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1 Preface

This textbook provides you with an overview of the methods to analyse and
predict the dynamic motion of point masses and rigid bodies in the two-
dimensional plane based on Newton’s laws. The book is aimed at first-year
bachelor students in science and engineering. The recommended prerequisite
knowledge for the textbook includes high-school physics, basic calculus (differ-
entiation and integration), vector algebra, linear ordinary differential equations,
and knowledge of statics. Furthermore, the gradient is introduced from vector
calculus. Most concepts are briefly introduced, such that this textbook might
in principle also be used by readers without this prerequisite knowledge.

In case you spot errors, inaccuracies or if you have other suggestions to
improve this textbook it would be highly appreciated if you send your feedback
to p.g.steeneken@tudelft.nl.

1.1 Guidelines for studying dynamics

This textbook aims to bring you basic understanding of dynamics and provide
an engineering toolbox by which you can solve many problems in dynamics,
both analytically and numerically. However, it is important to learn how to
use this toolbox to apply it in new situations. The only way to learn this
well is to solve problems. For this reason, it is very important, after having
studied a part of the textbook, to practice solving problems yourself. Always
first try to solve the problem yourself before looking at the solution, since you
learn much more by finding the solution yourself, even if that costs more time.
Getting stuck in solving a problem is probably the experience from which you
learn the most. It points out what parts you don’t understand well enough,
encourages you to study those parts better by reading the book or looking at
similar examples, and after solving the problem the experience will ensure you
will not easily forget how to solve similar problems. So, don’t give up too early
or look at the solution, if you persist you often will manage.

Besides teaching you the basics of dynamics, an important aim of this
textbook is to teach you to get rid of ’bad habits’ you might have acquired in
high school by implementing the following guidelines:

mailto:p.g.steeneken@tudelft.nl
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1. Work with equations instead of filling in numerical values while
analysing a problem. The aim is to learn how to solve problems with
equations instead of filling in numbers at an early stage. Not only are you
more likely to make errors when filling in numbers, it is also much harder
to detect those errors afterwards (e.g. by checking units). Moreover,
when having an equation as solution, it has a larger degree of validity and
can be used to predict trends and optimise designs. Only fill in numbers
after having reached the final equation.

2. Work with vectors instead of scalars. A position, force, moment,
velocity or acceleration in 2 or 3 dimensional space is always a vector.
Therefore you should initially always use vector notation in 2D and 3D,
and only work with scalar values when appropriate, e.g. after having
projected the vectors on a coordinate axis. Correct vector usage and
notation will become increasingly important when you progress with your
studies, so best get used to it early. Note that most problems in this
book will focus on motion in the 2-dimensional xy-plane. Nevertheless,
even in that case moment and angular velocity vectors point along the
z direction. Moreover, most vector equations that are presented in this
textbook will still be valid in 3D, unless they have a subscript 2D.

3. Using a structured approach instead of jumping to conclusions
too soon. In the analysis of dynamic systems, we will not assume
anything, but use structured procedures to solve problems. For example,
if a mass moves over a surface, we will not jump to the conclusion that
the upward normal force equals the weight of the mass (which is not
always the case for a curved surface), but determine the normal force
from Newton’s laws.

4. Solve problems based on understanding, instead of by memoris-
ing example problems, and copying the methodology without
understanding how it works. Although this memorising and solving
many standard problems might seem effective for passing exams, it will
leave you helpless when you encounter a problem that you did not see
before. Therefore, focus on building understanding and ask questions if
things are not clear.

This textbook aims to form a bridge between high-school physics and aca-
demic literature, providing more rigorousness and insight into the material.
Available textbooks are often either too advanced and complex, or do not offer
sufficient depth, insight or rigorousness in my view. This textbook provides a
solid basis in dynamics of which I hope that it will help you to bridge the gap
towards understanding more advanced academic books and articles.
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1.2 Topics
The outline of the topics that will be discussed in this textbook is as follows:

1. Introduction, elemental concepts, forces, vectors and mathematics
2. Dynamics of point masses

a) Kinematics
b) Kinetics
c) Work and energy
d) Impulse and momentum

3. Dynamics of rigid bodies
a) Kinematics
b) Kinetics
c) Work and energy
d) Angular impulse and momentum

4. Vibrations
5. Solution strategy dynamics

Although all equations and theory will be derived and presented for motion
in 3D space (unless specifically indicated otherwise for special cases), most
examples and problems will focus on point masses and rigid bodies moving in a
2D plane. The dynamics of deformable objects will not be part of the textbook.
Several section headings are marked with a * at the end of the section title,
to indicate that the main text can be followed without reading these parts
because they contain derivations or background information. The following
introductory chapters might be skipped if they are already familiar. The core
of the textbook starts in Ch. 5.

1.3 Text structure
In this textbook, the techniques and models that scientists and engineers need
to design and analyse dynamical systems will be introduced step by step,
starting from Newton’s laws. Eventually at the end of the textbook we will
have discussed a toolbox of equations and techniques that can be valuable for
your future career.

The text consists of different parts:

1. Descriptions and explanations
2. Derivations of key equations and concepts
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3. Concepts and techniques in dynamics
4. Practical examples, and sample problems that illustrate the use of these

techniques

Although derivations of equations might be skipped without following the
main line of the textbook, it is highly recommended to read them, since they do
provide more insight into the theory and demonstrate beautifully how Newton’s
laws, despite their simplicity, can account for a tremendous set of complex
phenomena in dynamics.

To highlight important concepts, they are introduced like this:

Concept. Principle of linear impulse and momentum

∑
j

mj v⃗j (t1) +
∑
i,j

∫ t2

t1
F⃗ i,jdt =

∑
j

mj v⃗j (t2) (1.1)

Similarly, derivations are marked like this:

Derivation. We will here derive the principle of impulse and momentum from
Newton’s laws.

Examples to illustrate how to apply the concepts and techniques are pro-
vided in an example environment, with the letter in front of the exam-
ple indicating the difficulty level (S: simple, M: medium and A: advanced).

S Example 1.1 We consider the following example situation.

Exemplary solution
The dynamics of this system can be solved as follows.

Problems are included in these notes as follows:
M Problem 1.1 This is a test problem.

1.4 Changes in edition 1.1
During the first year of using edition 1.0 of this book several additions and
corrections have been implemented. Thanks to students and colleagues that
suggested improvements! For this reason we release edition 1.1 of the textbook.
Here we provide a list of the most important changes implemented in edition
1.1.

• Subsection Sec. 2.1.3 was added, with Table 2.2, which provides an
overview of the symbols and subscripts used in this textbook. Some
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students have indicated that they find symbols with subscripts compli-
cated or intimidating. In this section the motivation for the notation
with subscripts is given. The convention we adopt is that a vector F⃗
always represents a force, and the subscripts indicate the type of force.
This provides clarity in contrast to other textbooks where vectors like
N⃗ , W⃗ , and P⃗ are used for forces.

• In Ch. 7 the terms energy was replaced by the term mechanical energy
to indicate the sum of kinetic and potential energy. The motivation for
this change is to make it more clear that energy is always conserved
in a closed system. On the contrary, the mechanical energy of a closed
system is only conserved in a closed system if no work is performed
by non-conservative forces, because non-conservative forces can convert
mechanical energy into thermal energy (or heat).

• Fig. 6.6 was added and more explanation on how to project tnb coordi-
nates on Cartesian and cylindrical coordinates is provided.

• A few errata were found, the most important are: a factor c2
2 was missing

in Example 5.3. A division sign in the equation F⃗ B = mBa⃗B was removed
in Sec. 6.12. There was a typing error in variable Vg,tot in Eq. (7.43). The
description of the static equilibrium yA,st in Fig. 13.1 was not completely
correct.

• An index was added.

1.5 Acknowledgements

In 2021 I started writing this textbook to support the course Introductory
Dynamics that I teach for first year BSc. students, motivated by Heike Vallery
who wrote a book on Advanced Dynamics [9] and also provided me with
a template [9] and contributed parts of her notes that have been reused in
adapted form in Ch. 2 and Ch. 3. I would like to thank Jaap Meijaard for
thorough review of the full text. I also would like to thank Heike Vallery, Arno
Stienen, Niels Bouman and Boris Ullrich, for their help and feedback on the
manuscript. I also acknowledge the support from the department of Precision
and Microsystems Engineering and the Mechanical Engineering faculty of TU
Delft in writing this textbook. TU Delft Open Textbooks has helped me to
publish the book. I provide it with cb licence, with the Latex source code
and images on Zenodo (see DOI on page 2), in order to facilitate distribution
and education, and to enable others to reuse it and expand on it, which is
encouraged and permitted as long as a reference to this textbook is provided.
Note that none of the underlying dynamics theory presented in this textbook

https://textbooks.open.tudelft.nl/textbooks
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is new. All of it is based on beautiful scientific work that was developed over
several centuries by many scientists and educators, most notably Newton [7, 6]
and Euler [3].
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2 Notation, Math, and Engineering
Basics

This chapter will discuss notation conventions, unit usage, significant digits
and repeat mathematical background knowledge that will be needed to follow
this textbook.

2.1 Notation

In this section we discuss the used notation, labelling and typesetting in this
textbook. Sec. 2.1 and Sec. 2.2 are an adaptation of the text of Vallery and
Schwab [9].

2.1.1 Typesetting of scalars, vectors, and matrices

There are several ways to typeset scalars, vectors, unit vectors, and matrices
as depicted in Table 2.1. In particular for vectors and unit vectors there are
multiple methods applied in literature. Although in many works vectors are
only written with boldface italics, it is hard to clearly write a boldface letter
in handwriting. Therefore we here use a combination of boldface and vector
arrow above the letter for clarity and similarity to the handwritten vector.
Similarly, for unit vectors (vectors with a magnitude of 1), we use a boldface
letter with a hat ˆ above it. All variables are italics, also if they appear in
subscripts or superscripts. Matrices are non-italic and also names and texts in
sub or superscripts are non-italic except if they are single letters[8].

Table 2.1: Notation of scalars, vectors, unit vectors and matrices
This book Other notations

Scalars F

Vectors F⃗ F⃗ , F , F , F
Unit vectors ı̂, ρ̂ ux, e1, i, x̂
Matrices R R
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2.1.2 Quantities, labels and subscripts
In this textbook we generally follow the guidelines set out in the Red Book
[2]. To label objects or points we either use letters like A,B, . . ., numbers
i = 1, 2, . . . or short words like rope or ball. For adding extra information
and distinguishing quantities, we can add subscripts like in mrope and mball.
Multiple labels can be separated in the subscript by commas. Italic integer
variables, like i in Fi (with i = 1, 2, . . .) can indicate that multiple quantities
F1, F2, . . . exist, each with a different value of i. Although labels are not always
essential, make sure to always use sufficient labels to uniquely identify each
quantity. So, if there is only one mass in your problem, it is fine to just m to
identify it. However, if there are two point-masses, subscripts mA and mB are
needed for unique identification. With an axis coordinate as a subscript, like x
in Fx, we indicate a projection of a vector F⃗ along the x-axis.

A special notation for relative position, velocity and acceleration vectors is
used (see also Sec. 3.1.2). A position vector that points to a point A from a
point P will be denoted as r⃗A/P = r⃗A − r⃗/P , which reads: “position of A with
respect to P”. Analogous notation will be used for other relative quantities,
such as angles, velocities and accelerations (see Sec. 3.1).

For components of 3-dimensional vectors, there are three possible ways of
notation of which we will usually use the last one because it is the shortest to
write:

r⃗ =

rx

ry

rz

 =
(
rx ry rz

)T
= rxı̂ + ry ȷ̂ + rzk̂. (2.1)

The superscript T indicates the transpose of the vector (or matrix), and is
sometimes used to convert the column vector to a row vector to save space.
For components of m-dimensional vectors, one can also use the index notation,
with unit vectors written like ê1 = ı̂, which has the advantage that it can be
written even more compactly as a sum:

r⃗ =


r1
r2
. . .
rm

 =
(
r1 r2 . . . rm

)T
=

m∑
i=1

riêi. (2.2)

Elements of m×n-dimensional matrices receive two indices, for row and column:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
am1 am2 . . . amn

 . (2.3)



2.2 WORKING WITH UNITS 21

Note that in dynamics, we use Newton’s notation (also called dot notation
or fluxions) for time derivatives, indicating them by a dot above the variable:

ẋ = dx
dt (2.4)

ẍ = d2x

dt2 (2.5)

In mathematics the prime symbol ′ is often used for derivatives like f ′ = df
dx .

In dynamics it is advisable not to use the prime symbol to avoid confusion, and
instead clearly indicate with respect to what variable the derivative is taken e.g.
df
dx or df

ds . Also clearly indicate if it is a total derivative df
dx or partial derivative

∂f
∂x . In this textbook the prime symbol ′ will not be used for derivatives
but is sometimes used as a label. Finally, when making multiplications of
scalar quantities, both · and × are used, such that a · b = a× b. For vectors
these symbols indicate the dot and cross product which clearly are different:
a⃗ · b⃗ ̸= a⃗ × b⃗.

2.1.3 Overview of symbols and subscripts

If you are not used to them, the mathematical symbols and names for points,
objects, coordinates, scalar quantities and vector quantities, having sometimes
multiple subscripts, might look complicated. However, actually one can get
used to them quite quickly, since the number of different symbols used in this
book is quite limited, as can be seen in Table 2.2, which contains almost all
symbols that you will encounter in this textbook. The large letter indicates
the type of quantity or coordinate, while the subscripts give information on
the point(s), time(s), or object that it relates to. So the symbols provide a
very compact way to write down dynamical systems in a precise mathematical
way, while also providing a connection between drawings and mathematical
equations. At this moment the symbols in Table 2.2 have not been explained
yet, but in the rest of this textbook we will clarify the symbols in Table 2.2 in
more detail and discuss them again in Sec. 10.7.2.

2.2 Working with units
There are several rules when working with units that are not always obvious,
and sometimes not correctly applied, even in standard textbooks. Errors
with units have led to serious confusions and accidents like the collapse of a
Mars orbiter and an aeroplane running out of fuel in mid-air. It is therefore
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Table 2.2: Important symbols and notation of subscripts in dynamics
Symbol Represents
A Name of point (mass) or object
mA Mass of object A
t1 Specific time t1 on the time axis t
sA Position coordinate of A on the path axis/curve s
k Spring constant k of spring k
g Gravitational constant g = 9.81 m/s2

r⃗A Position vector of A
r⃗A/B Relative position vector of A with respect to point B
F⃗ A Force acting on A

FAx x-component of vector F⃗ A

M⃗A/G Moment on A relative to the CoM G of the system
p⃗G Momentum of centre of mass G of a system
IC/G Moment of inertia of C relative to the center of mass G

L⃗C/P,2D Angular momentum of C relative to point P ,
equation only valid for planar 2D motion

x, y, z, ρ, ϕ, z Cartesian and cylindrical coordinates
ı̂, ȷ̂, k̂, ρ̂, ϕ̂, k̂ Cartesian and cylindrical unit vectors

t̂, n̂, b̂ Unit vectors for natural coordinates
r⃗, v⃗, a⃗, ω⃗, α⃗ Main kinematic vectors
W,P, T, V Work, power, kinetic and potential energy

J⃗ i,12 Impulse on point mass i during time-interval t1-t2
H⃗C,12 Angular impulse on object C during time-interval t1-t2
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important for every engineer to be able to correctly work with units and we
repeat the most important rules here.

In mechanics, we often deal with scalar variables that represent physical
quantities that have a measurement unit, like forces, velocities, or positions.
Scalar variables consist of the product of two elements: a number and a
measurement unit.

S Example 2.1 Force can be expressed as the product of a numerical value and
the measurement unit newton: F = 3 · N = 3 N.

Following the ISO norm [5] and the “Red Book” [2], for quantities that have a
measurement unit, the numerical value of a scalar variable Q that represents
such quantities is denoted by {Q}, and the measurement unit is denoted by
[Q], such that

Q = {Q} · [Q]. (2.6)

S Example 2.2 A mass m = 3.5 kg has the numerical value {m} = 3.5 and the
unit [m] = kg. The same quantity value can be expressed as 3500 g. Then, the
numerical value is {m} = 3500, and [m] = g.

Note that square brackets only have meaning when placed around the physical
quantity. For axes labels one commonly uses round brackets [4, 8] around
the unit like for a time axis: t (s). Another option [1] is to use division: t/s.
Generally, the letters of units are printed in roman (upright), those of scalar
variables in italic.

S Example 2.3 For time t,
good use is: t = 4 s, t = 4 (s), t/s = 4, or [t] = s,
not good use is: ����XXXXt = 4 [s], or ��Z

Zt [s]. Besides paying attention to the units, also you
need to make sure that if you have a vector on the left side of the = sign, you also
need to have a vector on the right side.

From Eq. (2.6) it can be seen that every scalar equation in mechanics can be
split into two equations, one for the numerical values, and one for the units.
For example, an equation like F = ma, with F = 1 N, m = 1 kg and a = 1 m/s2

can be split into:

F = m · a (2.7)
{F}[F ] = {m}[m] · {a}[a] (2.8)

{F} = {m} · {a} → 1 = 1 · 1 (2.9)
[F ] = [m] · [a] → N = kg · m/s2 (2.10)

When making a calculation it is important that in the end result both the
numerical values and the units are correct since obviously, in equations, the
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units on both sides of the equal sign need to be identical, otherwise the equality
can never hold. Normally, the units automatically work out well if you work
with SI units. In some cases, one has to deal with equations like a = c1t

2. In
that case the unit of the constant c1 is not given, but can be obtained from
the equation [a] = [c1][t2], which can be written as m/s2 = [c1] · s2, from which
it follows that the unit of c1 is: [c1] = m/s4.

A general advice is to work as long as possible with variables, and only to
substitute numbers and units in the final solution. Units almost always help as
a part of plausibility checks for calculations. Moreover, writing the numerical
value and unit in each step of the derivation is much more work, and errors in
numerical values are harder to find than in equations.

In this textbook we mostly work with the International System of Units,
also called SI units, the SI system, or metric units, which are the world’s most
widely used system of measurement. If you have to work with non-SI units, as
a habit first convert it to the SI unit as a first step to prevent problems later
on. Often this conversion is just a matter of multiplying the non-SI unit value
by a constant factor, e.g. 1.0 inch = 1.0 inch × 0.0254 m/inch, however in some
cases the conversion is more complex, like when converting temperature in
Fahrenheit to degrees Kelvin. Preferably also work in the base SI unit, remove
any factors related to prefixes (like converting mm to m by dividing by a factor
1000) before starting calculations, using scientific notation (e.g. 3.02 × 108) for
very large or small values.

There are 7 base SI units, and the only base SI units relevant in this textbook
are m, s and kg. There are 22 derived SI units of which we use 6 in this textbook:
the rad = m/m,Hz = 1/s,N = kg m/s2,Pa = N/m2, J = Nm, and W = J/s.
The unit to use for a certain quantity or parameter can often be determined by
evaluating known dynamics equations. As an example, since x has unit m and
t has unit s, we can use the equation for acceleration a = d2x

dt2 to determine that
acceleration a has the unit m/s2 (note how the square sign 2 is placed behind
the t but before the x in the second derivative notation). Similarly, one obtains
from F = m× a that 1 N = 1 kg × 1 m/s2 = 1 kg m/s2. This method can often
help to find the right unit by using a known equation, such that units don’t
have to be memorised. Keep in mind that the equations in this textbook only
work correctly if one uses SI units or units derived from SI units (like N or W).

In some cases the scalar variable represents a unitless quantity. Examples
of unitless quantities are integer numbers (for example the number of wheels
under a car) or ratios of quantities with the same unit (for example the ratio of
two distances). Most mathematical functions, like trigonometric or logarithmic
functions, only accept unitless quantities. For example there is no mathematical
way to calculate tan(1 m). So, always make sure only unitless numbers or ratios
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are used. E.g. log(x2/x1) is fine, but log(x2) cannot be calculated if [x2] = m.
It is important to note that additions and subtractions can only be performed
between scalar quantities of the same unit, while multiplications, divisions and
powers can be taken on quantities of different units as long as the operation is
also applied to the respective units.

A special case are angles, even though they usually have degrees ◦ or rad
behind them, these angle designations are actually unitless numbers, which
measure e.g. the ratio of the length of a circular arc divided by the length of the
perimeter of a full circle. The degree or radian symbol only indicates how the
trigonometric function should be applied. When not otherwise specified in this
textbook we work with radians. Since angles are unitless, most mathematical
functions can accept angles as an argument.

When dealing with vectors, one also needs to specify the direction of the
vector using one or more unit vectors, so for specifying a vector one uses
the product of a number, a measurement unit and at least one unit vector.
Subtraction and addition is only possible for vectors with the same unit, scalar
products are possible as long as the units are also multiplied, so for instance
v⃗ × t = ∆x⃗ is a correct equation, because m/s × s = m and because quantities
on both sides of the = sign are vectors.

Expressions and equations may contain mixtures of quantities given with
their numerical value and quantities given as variables. In all cases one needs
to ensure that the units on both sides of the equal sign = are equal, and that
one cannot equate a scalar to a vector or matrix. If a vector quantity evaluates
to zero one we use the zero vector 0⃗, which is a vector with magnitude zero
and no direction.

S Example 2.4 For a particle of mass m = 3 kg having acceleration vector
a⃗ = 1 m/s2ı̂, the resultant force vector F⃗ on the particle can be calculated as:
Correct is: F⃗ = ma⃗ = 3 kg × 1 m/s2ı̂ = 3 kg m/s2ı̂ = 3 Nı̂.
Incorrect is: ((((((hhhhhhF⃗ = 3 · a⃗ N, because the vector a⃗ has unit m/s2 such that the units on
both side of the equal sign are different.

S Problem 2.1 A particle performs a harmonic oscillation, such that its location
coordinate x is a function of amplitude x0, angular frequency Ω, and time t:

x = x0 sin(Ωt). (2.11)

Fill in suitable units for x, x0, Ω, and t and check the equation for consistency.

S Example 2.5 Which of these expressions make correct use of units, for mass m,
time t, force F , angular velocity ω, and angle θ? Correct the mistakes.
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A. m = 20
B. m = 3 N
C. F = 3 ·m [N]
D. F = 20N
E. [m] = kg
F. m/[m] = 20
G. t = 3 s
H. ω = 2 rad/s
I. θ = ω · t = 2 · t [s]
J. {m} = 20
K. ω = t2

L. ω = 1 rad/s · t2
M. F (t) = cos(1 rad/s · t) N
N. F (t) = 3e−t N
O. F (t) = ln(t2/s2) kg · m/s2

Exemplary solution
m ̸= 20 unit omitted; m = 20 kg
m ̸= 3 N wrong unit for mass quantity; m = 3 kg
F ̸= 3 ·m [N] unit omitted and unit inserted with

wrongly used square brackets; F =
3 m/s2 ·m

F ̸= 20N roman variable, italic unit symbol; F =
20 N

[m] = kg correct!
m/[m] = 20 correct!
t = 3 s correct!
ω = 2 rad/s correct!
θ = ω · t ̸= 2 · t [s] wrong unit and [s] is wrong; θ = 2 rad/s·t
{m} = 20 correct!
ω ̸= t2 unit mismatch; e.g. ω = 1 rad/s3 · t2
ω ̸= 1 rad/s · t2 unit mismatch; e.g. ω = 1 rad/s3 · t2
F (t) = cos(1 rad/s · t) N correct !
F (t) ̸= 3e−t N exponent should not have units; e.g.

F (t) = e−t/s N
F (t) = ln(t2/s2) kg · m/s2 correct !

2.3 Precision, significant digits and errors

When designing new systems, it is essential to be sure that they satisfy the
required specifications. Therefore, when working with numerical values, it
is essential to be aware of the precision of these numbers. Neglecting the
consideration of the precision can lead to big problems, like parts of machines
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that do not fit together. Uncertainties in quantities with respect to the average
value can occur both due to actual variations (in time) in the quantity that is
measured and due to uncertainties in the measurement technique that is used
to determine the quantity.

2.3.1 Precision and significant digits

The most common method to determine the uncertainty in a quantity is to
measure the quantity q a large number of times and determine the average
value qavg and standard deviation σq. For example we measure the diameter
of a 1 euro cent coin N times with a calliper, analyse the results and obtain
d = davg ± σd = (16.20 ± 0.05) mm. The standard deviation σd is a measure
of the uncertainty (imprecision) in a single measurement1 of the value of the
coin diameter d. If many different euro cent coins are measured variations
between the euro cent coins can also increase the uncertainty, thus both
measurement uncertainty and object variations can contribute to the total
uncertainty. Assuming a Gaussian distribution of the measurement values, the
value of the standard deviation gives a probability of 68% that the diameter of
the coin is between 16.15 mm and 16.25 mm.

Significant digits (also called significant figures) are an approximate way
to indicate these kinds of uncertainties in a value. Since adding or removing
one significant digit changes the precision of the value by a factor 10, it is a
quite rough indicator of the precision. Nevertheless, even this rough estimate
can protect you from making grave mistakes. For instance, you buy a piece of
wood with a width of w = 100 cm to fix a door in your house. When installing
it you notice that it is only 99.6 cm such that you have an ugly gap of 0.4 cm
(or you might find the door doesn’t close because w = 100.4 cm). If you go
back to the salesman you might not get your money back, since 100 cm means
that the width can have any value between 99.5 cm and 100.5 cm, instead you
should have bought a piece of wood with a width of w = 100.0 cm.

In the example of the euro cent coin, the diameter of the coin would be
indicated as d = 16.2 mm. The last digit indicates the uncertainty, showing
that with reasonable certainty the value will be between 16.3 mm and 16.1
mm. Alternatively you can continue working with the full expression (16.20 ±
0.05) mm, and use error analysis to determine the error and precision. These
methods also can be used to determine the error propagation, for instance in
case a quantity q is determined from d by a function q = f(d), an error in d will

1Note that the uncertainty in the average value of all the N measurements is lower than the
uncertainty in a single measurement: σdavg ≈ σd/

√
N . So, taking more measurements of

the same quantity is a way to reduce the uncertainty.
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also result in an error in q. If we determine the area of the euro cent coin using
the equation A(d) = f(d) = 1

4πd
2 we find, using the Taylor expansion for small

errors σd, that A = f(davg ± σd) ≈ f(davg) ± σd
∂f
∂d = 1

4π(d2
avg ± 2davgσd), such

that the error (standard deviation) in A can be determined by: σA ≈ σd
∂f
∂d .

However, although very important, further discussion of these methods is out
of the scope of this textbook.

When reporting measured quantities in engineering, the number of signif-
icant digits should always be estimated and reported2. In case estimating
precision is difficult, a conservative estimate of the number of significant digits
is recommended. Significant digits can sometimes only be properly indicated
using scientific notation, which is notation of a number by a single digit before
the decimal point and an appropriate exponent. For example, if there are two
significant digits, a mass should be written as 1.2 × 102 kg and not as 120
kg (which indicates three significant digits). The most important point to
note is that trailing zeros, like in 1.000, right of the last non-zero digit are all
significant, while the leading zeros like in 0.001, left of the first non-zero digit,
are not significant. Some examples:

• 1.2 × 102 kg ̸= 120 kg
• 2.000 kg = 2000 g = 2.000 × 103 g
• 1.8×10−3 m = 0.0018 m = 1.8 mm

In the first case the quantity on the left has two significant digits, while the
quantity on the right has three significant digits, because the zero is a trailing
zero, just like the zeros in the second case. In the third case, the zeros in 0.0018
m are not significant, because they are leading zeros, such that there are only
two significant digits.

2.3.2 Making calculations with significant digits

When making calculations based on quantities with significant digits, the
number of significant digits can change. If the number of significant digits
reduces, the value is calculated and rounded to the nearest number with the
determined number of significant digits. The following rules are most important
to determine the number of significant digits of a calculated value:

2Besides the precision, that indicates the variation of the quantity around the average value,
there can also be a deviation of the average measured value with respect to the actual
value. For instance the calliper might have an offset, such that it always measures 0.05
mm less than the actual value. that would be measured by a more accurate instrument.
This is called a systematic error, and its magnitude is related to the accuracy of the
quantity.
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• There is no uncertainty in countable, integer numbers, or mathematical
quantities like π. They should be treated as having an infinite number of
significant digits.

• To facilitate working with significant digits, write the number in scientific
notation to remove all zeros on the left, but keep all trailing zeros on
the right of the value: d = 0.0162 m= 1.62 × 10−2 m. Then count the
number of significant digits, in this case 3.

• In multiplication or divisions, the resulting number of significant digits is
equal to the figure with the fewest significant digits. E.g. in F = m · a =
1.0 kg × 3.124 m/s2 = 3.1 N, the resulting number of significant digits is
two, equal to that of the mass, which has the lowest number of significant
digits.

• In additions or subtractions, the last significant digit of the calculated
result should be equal to the last (smallest) significant digit of the least
significant quantity from which it is determined. E.g. ∆x = x2 − x1 =
2.156 m − 2.13 m = 0.03 m. The result of the calculation is 0.026 m, but
the last significant digit in 2.13 m (the 3) is at two positions right of
the decimal point, such that only 1 significant digit remains in the final
rounded result.

• When applying functions to quantities, like tan x1
x2

= tan(0.988) = 1.52 ,
the number of significant digits is kept the same as the argument. Note
that his rule, although often sufficient, is not always completely accurate,
e.g. when working with power functions. More advanced methods are
outside the scope of this textbook.

• Only determine significant digits at the end of a calculation. For inter-
mediate results in the calculation one should keep a sufficiently large
number of digits to prevent additional imprecision due to rounding.

S Example 2.6 Which of these expressions make correct use of significant digits
and units, for mass m, time t, force F , angular velocity ω, and angle θ?

A. F = 0.0020 kg · 300 m/s2 = 0.60 N
B. t = 0.10 s − 1.0 ms = 99 ms
C. θ = π × 10−3.0 ms/(1.0 ms)rad = 3.1 × 10−3 rad

Exemplary solution
F = 0.60 N correct! 2 significant digits are kept in

multiplication.
t ̸= 99 ms t = 0.10 s. Most significant figure in first

value is 10 ms, same should hold for final
result after subtraction.

θ = 3.1 × 10−3 rad correct! 10−3.0 ≈ 1.0 × 10−3.
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2.4 Solving first-order differential equations
Several mathematical techniques are important in dynamics, and for that reason
we dedicate space to repeat them in this textbook. Here we discuss solving
differential equations and in the next section we discuss complex numbers. In
the next chapter we discuss vectors and linear algebra methods.

In kinematics we will often encounter ordinary differential equations (ODEs)
that need to be solved in order to analyse the motion of objects. Solving an
ODE always involves finding an unknown function y(x) based on a known
ODE. The function y(x) has a dependent variable y like the position s, speed
v or acceleration a of a point, and an independent variable x, which can be the
time t, position s or velocity v of the point. Realise that while in mathematics
courses you usually only deal with variables y and x, in dynamics different
variables are used, like s, v, a and t.

Although we will deal with second order ODEs in Ch. 13, in most of this
textbook we will deal with first-order ODEs that contain a known function
f(x) (for instance a known position s(t)) and the unknown function y(x) that
we want to determine. The ODE can occur in either of these forms:

df(x)
dx = y(x) (2.12)

dy(x)
dx = f(x) (2.13)

The convenient aspect of these first-order differential equations is that they
can be solved using differentiation and integration. In case of an ODE of the
form of Eq. (2.12), the solution can be found by taking the derivative of the
known function f(x) to find the solution of the ODE y(x) = df(x)

dx . For the
second case shown in Eq. (2.13) solving the ODE requires integration, and can
either be carried out by using the indefinite integral, or by using the definite
integral. We will outline both integration procedures. In the following three
subsections we discuss the basic differentiation and integration techniques in
some more detail.

2.4.1 Differentiation by chain and product rule

When dealing with an explicit function of time vs(t) taking the derivative is
straightforward, e.g. as(t) = dvs(t)

dt . However, when dealing with functions that
are implicit functions of time like vs(s), where the time dependence of the
position s is given by s(t), the chain rule is needed. In that case we use the
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chain rule like this:

as(t) = dvs(s(t))
dt = dvs(s)

ds
ds(t)

dt (2.14)

Sometimes the product rule for differentiation is also needed:
dF (t) · v(t)

dt = dF
dt · v(t) + F (t) · dv

dt (2.15)

2.4.2 Indefinite integral
In case of Eq. (2.13) the ODE can be solved by integration using the indefinite
integral to obtain y(x) as follows:

dy(x)
dx = f(x) (2.16)

dy = f(x)dx (2.17)∫
dy =

∫
f(x)dx (2.18)

y(x) = F (x) + c1 (2.19)
Here, F (x) is a primitive function of f(x) such that dF

dx = f(x) and c1 is an
unknown integration constant. This constant can be determined if the value
of y is known for one value of x = x0. E.g. if y(x0) = y0, then we have
y0 = F (x0) + c1, from which we find the value of the integration constant
c1 = y0 − F (x0) and by substituting this value of c1 in Eq. (2.19) the full
solution of the ODE is found to be y(x) = [F (x) − F (x0)] + y0.

2.4.3 Definite integral
Besides taking the indefinite integral, one can also choose to use a definite
integral to solve the ODE, which is often a bit shorter, since the known
condition y(x0) = y0 can be directly taken as one of the boundaries of the
definite integral. The definite integral is obtained as follows:

dy(x)
dx = f(x) (2.20)

dy = f(x)dx (2.21)∫ y(x)

y(x0)
dyi =

∫ x

x0
f(xi)dxi (2.22)

[yi]yy0
= [F (xi)]xx0

(2.23)
y − y0 = F (x) − F (x0) (2.24)
y(x) = [F (x) − F (x0)] + y0 (2.25)
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Note that since the definite integral evaluates the difference F (x) − F (x0),
any integration constant c1, that appeared in the indefinite integral Eq. (2.19),
is automatically eliminated and does not need to be determined. Eventually the
result of both methods, indefinite or definite integration, is of course identical.
When taking a definite integral, it is essential to ensure that the boundaries
of the integrals on the left and right side of the equation are corresponding
to identical points of the curve y(x): y0 = y(x0) and y = y(x). Note that we
have used the variable x as the upper boundary of the definite integral, which
allows us to find the function y(x) for any value of x. Note also that for clarity
when taking the integral on both sides we have replaced the variables x and
y inside the integral by the variables xi and yi (the result of the integral is
of course independent of the symbol we choose to integrate over), to clearly
distinguish them from the integration boundaries x and y. We take the integral
of the function f(xi) over the variable xi, that runs from x0 up to x. Or, in
other words, with the definite integral we determine the area under the f(xi)
graph, for values of xi running from xi = x0 to xi = x. If the integral runs
from xi = x1 to xi = x2, Eq. (2.22) can also be written in the following form,
that we will use regularly:

y(x2) = y(x1) +
∫ x2

x1
f(xi)dxi (2.26)

From this equation it is clear that if the value of y is known at one value of
x1, then y(x1) can be determined such that evaluation of the integral enables
us to determine y(x2) at any other value x2.

2.5 Complex numbers

Working with complex numbers can simplify the analysis of the dynamics in
many cases. In particular when working with vibrations, we will use complex
numbers a lot to simplify solving differential equations, see Ch. 13. When you
know how to work with complex numbers, it saves you remembering many
trigonometric equations. Here we will only summarise the most useful relations
for complex numbers that are part of most introductory mathematical analysis
courses.

A complex number y can be written as the sum of a real part yr and an
imaginary part yi multiplied by the imaginary unit i. We now summarise some
of the properties of complex numbers that you should be able to use. Especially
the first three are important, since by using the normal rules for calculating
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with scalars the rest of the properties can be proven from them.

i2 = −1 = eiπ (2.27)
y = yr + iyi = |y|eiφ (2.28)

eix = cosx+ i sin x Euler′s formula (2.29)
ℜy = Re(y) = yr = |y| cosφ Real part of y (2.30)
ℑy = Im(y) = yi = |y| sinφ Imaginary part of y
φ = arctan yi

yr
Argument of y for3 yr > 0 (2.31)

y∗ = y = yr − iyi Complex conjugate (c.c.) (2.32)
[f(yr + iyi)]∗ = f(yr − iyi) Replace i by − i for c.c.4 (2.33)

|y| =
√
y2

r + y2
i =

√
y · y∗ Absolute value (2.34)

sin x = 1
2i(e

ix − e−ix) (2.35)

cosx = 1
2(eix + e−ix) (2.36)

1
y

= 1
y

y∗

y∗ = y∗

|y|2
(2.37)

yx = |y|xeix(φ+2nπ) , n = . . . ,−1, 0, 1, 2, . . . (2.38)

S Example 2.7 If you can work well with complex numbers, there is no need
any more to memorise or look up trigonometric sum and product equations. As an
example, use complex numbers to show that:
ℜei(a+b) = cos(a+ b) = cos a cos b− sin a sin b

Exemplary solution

ℜei(a+b) = cos(a+ b) = ℜ[eia × eib]
ℜ[eia × eib] = ℜ[(cos a+ i sin a)(cos b+ i sin b)]

= cos a cos b− sin a sin b (2.39)

So, if you can solve this problem, you don’t have to memorise any trigonometric
sum, difference or double angle formula anymore, you can easily derive cosine and
sine functions with complex numbers, taking the real or imaginary parts of ei(a±b)

or e2a = ea+a.
3When yr ≤ 0 use the atan2 function with φ = atan2(yi, yr), see https://en.wikipedia.

org/wiki/atan2, or make a drawing and use trigonometry to determine φ.
4This holds for all analytic functions, but not for all non-analytic functions.

https://en.wikipedia.org/wiki/atan2
https://en.wikipedia.org/wiki/atan2
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Another useful property of complex numbers is that their real and imaginary
parts behave as the x and y components of a vector in the xy-plane, where φ is
the angle they make with the x axis. Thus complex numbers can be practical
for adding planar vectors.

A Example 2.8 Two force vectors F⃗ 1 and F⃗ 2 that both lie in the xy-plane act
on a point A. The angles that the vectors make with the x axis are φ1 and φ2.

Problem: Calculate the absolute value of the total force vector F⃗ tot = F⃗ 1 + F⃗ 2
acting on A.

Exemplary solution
We replace the vectors by the complex numbers Ftot, Fc1 and Fc2, where we use

that ℜFc1 = F1,x and ℑFc1 = F1,y. Then we have:

|F⃗ tot|2 = |Fc1 + Fc2|2 = (Fc1 + Fc2)(Fc1 + Fc2)∗

= Fc1F
∗
c1 + Fc2F

∗
c2 + Fc1F

∗
c2 + Fc2F

∗
c1

= |Fc1|2 + |Fc2|2 + |Fc1|eiφ1 |Fc2|e−iφ2 + |Fc2|eiφ2 |Fc1|e−iφ1

= |Fc1|2 + |Fc2|2 + |Fc1||Fc2|[ei(φ2−φ1) + e−i(φ2−φ1)]
= |F⃗ 1|2 + |F⃗ 2|2 + 2|F⃗ 1||F⃗ 2| cos(φ2 − φ1) (2.40)

Taking the square root of this equation gives the absolute value of |F⃗ tot|. Note that
the equation we have derived is called the ’Law of cosines’. With complex numbers
there is no need to memorise it.

A Example 2.9 An important application of complex numbers is for analysing
vibrations, as we will discuss in Ch. 13. A mass can vibrate at two angular frequencies
ω1 and ω2 simultaneously, in which case its motion is written as: xtot(t) = cos(ω1t) +
cos(ω2t).

Problem: Show that this sum of trigonometric functions can also be written as a
product of trigonometric functions: xtot(t) = 2 cos

[ 1
2 (ω1 + ω2)t

]
cos
[ 1

2 (ω2 − ω1)t
]
.

This mathematical result leads to an important phenomenon called beating where
the amplitude of vibrations, like sound, is modulated in time as shown in Fig. 2.1.

Exemplary solution
You can perform this derivation in two directions. We first start from the sum
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and prove that it is equal to the product:

xtot(t) = ℜ[eiω1t + eiω2t]
Now we multiply by 1 = ei 1

2 (ω1+ω2)te−i 1
2 (ω1+ω2)t

= ℜ
[
ei 1

2 (ω1+ω2)t
[
ei 1

2 (ω1−ω2)t + ei 1
2 (ω2−ω1)t

]]
= ℜ

[
ei 1

2 (ω1+ω2)t
]

2 cos 1
2(ω2 − ω1)t

= 2 cos
[

1
2(ω1 + ω2)t

]
cos
[

1
2(ω2 − ω1)t

]
(2.41)

Now we start from the given product and prove that it is equal to the sum:

xtot(t) = 2 cos
[

1
2(ω1 + ω2)t

]
cos
[

1
2(ω2 − ω1)t

]
= 1

2

(
ei[ 1

2 (ω1+ω2)t] + e−i[ 1
2 (ω1+ω2)t]

)(
ei[ 1

2 (ω2−ω1)t] + e−i[ 1
2 (ω2−ω1)t]

)
= 1

2

([
ei[ 1

2 ×2ω1t] + e−i[ 1
2 2ω1t]

]
+
[
ei[ 1

2 ×2ω2t] + e−i[ 1
2 2ω2t]

])
= cos(ω1t) + cos(ω2t) (2.42)

0 2 4 6 8 10 12 14
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Figure 2.1: Plot of the function xtot(t) = cos ω1t + cos ω2t from example 2.9 and its en-
velope for ω1=19 and ω2=20. It is composed of the product of a high fre-
quency cosine, with average frequency ωavg = 1

2 (ω1 + ω2) and a low frequency
cosine with beat frequency ωbeat = 1

2 (ω2 − ω1). The observed time varying
amplitude of the high frequency cosine function is also called beating with
xtot(t) = 2 cos (ωbeatt) cos (ωavgt).

2.6 How to solve problems

In general you can use the following flowchart [9] to solve problems in a
structured way. The steps will be outlined in more detail in Ch. 14.

Follow these steps to solve a problem:
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1. Make sure you read the theory, at least up to the point needed to solve
the problem.

2. Read the entire problem description carefully, from beginning to end.
3. Write down a list of variables given and a second list of variables to be

calculated.
4. Determine the type of problem.
5. Determine for yourself whether this is a problem of kinematics, kinetics,

or other.
6. Break the problem down into sub-problems as appropriate and search

for the required theory subsection in the book. Read this part again if
needed.

7. Extract the general methods and formulae that need to be applied. Write
down the equation number(s) from the book. Make sure you use the
original, generic form of the formulae (not a similar-looking version from
an example or a problem solution).

8. Make drawings, such as FBDs, or kinematic diagrams of your system.
Use different views where needed. Clearly define at least one coordinate
system including unit vector directions and a coordinate origin. Specify
it if the coordinate system is moving or rotating.

9. Optionally create a table of variables where you clearly associate the
variables in the problem and in your drawings with the variables given
in the theoretic formulae.

10. Check all assumptions that need to hold for the formulae to be applicable
11. Write down all assumptions you made for your specific problem, and

highlight those that can only be checked later.
12. In many problems you have to solve for one or more scalar variables.

In general, you have E equations, and need to solve a system with U
unknowns. To check if you have sufficient information (E) to solve the
problem apply the following steps:

a) Count the number U of scalar unknowns. Be careful to include all
unique components of a vector or a matrix individually.

b) Count the number E of scalar equations given by the equations you
found.

c) Compare E and U .
• If E = U , continue.
• If E < U, do not start solving yet. Instead, find more equations,

either in the theory or in the problem itself. Are there kinematic
relationships between variables that can reduce U or increase
E?
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• If E > U , continue, but make a note to come back to check if
some of the equations do not contradict each other and if all of
them are correct.

d) Solve the system of equations. Do this symbolically as much as
possible, do not insert any numbers.

e) Check the original assumptions. Do they indeed hold? If not, go
back to step 11, make other assumptions and solve the problem
again.

f) Once you have found a result, conduct multiple plausibility checks.
Also re-insert your solution into your original equations, especially
if E > U . If in doubt about your result, start again at step 1.

g) If requested compute the numerical values of the U unknowns using
the E obtained equations and the given numerical quantities.

2.7 Plausibility checks

A plausibility check is a calculation or validation procedure that is performed
to verify if the obtained solution to a certain problem is correct.

The main takeaways from this section are the following:

• If your answer passes all plausibility checks, then the answer is probably
correct.

• If your answer does not pass a plausibility check, then the answer is
probably wrong and the failed check will likely provide you information
where the mistake is, such that you can fix it.

• Therefore, if you learn properly to perform plausibility checks, you will
not need a solution anymore to check if your answer is correct.

• Note that you can also perform a plausibility check at every intermediate
step of the solution. This helps to find the step with the mistake.

• For professional engineers there is no solution manual. To avoid making
mistakes, which can have a huge impact, they always need to check the
plausibility of their calculations, to be close to 100% sure of their answer.

• Therefore checking the correctness of answers (without solution manual)
is one of the most important skills an engineer should acquire.

• For this reason we do not give students answers to all problems, since
if one uses a solution manual to verify the correctness of answers, one
never learns how to properly perform plausibility checks.

• If you, despite the plausibility checks, do not manage to solve a problem,
always ask explanation from your professor, teacher or colleagues.
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Here are some examples of questions you can ask yourself to check the
plausibility of an answer:

• Does the quantity in the answer have the right units?
• Are units on both sides of the equation equal? (Sec. 2.2)
• Is the sign of the answer correct when comparing it to the question? E.g.

in a problem where a ball is falling downward due to gravity, and the y
axis points upward, is vy negative?

• Does the value of the answer make sense? (not more than 10 times
smaller or larger than expected?). E.g. in a problem where a mass
is accelerating due to gravity over a surface, its acceleration can never
exceed the free fall value g.

• When you substitute the answer in the equations used, do you get back
the given values? E.g. if you have found the solution x(t) = c1t

2, from the
initially given acceleration, check by twice differentiating that a(t) = 2c1.

• When projecting forces on axes, does the length of the vector correspond
to that of the components? E.g. v2

x + v2
y + v2

z = |v⃗|2.
• Does the net force vector ∑ F⃗ point in the same direction as the acceler-

ation a⃗?
• Do the chosen axes form a right-handed coordinate system?
• Does ∑ F⃗ = ma⃗ and the other laws of Newton and Euler hold if you

substitute the final answer back into them?
• Can methods of work and energy be used to double check the solution?
• Are all given constraint equations satisfied if you substitute the final

answer into them?
• Is there any other information given that can be verified with the answer?

Of course there are many more plausibility checks that can be performed, which
really depend on the type of problem under consideration.
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3 Vectors and Coordinates

Since vectors and coordinate systems are essential for the description of dy-
namics, we discuss the definitions, conventions and basic operations (linear
algebra and cross products) needed to deal with them in this chapter.

3.1 Vectors in mechanics

A vector (or Euclidean vector) is a unitless geometric object with a magnitude
and direction in three-dimensional space. In science and engineering a vector
can also have a unit. In this section we discuss several particular conventions
and methods that are important for using and drawing vectors in mechanics.

3.1.1 Position vector

Probably the most important vector in dynamics is the position vector r⃗A

which represents the position of a point or point mass A in space by a straight
arrow that points from the origin of the coordinate system to point A. Usually,
a coordinate system is chosen such that the position vector of the origin has
zero magnitude, |⃗rO| = 0.

3.1.2 Relative position vector

A relative position vector r⃗B/A (see Fig. 3.1) is a vector that indicates the
relative position of a point (or point mass) B with respect the position of
another point A and is defined as:

r⃗B/A ≡ r⃗B − r⃗A (3.1)

Note that the order of the objects in the subscript is important: r⃗B/A

indicates the position of object B with respect to the position of A, and vice
versa r⃗A/B indicates the position of object A with respect to the position of
B, inverting the direction of the vector, therefore r⃗B/A = −r⃗A/B, as is also
seen from Eq. (3.1). A way to remember this is to replace the symbol / by
the words ’with respect to’. So, r⃗B/A is ’the position vector of point B with
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respect to point A’. A normal position vector (without / in the subscript) is
always measured with respect to the origin O of the coordinate system.

The relative position vector is convenient to determine the shortest distance
between two points in space. Relative velocity and acceleration vectors between
two points are defined analogously:

v⃗B/A ≡ v⃗B − v⃗A (3.2)
a⃗B/A ≡ a⃗B − a⃗A (3.3)

Concept. Distance
The distance dB/A between two points A and B in space is given by the absolute
value of the relative position vector connecting these two points.

dB/A ≡ |⃗rB/A| =
√

r⃗B/A · r⃗B/A (3.4)
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Figure 3.1: Absolute position vectors r⃗A, r⃗B , indicating the position of objects A and B with
respect to the origin. Relative position vector r⃗B/A, indicating the position of
object B with respect to the position of object A.

S Example 3.1 Determine the distance between points A and B using the relative
position vectors.

