methods 
Subjects 
Five acute ischemic stroke patients were included in this study. Mental capacity was 
confirmed using the Mini-Mental State Examination. Patients were recruited with 
informed consent and permission by the Medical Ethical Committee of the 
Amsterdam University Medical Center location Vrije Universiteit and the Reinier De 
Graaf Ziekenhuis board in Delft. Trial Protocol was registered on October 23, 2013 
(identifier NL4084, NTR4221) and amended on April 4, 2016, to include longitudinal 
dMRI measurements (L. Filatova, 2019).  

Inclusion criteria were: over 18 years of age, first-ever ischemic stroke in an area 
supplied by the anterior, medial, and/ or posteri-or cerebral arteries, Cerebro 
Vascular Accident (CVA) in the last five days, upper limb paresis as defined by 
NIHSS item 5a/b score>0, mini-mental state examination (MMSE) score of >19 (in 
case of lower score due to aphasia, an additional informed consent form was signed) 
and ability to sit without support. Exclusion criteria were: pre-existing pathological or 
neurological conditions, a pacemaker or other metallic implant, pre-existing 
orthopedic limitations of the upper limb, botulin-toxin injections or medication that 
might affect upper limb functionality in the past three months, and high epilepsy risk. 

Eighteen patients were included in the study from November 30, 2016, to March 21, 
2018. 12 Subjects dropped out of the study. One due to skin rash, one wrong stroke 
diagnosis, one death, two repeated strokes during the study, one claustrophobia, 
and six subjects were too burdened by study participation (L. Filatova, 2019) . For 
one subject, a significant amount of data was missing and was excluded. EEG 
acquisition was performed in a specialized van designed for EEG recordings at a 
location convenient for subjects. MRI and dMRI images were acquired at the Reinier 
de Graaf Ziekenhuis in Delft. Of the remaining subjects, all were aged between 43 
and 74 (mean 62, std: 10), with five male participants. 

Additional Dataset 
An additional dataset was obtained containing 20 subjects. Subjects were recruited 
upon hospital admission under the same trial protocol and same exclusion criteria as 
described above. This data was used in prior research from the same research 
group (Kalogianni et al., 2018), as such it was already pre-processed. Two subjects 
were discarded from the pre-processed data due to a possible mismatch of dominant 
and affected arm, which could not be corrected without pre-processing the data 
again. One subject was discarded due to double data files without the possibility of 
identifying the correct data. Seventeen subjects remained. 
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Data Acquisition 
Figure 1 displays the data acquisition schedule for all subjects. Subjects were 
exposed to four EEG and four (d)MRI measurements over six months. In Addition, 
Clinical testing was performed by a physician. 

Clinical testing of the patients was performed from the subacute phase (within one 
week post-stroke) until the chronic stage (six months post-stroke). Clinical measures 
were taken during the first week, five weeks, twelve weeks and six months after 
stroke.  

Affected upper extremity sensory impairment was measured using the EMNSA 
(Stolk-Hornsveld et al., 2006). In the sensory section of the EMNSA, the upper 
extremity is separated into four sections: the Upper Arm (UA), the Lower Arm (LA), 
the hand (H), and fingers (V). Each section is graded on its sensory ability. The 
sensory ability of a subject is graded on a scale from 0 to 40 points. 

The motor capability was tested using the FMA-UE (Dunning, 2011). The FMA-UE is 
a test to determine motor recovery after stroke. The maximum score of the FMA-UE 
is 66, indicating an unimpaired participant. 

Clinical testing was performed similarly for the additional dataset from earlier 
research (Kalogianni et al., 2018). 

EEG Acquisition and Nerve Stimulation 
EEG measurement was performed in a NEN1010 approved measurement van. 
Subjects were seated comfortably with their hand resting on their lap. The Median 
nerve of both arms was stimulated on the wrist. Patients were fitted with a stimulator 

Figure 1 Data Acquisition schedule. The first EEG and (d)MRI data were acquired in the first week after stroke 
onset. Additional data acquisition was performed five weeks, twelve weeks, and six months after stroke onset. 
Clinical scores were obtained in the first week after stroke onset. Later clinical scores were obtained five weeks, 
twelve weeks, and six months after stroke onset. 
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band. After the median nerve was located, patients were stimulated with increasing 
amplitude until a thumb twitch was displayed without inflicting pain or discomfort. 
Stimulation was performed for 500 trials for each hand. EEG was recorded using a 
62 channel EEG amplifier and a cap arranged according to a subset of the extended 
10/20 system (TMSi, Netherlands). 

The ground electrode was set to the left mastoid and the sampling rate was 2048 Hz. 
Besides antialiasing filters, no filters were applied online. Electrode and fiducial 
points were measured using ANT Neuro Xensor (ANT Neuro, Enschede). The 
average time between EEG setup and finishing finger stimulation was around 60-90 
min including setup and initial resting-state measurements. This length of 
experimental time is short enough not to be too great of a burden on stroke patients 
without mental defects (O. G. Filatova et al., 2018). 

EEG acquisition of the additional dataset was acquired using the exact same setup 
and is further described in the Kalogianni’s dissertation (Kalogianni, Saes, et al., 
2018). 

EEG Pre-Processing 

Figure 2 displays the flowchart of EEG-preprocessing. All EEG data were processed 
using EEGlab (Delorme & Makeig, 2004) and Fieldtrip (Oostenveld et al., 2011), both 
are open-source toolboxes for MATLAB. The stimulation artifact was removed by a -
10 to 10 ms blanking window around stimulation and interpolated using a third-order 
auto-regressive model. The data were downsampled to 512 Hz. Continuous EEG 
data was notch filtered around 50 Hz to remove line noise. A bandpass filter between 
1 and 100 Hz was applied to remove low-frequency drift and high-frequency content. 
Noisy channels were removed manually. Epochs were extracted with a window of -
50 to 200 ms around stimulation. After epoch extraction, epochs with significant 
artifacts (e.g., movement artifacts) were discarded manually. Independent 
Component Analysis (ICA) (Delorme & Makeig, 2004) was used to remove 
components of eye blinks, movements, or other sources of artifacts. EEGLAB’s  
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IClabel labeled all components. Components with at least 90% certainty from IClabel 
for muscle artifacts and 70% certainty for eye artifacts were automatically marked for 
removal. All components were checked manually, remaining eye, muscle, or 
interpolation components were removed manually. If a component contained both 
artifact and brain elements, components were given the benefit of the doubt.  

After component removal, baseline correction was applied from 50 ms to 10 ms 
before stimulus onset. 

EEG data from the additional dataset were pre-processed as described in earlier 
research by Kalogianni and colleagues (Kalogianni, Saes, et al., 2018). EEG data 
were using Matlab, Fieldtrip (Oostenveld et al., 2011) and EEGlab (Delorme & 
Makeig, 2004). The stimulation artifacts were removed by linear interpolation until 6 

Figure 2 Flowchart of EEG Pre-processing. The stimulation artifact is removed using a third-order auto-
regressive filter (1). Data were downsampled to 512 Hz (2). Data were filtered with a 1-100 Hz bandpass filter to 
remove high-frequency content and low-frequency drift. A 50 Hz notch filter was applied to remove line noise (3). 
Noisy channels were removed manually through visual inspection (4). Epochs were extracted using a window of 
– 50 to 200 ms after stimulus (5). Epochs with muscle artifacts were selected and removed manually (6). ICA 
was performed, and eye and muscle components were removed (7). The baseline from -50 to -10 ms with 
respect to the stimulus was removed(8). Pre-processed EEG data and electrode locations were extracted for 
further analysis. 
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ms after stimulus onset. Data were bandpass filtered between 1 and 250 Hz using a 
bi-directional fourth-order Butterworth filter. Data were segmented into epochs 
lasting from 50 ms before stimulus to 200 ms after stimulus. Noisy epoch and 
channels were removed manually. Generally, around 400 trials remained after 
removal and around 50 channels. Data were re-referenced to the common average, 
and SEP's were created by averaging over all trials. After processing, a SEP for  

each patient for the infarcted hemisphere and a SEP for the non-infarcted 
hemisphere remained.   

 

(d)MRI Acquisition 
Image acquisition was performed with a 3T MRI scanner (Philips Achieva, Philips 
Healthcare, Best, The Netherlands). Anatomical T1 MRI imaging had the following 
settings: TE = 20 ms, TR = 2000 ms, Flip Angle = 90°, imaging matrix 512x512 for 
26 slices. The dMRI acquisition protocol had 40 non-collinear gradient directions 
uniformly sampled over a sphere for each of two b-values, 1000 and 2000 s/mm2. 
dMRI data for both b values were acquired in a single scan. dMRI settings were: 
TE=100 ms, TR= 6506 ms, imaging matrix = 96x96, 50 consecutive slices, thickness 
of 2.5 mm, and slice spacing 2.5 mm. One image for each acquisition had no 
diffusion weighting with a b value of b=0 s/mm2. 

EEG Analysis 
The Signal to Noise Ratio (SNR) was calculated for all EEG measurements. The 
SNR was calculated for each electrode by dividing the signal power with the signal 
variance, similar to previous studies (Vlaar et al., 2017). A notable difference is that 
Vlaar calculated the SNR in the frequency domain, while the SNR was calculated in 
the time domain in this study. 