Exemplary solution
From Fig. 3.1 we find that: r⃗A = (8ı̂ + 2ȷ̂)m and r⃗B = (3ı̂ + 4ȷ̂)m. With Eq. (3.1)

we find that r⃗B/A = ([3 − 8]̂ı + [4 − 2]ȷ̂)m. Then we obtain from Eq. (3.4) that the
distance between points A and B is: dB/A =

√
52 + 22 m =

√
29 m.
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3.1.3 Vectors and unit vectors

Besides position vectors, we will deal with many other types of vectors for
analysing dynamical systems, like velocity, angular velocity, force and torque
vectors. In all these cases the vector, for instance a force F⃗ , expresses a
magnitude and a direction. The magnitude of the vector can always be
obtained by taking the absolute value (norm) of the vector:

|F⃗ | =
√

F⃗ · F⃗ (3.5)

The magnitude |F⃗ | is a scalar with the unit newton (N). The direction of the
force can be specified by a unit vector F̂ , which is a vector with magnitude 1
that points in the same direction as F⃗ . That unit vector is defined as:

F̂ ≡ F⃗

|F⃗ |
(3.6)

Because they are a ratio of two quantities with the same unit, unit vectors,
despite their name, have no unit. They are called ’unit’ vector because they
have a magnitude of unity). With these definitions any vector can be written
as the product of a magnitude and a unit vector like in this example for the
force vector:

F⃗ = |F⃗ |F̂ (3.7)

3.2 Drawing vectors
Although the motion of objects, can be fully expressed with mathematical equa-
tions, it is often much easier to visualise objects and mechanisms using drawings.
Moreover, it is common practice in engineering to not provide all information
in equation form, but provide part of it in the form of a drawing. Therefore,
correctly drawing vectors, and interpreting those drawings is important for a
correct analysis of dynamics. Analysing a problem in mechanics usually starts
by making a sketch of the system, and later one or more free-body diagrams
(FBDs), which are then translated into mathematical equations. To make sure
no errors or inconsistencies occur during this translation process from drawing
to mathematical equations, it is important to draw all vectors correctly and
to have clear definitions on the way vectors are drawn and converted into
equations.

A vector is always drawn as a straight arrow, with a label. Optionally, a dot
can be placed at the tail or head of the arrow to indicate the point of action



42 3 VECTORS AND COORDINATES

of the vector. If the arrow points perpendicular to the plane of the drawing,
its direction can be indicated by the symbols ⊙ (pointing towards the reader
out of the page) and ⊗ (pointing away from the reader into the page). The
meaning of these symbols can be easily memorised by imagining a dart arrow
that points in the same direction as the vector and realising that the symbols
resemble the tip (⊙), or flight (⊗) of the dart arrow.
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Figure 3.2: The three main ways of specifying vectors in a drawing. a) General vectors. b)
Vectors specified by a scalar signed magnitude. c) Vectors specified by scalar
magnitude and angle.

Figure 3.2 shows three main ways to specify vectors in a drawing:

1. Drawing general vectors F⃗ A, F⃗ B (Fig. 3.2a).
2. Drawing vectors as an arrow with fixed direction and scalar signed

magnitude FA, FB (Fig. 3.2b).
3. Drawing vectors with scalar magnitude |FA|, |FB| and a direction specified

by an angle ϕA, ϕB (Fig. 3.2c).

Although the first method of drawing without scalars can always be used, it
is important to get used to the second and third method of drawing vectors
as well, since they provide a way to use the drawing to provide part of the
relevant information with less equations needed, and are therefore regularly
used in engineering.

We note that in general, multiple 2D drawings, e.g. obtained by orthographic
projection, are needed to visualise a 3D system. However, since in this textbook
we will mainly deal with the dynamics in a single plane, one drawing is usually
sufficient.
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3.2.1 Drawing general vectors

General vectors are drawn by an arrow and a vector label like F⃗ A (Fig. 3.2a).
When using this type of vector notation, the most important thing is to draw
the vector with the right point of action in the drawing, to label it correctly
and to make sure each relevant vector is only drawn once. Although it is
convenient to draw the arrow in the direction in which the vector is expected
to point, drawing it in the wrong direction will not cause problems, since both
the direction and magnitude of the vector, and its conversion to scalars, are
dealt with by the mathematics and a suitably chosen coordinate system. This
means that in addition to the drawing an equation like F⃗ A = (3ı̂ + 4ȷ̂)N is
needed to fully specify the vector.

3.2.2 Drawing vectors with scalar signed magnitude

In some cases the direction of the line along which a vector operates is fixed,
e.g. because a force operates along the line connecting two points in the
drawing, but the magnitude of the vector is not, for instance because it is
a time-dependent force vector or because it still needs to be calculated. In
that case the vector can be represented by drawing an arrow in the direction
the vector is known to act and adding a scalar label FA next to it (Fig. 3.2b).
In this case the correct drawing of the direction of the arrow is essential for
the further analysis, because it defines a unit vector F̂ A pointing in the same
direction as the drawn arrow. Normally this unit vector is not drawn, but in
this figure it is drawn to explain the concept of defining vectors with signed
magnitudes. When using this method of drawing vectors, the scalar quantity
FA is defined as the signed magnitude of the vector F⃗ A and the drawing defines
this vector by:

F⃗ A ≡ FAF̂ A (3.8)

Note that the scalar value FA can have a negative sign: that is the reason FA

is called a ’signed magnitude’. When FA is negative, the vector F⃗ A points
in the opposite direction as the drawn arrow and unit vector F̂ A. This also
means that FA can have a different sign than the vector’s magnitude which is
always positive. If the magnitude of the vector is known and fixed, then one
can replace the label FA by the magnitude of the vector including the unit, for
instance by writing 3 N besides the arrow like in Fig. 3.2b).
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3.2.3 Drawing vectors by magnitude and angle

A planar1 vector F⃗ A, can also be indicated by a magnitude |F⃗ A| and an angle
ϕA (Fig. 3.2c). When specifying the angle ϕA, one also needs to specify the
reference direction at which ϕA = 0, which is indicated by a dashed line and
is usually taken to be the positive x-axis. One also draws a circular arrow
that points from the reference direction towards the drawn vector to indicate
the direction in which the angle ϕA increases. In this textbook we use the
convention that in the xy-plane such an angle has a positive scalar value if
it rotates in the same direction as given by the right-hand rule2. So in the
coordinate system drawn in Fig. 3.2 the angle increases in the counter-clockwise
direction. Then, in a Cartesian coordinate system in the xy-plane (see later in
this chapter) one finds that:

F⃗ A = |F⃗ A| cosϕAı̂ + |F⃗ A| sinϕAȷ̂ (3.9)

An angle between two vectors can be specified as ϕB/A = ϕB − ϕA. If the
magnitude and/or angle of the vector are known and fixed, then one can replace
the labels |F⃗ A| and ϕA by the magnitude and angle of the vector including
the unit, for instance by writing ’3 N’ besides the arrow and replacing the
angle ϕA by 233◦, as can be seen in Fig. 3.2c). Inverting the direction of such
a vector is done by adding π rad (=180◦) to the angle (ϕA → ϕA + π). This
is a difference with the signed magnitude vector, for which the inversion is
performed by changing the sign of the signed magnitude (FA → −FA).

S Example 3.2 Give the mathematical expressions for the following quantities
such that the corresponding vectors in Fig. 3.2 have identical magnitude and direction
as the vector in Fig. 3.2b) specified by label 3 N:

• F⃗ A and F⃗ B in Fig. 3.2a)
• FA and FB in Fig. 3.2b)
• The combination |F⃗ A| and ϕA in Fig. 3.2c)

Exemplary solution

• F⃗ A = 3
5 (3ı̂ + 4ȷ̂)N and F⃗ B = 3

5 (3ı̂ + 4ȷ̂)N
• FA = 3 N and FB = −3 N
• |F⃗ A| = 3 N and ϕA = arctan 4

3 ≈ 53◦

1We only discuss in-plane vectors here, which can be specified with a single scalar angle. In
general at least two angles are needed to specify a vector in 3D.

2So by putting the thumb of one’s right-hand along the z-axis, the direction of positive
increasing angle is that in which the curved fingers point.
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3.2.4 Drawing fixed, sliding and free vectors
A vector only has a direction and magnitude. However, for vectors in mechanics,
the position at which vectors are drawn can be essential for the correct analysis.
For instance the position of the origin is essential for the interpretation of a
position vector, and the point of action of a force vector can be essential for its
effect on a rigid body. For this reason, vectors can be complemented by a point
(reference point, or point of action), or by a line of points (line of action). The
combination of the vector and this point or line is then called a fixed vector or
a sliding vector.

1. Fixed vectors: these are vectors which have to be drawn at a fixed
point of action or reference point for the correct dynamic analysis. This
point of action or reference point should be indicated by a black dot on
the tail or tip of the arrow. Position vectors are fixed vectors and always
have their point of reference at the tail of the arrow. The vector r⃗A in
Fig. 3.3 is an example.

2. Sliding vectors: for sliding vectors, instead of a point of action, one
can use a line of action, that is shown as a dashed line in Fig. 3.3. The
line of action of a force vector F⃗ B is the line that passes through its
point of action B and is parallel to F⃗ B. For sliding vectors any point of
action that lies on the line of action can be chosen without affecting the
dynamic analysis, so the vector can slide along the line. For example,
to determine the moment vector of force F⃗ B with respect to a reference
point P , one uses the cross product M⃗B/P = r⃗B/P × F⃗ B. It can be
shown that replacing point B by any other point on the line of action,
results in the same moment vector M⃗B/P . This is visualised in Fig. 3.3
by showing that the area of the red rectangle and red parallelogram are
equal. When sliding a vector, the line of action should be drawn as a
dashed line that passes through the point of action or reference point,
which should still be indicated by a black dot, like point B in Fig. 3.3.
Sliding a vector along its line of action can be performed to facilitate or
clarify a drawing, but is in particular useful to facilitate determining a
cross product. As will be discussed in Sec. 3.4, the magnitude of such a
cross product r⃗B/P × F⃗ B is equal to the area of the red parallelogram
Fig. 3.3. As shown by the red rectangle in Fig. 3.3, one can slide the tail
of the vector F⃗ B along the line of action to the point nearest to P at a
distance rmin. Then the cross product is simply proportional to the area
of the red rectangle, so |M⃗B/P | = rmin|F⃗ B|.

3. Free vectors: There is no reference point for a free vector, so free
vectors can be drawn anywhere. However it is often clearer to draw them
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on or near the object on which they act, like shown for the vector M⃗B/P

in Fig. 3.3. The moment, couple, and angular momentum vector are free
vectors. Also the angular velocity and angular acceleration vectors of a
rigid body are examples of free vectors.

4. Vector fields: vector fields consist of vectors at every position in space.
They are best drawn as vectors on the objects on which they act, while
their spatial dependence is given as equations. Alternatively vector fields
can be drawn and visualised at many points in space (similar to Fig. 5.6).
Since the gravitational acceleration vector field on earth is approximately
constant, it can be drawn at a single position like shown in Fig. 3.3 using
signed magnitude notation g⃗ = −gȷ̂, by which we indicate that it is
identical for all objects in the figure.
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Figure 3.3: Examples of drawing fixed, sliding and free vectors, and distances. The areas of
the red parallelogram and red rectangle are equal to the magnitude of the cross
product |⃗rB/P × F⃗ B |.

3.2.5 Projecting vectors and drawing components

After drawing the vectors and defining the coordinate system, the vectors can
be projected on the coordinate axes to obtain and draw the vector components.
To obtain the components along each of the axes, we take the dot product
with the unit vectors. For example in Cartesian coordinates we get for the
projection of the vector F⃗ A on the coordinate system (CS) the following 3
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Figure 3.4: Drawing components of vectors F⃗ A and F⃗ B , projected on Cartesian coordinate
axes. If you draw both the vector and its components, use dashed lines for the
components.

components:

FA,x = F⃗ A · ı̂ (3.10)
FA,y = F⃗ A · ȷ̂ (3.11)
FA,z = F⃗ A · k̂ (3.12)

As a result we have F⃗ A = FA,xı̂ + FA,y ȷ̂ + FA,zk̂, and projected vector com-
ponents can be considered as vectors themselves, e.g. F⃗ A,x = FA,xı̂, with
axis subscripts x, y, z to indicate the projected components. Examples of
drawing projected vector components are shown in Fig. 3.4. Projected vector
components are in practice always drawn using signed magnitude notation (so
with scalar labels). If both the vector and its projected vector components
are drawn, one has to use dashed arrows for the drawn vector components, to
distinguish them from the original vector (see examples in Fig. 3.4). This is
needed to prevent errors from double counting of forces in an FBD. According
to the rules for drawing vectors with signed magnitude notation, a minus sign
is needed in front of the projected components when the arrow points in the
negative axis direction, like for −FB,x in Fig. 3.4.

3.2.6 Scaling of drawn vectors

If you want to use geometric techniques to make calculations with vectors,
then it is important to draw them with the correct magnitude. Euclidean
vectors are drawn in a coordinate system with axes with distance dimensions
and units in e.g. meters. Using these axes, the magnitude of a position vector
can be determined by measuring its length. However, the magnitude of other
vectors, like velocity or force (see e.g. vector F⃗ B in Fig. 3.3), that have units
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of m/s or N cannot be determined from the axes. There is therefore always
a scale factor that can be chosen arbitrarily to convert the drawn length of
such a vector to its actual magnitude. For example a force vector F⃗ that has a
magnitude |F⃗ | = 1 N can be drawn with a length of 1 m. In that case there is
a scale factor for force vectors γF = 1 m/N, but other scale factors might also
be chosen. After choosing a scale factor, the drawn length of all force vectors
should be determined from their magnitude using the equation γF |F⃗ |. This
scaling is especially important when graphical methods are used that use the
drawn magnitudes of vectors.

3.2.7 Drawing points
Points are drawn as black dots with a label in a sketch or FBD. It is important
to realise that there are different types of points. There are points that are
fixed3 in space, but also points that move along with a rigid body, like the
point B in Fig. 3.3. To clarify in a drawing which points move along with a
rigid body and which ones do not, we adopt the following conventions in this
textbook:

• Relevant points are always indicated by a black dot.
• If the black dot is not touching a rigid body, the point is assumed to be

fixed space, like the point at (0, 0) in Fig. 3.3.
• If the black dot is touching a rigid body or its edge, the point is moving

along with the rigid body (like any mass inside the rigid body), like point
B and C in Fig. 3.3.

• In all other cases more information needs to be provided to clarify if
the point indicated by the drawn dot is fixed in space or moving along
with one of the objects in the drawing. As an example see the caption of
Fig. 9.8, where the drawn dots touch 2 rigid bodies, and different labels
are used to indicate points that move along with different rigid bodies,
while being represented by the same black dot.

The main message is to be aware that there are different types of points in
dynamics: points fixed in space, and points fixed to rigid bodies or other
objects. Further clarification of the motion of points can be provided in a text
that accompanies the drawing.

3To be more precise, with the words ’fixed in space’, we mean that it has zero velocity and
acceleration in the current reference frame. With ’move along with a rigid body’ we mean
that the point has zero velocity and acceleration in a reference frame for which all points
of the rigid body have zero velocity and acceleration. We will discuss reference frames in
more detail in Sec. 6.12.
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3.2.8 Drawing distances and dimensions
Often dimensions and distances (see Sec. 3.1.2) between two points needs to
be drawn. Distances are always positive and drawn as a double sided arrow,
with arrow heads on both of its ends and/or small perpendicular end caps.
An example is shown in Fig. 3.3 for the distance L that characterises the side
length of the rectangle.

3.3 Coordinate systems
In this textbook we deal with two main types of coordinate systems for
determining position and analyse motion in three dimensional (3D) space:
Cartesian coordinates and cylindrical coordinates. We will not discuss spherical
coordinates.

3.3.1 Cartesian coordinates
In Cartesian coordinates, space is spanned by x, y and z coordinate axes,
which determine the position of objects with respect to the origin O, as is
shown in Fig. 3.5. Along each of the axes a unit vector with length 1 is defined,
respectively ı̂, ȷ̂ and k̂, which point in the positive axis directions.

Note. When drawing a coordinate system in 3 dimensions, the convention is
to always use right-handed axis system, since otherwise the vector rules for
taking cross-products will fail. For Cartesian coordinates this means that you
should make sure, e.g. using the right-hand rule, that for a fixed choice of the
order of coordinates x, y, z, we have the relation ı̂× ȷ̂ = k̂ between the respective
unit vectors.

To describe the position vector r⃗A of a point mass A with respect to the
origin in Cartesian coordinates you can use one of the following 3 notations:

r⃗A = xAı̂ + yAȷ̂ + zAk̂ (3.13)

=

xA

yA

zA

 =
[
xA yA zA

]T
(3.14)

Where the superscript T in (3.14) stands for the transpose of the matrix,
converting the row vector to a column vector. We use square brackets and
no commas to indicate vectors, and round brackets with commas for the
coordinates (xA, yA, zA).
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Figure 3.5: Point mass A, at position vector r⃗A = xAı̂ + yAȷ̂ + zAk̂, moving in a Cartesian
coordinate system.

3.3.2 Cylindrical coordinates
Cylindrical coordinates (ρ, ϕ, z) are often useful, for example to analyse the
dynamics of a point mass A that rotates around an axis (the z-axis). An
example of such a coordinate system in 2D is shown in Fig. 3.6 and in 3D
Fig. 3.7. Ideally the z-axis of the coordinate system is chosen parallel to the
rotation axis, and the origin of the coordinate system is chosen to be located
at a suitable position on the axis. Then the position of the point mass A can
be described by 3 coordinates: the radial coordinate ρA that determines the
shortest distance to the axis, the azimuthal angle ϕA with respect to a reference
line (polar axis) and the axial coordinate zA. The unit vectors ρ̂, ϕ̂ and k̂,
which are shown in the figure, point in the direction the tip of the position
vector would move if you would increase 1 of the coordinate values by a small
amount. Mathematically the unit vector at the position r̂A is ϕ̂A = ∂r⃗A

∂ϕA
/| ∂r⃗A

∂ϕA
|,

and similarly for ρ̂A and k̂A. In contrast to Cartesian vectors, the direction
of unit vectors in cylindrical coordinates can depend on the position vector
r⃗A of the object. So if there are multiple objects it can be useful to label the
relevant unit vector with a subscript A.

Note. Like in Cartesian coordinates one should adhere to the convention
that a cylindrical coordinate system ρ, ϕ, z is a right-handed axis system with
ρ̂ × ϕ̂ = k̂, by choosing ϕ to increase in the anticlockwise direction, as observed
when looking from the positive z-axis towards the origin. This is consistent
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Figure 3.6: Point mass i moving in the xy-plane. Its position can be indicated by cylindrical
coordinates ρi, ϕi and zi. The directions of the unit vectors ρ̂ and ϕ̂ depend on
the position of the mass.

with the convention to take the anticlockwise direction as the positive direction
for measuring angles.

A force vector F⃗ A that acts on a particle A at cylindrical coordinates
(ρA, ϕA, zA) can be expressed in the following 3 ways:

F⃗ A = FAρρ̂ + FAϕϕ̂ + FAzk̂ (3.15)

=

FAρ

FAϕ

FAz

 =
[
FAρ FAϕ FAz

]T
(3.16)

One needs to be careful when working with vectors in cylindrical coordinates,
because the vector component values depend on the coordinates (ρA, ϕA, zA).
Standard vector operations, like addition, between multiple vectors in cylin-
drical coordinates can therefore only be carried out if the vectors refer to the
same coordinates, such that their unit vectors are identical. In other cases the
vectors should first be converted to Cartesian coordinates, which can be done
using the following relation between the unit vectors:

ı̂ = cosϕA ρ̂ − sinϕA ϕ̂ (3.17)
ȷ̂ = sinϕA ρ̂ + cosϕA ϕ̂ (3.18)
k̂ = k̂ (3.19)
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Figure 3.7: Point mass A moving in a cylindrical coordinate system. The directions of the ρ
and ϕ coordinate axes (indicated in green), and the corresponding unit vectors ρ̂
and ϕ̂ depend on the position of the mass.

With these relations the components of a Cartesian vector like F⃗ A can be
related to its cylindrical vector components FAρ, FAϕ and FAz by taking its
dot product with the unit vectors:

F⃗ A =

FAx

FAy

FAz

 =

 F⃗ A · ı̂

F⃗ A · ȷ̂

F⃗ A · k̂

 =

FAρ cosϕA − FAϕ sinϕA

FAρ sinϕA + FAϕ cosϕA

FAz

 , (3.20)

where we replaced the unit vectors ı̂, ȷ̂ and k̂ by Eq. (3.17)–(3.19).

3.3.3 Position vector in cylindrical coordinates

It is important to note that whereas in Cartesian coordinates the components
of the position vector r⃗A = xAı̂+yAȷ̂+zAk̂ are identical to the coordinates xA,
yA, zA, the position vector in cylindrical coordinates is given by r⃗A = ρAρ̂+zAk̂
and does not provide information about the angle ϕA. Implicitly the vector does
depend on the azimuthal coordinate ϕA, via the dependence of the direction
of the radial unit vector on this coordinate: ρ̂(ϕA). Motion in cylindrical
coordinates can therefore better by expressed by giving the 3 coordinate
functions (ρA(t), ϕA(t), zA(t)) than using the position vector.
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r⃗A = ρAρ̂ + zAk̂ (3.21)

=

ρA

0
zA

 ̸=

ρA

ϕA

zA

 (3.22)

It is incorrect to have ϕA in the vector notation as shown on the right side of
Eq. (3.22), as is also evident from the units which should be equal for every
vector component.

3.4 Vector products

To mathematically express the laws of dynamics, we will often need two types
of vector products: the dot product indicated by the symbol ·, and the cross
product, indicated by the symbol ×. Note that these symbols only represent
dot and cross products when they are placed between two vectors. If they
are placed between two scalars or a scalar and a vector they indicate scalar
multiplication.

3.4.1 Dot products using unit vector notation

Dot products or cross products of vectors can be evaluated using unit vector
notation, using the following relations for dot products between unit vectors,
that follow from their orthogonality:

ı̂ · ı̂ = ȷ̂ · ȷ̂ = k̂ · k̂ = 1 (3.23)
ı̂ · ȷ̂ = ȷ̂ · k̂ = k̂ · ı̂ = 0 (3.24)

All dot products can be evaluated using these relations between the unit
vectors. For example one now can take the dot product between two vectors
v⃗ = vxı̂ + vy ȷ̂ and F⃗ = Fxı̂ + Fy ȷ̂ as follows:

v⃗ · F⃗ = (vxı̂ + vy ȷ̂) · (Fxı̂ + Fy ȷ̂) (3.25)
= vxFxı̂ · ı̂ + vyFxȷ̂ · ı̂ + vxFy ı̂ · ȷ̂ + vyFy ȷ̂ · ȷ̂ (3.26)
= vxFx × 1 + vyFx × 0 + vxFy × 0 + vyFy × 1 (3.27)
= vxFx + vyFy (3.28)
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So you just multiply the scalar values by the dot products of the unit vectors.
Here we used Eq. (3.23) and Eq. (3.24) to determine the dot products between
the unit vectors like ı̂ · ı̂.

3.4.2 Cross product using unit vector notation

For cross products the relations between unit vectors in a right-handed axes
system are as follows:

ı̂ × ı̂ = ȷ̂ × ȷ̂ = k̂ × k̂ = 0⃗ (3.29)
ı̂ × ȷ̂ = −ȷ̂ × ı̂ = k̂ (3.30)

ȷ̂ × k̂ = −k̂ × ȷ̂ = ı̂ (3.31)
k̂ × ı̂ = −ı̂ × k̂ = ȷ̂ (3.32)

Where we used that for every cross product it holds that A⃗ × B⃗ = −B⃗ × A⃗
(whereas for dot products A⃗ · B⃗ = B⃗ · A⃗). With these relations all cross
products can be evaluated using the unit vectors. For example one now can
take the cross product between two vectors r⃗ = rxı̂ + ry ȷ̂ and F⃗ = Fxı̂ + Fy ȷ̂
as follows:

r⃗ × F⃗ = (rxı̂ + ry ȷ̂) × (Fxı̂ + Fy ȷ̂)
= rxFxı̂ × ı̂ + ryFxȷ̂ × ı̂ + rxFy ı̂ × ȷ̂ + ryFy ȷ̂ × ȷ̂

= rxFx · 0⃗ + ryFx · (−k̂) + rxFy · (+k̂) + ryFy · 0⃗
= (rxFy − ryFx)k̂ (3.33)

Where we used Eq. (3.29) and Eq. (3.30) to evaluate the cross products between
the unit vectors. Using unit vector notation has several advantages. You
only have to write down and evaluate those unit vectors that are non-zero,
the notation takes much less space and it is immediately clear what type of
coordinate system one is working in from the unit vectors. For these reasons
we will usually work with unit vector notation in this textbook.

3.4.3 Graphical analysis of dot and cross products

Dot and cross products can also be evaluated graphically as is shown in Fig. 3.8.
The two vectors are drawn such that their tails are at the same point in space
and the planar angle ϕB/C between them is determined. To obtain the dot
product one projects one of the vectors on the direction of the other, obtaining
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the scalar |FB| cosϕB/C , which is then multiplied by the magnitude of the
other vector |vC | giving the result:

v⃗C · F⃗ B = |v⃗C ||F⃗ B| cosϕB/C . (3.34)

The magnitude of this scalar value is proportional to the area of the pink
parallelogram shown in Fig. 3.8. Note that the direction of the distance |vC |
should be drawn at 90◦ to the actual vector v⃗C to construct this parallelogram
for the dot product.
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Figure 3.8: Demonstration of how to graphically determine the dot product v⃗ · F⃗ B and the
cross product M⃗B/A = r⃗A × F⃗ B . The areas of the light-red parallelograms
indicate the magnitude of the dot and cross product, note that a line |vC | is
drawn perpendicular to the vector v⃗C to visualise its dot product with vector
F⃗ B .

For graphically analysing the cross product of two vectors r⃗A × F⃗ B (see
Fig. 3.8), one puts their tails together and draws a circular angle arrow ϕB/A,
that starts at the first vector r⃗A (left of the ×) and points anticlockwise towards
the second vector F⃗ B. Then if both vectors are in the xy-plane, their cross
product can be determined as:

M⃗B/A = r⃗A × F⃗ B = |⃗rA||F⃗ B| sinϕB/Ak̂ (3.35)

As can be seen in Fig. 3.8, the magnitude of the cross product vector is
equal to the red parallelogram whose sides are formed by the two vectors. The
angle ϕB/A is measured in the anticlockwise direction. Since ϕB/A > 180◦, we
have sinϕB/A < 0 and the vector M⃗B/A points in the −k̂ direction, into the
plane as indicated by the ⊗ sign.
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Right-hand rule

The direction of the cross-product vector r⃗A × F⃗ B can also conveniently be
determined using the right-hand rule. In that case it is important not to always
draw an anticlockwise angle, but to draw the smallest angle ϕ′

B/A from the
first vector r⃗A in the cross product to the second vector F⃗ B (see dashed arrow
ϕ′

B/A in Fig. 3.8). So, make sure ϕ′
B/A < 180◦. Then curve the fingers of your

right hand parallel to that curved arrow, with fingers pointing in the same
direction as the arrowhead. Your thumb will then point in the same direction as
r⃗A × F⃗ B in the −k̂ direction. It is recommended to always check the direction
of vectors resulting from cross-product calculations using the right-hand rule.
There are several alternative variations of right-hand and left-hand rules to
determine the direction of a cross-product. Feel free to choose and memorise
the one that you find most easy to use.

S Example 3.3
a) Determine the values of the dot product v⃗C · F⃗ B and the cross product r⃗A × F⃗ B

using unit vector notation. Use that the length of the vectors in Fig. 3.8 is scaled
such that 1 m : 1 m/s : 1 N.
b) Determine the values of the dot product v⃗C · F⃗ B and the cross product r⃗A × F⃗ B

using graphical analysis.

Exemplary solution
a) Since all vectors are in the xy-plane we can reuse Eq. (3.28) and use Fig. 3.8 to

obtain:

v⃗C · F⃗ B = vC,xFB,x + vC,yFB,y (3.36)
= [(−3 × −2) + (0 × −4)] N · m/s (3.37)
= 6 N · m/s (3.38)

For the cross product between two vectors in the xy-plane we can use the result
from Eq. (3.33):

r⃗A × F⃗ B = (rA,xFB,y − rA,yFB,x) k̂ (3.39)
= (6 × (−4) − 2 × (−2)) N · m k̂ (3.40)
= −20 N · m k̂ (3.41)

b) First we determine the angles of the vectors with respect to the positive x-axis
direction. We have ϕA = arctan 2

6 = 18.4◦, ϕB = 180◦ + arctan −4
−2 = 243.4◦ and

ϕC = arctan 0
−3 = 180◦. Then we find ϕB/C = ϕB − ϕC = 63.4◦ and ϕB/A = ϕB −

ϕA = 225◦. We determine the magnitude of the three vectors: |⃗rA| =
√
r2

A,x + r2
A,y =
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√
40 m, |F⃗ B | =

√
F 2

B,x + F 2
B,y =

√
20 N, |v⃗C | =

√
v2

C,x + v2
C,y = 3 m/s. Filling these

numbers in Eq. (3.34) and Eq. (3.35) we find:

v⃗C · F⃗ B = 3 m/s ×
√

20 N cos(63.4◦) (3.42)
= 6 N · m/s (3.43)

r⃗A × F⃗ B =
√

40 m ×
√

20 N sin(225◦) k̂ (3.44)
= −20 N · m k̂ (3.45)

So, as it should be, both the unit vector and graphical method to determine dot and
cross-products give the same result.

3.5 Vector functions, fields and calculus
Vectors can be parametrized, such that their values depend on a scalar pa-
rameter like time t or position on a curve s. Such a parametrized vector,
like F⃗ (t) or F⃗ (s) is also called a vector function. If a coordinate system
is chosen, the vector function can be described by three scalar functions,
F⃗ (t) = Fx(t)ı̂ + Fy(t)ȷ̂ + Fz(t)k̂.

3.5.1 Vector and scalar fields
Even though they do not play an important role in this textbook we briefly
mention the concept of vector fields. A vector field is a vector function that
is defined at any point in (a region of) space. This is done by using the
coordinates as parameters of the vector function, like in F⃗ (x, y, z). Examples
of vector fields are the gravitational force field F⃗ (x, y, z) acting on a planet
and the velocity field v⃗(x, y, z) describing the velocities of all point masses in a
rigid body. Instead of providing a single vector at one position, a vector field
describes a field of vectors that are present at every location in space. Vector
fields can also be time-dependent like in F⃗ (x, y, z, t). One can also define scalar
fields, like V (x, y, z) which define a scalar value at every position. We will
discuss scalar fields in more detail when dealing with potential energy in Ch. 7.

3.5.2 Calculus on vector functions
Vector calculus deals with methods to integrate or differentiate vector functions
and fields. Although a complete discussion of vector calculus is outside the
scope of this textbook, we say a few words about it here. Differentiation and
integration over a vector functions can be performed by separating the vector
into its components and then proceeding with each component like with scalar
functions, e.g. for a time integral

∫
F⃗ (t)dt =

∫
Fx(t)ı̂dt+

∫
Fy(t)ȷ̂dt+

∫
Fz(t)k̂dt.
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Taking derivatives is performed similarly d
dt F⃗ (t) = d

dtFx(t)ı̂ + d
dtFy(t)ȷ̂ +

d
dtFz(t)k̂. Often Cartesian coordinates are to be preferred, because these
operations become quite difficult in e.g. cylindrical coordinates where the unit
vectors depend on position. However, when discussing kinematics we will deal
with time derivatives of vector functions in cylindrical coordinates.

3.5.3 Calculus on scalar and vector fields
The differential operator, signified by the nabla symbol ∇⃗, is important for
analysing scalar and vector fields. In Cartesian coordinates it is defined as
∇⃗ = ∂

∂x ı̂ + ∂
∂y ȷ̂ + ∂

∂z k̂. The main operations that can be performed using ∇⃗
are:

1. The gradient ∇⃗, e.g. ∇⃗V (x, y, z) = −F⃗ (x, y, z), which converts a scalar
field to a vector field.

2. The divergence, a dot product with ∇⃗, converts a vector field to a scalar
field: e.g. ∇⃗ · v⃗(x, y, z) = f(x, y, z).

3. The curl, a cross product with ∇⃗ converts a vector field to another vector
field: e.g. ∇⃗ × v⃗(x, y, z) = G⃗(x, y, z).

Vector and scalar fields can be integrated over a line in space, over a surface in
space and over a volume in space using single, double or triple integrals. The
detailed discussion of the multivariable calculus is outside the scope of this
textbook, where we will only discuss the gradient and volume integrals over
scalar fields.
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4 Introduction to Dynamics
In this chapter we will introduce the field of dynamics, Newton’s laws and the
fundamental concepts of space, time, force and mass.

4.1 Dynamics and motion
Motion is all around you, the universe is full of moving matter and objects. This
motion is surprisingly predictable and can therefore accurately be described by
laws: Newton’s laws of motion. The field of science and engineering studying
the time-dependent motion of matter in the presence of forces is called dynamics.
During several centuries dynamical models have been developed that enable
scientists to understand many time-dependent processes in nature and have
allowed engineers to use this understanding to design and control motion to an
extremely high degree. Examples include precise robots, fast formula one racing
cars and remotely controlled spacecrafts, all of which have been designed by
engineers by applying the concepts that are introduced in this textbook. And
who knows? Maybe you will design the next generation of dynamic machines
and devices in the future.

Since the early history of mankind people have been studying motion. As-
tronomers in ancient times were observing the trajectories of celestial objects
like moons and planets. Also, motion of objects on earth were being studied,
like in the experiment in 1586 where Simon Stevin dropped two balls with
different mass from the Nieuwe Kerk in Delft, providing evidence that they
fall at the same rate. In 1687 Newton introduced the famous laws of motion in
his Principia, which were based on the mathematics he had developed with
Leibniz for solving differential and integral equations.

Newton’s laws, which are the building blocks for the field of dynamics,
provide a mathematical model to describe the experimentally observed motion
of objects in our universe, which is accurate to a very high degree. Deviations
from the model occur only in the case where speeds become comparable to
the speed of light, such that Einstein’s theory of relativity is needed or if sizes
and energies and masses become very small, such that quantum mechanical
effects start to play a role. These exceptions, which were only discovered in the
20th century, belong to the field of modern physics and are outside the scope
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of this course, which focuses on classical mechanics and dynamics. In this
textbook we will discuss the theoretical models of dynamics based on Newton’s
laws as if they represent a perfect description of experimental observations.
Nevertheless, it remains important to realise that there is a difference between
these models and the experimental observations they attempt to describe,
since despite the high degree of accuracy of current physical models, there
are still experiments that cannot be captured by them and are subject of
thorough scientific investigations. For instance the model for describing the
dynamics of stars rotating around the centre of a galaxy is still debated (gravity
rotation problem) and the dynamics of particles that were observed to travel
upstream into a small waterfall still remains to be explained. See also https:
//en.wikipedia.org/wiki/List_of_unsolved_problems_in_physics.

We note here that Newton’s laws are not the only way to describe the
experimentally observed motion of objects. Alternative popular formulations
of dynamics are Lagrangian and Hamiltonian mechanics, which are dealt with
in more advanced textbooks in dynamics. These formulations, yield completely
identical results as Newton’s laws, but can in some cases be advantageous to
simplify the mathematical analysis.

4.2 Newton’s laws of motion
In his Principia Newton introduced three laws of motion that can mathemati-
cally be expressed in vector format as follows:

Concept. Newton’s Laws of Motion

1. If
∑

j

F⃗ ij = 0⃗ then a⃗i = 0⃗ (4.1)

2.
∑

j

F⃗ ij = mia⃗i (4.2)

3. F⃗ ij = −F⃗ ji (4.3)

These equations and the variables will be explained and defined in more
detail in the next two chapters. It can be seen that Newton’s first law is a direct
consequence of Newton’s second law when setting ∑ F⃗ ij = 0⃗. Newton’s third
law (action=–reaction), describes a property of all known fundamental forces
of nature, which states that for every force F⃗ ij that acts on point mass i there
is another collinear force F⃗ ji that acts on another point mass j with equal
magnitude and opposite direction. In other words if point mass j generates a
force F⃗ ij on object i, then point mass i generates a force F⃗ ji = −F⃗ ij on point

https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_physics
https://en.wikipedia.org/wiki/List_of_unsolved_problems_in_physics
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mass j. The points of action of both forces coincide with the positions of the
corresponding point masses. The first and third laws should be familiar if you
followed a course in statics. Newton’s second law ∑

F⃗ = ma⃗ is the essential
equation in dynamics.

Note. Newton’s laws are strictly only valid for objects that are point masses,
which are so small that they can be described by a single point (position vector)
in space. By applying Newton’s laws to each point mass in an object or system
that consists of many point masses, new laws can be derived for these larger
systems. Much of this textbook is dedicated to deriving and discussing these
new laws and using them to analyse more complex dynamical systems, like rigid
bodies.

4.3 Outline and elements of dynamics
Newton’s laws are based on the following elemental concepts.

Concept. Elements of dynamics

• Space
– Every location in space is identified by a position vector r⃗.

• Time
– Position vectors can change in time t, such that there is motion.

• Mass
– Objects can consist of one or more point masses i, each having a

well defined position vector r⃗i and mass mi.
• Force

– On every point mass i one or more force vectors F⃗ ij(t) can act.

In the following chapters we will discuss these elemental concepts in more
detail to describe the dynamic motion of objects, and then continue to discuss
how this motion is related to mass and force. The subject of dynamics can be
described as follows.

Concept. Dynamics
Dynamics is the field of science and engineering concerned with predicting and
analysing the motion r⃗i(t) of point masses under the influence of forces and
constraints.
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Figure 4.1: Determining the motion and forces in dynamics.

Since all matter in our universe consists of point masses, which are called
elementary particles and move in response to four fundamental forces of nature,
the field of dynamics covers practically all science with subdisciplines like
classical dynamics, electrodynamics, quantum dynamics, and thermodynamics,
but also chemistry and biology. In this textbook we will only discuss the
dynamics that can be described by Newton’s laws, which is generally called
classical dynamics. The field of dynamics can be split into two main domains:

1. Kinematics
• Study of the motion of objects in space and time without considering

the forces that cause this motion.
2. Kinetics

• Study of the motion of objects in relation to mass and forces.
Fig. 4.1 illustrates the roles of kinematics and kinetics in dynamics. Kinetics
is used to relate the forces to the accelerations and equation of motion, while
kinematics is used to relate the equations of motion (which are differential
equations) and constraint equations to the actual motion. The figure illustrates
that one can predict the motion r⃗(t) at all times if the forces and initial
conditions are known, and that it is also possible to determine the forces if the
motion is known.

Besides the division into kinematics and kinetics, there is also a division of
dynamics based on the types of objects that are being analysed:
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1. Point masses
Objects whose mass is located on a single point in space.

2. Rigid bodies
Objects whose mass distribution in space is rigid and undeformable.

3. Deformable bodies and fluids
Objects whose mass distribution in space is deformable like in elastic
solids or can flow like a liquid or gas.

In part II we will discuss the dynamics of point masses, while in part III
we will analyse the dynamics of rigid bodies. Deformable bodies are out of
the scope of this textbook. For both parts we will discuss kinematics, kinetics,
the method of work and energy and the method of impulse and momentum.
Finally we will conclude with the discussion of vibrations. This division leads
to the following outline of the rest of the chapters of this textbook:

• Kinematics of point masses: Ch. 5
• Kinetics of point masses: Ch. 6
• Work and energy of point masses: Ch. 7
• Impulse and momentum of point masses: Ch. 8
• Kinematics of rigid bodies: Ch. 9
• Kinetics of rigid bodies: Ch. 10
• Work and energy of rigid bodies: Ch. 11
• Impulse and momentum of point masses: Ch. 12
• Vibrations of point masses and rigid bodies: Ch. 13
• Solution strategy dynamics: Ch. 14
• Bibliography: Ch. 15
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Part II

Dynamics of Point Masses
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5 Kinematics of Point Masses

In this chapter we will show how to describe and analyse the dynamic motion of
objects in space and time. We begin by defining what we mean by space, time,
motion and kinematics in Sec. 5.1. Then we will describe what displacement,
velocity and acceleration vectors are in Secs. 5.3–5.5. Subsequently we introduce
the path coordinate, that allows simplifying motion in 3D to a 1D problem and
show how to determine position, velocity and accelerations along the path curve
in Secs. 5.7 and 5.8, and also show how to do this using various 3D coordinate
systems (Sec. 5.9). Finally we discuss kinematic analysis of segmented motion
in Sec. 5.10.

5.1 Space, time and motion

We start by introducing the concepts of space, time and motion, the building
blocks of kinematics.

Concept. Space
In space the position of each point mass i can be described by a position vector
r⃗i. Space can be parametrised by a three-dimensional (3D) coordinate system
as introduced in Sec. 3.3. This space, in which the shortest distance between
two points is a straight line, is also called Euclidean space.

Concept. Time
The position of objects in space can change1 in time t.

Concept. Motion
The motion r⃗i(t) of a single point-like object i is a function that describes its
position coordinates at every time t (see Fig. 5.1). The motion of a system
of N point masses is represented by a set of vector functions r⃗1(t), r⃗2(t), . . .
, r⃗i(t), . . . , r⃗N (t) that describe the positions of all points i in the system at all
times.

1Note that without this change, it would be impossible to measure time, since devices to
measure time like pendulum clocks are also based on dynamics and change.
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Concept. Kinematics
Kinematics describes the motion of objects in time and space, irrespective of the
forces that cause them to move. Kinematic techniques allow one to determine
the relations between position, velocity and acceleration vectors, and to apply
constraint equations for motion analysis.

Kinematic information on a point mass is provided in two ways:

1. Full or partial information on the time dependence of the position, velocity
or acceleration vectors or its components.

2. Constraint equations that pose certain limitations on how the point mass
can move.

The goal of kinematics is to analyse the given information to obtain more
detailed information on the motion of the particle. The main challenges and
skills in kinematics we will address in this chapter are:

1. To describe the motion of a point mass using a time-dependent position
vector r⃗(t) in a suitable coordinate system.

2. To relate and determine position, velocity and acceleration vectors from
each other.

3. To use constraint equations and equations of motion to determine and
predict the time-dependent motion r⃗(t) of point masses.

5.2 Constrained and predetermined kinematics
In the next chapter on kinetics we will discuss how the motion of objects in
time and space can be described based on the knowledge of forces and masses.
However, often there is also different information about the motion available.
For example when a train is constrained by a rail-track, when a measurement
of the motion of a bird’s trajectory was made, or when it is assumed that a
rolling ball always touches a curved surface. This information can be cast in
the form of constraint equations.

5.2.1 Constraint equations
Although all dynamics is governed by Newton’s laws, rigorously applying these
laws for every atom can be very inefficient. For instance, when a hockey puck is
sliding on ice, modelling the forces of all ice molecules would be a tremendous
task. Instead, we know that the ice molecules generate forces on the puck
that prevent it from entering the ice, while gravity prevents the puck from
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Figure 5.1: The motion of a point mass i is described by a time-dependent position vector
function r⃗i(t).
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moving above the ice surface, such that the puck will obey a constraint equation
z(t) = 0.

Thus in such cases, where we know the effective properties of a number of
forces, it is much more efficient to describe their combined effect on the motion
by constraint equations instead of applying Newton’s laws. Remember however,
that such constraint equations always are the result of forces, and the accuracy
of the resulting dynamics will depend on the accuracy by which the constraint
equations represent these forces. In the next chapter we will also discuss how
constraint equations can be combined with Newton’s laws to determine the
forces generated by the constraints.

In other cases, information about the motion of an object has been obtained
from a measurement, or is assumed to be known, and a constraint equation
that describes the measured trajectory can be used to analyse the kinematics,
and determine velocities and accelerations.

Definition. Constraint equation
Equation that provides information on the motion and trajectories of objects
in time and space, without providing direct information on the forces and
mass. Constraint equations describe the kinematic constraints, which are the
constraints that limit the potential motion of a mechanical system.

A constraint equation f can often be written as a function of the position
vectors of the objects r⃗i, and their time derivatives as:

f(r⃗i, ˙⃗ri, ¨⃗ri, . . . , t) = 0 (5.1)

Where r⃗i, with i = 1, 2, . . . , N (or i = A,B, . . .) are the position vectors of
the objects in the system. By taking the time-derivative or time-integral of a
constraint equation, additional constraint equations can be derived. We will
now discuss several examples of constraint equations.

5.2.2 Spatially constrained kinematics
Although space is always three-dimensional, in some cases there are forces on
the object that constrain the motion to a certain part of space. The analysis of
the dynamics in these cases can be significantly simplified. For instance, when
a hockey puck A slides over a flat ice surface, and we know or assume that it
will not lift from the surface, this can be described by the constraint equation:

zA(t) = 0 (5.2)

Since in this case the puck will not move along the zA coordinate, its dynamics
can be fully dealt with in 2 dimensions (2D) using (x, y) coordinates or polar
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(ρ, ϕ) coordinates, simply applying the Cartesian and cylindrical coordinate
systems from the previous sections with z = 0. In fact this textbook deals with
many examples of this 2D in-plane dynamics situation, the derived equations
and techniques are valid in 3D unless explicitly stated otherwise.

5.2.3 Path curve and path coordinate

Figure 5.2: A mass A moves along path coordinate curve r⃗s(s) (blue). Its position, and
distance from point s = 0 along the path curve, is uniquely determined by its
scalar path coordinate sA, with r⃗A = r⃗s(sA). The unit vector ŝ points in the
direction of increasing s. Note that the mass can move in the opposite direction
if ṡA < 0.

An even more constrained situation is when the motion of an object is limited
to a one-dimensional (1D) curvilinear path. This situation arises for instance
when a train, marble or other point mass i moves along a predefined track,
guided by a rail or tube.

As shown in by the blue curve in Fig. 5.2 such a curvilinear path traces out
a 1D path in 3D space, and this path can be described by a parametrised
path curve r⃗s(s), such that for every value of the scalar path coordinate s
there is 1 vector r⃗s(s) that defines the position on the track. It is convenient
(although not always easy), to choose this function such that s is a measure
of the distance along the track with respect to a certain origin r⃗s(s = 0), for
instance this can be done by taking a flexible tape measure, and measuring
the distance s along the track. Since it is known that the point mass i always
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Figure 5.3: Two point masses A and B hang via a tight black rope over a pulley with radius
R. They each have their own path coordinate sA and sB .

resides on the path curve, we have the following constraint equation:

r⃗i(t) = r⃗s(s). (5.3)

At every time t, the path coordinate of object i has to obey equation (5.3),
such that: r⃗i(t) = r⃗s(si(t)). This has the advantage that, because the path
curve r⃗s(s) is known, the motion of i in 3D can be described by a scalar
function si(t), instead of requiring a more complex 3D vector function r⃗i(t).
Equation (5.3) and also the equation zi(t) = 0 from the previous subsection
are examples of constraint equations.

5.2.4 Relatively constrained kinematics and pulleys
Besides spatial constraints that limit the motion of a point mass to a certain
plane or curve in space discussed in the previous subsection 5.2, it is also
possible to have constraints that limit motion of a point mass with respect to
one or more other point masses. Consider for example two point masses A and
B with their motion described by separate path curves and path coordinates
sA(t) and sB(t), see Fig. 5.3. When making such a drawing, you are free to
choose for each path coordinate the positive direction of the path curve and
also the point at which the path coordinate is zero, which is called the datum.
It is important to indicate those in the drawing.

We can write down a relative constraint equation for the length Lrope of the
rope. From Fig. 5.3 we see that always:
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sA(t) + sB(t) +Rπ = Lrope (5.4)

The term Rπ comes from the part of the rope that touches the pulley with
radius R over half of its perimeter. By taking the time derivatives of this
equation and using that the length of the rope Lrope and the radius of the
pulley R is constant in time we find:

sA(t) + sB(t) = c1 = constant (5.5)
ṡA(t) + ṡB(t) = 0 (5.6)
s̈A(t) + s̈B(t) = 0 (5.7)

This shows that at all times the velocity and acceleration of the masses
are equal and in opposite directions (s̈A = −s̈B). These relative constraint
equations facilitate analysis of dynamic problems, since one does not need to
determine the force in the rope. Since one is usually only interested in the
constraint equation for the velocities, it is often not necessary to determine
the exact value of the constant c1 = Lrope −Rπ.

The shown procedure for obtaining the constraint equations is also quite
generally applicable:

• Determine the path coordinates of all moving objects and point masses
based on the geometry.

• Determine the constraint equations for the positions of the objects and
simplify them.

• Take two times the time derivative of the constraint equation to obtain
the constraint equations for the velocities, and for the accelerations.

S Example 5.1 Fig. 5.4 shows a more complicated pulley system. The question
is: find the relative constraint equation that relates the velocities ṡA, ṡB of point
masses A and B.
Exemplary solution Since pulleys C and D are also moving, it is useful to also
monitor their path coordinates sC and sD, which have been indicated in Fig. 5.4.
Now we write down all constraint equations and combine them to obtain a single
equation relating sA and sB :

Lrope = sA + 2sC + sD + LCD + c1 (5.8)
sC = sB − (LCD + LB) (5.9)
sD = sB − LB (5.10)

Lrope = sA + 3sB + c2 (5.11)
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Figure 5.4: Example 5.1: Two point masses A and B move in a complex pulley system. We
want to find their relative constraint equation. Pulleys C and D are connected
by a rigid blue rod to keep their mutual distance at LCD.

The actual value of the constant c2 is not needed to solve the problem, since we now
take the time derivative to obtain the relative constraint equation for the velocities:

sA + 3sB = c3 = constant (5.12)
ṡA + 3ṡB = 0 (5.13)

ṡA = −3ṡB (5.14)

The three constraint equations (5.8-5.10) represent the effect of the three
constraining elements in Fig. 5.4: the rope, the rigid rod between pulleys C
and D and the short rope between pulley D and point mass B. Initially there
are four unknown scalar variables: sA, sB, sC and sD. Generally each (scalar)
constraint equation eliminates one unknown, such that in the end we are left
with one constraint equation (with one unknown). Besides pulleys and ropes
there are of course many other elements that constrain motion, which will be
discussed later.

5.3 Displacement
After having discussed how the position of a point mass i can be described in
space using coordinate systems and vectors, we now turn to how its position
evolves in time, and introduce the important concepts of displacement, velocity
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and acceleration that are essential for analysing dynamics. For this purpose
we compare the position r⃗i(t1) at a first time t1 to r⃗i(t2) at a later time
t2 = t1 + ∆t, with ∆t > 0. The difference between these vectors, the change in
position vector, is the displacement vector as can be seen in Fig. 5.1.

Concept. Displacement vector
The displacement vector ∆r⃗i,12 describes the displacement in space of a point
mass between times t1 and t2.

∆r⃗i,12 = r⃗i(t2) − r⃗i(t1). (5.15)

The initial and final position are separated by a displaced distance ∆ri,12 =
|∆r⃗i,12|. The displaced path distance ∆si,12 of the mass, which is the displaced
distance as measured along the path (instead of along a straight line) can be
determined by the equation:

∆si,12 = si(t2) − si(t1), (5.16)

when the trajectory of the mass is parametrised by a path curve as discussed
in the previous section 5.2.3.

The total travelled distance ∆sT,i,12 is not the distance between the initial
and final positions, but depends on the path taken. The travelled distance
can be larger than the displaced distance ∆si,12| if the mass reverses direction
on its path and travels back and forth along the same path curve in multiple
segments, in which case the distances |∆si,12| along each of these segments
(with different sign ∆si,nm) should be summed up to determine ∆sT,i,12.

If the path is a straight line, the displaced path distance |∆si,12| is equal
to the displaced distance |∆r⃗i,12|, but when the path is curved, the displaced
path distance is always longer, because a straight line is the shortest distance
between two points: |∆si,12| ≥ |∆r⃗i,12|.

The infinitesimal displacement vector that corresponds to an infinitesimally
small time difference dt with t1 = t and t2 = t+ dt is found to be:

dr⃗i = r⃗i(t+ dt) − r⃗i(t). (5.17)

The closer you look at a small segment of a smooth trajectory, the more
it resembles a straight line. This can be seen in Fig. 5.1 by comparing the
dashed line and the straight arrow between r⃗i(6s) and r⃗i(7s). Therefore the
infinitesimally travelled distance dsi = si(t+ dt) − si(t) becomes equal to the
length of the infinitesimal displacement vector: |dsi| = |dr⃗i|.
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5.4 Velocity
Velocity is displacement per unit of time. The average velocity of point mass i
between time t1 and t2, over path curve r⃗s, over a time interval ∆t = t2 − t1 is:

vs,avg = ∆si,12
∆t (5.18)

This average velocity can be positive or negative. In contrast, the average
speed, is defined to be always positive:

vs,sp,avg = ∆sT,i,12
∆t (5.19)

The average velocity and speed are determined over a large time interval, in
contrast the instantaneous velocity is measured over an infinitesimally small
time interval.

Concept. Velocity vector
The (instantaneous) velocity vector v⃗i of a point mass i is defined as the time
derivative of the position vector:

v⃗i(t) ≡ dr⃗i

dt ≡ lim
dt→0

r⃗i(t+ dt) − r⃗i(t)
dt . (5.20)

The determination of the velocity vector from the position vector is shown
graphically in Fig. 5.5, taking a relatively large timestep dt = 1 s. The speed
or absolute velocity vi(t) is defined as the magnitude of the velocity vector,
vi(t) = |v⃗i(t)| which is always positive or zero.

Derivation. Velocity on the path curve
If a path curve has been defined, it can be shown that the velocity vector is
always tangential to this path curve:

v⃗i = dr⃗i

dt = dr⃗s(si(t))
dt = dsi

dt
dr⃗s(s)

ds = vs,iŝ. (5.21)

To derive this equation, we used the chain rule and used that the vector dr⃗s(s)
ds

has a magnitude of 1, since |ds| = |dr⃗| (see previous section). As can be seen
in Eq. (5.21), we define ŝ ≡ dr⃗s(s)

ds as the unit vector tangential to the path
curve that points in the direction of the path curve in which s increases (see
Fig. 5.2) and we define the path velocity vs as:

vs,i ≡ dsi

dt = ṡi. (5.22)
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Figure 5.5: Based on the motion of the point mass in Fig. 5.1, the velocity vectors v⃗i(t)
are determined at every time t, using a time-step dt = 1 s. On the right the
acceleration vectors a⃗i(t) are determined from v⃗i(t) in the same way as the
velocity vectors were determined from the position vectors. Note that the average
velocity vectors between the points with ∆t = 1 s are drawn.
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The subscript s indicates that vs,i is the velocity of object i along the path r⃗s.
Equation (5.21) proves that the velocity vector of the point mass i is always
parallel (tangential) to the path curve unit vector ŝ. vs,i can be both positive
and negative, depending whether it is in the same or the opposite direction
as the positive s direction ŝ and its magnitude is equal to that of the velocity
vector vi ≡ |v⃗i| = |vs,i|.

5.5 Acceleration
Similarly to the way the velocity vector is determined from the position vector,
the acceleration vector can be determined from the velocity vector (see Fig. 5.5).

Concept. Acceleration vector
The (instantaneous) acceleration vector a⃗i of a point mass i is defined as the
time derivative of the velocity vector:

a⃗i(t) ≡ dv⃗i

dt ≡ lim
dt→0

v⃗i(t+ dt) − v⃗i(t)
dt . (5.23)

The absolute acceleration is defined as: ai = |a⃗i|. By taking the time
derivative of equation (5.21) using the product rule it is found that:

a⃗i(t) = dv⃗i

dt = dvs,i

dt ŝ + vs,i
dŝ

dt (5.24)

In contrast to the velocity vector, the acceleration vector is not tangential to
the path curve ŝ, except if the path is straight (dŝ

dt = 0⃗), or if the speed is
zero. Since the magnitude of ŝ is constant, the vector dŝ

dt is perpendicular to ŝ.
For that reason we have for the acceleration component tangential to the path
curve ai,s,t:

as,i,t = a⃗i · ŝ = dvs,i

dt (5.25)

This tangential component of the acceleration vector is also called the path
acceleration as,i and can be different from the absolute value of the acceleration
vector (|as,i| ≠ |a⃗i|). We will discuss later how the acceleration vector in
various coordinate systems can be determined, which will be very important
for applying Newton’s second law.

5.6 The equations of motion
When analysing dynamic systems we often want to determine the motion r⃗(t)
from a known acceleration a⃗(t), velocity v⃗(t) or a more complicated differential
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equation that involves the position coordinates and their time-derivatives. Such
an equation is called an equation of motion (EoM). Often multiple equations
are needed to fully determine the time-dependent motion r⃗i(t) of every point
in the system.

Concept. Equations of motion
The equations of motion of a system are a set of differential equations of
the position vectors/coordinates and their time-derivatives, that can be used
to determine the motion r⃗i(t) of every point i in the system for any initial
condition.

We also introduce the concepts initial condition and state:

Concept. Initial condition and state of a system
Initial conditions fully describe the state of a system at a single initial time t0.
The state of the system is defined as the combination of the position r⃗i(t0) and
velocity vectors v⃗i(t0) of all points i in the system at a single time t0.

If the initial conditions, equations of motion and constraint equations are
known, the future and history of a system can be calculated by kinematic
techniques. As an example of an equation of motion let us consider the situation
where we know that the velocity along a path curve is given by the function
v(t) = c1t

2. Then from the definition of velocity and Eq. (5.22) we find the
following equation of motion:

ds
dt = c1t

2 (5.26)

Such an equation of motion fixes the slope of the motion s(t) at every (s, t)
coordinate as is graphically shown by the arrows in Fig. 5.6. A main challenge
in kinematic analysis is to determine the motion s(t) from the EoMs and initial
conditions as illustrated by the red lines in the figure. In this chapter we will
discuss EoMs that can be solved by integration. In Ch. 13 on vibrations we
will also deal with other solution methods.

5.7 Kinematic analysis as a function of time t

We will show how the motion, velocities and accelerations of a system can
be determined by solving equations of motion using time differentiation and
integration.
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Figure 5.6: Graphical representation of the equation of motion ds
dt

= c1t2. The arrows indicate
the slope ds

dt
at every value of s and t. For several initial conditions (black dots)

the solutions of this EoM are plotted as red lines. It can be seen that the lines
are everywhere tangent (have equal slope) to the arrows of the EoM.

5.7.1 Time differentiation
We have already shown how the velocity and acceleration vectors can be
determined from the position vector by two time differentiation steps that are
indicated by arrows:

r⃗i → (5.27)
v⃗i = ˙⃗ri → (5.28)
a⃗i = ˙⃗vi (5.29)

And the same can be done along the path coordinate s, simplifying the
problem to scalar differentiation:

si(t) → (5.30)
vs,i(t) = ṡi(t) → (5.31)
as,i(t) = v̇s,i(t) = s̈i(t) (5.32)

During each of these steps, an ordinary differential equation (ODE) is solved,
which is of the form of Eq. (2.12), df(x)

dx = y(x), where x is replaced by t, f(x)
is replaced by the known function s(t) or vs(t) and y(x) is replaced by the
unknown function vs(t) or as(t) that we would like to determine. The details
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of the procedure to solve these first order differential equations using either
indefinite or definite integrals is explained in Sec. 2.4.

5.7.2 Time integration
To go in the opposite way, from acceleration to velocity and position, an
equation of motion needs to be solved to obtain si(t) from as,i(t), which is of
the form:

s̈i = as,i(t) (5.33)

Because the function as,i(t) only depends on time, this differential equation
can be solved by integrating twice over time. Here we show how that is done
by integration along the path curve, and in Eq. (5.57) it will be shown how
it can be done in free space. Although these integrals can become difficult
analytically, they can always be performed using numerical methods as will be
discussed concisely in section 5.8.5.

If the path acceleration function as,i(t) is known, it is possible to determine
the path velocity and path position by integration of Eqs. (5.30)–(5.32) as
follows.

as,i(t) → (5.34)

vs,i(t2) = vs,i(t1) +
∫ t2

t1
as,i(t)dt → (5.35)

si(t2) = si(t1) +
∫ t2

t1
vs,i(t)dt (5.36)

During each of the integration steps, an ODE is solved of the form of
Eq. (2.13). From equations like Eq. (5.35) it is noted that time integration to
obtain final velocity and position can only be performed if the position si(t1)
and velocity vs,i(t1) are known at a certain instant t1. That is why one needs
to known the initial conditions to solve the equations of motion.

S Example 5.2 To illustrate the kinematic analysis in time, let’s consider the
motion of a car along a track (Fig. 5.7), with path curve r⃗s(s) = sı̂ and path
coordinate sA = xA. It is given that the position of the car A on the track is:

sA(t) = αt3 (5.37)

Then we can obtain the velocity and acceleration by differentiation using Eqs. (5.30)–
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Figure 5.7: Example 5.2: positions of a red car with position sA(t) = αt3 at three times, for
α = 1 m/s3. The car moves along a path curve r⃗s(sA) = sAı̂. Since the car is
approximated by a point mass, only the motion of the point indicated by the
black dot is analysed.
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Figure 5.8: Example 5.2: Relations between the path coordinate sA, path velocity vs,A and
path acceleration as,A of the car shown in Fig. 5.7 with α = 1 m/s3. The path
velocity vs,A(t) is the slope of the sA(t) curve and the path acceleration is the
slope of the vs,A(t) curve as indicated by the tangential arrows. The path velocity
vs,A(t) increase compared to vs,A(0) is the integral of the area under the as,A(t)
curve and the path coordinate sA(t) increase is the integral of the area under the
vs,A(t) curve as indicated by the red areas.
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(5.32):

vs,A(t) = ṡA = α
d
dt t

3 = 3αt2 (5.38)

as,A(t) = v̇s,A = α
d
dt3t

2 = 6αt (5.39)

So the velocity is the slope (=time-derivative) of the sA(t) graph and the acceleration
is the slope of the vs,A(t) graph, as is shown by the arrows in Fig. 5.8.

Suppose now that instead, the acceleration of the car as,A(t) = 6αt is given and
we want to determine the distance travelled after a certain time. It is given that
the car starts at t1 = 0 from rest, such that initial velocity and position of the
car are both zero (vs,A(t1) = sA(t1) = 0). From the acceleration the functions
that describe velocity and position at an arbitrary time t2 can be obtained using
equations (5.34)–(5.36):

as,A(t) = 6αt (5.40)

vs,A(t2) = vs,A(t1) +
∫ t2

t1

6αtdt = 0 +
[
3αt2

]t2

t1
= 3αt22 (5.41)

sA(t2) = sA(t1) +
∫ t2

t1

3αt2dt = 0 +
[
αt3
]t2

t1
= αt32. (5.42)

So the velocity change is the area (=time-integral) under the as,A(t) graph and the
position change is the area (=time-integral) under the vs,A(t) graph, as is shown by
the red areas in Fig. 5.8.

Comparing the first 3 equations of this example to the last 3 equations demon-
strates that the time differentiation and integration results in the same equations
for position, velocity and acceleration, as expected.

5.8 Kinematic analysis with the path coordinate s

In some cases the velocity vs,i(s), acceleration as,i(s) or time ts(s) as a function
of path coordinate s is known, but the explicit time dependence is unknown.
In those cases it can be more convenient to choose s as an independent
differentiation or integration variable than t.

Note well, the function vs,i(s) is mathematically different from the function
vs,i(t), and that also holds for and as,i(s) and as,i(t). These functions are
connected by the relations vs,i(s(t)) = vs,i(t) and as,i(s(t)) = as,i(t) that
should hold at any time. The difference by these functions will be designated
by clearly indicating between brackets the variable on which they depend
(vs,i(t) or vs,i(s)).
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5.8.1 Path differentiation

If we take the time derivative of the function vs,i(s) we obtain using the chain
rule:

as,i(s) = dvs,i(s)
dt = dvs,i(s)

ds
dsi

dt = dvs,i(s)
ds vs,i(s) (5.43)

This equation can be used to obtain the acceleration function as,i(s) from
vs,i(s).

5.8.2 Path integration

When the acceleration as,i(s) is known as a function of the path coordinate s
instead of as a function of time, the following differential equation needs to be
solved to obtain the velocity vs,i(s):

as,i(s) = dvs,i

dt = s̈i (5.44)

After multiplying the equation on both sides by ds, and using that dvs,i

dt ds =
dv dsi

dt = vs,idvs,i the differential equation can be solved by integration:∫ s2

s1
as,ids =

∫ v2

v1
vs,idvs,i =

[1
2v

2
s,i

]v2

v1

= 1
2(v2

2 − v2
1) (5.45)

Where v1 and v2 are the velocity of the point mass at the positions s1 and s2,
v1 = vs,i(s1) and v2 = vs,i(s2). This equation can be rewritten in a form that
allows finding vs,i from as,i:

v2
s,i(s2) = v2

s,i(s1) + 2
∫ s2

s1
as,i(s)ds (5.46)

We note that the relation asds = vsdvs that appears under the integrals
in Eq. (5.45) is often useful to simplify expressions for differentiation and
integration with the path coordinate s.

5.8.3 Velocity dependent acceleration

A final case that can become of relevance, is when acceleration as,i(v) depends
on velocity. To obtain the velocity as a function of time vs,i(t) one needs to
solve this differential equation:

dvs,i

dt = as,i(v) (5.47)
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The strategy for solving this kind of ODE is to rearrange all terms such that
terms depending on t are on one side of the equal side and terms depending
on v are on the other side. Here that is done by multiplying both sides by dt
and dividing them by as,i and then integrating:∫ vs

v1

dvs,i

as,i(v) =
∫ ts

t1
dt = ts − t1 (5.48)

By evaluating this integral and using the information on the initial condition
at t1, one obtains a function ts(vs), which can be inverted to give the velocity
as a function of time vs(ts). Alternatively, if one is looking for the function
vs(s) it is possible to multiply both sides of the differential equation (5.47) by
ds, divide by as,i and integrate to obtain:∫ vs

v1

dvs,i

as,i(v)vs,i =
∫ s

s1
ds′ = s− s1 (5.49)

Using the initial condition this gives s(vs) which can be inverted to obtain
vs(s).

5.8.4 Overview integration and differentiation in kinematics

After having discussed several ways to differentiate and integrate the kinematics
when motion is along a one-dimensional path curve, we provide here an overview
table with all equations for reference. The equations for integrating and
differentiating between the different kinematic variables a, v, s and t as a
function of each other are summarised in Table 5.1 below. Please note that the
cases with t as dependent variable are usually the most important. Moreover,
realise that it is better to learn how to properly derive these equations yourself
by integrating and differentiation than to memorise equations.

5.8.5 Numerical differentiation and integration

Often, expressions are too complicated to differentiate or integrate using
analytical equations. However in those cases the integration can usually still
be performed numerically.

• Advantages of numerical methods:
– Can solve almost all problems
– No need to perform (difficult) analytical integration or differentiation

• Disadvantages of numerical methods:
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as() vs() s() ts()
t as(t) = dvs(t)

dt vs(t) = ds(t)
dt s(t) = t

⟨−1⟩
s (s)

t vs(t) = vs(t1) +
∫ t

t1
as(t′)dt′ s(t) = s(t1) +

∫ t
t1
vs(t′)dt′

s as(s) = vs(s)dvs(s)
ds vs(s) =

(
dts(s)

ds

)−1
ts(s) = s⟨−1⟩(t)

s v2
s(s) = v2

s(s1) + 2
∫ s

s1
as(s′)ds′ ts(s) = ts(s1) +

∫ s
s1

ds′

vs(s′)

v as(v) =
(

dts(v)
dv

)−1
s(v) = v

⟨−1⟩
s (s) ts(v) = v

⟨−1⟩
s (t)

v as(v) = v
(

ds(v)
dv

)−1
s(v) = s(v1) +

∫ v
v1

v′dv′

as(v′) ts(v) = ts(v1) +
∫ v

v1
dv′

as(v′)

Table 5.1: Equations to relate different kinematic quantities along the path curve a, v, s and
t as a function of each other. The top row indicates the function and dependent
variable, while the left column indicates the independent variable. For example,
the function s(t) can be obtained in 2 ways: either by time integrating the function
vs(t) or by taking the inverse function of the function ts(s). Note that t

⟨−1⟩
s (s) in

this table indicates the inverse function of ts(s), not 1/ts(s).

– Less accurate and fast than computing an analytic solution
– Programming required
– Gives less insight because only one specific solution is found, not

the dependence on variables

To numerically determine the time derivative of a known function sA(t),
you determine the position sA at two closely spaced points in time sA(t)
and sA(t + ∆t), with a small time difference ∆t. The simplest numerical
differentiation in formula form is then performed using this equation:

vs,A(t) ≈ sA(t+ ∆t) − sA(t)
∆t (5.50)

This equation can be applied for all values of t to obtain vs,A(t). According
to the definition of the derivative, this expression becomes exactly correct in
the limit ∆t → 0 which allows improving the numerical accuracy as much as
needed by reducing the time step ∆t.

If instead the velocity vs,A(t) is known, the position sA can be determined
by numerical time integration by just rewriting the previous equation to:

sA(t+ ∆t) = sA(t) + vs,A(t)∆t (5.51)

This equation can be applied iteratively to obtain sA(t+ ∆t) at a next time
from its value sA(t) at a previous time. For example the next step is:

sA(t+ 2∆t) = sA(t+ ∆t) + vs,A(t+ ∆t)∆t (5.52)

This integration procedure, which is called the Euler forward method, can be
iterated to get the complete numerical integral for sA for all times. Reducing
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the time step ∆t helps to increase the accuracy. The method can also be
applied to integrate acceleration and velocity vectors, by performing scalar
integration along each of the axes in a Cartesian system like in eq. (5.57).
There are multiple methods for numerically solving integrals and obtaining
derivatives. An important integration method is Euler’s forward method, which
is the simplest but by far not the most efficient and accurate method. To be
sure of a result, it can be a good strategy to solve a problem both analytically
and numerically. Then the numerical solution can function as a plausibility
check for the analytical solution or vice versa.

5.9 Kinematic analysis and coordinate systems
The kinematic analysis presented in the previous sections is valid for any
coordinate system or constraint curve r⃗s. We now show how to obtain the 3
dimensional motion in a specific coordinate system or a specific path curve
r⃗s(s) that is expressed in Cartesian or cylindrical coordinates. An important
case is motion along a straight line.

5.9.1 Rectilinear motion
Motion along a straight 1D line is the most simple to analyse. If motion occurs
along the x-coordinate axis in Cartesian coordinates, the path curve pointing
in the positive x-coordinate direction is:

r⃗s(s) = sı̂ (5.53)

A certain point mass i with path coordinate si is located at position vector
r⃗i = r⃗s(si) = siı̂. Projecting its position on the x-coordinate axis, we find that
its x-coordinate is identical to its path coordinate xi = r⃗i · ı̂ = si. So, essentially
everything that we have derived for si(t) also holds for the x-coordinate xi(t)
of a point mass that moves on a rectilinear path along the x-coordinate axis,
with si = xi, vs,i = ẋi and as,i = ẍi, from Eqs. (5.30)–(5.32).

5.9.2 Kinematics in Cartesian coordinates
Cartesian coordinates have the advantage that the direction of the unit vectors
ı̂, ȷ̂ and k̂ is independent of the coordinates in the system. If the coordinate
system is not rotating (see also Sec. 6.12), the direction of the unit vectors
is also independent of time dı̂

dt = dȷ̂
dt = dk̂

dt = 0⃗. This greatly simplifies the
kinematic analysis and allows describing the motion of a point mass i using its
3 time-dependent coordinates xi, yi and zi and Eqs. (5.28)–(5.29) as follows:
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r⃗i(t) = xi(t) ı̂ + yi(t) ȷ̂ + zi(t) k̂ (5.54)
v⃗i(t) = ẋi(t) ı̂ + ẏi(t) ȷ̂ + żi(t) k̂ (5.55)
a⃗i(t) = ẍi(t) ı̂ + ÿi(t) ȷ̂ + z̈i(t) k̂ (5.56)

It is also possible to integrate the individual functions ẍi(t), ÿi(t), z̈i(t) to
obtain the velocity and position of the point mass when the acceleration is
known, similar to the integrals shown in Eqs. (5.35), (5.36), for the velocity
and acceleration component along the x, y and z-axis:

r⃗i(t2) = r⃗i(t1) +
∫ t2

t1
ẋi(t)dt ı̂ +

∫ t2

t1
ẏi(t)dt ȷ̂ +

∫ t2

t1
żi(t)dt k̂ (5.57)

v⃗i(t2) = v⃗i(t1) +
∫ t2

t1
ẍi(t)dt ı̂ +

∫ t2

t1
ÿi(t)dt ȷ̂ +

∫ t2

t1
z̈i(t)dt k̂ (5.58)
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Figure 5.9: Example 5.3, determining the velocity and acceleration of a balloon along a
parabolic path curve with c2 = 1 m/s and c1 = 1

20 m−1.
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S Example 5.3 Let us illustrate the kinematic analysis method in Cartesian
coordinates by determining the acceleration and velocity vector of the balloon B in
Fig. 5.9, that moves along a parabolic path curve with yB = c1x

2
B in the xy-plane.

The motion of the balloon is described by:

xB(t) = c2t

yB(t) = c1c
2
2t

2

The position vector of the balloon can be differentiated twice, like in Eq. (5.54)
and Eq. (5.56), to obtain the velocity and acceleration vectors as follows:

r⃗B(t) = c2t ı̂ + c1c
2
2t

2 ȷ̂

v⃗B(t) = c2 ı̂ + 2c1c
2
2t ȷ̂

a⃗B(t) = 2c1c
2
2 ȷ̂

The speed can be obtained by taking the absolute value of the velocity vector:

vB = |v⃗B | =
√

v⃗B · v⃗B =
√
c2

2 + (2c1c2
2t)2 (5.59)
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Figure 5.10: Point mass i moving in a circular orbit in the xy-plane. Its position is indicated
by cylindrical coordinates ρi and ϕi. Its velocity vector (orange) points in the ϕ̂
direction, tangential to its path curve, its acceleration vector (purple) is in the
negative ρ̂ direction.
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5.9.3 Kinematics in cylindrical coordinates

Cylindrical coordinates, which were introduced in section 3.3.2 are often conve-
nient when the kinematics involves rotation around an axis, like in Fig. 5.10.
The position, velocity and acceleration vector in cylindrical coordinates can be
written as:

r⃗i = ρi ρ̂ + zi k̂ (5.60)
v⃗i = vi,ρ ρ̂ + vi,ϕ ϕ̂ + vi,z k̂ (5.61)
a⃗i = ai,ρ ρ̂ + ai,ϕ ϕ̂ + ai,z k̂ (5.62)

Concept. Kinematics in cylindrical coordinates
We will show that by taking the time derivatives of the position vector, the
components of the velocity vector and acceleration vector in Eqs. (5.60–5.62)
are found to be:

vi,ρ = ρ̇i (5.63)
vi,ϕ = ρiϕ̇i (5.64)
vi,z = żi (5.65)

ai,ρ = ρ̈i − ρiϕ̇
2
i (5.66)

ai,ϕ = 2ρ̇iϕ̇i + ρiϕ̈i (5.67)
ai,z = z̈i (5.68)

Derivation.

The determination of these velocity and acceleration vectors in cylindrical
coordinates is more difficult because the direction of the unit vectors ρ̂ and ϕ̂
is not constant. To determine their time derivatives, we use that the position
vector can also be expressed in Cartesian unit vectors as:

r⃗i = ρi cosϕiı̂ + ρi sinϕiȷ̂ + zik̂ (5.69)

From the directions of the unit vectors, as shown in Fig. 5.10, the cylindrical
unit vectors can be expressed in Cartesian unit vectors as:

ρ̂ = cosϕiı̂ + sinϕiȷ̂ (5.70)
ϕ̂ = − sinϕiı̂ + cosϕiȷ̂ (5.71)
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Now it can be seen that the time derivatives of the unit vectors obey (chain
rule):

dρ̂

dt = (− sinϕiî + cosϕiĵ)ϕ̇i = ϕ̇i ϕ̂ = ω⃗ × ρ̂ (5.72)

dϕ̂

dt = (− cosϕiî − sinϕiĵ)ϕ̇i = −ϕ̇i ρ̂ = ω⃗ × ϕ̂, (5.73)

where the terms in brackets were replaced by ϕ̂ and ρ̂ using Eqs. (5.70) and
(5.71), and the equations were further simplified using the vector ω⃗ = ϕ̇ik̂. We
use these time derivatives of the unit vectors to find the velocity and acceleration
in cylindrical coordinates, and the components given in Eqs. (5.63–5.68) by
differentiating twice:

r⃗i = ρi ρ̂ + zi k̂ (5.74)

v⃗i = dr⃗i

dt = ρ̇i ρ̂ + ρi
dρ̂

dt + żi k̂ (5.75)

= ρ̇i ρ̂ + ρiϕ̇i ϕ̂ + żi k̂ (5.76)

a⃗i = dv⃗i

dt = ρ̈iρ̂ + ρ̇i
dρ̂

dt + ρ̇iϕ̇iϕ̂ + ρiϕ̈iϕ̂ + ρiϕ̇i
dϕ̂

dt + z̈ik̂ (5.77)

= (ρ̈i − ρiϕ̇
2
i )ρ̂ + (2ρ̇iϕ̇i + ρiϕ̈i)ϕ̂ + z̈ik̂ (5.78)

The components of these vectors are identical to the equations (5.63–5.68) thus
proving the correctness of those equations.

5.9.4 Circular motion
A special important case of constrained motion on a path curve is motion on a
circle with constant radius ρ. So, in Fig. 5.10 this means ρi = constant. The
components of the velocity and acceleration vector can be found by substituting
ρ̇i = 0 and ρ̈i = 0 into Eqs. (5.75–5.78) to obtain:

vi,ρ = 0 (5.79)
vi,ϕ = ρϕ̇i = ṡi (5.80)

ai,ρ = −ρϕ̇2
i = −

v2
s,i

ρ
(5.81)

ai,ϕ = ρϕ̈i = v̇s,i = s̈i (5.82)

It can be seen that the velocity vector only has a component in the ϕ̂ direction,
tangential to the circle. The acceleration has both a tangential component ai,ϕ,
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and a radial or centripetal component ai,ρ that points towards the centre of
the circle. The time derivatives of the angle ωo,i = ϕ̇i and αo,i = ϕ̈i are called
the orbital angular velocity and orbital angular acceleration of the point mass.
The word orbital is used to distinguish this angular velocity from the angular
velocity of a rigid body, which is sometimes called the spin angular velocity
and will be discussed later in Ch. 9.

5.9.5 Natural t,n,b coordinates for curvilinear motion

Natural coordinates make use of the fact that even if a curved trajectory is not
really a circle, it is possible to approximate it by a circle with radius ρ at every
point of the trajectory, as shown in Fig. 5.11. Like in the previous subsection,
a cylindrical coordinate system can be chosen such that the centre of that
circle (the centre of curvature Oi) is at the origin and the point mass position
is determined by a path coordinate si = ρϕi, where ρ is called the radius of
curvature. The plane in which the instantaneous circle is positioned is called
the osculating plane. For an instantaneous moment, the motion of the point
mass can be described using natural coordinates or t, n, b coordinates, that are
defined by a unit vector t̂ that is tangential2 to the curvilinear path curve and
points in direction of increasing path coordinate s, a normal unit vector n̂ that
points towards the centre of the instantaneous circle and a binormal unit vector
b̂ = t̂ × n̂, that points perpendicular to the osculating plane. At every instant
of time the path curve can have a different origin O and radius ρ. Note that in
Fig. 5.11 the origin changes from point O1 to O2. As a consequence, at times
t1 and times t3, the directions of both the n̂ and b̂ unit vectors have flipped
because the motion changed from anti-clockwise to clockwise, even though the
tangential unit vector t̂ is the same. In t,n,b coordinates, the components of
the instantaneous velocity vector are v⃗i = vi,tt̂ + vi,nn̂ and the acceleration
vector is a⃗i = ai,tt̂ + ai,nn̂. Note the sign change ai,n = −ai,ρ compared to
Eq. (5.81), because n̂ points inward, while ρ̂ points away from the rotation
axis. The velocity and acceleration components are:

vi,t = ṡi (5.83)
vi,n = 0 (5.84)
ai,t = v̇s,i = s̈i (5.85)
ai,n = v2

s,i/ρ (5.86)

2The unit vector t̂ is identical to the unit vector ŝ in path coordinates. If curvilinear motion
in the direction of increasing s results in a counterclockwise circle around the z-axis,
t, n, b-unit vectors are related to cylindrical unit-vectors by b̂ = k̂, t̂ = θ̂ and n̂ = −ρ̂.
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Figure 5.11: Natural t,n,b coordinates that define the local unit vectors depending on the
shape of the path curve.
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Velocity and acceleration along the b̂ direction are always zero. Note that these
equations are very similar to those for circular motion, except for the minus
sign in Eq. (5.81). The radius ρ can change continuously along the curvilinear
path and needs to be determined at every point of the curve in order to use
these equations to determine the given velocity and acceleration components.
Furthermore, because they do not have a fixed origin, natural coordinates
are not used for describing positions, and are therefore not a replacement for
Cartesian and cylindrical coordinates.

5.9.6 Summary parametrised motion and kinematics

After having discussed kinematics in different coordinate systems we conclude
by summarising the different ways these coordinates allow us to parametrise
motion in 3D and obtain the kinematics. Depending on the situation, the time
dependent motion r⃗(t) can be fully described either using 3 time dependent
coordinate functions x(t), y(t), z(t), or using the path curve r⃗s(s) = x(s)ı̂ +
y(s)ȷ̂ + z(s)k̂ and a single time dependent coordinate function s(t):

Parametrisations of motion and determination of v⃗ and a⃗

• The time dependent coordinate functions
1. Cartesian coordinate functions x(t) and y(t).

–Use methods from Sec. 5.9.2 to obtain v⃗ and a⃗.
2. Cylindrical coordinate functions ρ(t) and ϕ(t).

–Use methods from Sec. 5.9.3 to obtain v⃗ and a⃗.
–First convert to Cartesian coordinates using x(t) = ρ(t) cosϕ(t) and
y(t) = ρ(t) sinϕ(t), and proceed like in 1.

• The path curve and one coordinate function of time
3. Cartesian path curve x(s), y(s), and path coordinate s(t).

–Use methods from Sec. 5.8 to determine the path velocity vs, and tan-
gential component of acceleration as from s(t).
–Use t, n, b coordinates (Sec. 5.9.5) to obtain the normal component of
acceleration an by first determining the local path radius ρ.
–Alternatively one can determine x(t) = x(s(t)), y(t) = y(s(t)) and
proceed like in 1.

4. Cartesian path curve y(x) and coordinate function x(t).
–Determine the function y(t) = y(x(t)) and use method 1.

5. Cylindrical path curve ρ(s), ϕ(s) and path coordinate s(t).
–Proceed using s(t) and t, n, b coordinates like in 3.
–Use x(t) = ρ(s(t)) cosϕ(s(t)) and y(t) = ρ(s(t)) sinϕ(s(t)), and proceed
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like in 1.
6. Cylindrical path curve ρ(ϕ) and coordinate function ϕ(t).

–Determine the function ρ(t) = ρ(ϕ(t)) and use method 2.

As becomes clear from this list, there are often multiple methods to determine
the velocity and acceleration from given kinematic information. However,
some methods might be much more mathematically complex than others. It
is therefore useful to become familiar with the different methods, and get
experience in choosing the easiest one in a certain situation.

5.9.7 Determining the path coordinate*
We note that it is also possible to determine the path coordinate s(t) by going
from parametrisation 4 to 3. For that purpose you use that it holds from
Pythagoras’ theorem that the distance ds along a straight infinitesimal line
element obeys ds2 = dx2 + dy2 + dz2, such that s(t) can be determined using
the integral:

s(t) =
∫ s(t)

0
ds =

∫ x(t)

0

√
1 +

(dy
dx

)2
+
(dz

dx

)2
dx (5.87)

For example if we deal with motion at constant speed along a straight tilted
line, y = αx, and x(t) = vxt then we have:

s(t) =
∫ vxt

0

√
1 + α2dx =

√
1 + α2 × vxt (5.88)

Noting that the y velocity component is vy = ẏ = dy
dx ẋ = αvx, we see that the

path velocity vs = ṡ =
√

1 + α2 × vx =
√
v2

x + v2
y as expected.

5.9.8 Determining ρ, the radius of curvature*
When working with natural t, n, b coordinates, one needs to know the local
radius of curvature ρ at each position to determine the velocity and acceleration
components using (5.83-5.86). However, determining the radius of curvature ρ
is not always easy. For a path curve in the xy-plane that can be written in the
form y(x), the instantaneous radius ρ can be determined using this convenient
function:

ρ =

[
1 + dy

dx

2] 3
2∣∣∣d2y

dx2

∣∣∣ (5.89)
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Derivation. This equation can be derived by considering a circle with centre
(x0, y0) and radius ρ while ensuring that its first and second derivative with
respect to x match those of the path curve y(x) at the point (x, y) where they
touch:

ρ2 = (y − y0)2 + (x− x0)2 (5.90)

y = y0 +
√
ρ2 − (x− x0)2 (5.91)

dy
dx = −x− x0

y − y0
(5.92)

d2y

dx2 = −1
y − y0

+ dy
dx

x− x0
(y − y0)2 = −

1 + dy
dx

2

y − y0
(5.93)

y − y0 = −
1 + dy

dx

2

d2y
dx2

(5.94)

ρ2 = (y − y0)2
[
1 + (x− x0)2

(y − y0)2

]
(from Eq. (5.90)) (5.95)

=

1 + dy
dx

2

| d2y
dx2 |

2 [
1 +

(dy
dx

)2
]

(used (5.92)&(5.94)) (5.96)

ρ =
(1 + dy

dx

2)3/2

| d2y
dx2 |

(5.97)

5.10 Segmented kinematics

Sometimes motion occurs in different time segments or space segments. For
example a car might accelerate, and at a certain time t1 it brakes and continues
at a constant velocity (see Fig. 5.12). This kind of motion is called segmented
motion and can be described by segmented or piece-wise functions like this:

sA(t) =
{
f1(t) t ≤ t1

f2(t) t > t1
(5.98)

The velocity and acceleration can be found by differentiation on the different
segments as follows:

vs,A(t) = ṡA(t) =
{
ḟ1(t) t ≤ t1

ḟ2(t) t > t1
(5.99)
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Figure 5.12: Segmented kinematics, after t = t1 the motion is described by f2(t) instead of
f1(t).
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as,A(t) = s̈A(t) =
{
f̈1(t) t ≤ t1

f̈2(t) t > t1
(5.100)

The procedure is similar if the motion is segmented along the path coordinate
s instead of time t, using functions f1(s) and f2(s).

When integrating the segmented motion, one proceeds by integrating of the
first segment, and then taking the end position and velocity of the first segment
as initial condition for the integration of the next segment. It is important to
note that it is impossible for a point mass to instantaneously ’jump’ or ’teleport’
in space. For that reason f1(t1) = f2(t1) needs to be obeyed. Moreover, from
Newton’s second law and the inertia of mass, we know that it also takes time
to change the velocity of an object. Therefore often also ḟ1(t1) = ḟ2(t1) holds
for the velocities to be equal at the interface between the segments. There are
exceptions in cases like collisions, where very high forces occur, such that the
accelerations are so high that a substantial velocity change can occur suddenly.

5.11 Summary
Let us summarise the kinematic methods that have been discussed in this
chapter.

• Constraint equations
– Using geometry for determining constraint equations.
– Taking time derivatives of constraint equations for the position,

velocity and acceleration of point masses and objects. See e.g.
Eq. (5.5).

• Equations of motion
– Solving equations of motion using initial conditions and constraint

equations.
• Kinematics along the path curve

– Integration and differentiation with respect to time to obtain the
path coordinate s(t), path velocity vs(t) and path acceleration as(t).

– Integration and differentiation with respect to path coordinate s to
obtain the functions vs(s) and as(s).

– Analysing segmented kinematics along the path curve using (5.98),
(5.99) and (5.100).

– Integration and differentiation with respect to the path velocity
as(v).
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• Kinematics in 3D coordinate systems
– Describing a path curve and the motion with the position vector r⃗(t)

of a point mass in 3D using Cartesian and cylindrical coordinates and
work with natural t, n, b coordinates in different parametrisations.

– Properly draw coordinate systems, path coordinates and unit vectors.
Draw position, velocity and acceleration vectors and project them
on the coordinate axes, obtaining their components, magnitudes
and angles.

– Determine the velocity vector v⃗(t) and acceleration vector a⃗(t) for a
given motion r⃗(t), irrespective of its parametrisation (see Sec. 5.9.6).
In Cartesian coordinates use (5.54-5.56), in cylindrical coordinates
use (5.60-5.68), and in natural (t, n, b) coordinates use (5.83-5.86).

– Determine all components of the position and velocity vectors by
integrating twice for a given a⃗(t) in Cartesian coordinates by using
Eq. (5.57) and Eq. (5.58).

– Know that the direction of the velocity vector v⃗ is always tangential
to the path curve, while the acceleration vector a⃗ is not.

– Solve kinematic problems in 3D using numerical integration and
differentiation.

In the next chapter we will discuss the kinetics of point masses, deriving
their dynamics from the effect of forces via Newton’s second law.
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6 Kinetics of Point Masses

In the previous chapter we have discussed and developed a toolbox to analyse the
kinematics of point masses, determining their motion, velocity and acceleration
in various coordinate systems. In this chapter we extend our toolbox by
determining the effect of forces on acceleration, thus analysing the kinetics of
point masses.

The outline of this chapter is as follows. We first introduce Newton’s second
law (Sec. 6.1) and use it to define mass (Sec. 6.2). We define force vectors
and their properties governed by Newton’s third law (Sec. 6.3). Then we
describe in detail the step-by-step procedure (Sec. 6.4) to determine and solve
the equations of motion. The procedure starts from a sketch (Sec. 6.5) and
choosing the coordinate system (Sec. 6.6). Then constraint equations are
determined, free body diagrams are used to determine the resultant forces, and
Newton’s second law is used to determine the equations of motion along each
coordinate axis (Sec. 6.7-6.10), which are then solved (Sec. 6.11.1) to obtain
the motion or forces (Sec. 6.11.2). Inertial reference frames are introduced
(Sec. 6.12) and finally we discuss the properties of various forces (Sec. 6.13).

6.1 Newton’s second law

Almost all motion and dynamics you see around you can be derived from
Newton’s second law and the characteristics of the four fundamental forces
of nature. It is amazing that so many phenomena in our daily life can be
described by such a deceptively simple equation. There are several reasons for
this. First of all, Newton’s laws are not as simple as they seem, and require
careful use of vectors, mathematics and kinematic techniques. Secondly, the
force term can have many different appearances, leading to a wide variety of
motion, and thirdly, most importantly, dynamics can become very complex
and difficult to predict when many point masses are present.

Let us have a closer look at Newton’s second law, Eq. (4.2):∑
j

F⃗ ij = mia⃗i (6.1)
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We know from the previous chapter how to interpret the acceleration vector
a⃗i, however what is the precise meaning of the scalar mass mi and the force
vectors F⃗ ij?

6.2 Defining mass
Definition. Mass
What is the mass of an object? Newton’s second law tells us that if there is a
constant force F⃗ ref acting on the object, and we measure an acceleration vector
a⃗i, the object’s mass is given by:

mi ≡ |F⃗ ref |
|a⃗i|

, (6.2)

where we used the ≡ sign to indicate that this is the definition of the mass,
or inertial mass, of the object. The object’s mass obeys Eq. (6.2) irrespective
of the properties of the force F⃗ ref , and is thus an intrinsic property of the
object that normally does not change. To assign a value to the mass we use
the international systems of units, the SI units. The previous equation tells us
that if we apply a force of 1 N and observe an acceleration of 1 m/s2, the mass
of the object is 1 kg.
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Figure 6.1: Newton’s second law defines both the force vector F⃗ i acting on a point mass and
its mass mi.

6.2.1 Weight of a mass

Since measuring accelerations is not always easy, in practice we often determine
the mass of an object via the gravitational force acting on the object, e.g.
by using a weighing scale. This is possible because it was experimentally
determined that the gravitational force on earth is proportional to the mass of
the object: F⃗ i,g = mig⃗. The magnitude of the gravitational force on the object
on earth’s surface is defined as the weight W of the object, so we can write:
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Wi ≡ mi|g⃗| (6.3)

Here, the gravitational acceleration vector g⃗ has a magnitude of approxi-
mately 9.8 m/s2 on earth and points towards the center of the earth. The grav-
itational mass of an object can be determined using the equation mi = Wi/|g⃗|
and has experimentally been found to be equal to its inertial mass as determined
from Newton’s second law.

6.2.2 Point mass

Concept. Point mass
A point mass i is an object that behaves like a mathematical point in space at
position vector r⃗i and has mass mi.

Since it is located at a single point, a point mass can only have a single
position, velocity and acceleration vector. The point mass is an important
concept, because Newton’s laws strictly only hold for point masses. Moreover,
the smallest known particles, the elementary particles, behave very similar
to point masses, and all larger objects are made out of elementary particles.
Also, as we will see, the dynamics of larger objects can often still be well
approximated by treating them as a point mass, therefore the term point mass
is also used for larger objects that move like a point mass, e.g. because they
do not rotate.

6.3 What is force?

6.3.1 Force and Newton’s second law

Definition. Force
Just like mass, the concept of force can be defined1 via Newton’s second law:

∑
j

F⃗ ij ≡ mia⃗i (6.4)

So if an object with mass mi is observed to accelerate with an acceleration
vector a⃗i, Newton’s second law tells us that the sum of the force vectors acting

1One might ask how it is possible to define both mass and force from Newton’s second law.
The answer is that mass is a property of the object that accelerates, whereas forces are
due to interactions between objects. By properly designed experiments the characteristics
of the force and mass can be determined independently in most cases.
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on the object is ∑i F⃗ ij . To determine individual force vectors F⃗ ij (instead of
their sum) one should perform experiments where only one force is acting on
mi.

6.3.2 Force and Newton’s third law

Newton’s third law gives us information on the way forces act, since it holds
for all known forces. It states that all (fundamental) forces act between two
point masses. If there are two point masses mi and mj , the force vector F⃗ ij

generated on mass mi by mass mj is always equal in magnitude and opposite
in direction to another force vector F⃗ ji that is generated on mj by mass mi.
In vector notation, as shown in Fig. 6.2:

F⃗ ij = −F⃗ ji (6.5)

Moreover, these two force vectors are collinear (i.e. have the same line of action)
to the relative position vector r⃗j/i = r⃗j − r⃗i connecting the two point masses.
Newton’s third law, Eq. (6.5), also shows us that a force F⃗ ij can never exist
alone, and is always accompanied by a reaction force F⃗ ji acting on another
point mass, which sometimes can be left out of the analysis for simplicity. In
words Newton’s third law is often stated as ‘action force is equal and opposite
to reaction force’.
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Figure 6.2: The third law of Newton states that for every force vector F⃗ ij that acts on a
point mass i, there is another force F⃗ ji that acts on another point mass. These
two force vectors have equal magnitude, are collinear and have opposite direction
(F⃗ ji = −F⃗ ij)

.
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6.3.3 Properties of forces

Newton’s third law tells us something about the properties of forces between
point masses. There are only four known fundamental forces, which are the
gravitational force, the Coulomb force, the weak nuclear force and the strong
nuclear force. Furthermore, there are many mechanisms and phenomena, which
can result in a variety of forces and force characteristics like spring forces and
contact forces. Some of these forces will be discussed in Sec. 6.13.

6.4 Procedure for determining the EoM
After obtaining a thorough understanding of kinematics, Newton’s laws, mass
and force, we are now in the position to predict the motion of point masses under
the influence of forces, the essence of kinetics. The procedure to determine and
solve the equations of motion can be subdivided in the following steps:

1. Sketch the point masses, massless mechanisms, force vectors and con-
straints

2. Choose and draw a suitable coordinate system (CS)
3. Determine the constraint equations
4. Draw the free-body diagram (FBD) for each object
5. Determine the equations of motion per object using Newton’s second law
6. Solve the equations of motion (EoM) in the presence of constraints

We will discuss these steps in more detail in the following sections.

6.5 Sketch of the dynamic system
Before analysing the dynamics, it is important to make a sketch for a good
overview of the dynamic system and the interactions between the different
objects. Such a sketch, like shown in Fig. 6.3, should include the following
elements:

• Constraining objects
• Massless mechanisms
• Objects with mass
• Forces vectors with points of action
• Labels
• Direction of the gravitational acceleration vector g⃗ (if present)
• Distances, angles and position vectors
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• Coordinate systems and unit vectors

We will now discuss these different elements, starting with three different
types of objects: constraining objects (like walls), objects with mass (like point
masses) and massless mechanisms.
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Figure 6.3: Sketch of a point mass A sliding along a slope.

6.5.1 Constraining objects

In the sketch, first draw all the constraining objects. These are the objects or
structures that constrain the motion of other objects in the system. Constrain-
ing objects can either have a constant position, like walls, ground, ceiling and
rails, but can also move, like elevators, drive shafts and carousels. In Fig. 6.3,
the grey sloped surface is a constraining object. Since the time dependent mo-
tion of these constraining objects is fully known, Newton’s second law doesn’t
have to be applied to them. This is normally also not possible since the mass of
the constraining objects is usually not given. The effect of constraining objects
can be described by constraint equations (Sec. 5.2).

6.5.2 Objects with mass

Secondly draw the masses at an arbitrarily chosen position and angle that
satisfies the constraints.
Important: when choosing such an arbitrary position, make sure to select
a generic, non-trivial position, for which all relevant forces are non-zero and
have, if possible, non-zero components along the coordinate axes. For example,
when drawing a pendulum, a mass suspended by a string, do not draw it in
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the lowest position, since then there will be no horizontal component of the
string force.

6.5.3 Massless mechanisms

Finally draw the massless mechanisms, these are mechanisms with zero or
negligible mass, which can generate non-zero forces on point masses and
constraining objects via mechanical connections. Examples include massless
ropes, springs, rods, wheels, pulleys, gears and crankshafts and will be discussed
in Sec. 6.13.6.

6.5.4 Force vectors

After all objects and mechanisms have been sketched, the force vectors can be
sketched according to the guidelines in Sec. 3.2.4. We distinguish 3 types of
force vectors:

1. Force vectors at contact points. Newton’s third law holds for all forces,
such that 2 force vectors should be drawn at each contact point between
2 objects and/or mechanisms: The force vector exerted by object 1 on
object 2, and the (equal and opposite) force vector from object 2 on
object 1. In Fig. 6.3 the forces F⃗ A,N and F⃗ A,f are force vectors that act
on A at contact point C. Note that we often only draw the force vectors
acting on objects for which we want to apply Newton’s second law.

2. Contactless forces acting at a distance. Certain forces, like the gravi-
tational force and the Coulomb force can act between 2 objects over a
distance, without requiring mechanical contact. In Fig. 6.3 the gravita-
tional force F⃗ A,g is a force with as point-of-action G, the center-of-mass
of A.

6.5.5 Labelling objects and vectors

After drawing all objects and vectors, it is important to label them uniquely,
since these labels link the sketch to the mathematics that you will use to solve
the dynamics. Either letters, numbers or combinations of letters and numbers
can be used as labels (see Sec. 10.7.2). For instance in Fig. 6.3 you have point
mass A with mass mA. Force vectors can be labelled with two subscripts, the
first indicates the object on which the force acts and the second indicates the
object or type of force which generates the force, e.g. F⃗ A,N is the normal force
on A, F⃗ A,g the gravitational force and F⃗ A,f the friction force.
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6.6 Choose and draw coordinate systems

After and while sketching the objects and forces, one or more relevant coordinate
systems should be chosen. The choice of the coordinate system (CS) and its
orientation is important, since a smart choice can significantly simplify the
analysis. In most cases Cartesian coordinates are preferred. If you know
the direction of a force (like the gravitational force or the contact force with
the ground), it is often smart to align one of the coordinate axes with that
force. Cylindrical coordinates are useful when objects rotate about a fixed
rotation axis and t, n, b coordinates can be useful when point masses move
along a constrained path, e.g. via a constraining rail object. In some cases
a combination of coordinate systems can be used. In Fig. 6.3 one can use
Cartesian coordinates and align the y-axis with the gravitational acceleration
vector, however one can also choose to use natural t, n, b coordinates with
path coordinate s. For demonstration, both are shown in the figure. It will
become clear that in this situation t, n, b coordinates are easier to use2. After
having chosen the CS it is drawn in the sketch with unit vectors according the
guidelines from Sec. 3.3.