The SNR was defined as dividing the average response by the variance across 
recorded periods (Vlaar et al., 2017) 

𝑆𝑁𝑅 = Ê

𝜎2 =
∑ 𝑥෡൫𝑘൯

2𝑁
𝑘=1

∑  1
𝑃−1  ∑ ൬𝑥ൣ𝑝൧൫𝑘൯−𝑥෡൫𝑘൯൰

2
 𝑃

𝑃=1
𝑁
𝑘=1

 (1)  

where x is the recorded signal from an electrode, 𝒙ෝ is the average response. N is the 
number of samples in one trial, k is a sample in a period p, and P is the total number 
of periods.  

After pre-processing, it is expected that most of the sources of variance in the 
measured signal are from cortical background activity.  

After calculating the SNR, SEP's were calculated by averaging the remaining trials, 
resulting in a SEP for the infarcted and non-infarcted hemispheres. P20, P30, and 
P50 components were identified based on their latency and a butterfly plot of all 
channels. The P20 peak was identified from 19 to 25 ms, P30 25 to 38 ms, P50 45 to 
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60 ms, and P100 from 90 to 115 ms. The time intervals for peak detection were 
extended to account for increased latency due to stroke (Julkunen et al., 2005). 

We identified the channel with the highest peak within the time window and an 
above-average SNR for each peak and every SEP measurement. The channels 
ERP was plotted and peaks were validated through visual inspection. In addition, the 
SEP peaks were accepted only when a dipole pattern (validated through a 
topological distribution) was present. Whenever this was not the case, the amplitude 
was marked as non-identifiable and set to 0. 

Laterality Index 
From the SNR, the LI was calculated. Electrodes located above the sensorimotor 
cortices were separated into two sets. The left side included odd EEG electrodes 
above the sensorimotor cortices named F1, F3, F5, FC1, FC3, FC5, C1, C3, C5, 
CP1, CP3, CP5, P1, P3, and P5. The right side included even EEG electrodes above 
the sensorimotor cortices named F2, F4, F6, FC2, FC4, FC6, C2, C4, C6, CP2, CP4, 
CP6, P2, P4, and P6. The sets are referred to as the ipsilateral (same side) with 
respect to the stimulated limb and contralateral (other side) with respect to the 
stimulated limb. The SNR was averaged for all electrodes in each set. These sets 
were used to calculate the laterality index similar to other research (Vlaar et al., 
2017): 

𝐿𝐼 =
𝑆𝑁𝑅௖௢௡௧௥௔ − 𝑆𝑁𝑅௜௣௦௜

𝑆𝑁𝑅௖௢௡௧௥௔ + 𝑆𝑁𝑅௜௣௦௜
 (2) 

The LI calculated in this manner is obtained similar to LI's from other studies using 
fMRI (Pujol et al., 1999) or EEG (Jung et al., 2003; Vlaar et al., 2017). The LI is 
bounded between -1 and 1, 1 indicates all activity is present on the contralateral 
(stimulated) side and -1 indicates all activity on the ipsilateral (non-stimulated) side. 
An LI calculated from stimulation of the affected hand will be referred to as the LI of 
the infarcted hemisphere. An LI calculated from stimulation of the unaffected hand 
will be referred to as the LI of the non-infarcted hemisphere.  

Statistical Analysis 
A linear mixed effect model was fitted on the LI and FMA-UE. The model was 
structured to determine whether the LI could predict the FMA-UE with a random 
slope and intercept for each patient. The model was fitted using MATLAB’s fitlme 
(MathWorks, Natick, USA). The distribution of residuals was checked using a QQ-
plot and histogram of residuals. 
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Connectome Dynamics 
Estimation 
The following section explained the methodology of connectome dynamics 
estimation using VBMEG. In this study, connectome dynamics were not estimated. 

VBMEG 
The VBMEG method consists of source localization and estimation of dynamic 
information flow from one source to another. The VBMEG toolbox combines source 
localization with anatomical dMRI data to provide a more accurate model to calculate 
dynamic information flow. 

Figure 3 displays the pipeline of the VBMEG toolbox. T1 MRI images are processed 
to create a cortical model and a head model. The leadfield matrix is built from EEG 
electrode locations, the head model and the cortical model. Combined with pre-

Figure 3 overview of VBMEG pipeline. EEG is pre-processed as described above. T1 MRI images are processed 
to create a 3-shell head model and a cortical model. Together with electrode coordinates from EEG data 
leadfield matrix is created. This step is the Forward problem in source localization. The inverse problem is solved 
using the hVB approach to estimate cortical source activity. Fiber tracking is performed on diffusion MRI data. 
Anatomical connections obtain from fiber tracking are combined with cortical source activity to estimate dynamic 
information flow between sources. Figure obtain from: O. G. Filatova et al., 2018 
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processed EEG data, source activities are estimated using the hierarchial Variational 
Bayesian (hVB) method (Sato et al., 2004). Unlike the original work by Sato, our 
dataset did not contain functional MRI data for source localization. 

dMRI data is pre-processed, and fiber tracking is performed. By combining 
anatomical connections obtained by fiber tracking with source activity from source 
localization, a Multivariate Autoregressive (MAR) Model is built.  

Source Localization 
Source localization can be separated into the forward problem and the inverse 
problem, see Figure 3. The forward problem is estimating the potential distribution 
for known source(s) and the known head model. In the inverse problem, sources are 
estimated from measured potentials. The inverse problem is ill-posed as the number  

A cortical model was created for each subject from the T1 MRI image using 
Freesurfer, an MRI processing software (Dale et al., 1999; Fischl et al., 2002, 2004; 
Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, et al., 1999; Fischl & Dale, 
2000). Freesurfer extracted the inner skull and outer scalp surface. In addition, a 
polygon model was constructed of the cortical surface. A three-shell head model 
(CSF, Scalp, Skull) was built using the Boundary Element Method (BEM) from the 
VBMEG Toolbox (Fukushima et al., 2015). Ten thousand vertices on the cortical 
surface were selected as possible dipole sources. From the dipole sources, 
electrode positions, and the 3-shell head model, the leadfield matrix was calculated. 
Standard conductivity settings from the VBMEG toolbox were used (CSF = 0.62 S/m, 
skull = 0.03 S/m, scalp = 0.62 S/m) (ATR Neural Information Analysis Labs, 2018). 

All subjects have small lesions in the brain. All but one subject had small lesions 
located deep in the brain. Two lesions were too small for CT representation. One 
patient suffered from small lesions in the frontal and parieto-occipital lobes. Although 
of small size, the lesion is located close enough to the surface to be situated 
between a potential source and electrode. Previous research has indicated that 
lesions can lead to significant errors in source localization(Vatta et al., 2002, 2001), 
especially when the lesion is between source and electrode (Vatta et al., 2000). Care 
should be taken in this patient's case to ensure the lesion does not affect source 
localization. 

The hVB method is similar to the Minimum Norm Estimate (MNE) or Wiener filter. All 
these methods use a regularization term to solve the inverse problem. The MNE 
solution uses an identity regularization term (Sato et al., 2004). The Wiener filter is a 
step more complicated and uses the current variance obtained from fMRI data to 
regulate the least-squares calculation (Kajihara et al., 2004; Sato et al., 2004). 
Similar to the Wiener filter, the hVB method uses the current variance to calculate 
the regularization term. However, the current variance is defined as an unknown 
parameter and estimated iteratively (Sato et al., 2004).  



 

17 
 

Iterative estimation of the current variance is performed by the hierarchial Variational 
Bayesian method, a variant of the Variational Bayesian method using a hierarchical 
prior. 

A hierarchical prior places a softer constraint on the variance compared to using a 
normal prior(Sato et al., 2004). Estimating the current variance is constrained further 
by a smoothness constraint, ensuring correlated activity between neighboring 
sources. Prior information on the current variance is obtained from EEG and/or fMRI 
data. The current variance is estimated iteratively (Sato et al., 2004). The soft 
constraint on the current variance makes the hVB method is more robust to poor 
fMRI data. 

Fiber Tracking 
Fiber tracking was used to infer anatomical connections between regions of interest 
from dMRI data. Before fiber tracking, the cortical surface model was parcellated into 
250 parcels distributed equally over the cortical surface. MRTRix 0.2.13 was used to 
perform fiber tracking for all parcels, i.e., fiber tracking was used to determine 
anatomical connections of each parcel to all other parcels. 

The number of parcels is a parameter that can be chosen by the user and 
determines the number of variables in the MAR model. A small amount of parcels 
leads to parcels of large size where a single parcel may contain the activity of 
multiple sources. A larger number of parcels increases the resolution and decreases 
the chance of a single parcel spanning multiple sources. However, the computation 
time of fiber tracking increases quadratically with the number of parcels, leading to 
heavy computational requirements.  

MAR model estimation 
A MAR model was used to estimate the dynamic information flow to determine 
causal relations between sources. Source activity was clustered into the parcels 
created during fiber tracking. The source activity within each parcel was calculated 
as the mean contained dipole moments. The MAR model was constrained using the 
output from fiber tracking, making sure only anatomically connected parcels have 
nonzero weights (See appendix A, section Mar Model). Time lags in the model were 
estimated based on the theoretical conduction velocity of axons equal to 6 m/s 
(Fukushima et al., 2015). Only the terms with specific time-lags were included in the 
model. The order for inter-variable interaction is one (O. G. Filatova et al., 2018). In 
this setup, the model can be represented by a 2D -matrix for inter-source dynamics. 
Intra-source dynamics were set as second-order interactions. The MAR weights 
were estimated using an L2 regularized least-squares method, constrained by fiber 
connections and time-lags. 

Model Evaluation 
The model was evaluated similarly to prior research using VBMEG (O. G. Filatova et 
al., 2018). Source localization and model accuracy were evaluated using Variance 
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Accounted For (VAF) (Kalogianni et al., 2018; Vlaar et al., 2017). Source localization 

was validated using an estimated EEG signal (𝑴෡ = 𝑳𝑺෡) generated from the 
estimated sources. The estimated signal is compared to the measured EEG signal M 
and the VAF is calculated as (O. G. Filatova et al., 2018): 

𝑽𝑨𝑭𝑴𝒊 = ቆ𝟏 −  
𝒗𝒂𝒓൫𝑴𝒊 − 𝑴෡ 𝒊൯

𝒗𝒂𝒓(𝑴𝒊)
ቇ ∙ 𝟏𝟎𝟎% (3) 

Where i indicates the ith electrode. The dynamic information flow was validated 
using the MAR model. The source activity of the following data point (2 ms later) was 
estimated using the MAR model. The resulting source activity was compared to 
source localization results, leading to the following equation (O. G. Filatova et al., 
2018):  

𝑽𝑨𝑭𝑺(𝒕) = ቆ𝟏 −  
𝒗𝒂𝒓൫𝑺(𝒕) − 𝑺෡(𝒕)൯

𝒗𝒂𝒓(𝑺(𝒕))
ቇ ∙ 𝟏𝟎𝟎% (4) 

Where S is a vector containing source activity from source localization, 𝑺෡ is a vector 
containing the source activity estimated from the MAR model. The VAFS(t) can then 
be calculated for every time point. 
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Results 
Figure 4 A shows the sensory scores for all subjects over time. Almost all subjects 
score high on EMNSA scores from the onset except for one patient, and all score 
near-maximal scores from week five onwards. Figure 4 B shows the FMA-UE scores 
over the period of 6 months of recovery. Except for one patient, almost all patients 
recovered to almost the maximum score over six months.  

SEP and Topographical Results 
Figure 5 A shows the SEP results for two patients in the first week and the last week. 
In line with the literature (Desmedt & Cheron, 1980; Druschky et al., 2003; O. G. 
Filatova et al., 2018), the SEP shows a negative peak around 20 ms (P20), a 
positive peak around 30 ms (P30), and another positive peak around 50 ms (P50). A 
positive or negative peak can be identified around 100 ms, but this peak was less 
consistent among trials. Generally, the channel that displayed the highest SNR was 
located near the sensorimotor cortex (C3, C4, CP3 or CP4). However, this was not 
the case for all SEP recordings. Differences between subjects can be seen, which 
may be related to the lesion, differences between subjects, or variations of electrode 
location. Figure 5 B shows a topographic plot of SNR in the first week for a single 
subject, the same subject displayed in the top SEP plot of figure 5 A. For every 
electrode, the average SNR is displayed in a heatmap indicating locations activity. 
Left indicates the SNR for stimulation of the non-infarcted hemisphere. The right side 

A B 

Figure 4 A: Clinical scores of the EMNSA over 26 weeks. Except for one patient, all EMNSA scores are 
nearly maximum at stroke onset. B: FMA-UE scores over time for each patient 
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displays stimulation of the infarcted hemisphere. In general, both topographic plots 
display the largest SNR in the sensorimotor cortex regions. However, the infarcted 
side shows a lower SNR in general, more frontal activity, and more background 
activity relative to activity near the sensorimotor cortex.  
 

B 

Figure 5 A: ERP at week 1 (left) and week 26 (right) of two patients for both the infarcted and non-infarcted 
hemispheres. The top row shows a subject with an initial EMNSA score of 0 that fully recovered. The bottom subject had 
a maximum EMNSA score initially. Both subjects scored low FMA-UE scores but recovered to almost the maximum 
score in the last week. 5 B shows the average SNR of each electrode plotted in a heatmap for the non-infarcted 
hemisphere(left) and the affected hemisphere (right) of the SEP displayed in the top left corner of figure 5 A. The non-
infarcted hemisphere displays a much higher SNR and more laterality compared to the infarcted hemisphere. 

 

A 
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Amplitudes 
Figure 6 displays the amplitude of all subjects across all measurements for the P20, 
P30, and P50 peaks. If no peak could be found, the amplitude was set to 0. The 
P100 peak could not be detected in a large number of measurements and is not 
plotted. In general, SEP amplitudes of the infarcted hemisphere were of smaller 
amplitude in almost all measurements. All subjects show variation in SEP amplitude 
over measurements.  

Laterality 
Figure 7 A shows the LI plotted vs. the FMA-UE score for all patients for the infarcted 
hemisphere (A) and non-infarcted hemisphere (B). Both figures indicate variations 
for all subjects around an FMA-UE score of 60. In general, the LI of the infarcted 
hemisphere was lower than the LI of the non-infarcted hemisphere. Figure 7 B 
displays three subjects with low FMA-UE at baseline that recover towards near-

A B 

C 

Figure 6. Amplitude plots of 3 SEP peaks for the infarcted hemisphere vs. the non-infarcted hemisphere. 
(A) shows the amplitude plots of the P20 peak. If no peak was found, the amplitude was set to 0. (B) 
displays the P30 peak, and (B) displays the P50 Peak. 
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maximum FMA-UE values after six months. These three subjects display a trend of 
increased FMA-UE as the LI increases. Two other subjects have a higher FMA-UE 
at baseline and recover to near maximum FMA-UE after six months; these subjects 
display an opposite trend. The LI at baseline is higher and decreases as the FMA-
UE increases.  

The linear mixed effect model found an estimated slope of 98.88 (Confidence 
Interval (CI): [-3.379 201.1], p = 0.0572) adjusted R2  = 0.7635. Non-infarcted had an 
estimated slope of -132.9 (CI: [-219.9 -45.86], p= 0.00487) adjusted R2 = 0.7853.  

Additional Dataset 
The analysis of LI was reperformed on a different dataset of stroke patients. Figure 8 
displays the LI vs. FMA-UE results of the additional dataset. Every line indicates a 

Figure 7 Laterality index vs. FMA-UE. The top figure displays the FMA-UE score vs. the LI for the 
infarcted hemisphere. Each line represents a subject with five lines or subjects in total. The bottom 
graph displays the FMA-UE vs. LI scores for the infarcted hemisphere. The dashed lines display the 
estimated models. 
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single patient, and the first measurement is marked with an X. The average trend 
determined over all patients is plotted with a dashed line. 

The Infarcted hemisphere linear mixed model had an estimated slope of 8.510 (CI:  
[-18.57 35.59], p = 0.531) adjusted R2 0.8413. The non-infarcted hemisphere had a 
estimated slope of 35.47 (CI: [-70.47 -0.4721], p = 0.0470) adjusted R2 = 0.8626. 

  

  

Figure 8 displays the FMA-UE vs. the LI of the additional dataset. Figure 8 A graph displays the infarcted 
hemisphere, and the non-infarcted hemisphere is displayed in figure 8 B. Each line represents a subject (17 
in total). The first measurement is marked with an X. The dashed black line shows the average estimated 
linear model. 

A B 
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Discussion 
We explored potential biomarkers for stroke recovery derived from SEP’s using EEG 
channel data and VBMEG. Potential biomarkers were derived from SEP peaks or a 
laterality measure derived from EEG electrode data. A potential biomarker was not 
derived from VBMEG measurements since did not permit all processing. We 
investigated changes in brain asymmetry derived from SEP’s from the first week to 
six months post-stroke. Due to the small sample size of five patients, hard clinical 
conclusions cannot be made, but we can comment on found effects and the 
reliability of the measurement method. 

The clinical scores suggest that the research protocol was biased towards stroke 
patients with a good prognosis. Data acquisition was cumbersome for stroke 
patients, with four measurements of EEG and dMRI data in addition to clinical 
measurements. As a result, heavily impaired stroke patients are likely to drop out. 
The quick recovery of all subjects to high EMNSA scores supports this notion. Future 
research should strive to include stroke patients with poor prognoses by designing 
less cumbersome research protocols. 

Scalp topography maps of the SNR showed the SEP response to be found in the 
sensorimotor areas. These findings are in line with literature (Allison et al., 1989; 
Spiegel et al., 1999). Scalp topographies showed little regarding activation of the 
non-infarcted hemisphere during SEP of the affected hand. Earlier research showed 
increased activation of the non-infarcted hemisphere (O. G. Filatova et al., 2018), but 
we could not show this using Scalp topographies of EEG electrode data.  