6.7 Determine the constraint equations

From the sketch and the coordinate system the constraint equations can be
determined, like discussed in Sec. 5.2. In Fig. 6.3 we know that block A always
touches the slope with angle α at point A = C. Since we have tanα = yA

xA,0−xA
,

where xA,0 is the coordinate at which the slope crosses the x-axis, we can
determine the constraint equation and its time derivatives as:

yA = (xA,0 − xA) tanα (6.6)
ẏA = −ẋA tanα (6.7)
ÿA = −ẍA tanα (6.8)

We can also use natural coordinates to express the constraint equations. It
follows from Eq. (5.84) and Eq. (5.86) with radius of curvature ρ = ∞ because
the slope is a straight line that the constraint equations then become:

vA,n = 0 (6.9)
aA,n = 0 (6.10)

2Drawing the x-axis parallel to the slope would also have simplified the problem, so also
consider rotating your coordinate system to facilitate calculations.
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6.8 Drawing the free-body diagram

The free-body diagram (FBD) is a drawing of an object (=body) or a set of
objects, isolated from their surroundings and all force vectors and moment
vectors that act on it. Its main purpose is to determine the sum of the
force vectors ∑ F⃗ . The word free indicates that the object is cut free from
surrounding objects, and all effects of the surroundings are represented by
force and moment vectors. A key purpose of an FBD is to define the difference
between internal and external forces, since all objects drawn in the FBD can
be considered to be internal and their forces should not be drawn, whereas
all drawn forces are external forces generated by objects that are external and
not drawn. Although we will focus on the FBD for single point masses in this
chapter, we will later also consider FBDs of objects and rigid bodies consisting
of many point masses.

If a good sketch has been made in the previous steps, drawing the FBD is
straightforward: draw the object, and draw all force vectors that act on the
object just like they were drawn in the sketch. An example is given in Fig. 6.4.
Also provide the unit vectors, which are used to obtain the force components
by projection.
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Figure 6.4: Free-body diagram of the block shown in Fig. 6.3.

6.8.1 Drawing the FBD

To draw the FBD we follow the methodology as described in Vallery and
Schwab [9]. This description already includes the elements in the FBD needed
for rigid bodies in the presence of moments that will be introduced in Ch. 10.
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• Draw the system in a free state, i.e. ”cut” the system at convenient
locations. Don’t draw objects that do not belong to the system. Draw
outlined shapes of the separate pieces belonging to the system. Each cut
at a contact point can introduce new external action-reaction forces at
the system boundaries. Some helpful guidelines:

a) Always draw the system in a generic state. So, for example, if you
draw the FBD of a pendulum, do not draw it in the vertical position,
since in that position the horizontal component of the force in the rope
is zero, while it is not always zero.

b) Whenever possible, choose your system boundaries such that you
expose only action-reaction forces that you are actually interested in
calculating, or that are easily determined from the information you have.
Otherwise, extra equations and unknowns are introduced, complicating
calculations.

• Draw a 3D coordinate system with a clearly defined position for the
origin O. Check if rotating and/or translating the coordinate system can
make things easier, and if Cartesian or cylindrical coordinate systems
makes the analysis simplest. Consider drawing the three unit vectors. If
the coordinate system is already clear from the sketch it may be omitted
in the FBD.

• Some rules for drawing forces and moments in a FBD:
a) Do not show internal forces or moments.
b) If a connection prevents movement or rotation in a particular

direction, then forces/moments are drawn to represent that restriction.
c) If a rigid segment is split in two, the forces and moments acting

on the two segments in the separated FBDs are equal in magnitude and
opposite in direction.

d) Forces acting on a rigid body may be shifted along their lines of
action (see sliding vectors in Ch. 3).

e) Couple moments acting on a rigid body may be placed anywhere
(they are free vectors).

f) Only draw moment vectors if the forces that generate them are
not drawn to prevent double counting of forces or moments.

g) Projections of forces on the coordinate axes can be drawn in a
FBD, but should be uniquely labelled as such (e.g. Fg,x and Fg,y), and
use dashed arrows to distinguish them from the original force.

h) Draw the arrows of the force vector in the expected direction of
the force.

• Indicate and label all known and unknown external force vectors and
moment vectors that act on the system uniquely, and place dots at the



6.8 DRAWING THE FREE-BODY DIAGRAM 111

correct points of action and reference points. Decide on the preferred
vector notation method Sec. 3.2.4.

• Label relevant dimensions, distances, angles and relative position vectors.

The main goal of these guidelines is that an FBD should include all relevant
information needed to correctly establish the sums of forces and moments that
will later be used to determine the equations of motion.

6.8.2 Common errors in drawing FBDs
To help you generate proper FBDs, we list errors that often occur in drawing
FBDs.

• Drawing internal forces.
• Drawing forces generated by the free body (e.g. on the constraints). Only

the external forces acting on the free body should be drawn.
• Drawing the same force twice.

Both drawing the force and its moment (can lead to double counting).
Drawing both the vector and its projection on the axes without

clearly differentiating them, e.g. with dashed lines (can lead to double
counting).

• Drawing velocity or acceleration vectors in an FBD without clearly
distinguishing them from the forces.

• Drawing objects that do not belong to the free body in the FBD.
• Forgetting to draw forces generated by constraints on the body.
• Forgetting gravity or other forces.
• Forgetting to draw or indicate a coordinate system or unit vector direc-

tions.
• Drawing the FBD in a non-generic (=trivial) state or equilibrium position

(see previous subsection), such that certain force components or angles
become zero, while they are not always zero.

• Using scalar signed magnitude notation (e.g. FA see Sec. 3.2.2), for a
force of which the direction is unknown or time-dependent.

• Drawing resultant or sums of vectors like F⃗ tot (leads to double counting).
Each individual physical force vector needs to be drawn as a separate
vector.

• Already using Newton’s laws to determine the value of forces, e.g. writing
mgȷ̂ for the normal force, instead of keeping it as an unknown and
determining it from Newton’s laws.

• Drawing a vector ma⃗. Acceleration is a result of force, but is not the
force itself. An FBD should only contain the physical forces acting on
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the free body.
• Drawing virtual or pseudo force vectors, based on assumed motions like

the centrifugal (or centripetal) force in rotations. Only forces resulting
from physical interactions between objects can be drawn in the FBD,
since it is the purpose of the FBD to determine the sum of forces and
use that to determine the motion.

6.9 Force expressions and projections

Now we express the forces drawn in the FBD in the form of equations. For the
forces in Fig. 6.4, assuming a kinetic friction coefficient µk during the sliding
motion we get:

F⃗ A,g = −mAgȷ̂ (6.11)
F⃗ A,N = FN n̂ (6.12)
F⃗ A,f = −µkFN t̂ (6.13)

Projecting the force vectors

After having drawn the object and force vectors in the FBD, we need their
scalar components to evaluate Newton’s second law along each axis. We thus
project the forces on the coordinate system (CS) that was selected in the
previous section and was drawn in the sketch and/or FBD. This is done using
the method described in Sec. 3.2.5, and shown in Fig. 6.5. For example we get
the x component of the vector F⃗ A,f using FA,f,x = F⃗ A,f · ı̂.

As projected components of F⃗ g we obtain:

FA,g,t = mAg sinα (6.14)
FA,g,n = −mAg cosα (6.15)

Projecting vectors in tnb coordinates

Projecting vectors in tnb-coordinates on Cartesian or cylindrical coordinates
deserves some extra attention. This can be facilitated by using that the velocity
vector is tangential to the path curve, and is thus parallel to the t̂ direction,
and thus t̂ = ±v⃗/|v⃗|, as shown in Fig. 6.6. Where the sign (±) of t̂ depends
on the choice for the positive direction of the path coordinate s. Therefore,
similar to Eq. (5.70) for cylindrical coordinates, if the path curve resides in the
xy plane, the tnb unit vectors can be expressed in Cartesian coordinates as
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Figure 6.5: Projecting the forces in Fig. 6.4 on the coordinate axes. Note that minus signs
are put in front of the labels of dashed arrows that point in the negative axis
direction to conform to the conventions of drawing vectors with a scalar label in
Sec. 3.2.2.

Figure 6.6: Projecting a vector in tnb-coordinates to Cartesian or cylindrical coordinates is
facilitated by making use of the fact that the velocity vector is tangential to the
path curve.
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follows:

t̂ = ± v⃗

|v⃗|
= ± 1

|v⃗|
(ẋı̂ + ẏȷ̂) = ±(cosα ı̂ + sinα ȷ̂) (6.16)

n̂ = ± 1
|v⃗|

(−ẏı̂ + ẋȷ̂) = ±(− sinα ı̂ + cosα ȷ̂) (6.17)

tanα = vy

vx
= ẏ

ẋ
=

dy
dt
dx
dt

= dy
dx, (6.18)

where we used a 90 degree rotation transformation to determine n̂ from t̂ and
determined the equation for the angle α that t̂ makes with the x-axis from
the ratio of the vy and vx components of the velocity vector. Similarly for
projecting tnb coordinates on cylindrical coordinates we find, using Eq. (5.63)
and Eq. (5.64):

t̂ = ± v⃗

|v⃗|
= ± 1

|v⃗|
(ρ̇ρ̂ + ρϕ̇ϕ̂) = ±(cosψ ρ̂ + sinψ ϕ̂) (6.19)

n̂ = ± 1
|v⃗|

(−ρϕ̇ρ̂ + ρ̇ϕ̂) = ±(− sinψρ̂ + cosψ ϕ̂) (6.20)

tanψ = vϕ

vρ
= ρϕ̇

ρ̇
=
ρdϕ

dt
dρ
dt

= ρ
dρ
dϕ

. (6.21)

6.10 Obtaining the equations of motion
After thorough preparation, we are now in the position to fully evaluate
Newton’s second law to obtain the equations of motion using the following
steps.

1. Add the force components from the FBD along each of the axes.
2. Apply F⃗ = ma⃗ along each of the axes.
3. Express the components of the acceleration vector in terms of the position

coordinates and their time derivatives using kinematics (see Sec. 5.9).
4. Simplify the EoM by using the constraint equations and combining the

scalar equations along the axes directions.

S Example 6.1 As an example of this procedure we apply it to obtain the EoM
of the block A in Fig. 6.4 using natural coordinates, and the projected forces from
the previous section. We obtain three scalar equations of motion.
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∑
FA,t = mAg sinα− µkFN = mAaA,t = mAs̈A (6.22)∑
FA,n = FN −mAg cosα = mAaA,n =

Using Eq. (6.10)
0 (6.23)∑

FA,b = 0 = mAaA,b = mAz̈A, (6.24)

where we used Eq. (5.85) and Eq. (5.86) to obtain the acceleration components in
t, n, b coordinates. We see that the sum of forces in the b̂ direction is zero, such that
z̈A is zero. We use the constraint equation Eq. (6.10) to find that aA,n = 0, which
implies that the sum of the forces in that direction is also zero. From that condition
we find the equation for the normal forcea to be FN = mAg cosα. By substituting
this equation into Eq. (6.22) we obtain the EoM along the t̂ direction:

mAs̈A = mAg sinα− µkFN (6.25)
mAs̈A = mAg sinα− µkmAg cosα (6.26)

s̈A = g(sinα− µk cosα) ≡ a0, (6.27)

where we define a0 as the constant acceleration along the path coordinate. The same
result could have been obtained by using Cartesian coordinates, but this would have
been more complicated mathematically.

aIt is very important that in dynamics the normal forces are determined from the
combination of EoM and constraint equations.

6.11 Equations of motion in kinetics
6.11.1 Solving the equations of motion
The goal of solving the equations of motion is to obtain the position vectors
r⃗i(t) of all objects i at all times t for given initial conditions. Solving these
equations is part of kinematics and was already discussed in Ch. 5. We will
briefly repeat the procedure here for the example from the previous section.

Since Newton’s second law gives us an expression for the acceleration a⃗(t),
the main challenge in solving the EoMs is to determine the time dependent
position vector r⃗(t) of an object from the acceleration a⃗(t). Often this can
be done using the kinematic integration techniques that we have discussed in
the previous chapter. In some cases more complex differential equations, that
cannot be solved by integration appear, as will be discussed in Ch. 13.

As an example we consider the block A in Fig. 6.4. We know from the
constraint equations that aA,n = 0 and aA,b = 0. So, we only need to determine
the motion sA(t) along the path coordinate. For a certain initial condition
sA(0) = s0 and ṡA(0) = v0, we integrate the equation of motion twice to obtain
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the motion as follows 6.27:

vA(t) = v0 +
∫ t

0
a0dt = v0 + a0t (6.28)

sA(t) = s0 +
∫ t

0
(v0 + a0t)dt = 1

2a0t
2 + v0t, (6.29)

where a0 was obtained from the EoM in Eq. (6.27).

6.11.2 Determining forces from the EoM

Besides using the EoM to determine the motion from known forces, it is also
possible to substitute knowledge of the motion into the equation of motion,
to determine unknown forces using the EoM. Essentially, this method follows
directly from Newton’s second law ∑

F⃗ = ma⃗, where the sum of forces can be
determined if the mass m and acceleration a⃗ are known. Note that since the
sum of forces is obtained, if more than one force acts on the mass, this equation
allows only obtaining one unknown force vector or 3 scalar force components.

An example of how forces can be determined from knowledge of the acceler-
ation was already given in Example 6.1, where we determined in Eq. (6.23) the
contact force FN by combining the knowledge that the acceleration component
perpendicular to the slope was zero (aA,n = 0) and the knowledge of the mass
and gravitational force. This is a powerful way to study and quantify forces.

6.12 Relative motion and inertial reference frames
We will now discuss what happens if two persons (observers), that move relative
to each other, both apply Newton’s laws. We first introduce the concept of a
reference frame.

Concept. Reference frame
The points that are chosen to have zero velocity and acceleration are called the
reference frame of an observer. Velocities and accelerations of objects can be
measured with respect to the reference frame by choosing a coordinate system
that is fixed with respect to the reference frame.

To illustrate the situation of two observers using different reference frames,
consider two boats A and B that move with position vectors r⃗A(t) and r⃗B(t)
relative to an origin O that is fixed to the quay reference system (see Fig. 6.7).
Observer O stands on the quay and uses an x, y, z coordinate system that
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is fixed in the quay reference frame. A second observer A on boat A uses
coordinate system x′, y′, z′ with origin A, that is fixed to boat A’s reference
frame. While the position of boat B in O’s reference system is r⃗B(t), in A’s
reference system it is given by:

r⃗′
B(t) = r⃗B/A(t) = r⃗B(t) − r⃗A(t) (6.30)

By taking the time derivatives of Eq. (6.30), the velocity and acceleration of
boat B in A’s reference frame can be determined:

v⃗′
B(t) = v⃗B/A(t) = v⃗B(t) − v⃗A(t) (6.31)

a⃗′
B(t) = a⃗B/A(t) = a⃗B(t) − a⃗A(t) (6.32)

So observer O will conclude that the acceleration of boat B is a⃗B , and observer
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Figure 6.7: Newton’s laws do not hold for an accelerating reference frame (a⃗A ̸= 0) because
one finds different acceleration vectors for boat B using such a system: a⃗B ̸=
a⃗′

B = a⃗B/A. Such a frame fixed to an accelerating boat A is therefore not an IRF.

A will conclude that the acceleration of boat B is a⃗′
B = a⃗B/A. When both

observers apply Newton’s laws to boat B observer O will find that the total
force acting on boat B is F⃗ B = mBa⃗B and observer A finds that the force
is F⃗ B = mBa⃗′

B. Of course the force acting on boat B cannot depend on the
acceleration of boat A. Both observers should therefore find the same value for
F⃗ B , which is only true if a⃗B = a⃗′

B = a⃗B/A. This only holds if the acceleration
of boat A in O’s reference system is zero: a⃗A = 0⃗.

Inertial reference frames and pseudo forces

From this argumentation we conclude that Newton’s second law cannot be
valid in all reference frames, but only in special reference frames that we call
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inertial reference frames.

Concept. Inertial reference frame (IRF)
An inertial reference frame is a reference frame in which Newton’s first law is
valid. It is a reference frame which does not accelerate or rotate substantially
relative to distant stars.

One might ask, how can observer A check if she is in an IRF? She can do
so by testing if Newton’s first law holds in her reference frame, by positioning
a point mass at a fixed position in the boat without any forces acting on it.
If the mass accelerates in the absence of forces, the observer knows that she
is not in an IRF. From the observed acceleration, observer A might conclude,
based on Newton’s second law, that a kind of force is acting on the mass.
However, since there are no interactions this force is not a real force, instead
it is a fictitious force that is also sometimes called a pseudo force, inertial
force or d’Alembert force, since it is only observed because the experiment is
performed in an accelerating reference frame instead of an IRF. Examples of
such pseudo forces are the effect pulling you forward when a car brakes and
the centrifugal ’force’ that pulls you radially when a car takes a turn. Do not
use these pseudo forces in your FBD or dynamic analysis, since many of the
concepts and methods in this textbook fail if you do. We will discuss rotating
and accelerating reference frames in more detail in Sec. 9.7. Unless explicitly
stated otherwise, for the rest of this textbook we only deal with dynamics in
inertial reference frames (IRFs).

6.13 Forces and constraints
In this section we discuss the properties of some of the most relevant forces
and constraints that can occur in dynamics, as have been experimentally
approximately determined using Newton’s laws.

6.13.1 Gravitational force
The gravitational force is important, because it acts on every point mass,
and because it is the most prominent force that acts over a distance. In this
textbook we focus on the dynamics of objects on or near the surface of the
earth, and therefore we can often assume a constant distance to the earth’s
centre. In this case the gravitational force vector on a mass mi can be described
by

F⃗ i,g = mig⃗, (6.33)
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where g⃗ is the gravitational acceleration vector with magnitude g = |g⃗| ≈
9.8 m/s2 that points downward in the direction of the centre of the earth.

6.13.2 Contact force

At a point C where the surfaces of two objects touch, the atoms in the objects
can generate a contact force vector F⃗ C . One can define a contact plane through
C that is tangential to the surface of the objects. Then, like shown in Fig. 6.3,
the component of the contact force F⃗ C perpendicular to this plane is called
the normal force F⃗ N , and the component parallel to the contact plane is the
called the friction force F⃗ f . So, it always holds that F⃗ C = F⃗ N + F⃗ f , and it is
allowed to draw and treat the contact force as a single vector F⃗ C . However,
since the expressions for F⃗ N and F⃗ f are different, it can be useful to split
them. Let us now discuss the normal forces and friction forces separately.

6.13.3 Normal force

Normal forces are the result of repulsive Coulomb forces and quantum mechan-
ical effects. By definition, the normal force vector F⃗ N points perpendicular to
the contact plane. Normal forces can be calculated by combining Newton’s
laws with constraint equations. If the contact surface is flat, the constraint
equations for the motion components normal to the surface simplify to vn = 0
and an = 0, otherwise one needs to use Eq. (5.86). An example of how to
determine the normal force FN from the EoM was given in Eq. (6.10) and
Eq. (6.23), where the movement of block A was constrained by the slope.

6.13.4 Friction force

The friction force is the component of the contact force tangential to the contact
plane. We distinguish static and kinetic friction forces, which are characterised
by a static µs and kinetic µk friction coefficient with µs ≥ µk > 0. We now
consider the friction force between two points A and B on different objects
that are in contact. The direction of the friction force is always such that it
aims to minimize the relative tangential velocity |v⃗A/B| between the points A
and B. In the specific case of static friction, the friction force keeps the velocity
and tangential acceleration between A and B zero.
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Static friction

The static friction acting on point A is best described by this constraint
equation: {

aA/B,t = 0 if |F⃗ A,fs| ≤ µs|FA,N | and v⃗A/B = 0⃗
otherwise use kinetic friction

(6.34)

The first condition for static friction is that the points A and B are not
moving relative to each other v⃗A/B = 0. In that case Eq. (6.34) states that the
tangential component of acceleration of point A is zero (aA/B,t = 0) as long as
the friction force |F⃗ A,fs| needed to satisfy that constraint equation does not
exceed the maximum static friction force FA,fs,max = µs|FA,N |, where FA,N is
the normal force on A. In practice the EoM in the presence of the constraint
aA/B,t = 0 needs to be solved to determine the friction force F⃗ A,fs after which
it is checked if the static friction condition holds. If it does not hold, point A
will accelerate and kinetic friction can be used.

Kinetic friction

When the points A and B slide or slip along each other, a kinetic friction force
acts on A. The kinetic friction force vector F⃗ A,fk is tangential to the plane of
contact and points opposite to the direction of the relative velocity vector:

F⃗ A,fk =
{

−µk|F⃗ A,N |v̂A/B if v⃗A/B ̸= 0 or |F⃗ A,fs| > µs|FA,N |
otherwise use static friction

(6.35)

Solving problems with friction

If it is not known whether one should deal with static or kinetic friction, and/or
if the direction of the velocity is not known in a kinetic friction situation, the
following procedure can be used to solve the problem step by step:

1. Determine the normal contact force FN using constraint equations and
the EoMs, like in Eq. (6.23).

2. Assume that the relative velocity is zero v⃗A/B = 0⃗ and use the constraint
equation aA/B,t = 0 to determine the static friction force F⃗ A,fs from the
EoMs.

3. Check if |F⃗ A,fs| ≤ µsFN . If that is true, the static friction assumption is
correct.

4. Otherwise use kinetic friction. Guess a direction for the velocity v̂A/B

and use it to determine F⃗ A,fk using Eq. (6.35).
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5. Then solve the EoMs to determine if the direction of the velocity v⃗A/B

matches the guessed direction of v̂A/B.
6. If not, repeat from step 4 for the other direction of v̂A/B.

For friction of a rolling wheel with the ground two conditions can occur. If
there is no slip, only static friction is present and aA/B,t = 0. While in the
case of slip or sliding, one deals with kinetic friction forces. Gearwheels always
behave according to the no slip condition, since their teeth prevent slipping.
Finally, a special situation are so-called frictionless contact problems, which
have µs = µk = 0. For these cases the friction force is always zero F⃗ f = 0⃗, and
the contact force is always normal to the contact plane.

6.13.5 Constraint equations on points
Some examples of common constraint equations that limit the motion of a
point A in 3, 2 or 1 dimensions are:

• A joint that fixes a point A to a certain other point P , fixing it along all
3 coordinate directions:
r⃗A = r⃗P

• A point A is constrained to move along a slider joint, collar or rail with
path curve r⃗s(s), constraining it along 2 coordinate axes:
r⃗A = r⃗s(s).

• Motion over a surface, for instance because the gravitational force ensures
object A does not move in the z direction, constraining motion along 1
coordinate direction:
zA(t) = 0

• Angular constraints can fix certain rotation angles, e.g. ϕ(t) = ϕ0, they
can result in moments on the constrained object.

The contact forces and moments resulting from these constraint equations can
be analyzed by combining them with the EoMs.

6.13.6 Dynamics of massless mechanisms
When a mechanism m has zero mass, so mm = 0, application of Newton’s
second law tells us that the sum of external forces that act on the mechanism
is zero, since otherwise its acceleration would be infinite:∑

F⃗ ext = mma⃗m = 0⃗ (6.36)

This means that the sum of the forces on the mechanism is always zero, just
like in statics. Therefore you can use all methods you have learned in statics
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courses to determine the positions and forces of the massless elements in the
mechanism. Unless it is explicitly mentioned they have mass, you may assume
all mechanisms in this textbook to be massless.

6.13.7 Two-force members
A massless mechanism on which only two external forces F⃗ A and F⃗ B are acting
is called a two-force member. Then we get from Eq. (6.36) that F⃗ A + F⃗ B = 0⃗
and:

F⃗ A = −F⃗ B (6.37)

We see from Eq. (6.36) that because the mass of the mechanism is zero
(mm = 0), its acceleration a⃗m can take any value, which means that the
mechanism can translate extremely fast, such that it will instantaneously
assume a position that ensures ∑ F⃗ = 0⃗. Note that, as will become clearer
later, the same argumentation holds for rotations, such that the mechanism
also instantaneously assumes a state where the sum of external moments is zero∑

M⃗ = 0⃗, which is only possible if the two forces F⃗ A and F⃗ B are collinear.
We will now discuss a few important massless mechanisms, show in Fig. 6.8.
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Figure 6.8: FBDs of various mechanisms: a rod, a rope with mass, a relaxed spring with
length L0, a spring with length L0 + ∆L and a damper.

6.13.8 Rods and ropes
Probably the simplest two-force members are rods and ropes. Since these
mechanisms have a fixed length L their operation is governed by this constraint
equation:

|⃗rA − r⃗B| = L (6.38)
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Ropes are flexible, therefore they can only handle tensile (’pulling’) forces
that are parallel to the rope. The absolute value of those force vectors is called
the tension in the rope and Eq. (6.38) only holds if the rope is experiencing
tensile force. If ropes are bent (e.g. by pulleys) they can be dealt with as
discussed in 5.2.4. Since rods are rigid, they can handle also compressive forces
and can transfer moments.

As shown in second FBD in Fig. 6.8 the sum of the forces on a rope is
not zero anymore (F⃗ A + F⃗ B ̸= 0) if there is mass connected to the rope,
because part of the force F⃗ A is needed to accelerate the mass. So, be careful,
F⃗ A = −F⃗ B can only be applied when no masses are accelerated by the forces.

6.13.9 Spring
A linear spring is a mechanism whose length extends by a distance ∆L that
is proportional to the external pulling force (see Fig. 6.8). When there is no
external force (F⃗ A = F⃗ B = 0⃗), it has a relaxed length L = L0, and when a
force is applied its length increases by a distance ∆L = L− L0:

F⃗ k = k∆Lŝ (6.39)

Here k is the stiffness or spring constant of the spring, with unit N/m, which
normally has a positive value. The direction of the force can be indicated using
a unit vector ŝ that points outward parallel to the spring at point A.

6.13.10 Damper
A linear damper is a mechanism whose length changes at a rate that is
proportional to the externally applied pulling force (see Fig. 6.8).

F⃗ c = c
dL
dt ŝ (6.40)

where c is the damping constant (unit N·s/m), which is always positive. If
point B is fixed, the velocity of point A is in the same direction as the applied
force vector.

It is important to note that besides extending, springs and dampers can
also be compressed, such that the distance ∆L and time derivative L̇ become
negative and the forces change sign. Secondly we note that we have discussed in
Fig. 6.8 the effect of external forces F⃗ A and F⃗ B generated on the mechanisms.
But if one e.g. connects a point mass m at point A to a spring, the force
generated by the mechanism is of opposite sign F⃗ m,k = −k∆Lŝ, where the
minus sign arises from Newton’s third law.
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6.13.11 Other forces
There are many other types of forces, like thermodynamic, aerodynamic, fluid
dynamic, electromagnetic, electrostatic and material forces. It carries too far
here to discuss them all, and the methodology discussed in this chapter can be
applied for all types of forces once the functional form is known.
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6.14 Summary
In this chapter we have formulated a complete methodology to derive the
kinetics of systems of one or more point masses under the influence of forces
and constraints generated by constraining objects and massless mechanisms.
Here we have made use of the kinematics from the previous chapter, introduced
the important concepts force and mass, and discussed the procedure of sketching
the problem and the FBDs to obtain and solve the EoMs. Let us summarise
the main topics and equations in this chapter:

• Mass and force
– Mass and force are defined by Newton’s laws
–
∑

F⃗ = ma⃗
– F⃗ action = −F⃗ reaction

• Procedure for solving the EoMs
– Sketch, CS, FBD, projecting forces, determining the EoM
– Solving the EoM using kinematics and constraints
– Relative motion and IRF

• Forces, mechanisms and constraints
– Gravity: F⃗ g = mg⃗
– Friction: Eqs. (6.34,6.35)
– Massless mechanisms: ∑ F⃗ ext = 0⃗
– Rods and ropes: |⃗rA − r⃗B| = L
– Spring: F⃗ k = k∆Lŝ
– Damper: F⃗ c = cdL

dt ŝ

Although all kinetic problems can be solved using the general method outlined
in this chapter, certain problems, in particular those where the forces only
depend on position, are easier to solve using the concepts of work and energy,
which will be discussed in the next chapter. If the forces only depend on time,
or have a very short duration, the principle of impulse and momentum is useful,
which will be discussed in chapter 8.
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7 Work and Energy

In the previous chapters we have outlined a methodology to fully analyse the
dynamics of point masses from their kinetics and kinematics. However, in
certain situations information about the motion can be obtained via an easier
route, using the methods of work and energy. The methods of work and energy
are particularly useful if:

• The forces depend on position and not explicitly on time
• One only needs to determine changes in speed
• It is not needed to fully determine the motion r⃗(t)

7.1 Principle of work and energy

We start by introducing the most important principle of this chapter, and
derive it later in Sec. 7.1.3.

Concept. Principle of work and energy
The principle of work and energy states that the work W done by a force F⃗ ij on
a point mass i, while it moves along a path curve from position s1 to position
s2, is equal to the change in its kinetic energy Ti.

Wij,s1→s2 = ∆Ts1→s2 , (7.1)

where ∆Ts1→s2 = Ti(s2) − Ti(s1) is the change in kinetic energy. To use the
principle in Eq. (7.1) we first need to define the work Wij,s1→s2 done by a force
and the kinetic energy Ti of the point mass.

7.1.1 Work

The main idea behind the concept of work is that the motion s(t) of a point mass
of which the path curve is known, only depends on the tangential component
of the force vector to the path curve: Ft = F⃗ · dr⃗. This is the case because
Ft = ms̈ like in Eq. (6.22), from which the motion s(t) can be determined.
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Concept. Work
The work Wij performed by a force F⃗ ij on a point mass i, while it moves from
path coordinate s1 to s2 along a path curve r⃗s(s) is defined as:

Wij,s1→s2 ≡
∫ r⃗s(s2)

r⃗s(s1)
F⃗ ij · dr⃗ (7.2)

This expression can be simplified by using that dr⃗ = ŝds (see Eq. (5.21)).
We can project the force vector on the path curve, obtaining its tangential
component using:

Fij,t = F⃗ ij · ŝ (7.3)
Thus we obtain the following scalar expression for the work:

Wij,s1→s2 =
∫ s2

s1
Fij,tds (7.4)

7.1.2 Kinetic energy
Concept. Kinetic energy of a point mass
The kinetic energy of a point mass i is defined as one half its mass times its
speed squared (v2

i = |v⃗i|2), and is indicated by the letter T .

Ti ≡ 1
2miv

2
i (7.5)

S Example 7.1 As an example of the principle of work and energy we determine
the change in kinetic energy of a ball that is launched at an initial velocity v⃗0 =
vx,0ı̂ + vy,0ȷ̂ and experiences constant force F⃗ g = −mgȷ̂ of gravity.

The trajectory of the ball is shown in Fig. 7.1. We first determine the work done
by the force on the ball using Eq. (7.2). By using that dr⃗ = dxı̂ + dyȷ̂, such that
F⃗ g · dr⃗ = −mgdy we find:

Ws1→s2 =
∫ y2

y1

−mgdy = −mg(y2 − y1) (7.6)

So, as shown in Fig. 7.2, the work done by the gravitational energy is negative and
has the same parabolic shape as the trajectory of the ball shown in Fig. 7.1. The
work is negative because the tangential component of the force initially reduces the
speed. After the ball has passed its highest point, the work increases again, because
the tangential component of gravity is in the same direction as the velocity vector.

From the principle of work and energy Eq. (7.1) we see that the change in kinetic
energy ∆T12 equals Ws1→s2 , and follows the same curve in Fig. 7.2. Note that the
work could also have been determined by projecting the force on the path curve
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using angle α and using the scalar equation Eq. (7.4) but this would have been more
difficult.
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Figure 7.1: Trajectory of a ball experiencing a constant gravitational force of F⃗ g = −0.5N ȷ̂.

7.1.3 Derivation of the principle
Here we present the derivation of the principle of work and energy. For a force
F⃗ ij acting on a point mass i we have from Newton’s second law that:

F⃗ ij = mia⃗i (7.7)
Derivation. We take the dot product of both sides of this equation with
displacement dr⃗ and integrate over the path curve V rs from s1 to s2.

∫ r⃗s(s2)

r⃗s(s1)

[
F⃗ ij

]
· dr⃗ =

∫ r⃗s(s2)

r⃗s(s1)
[mia⃗i] · dr⃗ (7.8)

We see directly that the left side of this equation is equal to Eq. (7.2) and
can be replaced by the work Wij,s1→s2 . To prove the principle in Eq. (7.1) we
still have to show that the right side is equal to the change in kinetic energy.
Derivation. Kinetic energy
To simplify the right side of Eq. (7.8), we evaluate the integral over the dot
product a⃗i · dr⃗.
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Figure 7.2: Work W12 done by gravitational force and change in kinetic energy ∆T12 of the
ball whose trajectory is shown in Fig. 7.1, that travels from the origin to x = x2.
From the principle of work and energy W12 = ∆T12 and the curves overlap.

mi

∫ r⃗s(s2)

r⃗s(s1)
a⃗i · dr⃗ = mi

∫ s2

s1
a⃗i · ŝds = mi

∫ s2

s1
ai,t(s)ds (7.9)

Since ai,t = s̈i the rightmost integral over ai,t(s)ds is almost identical to
Eq. (5.45), and can be integrated with asds = vsdv yielding:

mi

∫ s2

s1
ai,tds = mi

∫ v2

v1
vs,idvs,i =

[1
2miv

2
s,i

]v2

v1

= 1
2miv

2
2 − 1

2miv
2
1 (7.10)

The right side of this equation shows that the integral is simply equivalent
to the change in the kinetic energy Ti = 1

2miv
2
i , and proves that the integral

over Newton’s second law Eq. (7.8) leads to the principle of work and energy
Eq. (7.1).

7.1.4 Work and energy for a system

To analyse a system of point masses, on which multiple forces Fj are working,
the principle of work and energy can be extended by summing the work Eq. (7.1)
over all point masses i and forces j to obtain:

Wtot =
∑

i

∑
j

Wij =
∑

i

∆Ti = ∆Ttot (7.11)

Thus the sum of the work of all forces on all point masses equals the total
increase in kinetic energy.
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Figure 7.3: A ball in a frictionless half pipe reaches the same height on both sides.

7.2 Conservation of mechanical energy
For certain forces, so called conservative forces, the law of conservation of
mechanical energy holds. To understand what is meant by conservation of
energy, consider a ball i rolling back and forth in a half pipe under the influence
of gravity like in Fig. 7.3. The ball rolls up one of the ramps, stops at a
maximum height, rolls downward and gains its maximum speed at the lowest
point after which this sequence repeats itself. If there is no friction, the ball
will continue rolling back and forth indefinitely. Apparently the system has a
kind of ’memory’, represented by a quantity that is always constant. Let us
introduce a quantity called the mechanical energy1 Ei,mech which is constant
(i.e. conserved) and is defined as the sum of the kinetic energy and a potential
energy function Vi(r⃗).

Concept. Law of conservation of mechanical energy for a point mass
The sum of kinetic and potential energy of a point mass i is conserved and
always constant if all forces that act are conservative forces.

Ti + Vi(r⃗) ≡ Ei,mech = constant (7.12)
1Note that the mechanical energy can also be called the energy, or the Hamiltonian of the

system. As is outlined in section Sec. 7.2.2 the important difference between total energy
and mechanical energy is that total energy of a system is always conserved, while its
mechanical energy is only conserved if all acting forces are conservative forces.
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Based on the condition that mechanical energy should be conserved, we can
now determine the properties of the potential energy and conservative forces.
If the mechanical energy Ei,mech is constant, then always ∆Ei,mech = 0. When
the point mass i moves from position r⃗1 to position r⃗2 under the influence of a
force F⃗ ij , this implies that the change in its kinetic and potential energy are:

∆Ti,⃗r1→r⃗2 + ∆Vij,⃗r1→r⃗2 = ∆Ei,mech ≡ 0 (7.13)

From the principle of work and energy, Eq. (7.1), we have ∆Ti,⃗r1→r⃗2 =
Wij,⃗r1→r⃗2 . By combining this with Eq. (7.13) we find the equation for potential
energy.

Concept. Potential energy
The change in the potential energy of a point mass i is the negative of the work
done by a conservative force F⃗ ij,c on the point mass.

∆Vij,⃗r1→r⃗2 = −Wij,⃗r1→r⃗2 (7.14)

By combining Eq. (7.14) with the definition of work Eq. (7.2) we find that
the potential energy obeys:

Vij(r⃗2) − Vij(r⃗1) = −
∫ r⃗2

r⃗1
F⃗ ij,c(r⃗) · dr⃗ (7.15)

However, not all forces obey Eq. (7.15). If the point mass moves along a closed
path, we have r⃗2 = r⃗1 and therefore the change in potential energy is zero.
If we substitute this in Eq. (7.15) we find that only forces that satisfy the
following equation are conservative forces:

Concept. Conservative force
A force or force-field F⃗ ij,c(r⃗) is a conservative force if the work it performs on
a point mass i is zero along any closed path that i can travel.

Wij,s1→s1 =
∮ r⃗1

r⃗1
F⃗ ij,c(r⃗) · dr⃗ = 0 (7.16)

For example, according to this definition, it can be shown that the gravita-
tional force is conservative, since it follows from Eq. (7.6) that if r⃗2 = r⃗1, we
have y2 = y1 and Wij,s1→s1 = 0, irrespective of the path that the point mass
took to come back to its original position.
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7.2.1 Force from potential energy

Interestingly, once the potential energy function Vij(r⃗i) of a conservative force
is known, it can be used to determine the force field vector by taking its
gradient as follows:

F⃗ ij,c(r⃗) = −∇⃗Vij(r⃗) (7.17)

Derivation. Here we will show how the conservative force vector can be
obtained from the potential energy.

By combining Eq. (7.4) and (7.14), we obtain for the change in potential
energy when the point mass moves from r⃗1 to r⃗2:

∆Vij,⃗r1→r⃗2 = −
∫ s2

s1
Fij,tds (7.18)

If one chooses the path curve to be parallel to the x axis, ds becomes dx
and by substituting s1 = x and s2=x+ ∆x in Eq. (7.18), in the limit ∆x → 0
we obtain:

Vij(x+ ∆x) − Vij(x) = −Fij,x∆x (7.19)

lim
∆x→0

Vij(x+ ∆x) − Vij(x)
∆x = −Fij,x (7.20)

Fij,x = −∂Vij(r⃗)
∂x

(7.21)

A similar procedure as in Eq. (7.21) can be used to obtain the other components
of the force vector, by taking the path curve parallel to y and z axes, such that
the total force vector at position r⃗ can be constructed:

F⃗ ij,c(r⃗) = Fij,xı̂ + Fij,y ȷ̂ + Fij,zk̂ (7.22)

= −∂Vij

∂x
ı̂ − ∂Vij

∂y
ȷ̂ − ∂Vij

∂z
k̂ (7.23)

= −∇⃗Vij(r⃗) (7.24)

In this derivation we used that the del or nabla operator ∇⃗ in Cartesian
coordinates is ∇⃗ = ∂

∂x ı̂ + ∂
∂y ȷ̂ + ∂

∂z k̂. ∇⃗V is the gradient of the scalar potential
energy function. Essentially, this gradient shows that the force on a point mass
always points downward along the steepest ’downhill’ potential direction, with
a magnitude equal to the slope of the potential energy function along that
direction.
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7.2.2 Heat and energy conservation*
Interestingly, all fundamental forces of nature are conservative forces, from
which it follows that if these forces act between masses in a closed system (i.e.
there are only internal forces acting and thus no external forces), the total
energy Etot of the system can never change and remains constant. Nevertheless,
besides increasing the kinetic energy of large point-masses, forces like friction
can also increase the random velocity of the atoms in a material. The energy
associated with this random motion of the atoms is called heat Q and usually
not included in the kinetic energy, but instead is characterized by a temperature
increase. Unfortunately, since the motion is random, it is not possible to fully
reuse heat to perform work, and heat can thus be considered as (partly) lost
energy. Forces that generate heat are therefore also called non-conservative
forces or dissipative forces.

Figure 7.4: The law of conservation of mechanical energy (T + V = Emech = const) does not
hold when kinetic or potential energy is converted into heat Q or used to perform
work Wext on an external system by non-conservative forces. In that case the
total energy Etot is still conserved.

For example when a block slides off a ramp while kinetic friction forces act on
it, the temperature of the block and the ramp increase due to the higher average
velocity of the atoms in the materials. Non-conservative forces like kinetic
friction usually generate heat (∆Q > 0). To distinguish the potential and
kinetic energy stored in a closed system from heat energy and external sources
or sinks of energy, the sum of kinetic and potential energy T + V = Emech of
a point mass or system of point masses is called its mechanical energy. The
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mechanical energy can reduce via generation of heat Q, and can also reduce
if net work Wext performed by the system on external objects outside the
system. If the effect of heat and work is included, the total energy conservation
equation becomes:

T + V +Q+Wext = Etot = constant (7.25)

This equation, that is depicted schematically in Fig. 7.4 is also called the
first law of thermodynamics, and is discussed in more detail in thermodynamics
textbooks. The equation states that total energy Etot is constant and can be
interchanged between kinetic energy, potential energy, heat energy Q and work
Wext on external systems. If we only look at changes in energy, Eq. (7.25) can
be reformulated into:

∆T + ∆V + ∆Q+ ∆Wext = 0 (7.26)

It follows from this equation that if heat is generated by non-conservative
forces (∆Q ̸= 0), or if work is performed (Wext ̸= 0) irreversibly on external
objects or systems, the law of mechanical energy conservation (∆T + ∆V = 0)
does not hold. Although theoretically, mechanical energy can be conserved,
practically there are always dissipative, frictional forces, which will continue
to convert mechanical energy into heat as long as the system keeps moving.
Therefore, unless there are external sources of work or heat (∆Q+ ∆Wext < 0),
the system will eventually stop moving once the mechanical energy is all
converted into heat. As a consequence it is impossible to create so-called
perpetuum mobiles: mechanisms that continue moving forever without energy
supply.

7.2.3 Power

Concept. Power
The work W of a force on a point mass can be divided by the time interval
over which this work is done to obtain the average power generated by the force.
When the time interval tends to zero we obtain that the (instantaneous) power
generated by a force is:

P = dW
dt (7.27)

From Eq. (7.2) it can be seen that dW = F⃗ · dr⃗, from which we find that
the rate at which power is generated equals the inner product of the force and
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velocity vectors:
P = dW

dt = F⃗ · dr⃗

dt = F⃗ · v⃗ (7.28)

Inversely, the total work done by a force can be obtained by integrating the
power over time:

W =
∫
Pdt =

∫
F⃗ · v⃗dt (7.29)

From this expression it can be seen that a velocity proportional force, like
kinetic friction or a damping force of the form F⃗ c = −cv⃗ is non-conservative,
because the dot product in Eq. (7.29) becomes −c|v⃗|2 which is always negative,
such that its integral along a closed path can never be zero (see Eq. (7.16)).
Note however that static friction is a conservative force, because it works
between two surfaces that have zero relative velocity, such that no power is
generated.

7.2.4 Efficiency
Let’s say we want to determine the efficiency of a car engine. The external
input energy is the fuel consumed by the car engine which is converted into
kinetic, potential and heat energy and is thus equal to ∆Win = ∆T +∆V +∆Q.
The useful output energy is the kinetic energy and potential energy increase of
the car ∆T + ∆V , that it uses to accelerate or to drive uphill. The non-useful
energy is the heat that is generated in the car ∆Q.

The efficiency of the car engine is then defined as:

η = Useful output energy
Total input energy × 100% = ∆T + ∆V

∆T + ∆V + ∆Q × 100% (7.30)

η = Wout,useful
Win

× 100%

By taking the time derivative of the numerator and denominator of this
equation one obtains the instantaneous efficiency:

η = Pout,useful
Pin

× 100% = Useful output power
Total input power × 100% (7.31)

The equation for efficiency can depend on the type of application. In a car,
heat generation Q is not useful output energy, but in a heating appliance it is.
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S Example 7.2 A block with mass m slides from a hill. It starts from rest at a
height y = h and reaches a final velocity v2 at height y = 0. Determine the efficiency
of the conversion from potential to kinetic energy of the block.

This problem is similar to the example in the previous chapter, see Fig. 7.5. In
this case, the input energy is equal to the reduction in potential energy of the block
−∆V = mgh. The change in kinetic energy ∆T = 1

2mv
2
2 of the block is the useful

energy. Therefore, using Eq. (7.30), we obtain:

η = ∆T
−∆V × 100% =

1
2mv

2
2

mgh
× 100% (7.32)

As a challenge, using Eqs. (6.27)–(6.29), show that for a kinetic friction coefficient
µk and slope angle α the efficiency is:

η =
(

1 − µk

tanα

)
× 100% (7.33)
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Figure 7.5: Sketch of a block A sliding along a slope.

7.2.5 Conservation of mechanical energy for a system
Let us now consider the situation when there are multiple point masses i in
a system, each with a potential energy function Vi. Instead of considering
them separately, it is sometimes useful to treat them together, e.g. when the
forces they exert on each other are not well known. In that case we can sum
all kinetic Ti and potential energies Vi of all point masses i from Eq. (7.12) to
obtain:

∑
i

Ti(t1) +
∑

i

Vi(t1) =
∑

i

Ti(t2) +
∑

i

Vi(t2) =
∑

i

Ei,mech = Emech (7.34)
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This is called the equation of ’conservation of mechanical energy’. It is
important to note that the conservation of mechanical energy equation Eq. (7.34)
can only be applied if only conservative forces are acting, and this needs to be
clearly indicated. If there are also non-conservative forces acting, one can use a
more general equation that holds always, the first law of thermodynamics, which
is also called the ’law of (total) energy conservation’, in which the energy does
not only include mechanical energy, but also includes heat energy (see Sec. 7.2.2
and Eq. (7.25)). Note that although the term ’mechanical’ energy is used for
the sum of kinetic energy and potential energy, it also includes potential energy
contributions that are of non-mechanical nature like electrostatic potential
energy.

7.3 Potential energy of specific force fields
The concept of potential energy should only be applied to conservative forces.
These forces can ’store’ energy and return it later. As examples we determine
the potential energy of a gravitational force field and of a spring, which are
both conservative forces.

7.3.1 Gravitational energy

The gravitational force F⃗ ig = mig⃗ is given by Eq. (6.33). If the gravitational
force acts along the y-axis, with g⃗ = −gȷ̂, it follows from Eq. (7.22) that:

F⃗ ig = −migȷ̂ = −∂Vig

∂y
ȷ̂ (7.35)

By integrating this equation over y we obtain the potential energy function
for a mass in a constant gravitational field:

Vig(yi) =
∫ yi

y0
migdy = [migy]yi

y0
= migyi + C (7.36)

The integration constant C = −migy0 can be arbitrarily chosen by selecting
a height y0 at which the potential energy is zero. Its choice does not affect the
dynamics.

7.3.2 Centre of mass and gravity

To determine the gravitational energy of objects that consist of many point
masses mi with position vectors r⃗j , we define the centre of mass (CoM) and
its position vector r⃗G for such a system.
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Definition. Centre of mass vector
The centre-of-mass position vector r⃗G of a system of point masses mi, with
a total mass mtot, is the mass weighted average of all position vectors r⃗i, as
defined by the following equations.

r⃗G ≡ 1
mtot

∑
i

mir⃗i (7.37)

mtot =
∑

i

mi (7.38)

mtotr⃗G =
∑

i

mir⃗i (7.39)

mtotr⃗G =
∫

V
ρmr⃗dV (7.40)

If the object has a mass density ρm (in kg/m3) that is distributed over
a certain volume V , then the last equation gives the volume integral that
determines the centre of mass. By taking the time derivatives of Eq. (7.39) we
obtain useful expressions for the velocity v⃗G and the acceleration vector a⃗G of
the CoM:

mtotv⃗G =
∑

i

miv⃗i (7.41)

mtota⃗G =
∑

i

mia⃗i (7.42)

When the gravitational force F⃗ ig = −migȷ̂ acts on the system, the y
coordinate of every point mass is given by yi = r⃗i · ȷ̂, such that the potential
energy of the whole system of point masses is given by:

Vg,tot =
∑

i

Vig =
∑

i

migyi = g
∑

i

mir⃗i · ȷ̂ = mtotgr⃗G · ȷ̂ = mtotgyG, (7.43)

where we used Eq. (7.39). This equation shows that the gravitational potential
energy of a system of point masses is identical to the potential energy that the
system would have if all point masses would be located at its centre of mass at
a height yG. The centre of mass is therefore also sometimes called the centre
of gravity. We use the subscript G to indicate the centre of mass.

7.3.3 Spring energy
The properties of a spring that is aligned along the positive x-axis and connected
at the origin can be analysed in a similar way. When the spring is displaced
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by a distance xke from its relaxed length, the spring force of the spring on a
mass i (Eq. 6.39) is related to the potential energy:

F⃗ ik(xke) = −kxkeı̂ = −∂Vik

∂x
ı̂ (7.44)

By integrating this equation over x we obtain:

Vik(xke) =
∫ xke

0
kxdx =

[1
2kx

2
]xke

0
= 1

2kx
2
ke (7.45)

If the length of the spring equals its rest length, xke = (xi − L0) = 0, its
potential energy is chosen to be zero by starting the integral from x = 0.

7.3.4 Other conservative forces

Another important example of conservative forces are contact forces. Very
often these forces act on objects that have zero velocity, or have a velocity
perpendicular to the contact force, such that the power from the contace force
is zero (P = F⃗ · v⃗ = 0). In these cases the work done, and therefore the
potential energy of these forces is zero. Thus, contact forces are conservative
forces, since they do not change the total energy in the system.

7.4 Solving problems with work and energy
In this chapter two methods to solve dynamics problems using the concepts of
work and energy have been described: the principle of work and energy and
the concept of energy conservation. Both methods provide one scalar equation,
Eq. (7.11) and Eq. (7.34), that can be used to determine one unknown scalar
variable. For example, this unknown scalar variable can be:

• The magnitude of a final or initial velocity
• A final or initial position coordinate
• The work of a force, which can sometimes also be used to determine the

magnitude of the force

The advantage of energy methods is that they allow solving a dynamics
problems, without requiring one to solve differential equations. Moreover,
under certain conditions (energy conservation) they provide solutions even if
the path between the initial and final state is unknown, making the solutions
also more generally valid.

Solving the problem then proceeds along the following steps:
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1. Sketch the point masses, massless mechanisms, force vectors and con-
straints.

2. Choose and draw a suitable coordinate system (CS).
3. Determine the constraint equations.
4. Determine the kinetic energy function of all point masses in terms of the

velocities.
5. Determine the work or potential energy function for all forces.
6. Determine the change in kinetic energy, change in potential energy, and/or

the work done on masses by forces between the initial and final condition.
7. Write down the equation for the principle of work and energy, or the

conservation of energy equation.
8. Determine the unknown scalar variable by solving the energy equation.

Energy methods only give the scalar values of the positions and velocity and
not their directions. For instance, a mass with velocity v has the same kinetic
energy as a mass with velocity −v, such that the direction of the velocity
cannot be determined from the kinetic energy. Similarly, if the potential energy
of a spring is calculated by energy methods, it cannot be determined if it is
compressed or extended. Careful evaluation of the problem is needed, based on
considerations other than energy, to determine those directions and to select
the right solution.
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7.5 Summary
In this chapter we have introduced the concepts of work, kinetic energy and
potential energy and shown how they can provide a simpler route for solving
certain problems in dynamics. The law of conservation of mechanical energy
provides insight in the source of forces, and shows that if work is done, this
drains other energy resources. We summarise the most important concepts
and equations from this chapter:

• Work and energy
– Work: W12 =

∫ s2
s1
Ftds =

∫ r⃗2
r⃗1

F⃗ · dr⃗

– Kinetic energy: T = 1
2mv

2

– Principle of work and energy: W12 = ∆T
• Conservation of mechanical energy

– A force F⃗ c(r⃗) is conservative if it does not perform work along a
closed path.

– For a system on which only conservative forces act, the mechanical
energy is conserved: Emech = T + V = constant.

– The change in potential energy is the negative of the work done by
a conservative force: ∆V = −W12.

– F⃗ c = −∇⃗V
– ∆T + ∆V + ∆Q+ ∆Wext = 0
– Power: P = dW

dt = F⃗ · v⃗

– Efficiency η = Ein
Eout

× 100% = Pin
Pout

× 100%
• Potential energy expressions

– Vg = mgy + C
– Vk = 1

2kx
2

– Normal contact forces are conservative.
– Tangential (kinetic friction) contact forces are non-conservative.

Other forces that are tangential to the velocity vector (e.g. force of
a damper) are usually also non-conservative.

– The centre of mass and gravity: r⃗G = 1
m

∑
imir⃗i =

∫
V r⃗ρmdV
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8 Impulse and Momentum
In this chapter we will introduce the concepts of impulse and momentum, and
show how they can be used to simplify the analysis of the kinetics of point
masses. These concepts are particularly useful to analyse changes in velocity
during short events, like collisions, where the position of the point masses are
approximately constant.

8.1 Principle of impulse and momentum
We first define the concepts impulse and momentum, then introduce the
principle of impulse and momentum and finally present the derivation of it.
These concepts are also illustrated in Fig. 8.1.

-5 0 5 10 15 20 25 30

0

2

4

6

Figure 8.1: Impulse, momentum and the principle of impulse and momentum.

Concept. Impulse
The impulse vector J⃗ i,12 is defined as the time integral of the sum of all forces
j acting on a mass mi over a specific time interval t1 − t2:

J⃗ i,12 ≡
∑

j

∫ t2

t1
F⃗ ijdt (8.1)

Impulse has N·s as unit.
Concept. Momentum
The momentum vector p⃗i is defined as the product of a mass and its velocity
vector:
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p⃗i ≡ miv⃗i (8.2)

The unit of momentum is kg·m/s.

Concept. Principle of impulse and momentum
The impulse acting on a mass mi equals its change in momentum.

p⃗i(t1) + J⃗ i,12 = p⃗i(t2) (8.3)

Since this is a vector equation, it can be projected on the three coordinate
axes to obtain three scalar equations along each of the axes. The principle of
impulse and momentum is mainly useful to calculate velocity changes if the
impulse is known.

Derivation. Principle of impulse and momentum
The principle of impulse and momentum can be derived by integrating Newton’s
second law over time:

∑
j

∫ t2

t1
F⃗ ijdt =

∫ t2

t1
mia⃗idt (8.4)

The integral on the right can be evaluated to obtain:

∑
j

∫ t2

t1
F⃗ ijdt =

∫ t2

t1
m

dv⃗i

dt dt = mv⃗i(t2) −mv⃗i(t1) (8.5)

From Eq. (8.1) and Eq. (8.2) it follows that this equation is identical to Eq. (8.3).

8.2 Analysing problems with impulse
Although the principle of impulse and momentum is generally valid, it is
particularly useful for analysing the dynamics under these conditions:

1. The time interval ∆t = t2 − t1 during which a force acts on a point mass
is very short.

2. The force F⃗ ij acting on the point mass i is very high compared to all
other forces.

When these two conditions hold, e.g. during the short instance when a ball
is hit by a baseball bat, we can apply 2 assumptions:
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1. The distance the point mass travels during the short time ∆t is approxi-
mately zero.

2. The impulse of all other forces can be neglected because they are much
smaller than the force F⃗ ij .

As a consequence of point 1, we retain information on the position of the
mass without having to determine (integrate) the motion during the application
of the impulse because the mass does not move. As a consequence of point 2,
we can determine the impulse by integrating only force F⃗ ij during the time
interval ∆t and neglect all other forces.

Often segmented motion (see Sec. 5.10) is used to analyse problems with
impulse and momentum. The motion in the segments before and after the
impulse is analysed with the methods from the previous chapters, and only
the short segment where the large force is exerted is analysed with impulse
and momentum.

8.3 Impulse and momentum of a system
To extend the principle of impulse and momentum to a system of point masses,
it is convenient to simplify the expression of the total momentum of such a
system, by using its centre of mass.

Concept. Momentum of a system of point masses
The total momentum of a system of point masses

∑
i p⃗i is identical to the

momentum p⃗G of a single point mass mtot = ∑
imi that moves along with the

centre of mass of the system:

∑
i

p⃗i =
∑

i

miv⃗i = d
dt
∑

i

mir⃗i = d
dtmtotr⃗G = mtotv⃗G = p⃗G (8.6)

Here Eq. (7.39) was used for the CoM: ∑imir⃗i = mtotr⃗G. Let us now analyse
the forces that generate impulse on the system in more detail. We can subdivide
them into two groups, as shown in Fig. 8.2: the external forces F⃗ i,ext acting on
the masses in the system and the internal forces F⃗ ij,int that the point masses
generate on each other. For this second group of forces, we know from Newton’s
third law, that the force vector of mass mj on mass mi is equal and opposite
to the force vector of mi on mass mj : F⃗ ij,int = −F⃗ ji,int.

Derivation. We are now going to derive that the sum of all internal force
vectors that act between point masses in a system is zero, as can intuitively be
understood from Fig. 8.2.
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Figure 8.2: The internal and external forces on a system of point masses.

To determine the total impulse on a system, we sum first over all forces
j that act on a point mass to determine the total force on that point mass:
F⃗ i,tot = ∑

j ̸=i F⃗ ij,int + F⃗ i,ext. Then we sum over all point masses i in the
system: F⃗ sys,tot = ∑

i F⃗ i,tot. Finally we integrate over time and obtain the
total impulse on the system:

J⃗ sys,tot,12 =
∫ t2

t1

∑
i

F⃗ i,ext +
∑
j ̸=i

F⃗ ij,int

 dt (8.7)

Now we note that the sum ∑
i

∑
j ̸=i F⃗ ij,int includes for each term ij also a

term ji with the inverted indices. Since we know from Newton’s third law that
F⃗ ij,int + F⃗ ji,int = 0⃗, the sum of internal forces in a system is always zero:∑

i,j ̸=i

F⃗ ij,int = 0⃗ (8.8)

Therefore, only the impulse due to external forces contributes to the change
of the total momentum. By summing Eq. (8.3) over all particles i in a system
we obtain:
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Concept. Principle of impulse and momentum for a system
The change of the total momentum of a system of point masses, during the time
interval between t1 and t2 is identical to the sum of the impulses

∑
i J⃗ i,ext,12 of

all acting external forces.

∑
i

miv⃗i(t1) +
∑

i

∫ t2

t1
F⃗ i,extdt =

∑
i

miv⃗i(t2) (8.9)

p⃗G,1 +
∑

i

J⃗ i,ext,12 = p⃗G,2, (8.10)

where we used Eq. (8.1) and Eq. (8.6) to obtain an expression for the effect
of an impulse on the momentum of the centre of mass of a system of point
masses. We also used subscripts 1 and 2 to indicate the momentum of the
centre of mass before and after the impulse: p⃗G,1 = p⃗G(t1) = ∑

imiv⃗i(t1).
We can now derive1 Euler’s first law by setting t2 = t1 + dt and taking the

time derivative of Eq. (8.9):

lim
dt→0

1
dt
∑

i

∫ t1+dt

t1
F⃗ i,extdt = lim

dt→0

∑
i

mi
v⃗i(t1 + dt) − v⃗i(t1)

dt (8.11)∑
i

F⃗ i,ext =
∑

i

mia⃗i(t1) (8.12)

Where we used the definition of the derivative. By using the time derivative of
Eq. (8.6) we find Euler’s first law.

Concept. Euler’s first law
Euler’s first law states that the total mass mtot times the acceleration a⃗G of
the CoM of a system of point masses equals the sum of external forces acting
on the system:

∑
i

F⃗ i,ext = mtota⃗G (8.13)

This is an important equation, since it states that the acceleration of the CoM
of a system of point masses only depends on the sum of the external forces
that act on it. Interestingly, the points of action of the forces do not matter,
and also internal forces can fully be neglected, which can significantly simplify
analysis.

1We note that Euler’s first law, Eq. (8.13) can also be derived by adding Newton’s second
law for all point masses (

∑
ij

F⃗ ij =
∑

i
mia⃗i), and using Eqs. (8.8) and (7.42).
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8.4 Law of conservation of momentum
If there are no external forces acting on the system, and no masses leave or
enter the system, the system is called a closed system. Since J⃗ i,ext,12 = 0⃗ in
such a system, it follows from Eq. 8.10 that we have:

Concept. Momentum conservation
The total momentum of a closed system is conserved. This means that the total
momentum is constant, equal to the momentum of the centre of mass p⃗G, and
does not change in time.

p⃗G =
∑

i

p⃗i = constant (8.14)

Because p⃗G = mtotv⃗G, momentum conservation also implies that the velocity
v⃗G of the centre of mass of the system is constant. Since Eq. (8.14) is a vector
equation it can be applied along each of the coordinate axes:

∑
i

pi,x = constant (8.15)∑
i

pi,y = constant (8.16)∑
i

pi,z = constant (8.17)

Note that if external forces only operate along one of the coordinate axes,
conservation of momentum along that axis does not hold anymore, but along
the other two axes momentum will still be conserved.

8.5 Collisions
An important application of the law of momentum conservation is the dynamic
analysis of collisions between two objects, like the collision between two billiard
balls (see Fig. 8.3). We note that methods from previous chapters often cannot
be easily applied because the forces and accelerations during a collision are
often not accurately known. This inaccuracy is caused by the fast dynamics
and high forces during collisions, that are hard to measure. During such a
short collision, other forces can usually be neglected, because they are much
smaller than the very high collision forces that provide the high accelerations
which change the velocity vectors in a short time. As a consequence of the
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absence of substantial external forces, the law of conservation of momentum
Eq. (8.14) holds for the system containing both balls. We will now discuss step
by step how the dynamics of the collision of two balls can be analysed using
momentum conservation and the CoM-frame.

8.5.1 Plane of contact and line of impact
Let us consider two smooth spherical balls A, B with identical radius, with
masses mA, mB and velocity vectors v⃗A and v⃗B that move in the xy-plane
and collide, as shown in Fig. 8.3. To simplify the analysis we assume that
friction forces along the y-axis can be neglected during the collision (µ ≈ 0),
such that only normal forces act. The motion of the balls consists of 3 phases:
1. before the collision at time t0, 2. during the collision at time t1 and 3. after
the collision at time t2.

We can then choose our Cartesian coordinate system such that the origin O
is at the point of contact. The y-axis is chosen to be tangential to the surface
of the circular disks at the point where they make contact, this surface is called
the plane of contact. The x-axis is chosen perpendicular to the plane of contact
and is called the line of impact. The balls A and B and velocity vectors v⃗A,
v⃗B can be drawn as shown in Fig. 8.3).

The analysis of collisions becomes easier if it is performed in a CoM-frame.

Concept. CoM-frame
A CoM-frame is a reference frame that is chosen such that the velocity and
acceleration of the CoM of the objects is zero.

The analysis process then proceeds along the following steps:

1. Determining the velocity vector v⃗G of the CoM.
2. Transforming to the CoM-frame by subtracting the velocity of the centre

of mass v⃗G from all velocity vectors.
3. Analysing the system in the centre of mass system.
4. Transforming back to the original system by adding v⃗G to all velocity

vectors.

8.5.2 Transformation to the CoM-frame
Since there are no external forces acting on the balls (we neglect gravity), it is
a closed system in which momentum conservation holds, such that the velocity
v⃗G of the centre of mass (CoM) is constant. The analysis can be significantly
simplified by choosing a coordinate system x′, y′, z′ that moves along with
the CoM-frame, such that, measured in these coordinates, the velocity of the
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Figure 8.3: Original reference frame: motion of two balls at time t0 before the collision, time
t1 during the collision and time t2 after the collision. In this example we have
v⃗A0 = (3.5ı̂ − 1.5ȷ̂)m/s and v⃗B0 = (−0.5ı̂ + 2.5ȷ̂)m/s.
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Figure 8.4: CoM-frame: now v⃗′
G = 0⃗, so mAv⃗′

A + mB v⃗′
B = 0⃗ at all times.
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Figure 8.5: Example of a coordinate transformation to a moving reference frame x′, y′ with
origin A. Instead of vector r⃗B , position vector r⃗B/A, with coordinates x′

B , y′
B is

used to analyse the dynamics. To simplify the analysis of collisions, we choose
the velocity of boat A to be equal to the constant velocity (a⃗A = 0⃗) of the CoM
of the system of point masses (v⃗A = v⃗G) and use coordinates x′ and y′.

CoM is zero v⃗′
G = 0⃗. A transformation to a different coordinate system like

shown in Fig. 8.5 was already discussed in Eq. (6.30) and is often useful for
simplifying the analysis of problems, and therefore an important technique
to become familiar with (see Sec. 6.12). The position and velocity vectors in
the CoM-frame are found by first determining v⃗G (using Eq. (7.41)) and then
calculating the velocities v⃗′ in the CoM-frame by subtracting v⃗G:

v⃗G = mAv⃗A +mBv⃗B

mA +mB
(8.18)

v⃗′
A0 = v⃗A0 − v⃗G (8.19)

v⃗′
B0 = v⃗B0 − v⃗G (8.20)
v⃗′

G = v⃗G − v⃗G = 0⃗ (8.21)

The result of this transformation to the CoM-frame can be seen in Fig. 8.4.
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8.5.3 Analysing the collision in the CoM-frame
First we note that in the CoM-frame the velocity vectors of both balls are
always parallel, pointing in opposite directions, as can be derived from v⃗′

G = 0⃗:

v⃗′
G = mAv⃗′

A +mBv⃗′
B

mA +mB
= 0⃗ (8.22)

mAv⃗′
A +mBv⃗′

B = 0⃗ (8.23)
v⃗′

B = −mA

mB
v⃗′

A (8.24)

Now we can analyse the collision in the CoM-frame in three steps that are
illustrated in Figs. 8.4):

1. Before the impact, at time t = t0 the velocity vectors v⃗′
A0, v⃗′

B0 point
toward each other.

2. During the impact both balls exert forces F⃗ AB = −F⃗ BA = FAB ı̂ on each
other along the x-axis (because there is no friction) and slightly deform
at the contact point. At the time of maximal deformation t = t1, the
velocity x-components of both balls are zero2 v′

A1,x = v′
B1,x = 0.

3. After the collision, the energy that was stored in the deformation is
converted back to kinetic energy, at t = t2 the velocity vectors v⃗′

A2, v⃗′
B2

point away from each other.

The subscripts 0, 1, 2 are used to designate the velocities of the balls at
times t0, t1 and t2. To analyse the change in momentum during the impact,
we apply the principle of impulse and momentum Eq. (8.9) along the y and x
axes. Because the balls are smooth and frictionless, there are no forces in the
y-direction tangential to the plane of contact, such that all forces act along
the line of impact and are parallel to the x-axis. Since the forces and impulses
along the y-axis are zero, the momentum and velocity components of both
balls are conserved ∆p′

y = m∆v′
y = 0 along that axis:

v′
A2,y = v′

A0,y (8.25)
v′

B2,y = v′
B0,y (8.26)

Along the x-axis it is more difficult to analyse the collision, since the contact
forces along this axis are unknown, and can depend on the material properties
of the balls and other conditions that affect the collision. These properties

2For a collision to occur in the CoM-frame, the velocity component along the line of impact
has to change sign. Therefore, there has to exist a time t = t1 at which the x component
of velocity is zero, and because v⃗′

G = 0⃗ this occurs at the same time for both balls.
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are conveniently captured by the coefficient of restitution e, that relates the
velocity of the ball in the CoM at time t2 to that at t0:

v′
A2,x = −ev′

A0,x (8.27)
v′

B2,x = −ev′
B0,x (8.28)

Note that these equations follow from momentum conservation, ensuring
that Eq. (8.23) still holds after the collision. The coefficient e, that can have
any value between 0 and 1, is closely related to the energy loss during the
collision as we will discuss later. Combining Eqs. (8.25)–(8.28) we have:

v⃗′
A2 = −ev′

A0,xı̂ + v′
A0,y ȷ̂ (8.29)

v⃗′
B2 = −ev′

B0,xı̂ + v′
B0,y ȷ̂ (8.30)

Finally, we transform back to the original coordinate system (Fig. 8.3 at t2)
by adding the CoM velocity v⃗G to all velocity vectors:

v⃗A2 = v⃗′
A2 + v⃗G (8.31)

v⃗B2 = v⃗′
B2 + v⃗G (8.32)

The whole outlined procedure can also be captured in a single set of equations:

v⃗A2 = [−e(vA0,x − vG,x) + vG,x] ı̂ + vA0,y ȷ̂ (8.33)
v⃗B2 = [−e(vB0,x − vG,x) + vG,x] ı̂ + vB0,y ȷ̂ (8.34)

Thus we have analysed the dynamics of collisions with oblique impact (impact
at an angle) by only using the conservation of momentum principle, without
knowing any details about the forces, except the restitution coefficient e. In
the special case that the balls both move parallel to the line of impact (x-axis)
they experience central impact, where all previous equations still hold with all
velocity components along the y-axis being zero (vA0,y = vB0,y = 0). Note that
since we are dealing with spherical balls, the centres of mass of both objects
always coincide with the line of impact. For non-circular objects, this is not
always the case, and the impact can become eccentric such that the objects
can start rotating after the collision. Also if the surface of the objects is not
smooth, friction forces might generate rotations under oblique impact. Impact
with rotations will be discussed in chapter Ch. 12.
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S Example 8.1 Let us analyse a numerical example of the situation sketched in
Fig. 8.3 and Fig. 8.4 with e = 0.6, mA = 3 kg and mB = 5 kg. First we determine
the velocity vector v⃗G of the centre of mass:

v⃗A0 = [3.5ı̂ − 1.5ȷ̂] m/s (8.35)
v⃗B0 = [−0.5ı̂ + 2.5ȷ̂] m/s (8.36)

v⃗G =
[

3 · 3.5 + 5 · −0.5
3 + 5 ı̂ + 3 · −1.5 + 5 · 2.5

3 + 5 ȷ̂

]
m/s (8.37)

= [1ı̂ + 1ȷ̂] m/s (8.38)

Then we transform to the centre of mass system:

v⃗′
A0 = v⃗A0 − v⃗G = [(3.5 − 1)ı̂ + (−1.5 − 1)ȷ̂] m/s (8.39)

= [2.5ı̂ − 2.5ȷ̂] m/s (8.40)
v⃗′

B0 = v⃗B0 − v⃗G = [(−0.5 − 1)ı̂ + (2.5 − 1)ȷ̂] m/s (8.41)
= [−1.5ı̂ + 1.5ȷ̂] m/s (8.42)

We multiply the x-components by −e = −0.6 to obtain the velocities in the
CoM-frame after the collision:

v⃗′
A2 = [−e · 2.5ı̂ − 2.5ȷ̂] m/s = [−1.5ı̂ − 2.5ȷ̂] m/s (8.43)

v⃗′
B2 = [−e · −1.5ı̂ + 1.5ȷ̂] m/s = [0.9ı̂ + 1.5ȷ̂] m/s (8.44)

Finally we add again the centre of mass velocity vector to obtain the velocities in
the original system after the impact:

v⃗A2 = v⃗′
A2 + v⃗G = [(−1.5 + 1)ı̂ + (−2.5 + 1)ȷ̂] m/s (8.45)

= [−0.5ı̂ − 1.5ȷ̂] m/s (8.46)
v⃗B2 = v⃗′

B2 + v⃗G = [(0.9 + 1)ı̂ + (1.5 + 1)ȷ̂] m/s (8.47)
= [1.9ı̂ + 2.5ȷ̂] m/s (8.48)

As an excercise, you can check if there is momentum conservation during this
collision.

8.5.4 Coefficient of restitution

The coefficient of restitution e, that was introduced to capture the effect of the
forces during impact, can be used as a measure for the kinetic energy that is
lost during the collision in the CoM-frame. To analyse this energy loss, we use
that the kinetic energy of ball A is given by:
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T ′
A = 1

2mA(v′
A,x

2 + v′
A,y

2) (8.49)

If we only consider the kinetic energy T ′
A,x contributed by the x-component

of the velocity vector, we find, using Eq. (8.27) that the kinetic energy after
the collision is:

T ′
A2,x = 1

2mAv
′
A2,x

2 = 1
2mAe

2v′
A0,x

2 = e2T ′
A0,x (8.50)

And the same equation holds for ball B. So, the x-axis kinetic energy T ′
A,x

reduces by a factor e2 during the collision, while the y-axis contribution remains
constant T ′

A2,y = T ′
A0,y. The largest energy reduction occurs for e = 0, which

is called a plastic or perfectly inelastic collision. Kinetic energy is conserved
(T ′

A2,x = T ′
A0,x) for e = 1, which is called an elastic collision. The restitution

coefficient can have any value between 0 and 1 (0 ≤ e ≤ 1). Thus the coefficient
of restitution provides information on energy conservation during collisions.

8.6 Collision against a wall
A special case is if a ball A collides against a wall. In that case there is normally
no momentum conservation, because the wall is connected to the ground, which
can exert external forces on the system. Let us consider a reference frame in
which the wall has zero velocity v⃗W = 0⃗. Because the mass of the wall mW

is very large compared to the mass of the ball (mW ≫ mA) and v⃗W = 0⃗ the
chosen reference frame is a CoM-frame as can be shown as follows:

v⃗G = mAv⃗A +mW v⃗W

mA +mW
≈ mAv⃗A

mW
≈ 0⃗ (8.51)

This shows that ball A is in a CoM-frame and therefore collides against the
wall just like in Figs. 8.4. From Eq. (8.29), we find that the final velocity of ball
A with initial velocity v⃗A0, after colliding with a wall parallel to the y-axis is:

v⃗A2 = −evA0,xı̂ + vA0,y ȷ̂ (8.52)

8.7 Summary
In this chapter the concepts of impulse and momentum have been introduced.
An impulse is the time integral of a force vector and is related to the momentum
change of a point mass during a certain time interval. The change in momentum
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equals the impulse generated by external forces, this also holds for systems
of many point masses. If the impulse, or sum of external forces is zero,
the momentum of the system does not change and the law of momentum
conservation applies. These principles can be applied to determine velocity
changes e.g. during collisions. We summarise the most important concepts
and equations from this chapter:

• Impulse and momentum
– Impulse vector: J⃗12 = ∑

j

∫ t2
t1

F⃗ ijdt
– Momentum vector: p⃗i = miv⃗i

– Principle of impulse and momentum: p⃗i(t1) + J⃗12 = p⃗i(t2)
– Important assumptions during impulse: 1. Force is very high and

2. time duration of impulse is very short. This allows assuming: 1.
point mass is not moving during impulse. 2. impulse of other forces
can be neglected during impulse.

– Use segmented motion to analyse momentum and impulse.
• Impulse and momentum of a system of point masses

– Impulse of CoM: p⃗G = mtotv⃗G = ∑
i p⃗i

– The sum of all internal forces in a system is zero: ∑i,j ̸=i F⃗ ij,int = 0⃗
– Principle of impulse and momentum for a system:

p⃗G(t1) +
∑

i

J⃗ i,ext,12 = p⃗G(t2)

– Euler’s first law: ∑i F⃗ i,ext = mtota⃗G

• Momentum conservation
– Law of conservation of momentum: If J⃗ i,ext,12 = 0⃗, then p⃗G(t1) =

p⃗G(t2).
– And: v⃗G = constant.

• Collisions
– Plane of contact, line of impact, draw CS.
– Method for analysing collisions: determine v⃗G, transform to the

CoM-frame, v′
x2 = −ev′

x0 and v′
y2 = v′

y0, transform back to original
system.

– Coefficient of restitution e is a measure of kinetic energy loss in the
CoM-frame: e2 = T ′

A2,x/T
′
A0,x

– Collision against a wall: v⃗A2 = −evA0,xı̂ + vA0,y ȷ̂
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Part III

Rigid Body Dynamics
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9 Kinematics of Rigid Bodies

9.1 Rigid bodies
After having discussed dynamics of point masses, we now turn to the analysis
of rigid bodies. In this textbook we focus on the planar kinematics of rigid
bodies in the xy-plane. That means that the point masses in the rigid body all
move in the xy-plane with z = 0. However, we note that much of the presented
theory is also applicable in 3D and unless explicitly indicated, e.g. with a
subscript 2D, the equations in this textbook are also valid in 3D.

Concept. Rigid body
A rigid body is an object that is undeformable.

Every point mass mi in the rigid body can be identified by a position vector
r⃗i. Since the body is rigid and undeformable, the distance between every two
point masses in the rigid body is constant which relates their dynamics by the
following relative constraint equation (see Sec. 5.2.4):

|⃗ri/j | = |⃗ri − r⃗j | = constant (9.1)

In the next section we discuss how the orientation and position of a rigid body
can be specified.

9.2 Orientation and position
The first step in the kinematic analysis of a rigid body is to have a unique
description of its position and orientation. In planar kinematics, we fully
determine the position of a rigid body by fixing the position vectors of 2 points
in the rigid body that can be freely chosen, like points A and B of the rectangle
in Fig. 9.1.

If we know position vectors r⃗A and r⃗B the position and orientation of the
rigid body is fully determined. This requires four coordinates: xA, yA, xB and
yB. However, because we know the distance between the points, we can use
constraint equation 9.1 to reduce this to 3 coordinates, namely xA, yA and
ϕB/A, where ϕB/A is the angle the relative position vector r⃗B/A makes with
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Figure 9.1: The orientation of a rigid body in the 2D xy-plane can uniquely be described by
a position vector r⃗A and an angle ϕB/A, which is the angle r⃗B/A makes with the
x-axis.
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the x-axis1. With xA, yA we can determine r⃗A, and with ϕB/A and knowledge
of the distance |⃗rB/A| we can determine r⃗B/A:

r⃗A,2D = xAı̂ + yAȷ̂ (9.2)
r⃗B/A,2D = |⃗rB/A| cosϕB/Aı̂ + |⃗rB/A| sinϕB/Aȷ̂ (9.3)

Now we determine r⃗B from the 3 coordinates by adding these two vectors as
shown in Fig. 9.1.

r⃗B = r⃗A + r⃗B/A (9.4)
r⃗B,2D = (xA + |⃗rB/A| cosϕB/A)ı̂ + (yA + |⃗rB/A| sinϕB/A)ȷ̂ (9.5)

9.3 Velocities in a rigid body
Derivation. Velocity of a point B in a rigid body

By taking the time derivative of the position vector r⃗B in Eq. (9.4), we can
determine the velocity vector of point B in the rigid body as follows:

v⃗B,2D = d
dt r⃗B = d

dt r⃗A + d
dt r⃗B/A (9.6)

= v⃗A + ϕ̇B/A |⃗rB/A|
(
− sinϕB/Aı̂ + cosϕB/Aȷ̂

)
(9.7)

= v⃗A + ϕ̇B/A |⃗rB/A|ϕ̂A (9.8)

In the last step we used Eq. (5.71) to replace the terms in brackets by ϕ̂A,
which represents the unit vector at point B of a cylindrical coordinate system
with origin A, which is why we add the subscript A to the unit vector. The
velocity of point B in Eq. (9.8) can be split up in two parts: a vector v⃗B,trans
related to translation and a vector v⃗B,rot related to rotation:

v⃗B = v⃗B,trans + v⃗B,rot (9.9)
v⃗B,trans = v⃗A (9.10)

v⃗B,rot,2D = ϕ̇B/A |⃗rB/A|ϕ̂A (9.11)

In Figs. 9.2, 9.3 and 9.4 we show these three velocity vectors v⃗B,trans, v⃗B,rot
and v⃗B. Let us first discuss two special types of rigid body motion: pure
translation and pure rotation.

1Note that with this definition ϕB/A ̸= ϕB − ϕA in contrast to the definition in Sec. 3.2.3.
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Figure 9.2: Pure translation of a rigid body: ϕB/A = constant .
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Figure 9.3: Pure rotation of a rigid body: r⃗A = constant.
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Figure 9.4: General motion of a rigid body: a combination of rotation and translation.

9.3.1 Pure translation

When the angle ϕB/A is kept constant, like in Fig. 9.2, all points in the rigid
body move with the same velocity vector:

v⃗B = v⃗B,trans = v⃗A (9.12)

This type of motion is called pure translation. The rotational component of
velocity is zero, as follows from Eq. (9.11) and ϕ̇B/A=0. It is important to note
that pure translation can happen along any path curve r⃗A(s), even a circular
path. The word translation thus only means that the shape of the path is
identical for all points in the rigid body because ϕB/A is constant.

9.3.2 Pure rotation

When the position vector of a point in the rigid body is constant in time, and
all other points make circular paths around it, e.g. because it rotates around
an axle at that position, the motion of the rigid body is a pure rotation. We
choose point A to be the point with constant position vector r⃗A, as shown in
Fig. 9.3. Then according to Eq. (9.11) the velocity vector of point B is given
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by:
v⃗B = v⃗B,rot,2D = ϕ̇B/A |⃗rB/A|ϕ̂A (9.13)

To facilitate the analysis of rotations and generalise it to 3D, we now define
the angular velocity ω and angular velocity vector ω⃗.

9.3.3 Angular velocity of a rigid body

The kinematics of a rigid body is closely linked to the time derivative ϕ̇B/A(t),
which is defined as its angular velocity.

Definition. Angular velocity of a rigid body
The time derivative ϕ̇B/A is the angular velocity ω of the rigid body:

ω ≡ ϕ̇B/A (9.14)

The unit of angular velocity is rad/s. Interestingly, the angular velocity ω of
the rigid body is independent of the choice of the points A and B on the rigid
body and is therefore a general property of a rigid body as can be shown as
follows.

Concept. Independency of angular velocity
The angular velocity ω of a rigid body is independent of the choice of points A
and B on the rigid body.

Derivation. This can be proven by drawing two relative position vectors
between points A − D on the rigid body, r⃗B/A and r⃗D/C . Then the angular
velocities of these straight lines ϕ̇B/A and ϕ̇D/C has to be the same, otherwise
the rigid body would deform. This can be demonstrated by rotating the rigid
body by a full 360 ◦ circle: then all points need to make a circle in the same
time and therefore have the same angular velocity.

Note that the angular velocity ω of a rigid body is different from the orbital
angular velocity ωo of a single point mass around an axis. Orbital angular
velocity can depend on the position of the rotation axis or origin (Sec. 5.9.4).
To distinguish angular velocity of a rigid body from orbital angular velocity, the
angular velocity of a rigid body is therefore sometimes called its spin angular
velocity.
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9.3.4 Angular velocity vector

It can be seen in Fig. 9.3 that for pure rotation all points in the rigid body
move in circular paths around point A. The velocity vector v⃗B and all other
points in the rigid body, lie in the plane of those circles. To describe that plane
we define the angular velocity vector to be perpendicular to that plane.

Concept. Angular velocity vector
The angular velocity vector ω⃗ of a rigid body is a vector with magnitude
|ω| = |ϕ̇B/A| and a direction that is perpendicular to the plane in which the
rigid body rotates. Its direction can be determined using the right hand rule.

The angular velocity vector (unit rad/s) of a rigid body that rotates in the
xy plane is:

ω⃗2D = ωk̂ = ϕ̇B/Ak̂ (9.15)

The direction of the vector can be determined using the right-hand rule by
curving the fingers of your right-hand around the curved arrow in Fig. 9.3,
which indicates the direction of rotational motion. Then your thumb points in
the k̂ direction, in agreement with Eq. (9.15).

9.3.5 Determining velocities with the angular velocity vector

From Fig. 9.3 we see that the velocity vector v⃗B,rot lies in the plane in which the
rigid body moves. It is therefore perpendicular to ω⃗. It is also perpendicular
to the vector r⃗B/A, since this vector is the radius of the circular motion. To
obtain a vector that is perpendicular to two other vectors we take the cross
product of these vectors:

Concept. Rotational velocity equation
The rotational velocity of a point B in a rigid body is given by:

v⃗B,rot = ω⃗ × r⃗B/A (9.16)

For the 2D case, where ω⃗2D = ϕ̇B/Ak̂ and r⃗B/A = |⃗rB/A|ρ̂A, it is straightfor-
ward to check the correctness of this equation by comparison with Eq. (9.11)
and by using that k̂ × ρ̂A = ϕ̂A as follows from the right-hand rule.

9.3.6 General motion

In general, as shown in Fig. 9.4, the motion of a point in a rigid body is a sum
of translational and rotational motion. By combining Eqs. (9.9) and (9.16) we
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obtain the most general equation and important equation for the velocity in a
rigid body:

v⃗B = v⃗A + ω⃗ × r⃗B/A (9.17)

We note that this equation is valid in 3D and for any choice of the points A
and B as long as both points move along with the rigid body. However, a smart
choice of point A can simplify the analysis.

9.4 Angular acceleration of a rigid body
After having determined the velocity vector of a point in a rigid body, it is
now of interest to also determine the acceleration vector of the points in the
rigid body. We take the time derivative of Eq. (9.17), and use the product rule
on the vector cross product to determine the acceleration vector a⃗B in a rigid
body.

d
dt v⃗B = d

dt v⃗A + dω⃗

dt × r⃗B/A + ω⃗ ×
dr⃗B/A

dt (9.18)

a⃗B = a⃗A + α⃗ × r⃗B/A + ω⃗ × v⃗B,rot (9.19)

In this derivation we used that dr⃗B/A

dt = v⃗B,rot as follows from Eq. (9.6) and
Eq. (9.9), and defined the angular acceleration vector α⃗ of the rigid body as
follows.

Definition. Angular acceleration vector
The angular acceleration vector α⃗ of a rigid body is the time derivative of its
angular velocity vector.

α⃗ ≡ dω⃗

dt (9.20)

We note that in planar kinematics this expression can be simplified:

α⃗2D = ω̇k̂ = αk̂ (9.21)

The unit of angular acceleration is rad/s2. We now substitute Eq. (9.16) in
Eq. (9.19) and obtain the general expression for the acceleration.
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Figure 9.5: Acceleration components in a rigid body. The acceleration vector a⃗B is the
sum of translation a⃗B,trans = a⃗A, angular a⃗B,ang = α⃗ × r⃗B/A and centripetal
a⃗B,cptl = −ω2r⃗B/A acceleration vectors.
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Concept. Acceleration vector in a rigid body
The general vector expression for the acceleration vector of a point B in a rigid
body that has translational and rotational acceleration:

a⃗B = a⃗A + α⃗ × r⃗B/A + ω⃗ × (ω⃗ × r⃗B/A) (9.22)
This equation shows that the acceleration of a point B on a rigid body

consists of three contributions that are shown in Fig. 9.5.

1. The translational acceleration a⃗B,trans = a⃗A due to the acceleration of
point A.

2. The angular acceleration a⃗B,ang = α⃗ × r⃗B/A due to the angular accelera-
tion vector.

3. The centripetal acceleration a⃗B,cptl = ω⃗ × (ω⃗ × r⃗B/A), due to the angular
velocity vector ω⃗.

Acceleration in planar kinematics

In planar kinematics we can simplify the expressions for the angular acceleration
somewhat. By using that α⃗ = αk̂ we find:

a⃗B,ang,2D = α⃗ × r⃗B/A = αk̂ × |⃗rB/A|ρ̂A = α |⃗rB/A|ϕ̂A (9.23)
The vector ω⃗ is always perpendicular to the xy-plane, such that ω⃗ × r⃗B/A =

ω |⃗rB/A|ϕ̂A and:

a⃗B,cptl,2D = ω⃗ × (ω⃗ × r⃗B/A) = −ω2r⃗B/A (9.24)
This shows that the centripetal component of acceleration always points

towards point A, the centre of rotation. Note that a similar result for the
centripetal acceleration term was obtained in Eq. (5.81). Combining the three
terms we obtain for the planar kinematics of a rigid body the following equation:

a⃗B,2D = a⃗A + α |⃗rB/A|ϕ̂ − ω2r⃗B/A (9.25)
For completeness we repeat the most important equations for analysing the

kinematics of a rigid body:

v⃗B = v⃗A + ω⃗ × r⃗B/A (9.26)

a⃗B = a⃗A + α⃗ × r⃗B/A + ω⃗ ×
(
ω⃗ × r⃗B/A

)
(9.27)

v⃗B,2D = v⃗A + ω |⃗rB/A|ϕ̂A (9.28)
a⃗B,2D = a⃗A + α |⃗rB/A|ϕ̂A − ω2r⃗B/A (9.29)
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S Example 9.1 As an example of the kinematic methods for rigid bodies, consider
the square F in Fig. 9.6. The CoM of the square falls with a velocity v⃗G = −1 ȷ̂ m/s
and acceleration a⃗G = −1 ȷ̂ m/s2. At the same time the angular velocity and
acceleration of the square are ω⃗ = 1 k̂ rad/s and α⃗ = 1 k̂ rad/s2. The question is:
Determine the velocity and acceleration vectors of point B.

To solve this problem, we can use Eqs. (9.64) and (9.65). Instead of point A
we choose point G as reference point, because we have a lot of information on G.
Then we determine the vector r⃗B/G = (3.5ı̂ − 0.5ȷ̂)m from the figure. Now we use
Eq. (9.64) to obtain:

v⃗B = [−1ȷ̂ + 1k̂ × (3.5ı̂ − 0.5ȷ̂)] m/s (9.30)
= (0.5ı̂ + 2.5ȷ̂) m/s (9.31)

And using Eq. (9.65) we obtain:

a⃗B = [−1ȷ̂ + 1k̂ × (3.5ı̂ − 0.5ȷ̂) − 12(3.5ı̂ − 0.5ȷ̂)] m/s2 (9.32)
= [(0.5ı̂ + 2.5ȷ̂) − 1(3.5ı̂ − 0.5ȷ̂)] m/s2 (9.33)
= (−3ı̂ + 3ȷ̂) m/s2 (9.34)
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Figure 9.6: Example 9.1: a rotating square F falls downward. Determine the velocity and
acceleration vector of point B.
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9.5 IC, reference points and special types of motion

9.5.1 Instantaneous centre of rotation

Concept. Instantaneous centre of rotation (IC)
In 2D kinematics it can be shown that at every instance there is always a single
point in space, the instantaneous centre of rotation IC, around which all points
in the rigid body move in a circular path (pure rotation). The velocity of the
rigid body at r⃗IC is zero.

Using the position vector r⃗IC , the velocity of all points i in the rigid body
can be determined using the equation for pure rotation:

v⃗i = ω⃗ × r⃗i/IC (9.35)

Let us illustrate the use of the IC with an example.
S Example 9.2 In Fig. 9.7 a wheel F with radius R rolls at an angular velocity ω⃗
without slip over a horizontal surface. Find the expressions for the velocity vectors
of its CoM G and point B.

This problem can be solved by realising that the point at which the wheel touches
the ground has zero velocity and is therefore the instantaneous centre of rotation
IC. Now Eq. (9.35) is used to determine the velocity vector of point G and B. We
have r⃗G/IC = Rȷ̂ and r⃗B/IC = R(ı̂ + ȷ̂) and ω⃗ = ωk̂. Then we have:

v⃗G = ω⃗ × r⃗G/IC (9.36)
= ωR(k̂ × ȷ̂) (9.37)
= −ωRı̂ (9.38)

v⃗B = ω⃗ × r⃗B/IC (9.39)
= ωR(k̂ × [̂ı + ȷ̂]) (9.40)
= ωR(ȷ̂ − ı̂) (9.41)

So we see that the centre G of a wheel with a positive angular velocity ω rolls in
the negative x direction.

Note that although the point mass IC ′ (see Fig. 9.7) in the rigid body that
coincides with the IC has zero velocity, this does not mean that the IC has
zero velocity. Instead, it can move in time, like the point of contact of the
wheel with the ground. We remark that in 3D the IC is an axis of rotation
instead of a point where all points of the rigid body on that axis have zero
velocity. Let us now describe how to find the IC.
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Figure 9.7: Example 9.2: a wheel rolls without slipping over a horizontal surface. IC is
the point in space at which the wheel touches the ground. Since there is no
slip, the point mass IC′ at position r⃗IC′ = r⃗IC in the wheel needs to have the
same velocity as the ground, i.e. v⃗IC′ = 0⃗ and all other points in the wheel
instantaneously describe make a circular trajectory around this point. Therefore
r⃗IC is called the instantaneous centre of rotation. Note however that the contact
point with the ground moves, and therefore v⃗IC = ˙⃗rIC ̸= 0⃗.

9.5.2 Finding the instantaneous centre of rotation
If a point with zero velocity is not known or present in the rigid body one can
try to find the IC by utilising that all points in the rigid body move along
concentric circles around point r⃗IC . This allows three methods to find the IC
for planar kinematics:

1. If the angular velocity, and the velocity of a point i are known, determine
the distance of that point, using the equation |⃗ri/IC | = |v⃗i|/|ω|. Project
this distance perpendicular to the vector v⃗i to determine r⃗IC .

2. Use two known velocity vectors v⃗i and v⃗j of different points i and j
on the rigid body. Determine the location r⃗IC by drawing the lines
perpendicular to these two vectors, which are parallel to the radii of the
two concentric circles along which i and j move. These two lines intersect
at the common centre of rotation r⃗IC .

3. If two known velocity vectors v⃗i and v⃗j are parallel, determine the angular
velocity by using the rate at which the speed increases at larger distance
from the IC: |ω| = (||v⃗i| − |v⃗j ||)/|⃗ri/j | and continue like in point 1.

9.5.3 Choosing the reference point for rotation
As we have seen from the previous examples, multiple choices are possible for
the point A that is used to analyse the kinematics of a rigid body. Ideally the
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expressions for the translation and rotation of the rigid body are as simple as
possible.

Depending on the situation several choices for the reference point r⃗A on
the rigid body are possible. Often a point that is fixed in space, or does not
accelerate is a good choice. Otherwise a point with zero velocity, like an IC
can make the analysis simpler. Later we will see that a point where the effects
of forces and moments can be easily calculated can also be good choice. In all
cases, it is important to carefully consider the reference point of the rigid body,
before starting to analyse its dynamics.
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Figure 9.8: Three gearwheels A, B and C with different radii rotate without slip, such that
their velocities v⃗ and tangential component of acceleration at are equal at the
contact points. Point PAB moves along with A, point PCB moves along with C
and points PBA and PBC move along with B. The teeth of the gearwheels are
not shown.

As illustrated in the next example, the kinematic equations discussed in this
chapter can also be used to analyse the kinematics of multiple rigid bodies
with relative motion that is described by constraint equations, similar to the
relatively constrained kinematics for point masses discussed in Sec. 5.2.4.

S Example 9.3 Problem: Fig. 9.8 shows three gearwheels A, B and C, that rotate
without slip. The angular velocity ω⃗A = ωAk̂ and angular acceleration α⃗A = αAk̂
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of gearwheel A are known. Determine ωB, ωC , αB and αC .
To solve this problem first determine the constraint equations. Since the gearwheels

rotate without slip, there is static friction and we know from Eq. (6.34) that for
the no slip condition, the tangential components of acceleration and velocity of the
surfaces at the points where they touch are equal (aPAB ,t = aPBA,t). It is important
to realise that at a contact point there are points of two objects that have the same
position, and one should label and distinguish those separately, like PAB and PBA

in Fig. 9.8, to properly write the constraint equations:

v⃗PAB
= v⃗PBA

(9.42)
v⃗PBC

= v⃗PCB
(9.43)

aPAB ,t = aPBA,t (9.44)
aPBC ,t = aPCB ,t (9.45)

We have 4 constraint equations and 4 unknown scalars that need to be determined,
so the problem is solvable. There is pure rotation, since the gearwheels rotate around
fixed axes, so we have the following kinematic equations for gearwheel A:

v⃗PAB
= ω⃗A × r⃗PAB/A (9.46)
= ωAk̂ ×RAı̂ (9.47)
= ωARAȷ̂ (9.48)

a⃗PAB
= α⃗A × r⃗PAB/A − ω2

Ar⃗PAB/A (9.49)
= αAk̂ ×RAı̂ − ω2

ARAı̂ (9.50)
aPAB ,t = αARAȷ̂ (9.51)

In the last step we separated the component of acceleration tangential to the
contact surface, since that is the only direction in which the friction constrains the
acceleration.

Since we know the velocity and acceleration of point PAB, we can combine it
with the constraint and kinematic equations to determine the angular velocity and
acceleration of gearwheel B:

v⃗PAB
= v⃗PBA

(9.52)
ωARAȷ̂ = ω⃗B × r⃗PBA/B = −ωBRB ȷ̂ (9.53)

ωB = −ωA
RA

RB
(9.54)

aPAB ,t = aPBA,t (9.55)
αARAȷ̂ = α⃗B × r⃗PBA/B = −αBRB ȷ̂ (9.56)

αB = −αA
RA

RB
(9.57)
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After having obtained the angular velocity and acceleration of gearwheel B, we can
follow the same procedure for wheel C.

9.5.4 Special types of motion
Let us summarise the 3D equations for the velocity and acceleration of point
B in a rigid body for the three types of motion:

1. Pure translation

ω⃗ = 0⃗ (9.58)
v⃗B = v⃗A (9.59)
a⃗B = a⃗A (9.60)

2. Pure rotation around a fixed axis in space that is parallel to ω⃗ and
contains point A

v⃗A = 0⃗ and a⃗A = 0⃗ (9.61)
v⃗B = ω⃗ × r⃗B/A (9.62)
a⃗B = α⃗ × r⃗B/A + ω⃗ × (ω⃗ × r⃗B/A) (9.63)

3. General motion: translation and rotation around an axis that is parallel
to ω⃗ and that goes through point A which moves along with the rigid
body

v⃗B = v⃗A + ω⃗ × r⃗B/A (9.64)
a⃗B = a⃗A + α⃗ × r⃗B/A + ω⃗ × (ω⃗ × r⃗B/A) (9.65)

• General motion described as instantaneous pure rotation around
A = IC = IC ′

v⃗IC′ = 0⃗ (9.66)
v⃗B = ω⃗ × r⃗B/IC (9.67)

9.6 Integration and differentiation over angles
The vector equations from the previous sections are very useful for determining
the kinematics of points in the rigid body at a certain time instant. However,
to predict the motion at all times, the coordinate functions xA(t), yA(t) and
ϕB/A(t) need to be determined. Using Eq. (9.5) we can then describe the planar
time-dependent motion of a point B as follows:
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r⃗B,2D(t) = r⃗A(t) + |⃗rB/A| cosϕB/A(t)ı̂ + |⃗rB/A| sinϕB/A(t)ȷ̂ (9.68)

The kinematics to describe the motion r⃗A(t) of point A is exactly the same as
for the kinematics of point masses that were described in Ch. 5, using different
coordinate systems and path curves. The new aspect is that for rigid bodies
we also have to describe the time dependent angle ϕ(t) ≡ ϕB/A(t).