SEP peak amplitudes were quantified and explored as a biomarker. The P100 peak 
was unidentifiable in a significant portion of the measurements and deemed 
unreliable. The SEP peaks show considerable variance in both the infarcted 
hemisphere and the non-infarcted hemisphere. This finding is in line with previous 
studies comparing SEP peak amplitudes of stroke patients (Kalogianni et al., 2018). 
The ability to adequately detect SEP peaks varied for each subject and 
measurement. Due to the large degree of amplitude variability and difficulty 
identifying several peaks, SEP peak amplitude was discarded as a potential 
biomarker for a dataset of this sample size.  

EEG Derived Predictions Using the LI 
Different trends in recovery were observed in subjects for the infarcted LI and FMA-
UE and might be attributed to differences between stroke patients. Stroke recovery 
varies for each patient depending on severity and stroke location (Shelton & Reding, 
2001). The differences between stroke subjects could be larger than the measured 
effect. Unless a larger dataset is used, statistically proving an effect for all stroke 
subjects might prove challenging. This different trend for subjects with high baseline 
FMA-UE might also be attributed to ceiling effects of the FMA-UE, which is capped 
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at a score of 66. For three subjects with low baseline FMA-UE, the LI shows 
potential to predict the FMA-UE. Our data did not include subjects with low baseline 
FMA-UE and poor recovery. Whether subjects with poor stroke recovery show a 
similar trend would be of interest. We hypothesize that subjects with poor recovery 
do not increase LI during recovery but recruit the non-infarcted hemisphere. Such 
subjects might display an opposite trend at the FMA-UE baseline. Changes in LI 
have to be determined for both recovering and non-recovering stroke subjects 
because differences are required for the LI as a predictor for recovery.  

The LI of the non-infarcted hemisphere was found to predict the FMA-UE of the 
affected limb significantly. The decreasing trend was an unexpected result as we 
hypothesized the LI of the non-infarcted hemisphere to be unaffected by stroke. 
Previous studies of the somatosensory system (Vlaar et al., 2017) found values of 
the LI of healthy controls in a range of 0.1-0.5, similar to our values six months after 
stroke. It is important to note that this was during wrist perturbation instead of 
median nerve stimulation.  

We have some theories on this surprising finding. We find it most convincing that the 
change in LI in the non-infarcted hemisphere can be attributed to a change in SNR in 
the infarcted hemisphere. This change in activity can be attributed to ipsilateral 
components of the SEP or background cortical activity. Previous research has found 
ipsilateral components of SEP’s (Kakigi, 1986; Nihashi et al., 2005; Noachtar et al., 
1997; Sutherland & Tang, 2006), although Kakigi attributed the generation of the 
components to the contralateral hemisphere. If such ipsilateral SEP components are 
present in the healthy brain, they are probably decreased after stroke. In line with 
this hypothesis, the observed trend in the non-infarcted hemisphere can be attributed 
to the recovery of ipsilateral components of the SEP. Another explanation can be 
found in the remaining background activity. It is assumed that background cortical 
activity is removed by averaging the SEP response over all trials during pre-
processing. However, if pre-processing is unsuccessful in eliminating background 
activity, it could show up in the SNR of the non-stimulated hemisphere. After stroke, 
this background activity is decreased in the infarcted hemisphere and increases as 
the patient recovers, explaining our detected trend. More trials, different component 
selection strategies, or further processing such as source localization could remove 
more background activity and lead to more accurate results. If this hypothesis is true, 
removing all background activity should remove the observed trend. However, 
without measurements of healthy controls, the LI of median SEP’s in a healthy 
subject is unknown. Whether the decreasing trend in the non-infarcted LI is a return 
to an LI comparable to healthy subjects or a different state cannot be concluded. And 
with such a small sample size, the found affect might be attributed to coincidence. 
Further processing steps should separate more irrelevant brain activity and give a 
better understanding on the origin of this trend. 

The LI was calculated again on a separate dataset of longitudinal EEG data to 
determine if the detected trends could be observed in a different dataset. Compared 
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to the initial dataset, the LI of the additional dataset displayed a larger degree of 
variability in LI in both the infarcted and non-infarcted hemispheres. Observed trends 
in the initial dataset could not adequately be described to data in the additional 
dataset. Although the effect for the non-infarcted hemisphere was significant, we find 
the confidence interval too close to 0 for the trend to be considered reliable. A 
possible explanation could be different data pre-processing. The additional dataset 
was filtered between 1 and 250 Hz instead of 1 – 100 Hz. The stimulation artifact 
was interpolated differently, and no ICA was performed. Removing artifacts from eye 
movement or muscle using ICA decreases the dataset's variance, resulting in a 
higher SNR. Especially in measurements where the SEP response is small due to 
the stroke, a more considerable contribution from noise could lead to fluctuations in 
SNR and, consequently, the LI. ICA could aid in decreasing these fluctuations. In the 
obtained additional dataset, several indications were found for reasonable doubt on 
the cleanliness of the data, such as a possible mismatch in affected and unaffected 
hand stimulation. As described in the method section, these were excluded. 
However, a thorough visual inspection of all data could discover other similar data 
errors. Ideally, the additional dataset should be pre-processed again with ICA 
included and inspected visually to ensure reliable outcomes. 

The laterality index provides quantification into the distribution of brain activity in 
individuals. Only relevant electrodes are incorporated into LI calculation. The LI is a 
global measure spanning multiple electrodes and time points. For this reason, it is 
more robust to sources of error from various irregularities compared to SEP peak 
data. In our data, we found considerable variance between and within-subjects for 
SEP peaks. For example, in figure 5 A, the bottom SEP displays a single or 
overlapping peak for P20 and P30. Other electrodes show these peaks separately. 
When calculating peak amplitude and latency, one must take reasonable care to 
ensure the correct electrodes are selected that show a peak and a maximum 
amplitude for ideal comparison between measurements. Although steps were taken 
to ensure correct results, this remains a possible source of error. A global measure 
that spans multiple electrodes is much less prone to errors from overlapping peaks 
or irregularities in latency. Furthermore, the LI is bounded between -1 and 1 and is 
an easy to interpret quantification of laterality. Taken together, the LI is an easy to 
interpret metric that can display a SEP response, even when SEP peaks are difficult 
to identify. 

The LI is calculated from the SNR of the electrodes located above the sensorimotor 
cortex. This research is most interested in the SEP at low FMA-UE, where the SEP 
response is strongly affected by stroke. In the case of a SEP response strongly 
affected due to stroke, the SNR is poor. The noise contribution to the LI of this 
subject is more significant than measurements with high SNR and these 
measurements could suffer from fluctuations due to noise. The non-infarcted 
hemisphere does not suffer from this problem, as the SEP of the non-infarcted 
hemisphere can be detected in all measurements. The extra robustness to poor SNR 
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might partly explain the significance of the non-infarcted hemisphere in the 
regression analysis. However, a more sensitive method is desired that finds reliable 
results, even when the SEP is difficult to identify. 

Potential biomarkers derived from source localization and source 
interactions 
Additional processing steps such as source localization could further improve LI 
estimation. The LI is currently calculated from electrodes located above the 
sensorimotor cortex. However, electrodes above the sensorimotor cortex measure 
electric potential from more sources than just the sensorimotor cortex (Kakigi, 1986). 
This creates a possible source of error in calculating the LI from electrode data, as 
not all measured potentials originate in the sensorimotor cortex. Measured potentials 
that originate in the opposite hemisphere are especially problematic for accurate LI 
calculation. Source localization, where the spatial location of active sources is 
identified from its contribution to scalp electrodes (Jatoi et al., 2014), is a proposed 
solution to this problem. After source localization, estimated source activity in the 
sensorimotor cortex should not contain activity from neighboring sources. The LI 
estimated from source activity should be more sensitive than an LI derived from EEG 
channel data because non-related activity has been removed as noise.  

A further step in processing would derive potential biomarkers from causal 
interactions between sources using VBMEG. Metrics derived from EEG data such as 
the LI or peak amplitude can quantify hemispheric differences but provide little 
insight into information flow between cortical sources. Other methods using EEG or 
MEG to investigate source dynamics included methods based purely on signal 
analysis, such as network analysis using graph theory (Smit et al., 2008; Stam et al., 
2009), coherence (Srinivasan et al., 2007), or signal driven MAR modeling 
(Blinowska et al., 2004; Bressler & Seth, 2011). The VBMEG derived MAR model is 
constrained by anatomical information, decreasing false-positive connections (O. G. 
Filatova et al., 2018). The model computation constrained by anatomical connections 
further separates relevant brain activity from irrelevant brain activity compared to 
data obtained from source localization. For this reason, We expect that asymmetry 
metrics derived from VBMEG to be more sensitive than metrics derived from source 
localization and EEG channel data. 

In order to compare LI results from the current research to results obtained from 
VBMEG, the LI should be calculated from the VBMEG data. Earlier research 
(Runfeng, 2018) proposed calculating the LI using the estimated MAR model: 

𝐿𝐼 =
𝐷௖௢௡௧௥௔ − 𝐷௜௣௦௜

𝐷௖௢௡௧௥௔ + 𝐷௜௣௦௜  
(5) 

 

Where D is the number of parcels whose outward information flow strength is above 
the median z-score. The information flow strength is defined as the source activity 
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times the sum of absolute AR coefficients starting from this parcel. Dcontra contains all 
parcels in the hemisphere contralateral to the stimulated limb, Dipsi contains all 
parcels ipsilateral to the stimulated limb. 