Luckily, for planar kinematics in 2D the required mathematics is completely
the same as that for the path coordinate sA, such that the methods we discussed
in Sec. 5.7 and Sec. 5.8 can be directly applied to the angle ϕ(t). This thus
just requires replacing s by ϕ, v by ω and a by α. For completeness we provide
all the resulting equations for angles here. For time differentiation we get:

ϕ(t) → (9.69)
ω(t) = ϕ̇(t) → (9.70)
α(t) = ω̇(t) = ϕ̈(t) (9.71)

For time integration we obtain:

α(t) → (9.72)

ω(t2) = ω(t1) +
∫ t2

t1
α(t)dt → (9.73)

ϕ(t2) = ϕ(t1) +
∫ t2

t1
ω(t)dt (9.74)

Similar to having functions along the path curve like as(s) and vs(s), we
can have functions for angle dependent angular velocity ωϕ(ϕ) and angular
acceleration αϕ(ϕ). Differentiation and integration over these functions is
similar to that over the path coordinate s:

αϕ(ϕ) = dωϕ

dϕ ωϕ(ϕ) (9.75)

ω2
ϕ(ϕ2) = ω2

ϕ(ϕ1) + 2
∫ ϕ2

ϕ1
αϕ,(ϕ)dϕ (9.76)

S Example 9.4 Gearwheel A in Fig. 9.8 has a constant acceleration αA and
ωA = 0, ϕA = 0 at t = 0.
Determine the time dependent angle ϕA(t). It is straightforward to obtain the
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solution by integration:

ωA(t) = ωA(0) +
∫ t

0
αAdt = αAt (9.77)

ϕA(t) = ϕA(0) +
∫ t

0
αAtdt = 1

2αAt
2 (9.78)

9.7 Motion in rotating reference frames

We will now discuss methods for analysing motion of point masses in rotating
and accelerating reference frames. These methods can for instance be used to
analyse mechanisms with rotating parts, and can help to predict the effect of
earth’s rotation on the motion of aircraft, vehicles and weather systems.
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Figure 9.9: The velocity and acceleration of a ball B that rolls over the deck of a ship S can
be described in the fixed coordinate system xyz, but also in the coordinate system
x′y′z′ that is moving along with ship that is itself translating and rotating.

9.7.1 Rotating reference frame

The challenge we will deal with is illustrated in Fig. 9.9. A ball B, a point
mass, rolls over the deck of a ship S and the captain of the ship measures
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its velocity v⃗′
B/O′ and acceleration a⃗′

B/O′ using the x′y′z′ system that moves
along with the ship. An observer O on the shore also measures the velocity
and acceleration of the ball and finds values v⃗B and a⃗B, which are different
from the values of the captain because the ship moves and rotates. In this
section we will discuss how to relate the velocity and acceleration of the ball B
as measured by the captain (v⃗′

B, a⃗′
B) to those measured by the observer O on

the shore (v⃗B, a⃗B), if we know the motion of the ship. So we know both its
translation (v⃗O′ and a⃗O′), and its angular velocity and acceleration ω⃗S and
α⃗S .

Since the mathematics to obtain the kinematic equations is rather involved,
we directly present the equations here, and then derive them at the end of this
chapter for interested readers.

9.7.2 Equations relating kinematics in rotating and fixed CS

With the following equations one can determine the velocity and acceleration
vector of a point mass B as measured by the observer O if its velocity and
acceleration as measured by the captain in the rotating and translating ship S
are known:

v⃗B = v⃗′
B/O′ + v⃗O′ + ω⃗ × r⃗B/O′ (9.79)

a⃗B = a⃗′
B/O′ + a⃗O′ + α⃗ × r⃗B/O′ (9.80)

+2ω⃗ × v⃗′
B/O′ + ω⃗ ×

(
ω⃗ × r⃗B/O′

)
v⃗B,2D = v⃗′

B/O′ + v⃗O′ + ω |⃗rB/O′ |ϕ̂O′ (9.81)
a⃗B,2D = a⃗′

B/O′ + a⃗O′ + α |⃗rB/O′ |ϕ̂O′ (9.82)
+2ω(v′

B/O′,ρϕ̂O′ − v′
B/O′,ϕρ̂O′) − ω2r⃗B/O′

We provide both the 3D version of the equations and the planar 2D version.
Note that ρ̂O′ and ϕ̂O′ are the unit vectors in a cylindrical coordinate system
with O′ as its origin. Let us now discuss the different components of these
equations.

9.7.3 Object at rest in rotating reference frame

We first consider the situation where the ball is at rest on the deck of the ship at
fixed position coordinate r⃗B/O′ , with zero velocity v⃗′

B/O′ = 0⃗ and acceleration
a⃗′

B/O′ = 0⃗ in the reference frame of the ship. Substituting this in Eq. (9.79)
and Eq. (9.80) we find:
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v⃗B,rest = v⃗O′ + ω⃗ × r⃗B/O′ (9.83)
a⃗B,rest = a⃗O′ + α⃗ × r⃗B/O′ + ω⃗ × (ω⃗ × r⃗B/O′) (9.84)

Despite the fact that the ball is at rest on the ship, these equations show us
that according to the observer on the shore it can have a substantial velocity
and acceleration v⃗B,rest and a⃗B,rest. Note also that the obtained equations are
identical to those for a fixed point on a rigid body, Eq. (9.26) and Eq. (9.27) as
might be expected.

9.7.4 Coriolis acceleration
Now let’s consider what happens when the ball B is given a velocity v⃗′

B/O′ and
acceleration a⃗′

B/O′ on the ship deck. If we compare Eq. (9.83) and Eq. (9.79)
we see that these vectors are added to vectors in rest:

v⃗B = v⃗B,rest + v⃗′
B/O′ (9.85)

a⃗B = a⃗B,rest + a⃗′
B/O′ + a⃗B,Cor (9.86)

We see that a new acceleration term is added to the acceleration equation,
which is called the Coriolis acceleration.

Concept. Coriolis acceleration
If a point mass has a non-zero velocity v⃗′

B/O′ in a reference frame that rotates
with angular velocity ω⃗, this results in a Coriolis acceleration term that appears
when the point mass is observed in a fixed reference frame:

a⃗B,Cor = 2ω⃗ × v⃗′
B/O′ (9.87)

It follows from the cross product, that the direction of the Coriolis acceleration
is perpendicular to the velocity of the point mass and will therefore cause it to
follow a curved circular path in the xy-plane. This rotational motion (Coriolis
effect) can for instance be observed in the winds near a low pressure area as a
consequence of the rotation of the earth.

9.7.5 Acceleration components in a rotating reference frame
Eq. (9.80) can be subdivided in five components, let us discuss each of them:

a⃗B = a⃗′
B/O′ + a⃗B,trans + a⃗B,ang + a⃗B,cptl + a⃗B,Cor (9.88)
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1. The acceleration a⃗′
B/O′ of the ball inside the rotating ship.

2. The translational acceleration a⃗B,trans = a⃗O′ due to the acceleration of
the ship.

3. The angular acceleration a⃗B,ang = α⃗ × r⃗B/O′ due to angular acceleration
of the ship.

4. The centripetal acceleration a⃗B,cptl = ω⃗ × (ω⃗ × r⃗B/O′).
5. The Coriolis acceleration that is a consequence of the velocity v⃗′

B/O′ the
ball has inside the rotating ship: a⃗B,Cor = 2ω⃗ × v⃗′

B/O′ .

The equations up to now determine the acceleration a⃗B the observer on
the shore measures. If one would like to determine the acceleration that the
captain in the ship measures, this equation can be rewritten to:

a⃗′
B/O′ = a⃗B − a⃗B,trans − a⃗B,ang − a⃗B,cptl − a⃗B,Cor (9.89)

Note that even if there are no forces acting on the ball, such that a⃗B = 0⃗,
the captain will measure an acceleration at a rate a⃗′

B/O′ given by Eq. (9.89).
If the captain would not know the ship is accelerating and rotating, the
acceleration might be attributed to forces acting on the ball. Such apparent
forces due to measurements in a non-inertial reference frame are called pseudo-
forces. Examples of pseudo-forces are the centrifugal ’force’ −ma⃗B,cptl and the
Coriolis ’force’ −ma⃗B,Cor. It is better not to call these forces, since there is no
interaction that causes them, neither do they obey Newton’s second and third
laws. An observer in a rotating reference frame can use Newton’s second law
to determine a⃗B =

∑
F⃗

mB
and then use the kinematic equations in this chapter

to determine the acceleration a⃗′
B/O′ in the rotating reference frame as follows:

Concept. Newton’s second law in a rotating and accelerating reference frame

a⃗′
B/O′ =

∑
F⃗

mB
− a⃗O′ − α⃗ × r⃗B/O′ (9.90)

−2ω⃗ × v⃗′
B/O′ − ω⃗ ×

(
ω⃗ × r⃗B/O′

)
A Example 9.5 In Fig. 9.9 a ship S is making a pure rotation in the harbour with
a constant angular velocity ω⃗S = ωSk̂ and α⃗S = 0⃗ around fixed position r⃗O′ . A ball
B rolls over the deck of the ship with constant velocity v⃗′

B/O′ = v′
B ı̂′ as measured

by the captain in the x′y′z′ coordinate system that moves along with the ship. A
second ball C is thrown over the ship at constant velocity v⃗C = vC ȷ̂ as measured
by an observer O on the shore. Both the captain and observer O determine the
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velocities and accelerations of the balls. Determine the expressions for the velocity
and and acceleration vectors that the observer and captain measure for balls B and
C.

To determine v⃗B we use Eq. (9.79) with v⃗O′ = 0⃗:

v⃗B = v⃗′
B/O′ + ω⃗S × r⃗B/O′ (9.91)

= v′
B ı̂′ + ωSk̂

′
× (x′

B ı̂′) (9.92)
= v′

B ı̂′ + ωSx
′
B ȷ̂′ (9.93)

(9.94)

Note that you can either use the unit vectors from the x′y′z′ or the xyz-system, as
long as you make sure not to take cross or dot products between them, since the
relations like Eq. (3.32) do not hold if the unit vectors are not perpendicular to each
other.

To determine a⃗B we use Eq. (9.80) with a⃗O′ = 0⃗, a⃗B/O′ = 0⃗ and α⃗S = 0⃗:

a⃗B = 2ω⃗S × v⃗′
B/O′ − ω2

S r⃗B/O′ (9.95)

= 2ωSk̂
′
× (v′

B ı̂′) − ω2
S(x′

B ı̂′) (9.96)
= 2ωSv

′
B ȷ̂′ − ω2

Sx
′
B ı̂′ (9.97)

We see that the acceleration consists of a Coriolis contribution perpendicular to
the velocity in the moving frame and a centripetal contribution pointing towards
the moving origin O′. For the observer on the shore it is easier if we transform these
vectors to the unit vectors in the xyz-system that she is using. We use the angle
ϕS = arctan(3/4) or the properties of a 3:4:5 triangle for this projection:

ı̂′ = cos(ϕS)ı̂ + sin(ϕS)ȷ̂ (9.98)
= 4/5ı̂ + 3/5ȷ̂ (9.99)

ȷ̂′ = − sin(ϕS)ı̂ + cos(ϕS)ȷ̂ (9.100)
= −3/5ı̂ + 4/5ȷ̂ (9.101)

k̂
′ = k̂ (9.102)

However, an easier solution is to rotate the xyz-axes that the observer on the wall is
using, since then we can directly set ı̂′ = ı̂, ȷ̂′ = ȷ̂ and k̂

′ = k̂.
Now we are going to determine the kinematics of ball C and vectors v⃗′

C/O′ and
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a⃗′
C/O′ as observed by the captain of the ship:

v⃗C = v⃗′
C/O′ + ω⃗S × r⃗C/O′ (9.103)

vC ȷ̂ = v⃗′
C/O′ + ωSk̂ × (xC/O′ ı̂ + yC/O′ ȷ̂) (9.104)

v⃗′
C/O′ = vC ȷ̂ − ωS(xC/O′ ȷ̂ − yC/O′ ı̂) (9.105)

= ωSyC/O′ ı̂ + (vC − ωSxC/O′)ȷ̂ (9.106)

The acceleration a⃗B of ball C is zero since it has a constant velocity, so we have:

0 = a⃗′
C/O′ + 2ω⃗S × v⃗′

C/O′ − ω2
S r⃗C/O′ (9.107)

−a⃗′
C/O′ = 2ωSk̂ × (ωSyC/O′ ı̂ + (vC − ωSxC/O′)ȷ̂) − ω2

S r⃗C/O′

a⃗′
C/O′ = −2ωS(ωSyC/O′ ȷ̂ − (vC − ωSxC/O′)ı̂) + ω2

S(xC/O′ ı̂ + yC/O′ ȷ̂)
= 2ωCvC ı̂ − ω2

S(xC/O′ ı̂ + yC/O′ ȷ̂) (9.108)
= 2ωCvC ı̂ − ω2

S r⃗C/O′ (9.109)

In the second step we used Eq. (9.106). Again the acceleration consists of a Coriolis
contribution perpendicular to the velocity vector in the IRF and a centripetal
component that points towards the origin of the moving frame.

9.7.6 Transport theorem*

To derive Eq. (9.79) and Eq. (9.80), we will first introduce the transport theorem.
The transport theorem relates the time derivative of a vector d

dt f⃗ in a fixed
system xyz to its time derivative d

dt f⃗
′ as measured in a reference frame x′y′z′

that rotates with angular velocity vector ω⃗ with respect to the fixed frame.

Concept. Transport theorem
The time derivative of a vector function f⃗(t) described in an IRF is related to
the time derivative of the same vector function f⃗(t) as measured in a reference
frame S that is rotating with angular velocity vector ω⃗, by the transport equation:

df⃗

dt =
(

df⃗

dt

)′

+ ω⃗ × f⃗ (9.110)

Let us explain why the transport theorem tells us that time derivatives of
vectors are different in a rotating reference frame than in a fixed reference
frame. A vector represents a certain magnitude and direction in space that
is independent of the coordinate system in which it is measured. However,
when taking a time derivative of such a vector one actually takes the difference
between two vectors measured at two different times t and t + dt, e.g. for
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v⃗(t) = limdt→0(r⃗(t+ dt) − r⃗(t))/dt. If the coordinate system is rotating, the
vector r⃗(t+dt) is measured with respect to coordinate axes that have a different
orientation than those for which r⃗(t) was measured. As a consequence, vectors
that are time derivatives of other vectors, in particular v⃗(t) and a⃗(t), can
be different (v⃗′ ̸= v⃗) if they are measured in different, relatively rotating or
translating, coordinate systems and the transport theorem provides a way to
relate them. In this context it is important to note that Newton’s second
law defines forces in terms of an acceleration vector in a non-rotating inertial
reference frame (IRF). By this definition it is ensured that force vectors (and
moment vectors, see Ch. 10) are independent of the coordinate system and do
not need to be transformed using the transport theorem.

Derivation. Transport theorem
Let us derive the transport theorem for the specific case of the vector function
f⃗(t) that is measured both in a fixed reference frame xyz and in a rotating
coordinate system x′y′z′ that has constant angular velocity ω⃗.

At every time, the vector can be described as f⃗ = fx(t)ı̂′(t) + fj(t)ȷ̂′(t) +
fz(t)k̂′(t). The main point in the derivation is that for an observer that moves
(and rotates) along with the rotating system x′y′z′ the unit vectors ı̂′, ȷ̂′ and
k̂

′ do not depend on time, whereas for an observer in a fixed reference frame
their direction is time-dependent. The observer that moves along with the
rotating coordinate system measures the time derivative of f⃗ to be:

(
df⃗

dt

)′

= ḟxı̂′ + ḟy ȷ̂′ + ḟzk̂
′ (9.111)

The observer that is at rest in the fixed system xyz also measures the time
derivative and finds, using the product rule:

df⃗

dt = (ḟxı̂′ + ḟy ȷ̂′ + ḟzk̂
′) + (fx

dı̂′

dt + fy
dȷ̂′

dt + fz
dk̂

′

dt ) (9.112)

When analysing the time derivatives of unit vectors in cylindrical coordinates
we found in Eq. (5.72) relations like dρ̂

dt = ω⃗ × ρ̂, and it can be shown that
these relations hold for any unit vector in a rotating frame that is observed
from a fixed reference frame like dı̂′

dt = ω⃗ × ı̂′, such that Eq. (9.111) and (9.112)
result in the transport theorem:
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df⃗

dt =
(

df⃗

dt

)′

+ (fxω⃗ × ı̂′ + fyω⃗ × ȷ̂′ + fzω⃗ × ı̂′) (9.113)

=
(

df⃗

dt

)′

+ ω⃗ × f⃗ (9.114)

9.7.7 Derivation kinematics in a rotating reference frame*

Let us apply the transport theorem to the relative position vector setting
f⃗ = r⃗B/O′ in Eq. (9.110), this yields:

dr⃗B/O′

dt =
(

dr⃗B/O′

dt

)′

+ ω⃗ × r⃗B/O′ (9.115)

v⃗B/O′ = v⃗′
B/O′ + ω⃗ × r⃗B/O′ (9.116)

v⃗B = v⃗′
B/O′ + v⃗O′ + ω⃗ × r⃗B/O′ (9.117)

Where we used v⃗B/O = v⃗B − v⃗O′ in the last step, thus deriving Eq. (9.79).

Derivation. We now apply the transport theorem a second time to the velocity
vector f⃗ = v⃗B/O′ to obtain the acceleration vector a⃗B/O′:

dv⃗B/O′

dt =
(

dv⃗B/O′

dt

)′

+ ω⃗ × v⃗B/O′ (9.118)

a⃗B/O′ = d
dt
(
v⃗′

B/O′ + ω⃗ × r⃗B/O′

)′
(9.119)

+ω⃗ ×
(
v⃗′

B/O′ + ω⃗ × r⃗B/O′

)
= a⃗′

B/O′ + α⃗ × r⃗B/O′ + 2ω⃗ × v⃗′
B/O′ (9.120)

+ω⃗ ×
(
ω⃗ × r⃗B/O′

)
Here we have substituted v⃗B/O′ twice using Eq. (9.116), used the product rule
for differentiation, used a⃗′

B/O′ = d
dt(v⃗

′
B/O′)′ and v⃗′

B/O′ = d
dt(r⃗B/O′)′, and used

that α⃗ = α⃗′ which can be shown by applying the transport theorem with
f⃗ = ω⃗ and ω⃗ × ω⃗ = 0⃗. With Eq. (9.120) we have derived Eq. (9.80).
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9.8 Summary
In this chapter we have analysed the kinematics of rotating rigid bodies. The
motion of a rigid body can be considered as the combination of a translation
of a certain reference point on the rigid body, and the rotation of the rigid
body around an axis through that point. Velocity and acceleration vectors
of the reference point can change in time, and so can the angular velocity
and acceleration vectors of the rotation around the axis. In this textbook we
mainly focus on the planar kinematics where the point masses move in the
two-dimensional xy-plane and angular velocity and acceleration vectors point
in the z-axis direction. We present the expressions for the velocities v⃗B and a⃗B

for points in the rigid body, or point masses moving inside a rotating reference
frame.

Now we are ready to analyse the dynamics of rigid bodies under the influence
of forces in the next chapter, dealing with the kinetics of rigid bodies.

• Orientation and motion of a rigid body
– r⃗B,2D(t) = r⃗A(t) + |⃗rB/A| cosϕB/A(t)ı̂ + |⃗rB/A| sinϕB/A(t)ȷ̂

• Angular velocity and acceleration
– Angular velocity: ω⃗2D = ωk̂ = ϕ̇k̂
– Angular acceleration: α⃗2D = αk̂ = ϕ̈k̂
– Angular velocity is a property of a rigid body and independent of

the points used to determine the angle ϕ
– Differentiation and integration: ϕ(t) ↔ ω(t) ↔ α(t)

• Kinematics rigid body

v⃗B = v⃗A + ω⃗ × r⃗B/A (9.121)

a⃗B = a⃗A + α⃗ × r⃗B/A + ω⃗ ×
(
ω⃗ × r⃗B/A

)
(9.122)

v⃗B,2D = v⃗A + ω |⃗rB/A|ϕ̂A (9.123)
a⃗B,2D = a⃗A + α |⃗rB/A|ϕ̂A − ω2r⃗B/A (9.124)

• Special types of motion and methods
– Pure translation: ω⃗ = 0⃗ and v⃗A ̸= 0⃗.
– Pure rotation: v⃗A = 0⃗, a⃗A = 0⃗ and ω⃗ ̸= 0⃗.
– Instantaneous centre of rotation: v⃗IC′ = 0⃗.
– 3 methods to find IC.

• Combining kinematics with constraint equations
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– Analyse mechanisms using multiple kinematic equations.
– Combine these kinematic equations with constraint equations to

determine the motion of mechanisms and rigid bodies. See e.g.
Example 9.3.

• Motion in a rotating reference frame x’y’z’
– As observed by an observer in an inertial reference frame (IRF)

v⃗B = v⃗′
B/O′ + v⃗O′ + ω⃗ × r⃗B/O′ (9.125)

a⃗B = a⃗′
B/O′ + a⃗O′ + α⃗ × r⃗B/O′ (9.126)

+2ω⃗ × v⃗′
B/O′ + ω⃗ ×

(
ω⃗ × r⃗B/O′

)
v⃗B,2D = v⃗′

B/O′ + v⃗O′ + ω |⃗rB/O′ |ϕ̂O′ (9.127)
a⃗B,2D = a⃗′

B/O′ + a⃗O′ + α |⃗rB/O′ |ϕ̂O′ (9.128)
+2ω(v′

B/O′,ρϕ̂O′ − v′
B/O′,ϕρ̂O′) − ω2r⃗B/O′

– As observed by an observer in the rotating reference frame

v⃗′
B/O′ = v⃗B − v⃗O′ − ω⃗ × r⃗B/O′ (9.129)

a⃗′
B/O′ = a⃗B − a⃗O′ − α⃗ × r⃗B/O′ (9.130)

−2ω⃗ × v⃗′
B/O′ − ω⃗ ×

(
ω⃗ × r⃗B/O′

)
– Newton’s second law in a rotating reference frame

a⃗′
B/O′ =

∑
F⃗

mB
− a⃗O′ − α⃗ × r⃗B/O′ (9.131)

−2ω⃗ × v⃗′
B/O′ − ω⃗ ×

(
ω⃗ × r⃗B/O′

)
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10 Kinetics of Rigid Bodies

In the previous chapter we have derived methods for analysing the kinematics
of rigid bodies. Now we will use Newton’s laws to evaluate how rigid bodies
move in the presence of forces and derive their equations of motion. Whereas
point masses can only translate, rigid bodies can also rotate, the key challenge
we will therefore address is how rigid bodies rotate under the influence of forces.

10.1 Effect of a force on a rigid body
A rigid body is nothing else than a collection of many point masses that are
rigidly connected and relatively constrained. So it can be analysed by the
techniques we discussed earlier in Ch. 6. In this chapter we will introduce
new techniques to facilitate such analysis, but before introducing these new
techniques, let us give an example where we analyse the kinetics of a rigid
body using the techniques from Ch. 6.
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Figure 10.1: Rigid body consisting of 2 point masses connected by a rod of length L.
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M Example 10.1 Problem: Consider the rigid body C in Fig. 10.1 that consists
of 2 point masses A and B connected by a rod of length L. A force F⃗ B = −FB ȷ̂
acts on mass B.

• Determine the angular acceleration of C if the horizontal rigid body, with
ϕ = 0 is released from rest.

To solve this problem we first consider the constraint equation of the rod (constant
length L) and take its time derivative twice:

|⃗rB/A|2 = L2 (10.1)
x2

B/A + y2
B/A = L2 (10.2)

2xB/AẋB/A + 2yB/AẏB/A = 0 (10.3)
ẋ2

B/A + xB/Aẍ
2
B/A + ẏ2

B/A + yB/Aÿ
2
B/A = 0 (10.4)

xB(ẍB − ẍA)2 = 0 (10.5)
ẍB = ẍA = 0 (10.6)

In the last steps we used that for the current position and at zero velocity the
constants yB/A = xA = ẋB/A = ẏB/A = 0 are zero. The last equation shows that if
the rod is horizontal and has zero velocity, then the constraint equalises accelerations
of the point masses in the x direction, but not in the y direction. Since there are no
forces acting in the x-direction, we conclude that the masses don’t accelerate in that
direction.

Now we write down the equation of motion in the y direction for mass A and
mass B: ∑

FA,y = 0 = mAÿA (10.7)∑
FB,y = −FB = mB ÿB (10.8)

Now the final step is to determine the angular acceleration αC using the kinematic
equations from the previous chapter. Using that a⃗A = 0⃗, ωC = 0 and ϕ̂A = ȷ̂ we
get:

a⃗B,2D = a⃗A + αC |⃗rB/A|ϕ̂A − ω2
C r⃗B/A (10.9)

−FB/mB ȷ̂ = αCL ȷ̂ (10.10)
αC = −FB/(mBL) (10.11)

Although this example demonstrates that it is possible to analyse the the effect of
forces on the dynamics of rigid bodies with Newton’s laws, both translation and
rotation, it becomes very elaborate for rigid bodies consisting out of many point
masses. In this chapter we will derive a simpler method to do this.
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10.2 Kinetics of the CoM and Euler’s first law
In the previous chapter we saw that only 3 coordinates are needed to determine
the position and orientation of a rigid body F : xA, yA and ϕF . If we set
point A at the CoM (A = G) and apply Euler’s first law Eq. (8.13) to the rigid
body, we can directly obtain the equations of motion for the coordinates of the
CoM xG and yG:

∑
F⃗ ext = mtota⃗G (10.12)∑
Fext,x = mtotẍG (10.13)∑
Fext,y = mtotÿG (10.14)

Since we can use these equations (Euler’s first law) to determine the trajectory
r⃗G of the centre of mass G of a rigid body using kinematics, we now only have
to determine the angular motion ϕ(t) to fully analyse the motion of the rigid
body and determine its position and orientation at every time using kinematic
equations like Eq. (9.4). Determining the effect of forces on the time dependent
rotation angles ϕ(t) will be the main objective of this chapter.

10.3 Rotation analysis in kinetics
Since the derivation of the key equations governing rotations in rigid body
dynamics is quite elaborate, we start by introducing the equations in this
section without deriving them. Then we explain how they should be used in
kinetic analysis of rigid bodies and finally present the derivations in sections
10.8–10.10.

10.3.1 Moments
The use of moments is a technique to facilitate the analysis of the effect of forces
on the rotations of rigid bodies and other systems of point masses. Moments
are defined as follows (see Fig. 10.2).

Definition. Moment
The moment vector M⃗B/P of a force F⃗ B (with point of action r⃗B) with respect
to a reference point r⃗P is defined as the cross product r⃗B/P × F⃗ B.

M⃗B/P ≡ r⃗B/P × F⃗ B (10.15)
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Figure 10.2: A force F⃗ B acts on point B of rigid body C. A reference point P is chosen.
The moment of force B on C with respect to P is: M⃗B/P = r⃗B/P × F⃗ B . The
magnitude of the moment is indicated by the area of the red parallelogram. If
P lies on the line of action of F⃗ B the moment is zero.

When using moments to analyse rigid body dynamics, for example with
an FBD it is essential that all moments are determined with respect to the
same reference point P . Furthermore, it can be shown that the sum of all
internal moments on the rigid body is always zero (see Fig. 10.3), such that the
resultant moment on the system is equal to the sum of all external moments,
i.e. moments generated by external forces, as will be derived in Eq. (10.63).

Concept. Moment on a system or rigid body
The resultant moment vector M⃗C/P,ext acting on a system of point masses C
with respect to a reference point P is the sum over the moments of the external
forces with respect to P .

M⃗C/P,ext =
∑

i

M⃗ i/P,ext =
∑

i

r⃗i/P × F⃗ i,ext (10.16)

Because the sums of internal moments and forces on a system or rigid body
are zero, they do not affect the kinetics. For that reason only external moments
and external forces F⃗ ext should be drawn in an FBD. In fact, a key purpose
of an FBD is to define the difference between internal and external forces,
since all objects drawn in the FBD can be considered to be internal and their
forces should not be drawn, whereas all drawn forces are generated by external
objects that are not drawn.
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Figure 10.3: One external force F⃗ 2,ext acts on a system of 2 point masses that is bounded
by the dashed circle. The sum of the internal forces and internal moments is
always zero, independent of the choice of reference point P . So, the resultant
moment on the system is equal to the sum of the external moments.

10.3.2 Angular momentum

We now define the angular momentum vector L⃗ of a point mass (see Fig. 10.17),
which is used to analyse rotating motion, similar to the way momentum p⃗ is
used for translational motion as described in Ch. 8.

Definition. Angular momentum of a point mass
The angular momentum vector L⃗i/P of a point mass at position r⃗i with mo-
mentum vector p⃗i, is defined as the cross product r⃗i/P × p⃗i.

L⃗i/P ≡ r⃗i/P × p⃗i = r⃗i/P × (miv⃗i) (10.17)

Concept. Angular momentum of a system or rigid body
The total angular momentum L⃗C/P of a system of point masses C, with respect
to reference point P is equal to the sum of the angular momentum vectors of
its individual point masses.

L⃗C/P =
∑

i

L⃗i/P =
∑

i

r⃗i/P × (miv⃗i) (10.18)

To determine the angular momentum of a rigid body one can use this
equation to sum or integrate over all point masses i in the rigid body, but a
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Figure 10.4: A point mass i with momentum p⃗i has an angular momentum L⃗i/P = r⃗i/P × p⃗B

with respect to reference point P .

simpler way is to use the moment of inertia tensor IC/P of the rigid body or
its zz component IC/G,zz which will be discussed in Sec. 10.5. This results in:

L⃗C/P = IC/P ω⃗C (10.19)

L⃗C/P,2D =
(
mtotρ

2
G/P + IC/G,zz

)
ωC k̂ (10.20)

10.3.3 Euler’s second law
We now introduce Euler’s second law that will be derived in Sec. 10.10.
Concept. Euler’s second law
Euler’s second law for a system or rigid body C states that the time derivative
of the total angular momentum of C is equal to the total moment from external
forces acting on C. The total angular momentum should be determined with
respect to the same reference point P that is fixed in an IRF or is the CoM of
C.

M⃗C/P,ext = d
dtL⃗C/P (10.21)

Euler’s first law, and Euler’s second law together provide the full equations
of motion for a rigid body and are therefore very useful and important for
analysing their dynamics. For planar kinetics of rigid bodies Euler’s second
law can be simplified:
Concept. Euler’s second law for planar 2D kinetics of rigid body C

MC/P,ext,2Dk̂ = r⃗G/P × (mtota⃗G) + IC/G,zzαC k̂ (10.22)
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10.4 Solving the planar EoM for rigid bodies
After having discussed Euler’s second law, we will now show how it is used
to predict rotational motion of rigid bodies. Together with Euler’s first law
(∑i F⃗ i,ext = mtota⃗G, Eq. (8.13)), it provides three scalar equations of motion
(EoM) to analyse the planar dynamics of rigid bodies.

With Euler’s laws, the translation and rotation of rigid bodies can be solved
for, using very similar methods as were outlined in Sec. 6.4 for the kinetic
analysis of point masses. The main novel aspect is the determination and
solution of the rotational EoM that follows from Euler’s second law, including
the moments and angular accelerations. Let us summarise the procedure
for solving the equations of motion for the planar kinetics of a rigid body,
step-by-step:

1. Sketch the rigid bodies, massless mechanisms, force vectors, moments,
distances, dimensions and constraints.

2. Choose and draw a suitable coordinate system (CS) and reference point
P for moments.

3. Determine the constraint equations.
4. Determine the CoM r⃗G and moment of inertia IG for each rigid body.
5. Draw the free-body diagram (FBD) for each rigid body. Add both forces

and moments1.
6. Project force, moment and kinematic vectors onto the CS to obtain scalar

components (like Fx, aG,x, Mz and αz).
7. Determine the 3 equations of motion per rigid body. Two equations, for
aG,x and aG,y from Euler’s first law, and one from Euler’s second law to
determine αz.

8. Simplify the EoM by combining them and using constraint equations.
9. Solve the simplified (differential) equations of motion (EoM), determining

velocity and motion using integration or other methods.

This procedure follows to a large extent the methodologies for point masses
that were discussed in Ch. 6. Nevertheless, there are some new aspects that
need to be considered for rotating rigid bodies like:

• Selecting the easiest point of reference P for analysing the problem. In
principle every point can be chosen, but the analysis can be facilitated if
it allows simplifying moment or kinematic expressions (Sec. 9.5.3). The

1Don’t draw items double, only draw moments explicitly if they are not represented as a
force.
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choice of the point P will not affect the dynamics, a smart choice can
however simplify the calculation.

• For Euler’s second law to hold, the reference point P should be a fixed
point in an IRF, any fixed point P in an IRF can be chosen. Alternatively
the point G that moves along with the CoM of the rigid body, or system
of point masses, can be chosen.

• It is important to use the same reference point P both for the moment
and the angular momentum.

• Often, one first needs to use Euler’s first law and solve the corresponding
EoMs to determine a⃗G, before the term r⃗G/P × (ma⃗G) in Euler’s second
law Eq. (10.22) can be evaluated to solve for the angular acceleration.
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Figure 10.5: Sketch of a rigid body C on which a force F⃗ B acts.

S Example 10.2 We are now going to solve the problem from Example 10.1 using
Euler’s laws.

• Determine the angular acceleration of the dumbbell-shaped rigid body C in
Fig. 10.5.

We assume that the two masses are identical mA = mB = m and follow the steps
introduced in this chapter.

• Step 1 and 2: First we use the sketch in Fig. 10.5 and also indicate the
Cartesian coordinate system and corresponding unit vectors in it.

• Step 3 and 4: The motion is unconstrained and the equation for the CoM is:

r⃗G = mAr⃗A +mB r⃗B

mA +mB
= m · 0 +mLı̂

2m = 1
2Lı̂ (10.23)
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The moment of inertia with respect to the CoM can be shown to be IG = 1
2mL

2.
We choose the CoM as the reference point for rotations, so P = G.

• Step 5: Now we draw the FBD in Fig. 10.6 according to the guidelines given
in Sec. 6.8. It is important not to draw it in the ’trivial’ horizontal position,
but at an angle ϕ.

• Step 6: We project the forces, moments and kinematic vectors: F⃗ B = −FB ȷ̂,
M⃗B/G = r⃗B/G × F⃗ B = −rB/G,xFBk̂ = − L

2 cos(ϕ)FBk̂. Furthermore we have
a⃗G = aG,xı̂ + aG,y ȷ̂ and α⃗C = αC k̂.

• Step 7: We first apply Euler’s first law
∑

F⃗ = mtota⃗G.∑
Fx = 0 = 2maG,x (10.24)∑

Fy = −FB = 2maG,y (10.25)

Now we apply Euler’s second law MGk̂ = r⃗G/P × (mtota⃗G) + IGαk̂. Since
P = G the vector r⃗G/G = 0⃗. Thus we have:

−L

2 cos(ϕ)FBk̂ = IGαC k̂ (10.26)

• Step 8: By rewriting the last 3 equations, the simplified EoMs become:

aG,x = ẍG = 0 (10.27)
aG,y = ÿG = −FB/(2m) (10.28)

αC = ϕ̈ =
− L

2 cos(ϕ)FB

1
2mL

2 = −FB

mL
, (10.29)

where we used in the last step that IG = 1
2mL

2 and ϕ = 0 in our case. Note
that the result for αC is identical to that in Eq. (10.11), as expected.

• Step 9: In step 8 we have determined αC as requested. To obtain the full
time dependence of xG(t), yG(t) and ϕC(t) we would have to solve the EoMs
differential equations.

10.5 Moment of inertia

10.5.1 Inertia tensor

In Sec. 10.3.2 we have introduced the moment of inertia to simplify the de-
scription of the angular momentum of rigid bodies. Let’s discuss it in more
detail now.

Definition. Inertia tensor
The inertia tensor IG of a rigid body with respect to its CoM is defined by the
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Figure 10.6: FBD of a rigid body C on which a force F⃗ B acts.

equation:

L⃗G = IGω⃗ =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 ω⃗ (10.30)

The diagonal components of the inertia tensor are called the moments of
inertia, and as will be derived later in Eq. (10.79) they can be calculated as
follows:

IG,zz =
∑

i

miρ
2
i/G (10.31)

The off-diagonal terms of the inertia tensor are called products of inertia. As
an example IG,zz can be written as:

IG,xz = −
∑

i

mixi/Gzi/G (10.32)

It can be seen that if the rigid body has mirror symmetry in the zi/G = 0
plane, or if it is axisymmetric around the z-axis, the products of inertia IG,zx

and IG,zy are zero. E.g. because the contributions for zi/G and −zi/G cancel
each other. In this textbook we focus only on rigid bodies with either of those
properties, such that we only need to calculate the moment of inertia Izz.
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10.5.2 Calculation of the moment of inertia

The moment inertia of a rigid body can be calculated by summing the contribu-
tion miρ

2
i/G of every point mass i, however often we are dealing with continuous

materials with a constant mass density ρm in kg/m3. In those cases the body
can be subdivided into infinitesimal volumes dV with mass dm = ρmdV and
contribution to the moment of inertia ρ2

i/Gdm. The moment of inertia can
then be calculated by integration over the total volume V of the rigid body.

IG,zz =
∑

i

miρ
2
i/G =

∫
V
ρmρ

2
i/GdV (10.33)

Note that ρi/G is the distance of a point i from the axis parallel to the z-axis
that goes through G. Let us give a few examples of how this integral can be
performed, where the CoM is positioned in the origin of the coordinate system.

S Example 10.3 Moment of inertia of a block
For a block with dimensions Lx, Ly, Lz along the three axes, we use ρ2 = x2 + y2

to determine its moment of inertia by integrating over its volume along each of the
three axes:

IG,zz = ρm

∫ Ly/2

−Ly/2
dy
∫ Lx/2

−Lx/2
(x2 + y2)dx

∫ Lz/2

−Lz/2
dz (10.34)

= ρmLz

∫ Ly/2

−Ly/2

[
1
3x

3 + y2x

]Lx/2

−Lx/2
dy (10.35)

= ρmLz

[
1
12L

3
xy + 1

3y
3Lx

]Ly/2

−Ly/2
(10.36)

= 1
12ρm(LzLxLy)

[
L2

x + L2
y

]
= 1

12m
[
L2

x + L2
y

]
(10.37)

Note that the triple integral is solved in 3 steps, starting with the innermost
integral going from right to left, first integrate over z, then over x and finally over
y. Multiplicative terms over which we don’t integrate can be moved to the left,
out of the integral. In the last step we used that mass is density times volume
m = ρmLzLxLy.

Moment of inertia of axisymmetric bodies

When an object is axisymmetric, it is easiest to determine its moment of inertia
by using cylindrical coordinates. An infinitesimal volume element in these
coordinates has a volume dV = ρdϕdρdz, where the size in the ϕ̂ direction
is given by the infinitesimal circle segment ρdϕ. The outer surface of an
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axisymmetric object can be described by a function ρd(z) or alternatively by
zh(ρ). We will show two examples to illustrate integration of ρmρi/G over
either volume to obtain the moment of inertia of a cone with radius R and
total height h.

S Example 10.4 Moment of inertia of a cone method 1
The height of the cone at each ρ can be described by zh(ρ) = h(1 − ρ

R ), such that
Izz becomes:

IG,zz = ρm

∫ 2π

0

∫ R

0

∫ zh(ρ)

0
ρ2 · ρdρdzdϕ = 2πρm

∫ R

0
ρ3[z]h(1− ρ

R )
0 dρ

= 2πρm

∫ R

0
ρ3h

(
1 − ρ

R

)
dρ = 2πρmh

[
1
4ρ

4 − 1
5Rρ

5
]R

0

= 2
20πρmhR

4 = 3
10mR

2, (10.38)

where we used in the last step that the volume of a cone is V = h
3πR

2.

S Example 10.5 Moment of inertia of a cone method 2 Alternatively, the radius
of the disks of the cone depends on height as ρd(z) = R(1 − z

h ). We now again
perform the integral:

IG,zz = ρm

∫ h

0

∫ ρd(z)

0
ρ2
∫ 2π

0
ρdϕdρdz = 2πρm

∫ h

0

∫ R(1− z
h )

0
ρ3dρdz

= 2πρm

∫ h

0

[
1
4ρ

4
]R(1− z

h )

0
dz = 1

2πρm
R4

h4

∫ h

0
(h− z)4dz

= 1
2πρm

R4

h4

[
−1

5(h− z)5
]h

0
dz (10.39)

= 1
10πρmhR

4 = 3
10mR

2 (10.40)

We obtain the same result, as expected. Determining the moment of inertia of
rigid bodies is a good practice in volume integration skills.

10.5.3 Parallel axis theorem

We have now a method to calculate the moment of inertia of a rigid body with
respect to its CoM. But often a reference point P is chosen that is different
from G. In that case one can redo the integrals again and obtain IP,zz, but
there is an easier way to determine IP,zz from IG,zz, because as will be shown in
Eq. (10.72), the angular momentum with respect to a point P can be written as
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the sum of two parts, namely a component representing the angular momentum
a point mass mtot at position G and a component representing the angular
momentum with respect to G:

L⃗C/P = L⃗G/P +
∑

i

L⃗i/G (10.41)

L⃗C/P,2D =
(
mtotρ

2
G/P + IG,zz

)
ω⃗C (10.42)

L⃗C/P,2D = IP,zzω⃗C (10.43)

Now from the last two equations we can determine IP,zz, this method is
called the parallel axis theorem or Steiner’s theorem.

Concept. Parallel axis theorem
The moment of inertia of a rigid body around an axis through a point P , at
a distance ρG/P from its CoM, equals the moment of inertia mtotρ

2
G/P of its

CoM, plus the moment of inertia of the rigid body around a parallel axis through
its CoM.

IG,zz = mtotρ
2
G/P + IG,zz (10.44)

S Example 10.6 Determine the moment inertia IP,zz of the rectangular rigid body
with mass m with respect to reference point P at the origin.
Since the rigid body lies in the xy-plane we have ρG/P = |⃗rG/P |. The moment of
inertia IG,zz of a rectangle can be determined using Eq. (10.37). Then with the
parallel axis theorem we find:

IP,zz = mρ2
G/P + 1

12m
(
L2

x + L2
y

)
(10.45)

10.5.4 Adding and subtracting moments of inertia

Since the moment of inertia is a sum or integral over individual contributions
for every point mass, the moment of inertia of a rigid body C that is made up
out of two (or more) other rigid bodies A and B can be calculated by summing
the moments of inertia around the same axis P :

IC/P,zz = IA/P,zz + IB/P,zz (10.46)

Make sure you use the same reference point P when making such additions.
Similarly, it is also possible to subtract moments of inertia from one another,
for instance to determine the moment of inertia of objects that have a hole.
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Figure 10.7: With the parallel axis theorem the moment of inertia with respect to an arbitrary
axis P that is not the CoM of the rigid body can be determined.

10.6 Euler’s second law for special cases

We now discuss a few special types of motion that can be analysed with Euler’s
second law.

10.6.1 Pure translation

In the case of pure translation, we have no angular acceleration α⃗ = 0⃗, which
is the case if the moment of all external forces with respect to the CoM is zero
(M⃗C,G = 0⃗). This situation is for instance valid for the moments generated in
a constant gravitational field, or when constraint equations prevent rotations.
Then Eq. (10.22) becomes:

If :
∑

i

M⃗C,i/G = IG,zzαC k̂ = 0⃗ (10.47)

∑
i

MC,i/P,2Dk̂ = r⃗G/P × (mtota⃗G) = r⃗G/P ×
(∑

i

F⃗ i,ext

)

It can be seen that once it is known that α⃗C = 0⃗, Euler’s second law on
the moments does not provide additional useful information beyond Euler’s
first law that determines the acceleration of the CoM of the rigid body via∑

i F⃗ i,ext = mtota⃗G.
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10.6.2 Pure rotation around the centre of mass

It is interesting to consider the situation where the term mtota⃗G = 0⃗ is zero
because the sum of forces on the rigid body is zero, since it significantly
simplifies Eq. (10.22), with the disappearance of the term r⃗G/P × (mtota⃗G).

If :
∑

i

F⃗ i,ext = mtota⃗G = 0⃗ (10.48)

Then :
∑

i

MC,i/P,2Dk̂ = IG,zzαC k̂ (10.49)

We thus find in Eq. (10.49) that the CoM of the rigid body does not accelerate
and the acting moments purely cause an angular acceleration αC of the rigid
body.

10.6.3 Couple

We saw in the previous subsection that a special situation arises if the sum of
the forces acting on a system is zero, since then a⃗G = 0⃗. Such a combination
of forces is called a couple, and if there are only two forces it is called a simple
couple.

Concept. Simple couple
A simple couple consists of two forces F⃗ A = −F⃗ B that are equal in magnitude,
and opposite in direction such that F⃗ A + F⃗ B = 0⃗, while the forces have different
points of action, such that their resultant moment is not zero.

Besides simple couples, that consist of two forces, there is also a more general
definition of a couple, that can consist of more than two forces.

Concept. Couple
A couple consists of a number of N forces for which the sum of forces is zero,
that generate a resultant moment on a system. So

∑N
i=1 F⃗ i,ext = 0⃗.

According to Euler’s second law, a couple only influences the angular accel-
eration α of a rigid body, it does not contribute to the acceleration a⃗G of the
CoM because the sum of the forces is zero. The effect of a couple is therefore
also called a pure moment or couple moment.

Another useful property of a couple is that its resultant pure moment is
independent of the choice of the location of the reference point P , as we will
derive now.
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Derivation. Moment of a couple
Consider a simple couple generated by two force vectors with F⃗ A = −F⃗ B acting
on points A and B. The moment of this couple with respect to a reference point
P is given by:

M⃗ couple = r⃗A/P × F⃗ A + r⃗B/P × F⃗ B (10.50)
= r⃗A/P × F⃗ A − r⃗B/P × F⃗ A (10.51)
= ((r⃗A − r⃗P ) − (r⃗B − r⃗P )) × F⃗ A (10.52)
= r⃗A/B × F⃗ A (10.53)

From this equation we see that the couple vector M⃗ couple is independent of
the choice of the reference point P and only depends on the force vectors of
the couple and their points of action r⃗A and r⃗B.

10.6.4 Pure rotation around a fixed axis

Let us now consider pure rotation of a rigid body C about a fixed axis P
parallel to the z-axis, which does not translate (a⃗P = v⃗P = 0⃗). We choose
point P as reference point. There is no translation of this point, only the
angular acceleration of the rigid body α. As a consequence we have from
Eq. (9.29) that a⃗G = α⃗ × r⃗G/P − ω2r⃗G/P . Substituting this into Eq. (10.22)
we obtain:

If : a⃗P = v⃗P = 0⃗ (10.54)∑
i

MC,i/P,2Dk̂ = mtotr⃗G/P × (α⃗ × r⃗G/P − ω2r⃗G/P ) + IG,zzαC k̂

= mtotρG/P ρ̂ × (αk̂ × ρG/P ρ̂) + IG,zzαC k̂

= (mtotρ
2
G/P + IG,zz)αk̂ (10.55)

= IP,zzαk̂ (10.56)

In the last step we used the parallel axes theorem IP,zz = mtotρ
2
G/P + IG,zz,

where ρG/P is the smallest distance between the parallel axes through G and
P . The conclusion from Eq. (10.56) is that for a rigid body C that rotates
in-plane around a fixed axis P : the sum of the moments with respect to the
fixed axis P equals the product of the moment of inertia IP,zz and the angular
acceleration αC of the rigid body C.
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10.7 Vectors in dynamics
In this textbook many different kinetic and kinematic vectors are introduced.
We summarise these vectors, their labelling and their dependence on reference
points.

10.7.1 Dependencies of vectors on reference points
When a single force F⃗ A acts on a rigid body C with point of action r⃗A and
reference point r⃗P for rotations, a variety of vectors are used to analyse the
dynamics. These vectors and their dependence on position vectors r⃗A and r⃗P

are summarised in Table 10.1.

Table 10.1: Dependencies of the vectors used to analyse the dynamics of a rigid body C with
CoM G, on the point of action A of force F⃗ A and the choice of reference point P .

Vector Depends on:
r⃗A r⃗P

F⃗ A ✓ ✗

a⃗G ✗ ✗

M⃗A/P ✓ ✓

M⃗ couple r⃗A/B ✗

α⃗C ✓ ✗

L⃗C/P ✗ ✓
d
dtL⃗C/P ✓ ✓

Note that the subscript P is added to the vectors M⃗A/P and L⃗C/P because
they depend on r⃗P . It might seem strange that a moment vector can depend
on the choice of the reference point P , while the dynamics of the system (i.e.
the acceleration a⃗G and angular acceleration α⃗C) do not depend on it. To
understand this, we repeat Euler’s second law for planar motion Eq. (10.22):

MC/P,2Dk̂ = r⃗G/P × (mtota⃗G) + IC/G,zzαC k̂ (10.57)

It can be seen that changing P only results in a change in the relative position
r⃗G/P , such that even for identical dynamics (a⃗G and αC both constant), the
moment vector M⃗C/P,2D acting on the system C can change. Another way to
look at is to realise that Eq. (10.22) shows that a moment vector M⃗C/P , that
originates from a force F⃗ A = mtota⃗G, has two effects: 1. Linear acceleration
of the CoM of the system, such that the angular momentum L⃗C/P of G with
respect to P changes. 2. Generate an angular acceleration α⃗C . Only the first
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effect depends on the choice of P . Remember that the reference point P should
either be chosen as a fixed point in an IRF, or as the (accelerating) point
P = G that moves along with the CoM of the system C. It is not allowed to
choose another accelerating or rotating point as reference point P , since then
Euler’s second law does not hold anymore. Finally note that the dependence
of α⃗C and d

dtL⃗C/P on the point of action A of the force in Table 10.1 is not
a direct dependence, since you can calculate these vectors from kinematics
without knowing what A is (there is only a dependence on the point of action
via Euler’s second law), therefore A is not needed as subscript in these cases.