We propose a different strategy to calculate the LI of the VBMEG method. All top half 
parcels are treated equally by calculating the LI from the number of parcels with 
above-median z-score. The underlying information flow strength is not considered by 
assigning a D value from the number of parcels, which might skew results. This 
method performs poorly when both hemispheres have an equal amount of parcels 
with an above-median z-score, but the information flow of one hemisphere is 
significantly higher. Such a situation would have an LI of around zero, while the 
underlying difference in information flow is unequal. Another example is when all 
activity is located in a few parcels. In this situation, all included parcels will have 
equal weight in the LI. The D-values do not represent the underlying information flow 
strength. For these situations, the LI calculated as described in equation 5 does not 
reflect the underlying situation and is a potential source of error in future research.  

A better approach would utilize the average information flow strength of parcels 
above the sensorimotor cortex. Such a metric is more similar to the LI from Vlaar et 
al. (Vlaar et al., 2017). This proposed improvement is in line with suggested 
improvements to fMRI derived LI’s (Seghier, 2008). Only parcels in the region of 
interest would be incorporated instead of all parcels in a hemisphere. The D-value 
reflects the underlying information flow strength without discarding parcels. The LI 
remains bounded between -1 and 1. 

Besides the LI, several other metrics can be computed to determine contralesional 
recruitment following a stroke. For example, the inter-hemispheric cross talk can be 
determined from the VBMEG model. The inter-hemispheric cross-talk is the number 
of nonzero parameters in the MAR model indicating interhemispheric connections. 
Earlier research (O. G. Filatova et al., 2018) found that inter-hemispheric 
connections in stroke subjects were more abundant than in healthy controls, 
indicating increased recruitment of the non-infarcted hemisphere. However, these 
metrics only quantify the level of lateralization. Ideally, we would identify active areas 
and processes during the recruitment of the non-infarcted hemisphere in addition to 
quantifying lateralization. The brain dynamics movie from the VBMEG toolbox allows 
for visualization of such a process, and the MAR coefficients can indicate 
quantitatively which areas are active and when. Other metrics could be computed in 
the frequency domain. Future analysis in the frequency domain is of interest, with a 
multisine input, the brain symmetry index could be calculated from the signal power. 
Many metrics can be derived from VBMEG, which could lead to new insight into 
functional changes during stroke recovery. 
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Limitations 
There are several limitations to this work, and it could be improved in the following 
directions:  

 The current research has a sample size of 5 patients. This is the dataset eligible for 
VBMEG analysis (dMRI and T1 MRI images obtained). In order to make broader 
claims about stroke, or clinically relevant conclusions, a larger sample size of 
longitudinal stroke subjects should be acquired. Making the data acquisition protocol 
for stroke patients less cumbersome could aid in recruiting a larger sample size. 
Currently, subjects are recruited upon admission to the hospital and subject to 4 
EEG and (d)MRI measurements and clinical tests. The only remaining subjects have 
a good prognosis of recovery, while significantly affected subjects drop out. Future 
research should emphasize minimal patient burden to find a dataset with a larger 
sample size that is more representative of stroke subjects. 

 No healthy controls are included in this study. Currently, the LI of a SEP is unknown 
for healthy individuals. Whether the observed trends in the LI are a return to healthy 
values is unknown. Future research should incorporate measurements of healthy 
controls. 

 The LI is modeled to predict the FMA-UE using a linear mixed model. Future 
research could explore different model structures such as an exponential model to fit 
the data. These might reflect the data structure at higher FMA-UE values more 
adequate than a linear model and have shown new insight in previous studies (Van 
der Vliet et al., 2020). Future research could explore different models to explain the 
data distribution. 

 All of the subjects in the dataset of five longitudinal stroke subjects are male. 
Literature has indicated differences in stroke incidence, treatment, and outcome 
between sexes(Appelros et al., 2010; Haast et al., 2012). Future research should 
include subjects of both sexes.  

 The present study has not compensated for the applied stimulation amplitude in the 
SEP response. Previous research indicated that the SEP response is dependent on 
the stimulation amplitude (Arthurs et al., 2004; Backes et al., 2000). Patients were 
stimulated with an average of 5 ± 1.26 mA. It is difficult to determine how much this 
affects our results, as the effect likely varies strongly between healthy subjects and 
stroke patients, as well as between stroke patients. 
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Conclusions 
The current study explored the possibility of quantifying potential biomarkers derived 
from EEG data along with the VBMEG method.  

SEP peak amplitude and the LI were explored as potential biomarkers. SEP peak 
amplitudes were too inconsistent in identification, and the variation in amplitude was 
too large to be considered feasible as a biomarker using a dataset of this sample 
size.  

Healthy controls and larger sample size are required to make clinically relevant 
conclusions on predicting stroke recovery using a biomarker. Nevertheless, we were 
able to demonstrate that metrics derived from asymmetry, such as the LI, have 
potential as a biomarker. Based on the trends in our dataset, the LI of the infarcted 
hemisphere shows potential as a biomarker for stroke recovery at low baseline FMA-
UE.  

In addition, the significant effect between the LI of the non-infarcted hemisphere and 
the FMA-UE is a surprising finding. While it might be attributed to remaining 
background cortical activity, it could also challenge current views on the laterality of 
SEP’s and stroke recovery.  

We were unable to recreate the discovered trend using an additional dataset of 17 
longitudinal patients due to differences in pre-processing. The dataset should be pre-
processed again with ICA included to perform our analysis reliably.  

The goal of this research was to quantify asymmetry metrics from SEP’s and 
determine their value as a biomarker for stroke recovery. We were able to quantify 
metrics from EEG channel data and investigate their value as a biomarker. However, 
we were unable to derive asymmetry metrics derived from dynamical source 
interactions using VBMEG. 

In the future, we plan to quantify asymmetry metrics using source localization and 
VBMEG. Further separation of relevant brain activity from irrelevant brain activity is 
expected to lead to more sensitive metrics, novel quantifications of brain activity and 
pave the way for more effective neurorehabilitation approaches.  
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Appendix A: Flowchart 
 

Variational Bayesian Multimodal EncephaloGraphy 
The VBMEG tutorial script was modified to our own needs. VBMEG can be opened 
using a GUI to enter commands and parameters. In our opinion, a script to recruit 
the required functions and parameters is more transparent and allows for easy 
reproduction of results and data transfer. 

The script is set up in the following way: 

The create_project function creates the required output directories, names, and 
paths for almost all scripts. In addition, this function contains parameters for various 
functions used later on in the VBMEG toolbox. The create_project function was 
altered to contain all parameters relevant for the processing pipeline. This function 
also sets the host and number of threads that will be used for fiber tracking. More 
information on setting up the host or localhost can be found in appendix B or the 
dMRI user manual (ATR Neural Information Analysis Laboratories, 2017) 

The VBMEG toolbox uses its functions within Matlab or uses Matlab to create a 
system command to recruit an external program, which it then executes from Matlab. 
For example, when using Freesurfer to create a cortical model, the VBMEG toolbox 
creates a command line with the required inputs to run Freesurfer from a terminal 
and then runs this command using the system() function from Matlab. 

Figure 9 displays the complete flowchart of the VBMEG pipeline. Blue boxes indicate 
inputs, yellow boxes indicate processing steps, and green boxes indicate outputs. 
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EEG Pre-processing 
For pre-processing of EEG data, see the EEG Pre-Processing section of chapter 2. 

 

  

Figure 9 Flowchart of main VBMEG pipeline. Input blocks are displayed as blue, pre-processing blocks as 
orange, processing blocks as yellow and output blocks as green. 
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MRI Bias Correction 
Input: T1 MRI image (.nii) 

Output: Bias corrected T1 MRI (.nii) 

MRI Bias is a low-frequency smooth signal that corrupts MRI images (Ashburner & 
Friston, 1998; Ganzetti et al., 2016). The bias field decreases the performance of 
image processing algorithms that use gray level values, e.g., texture analysis or 
segmentation algorithms. The goal of bias correction is to ensure the overall 
conformity of intensity values for all tissues. VBMEG corrects for bias in MR images 
using SPM8 (Penny et al., 2011).  

Image Segmentation 
Input: Bias corrected T1 MRI image 

Output: SPM normalization file, T1 MRI segmentation file (gray matter) 

Image segmentation is an optional step during VBMEG. The VBMEG image 
segmentation function has two outputs: an SPM normalization file and a T1 MRI 
segmentation file.  

The SPM normalization file is used to unnormalize fMRI activities analyzed on a 
standard brain towards an individual brain. As our data does not use fMRI, this file is 
redundant. 

The segment function can be used to extract a gray matter image from the subject's 
brain. The resulting gray matter image can be used as a mask during head model 
creation. The gray matter image ensures that the head model does not intrude into 
the cortex. As such, this is an optional step to improve performance.  

Before segmentation, a bias correction is also applied as this is built-in into SPM8 
image segmentation. The bias correction step does not make the previous bias 
correction step redundant as later steps in the VBMEG pipeline do not use the 
outputs from this processing step. 

 

Cortical Model Creation and Surface Extraction 
Input: T1 MRI image 

Output: Freesurfer Cortical model files, extracted scalp, extracted skull 

The subsequent processing step creates the cortical model used to create the 
leadfield matrix and the head model. Freesurfer (Dale et al., 1999; Fischl et al., 2002, 
2004; Fischl, Sereno, & Dale, 1999; Fischl, Sereno, Tootell, et al., 1999; Fischl & 
Dale, 2000) is used to create the head model. The steps of cortical model creation 
can be broken down into the following steps: 
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1. The function vb_freesurfer.m is called 
2. VBMEG activates a c shell script called runfreesurfer.csh. This script aims to create 

all required output files and folders in the correct layout for VBMEG for subsequent 
processing steps.  

3. The function vb_freesurfer.m runs the following command in the system (so not in 
Matlab). The script line is: recon-all -subject \$SUBJECTS\_ID -i \$IMAGE\_FILE -all.  
- recon-all performs all, or any part of, the FreeSurfer cortical reconstruction process 
- subject \$SUBJECTS\_ID indicates the name of the subject used (is extracted from 
the Matlab parameters) 
-i \$IMAGE\_FILE indicates the input file. 
- all indicates all steps must be performed, including cortical segmentation. 

It is possible to run Freesurfer from the command line outside VBMEG using the 
command line and Freesurfer commands. In this case, the user must make sure all 
required output files are saved in the correct folder for subsequent processing steps.  

Freesurfer creates a polygon model of the cortical surface. This polygon model is 
used in later processing steps for parcellation, head model creation, and leadfield 
calculation. 

More info on recon-all: https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all  
 

Head Model Creation 
Input: cortical model, extracted scalp, extracted skull, T1 MRI image, gray matter 
image 

Output: BEM head model 

This step creates the head model used in the forward problem of source localization. 
A spherical model can be used as a head model for source localization, but a head 
model can be created from MRI data to obtain more accurate results. The VBMEG 
toolbox uses the function vb_job_head_3shell.m to create the head model. 

The required files for this step are: 

- A gray matter image obtain during the segmentation step 
- Inner skull and outer skin surface files created during the creation of the cortical 

model 
- The T1 MRI file (.nii format) 
- The cortical model 

A three-layer head model is created (CSF, Skull, Scalp) from the specified files. The 
model is created using the Boundary Element Method (BEM), implemented in the 
VBMEG toolbox (Takeda et al., 2019). If no individual model is available, a standard 
three-layer BEM head model can be used. When using patients with lesioned brains, 
care must be taken in this step to make sure the lesion does not affect source 
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localization, e.g., a lesion near the cortical surface or of large size. If the lesion is 
located in an area that would affect source localization, a correction must be applied 
to the head model to account for this lesion (Vatta et al., 2000) 

 

Leadfield Calculation 
Input: BEM head model, electrode locations, cortical model 

Output: leadfield matrix 

This is the forward problem step in source localization. The leadfield calculation is 
done by the function vb_job_leadfield.m. The leadfield matrix indicates how the 
activity of dipoles leads to electrode activity on the scalp. Calculation of the leadfield 
matrix in the VBMEG toolbox requires the following inputs: 

- The head model (calculated in previous steps) 
- The cortical model 
- The electrode locations 

An important step is to ensure the electrodes are in the same coordinate system as 
the MRI images. VBMEG's used coordinate system is named "SPM_right_m," 
according to the user manual (ATR Neural Information Analysis Labs, 2018). 
However, a literature search found no mention of the specific SPM_right_m 
coordinate system. Although it is probably a variant of the coordinate system used by 
SPM, SPM has traditionally used two coordinate systems over the last years. Older 
SPM versions use the Analyze coordinate system developed by the Mayo Clinic, and 
use LAS orientation (Fieldtrip, n.d.). A newer version of SPM uses the MNI 
coordinate system, which has RAS orientation with the center located at the anterior 
commissure (Fieldtrip, n.d.).  

However, according to the latest VBMEG article (Takeda et al., 2019), the VBMEG 
coordinate system uses a RAS orientation with the origin at the center of the image 
in meters. This coordinate system seems to be a variant of the Freesurfer coordinate 
system with units in meters instead of mm. Coregistration of electrode coordinates to 
VBMEG coordinates is done by aligning the electrode location to skull landmarks. 
The Left and Right Pre-Auricular (LPA and RPA) points and the nasion fiducial point 
were measured during EEG acquisition by a 3D-pointer. These skull landmarks can 
be identified on an MRI image. The electrode locations can be registered to these 
points by a linear registration transforming the electrode locations to the correct 
coordinate system. 

The leadfield matrix can be calculated from the head model, the cortical model, and 
the electrode locations. The conductivity settings for CSF, skull, and scalp can be set 
in this step, or standard values from the VBMEG toolbox can be used (Takeda et al., 
2019).  
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hVB Source Imaging 
Input: leadfield matrix, pre-processed EEG, cortical model 

Output: source currents 

The next step is the inverse problem in source localization, i.e., determining the 
dipoles from measured electrode signals. The inverse problem is ill-posed as the 
number of possible dipoles generally outnumbers the number of electrodes. As such, 
this is an equation with more unknowns than equations, and therefore, it does not 
have a unique solution.  

The VBMEG toolbox uses its own source localization algorithm known as 
hierarchical Variational Bayesian source localization (Sato et al., 2004). The VBMEG 
Toolbox breaks the source imaging down into two steps: estimating the current 
variance and estimating the source current. 

In the first step, estimating the current variance, the current variance is estimated 
from the EEG data. The current variance is estimated by the function vb_job_vb.m, 
and the required inputs are: 

- The cortical model 
- The leadfield matrix 
- EEG data 
- Optionally fMRI data can be added here, which we do not have 

In addition, VBMEG requires several other parameters to be set to perform source 
localization. Such as time window, smoothness filter radius, noise model parameters, 
and more. Default values can be used, for more comprehensive information on these 
parameters and their meaning, see: 
https://vbmeg.atr.jp/docs/v22/static/vbmeg_users_manual.html#toc8 

The next step is estimating the source current. This is performed by the function 
vb_job_current. The source current is estimated by calculating the inverse filters and 
calculating the current variance from the available data.  

The function vb_job_current requires the following inputs 

- The current variance obtained in the previous step. 
- EEG data 

The resulting file "*.curr.mat" contains the current timecourse information that will be 
used in further processing steps. The obtain source currents can also be viewed to 
determine if the source localization provided accurate results.  
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Connectome Dynamics 
Estimation 
 

The next main chapter of the VBMEG Toolbox can be summarized as connectome 
dynamics estimation. The previous steps were encompassing source localization 
steps from EEG data combined with information from structural MRI. The following 
steps will encompass dMRI pre-processing, fiber tracking, and later, combing fiber 
tracking information with source localization to create a MAR model.  

dMRI Pre-processing 
 

 

Figure 10: overview of dMRI pre-precessing. dMRI images are loaded and motion-corrected. The dMRI 
brain is extracted, and Fractional Anisotropy (FA) images are created. 
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Motion Correction 
Input: dMRI image(s) 

Output: motion corrected dMRI image(s) 

The first step in dMRI processing is motion correction. Motion during dMRI recording 
can lead to a variety of artifacts in the dMRI image. The VBMEG toolbox has a 
motion correction function built-in using SPM. dMRI motion is corrected by the 
function dmri_4D_image_correct.m. The function calls to FSL from the VBMEG 
toolbox to use the motion correction using inputs specified from Matlab.  

 

The implemented FSL function used for motion correction is FSL eddy_correct, an 
older version of the motion correction function currently employed by FSL. The new 
function is called eddy and has been shown to lead to improved motion correction 
results compared to its predecessor (Andersson & Sotiropoulos, 2016; Graham et 
al., 2016; Yamada et al., 2014) Eddy_correct is based on a classical affine 
transformation and uses a 12-dof affine transformation and correlation ratio as a 
cost-function to register the diffusion-weighted images to a b = 0 image (Yamada et 
al., 2014) 

Pre-processed dMRI images are available in our case, as the available data has 
already been motion-corrected using FSL eddy_correct (L. Filatova, 2019). However, 
another motion correction step could be applied for improved results using the newer 
FSL eddy. 

 

Brain Extraction 
Input: motion-corrected dMRI image 

Output: extracted dMRI brain image (dMRI brain) 

In this section, the brain is extracted from the dMRI image. The brain is extracted 
using the -bet function by FSL. VBMEG uses the function brain_image_extract.m to 
extract the brain from the dMRI image. As with other functions, the main job for this 
function is to create the correct systems commands for FSL and run FSL with the 
desired inputs. In addition, a brain mask is created for later processing steps.  
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Create Fractional Anisotropy (FA) Image 
Input: dMRI brain, brain mask image 

Output: FA image 

A Fractional Anisotropy (FA) image is created from the dMRI data. In the FA image, 
the principle diffusion direction is encoded by color and the degree of anisotropy by 
intensity. The FA image shows the anisotropic diffusion of water molecules in the 
brain's white matter fibers (Suetens, 2009) 

The VBMEG toolbox creates an FA image using DTIFIT by FSL (Smith et al., 2004). 
(see: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#DTIFIT) . DTIFIT is an FSL 
function that fits a diffusion tensor model at each voxel and can create an FA image.  