10.7.2 Labelling scalars and vectors in dynamics
As discussed in the previous subsection, the magnitude and direction of vectors
can depend on the point of reference and point of action, and therefore these
points have to be clearly identified to prevent making mistakes. Here we will
describe how to provide this kind of important information via labels (see also
Sec. 2.1.2). Labelling can save time, since it avoids having to writing for each
symbol a sentence like: ”M⃗A/P is the moment vector generated by force F⃗ A

(with point of action A) with respect to reference point P”. Labels reduce the
risk that confusion can occur about the meaning of a symbol. Here we provide
a few conventions we recommend for using labels in dynamics:

1. Every mathematical quantity (e.g. scalar, vector, tensor) should get a
unique symbol to identify it, conventions are:

• r⃗, v⃗, a⃗ are symbols for position, velocity and acceleration vectors.
• ω⃗, α⃗ are symbols for angular velocity and acceleration vectors.
• m, I, p⃗ and L⃗ are mass, moment of inertia, momentum and angular

momentum vectors.
• F⃗ and M⃗ are force and moment vectors (so e.g. don’t use N⃗ for a

normal force but instead use F⃗ N).
• W , V and T are work, potential energy and kinetic energy.
• J⃗ and H⃗ are impulse and angular impulse.

2. If the problem deals with multiple objects, each object should get a
unique label (letter, number, word), that is indicated in the sketch.

3. Every relevant point (e.g. position, CoM, point of action, reference point)
in the sketch should get a unique label.

4. Every quantity should get sufficient subscripts to define it uniquely. We
will use the following conventions for these definitions:

• r⃗A, v⃗A, a⃗A get a subscript A to indicate the point or point mass A
to which they refer.
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• ω⃗C , α⃗C get subscripts C to indicate the system/rigid body C they
refer to.

• Each mass mC gets a subscript to identify the object C it refers to,
while a moment of inertia IC/P,zz also refers to the reference point
P . The component zz of the inertia tensor can be left out if it is
clear that one deals with planar motion in the xy-plane.

• p⃗C = mC v⃗C,G is the momentum of object C with total mass mC

and L⃗C/P is its angular momentum vector with respect to reference
point P .

• F⃗ A is a force that acts on point of action A. A label to indicate
the source of the force can be added, like F⃗ rope,A. If two objects i
and j generate forces on each other, then F⃗ ij is the force acting on
i and F⃗ ji is the force acting on j, with F⃗ ij = −F⃗ ji according to
Newton’s third law.

• M⃗A/P is the moment vector as a result of the force F⃗ A with respect
to reference point P . Note that we use the slash / with the meaning
’with respect to’ or ’relative to’ similar as in relative position vectors.

• J⃗A,12 is the impulse vector of a force A on the time interval between
t1 and t2 and H⃗A/P,12 is the angular impulse vector of a force A
with respect to reference point P between t1 and t2.

• WA,12 is the work done by a force A between two states (times or
positions), VA is the potential energy of a force (field) A and TC is
the kinetic energy of an object C.

5. In some cases quantities can be labelled uniquely with fewer subscripts.
E.g. if there is only one object with mass in the problem, that mass can
be given the label m without subscript, but it is never allowed to leave
out the reference point labels P for moments M⃗A/P , moments of inertia
IP,zz, angular momentum L⃗P , and impulse vectors H⃗A/P,12, since the
whole meaning of those quantities is tied to the choice of reference point
P .

6. The use of labels according to the conventions above is a replacement for
clearly defining every symbol in words or equations separately. Providing
such a definition is also a valid approach.



210 10 KINETICS OF RIGID BODIES

10.8 Derivation moment on a system*
In this section we will derive and prove that the resultant moment of internal
forces on a system of point masses is zero, such that we only need to add the
moments of external forces to analyse the kinetics with Euler’s second law.
Derivation. Resultant moment on a system of many point masses.

If many forces are acting on a system C consisting of many point masses,
we can calculate the resultant moment M⃗C,P on the system with respect to a
single reference point P , by adding Eq. (10.15) for all point masses.

M⃗C,P =
∑

i

M⃗ i/P =
∑

i

r⃗i/P × F⃗ i (10.58)

Note that we always use the same reference point P for every moment in
the sum. The forces acting can be separated into external and internal forces,
where each point mass i experiences a moment due to the sum of external
forces F⃗ i,ext and due to the internal force vectors F⃗ ij acting on it by the other
point masses for which index j ̸= i:

M⃗C,P =
∑

i

M⃗ i/P =
∑

i

r⃗i/P × F⃗ i,ext +
∑

i

∑
j ̸=i

r⃗i/P × F⃗ ij (10.59)

We know from Newton’s third law that the internal forces always come in
pairs, such that we have both moments r⃗i/P × F⃗ ij and r⃗j/P × F⃗ ji contributing
to M⃗C,P . When adding these, as illustrated for F⃗ 12,int and F⃗ 21,int in Fig. 10.3,
we get:

r⃗i/P × F⃗ ij + r⃗j/P × F⃗ ji = (10.60)
r⃗i/P × F⃗ ij + r⃗j/P × (−F⃗ ij) = (10.61)

(r⃗i/P − r⃗j/P ) × F⃗ ij = (10.62)
r⃗i/j × F⃗ ij = 0⃗ (10.63)

Where we used that F⃗ ji = −F⃗ ji from Newton’s third law and use that
r⃗i/j × F⃗ ij = 0⃗ because of the collinearity of the forces along the line connecting
the point masses, that is parallel to r⃗i/j . From Eq. (10.63) we conclude that
every contribution to the resultant moment by an internal force F⃗ ij is cancelled
by another contribution by a force F⃗ ji. Therefore, the internal forces do not
contribute to the resultant moment acting on the system and Eq. (10.59) can
be simplified by only considering external forces.
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Concept. Moment on a system
The resultant moment vector

∑
i M⃗C,i/P acting on a system of point masses C

with respect to a reference point P is the sum over the moments of the external
forces.

∑
i

M⃗C,i/P,ext =
∑

i

r⃗i/P × F⃗ i,ext (10.64)

10.9 Angular momentum of a rigid body*

10.9.1 Angular momentum of a point mass

Similar to the momentum p⃗i = miv⃗i (which is also called the linear momentum),
we defined in Eq. (10.17) the angular momentum of a point mass as:

L⃗i/P ≡ r⃗i/P × p⃗i = r⃗i/P × (miv⃗i) (10.65)

10.9.2 Angular momentum of a system

Using Eq. (10.65), we can now determine the angular momentum of a system
of point masses, by summing the angular momentum of all point masses, for
the same reference point P :

L⃗C,P =
∑

i

L⃗i/P =
∑

i

r⃗i/P × (miv⃗i) (10.66)

Derivation. Angular momentum of a system using the CoM
Eq. (10.66) can be simplified, as we will derive below, by utilising the properties
of the CoM and these kinematic equations:

r⃗i/P = r⃗G/P + r⃗i/G (10.67)
v⃗i = v⃗G + v⃗i/G (10.68)

We substitute these two equations into Eq. (10.66), and use that the terms
that do not contain the index i can be taken outside of the sums:
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L⃗C,P =
∑

i

L⃗i/P =
∑

i

(r⃗G/P + r⃗i/G) ×
[
mi(v⃗G + v⃗i/G)

]
(10.69)

= r⃗G/P × v⃗G

(∑
i

mi

)
+ r⃗G/P ×

(∑
i

miv⃗i/G

)

+
(∑

i

mir⃗i/G

)
× v⃗G +

∑
i

mir⃗i/G × v⃗i/G (10.70)

= r⃗G/P × (mtotv⃗G) +
∑

i

mir⃗i/G × v⃗i/G (10.71)

= L⃗G/P +
∑

i

L⃗i/G (10.72)

We obtained four terms in Eq. (10.70), of which the middle two are zero, because
it follows from the definition of the CoM Eq. (7.37) that if P = G we have∑

imir⃗i/G = (∑imi)r⃗G/G = 0⃗, and the same holds for its time derivative∑
imiv⃗i/G = 0⃗.
We have thus derived with Eq. (10.72) that the angular momentum of a

system of point masses with respect to an arbitrary point P is identical to the
sum of the angular momentum of a point mass equal to the total mass mtot of
the system at the CoM with respect to point P , and the angular momentum
of the system with respect to point G, its CoM.

10.9.3 Angular momentum of a rigid body

The term ∑
i L⃗i/G in the angular momentum expression Eq. (10.72) is still a

bit difficult to evaluate, since it is a sum over many point masses. It can be
simplified for rigid bodies by making use of the property that we derived in
the previous chapter that all point masses in a rigid body C have the same
angular velocity ωC .

Derivation. Angular momentum of a rigid body with respect to its CoM.

From Eq. (9.26) we have the kinematic equation that holds for all point
masses i in the rigid body:

v⃗i/G = ω⃗ × r⃗i/G (10.73)

We substitute this equation in Eq. (10.71) for the angular momentum L⃗C,G =∑
i L⃗i/G for a rigid body with respect to its CoM:
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∑
i

L⃗i/G =
∑

i

mir⃗i/G × v⃗i/G (10.74)

=
∑

i

mir⃗i/G ×
(
ω⃗ × r⃗i/G

)
(10.75)

=
∑

i

mi

[
(r⃗i/G · r⃗i/G)ω⃗ − (r⃗i/G · ω⃗)r⃗i/G

]
(10.76)∑

i

L⃗i/G,2D =
∑

i

mi[(x2
i/G + y2

i/G + z2
i/G)ωk̂

−(zi/Gω)(xi/Gı̂ + yi/Gȷ̂ + zi/Gk̂)] (10.77)

=
∑

i

mi

[
ρ2

i/Gωk̂ − zi/Gω(xi/Gı̂ + yi/Gȷ̂)
]

(10.78)

= (Izzk̂ + Ixz ı̂ + Iyz ȷ̂)ω (10.79)

In this derivation we used this vector identity for a triple product to obtain
Eq. (10.76): a⃗ × (⃗b × c⃗) = (a⃗ · c⃗)⃗b − (a⃗ · b⃗)⃗c. In Eq. (10.77) we introduced a
Cartesian coordinate system with origin G and z-axis in the direction ω⃗ = ωk̂,
such that r⃗i/G = xi/Gı̂ + yi/Gȷ̂ + zi/Gk̂. In Eq. (10.78) we write the expression
in terms of the distance ρi/G to the z-axis with ρ2

i/G = x2
i/G +y2

i/G. We also find
that in 3D the angular momentum vector ∑i L⃗i/G is not necessarily parallel
to the angular velocity vector ω⃗ since it also contains a term along the ı̂ and
ȷ̂ directions. In the last equation Eq. (10.79) we simplify the expression by
introducing the components Izz, Ixz and Iyz of the inertia tensor IC of the
rigid body C, that follow from the equation L⃗ = Iω⃗. The two subscripts, e.g.
in Izz, indicate the relation between the Lz and ωz vector component.

10.9.4 Derivation of the inertia tensor
Note that a similar equation to the parallel axis theorem can be derived for
the products of inertia by substituting r⃗i/P = r⃗i/G + r⃗G/P in Eq. (10.76) and
Eq. (10.79), while using the properties of the CoM:

IP,xz = −mtotxG/P zG/P + IG,xz (10.80)

The full inertia tensor with respect to an arbitrary point P can thus be
written as the sum of an inertia tensor of the CoM IG,P and an inertia tensor
IC,G of object C with respect to the CoM:

IC,P = IG,P + IC,G (10.81)
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IG,P = mtot

(y2
G/P + z2

G/P ) −xG/P yG/P −xG/P zG/P

−yG/PxG/P (x2
G/P + z2

G/P ) −yG/P zG/P

−zG/PxG/P −zG/P yG/P (x2
G/P + y2

G/P )

 (10.82)

IC,G =

IG,xx IG,xy IG,xz

IG,yx IG,yy IG,yz

IG,zx IG,zy IG,zz

 (10.83)

10.10 Derivation of Euler’s second law*
After having introduced the equations for angular momentum and moment
of inertia, we are now ready to analyse the effect of moments on the rotation
of rigid bodies, and will show how Euler’s second law that was introduced in
Eq. (10.21), can be derived.

10.10.1 Euler’s second law

We first extend Eq. (10.15) to a system of point masses C, with respect
to the same reference point P , and rewrite the moments by substituting∑

j F⃗ ij = mia⃗i. The resultant moment M⃗C/P on C is then given by:

M⃗C/P =
∑

i

M⃗ i/P =
∑

i

r⃗i/P × (mia⃗i) (10.84)

To see how the right term of this equation is related to the properties of the
total angular momentum L⃗C/P of C, we compare it to the time derivative of
Eq. (10.66):

d
dtL⃗C/P = d

dt
∑

i

L⃗i/P = d
dt
∑

i

r⃗i/P × (miv⃗i) (10.85)

=
∑

i

[miv⃗i/P × v⃗i + r⃗i/P × (mia⃗i)] (10.86)

To simplify this equation further, we would like to eliminate the terms
v⃗i/P × v⃗i. There are two ways to ensure this:

1. Use a fixed reference point P that has zero velocity and acceleration v⃗P =
a⃗P = 0⃗ with respect to the origin of an IRF. Then v⃗i = v⃗i/P + v⃗P = v⃗i/P .
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Substitution into Eq. (10.85) results in a term v⃗i/P × v⃗i/P = 0⃗. Thus for
a fixed point P we obtain from Eq. (10.86):

d
dt
∑

i

L⃗i/P =
∑

i

r⃗i/P × (mia⃗i) (10.87)

2. Choose the CoM as the reference point. Then we substitute v⃗i = v⃗i/G+v⃗G

and get ∑imiv⃗i/G × (v⃗i/G + v⃗G) , where the terms v⃗i/G × v⃗i/G = 0⃗ are
zero and where the term [∑imi(v⃗i − v⃗G)] × v⃗G is also zero because∑

imiv⃗i = mtotv⃗G. Then we obtain from Eq. (10.86) an equation that is
even valid if G has a nonzero velocity or acceleration:

d
dt
∑

i

L⃗i/G =
∑

i

r⃗i/G × (mia⃗i) (10.88)

Since the right side of Eq. (10.84) is identical to that of Eq. (10.87) and
Eq. (10.88), we obtain Euler’s second law.

Concept. Euler’s second law
Euler’s second law states that the total external moment acting on C equals
the time derivative of the total angular momentum of C, as long as a reference
point P is chosen that is fixed in an IRF or the CoM G is used as reference
point.

M⃗C/P,ext = d
dtL⃗C/P (10.89)

M⃗C/G,ext = d
dtL⃗C/G (10.90)

This equation relates moment and angular momentum in a similar way
as Newton’s second law F⃗ = dp⃗

dt = ma⃗ relates force and momentum. The
subscript ext indicates that only external moments contribute to the resultant
moment on the rigid body.

10.10.2 Euler’s second law for a rigid body
Euler’s second law can be applied to rigid bodies by using the properties of the
angular momentum of rigid bodies that we have derived earlier in this chapter
in Eq. (10.71) and the inertia tensor Eq. (10.30), which can be combined to
obtain the total angular momentum of a rigid body C:

L⃗C,P = r⃗G/P × (mtotv⃗G/P ) + IC,Gω⃗C (10.91)
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This equation is substituted in Eq. (10.89). By taking the time derivative of
Eq. (10.91), using that a⃗P = 0⃗ in an IRF and using that v⃗G/P × v⃗G/P = 0⃗ we
obtain:

Concept. Euler’s second law for a rigid body C

∑
i

M⃗C,i/P,ext = r⃗G/P × (mtota⃗G) + d
dt (IC,G) ω⃗C + IC,Gα⃗C (10.92)

Eq. (10.92) shows that the resultant moment acting on a rigid body equals
the sum of the of three components. We will discuss all three of them, in
particular their relevance for the analysis of the planar kinetics of rigid bodies.

First there is the term r⃗G/P × (mtota⃗G), which is due to the angular mo-
mentum of the centre of mass L⃗G/P and becomes zero if the CoM is chosen
as a reference point because r⃗G/G = 0⃗. Note that from Eq. (8.13) we have∑

i F⃗ i,ext = mtota⃗G, which can help to evaluate a⃗G and the contribution of
this term. Note that if we are dealing with point masses, we only have this
first term.

The second term is d
dtIC,Gω⃗C is relevant when the inertia tensor changes in

time. In the previous section we calculated IC,G with respect to a Cartesian
coordinate system. When an object changes orientation with respect to that
system, its inertia tensor can change because the moment and product of
inertia integrals change. However, in 2D planar kinetics all objects move in the
xy-plane and all forces are tangential to the xy-plane, such that all angular
velocity and angular acceleration acceleration vectors point in the z-direction,
and the same holds for the moment vectors. In planar kinetics, which is the
focus of this textbook, the orientation of the rigid body therefore does not
change such that we always have that the time derivative of the inertia tensor
d
dtIC,G is zero, which substantially simplifies the dynamics, but eliminates
the occurrence of special dynamic effects like precession that will be dealt
with when treating 3D dynamics. Note that another way to ensure that the
orientation of the rigid body with respect to the coordinate system does not
change is to fix the coordinate system to the rigid body, and have it rotate
along with it. This is often the method of choice for analysing more advanced
rigid body dynamics problems but the drawback of that is that you are not in
an IRF anymore.

Finally we have the term IC,Gα⃗C . As discussed in the previous section, in
planar kinetics we only deal with rigid bodies with diagonal inertia tensors,
with both M⃗C,P and α⃗C pointing along the z axis, such that Izz is the only
relevant term in the inertia tensor, such that this term becomes IzzαC k̂. From
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these considerations, we can significantly simplify Euler’s second law for the
case of 2D motion in the xy-plane:

Concept. Euler’s second law for planar 2D kinetics of rigid body C∑
i

MC,i/P,2Dk̂ = r⃗G/P × (mtota⃗G) + IG,zzαC k̂ (10.93)

This important equation is much easier to deal with than Eq. (10.92) and
can be used to analyse many dynamic systems, as long as we keep in mind
that it is only valid for 2D planar systems.

10.11 Summary
In this chapter we have introduced the concepts needed to analyse the planar
kinetics of rigid bodies. The moments of forces were introduced, the angular
momentum of rigid bodies was calculated. The moment of inertia was defined
and methods to determine it for solid continuous bodies were introduced.
Finally, this allowed us to determine Euler’s second law, and the equation
of motion for rotations of rigid bodies. In essence our toolbox to analyse
the planar dynamics of rigid bodies and point masses is quite complete now.
However, in some cases the principles of work and energy, and that of impulse
and momentum, can facilitate the analysis of the kinetics of rigid bodies. We
will extend these concepts and apply them to rotations in the next two chapters.

• Euler’s first law ∑
F⃗ ext = mtota⃗G (10.94)∑
Fext,x = mtotẍG (10.95)∑
Fext,y = mtotÿG (10.96)

– The sum of internal forces on a rigid body or system is always zero.
• Resultant moment on a rigid body

M⃗C/P,ext =
∑

i

M⃗ i/P,ext =
∑

i

r⃗i/P × F⃗ i,ext (10.97)

– The sum of internal moments on a rigid body or system is always
zero.

• Angular momentum of a point mass

L⃗i/P ≡ r⃗i/P × p⃗i = r⃗i/P × (miv⃗i) (10.98)
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• Total angular momentum of a rigid body

L⃗C/P = IC/P ω⃗C (10.99)

L⃗C/P,2D =
(
mtotρ

2
G/P + IC/G,zz

)
ωC k̂ (10.100)

• Moment of inertia Izz of a rigid body

IG =
∑

i

miρ
2
i/G =

∫
V
ρmρ

2
i/GdV (10.101)

– Techniques for solving these kind of moment of inertia sums and
integrals.

– Parallel axis theorem:
IP = mtotρ

2
G/P + IG (10.102)

– Adding and subtracting moments of inertia:
IC/P = IA/P ± IB/P (10.103)

• Euler’s second law

M⃗C/P = d
dtL⃗C/P (10.104)

MC/P,2Dk̂ = r⃗G/P × (mtota⃗G) + IC/G,zzαC k̂ (10.105)
– Only valid if reference point P is a fixed point in an IRF, or if
P = G.

– Only valid if the same reference point P is used for determining
M⃗C/P and L⃗C/P .

• Determine and solve the EoM for a rigid body
– Methodology to determine the EoM, using FBD, moments, con-

straints and Euler’s laws.
– Choose fixed axis as reference point when dealing with pure rotation

around fixed point.
– Simplify EoMs
– Solve EoMs using kinematic techniques.

• Couples
– A couple is a number of force vectors that generate a moment on a

system for which the sum of forces is zero such that a⃗G = 0⃗. For a
simple couple the number of forces is two.

– The resultant moment vector of a couple is independent of the choice
of reference point P . Such a vector is called a pure moment or couple
moment.



219

11 Work and Energy of Rigid Bodies

In the previous two chapters we have outlined the methodology for analysing
the kinematics and kinetics of rigid bodies. However, solving their equations of
motion by integration or other means is not always necessary. In this chapter
we introduce energy methods to analyse their dynamics, similar to what we
did for point masses in Ch. 7 but now also including moments and rotational
motion. In the first sections we will derive the concepts of work and kinetic
energy for rigid bodies.

11.1 Work on a rigid body

11.1.1 Work of a force on a rigid body

If an external force F⃗ B acts on a rigid body on a single point of action, then
the work it does is equal to the work it would do on a point mass that is
located on the point of action r⃗B. So, we can just use Eq. (7.2) to evaluate the
work done by such a force.

Concept. Work of a force on a rigid body

WB,1→2 =
∫ r⃗2

r⃗1
F⃗ B,ext · dr⃗B (11.1)

It is important to note that because a rigid body is not deformable, the
work done by internal forces on the rigid body is zero. This is obvious when
evaluating the work done in a reference frame where the rigid body is at rest,
since there all displacements dr⃗ are zero, and is still valid when the rigid body
moves as a consequence of Newton’s third law. Since it is not deformable, a rigid
body also cannot store potential energy. Forces from deformable structures,
like springs, can perform work, even if they are internal components in a system.
So, if you have a system consisting of multiple elements, e.g. two rigid bodies
connected by a spring, then you do have to consider the internal forces of that
system when determining the work done on the system.
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11.1.2 Work of a couple on a rigid body
Concept. Work of a couple

The work done by a pure moment or couple on a rigid body is given by the
integral over the dot product between the moment vector and the infinitesimal
angular displacement vector dϕ⃗ = dϕk̂.

Wcouple,1→2 =
∫ ϕ2

ϕ1
M⃗ couple · dϕ⃗ (11.2)

Derivation. Work of a couple

A simple couple M⃗ couple is generated by 2 equal and opposite external forces
F⃗ A = −F⃗ B that act on points A and B on the rigid body. We derive the work
done by the couple when the rigid body purely rotates around fixed point A
(e.g. because the point is chosen to be at the CoM: A = G) such that the work
done by F⃗ A is zero and we only need to consider the work done by F⃗ B.

Wcouple,1→2 =
∫ r⃗2

r⃗1
F⃗ B · dr⃗B (11.3)

=
∫ t2

t1
F⃗ B · v⃗Bdt (11.4)

=
∫ t2

t1
F⃗ B · (ω⃗ × r⃗B/A)dt (11.5)

=
∫ t2

t1
(r⃗B/A × F⃗ B) · ω⃗dt (11.6)

=
∫ ϕ2

ϕ1
M⃗ couple · dϕ⃗ (11.7)

Here we used the vector identity a⃗ · (⃗b × c⃗) = (⃗c × a⃗) · b⃗ and used Eq. (10.53).
Note that the moment of the couple, and the resulting expression for the work
of a couple are independent of the reference point for rotations. From Eq. (11.6)
it follows that the power of a couple is Pcouple = M⃗ couple · ω⃗.

11.1.3 Work of a force field
The situation becomes more complicated when the rigid body moves in a force
field. Then the total work of the force field can be determined by integrating or
summing the work over all point masses in the rigid body. This can sometimes
be quite complex if the force field changes with position. But it is easier for
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a constant gravitational force field which we already analysed in Eq. (7.43),
where we found that:

Wg,1→2 = −∆Vg = −mtotg∆r⃗G · ȷ̂ = −mtotg∆hG (11.8)

So the work done on the whole rigid body by the gravitational force is equal
to the height reduction of the CoM times the total weight of the rigid body.
Note that the moment of the gravitational force on a rigid body is zero when
the CoM is taken as reference point, therefore it does no work when the rigid
body rotates around its CoM. This can be derived as follows.

Derivation. The moment of gravity on a system or rigid body is zero with
respect to its CoM.

M⃗ g/G =
∑

i

r⃗i/G × F⃗ i,g =
∑

i

r⃗i/G × (−migȷ̂) (11.9)

=
(∑

i

mi(r⃗i − r⃗G)
)

× (−gȷ̂) (11.10)

= [mtot(r⃗G − r⃗G)] × (−gȷ̂) = 0⃗, (11.11)

where we used the property of the CoM that mtotr⃗G = ∑
imir⃗i.

11.2 Kinetic energy of a rigid body

As will be derived in Sec. 11.6, the kinetic energy of a rigid body C can be
written as a sum of a translational component TC,trans due to the speed v⃗G of
the CoM and a rotational component TC,rot due to its angular velocity ωC .

Concept. Kinetic energy of a rigid body C

TC,2D = TC,trans + TC,rot,2D (11.12)

TC,trans = 1
2mtot|v⃗G|2 (11.13)

TC,rot,2D = 1
2IG,zzω

2
C (11.14)
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11.3 Principle of work and energy
The principle of work and energy is the same for rigid bodies and rotations as
for point masses discussed in Ch. 7. The main difference when working with
rigid bodies is that we include the work of moments and the kinetic energy
due to rotation of the rigid body. A second important point to consider is that
internal forces inside the rigid body do not perform work. So, we sum over all
work done by forces and all kinetic energies to obtain:

Concept. Principle of work and energy for rigid bodies

Wtot =
∑

W1→2 =
∑

T2 −
∑

T1 = ∆Ttot (11.15)

11.4 Conservation of mechanical energy
Like in Sec. 7.2, the analysis of rigid bodies using work and energy principles
is facilitated when only conservative forces are acting on the system. For this
situation, the work done can be described in terms of the change in potential
energy since:

Wtot,cons = −∆Vtot (11.16)

Combining this with Eq. (11.15) we obtain, just like in Eq. (7.13) that the
mechanical energy does not change if only conservative forces act:

Concept. Law of mechanical energy conservation for rigid bodies

∆Vtot + ∆Ttot = 0 (11.17)

And for a large number of objects, the conservation of mechanical energy
equation between two times t1 and t2 is like Eq. (7.34):∑

i

Ti(t1) +
∑

i

Vi(t1) =
∑

i

Ti(t2) +
∑

i

Vi(t2) (11.18)

We can still use the potential energy expression of forces derived in Sec. 7.3.
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S Example 11.1 Determine the speed of the yo-yo with radius R in Fig. 11.1 after
falling a distance ∆h from rest.
We first note that the kinetic T1 and potential energy V1 are zero at t = t1, since the
yo-yo starts from rest. Then at t = t2 its gravitational potential energy has reduced
to a value V2 = −mg∆h. Since the force of the rope and the gravitational force
are conservative forces, we can apply the law of mechanical energy conservation to
determine the kinetic energy of the yo-yo at t2:

T1 + V1 = T2 + V2 (11.19)
0 + 0 = T2 −mg∆h (11.20)
T2 = mg∆h (11.21)

To solve the problem we need the constraint equation set by the rope of constant
length L0. The rope is in contact with the yo-yo over a distance (2π − ϕ)R. If the
angle ϕ increases, the rope releases from the yo-yo and the y-coordinate of the CoM
of the yo-yo decreases:

−yG = ∆h = L0 − (2π − ϕ)R (11.22)
vG,y = ẏG = −ωR, (11.23)

where we took the time derivative of the constraint equation set by the rope of the
yo-yo to relate it CoM velocity to its angular velocity. Now we write the equation
for the kinetic energy of the yo-yo T2, which is the sum of the translational and
rotational kinetic energy:

T2 = 1
2m|v⃗G|2 + 1

2IGω
2 (11.24)

= 1
2mv

2
G,y + 1

2

(
1
2mR

2
)

(vG,y/R)2 (11.25)

= 3
4mv

2
G,y = mg∆h (11.26)

|vG,y| =
√

4
3g∆h, (11.27)

where we used that for a solid disk IG = 1
2mR

2. Thus we obtain the velocity of the
CoM of the yo-yo. Note that the energy method does not give us the direction of the
velocity. But in this case, no forces act in the x direction and it is straightforward
to determine that it is downward v⃗G = −

√
4
3g∆hȷ̂. Note that this velocity is lower

than that of a free falling disk because part of the gravitational work is converted to
rotational kinetic energy.
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Figure 11.1: A yo-yo A is dropped from rest. Determine its velocity v⃗G after falling a distance
∆h.

11.5 Potential energy of a torsion spring
A special type of couple is a torsion spring which generates a couple proportional
to the angle by which it is rotated. For rotation of the torsion spring by an angle
ϕ with respect to its zero angle at ϕ = 0 around the z-axis, its angle-dependent
moment is:

M⃗ couple = −κϕk̂, (11.28)

where κ is the torsion coefficient, having units of N·m/rad. Substituting this
into Eq. (11.2) we obtain:

∆Vcouple =
∫ ϕF,2

ϕF,1
κϕk̂ · dϕk̂ (11.29)

Vcouple = 1
2κϕ

2 (11.30)
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11.6 Derivation kinetic energy of rigid body*
Derivation. We now derive the kinetic energy TC of a rigid body C, by
summing the kinetic energies of all point masses i inside the rigid body.

TC =
∑

i

1
2mi|v⃗i|2 (11.31)

= 1
2
∑

i

mi(v⃗G + ω⃗C × r⃗i/G) · (v⃗G + ω⃗C × r⃗i/G) (11.32)

= 1
2
∑

i

mi|v⃗G|2 + 1
2
∑

i

mi|ω⃗C × r⃗i/G|2

+1
2
∑

i

2miv⃗G · (ω⃗C × r⃗i/G) (11.33)

= 1
2
∑

i

mi|v⃗G|2 + 1
2
∑

i

mi|ω⃗C × r⃗i/G|2

+
(∑

i

mir⃗i/G
=0

)
· (v⃗G × ω⃗C) (11.34)

= TC,trans + TC,rot (11.35)

TC,trans = 1
2mtot|v⃗G|2 (11.36)

TC,rot = 1
2
∑

i

mi|ω⃗C × r⃗i/G|2, (11.37)

where the kinematic equation v⃗i = v⃗G + ω⃗C × r⃗i/G and the vector identity
a⃗ · (⃗b × c⃗) = c⃗ · (a⃗ × b⃗) were used. For 2D planar motion we obtain:

TC,rot,2D = 1
2
∑

i

mi|ωC k̂ × ρi/Gρ̂G|2 (11.38)

= 1
2

∑
i

miρ
2
i/G

=IG,zz

ω2
C (11.39)

= 1
2IG,zzω

2
C (11.40)

In summary:

TC,2D = TC,trans + TC,rot,2D = 1
2mtot|v⃗G|2 + 1

2IG,zzω
2
C (11.41)
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11.7 Summary
In this chapter we have extended the energy methods from Ch. 7 to rigid
bodies. It was derived how moments contribute to the work on the rigid body
and how the angular velocity of rigid bodies increases their kinetic energy.
By including these effects, the principle of work and energy and the energy
conservation concepts can also be applied to systems that include rigid bodies.

• Work of an external force on a rigid body

WB,1→2 =
∫ r⃗2

r⃗1
F⃗ B,ext · dr⃗ (11.42)

– Internal forces in a rigid body do not perform work.
• Work of a couple on a rigid body

Wcouple,1→2 =
∫ ϕ2

ϕ1
M⃗ couple · dϕ⃗ (11.43)

• Potential energy of a couple

Vcouple = 1
2κϕ

2 (11.44)

• Kinetic energy of a rigid body

TC,2D = TC,trans + TC,rot,2D (11.45)

TC,trans = 1
2mtot|v⃗G|2 (11.46)

TC,rot,2D = 1
2IG,zzω

2
C (11.47)

• Principle of work and energy

Wtot = ∆Ttot (11.48)

• Conservation of mechanical energy when only conservative
forces act

∆Vtot + ∆Ttot = 0 (11.49)
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12 Angular Impulse and Angular
Momentum

In Ch. 8 we have introduced the principle of impulse and momentum and the
law of momentum conservation that hold for systems of point masses and for
rigid bodies. However, these laws do not provide information on the rotations,
or changes in the angular velocity of rigid bodies. In this chapter we will
extend these concepts to rotation of rigid bodies, thus providing a method
to analyse both the changes in velocity of the CoM and the changes in the
angular velocity ω⃗, when external forces and moments act on rigid bodies.

12.1 Principle of angular impulse and angular
momentum

Derivation.

To derive the principle of angular momentum and angular impulse, we start
from Euler’s second law that was found in Ch. 10, Eq. (10.89):

∑
i

M⃗ i/P,ext = d
dt
∑

i

L⃗i/P (12.1)

This equation holds for the angular momentum of a system of point masses
with respect to a reference point P that is fixed in space in an inertial reference
frame. The equation can be rewritten by multiplying both sides by dt and
integrating over a time interval from t1 to t2:

∫ t2

t1

∑
i

M⃗ i/P,extdt =
∫ t2

t1
d
∑

i

L⃗i/P =
∑

i

L⃗i/P (t2) −
∑

i

L⃗i/P (t1) (12.2)

The integral on the left of Eq. (12.2) is defined as the total angular impulse
acting on the system H⃗ang,P,12:
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Concept. Angular impulse

H⃗ang,P,12 ≡
∫ t2

t1

∑
i

M⃗ i/P,extdt (12.3)

Note that only external moments contribute to the angular impulse, since
internal moments sum to zero just like in Euler’s second law.

By rewriting Eq. (12.2)we obtain the principle of angular impulse and angular
momentum, which states that the change in the angular momentum of the
system is equal to the impulse generated by external moments on the system:

Concept. Principle of angular impulse and angular momentum
The change in angular momentum is equal to the angular impulse by external
moments acting on the system.

∑
i

L⃗i/P (t1) + H⃗ang,P,12 =
∑

i

L⃗i/P (t2) (12.4)

Since we are mainly concerned with the analysis of kinetics of rigid bodies,
we use Eq. (10.91) to derive the principle of angular impulse and angular
momentum of a rigid body for the case of 2D planar kinetics:

Concept. Principle of angular impulse and angular momentum for the planar
2D kinetics of a rigid body C

r⃗G/P,1 × (mtotv⃗G,1) + IGω1k̂ +
∫ t2

t1
MC/P k̂dt

= r⃗G/P,2 × (mtotv⃗G,2) + IGω2k̂ (12.5)

If we choose P = G this principle simplifies to:

IGω1k̂ +
∫ t2

t1
MC/Gk̂dt = IGω2k̂ (12.6)

12.2 Choosing a convenient reference point
Although the principle of angular impulse and angular momentum equation
Eq. (12.5) can be used for any reference point P it can often be significantly
simplified by a smart choice of the reference point P . Let us discuss some
convenient choices:
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1. The centre of mass G of the system of point masses. This causes all the
cross products in Eq. (12.5) to disappear because r⃗G/G = 0⃗ and results in
Eq. (12.6). Moreover, this is the only option for choosing an accelerating
reference point.

2. Since the moment of an external force is M⃗ i/P = r⃗i/P × F⃗ i, choosing
the point of action of that force as a reference point P = i will result in
the angular impulse of that point becoming zero because r⃗i/i = 0⃗. This
is especially useful if the actual force F⃗ i is unknown.

3. In some cases the reference point P can be chosen such that either v⃗G is
parallel to r⃗G/P , or that one or more of the external forces F⃗ i is parallel
to r⃗i/P , which can simplify the situation because either r⃗G/P × v⃗G = 0⃗
or r⃗i/P × F⃗ i = 0⃗.

12.3 Conservation of angular momentum
A special situation is the case where the external angular impulse H⃗ang,P

is zero. We substitute this condition in Eq. (12.4) and obtain that angular
momentum does not change in this situation:

Concept. Law of conservation of angular momentum
If the total angular impulse generated by external moments on a system with
respect to a fixed reference point P is zero (H⃗ang,P = 0⃗), then the total angular
momentum of the system is conserved, and does not change in time.

∑
i

L⃗i/P (t1) =
∑

i

L⃗i/P (t2) (12.7)

Whether or not conservation of angular momentum occurs can depend on the
choice of the reference point P . For example when a single external force F⃗ i

acts at a fixed point of action i on a system, the reference point P can be
chosen at point i, or at any other point on the line of action of force F⃗ i, to
ensure that H⃗ang,P = 0⃗ and the law of conservation of angular momentum
holds.

An important case for conservation of angular momentum are systems on
which there are no external moments and forces acting because in those systems
the law of conservation of angular momentum holds for any choice of reference
point P .

It is important to note that when analysing systems, the boundaries of the
system can be chosen arbitrarily. By expanding the system boundaries to
include all objects that generate forces, all forces will become internal forces,
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and conservation of (angular) momentum for this expanded system will hold.
In the extreme case, the momentum and angular momentum of our whole
universe are expected to be constant, since there are no external forces and
moments acting on it, such that the law of conservation of momentum and
angular momentum hold.

12.4 Using angular impulse and angular momentum
In contrast to a point mass, a rigid body has both translational and rotational
degrees of freedom. By combining the methods from this chapter with those
from Ch. 8, we can fully analyse the changes in both the velocities and angular
velocities of rigid bodies. There are however two important limitations to these
methods:

1. Changes in position are not determined by this method, so the motion
needs to be known in advance, or the impulse needs to be so short that
the change in position can be neglected.

2. Sufficient information about the forces and their points of action is needed
to evaluate the angular impulse H⃗ang,P,12. This is substantially easier if
the position of the point of action of the forces is approximately constant
(e.g. in short collisions) or if only pure couples are acting for which the
point of action is irrelevant.

Finally we note that in cases where (angular) impulse and momentum do
not provide enough information, it can sometimes be combined with energy
methods to solve a problem, e.g. by combining conservation of (angular)
momentum with conservation of energy. Let us discuss an example.

S Example 12.1 Fig. 12.1 shows a ball A (a point mass), with mass m that
collides elastically with a dumbbell at rest BC that consists of two point masses B
and C with identical mass m.
Determine the velocities and angular velocities of the objects after the collision.
To solve this problem we first note that because the collision is elastic, all forces
are conservative forces. Also we note that there are no external moments or forces
acting on the system (gravity is not indicated and can thus be neglected).

Secondly, we need to choose a reference point for analysing the rotations of the
system. A logical choice is to use the point r⃗B as reference point. Since there
are no external forces or moments acting on the system we have conservation of
momentum and angular momentum, also we have conservation of energy. All forces
and velocities are in the x direction, so we only need to consider their x components.
This gives 3 equations, with three scalar unknowns after the collision: the velocity
of mass A vA,2,x, the velocity of the center of gravity of dumbbell BC vG,2,x and its
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Figure 12.1: A ball collides with a dumbbell, determine the speeds and angular velocity of
the dumbbell just after the collision.

angular velocity ω2.

mvA,1,x = mvA,2,x + 2mvG,2,x
Conservation of momentum

(12.8)

r⃗B/B ×mv⃗A,1 = r⃗B/B ×mv⃗A,2 + r⃗G/B × (mBC v⃗G,2) + IGω2k̂
Conservation of angular momentum

0⃗ = 0⃗ − L/2ȷ̂ × (2mvG,2,xı̂) + IGω2k̂

0 = mLvG,2,x + IGω2 (12.9)
1
2mv

2
A,1,x = 1

2mv
2
A,2,x +mv2

G,2,x + 1
2IGω

2
2

Conservation of energy
(12.10)

mv2
A,1,x = m(vA,1,x − 2vG,2,x)2 + 2mv2

G,2,x + (mLvG,2,x)2/( 1
2mL

2)
0 = 4v2

G,2,x − 4vA,1,xvG,2,x + 2v2
G,2,x + 2v2

G,2,x

vG,2,x = 1
2vA,1,x (12.11)

vA,2,x = 0
Using Eq. (12.8)

(12.12)

ω2 = (−mL/IG) 1
2vA,1,x = −vA,1,x/L

Using Eq. (12.9)
(12.13)

Here we simultaneously solved the equations of momentum conservation, angular
momentum conservation and energy conservation, while using that for a dumbbell,
IG =

∑
i miρ

2
i/G = 2m(L/2)2 = 1

2mL
2.
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12.5 Summary
In this section we have extended the principles of momentum and impulse
to rigid bodies. This involved introducing the angular impulse and angular
momentum, and the principle relating them. In addition we discussed the law
of conservation of angular momentum, which holds when the total external
angular impulse on a system is zero.

• Angular impulse

H⃗ang,P,12 ≡
∫ t2

t1

∑
i

M⃗ i/P,extdt (12.14)

• Principle of angular impulse and angular momentum∑
i

L⃗i/P (t1) + H⃗ang,P,12 =
∑

i

L⃗i/P (t2) (12.15)

In 2D : r⃗G/P,1 × (mtotv⃗G,1) + IGω1k̂ +
∫ t2

t1
MC/P k̂dt =

r⃗G/P,2 × (mtotv⃗G,2) + IGω2k̂ (12.16)

IGω1k̂ +
∫ t2

t1
MC/Gk̂dt = IGω2k̂ (12.17)

• Conservation of angular momentum if the angular impulse is zero:∑
i

L⃗i/P (t1) =
∑

i

L⃗i/P (t2) (12.18)
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Part IV

Vibrations and Strategy
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13 Vibrations

13.1 Introduction

In our daily life there are many types of periodic phenomena. The day-night
rhythm, the waves on the sea, the trees swaying in the wind, a child going back
and forth on a swing and the beating of our heart. Any type of periodically
repeating effect is called an oscillation. If the effect can be described by a
sinusoidal function in time with a single frequency, it is called a simple harmonic
oscillation. If an oscillation is of mechanical nature, it is called a vibration.

Vibrations can be very useful, for example in a pendulum or quartz clock to
keep track of time, or for generating sound tones with a speaker or musical
instrument. Vibrations can also be very detrimental in the case of shaking
buildings excited by earthquakes or in the uncontrolled resonant amplitude
increase (flutter) of aircraft wings. It is therefore important for engineers to
have good models for vibrations, both to use them for engineering vibrating
devices, and for engineering methods to prevent their detrimental effects.

In this chapter we will discuss several types of vibrations that are a direct
consequence of the combination of Newton’s second law and the properties of a
position or velocity dependent restoring force like that of a spring or a damper.
When writing down the equation of motion for such a system, according to the
methods discussed in Ch. 6, a second-order differential equation arises that we
have not yet encountered before. It should be noted that analysis of vibrations
can be performed using the methods of kinetics that we have already dealt
with before, the main challenge in this chapter is solving the special types of
differential equations that arise in vibration problems.

13.2 Free undamped vibrations

A mass-spring system is one of the simplest systems in which vibrations can
occur. It consists of a point mass A, at position coordinate yA,tot that is
hanging from the ceiling by a spring with spring constant k. Such a system
is a type of mechanical resonator. The motion of such a system is called
free undamped vibration. It is free or undriven because there is no external
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Figure 13.1: A mass A is suspended by a spring. When the spring is relaxed it has a length
L0. When it is in static equilibrium with the gravitational force, the spring
has a length yA,st. The displacement of the mass with respect to this static
equilibrium position is measured by position coordinate yA(t).

periodic or time-dependent driving force, and it is undamped because there is
no damping force acting on the mass.

Fig. 13.1 shows a sketch of what happens if a mass is suspended by a spring.
First of all the spring has a relaxed length L0 even if there are no forces acting
on it. Then if the mass A is released it moves down by a distance yA,st − L0,
due to gravity, to a static equilibrium position for which the sum of forces is
zero. Finally, if the mass is displaced from that position by an amount yA the
sum of forces is not zero such that the mass accelerates.

We determine the free vibrating motion of a mechanical resonator similarly
to other kinetic problems, using the methods of Ch. 6. First we determine
the EoMs and then we solve them. The sketch and coordinate system are in
Fig. 13.1 and we draw the FBD in Fig. 13.2 to obtain the EoM:∑

Fy = mAg − k(yA,tot − L0) = mAÿA,tot (13.1)

This EoM is a so-called second-order ordinary differential equation because
it contains the second time-derivative ÿA,tot. In contrast to ODEs that we
encountered in Ch. 5 it cannot easily be solved by integration. Instead, we
solve the ODE by first finding its particular solution and then its homogeneous
solutions.
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Figure 13.2: Free body diagram of the mass in a mass-spring system from Fig. 13.1.

Conveniently, an undriven mechanical resonator always has a static solution
with ÿA,tot = 0 and yA,tot = constant as particular solution. Therefore, to solve
free vibration problems, we always first find this static particular solution and
then determine the dynamic part of the motion by solving the homogeneous
ODE. This proceeds along the following steps:

1. Set the acceleration, velocity and other terms to zero and solve the EoM
for the static equilibrium position yA,tot = yA,st. This particular solution
is identical to the statics solution. If there are time-dependent functions
set them to their time-averaged value (so a term cosωt becomes zero).

2. Introduce a new coordinate yA(t) which has its datum (zero point) at
the static equilibrium point.

3. Substitute yA,tot = yA,st + yA(t) into the EoM. Then all static terms will
cancel out, and you obtain a ’dynamic’ homogeneous ODE which only
contains yA(t) and can be solved.

4. If you already know the equilibrium position, you can skip steps 1-3
above and define the coordinate yA with respect to that position, and
directly write down the dynamic EoM without the constant terms, since
you know that they will cancel out.

Let us illustrate this procedure.
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13.2.1 Determining the static equilibrium position
We first solve for the particular static solution yA,tot(t) = yA,st for which
ÿA,tot = 0 and yA,st is a constant. Substitution in Eq. (13.1) results in:

mAg − k(yA,st − L0) = 0 (13.2)
yA,st = mAg

k
+ L0 (13.3)

Thus we have found the static, time-independent solution yA,tot(t) = yA,st
of the ODE for which the y-coordinate of the mass is yA,st at all times. This
position is called the static equilibrium, equilibrium or rest position of the mass.
In this case, the static y-coordinate is the sum of the distance mAg

k the spring
is elongated by the gravitational force and the relaxed length L0 of the spring.

13.2.2 Equation of motion with respect to equilibrium
The static solution with ÿA,tot = 0, is a particular solution of the ODE.
However, it is not the only solution of the EoM, so let us now look for
time-dependent solutions of the ODE. We define a time-dependent function
yA(t) which represents the displacement of the mass with respect to the static
equilibrium position. The function yA(t) is added to the found static solution
such that the total displacement can be written as:

yA,tot = yA(t) + yA,st (13.4)

If we substitute this function yA,tot into equation Eq. (13.1), we find:

mAg − k(yA + yA,st − L0) = mAÿA (13.5)
−kyA = mAÿA (13.6)

Here we used Eq. (13.2) to eliminate yA,st. All constant, time-independent,
terms in the equation always sum up to zero, like they do in static equilibrium.
By rewriting Eq. (13.6) we find the equation of motion for free undamped
vibrations in the form of the following ordinary differential equation (ODE):

Concept. Equation of motion for free undamped vibrations
The equation of motion is a homogeneous second order linear ODE, that holds
at all times.

mAÿA + kyA = 0. (13.7)
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13.2.3 Solving the equation of motion

In Ch. 5 we discussed how first-order ordinary differential equations (ODE)
can be solved by integration. However, the ODE in Eq. (13.7) cannot be easily
solved by integration. Instead the strategy1 to solve this ODE is to find a
trial solution xA(t) of the right form with unknown parameters, substitute
it into the ODE and use the ODE and initial conditions to determine the
parameters. Since the ODE in Eq. (13.7) contains yA and its second derivative
ÿA it is logical to look for a trial solution that is a constant times its own
second derivative, like cos(ωnt) or eλt.

Before starting with the solution, it is important to note that Eq. (13.7) is a
homogeneous linear differential equation, because it only sums linear functions
of yA and its time-derivatives, which are equal to zero. These homogeneous
linear ODE have the following useful property: if we find two different solutions
of this ODE, yA,1(t) and yA,2(t), then substituting each of them individually in
Eq. (13.7) gives zero, so their sum yA = yA,1 +yA,2 will also be a solution of the
ODE, and summing many times is the same as multiplying, so yA = c1 ×yA,1 is
also a solution. These summative and multiplicative properties of the solutions
of the ODE simplify the analysis of the motion significantly. Moreover, they
allow solving the EoM with complex numbers, since if a complex function
yA = yA,r +iyA,i is a solution of the ODE, the functions yA,r and yA,i, which are
the real and imaginary part of yA, are also solutions of the ODE individually.

These ODEs can either be solved by trigonometric functions, or by complex
functions. If you are familiar with working with complex numbers, they often
make it simpler to solve the ODE. However, to make the reader familiar with
both methodologies, we provide both the trigonometric and complex solutions
in the derivation.