 

Coregistration 
Input: cortical model, FA image, T1 MRI image 

Output: transformation matrices in all directions ( 6 matrices) 

In the coregistration block, we register the T1 MRI, Freesurfer cortical model FA 
image to the same space. A transformation matrix is made for every space to all 
other spaces allowing transfer from one image space to another. The shell script 
make_transwarp.sh performs Coregistration and is recruited through Matlab. 
Make_transwarp.sh is a VBMEG toolbox shell script that creates the nonlinear 
transformation matrices using FLIRT, FNIRT, and convertwarp from the FSL toolbox.  

Transformations made: 

- Freesurfer to T1 and back. 
- T1 to diffusion and back. 
- Freesurfer to diffusion and back. 

 

Parcel Cortical Model 
Input: cortical model, the desired number of parcels 

Output: parcellated cortical model 

In this section, the brain is parcellated into smaller regions. First, the cortical model is 
parcellated into parcels or ROI's using the function parcel_cortical_surface. 

The number of parcels is a parameter that can be chosen by the user and ultimately 
determines the number of weights in the MAR model in the last step of the flowchart. 
The VBMEG toolbox standard number of parcels is 2000. Research on a similar 
dataset (O. G. Filatova et al., 2018) used 250 parcels to calculate the final model. 
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Important to note that the computation time increases quadratically with the number 
of parcels. In the case of 2000 parcels, a strong computer is required. 

The parcellation of the cortical model seems to be as follows: first, the vertices used 
for the parcels are selected using the function dmri_vbmeg_vertex_select. X vertices 
are selected as parcels in this function, where X equals the number of selected 
parcels. The neighboring vertices in the cortical brain model are found from these X 
vertices by searching for near neighbors using vb_find_near_member. Vertices in 
the cortical model are distributed over all parcels using a maximum size parameter 
(default = 4 cm) and located near neighbors. 

 

Authors note: The above explanation of parcellation suggests that parcellation is 
based on distance alone. One would expect the outcome to show somewhat circular-
shaped parcels constrained by the cortical model. Figure 12 shows the parcellation 
of the left hemisphere. The shape of the parcellations is not as circular as initially 
expected, leading to the hypothesis of some further constraint applied during the 
neighbor search or vertex selection. Whether another constraint is present is 
currently unknown; a further investigation into the function can lead to more 
information. Otherwise, ATR can be approached for a further explanation. End note 

The selected vertices are checked only to contain cortical vertices. Subcortical 
vertices are removed. Parcel.mat and membership.mat files are created as output. 
The parcel file contains the indices for all vertices for the left and right hemispheres 
and two different indices for each hemisphere. The membership.mat file contains 
information on the relation of parcel to brain model. 
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Probabilistic Tractography 

 

Remove Noise in Fractional Anisotropy Image 
Input: FA image, brain mask 

Output: corrected FA image 

After previous processing steps, the FA image contains noise around the brain 
edges, presented as white dots. The MRI brain mask can be used to remove this 
noise. We use the Brain mask extracted from the T1 image to remove the noise and 
create a clean FA image.  

The VBMEG toolbox transforms the extracted brain mask and MRI brain to FA space 
and then recreates the FA image as done in the earlier step. The newly created FA 
file should not contain any white noise dots around the edges. The function 

Figure 11: Probabilistic tractography flowchart. After noise removal, FA images are parcellated. A mask is 
created to support fiber tracking, and fiber tracking is performed using parcel information and the fiber 
orientation density function. An anatomical connectivity matrix is calculated from the fiber tracking output 
that is used during the estimation of the MAR model. 
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remove_noise_in_fa.m removes the noise using dmri_image_transform and 
dmri_FA_image_create to recreate the FA image. 

 

Parcellation FA Image 
Input: parcellated cortical model, FA image 

Output: parcel files, ex-parcel files 

Important note: This step creates many temporary files that are removed at the end 
of the function. If the function is terminated early manually or due to an error, these 
files may not be removed. Multiple terminations of the script could lead to file 
cluttering and storage overflow. End note. 

In this step, the vertices that are selected for parcels are converted into parcel files. 
The parcel files are binary .nii files that, when loaded, show a small part of the 
cortex.  

Creating parcellated FA images is done in two steps. In the first step, all parcel 
information from the previous step is used to create X .label files, where X is the 
number of parcels. These .label files are in Freesurfer space and are in the correct 
format to be converted to volume files by FSL in later steps.  

The next step is creating volumes from the label files. The function 
dmri_label_file_to_FA_volume creates FA volumes from the .label files.  

First, Freesurfer (FS) volume files are created from the .label files using Freesurfer's 
mri_label2vol. The output volumes are transformed to struct files and FA volume files 
using FSL's FLIRT.  

 

In addition, parcel-ex files are created. These files are the inclusion region of interest 
used in fiber tracking later. The parcel file is the seed region of interest, and the 
parcel-ex files the inclusion region of interest. The seed is the starting point for fiber 
tracking, the inclusion region of interest is the region where fibers are tracked from 
the seed point. 
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Create Mask for Fiber Tracking 
Input: parcel files, white matter volume 

Output: brain mask 

A mask is created from the parcellated files. The mask is created by merging all 
parcel files with the white matter volume obtained in earlier processing steps. The 
mask supports fiber tracking to make sure no fibers are tracked that exit the brain 
volume. 

 From the parcellated files, we create a mask used in fiber tracking. The function 
create_mask_for_fiber_tracking from the VBMEG toolbox is used to create a mask. 
The function uses Freesurfer to create a white matter volume in FA space and FSL 
to merge the parcels and white matter to create a mask. 

 

Calculate Fiber Orientation Density Function (FODF) 
Input: FA image 

Output: FODF information (.mif file) 

Figure 12: an overview of parcellation of the left hemisphere with 250 parcels (125 per hemisphere).  
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Important note: This step uses MRTRix (http://jdtournier.github.io/mrtrix-
0.2/index.html). The VBMEG toolbox is set up to perform all MRTRix functions on an 
external host. These processes can run on the localhost, but the correct sep-up is 
required. Information on setting up the external- or localhost can be found here: 
https://vbmeg.atr.jp/docs/v22/attachFile/vbmeg_users_manual/dmri_data_processin
g_en.pdf. 
End note. 

We calculate the Fiber Density Orientation Function (FODF) from the FA images 
used in fiber tracking. The FODF image contains ellipses containing the estimated 
orientation and density of fibers for all voxels in the brain. The fiber orientation 
density of some voxels is displayed in figure 13. The VBMEG toolbox uses the 
probabilistic fiber tracking algorithm from MRTRix, and this algorithm requires the 
fiber orientation density function as an input. If other methods of fiber tracking are 
desired, a different input may be required. 

 

The VBMEG toolbox calculates the FODF using the estimate_response and 
csdeconv functions from the MRTRix package. Estimate_response estimates the 
fiber response function, and csdeconv performs non-negativity constrained spherical 
deconvolution.  

For more information on these functions, see: 

https://jdtournier.github.io/mrtrix-0.2/commands/csdeconv.html 

https://jdtournier.github.io/mrtrix-0.2/commands/estimate_response.html 

Figure 13 The fiber orientation density function of some voxels.The colors red, green, and blue indicate the 
direction of the major eigenvector of the diffusion tensor (Tournier et al., 2004). The ellipses display the fiber 
orientation and density. 
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Fiber Tracking 
 

 

Input: parcel files, ex-parcel files, FODF information, brain mask 

Output: parcel fiber files 

Important note: This step uses MRTRix. The VBMEG toolbox is set up to perform 
all MRTRix functions on an external host. These processes can run on the localhost, 
but the correct sep-up is required. Information on setting up the external- or localhost 
can be found here: 

Figure 54 Flowchart of Fiber tracking. Parcel files, a brain mask, and the fiber orientation density function 
are used as inputs. Fibers are tracked from each parcel to each other parcel using an external host. This is 
the most computationally heavy step in the toolbox, and computation time increases quadratically with the 
number of parcels. 
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https://vbmeg.atr.jp/docs/v22/attachFile/vbmeg_users_manual/dmri_data_processin
g_en.pdf End note. 

Important note: This step creates many temporary files that are removed at the end 
of the function. If the function is terminated early manually or due to an error, these 
files may not be removed. Multiple terminations of the script could lead to file 
cluttering and storage overflow. End note. 

Figure 14 shows the flowchart of fiber tracking as performed by the VBMEG toolbox. 
The function dmri_fiber_track_prob performs fiber Tracking. First, the VBMEG 
toolbox creates a temporary working directory with all required parcel data. From the 
data, several .txt files are created. The first .txt file is named Jobs.txt, and this file 
contains a list of jobs to be performed. This file is simply a list of locations for all fiber 
track.sh files that will be executed from this file.  

In addition, for every parcel, a fiber_track(X).sh file is created. This file contains the 
required commands as a shell script to perform fiber tracking for Parcel X. This shell 
file contains the required commands for MRTRix to perform fiber tracking, 
streamtrack SD_PROB, which is MRTRix's version of probabilistic tractography. All 
jobs are divided over all "workers". Each worker is a single processor that can be 
utilized for fiber tracking. The number of threads can be set up in the function 
create_project in the beginning.  