Derivation. Free undamped vibration of a mass spring system

Since we look for a function that is proportional to its own second derivative,
we use a trial solution of the form yA(t) = A cos(ωnt+ φ0) = ℜAce

iωnt where
ℜ stands for the real part of the function and Ac = Aeiφ0 . The value of the
parameters A, φ0 and ωn are unknown at this stage. Substituting this trial
solution into the ODE Eq. (13.1) we obtain:

1Although solving this kind of second-order ODE is part of most introductory calculus
courses, we discuss the procedure here for clarity.
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mAÿA + kyA = 0 (13.8)
(−mAω

2
n + k)A cos(ωnt+ φ0)

T rigonometric method
= 0 (13.9)

(−mAω
2
n + k)ℜAce

iωnt

Complex method
= 0 (13.10)

(k − ω2
nmA)yA = 0 (13.11)

Here we used that ẏA = −Aωn sin(ωnt+ φ0) and ÿA = −Aω2
n cos(ωnt+ φ0),

and similarly ẏA = ℜ[iAcωne
iωnt] and ÿA = ℜ[−Acω

2
ne

iωnt]. From Eq. (13.11)
we see that the proposed trial function is a solution if yA = 0, and if (k −
mAω

2
n) = 0. The solution yA = 0 is the static particular equilibrium solution

that we derived before, so we now find the solution of the EoM.

Concept. General solution yA(t) of the equation of motion for free undamped
vibration:

yA(t) = A cos(ωnt+ φ0) = ℜAce
iωnt (13.12)

k − ω2
nmA = 0 (13.13)

ωn =
√

k

mA
Natural angular resonance freq. (13.14)

The motion for free undamped vibration yA(t) is plotted in Fig. 13.3.

13.2.4 Resonance frequency, period and phase
So we have found that the trial solution only satisfies the ODE for a specific
value of ωn =

√
k/mA, which is called the natural angular resonance frequency

of the system and tells us something about the period of the vibration. The
period T after which the vibration repeats itself is found from cos(ωnt+ 2π) =
cos(ωn(t+ T )) from we find

T = 2π
ωn

Period (13.15)

fn = 1
T

= ωn

2π Natural resonance frequency (13.16)

Note that the found expression yA is a solution of the ODE for any value of
the complex amplitude Ac, which can be written as Ac = Aeiφ0 , where the real
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0 T/4 T 2T

Figure 13.3: The free undamped vibration yA(t) of a mass-spring system and its period T ,
amplitude A and the constants A1 and A2 indicated.

number A = |Ac| is the amplitude or magnitude of the vibration and the real
number φ0 is its phase at t = 0. In some cases it is more convenient to write
the solution as a sum of a cosine and sine function with prefactors A1 and A2
as follows:

yA(t) = A1 cos(ωnt) +A2 sin(ωnt) (13.17)

It can be shown that this equation is identical to that found in Eq. (13.12)
by substituting Ac = eiφ0 and using Euler’s equation eix = cosx+ i sin x and
taking the real part of the complex function:

yA(t) = ℜA[cos(φ0) + i sin(φ0)][cos(ωnt) + i sin(ωnt)] (13.18)
A1 = A cos(φ0) (13.19)
A2 = −A sin(φ0) (13.20)

A =
√
A2

1 +A2
2 Amplitude (13.21)

φ0 = − arctan (A2/A1) Phase at t = 0 (13.22)

The last four equations, were obtained by comparing Eq. (13.17) and Eq. (13.18).
They can be used to relate the amplitude A and phase φ0 to A1 and A2 and
vice versa. In Fig. 13.4 the relations between the motion yA(t) and these four
constants are visualised by a point moving along a circle with radius A.
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Figure 13.4: The free undamped vibration yA(t) of a mass-spring system visualised by a point
moving at angular velocity ωn along a circle with radius A (green arrow). The
initial angle ϕ0 at t = 0 and its relation to A1 and A2 is indicated.

13.2.5 Initial conditions
In the previous section we have found the solution of the ODE, however there
are still two unknown constants A and φ0 (or A1 and A2) that need to be
found to know yA(t) at all times. Similar to the time integration in Eq. (5.34),
we now also need initial conditions yA(t1) = y1 and ẏA(t1) = v1 to determine
the unknown constants as follows:

1. Determine the function yA(t) and its time derivative ẏA.
2. Substitute t1 and write down the two equations yA(t1) = y1 and ẏA(t1) =
v1.

3. Solve the two equations for the two unknowns, A1 and A2 or A and φ0.

S Example 13.1 As an example let us consider the case where the initial conditions,
position yA(0) = y0 and velocity ẏA(0) = v0 at t1 = 0 are known. We choose to use
Eq. (13.17), yA(t) = A1 cosωnt+A2 sinωnt and obtain the constants A1 and A2 as
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follows:

yA(0) = A1 = y0 (13.23)
ẏA(t) = −ωnA1 sinωnt+ ωnA2 cosωnt (13.24)
ẏA(0) = ωnA2 = v0 (13.25)
A2 = v0/ωn (13.26)

By combining this with Eq. (13.4) and Eq. (13.17) we find for the case that the
initial position y0 and velocity v0 are known that:

yA,tot(t) = A1 cos(ωnt) +A2 sin(ωnt) + yA,st (13.27)
yA,tot(t) = y0 cos (ωnt) + v0/ωn sin (ωnt) + yA,st (13.28)

If required A and ϕ0 can be determined using Eq. (13.21) and Eq. (13.22)

13.3 Free damped vibrations
In practice a vibration is never completely undamped, since there are always
small practical imperfections that cause some kind of dissipation due to non-
conservative forces. The most common type of damping, that is also most
easily analysed, is by a velocity proportional force F⃗ c = −cv⃗, that is generated
by a piston or other linear damper element. The force points in the opposite
direction from the velocity vector of the mass, and thus the power done by such
a force on the mass is given by P = F⃗ c · v⃗ = −c|v⃗|2, which is always negative.
This causes the kinetic and potential energy of the mass-spring system to
reduce to zero.

When connecting a linear damper to the mass, in parallel to the spring, as
shown in Fig. 13.5, we obtain a mass-spring-damper system, we have from
Newton’s second law that F⃗ k + F⃗ c = mAa⃗A, which when projected along the
y-axis, results in the following equation of motion:

Concept. Equation of motion for free damped vibrations with respect to the
equilibrium position

∑
Fy = −kyA − cẏA = mAÿA (13.29)
mAÿA + cẏA + kyA = 0 (13.30)

Here we note that normally mA, c and k are all positive real constants and in
static equilibrium ẏA = 0, such that the damper does not generate force and
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Figure 13.5: Examples of underdamped, overdamped and critically damped free vibrations.
For overdamped and critically damped vibrations, different initial conditions are
shown for the same ratio c/mA.
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does not affect yA,st, and therefore has the same value as in the undamped
case Eq. (13.2).
Derivation. Solving the EoM for free damped vibrations

To solve this equation of motion we propose the following complex trial
function:

yA(t) = ℜAce
λt. (13.31)

In this equation both Ac and λ are complex numbers with a nonzero real and
imaginary part. Note that we only use a complex trial function and don’t
use a trial function with trigonometric equations since working with complex
numbers is a lot easier when working with damped vibrations. Substitution in
Eq. (13.30) results in:

ℜ
([
mAλ

2 + cλ+ k
]
Ace

λt
)

= 0. (13.32)

Since this equation has to hold for all times t, the quadratic equation in the
square brackets has to be zero, and can be solved, to determine λ, using the
quadratic formula or ’ABC formula’, with A = mA, B = c and C = k:

mAλ
2 + cλ+ k = 0 (13.33)

λ = 1
2A

(
−B ±

√
B2 − 4AC

)
(13.34)

λ = 1
2mA

(
−c±

√
c2 − 4mAk

)
= −c±

√
∆

2mA
(13.35)

The term ∆ = c2 − 4mAk is called the discriminant and depending on the
sign of ∆, we obtain three different values of λ that correspond to three quite
different types of solutions:

1. ∆ > 0: Overdamped vibration, the values of λ are both real and negative
numbers with two solutions λo,± = −c±

√
∆

2mA
.

2. ∆ < 0: Underdamped vibration, the values of λ are complex numbers
with a negative real part −c/(2mA). When taking the square-root of a
negative discriminant ∆ we get a factor

√
−1 = i, such that:

√
∆

2mA
= i

√
4mAk − c2

2mA
= i

√
ω2

n − c2

4m2
A

≡ iωd (13.36)

On the right side of this equation we have defined the damped angular
resonance frequency ωd ≡

√
ω2

n − c2/(4m2
A), and it can be seen that for

small damping c, this damped resonance frequency is almost equal to
the natural angular resonance frequency (ωd ≈ ωn). We then obtain two
values for λ that solve the EoM: λu,± = −c

2mA
± iωd.
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3. ∆ = 0: Critically damped vibration. In this case there is only one value
λ = −c/(2mA). The value of the damping coefficient that belongs to this
situation ∆ = c2

c − 4mAk = 0 is called the critical damping coefficient
cc = 2

√
mAk. For c > cc we have overdamped vibrations and for c < cc

we get underdamped vibrations.

Let us now determine the different solutions Eq. (13.31) of the EoM with these
values of λ.

13.3.1 Overdamped motion
Since λ is a real number for ∆ > 0, we need to add the solutions of the EoM
for both values λo,± = −c±

√
∆

2mA
to get a function that satisfies the equation of

motion, while introducing two real constants A+ and A− that can be adjusted
to satisfy the initial position and velocity conditions. We find:

yA,o(t) = A+e
λo,+t +A−e

λo,−t (13.37)

yA,o(t) = A+e
−c+

√
∆

2mA
t +A−e

−c−
√

∆
2mA

t (13.38)

13.3.2 Underdamped motion
For the case ∆ < 0, the complex number Ac = Aeiφ0 can be substituted in
Eq. (13.31). Using the positive value2 λu,+ = −c

2mA
+ iωd we obtain the solution:

yA,u(t) = Ae
− c

2mA
tℜei(ωdt+φ0) = Ae

− c
2mA

t cos(ωdt+ φ0) (13.39)

The motion consists of a fast oscillating cosine function with a slowly decaying
amplitude given by the exponential function. Just like in Sec. 13.2.4 one might
also choose to replace cos(ωdt+ φ0) by the sum of a cosine and sine function,
in which case the solution is written as:

yA,u(t) = e
− c

2mA
t [A1 cos(ωdt) +A2 sin(ωdt)] (13.40)

13.3.3 Critically damped motion∗

For the general solution of critically damped motion we have a problem,
since we have found only one value of λ that corresponds to the real solution

2Note that we could just as well have chosen λu,−, but that would have had the same
effect as inverting the sign of φ0 because cos x = cos(−x). For consistency with earlier
definitions we choose the positive sign.



13.3 FREE DAMPED VIBRATIONS 247

yA = A0e
−c/(2mA)t. For this specific case it can by shown, as can be checked by

substitution in Eq. (13.30), that the function yA = Atte
−c/(2mA)t also obeys the

EoM, such that the general solution for critically damped vibrations becomes:

yA,c(t) = A0e
− c

2mA
t +Atte

− c
2mA

t (13.41)

As can be seen in Fig. 13.5 the critically damped vibrations approach zero
faster than the overdamped vibrations with the same damping c/mA.

13.3.4 More complex free vibrations
Up to now we only dealt with mass-spring and mass-spring-damper systems.
However, more complex systems can also result in the same equation of motion.
For instance, applying Euler’s second law to rotating rigid bodies connected
to springs leads to an EoM that is similar to that of the free vibration of a
mass-spring-damper system. Even though the constants and variables in that
EoM are different from yA, mA, k and c, the EoM can be written similarly by
introducing effective functions ye, me, ke and ce, such that the EoM becomes:

meÿe + ceẏe + keye = 0. (13.42)

Here, the function ye(t) can represent a position coordinate but can also be an
angle, or any generalised coordinate that uniquely describes the position or
orientation of the system. Mathematically, the motion of these more complex
systems can be derived in exactly the same way as a mass-spring-damper
system, like discussed in previous sections. Only the constants me, ce and ke

and function name ye(t) are different. So, everything we have derived for the
mass-spring-damper system remains valid for these more complex systems.

13.3.5 Free vibrations: solution procedure
Finally, we discuss step-by-step the procedure for analysing free vibrations
discussed in this section and the previous one.

1. Sketch the system and coordinate system.
2. Draw the free-body diagram and project the force and/or moment vectors

on the coordinate axes. Determine the relevant constraint equations.
3. Use Newton’s second law and Euler’s first law for translations and Euler’s

second law for rotations to determine the scalar equation of motion along
the relevant translation or rotation coordinate.

4. Determine the static equilibrium position yA,st by setting all time deriva-
tives in the EoM to zero ÿA,tot = ẏA,tot = 0 and solving for yA.
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5. Define the time dependent part of the motion as yA(t) = yA,tot − yA,st.
6. The system will only show free vibration if at least one of the EoMs can

be written in the form meÿe + ceẏe + keye = 0.
7. Determine the equations for the variable ye and constants me, ce and ke.

Now one can either solve the ODE, like in the next step 8, or directly go
to step 9 and use the known solutions.

8. To solve the ODE, substitute the trial function ye = ℜAce
λt and its

time-derivatives into the EoM to obtain −meλ
2 + ceλ+ ke = 0. Solve for

λ and substitute it back into the trial function to find the motion ye(t)
like explained in the previous sections.

9. If ce = 0, then we are dealing with free undamped vibration. In that case
the solution of the EoM is ye(t) = ℜAeiωnt+φ0 = A cos(ωnt+ φ0), with
natural resonance frequency ωn =

√
ke/me.

10. If ce ̸= 0 we are dealing with free damped vibration.
Determine the discriminant ∆ = c2

e − 4meke.
• If ∆ > 0 we are dealing with overdamped free vibration with
ye = A+e

λ+t +A−e
λ−t and λ± = −ce±

√
∆

2me
.

• If ∆ < 0 we are dealing with underdamped free vibration with
ye = Ae− ce

2me
t cos(ωdt+ φ0) and ωd =

√
ω2

n − c2
e/(4m2

e).
• If ∆ = 0 we are dealing with critically damped free vibration with
ye = A0e

− ce
2me

t +Atte
− ce

2me
t.

11. Two initial conditions of the form ye(t1) = y1 or ẏe(t2) = v2 need to be
solved to determine the two unknown constants in the solution (A & φ0,
A+ & A− or A0 & At). See Sec. 13.2.5.

12. In some cases it is convenient to rewrite the cosine with phase-shift φ0
into a sum of a cosine and sine using the mathematical equation:

A cos(ωt+ φ0) = A1 cos(ωt) +A2 sin(ωt), (13.43)

where A2 = A2
1 +A2

2 and tan(φ0) = −A2/A1.

S Example 13.2 Consider the car A, in Fig. 13.6 with a mass of m=1000 kg that
can be considered as a point mass. It has a spring stiffness of k=50000 N/m and a
damping constant of c = 1000 N·s/m. The car drops from a small height, such that
it reaches its equilibrium position yA(0) = 0 with a speed of v0 = −1 m/s at t = 0.

• Determine the motion yA(t) of the car.

We follow the steps from this section. The sketch and FBD are given in Fig. 13.6.
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Figure 13.6: Free damped vibration of a car suspension.

So, we project the forces and write down the equation of motion along the y-axis:∑
Fy = Fk,y + Fc,y + Fg,y = mAÿA,tot (13.44)

−k(yA,tot − L0) − cẏA,tot −mAg = mAÿA,tot (13.45)
−kyA − cẏA = mAÿA (13.46)

mAÿA + kyA + cẏA = 0 (13.47)

Here we used that yA,st = − mAg
k + L0 like in Eq. (13.2), and yA,tot = yA + yA,st

to eliminate the static particular solution. Although, since we are only asked for
the motion with respect to the equilibrium position, we could also have skipped
this step, and directly eliminate the static terms. Now we see that the equation of
motion Eq. (13.47) can be written in the form of Eq. (13.42), with ye = yA, me = mA,
ce = c and ke = k (we will encounter more complex cases later). Now we can
solve this EoM, like in Sec. 13.3. We will not repeat the derivation and directly
substitute the values of me, ce and ke in the solution. We first determine that the
discriminant ∆ = c2 −4mAk = −199×106 kg2/s2 is negative, such that we deal with
an underdamped vibration. Then we determine the damped resonance frequency as
ωd =

√
ke/me − ce/(4m2

e). The solution can then be written as:

yA(t) = Ae−(ce/2me)t cos(ωdt+ φ0) (13.48)

Finally we need to determine the constants A and φ0 from the initial conditions.
Since yA(t = 0) = 0, we find that φ0 = π/2. By taking the time derivative of yA,
with the product rule and using that ẏA(0) = v0 we find:

ẏA(0) = [−(ce/2me) cos(ωd0 + π/2) − ωd sin(ωd0 + π/2)]Ae−(ce/2me)0 = v0

= −ωdA = v0 = −1 m/s, (13.49)

from which we find A. Thus we have fully determined all constants in Eq. (13.48),
and fully determined the motion yA(t).
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A Example 13.3 For the car in the previous example we now design the optimal
damping, that reduces the time for the amplitude to go to zero. The initial speed v0
and kinetic energy of the car is kept constant and the damping coefficient c is varied
from underdamped c = 1

2cc, to critically damped c = cc to overdamped c = 2cc.
Plot the motion of the car for these three situations, and determine the optimal value
of c.
First we determine the constants ωd =

√
k
m − c2

4m2 , cc = 2
√
km and ∆ = c2 − 4mk,

and define ωdo =
√

∆/(2m). Then we use the initial conditions yA(0) = 0 and
ẏA(0) = v0 = −1 m/s, to determine the constants A∗ and φ0 for the underdamped,
critically damped and overdamped motion. One finds that φ0 = π/2 and with some
math this results in:

yA,u(t) = v0te
− c

2m t sin(ωdt)
ωdt

(13.50)

yA,c(t) = v0te
− c

2m t (13.51)

yA,o(t) = v0te
− c

2m t sinh(ωdot)
ωdot

(13.52)

We see that for a damping coefficient c = cc the frequencies ωd and ωdo approach
zero and because for small x we have sin x ≈ x and sinh x ≈ x, the three expressions
become equal. In Fig. 13.7 it can be seen the that the solution approaches zero fastest
when the damper is chosen to be critically damped with c = cc. The underdamped
motion damps slower because of the smaller value of c in the exponent, and the
overdamped motion is slower due to the slow decay of the A+ term in Eq. (13.38).

13.4 Forced vibrations
After having considered free vibrations we now turn to forced vibrations. In
a forced vibration there is an additional time-dependent external force F⃗ (t)
acting on the mass. These forced vibrations are important in examples like
clocks, vibrations in cars driving over a bumpy road, the beating of your
heart, audio speakers, and electromechanical frequency generators for data
transmission in your mobile phone.

Fig. 13.8 shows a sketch and FBD of a mass-spring-damper system driven
by a time-dependent force F (t) in the y-direction:

F⃗ (t) = F0ℜeiωtȷ̂ = F0 cos(ωt)ȷ̂ (13.53)

Similar to Eq. (13.1) we obtain the equation of motion by projection of the
forces on the y-axis and using Newton’s second law:∑

Fy = mAg − k(yA,tot − L0) − cẏA,tot + F0ℜeiωt = mAÿA,tot (13.54)
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Figure 13.7: Free damped vibration of a car suspension with ωn = 1 rad/s, initial velocity
v0 = −1 m/s for various values of the damping coefficient c. The critically
damped case with c = cc approaches the equilibrium position yA = 0 fastest.

Figure 13.8: Sketch and FBD of a spring-mass-damper system driven (forced) by a time
dependent force F⃗ (t). On the left the steady-state motion yA(t) of the point
mass is shown, which is delayed by a time ∆t = −φ0/ω with respect to the force
F (t).
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13.4.1 Determining the equilibrium position
Like for the free vibration we first determine the static equilibrium position
by setting all time derivatives to zero: ÿA,tot = ẏA,tot = 0. Note, that if the
average value of the external force Favg is not zero, it needs to be included
in the determination of the static equilibrium position. However, for a cosine
function Favg = 0. We find for the static equilibrium position in the presence
of vibrations:

mAg − k(yA,st − L0) + Favg = 0 (13.55)

yA,st = mAg

k
+ L0 + Favg

k
(13.56)

So for F (t) = F0 cosωt, the static equilibrium position yA,st is identical to
that found for free vibrations.

13.4.2 Equation of motion with respect to equilibrium
Similar to the case of free vibrations, we substitute yA,tot(t) = yA(t) + yA,st
into Eq. (13.54), such that all static terms cancel and we obtain the EoM for
the displacement yA(t) of the mass with respect to the equilibrium position:

Concept. Equation of motion for forced damped vibrations

ℜ
[
mAÿA + cẏA + kyA = F0e

iωt
]

(13.57)

We see that the only difference between the EoM for forced and free vibrations
is the forcing term F0ℜeiωt.

13.4.3 Particular and homogeneous solutions of the EoM
Let us assume we find a particular solution yA,f (t) of the differential equation
(13.57). Then we can add a solution yA,h(t) of the corresponding homogeneous
EoM, mAÿA + cẏA + kyA = 0. And then the resulting function yA(t) =
yA,f (t) + yA,h(t) is still a solution of the EoM Eq. (13.57) as can be seen here:

ℜ
[
mA(ÿA,f + ÿA,h) + c(ẏA,f + ẏA,h) + k(yA,f + yA,h) = F0e

iωt
]

(13.58)

The terms with yA,f (t) add up to F0e
iωt and the terms with yA,h add up

to zero. The function yA,f (t) is called the particular solution of the ODE
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and yA,h(t) is the homogeneous (or complementary) solution of the EoM for
forced vibrations. We see that the differential equation for yA,h(t) is identical
to that of a free damped vibration. So, we can just use the methods from the
previous section to analyse these solutions. Moreover, due to the damping,
these vibrations damp out after waiting for a sufficiently long time after which
we are left with yA,f (t), which is therefore also called the steady-state solution of
the forced damped vibration EoM, while yA,h(t) is called the transient (part of
the) solution. We note that yA,h(t) has two free constants Ah and φ0,h that still
need to be determined using the initial conditions. The procedure to determine
these constants using the initial conditions is identical to that explained in
section Sec. 13.2.5, although the equations for position and velocity are longer,
since they contain both the steady-state and transient part of the solution.

Figure 13.9: The general solution yA(t) of forced vibration is a sum of a steady-state solution
yA,f and a transient solution yA,h. Note that since the driving frequency ω
can be different from the resonance frequency ωd, beating effects (Fig. 2.1) are
observed in the initial transient phase of the motion.

13.4.4 Solving the EoM for forced vibrations
Since the transient solutions yA,h(t) were already found from the free vibration
analysis, we only need to solve the particular, steady-state solution yA,f (t).
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Derivation. Forced damped vibration

To solve the EoM we are looking for an equation that is proportional to its
own time-derivatives and also proportional to the forcing function. Therefore
we attempt using a trial solution of the following form:

yA(t) = ℜAce
iωt (13.59)

Note that in contrast to the case of free vibrations, we do not solve for an
exponent λ that gives us a (damped) natural frequency, but instead we take the
forcing frequency ω directly into the trial function yA. Let us now show that
this trial function is indeed a solution of the differential equation and determine
the complex amplitude Ac by substituting it into the EoM Eq. (13.57):

ℜ
[
Ace

iωt
(
−ω2mA + iωc+ k

)
= F0e

iωt
]

(13.60)

We see from this equation that our choice to choose eiωt as exponential function
was correct, since we can now divide both sides of this equation by eiωt to
eliminate it. Then the complex amplitude Ac needs to obey this equation to
ensure yA(t) is a solution at all times:

Ac(k − ω2mA + iωc) = F0 (13.61)

By dividing both sides by the term between brackets we find the complex
amplitude Ac of the vibration:

Ac = F0
k − ω2mA + iωc

(13.62)

Now we would like to express the complex amplitude as a product of a real
amplitude A and phase φ0, such that Ac = Aeiφ0 . We find for the amplitude:

A = |Ac| =
√
AcA∗

c (13.63)

=
[

F0
(k − ω2mA) + iωc

· F0
(k − ω2mA) − iωc

]1/2
(13.64)

= F0√
(k − ω2mA)2 + (ωc)2 = F0/mA√

(ω2
n − ω2)2 + ω2ω2

n
Q2

, (13.65)

where we used Eq. (2.34) and Q = k/(ωnc). From this equation, that is
plotted in Fig. 13.10 we see that for small values of damping c, the amplitude
approximately has a maximum if the driving frequency ω is equal to the natural
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frequency ωn =
√
k/mA, in this situation the system is driven at resonance.

The amplitude when driving at its natural frequency ω = ωn is A = F0Q/k,
while it is A = F0/k at low frequencies. The ratio between these two numbers
is called the quality factor Q = k/(ωnc) and is a measure of how many periods
it takes for the resonant vibrations to dampen out if the driving force is
removed. At critical damping Qc =

√
kmA/cc = 1

2 and for the undamped
system with c = 0 the amplitude and Q-factor becomes infinite when it is
driven at resonance. At very high driving frequencies ω the amplitude tends to
zero because the inertia of the mass prevents its motion to follow the driving
force.

Near and above the resonance frequency ωn, a phase difference φ0 develops,
such that the motion is delayed with respect to the driving force, as indicated
in Fig. 13.8 and Fig. 13.11. The value of this phase shift can be found by
taking the ratio of the imaginary and real parts of Ac = Aeiφ0 and Eq. (13.62):

tan(φ0) = ℑAc

ℜAc
= −ωc
k − ω2mA

(13.66)

We see that at low driving frequencies ω the motion is in phase with the force
because the phase difference φ0 = 0. At larger driving frequencies the phase
difference φ0 becomes negative, indicating that the motion lags behind the force.
This continues up to the natural resonance frequency, where ω2 = ω2

n = k/mA

and φ0 = −π/2, for which the motion is −90 degrees out of phase, and the
velocity is in phase with the force. At even higher frequencies, the phase lag
between motion and force increases more, until it reaches a phase difference
close to −180 degrees with φ0 = −π at very high driving frequencies ω ≫ ωn.

Steady-state solution for damped forced vibrations

We have now fully determined the complex amplitude Ac = Aeiφ0 , with A
being given by Eq. (13.65) and φ0 by Eq. (13.66), and thus we have found the
function yA,f (t) in Eq. (13.59) and proven that it is a solution of the EoM in
Eq. (13.57).

yA,f (t) = ℜAei(ωt+φ0) = A cos(ωt+ φ0) (13.67)

A = F0/mA√
(ω2

n − ω2)2 + ω2c2

m2
A

(13.68)

φ0 = arctan −ωc
k − ω2mA

(13.69)
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Figure 13.10: Amplitude A of the steady state motion yA,f as a function of the driving
frequency ω. At the natural resonance frequency ωn the amplitude rises
approximately by a factor Q =

√
km
c
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Figure 13.11: Phase φ0 of the steady state motion yA,f with respect to the force. At low
driving frequencies the motion is in-phase (φ0 = 0) with the driving force. At
resonance there is a phase lag of π/2 and at high frequencies, the phase lag is
π.
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In contrast to free damped vibrations, the steady-state solution Eq. (13.67)
is the same for underdamped, overdamped and critically damped systems.

Steady state solution for forced undamped vibrations

An important special case is the situation in which there is no damper connected
to the mass, such that c = 0. In this situation, the system will exhibit undamped
forced vibrations. The solution of this EoM can be easily obtained from our
previous analysis by just setting c = 0. It is seen from Eq. (13.65) and
Eq. (13.66), that then A = F0

mA
|ω2

n −ω2|−1 and φ0 = 0 for ω < ωn and φ0 = −π
for ω > ωn. We therefore have for the solution of the EoM for forced undamped
vibrations:

yA,fu(t) = F0
mA(ω2

n − ω2) cos(ωt) (13.70)

A special feature of undamped vibration is that its amplitude goes to infinity
if the driving frequency equals the natural resonance frequency (ω = ωn), see
Fig. 13.10 for Q = ∞. In practice such infinite amplitudes never occur and a
small damping constant c is always present.

13.4.5 More complex systems involving forced vibrations

The same methodology we have just derived for mass-spring-damper systems,
can be extended to rigid bodies and other more complex systems for which the
kinetic analysis yields an EoM that has the form of Eq. (13.57):

ℜ
[
meÿe + ceẏe + keye = F0,ee

iωt
]

(13.71)

For analyzing such systems one first determines the equations for ye, F0,e,
me, ce and ke by comparing Eq. (13.71) to the EoM and then analyses the
vibrations in an exactly identical way as for the mass-spring-damper system
(see also Sec. 13.3.4).

13.4.6 Forced vibration: solution procedure

Based on the previous analysis, let us summarise the step-by-step procedure
for analysing forced vibrations and obtaining their motion.

1. Sketch the system and coordinate system.
2. Draw the free-body diagram and project the force and/or moment vectors

on the coordinate axes. Determine the relevant constraint equations.
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3. Use Newton’s second law and Euler’s first law for translations and Euler’s
second law for rotations to determine and simplify the scalar equations
of motion, reducing it to a single scalar EoM.

4. Determine the static equilibrium position ye,st by setting all time deriva-
tives in the EoM to zero ÿe,tot = ẏA,tot = 0, setting the forcing term F (t)
to its time-averaged value Favg and solving for yA.

5. Define the time dependent part of the motion as ye(t) = ye,tot − ye,st.
6. The system will show forced vibration if the EoM can be written in the

form meÿe + ceẏe + keye = F0,e cos(ωt).
7. Determine the equations for ye, F0,e, me, ce and ke in terms of the given

variables, constants or numerical values.
8. Substitute a trial function of the form ye = ℜAce

iωt into the EoM by
taking the first and second derivative.

9. Obtain the equation Ac(−meω
2 + iceω + ke) = F0,e and determine the

complex steady-state amplitude Ac.
10. Use Ac = Aeiφ0 to convert the complex prefactor to a real amplitude A

and phase φ0.
11. If ce = 0, then we are dealing with forced undamped vibration. In

that case φ0 = 0 such that the steady-state solution of the EoM is
ye(t) = A cos(ωt), with A = F0,e/(ke −meω

2).
12. If ce ̸= 0 we are dealing with forced damped vibration. The complex

amplitude can be converted into a real amplitude A and phase φ0 using
the relation Ac = Aeiφ0 .
The steady-state solution of the EoM is: ye,f (t) = A cos(ωt+ φ0).
The amplitude of the steady-state solution is:
A = F0,e/

√
m2

e(ω2
n − ω2)2 + ω2c2

e.
The phase difference between force and motion is:
φ0 = arctan[−ωce/(ke − ω2me)].

13. Solutions ye,h(t) of the homogeneous EoM
meÿe,h + ceẏe,h + keye,h = 0 for free vibrations can be summed to the
steady state solution ye,f (t) to obtain new solutions of the EoM. For
damped vibrations (c > 0), the function ye,h(t) reduces to zero after
sufficient time, it is therefore called the transient part of the solution.
In general, any solution of the forced EoM can always be expressed as
ye(t) = ye,f (t) + ye,h(t).

14. Two initial conditions of the form ye(t1) = y1 or ẏe(t2) = v2 need to be
solved to determine the two unknown constants in the transient part
of the solution ye,h(t) (see Sec. 13.2.5). Note that for forced vibrations
the full motion ye(t) including both the steady-state and transient parts
needs to be used to determine these constants.
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13.4.7 More complex driving forces∗

Up to now we have only dealt with a single cosine shaped forcing function.
However, in practice more complex periodic forcing functions can act, which
are a sum of multiple cosine functions, each with a different driving frequency
ωj and a different complex amplitude Fj , and with the total forcing function
F (t) = ℜ

∑j=N
j=1 Fje

iωjt, where there are N terms such that j runs from
j = 1 . . . N . The methodology derived in this section can be used to find a
solution yA,j for each of these driving frequencies and then add all solutions to
find a solution for the full EoM. To satisfy the EoM each of these functions
yA,j needs to satisfy an ODE of the form:

mAÿA,j + cẏA,j + kyA,j = Fje
iωjt (13.72)

From each of these N ODEs, with yA,j = Ac,je
iωjt we determine the complex

motion amplitude Ac,j using the corresponding complex force amplitude Fj

and frequency ωj with Eq. (13.62), Ac,j = Fj/(k− ω2
jmA + iωjc). By summing

we find a steady-state solution of the form:

yA,f (t) = ℜ

∑
j

Ac,je
iωjt

 (13.73)

Since, according to Fourier analysis, any periodic time-dependent function
can be written as F (t) = ℜ

∑
j Fje

iωjt, this procedure allows to analyse the
vibrations and motion of a system in response to any periodic force. Note
that driving with two or more frequencies can result in beating, like shown in
Fig. 2.1.

13.4.8 Vibrations of rotating rigid bodies
As mentioned in Sec. 13.4.5, everything discussed in this chapter can also be
used to analyse vibrations of rotating rigid bodies. We illustrate this by an
example which includes a massive pulley as rigid body and also shows how to
reduce the equation of motion of multiple objects to a single one by constraint
equations.

A Example 13.4 Description:
The sketch of the problem is given in Fig. 13.12. A point mass B with mass mB

is suspended by a rope via a pulley A that has moment of inertia IG, radius R and
mass mA (so it is different from the massless pulleys we have considered earlier).
The other side of the rope is connected to a spring with stiffness k. The rope does
not slip and is always tight under tension. When the system is in static equilibrium,
the mass B is at height yB = he. We define ye = yB − he as the displacement of
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Figure 13.12: Sketch belonging to Example 13.4.

Figure 13.13: FBD belonging to Example 13.4.
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B with respect to this equilibrium position. θe is the angular displacement of the
pulley with respect to the equilibrium position. yC is the displacement of point C
with respect to the equilibrium position.

Question: Determine the rotational motion θe(t) of the pulley A with respect to
the equilibrium position when the system is released from rest at θe = θe0.

Solution:

• Draw the FBD of A and B shown in Fig. 13.13. Don’t forget the normal
force F⃗ N and gravitational force F⃗ g on the pulley. The rope generates forces
F⃗ rB and F⃗ rC on points B and C respectively and by Newton’s third law
the opposite forces act on the pulley. Ask yourself: why are the forces F⃗ rB

and F⃗ rC different? The answer is: they are different because a moment is
needed to provide the angular acceleration of the disk of the pulley according
to Euler’s second law, since the pulley is not massless. If the forces would be
equal this moment would be zero. This angular acceleration is provided via
the static friction force between the disk and the rope, which does not slip. In
the FBD we directly provide the equations to expand the vectors into their
scalar components along the y-axis.

• Determine the constraint equations from the rope. Since the motion with
respect to the equilibrium position is asked, we do not have to determine the
static equilibrium position anymore. does not slip and has constant length,
such that yC = −ye, and Because in equilibrium all coordinates with respect
to equilibrium are zero ye = yC = θe = 0, and because the distance from the
floor over the pulley to the floor is constant (Lrope + yC + ye = constant) and
because the rope does not slip, we obtain 2 constraint equations:

ye = −θeR (13.74)
yC = +θeR (13.75)
FrC = kyC , (13.76)

where we also wrote down the equation for the spring force FrC of the rope
on point C.

• Now we write down the equation of motion for mass B along the y-axis, with
respect to equilibrium: ∑

FBy = FrB = mB ÿe (13.77)

Note that the gravitational force is excluded, since it does not contribute to
the time-dependent part of the force.

• It is seen that the motion of the pulley is a pure rotation around its centre.
Due to the pin around which it rotates, there is no translation of its CoM, such
that we only need to consider the rotational EoM of the pulley, i.e. Euler’s
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second law. As reference point we choose the centre of the pulley G.∑
MAz = IGθ̈ek̂ (13.78)

r⃗B/G × (−F⃗ rB) + r⃗C/G × (−F⃗ rC) = IGθ̈ek̂ (13.79)
(−Rı̂) × (−FrB ȷ̂) + (Rı̂) × (−FrC ȷ̂) = IGθ̈ek̂ (13.80)

Now we use Eqs. (13.74)–(13.77) to simplify the EoM to a single scalar equation
in θe:

(RmB ÿe −RkyC)k̂ = IGθ̈ek̂ (13.81)
−R2mB θ̈e −R2kθe = IGθ̈e (13.82)

(1
2mA +mB)R2θ̈e +R2kθe = 0 (13.83)

In the last step we used that the moment of inertia of a disk around its centre
is IG = 1

2mR
2.

• We see that the EoM resembles a free undamped vibration meÿe + keye = 0,
with ye = θe, me = ( 1

2mA+mB)R2 and ke = R2k. So, as derived in Eq. (13.12)
we have as the solution:

θe(t) = A cos(ωnt+ φ0) (13.84)

ωn =
√
ke

me
=
√

k
1
2mA +mB

(13.85)

• Since the vibration starts from rest, we need θ̇e(0) = 0, from which we find
φ0 = 0. Then the initial angle is found to be A = θe0 because cos(0) = 1,
obtaining the final solution:

θe(t) = θe0 cos
(√

k
1
2mA +mB

t

)
(13.86)
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13.5 Summary

In this chapter we have analysed vibrations, a periodic type of motion that is
important in many fields of science and engineering. Vibrations originate when
a position dependent restoring force, like that generated by a spring, acts on a
mass. When there are no external forces one obtains free vibrations, while if
there are periodic external forces acting, we have forced vibrations. If a velocity
dependent force from a damper acts on the mass, the vibrations are damped.
There are two main challenges in analysing vibrations: 1. Deriving the correct
EoM using the FBD and Newton’s or Euler’s second law. 2. Solving the EoM,
which is mainly the mathematical challenge of solving a second order linear
ODE.

• For systems with a restoring force, like mass-spring systems, the EoM
as determined using Newton’s second law has a special form that causes
the motion to exhibit vibrations.

• First determine the static equilibrium position and then determine vibra-
tional motion y(t) with respect to this position.

• Free vibrations
If there are no time dependent external driving forces, we deal with free
vibrations and the following EoM:

meÿe,h + ceẏe,h + keye,h = 0 (13.87)

• If ce = 0, then we are dealing with free undamped vibration. In that case
the solution of the EoM is ye,h(t) = ℜAhe

iωnt+φ0,h = Ah cos(ωnt+ φ0,h),
with natural resonance frequency ωn =

√
ke/me.

• If ce ̸= 0 we are dealing with free damped vibration.
Determine the discriminant ∆ = c2

e − 4meke.

– If ∆ > 0 we are dealing with overdamped free vibration with
ye,h = A+e

λ+t +A−e
λ−t and λ± = −ce±

√
∆

2me
.

– If ∆ < 0 we are dealing with underdamped free vibration with
ye,h = Ahe

− ce
2me

t cos(ωdt+ φ0,h) and ωd =
√
ω2

n − c2
e/(4m2

e).
– If ∆ = 0 we are dealing with critically damped free vibration with
ye,h = A0e

− ce
2me

t +Atte
− ce

2me
t.

• The system will show forced vibration if the EoM can be written in the
form:

meÿe,f + ceẏe,f + keye,f = F0,e cos(ωt) (13.88)
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• If ce = 0, then we are dealing with forced undamped vibration. In
that case φ0 = 0 such that the steady-state solution of the EoM is
ye,f (t) = A cos(ωt), with A = F0,e/(ke −meω

2).
• If ce ̸= 0 we are dealing with forced damped vibration.

The steady-state solution of the EoM is:
ye,f (t) = A cos(ωt+ φ0).
The amplitude of the steady-state solution is:
A = F0,e/

√
m2

e(ω2
n − ω2)2 + ω2c2

e.
The phase difference between force and motion is:
φ0 = arctan[−ωc/(k − ω2mA)].

• Solutions ye,h(t) of the homogeneous EoM
meÿe,h + ceẏe,h + keye,h = 0 for free vibrations can be added to the
steady-state solution ye,f (t) to obtain new solutions of the EoM. For
damped vibrations (c > 0), the function ye,h(t) reduces to zero after
sufficient time, it is therefore called the transient part of the solution.
In general, any solution of the forced EoM can always be expressed as
ye(t) = ye,f (t) + ye,h(t).
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14 Solution Strategy Dynamics

In this textbook we have discussed a wide range of dynamical methods that
can be used to solve problems. In order to provide the reader a strategy for
solving problem and choosing the right methods we present in this chapter a
solution strategy and flow-charts. For each number in the flow-charts a short
description is presented. The strategy consists of three flow-charts: preparation,
kinematics and kinetics.

14.1 Flowchart preparation

Before starting with the kinematic and kinetic analysis, it is very important to
collect all relevant information, simplify it and choose the coordinate systems
to analyse the problem along the following steps that are also shown below in
the flow-chart preparation:

1. Can the problem be segmented in time?
2. If yes, then split the problem in segments and analyse each segment

separately. The initial conditions of a segment (initial positions and
velocities) are determined from the end conditions of the preceding
segment.

3. Choose one or more coordinate systems (CS) to analyse the kinematics.
Use the provided information to choose the system(s) which makes the
analysis simplest.

4. Make a sketch of the problem that contains all relevant objects, constraints
and coordinate systems.

5. Write down all variables, given values and other relevant equations and
information.

6. Determine all degrees of freedom (DOFs) needed to uniquely determine
the positions and orientations of all objects. E.g. xP , yP for every point
mass P and xG, yG and ϕ for every rigid body.

7. Determine the constraint equations and count the number of DOFs.
8. Reduce the number of DOF: using constraint equations, e.g. from fixed

points, joints, path curves.
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9. Determine the position vectors r⃗ and components of all relevant points
using the CS.

10. Determine if a kinematic or kinetic analysis is needed. If there is enough
information to solve the problem without considering the effect of forces
the problem can be solved with kinematics (go to step 11). Otherwise,
first the effect of forces should be determined using kinetics (go to step
18) and then the EoM is solved.

Start

1. Segmented? 2. Analyse seg-
ments separately

3. Choose CS

4. Make sketch 5. Write variables
and known values

6. Determine DOFs
7. Determine constraint

equations and count #DOFs

8. Reduce #DOFs

9. Determine r⃗i

10. AnalysisGo to 11 Go to 18

no

yes

Kinematics Kinetics
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14.2 Flowchart kinematics

11. Kinematics

12. Rigid body?Point mass

13. Translation

14. Rotating co-
ordinate system

Rigid body

15. Rotations & translations

16. Determine kine-
matic equations

17. Determine r⃗(t), v⃗, a⃗, ω⃗
and α⃗ by solving constraint

and kinematic equations

Go to 18: determine forces and moments from a⃗ and α⃗

11. This flowchart shows the strategy for dealing with kinematics problems.
12. First determine if we deal with a rigid body or point mass, since the

kinematics of point masses is significantly simpler.
13. Kinematics translation: the goal is to determine position r⃗, velocity v⃗

and acceleration a⃗ if only one of the three is known. This is done by
solving the ODE, e.g. by differentiation and integration over time t, or
along the path s or angle ϕ coordinate (see Table 5.1). In 3D we have
derived equations to differentiate along Cartesian, natural or cylindrical
coordinates (see Sec. 5.9). Multiple parametrisations can be used for
describing the motion (Sec. 5.9.6).

14. Rotating coordinate systems: the goal is to determine v⃗B, a⃗B of point
B in an IRF if v⃗′

B and a⃗′
B are known in a CS that rotates with angular
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velocity Ω⃗, or vice versa (see Sec. 9.7).
15. Rotating rigid bodies: the goal is to determine v⃗B, a⃗B of a point B that

is fixed on a rigid body if ω⃗ and α⃗ are known or vice versa. Translation
of a point is dealt with similar as in step 13. The kinematic equations for
rotation of rigid body are discussed in Ch. 9. In particular the instanta-
neous centre of rotation (IC, see Sec. 9.5.1) can facilitate determination
of velocities.

16. The kinematic equations are determined using steps 13-15.
17. Finally the motion r⃗(t), v⃗, a⃗, ω⃗, α⃗ is determined by solving the kinematic

and constraint (differential) equations. In case one needs to determine
forces: go to step 18 to achieve this with kinetics.
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14.3 Flowchart kinetics

18. Kinetics

19. Draw FBD

20. Determine ∑ F⃗
and project on CS

21. Determine CoM and IG

22. Method?

23. Work and Energy

25. Equations of Motion

24. (Angular) Im-
pulse and Momentum

26. Solving EoM 27. Vibrations

Go to 11: solve for r⃗(t), ϕ(t)

18. Kinetics is used to determine the equation of motion from the forces and
Newton’s and Euler’s laws.

19. The first step is to cut objects with mass loose and draw an FBD for
each of them (see Sec. 6.8).

20. Use the FBD to determine the sum of forces and sum of moments, and
project them on the coordinate system.

21. Determine the centre of mass CoM (see Sec. 7.3.2) and moment of inertia
IG of each object (see Sec. 10.5).

22. The kinetic analysis can be significantly simplified by using the method
of work and energy or the method of (angular) impulse and momentum,
so carefully choose the right method.
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23. Work and energy can be used if (see Ch. 7 and Ch. 11)
• Forces as a function of position F⃗ (r⃗) or moments as function of

angle are known.
• The trajectory/path is known or does not need to be determined.
• There is only 1 unknown scalar (e.g. the final speed).

Conservation of mechanical energy can further simplify the analysis if all
forces are conservative forces.

24. (Angular) impulse and momentum can be used if (see Ch. 8 and Ch. 12):
• Impulse and/or angular impulse by external forces can be deter-

mined.
• Only changes in (angular) velocity need to be determined, while the

positions are approximately constant.
• In case the sum of external forces and/or moments is zero the

analysis can be further simplified using conservation of momentum
and/or angular momentum.

• Besides (angular) momentum conservation, mechanical energy con-
servation or coefficients of restitution can be used to solve e.g.
collision problems.

25. Equations of motion. Determine the equations of motion for transla-
tion and rotation using Euler’s laws and project them on the CS to
obtain scalar equations (see Ch. 6 and Ch. 10). Combine them with
the constraint equations. Note that solving these equations is mostly a
mathematical and kinematics challenge.

26. Solve the (differential) equations of motion to obtain the motion r⃗(t).
Go to step 11 to determine motion of all points using kinematics.

27. Vibrations are special EoMs that are solved by special means for driven
and free vibrations that can be damped or undamped (see Ch. 13).
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Amplitude, 235, 246, 257
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Angular acceleration, 170, 179, 204,
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Angular momentum, 195, 207, 215
Angular velocity, 41, 92, 168, 179,
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213, 224, 243
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193, 216
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Closed system, 135, 151
Coefficient of restitution, 156
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Complex amplitude, 254
Complex numbers, 30, 239
Conservative force, 132, 141, 222
Conserved, 132, 150
Constraining objects, 106, 125
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115, 163, 176, 191, 204,
259

Contact force, 105, 116, 141, 155
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201, 213, 236, 265

Couple, 205, 220
Critically damped, 246, 257
Cross product, 21, 39, 53, 169, 182
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Damped vibrations, 245
Damper, 123, 235, 243, 257
Damping, 123, 137, 236, 247, 257
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Differential equation, 13, 30, 62, 79,
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Energy conservation, 139, 158, 226
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Equation of motion (EoM), 62, 79,

115, 217, 235, 245, 259
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Euler’s first law, 149, 193, 204
Euler’s second law, 196, 204, 214,
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158, 194, 204, 219, 227,
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External moment, 122, 194, 215,
228

Fixed reference frame, 185
Force vector, 41, 101, 112, 123, 127,
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Forced damped vibration, 253
Forced vibrations, 250, 263
Free body, 101
Free damped vibration, 253
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Free-body diagram (FBD), 109
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Gradient, 13, 58, 134
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Gravitational energy, 139
Gravitational force, 57, 102, 116,

133, 221, 238
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Heat, 135
Homogeneous ODE, 236, 252
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Kinematic analysis, 67, 79, 87, 163
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219, 228, 235, 265
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Mechanisms, 41, 105, 122, 136, 180
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Momentum, 63, 145, 155, 195, 211
Momentum conservation, 150, 159,
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165, 176, 188, 191, 204,
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191
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101, 112, 130, 183, 215,
235, 250
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Newton’s third law, 60, 101, 123,
147, 210, 219

Non-conservative forces, 135, 243
Normal force, 107, 119

Objects, 15, 20, 30, 39, 50, 59, 67,
103, 115, 136, 150, 194,
203, 216, 222, 229, 259
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Phase, 241, 254
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227, 235
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243
Potential energy function, 132
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125, 145, 155, 227

Principle of angular impulse and
angular momentum, 228

Principle of work and energy, 130,
141, 222

Product rule, 31, 78, 170, 186
Projection, 20, 42, 250
Pulley, 73, 259
Pure rotation, 165, 174, 206
Pure translation, 165, 204
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Reference frame, 116, 158, 181, 219
Reference point, 45, 176, 188, 202,

211, 220, 227
Reference system, 116
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259
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165, 174, 188, 193, 214,
219, 227

Segmented, 67, 96, 147
Signed magnitude, 43
Significant digits, 19, 28
Simple couple, 220
Sketch, 41, 101, 112, 236, 250
Slope, 79, 108, 119, 134
Speed, 30, 59, 76, 95, 132, 221
Spring, 105, 123, 139, 219, 263
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Static equilibrium position, 236,
252

Static friction, 119, 137
Steady-state solution, 253
Subscript, 20, 39, 50, 78, 140, 163,

207, 215
Symbol, 21, 32, 39, 53, 208

Tangential, 76, 91, 112, 127, 151,
216

Thermodynamics, 62, 136
Time derivative, 78, 86, 123, 137,

149, 165, 185, 212
Time integration, 57, 81, 158, 179,

242
Time interval, 76, 147, 158, 227
Total angular momentum, 214
Total energy, 135
Total mass, 212
Total momentum, 147
Trajectory, 68, 92, 193

Transient solution, 253
Transport theorem, 185

Uncertainty, 27
Underdamped, 257
Unit vector, 19, 41, 52, 76, 87, 108,

123, 165, 181

Vector field, 57
Vector function, 57, 72
Vector notation, 43, 104
Velocities, 20, 57, 70, 79, 98, 154,

188, 230
Velocity, 20, 30, 40, 57, 67, 76, 90,

101, 112, 123, 135, 145,
151, 165, 174, 181, 227,
235, 246, 255

Vibration, 32, 63, 79, 235, 247, 257

Wall, 158
Weight, 102, 221
Wheel, 121, 174
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