 

At this point, the actual fiber tracking is performed. Fiber tracking requires the FODF 
(.mif file) information from the previous step as input. The seed is the parcel for 
which fiber tracking is performed. Included regions in fiber tracking are all other 
parcels. A white matter mask is used to exclude connections outside the brain. In 
order to speed up the calculation, the maximum number of tracks to be generated 
can be decreased. However, this will lead to a coarser result. 

 

Fiber tracking can be performed on the external host or the localhost. A log file, a 
results file, and X .tck files are created, one for each parcel. The results file contains 
information on whether an error occurred during fiber tracking for each parcel. The 
VBMEG toolbox then converts all .tck files into .mat files, which can be used for 
further processing. From the .mat files, a binary anatomical connectivity matrix is 
created. This file contains information on anatomical connections for each parcel to 
all other parcels. As such, the dimension of this matrix is parcel x parcel.  

 

Important note: A bug seems to be present in this part of the VBMEG toolbox. The 
result.txt file contains a list of whether or a job was successful. When an error 
occurred, the toolbox should register the error and terminate the function. 
Unfortunately, this is not the case. When an error occurs, the toolbox continues and 
freezes later, during conversion to .mat files. Not all required .tck files are created, 
and the toolbox displays that it is still converting .tck files, while all available .tck files 
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are already converted. This issue was fixed by reading all results simultaneously, 
terminating if an error occurred, and was incorporated in the installation script. Due 
to the way the script is organized, we believe the design intention was to create a 
single result file for each parcel. This allows the erroneous parcel to be detected 
easily. A more elegant solution could integrate this solution into the VBMEG toolbox. 

 

Unsolved issue: Currently, fiber tracking is not working perfectly. An error occurs in 
some cases of fiber tracking. In some cases, fiber tracking does not create a .tck file 
from parcel files. This is because input parcel.nii files are empty. Loading these files 
into a niftii viewer displays that the parcel has no volume. An error seems to occur 
during parcellation, where empty parcels are created. Further investigation showed 
that the error already occurs during parcellation of the cortical model, but it is unclear 
exactly where.  

 

VBMEG's near neighbor algorithm found vertices with no near neighbors in the 
cortical model. Currently, the explanation behind creating empty parcels is 
speculation at best.  

An error may occur during the near neighbor search, finding no neighbors for specific 
vertices. Perhaps the cortical model has some errors during creation, and the cortical 
model is not created correctly. Decreasing the number of parcels seems to solve the 
problem but decreases the resolution.  

 

Ideally, empty parcels should not be a problem. The algorithm should detect empty 
parcels and exclude them from the analysis. The suggested solution would therefore 
include a check during parcellation and exclude empty parcels.  

 

The text below displays the content of an empty .label file. Every line indicates a 
vertex in this .label file. Most files have ±200 vertices, and this file has one vertex 
indicating it has no volume. Information on the structure of a .label file can be found 
here: https://surfer.nmr.mgh.harvard.edu/fswiki/LabelsClutsAnnotationFiles. 

 

#!ascii label, from subject 
/data/Gertrand_Thom/VBMEG_NEW/tutorial/program/../analyzed_data/s006/dmri/pa
rcels/parcels.mat  

1 

132599 29.455973 37.216026 2.503677 0.000000 

 

Calculate Connectivity Matrix 
Input: parcel fiber files 

Output: anatomical connectivity matrix, fiber length matrix 
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From fiber tracking results, we create the connectivity matrix displaying the 
connection between all parcels. The Connectivity matrix is a binary matrix containing 
information on the fiber connection of each parcel to all other parcels. The 
anatomical connection is binarized by a threshold connection strength (Default value: 
1e-4), parcel connections lower than the threshold are deemed unconnected.  

In addition, a fiber length matrix is calculated. First, time delays are calculated with 
the formula, from (ATR Neural Information Analysis Labs, n.d.-b): 

𝛥𝑡 =
𝑓௟

𝑣
+ 𝜏 (6) 

 

Where Δt is the time delay, fl is the fiber length, v (6 m/s) is the conduction velocity, 
and tau (27 ms) is the axonal time delay. The fiber length is obtained from fiber 
tracking output.  

Matrices are created with time delays from every parcel to each other parcel and 
fiber lengths from each parcel to all other parcels. The function 
dmri_connect_parm_calc from the VBMEG toolbox calculates the connectivity 
matrix. 

 

Parcel Current Averaging 
Input: Source currents, parcel information 

Output: parcel currents 

In this section, the source current information is averaged over all parcels. The 
function calculate_roi_current from the VBMEG toolbox averages the source 
currents into each parcel. 

 

MAR Model 

Input: anatomical connectivity matrix, fiber length matrix, parcel currents 

Output: MAR model 

In this section, the MAR model is calculated. The model is estimated using 
estimate_dynamics_model and lcd_fitl2reg_holocalAR from the VBMEG toolbox. 
The MAR model is calculated using the anatomical connectivity matrix, fiber length 
matrix, and parcel currents from previous steps. Causal relations between parcel are 
inferred using  
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𝑍௡,௧ = ෍ 𝑎௡ௗ𝑧௡,௧ିௗ

௣

௔ୀଵ

+ ෍ 𝑏௡௩𝑧௩,௧ି∆௧೙

௩ఢ஼೙ 

+ 𝜀௡ (7) 

 

Where p is the order of self-influence, assumed to be 2. zn,t is the current density at 
time t of parcel n, an,d is the local dynamics. Cn is an index set of structurally connect 
parcels, bnv are the parameters for distance interaction Δtn is the time delay 
calculated in the connectivity matrix step. εn is white noise (ATR Neural Information 
Analysis Labs, n.d.-b; Runfeng, 2018).  

Movie Creation 

Input: Mar model, parcel currents, parameters (time window, sampling rate), fiber 
tracking input 

Output: parcel current movie 

In this step, a movie is created from the estimated dynamics. The movie displays the 
estimated parcel currents and connectome dynamics in a clear overview. Fiber 
tracking is performed again on a subset of data to obtain fiber shapes to display 
connections. In the next step, the movie is created using the create_movie function 
from the VBMEG toolbox. The movie displays the source currents of one node with 
its own contribution (local dynamics), the contribution from other parcels and, 
contribution from input (ATR Neural Information Analysis Labs, n.d.-a). 

 

 

 

 

 

 

 

  



 

58 
 

Appendix B: VBMEG 
installation 
The current chapter describes the system deployment of the VBMEG toolbox. The 
VBMEG requires several programs to run: 

- Matlab (version 2021 is compatible), from: 
https://nl.mathworks.com/products/new_products/latest_features.html 

- Freesurfer (version 7 is compatible), available from: 
https://surfer.nmr.mgh.harvard.edu/ 

- FSL (v6.0), available from: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ 
- MRtrix (v 0.2.13, MRtrix3 not compatible) available from: 

https://www.nitrc.org/frs/?group_id=128 
- (optional) EEGLAB available from: https://eeglab.org/ 

 

An installation script was made for the VBMEG toolbox using a bash shell script. The 
script has two options, a fast install, and a manual install. The fast install installs all 
programs automatically in one go. The manual install is more hands-on and asks 
which programs are to be installed.  

The user has to set a couple of different variables: 

- Download directory: directory where all programs are downloaded to 
- Program directory: directory where all programs should be installed in 
- LOG directory: directory to save installation logs 
- Matlab directory: directory to save Matlab scripts and data 

The user must have root privileges to install most programs, so the installation 
should be run as a root user. If not, the script is terminated. 

First, all required dependencies are installed. Then, all programs are then installed in 
order. Some errors exist in the VBMEG toolbox. The script corrects those errors 
using the -sed command from Linux.  

- The VBMEG requires and VBMEGrc file to find the correct paths to all installed 
programs. This file is edited with the correct paths. 

- The function dmri_fs_info read is edited to convert .gii files into .asc files. Otherwise, 
the VBMEG toolbox cannot load the files properly. 

- The rename package by Linux has been updated and works differently. VBMEG 
uses the old convention. The installation script updates the VBMEG scripts use the 
new package. 
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- The FSL viewer the VBMEG toolbox uses has been changed. In order to use the 
same viewer, FSLview must be changed to fslview_deprecated in 8 of the VBMEG 
files. A new viewer called FSL eyes is also available but is not implemented. 

 

Future Improvements 
The installation script still has room for improvement for the VBMEG toolbox to work 
out of the box. Some suggestions are: 

- Add option for the user to auto edit the VBMEG toolbox to run fiber tracking on the 
localhost. Recently was discovered that fiber tracking can be performed on the 
localhost without setting up the ssh connection to localhost as explained in: 
https://vbmeg.atr.jp/docs/v22/attachFile/vbmeg_users_manual/dmri_data_processin
g_en.pdf. Automating this step would make installation less cumbersome. 

- MRTrix has an updated version with different commands. Existing MRTrix 
commands can be updated to be compatible with a new version of MRTrix. 

- The FSL viewer can be updated to work with FSL eyes. 
- Currently, the script only functions for Linux computers. A windows option can be 

created. 


