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ABSTRACT 
A high-fidelity digital representation of (part of) the human body is a key enabler for integrating humans in 

a digital twin. Among different parts of human body, building the model of the hand can be a challenging 

task due to the posture deviations among collected scans. In this paper, we proposed a posture invariant 

statistical shape model (SSM) of the human hand based on 59 3D scans of human hands. First, the 3D 

scans were spatially aligned using a Möbius sphere-based algorithm. An articulated skeleton, which 

contains 20 bone segments and 16 joints, was embedded for each 3D scan. Then all scans were aligned to 
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the same posture using the skeleton and the linear blend skinning (LBS) algorithm. Three methods, i.e. 

Principal Component Analysis (PCA), kernel-PCA (KPCA) with different kernel functions, and Independent 

Component Analysis (ICA), were evaluated in the construction of the SSMs regarding the compactness, the 

generalization ability and the specificity. The PCA-based SSM was selected, where 20 principal components 

were used as parameters for the model. Results of the leave-one-out validation indicate that the proposed 

model was able to fit a given 3D scan of the human hand at an accuracy of 1.21 ± 0.14 mm. Experiment 

results also indicated that the proposed SSM outperforms the SSM that was built on the scans without 

posture correction. It is concluded that the proposed posture correction approach can effectively improve 

the accuracy of the hand SSM, therefore enables its wide usage in human integrated digital twin 

applications. 

 

1. INTRODUCTION 
 

In the past decade, the Digital Twin [1] attracted wide interests for its ability to reduce 

costs and risks, improving the efficiency in product design and manufacturing, etc. [2]. 

Recently, the human integration in the digital twin has received increased attention in 

many applications [3], e.g. for empowering operators [4], monitoring and managing 

athletes’ fitness activity and results [5], personalized product design [6]. In different 

applications of human integrated digital twin, a parameter-driven high-fidelity model of 

(part of) the human is one of the key enablers, as it can be quickly adjusted/updated to 

fit the geometric shape of individuals for different needs [7][8]. For instance, Yu et al. [9] 

proposed an approach for the design of gloves controlled by parameters of a digital 

hand model. By categorizing the foot shape into several clusters and based on the 

statistical analysis of each cluster, Baek and Lee [10]  proposed a method for mass-

customization of footwear. Harih and Dolsak found that a tool-handle design based on 
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the hand SSM had 25% larger contact areas than using traditional cylindrical hand 

models [11]. The enlarged contact areas contributed to a better grip as well as reduced 

possibilities of being affected by cumulative trauma disorders. 

A statistical shape model (SSM) of the human hand, which can represent the 3D 

hand shape with a limited number of parameters with a certain accuracy, can be utilized 

as a high-fidelity digital representation of the hand in many applications [12]. However, 

the human hand has complicated structures. Consisting of 27 bones, each hand has 27 

degrees-of-freedom (DOF), of which 14 are located in the fingers [13]. While it is a 

marvel of dexterity, the complicated structure also posts challenges on both data 

acquisition and model construction.   

Due to aspects like the large number of DOFs, anatomical variations, as well as 

the difficulty in accurately communicating a posture, it is difficult or even impossible to 

instruct subjects to take the exact same posture. Differences among postures in the 

acquired data will lead to large errors in the construction of an SSM. For instance, the 

posture variation was noticeable in the SSM [14] which was built on the original scans 

without posture adaptations. Furthermore, the hand is not always steady, and the 

steadiness depends on for instance the age [15] and the gender [16] of the subject. High 

speed 3D scanners are generally needed for digitizing the hand shape. 

This paper proposes an accurate hand SSM, built from 3D scans with posture 

corrections. The main contributions of this paper are: 1) A 3D dataset of human hands 

was collected for building the SSM; 2) A hand skeleton generation method was 

proposed to align the 3D scans to a “standard posture”; 3) An mean model calculation 
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algorithm was developed for finding the optimal mean model for the SSM and 4) 

Different dimensionality reduction methods for generating the hand SSM were 

evaluated and the principal component analysis method was selected to build the hand 

SSM. The generalization error of the proposed SSM is 1.21 ± 0.14mm.  

The remainder of this paper is arranged as follows: In Section 2, a brief overview 

of the related work is given regarding human hand SSMs, their construction methods, 

and the accuracy. The proposed posture correction approach is illustrated in Section 3, 

and several hand SSMs based on PCA, kernel PCA (KPCA) [17] and independent 

component analysis (ICA) [18] [19] were built with the aligned models, respectively. In 

Section 4 we compared the properties of these models and the PCA-based SSM was 

selected. This model was further validated and compared against the hand SSM without 

posture correction in Section 5. Finally, a short conclusion is drawn where the future 

works are highlighted as well. 

 
2. RELATED WORK 
 
2.1 Human body statistical shape model 
 

The SSMs of (different parts of) human body have been extensively studied in 

the past decades [20]. In the construction of an SSM, the 3D shape variations of the 

captured human body shapes are affected by the postures globally and locally, which 

are both needed to build the statistical model(s). In the past researchers tried to acquire 

data with “standard postures”, e.g. by use of foot placement guides and verbal 

instructions in the CAESAR project [21], however it was found that the inter-subject 

differences made it difficult for participants to position their joints in the same angles. 
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A common approach to correct these deviations is to introduce an articulated 

skeleton to the 3D model [22][23], and utilizing freeform deformation algorithms, e.g. 

linear blend skinning (LBS) or as-rigid-as-possible (ARAP) approaches [24], to deform the 

3D body shapes towards a standard posture. Examples of those studies include the work 

of Hasler et al.[25], where the pose of the human was governed by an embedded 

skeleton. Another skeleton-based human model is the Skinned Multi-Person Linear 

(SMPL) model [26], where the pose-dependent 3D shapes are a linear function of the 

elements of the pose rotation matrices. Besides the skeleton based methods, Wuhrer et 

al. [27] proposed a posture invariant statistical shape analysis method based on a local 

representation that is obtained by using the Laplace operator. However, it is 

computationally expensive since it needed to solve an optimization problem for each 

vertex. Danckaers et al. [28] [14] proposed a framework for building a posture invariant 

SSM which includes SSM construction, feature modification, identity removal, and 

posture normalization these four steps. The advantage of this framework is that many 

parameters, such as gender, age, and arm length, can also be embedded for a more 

accurate approximation. 

 In the modelling of 3D human hands, articulated skeletons were also introduced 

in many computer vision and computer-aided design (CAD) applications. For instance, 

for tracking the joints of human hands, Oikonomidis et al. [29] utilized a hand model 

which consisted of 62 3D geometric primitives with 26 DOFs. Though it was easy to use, 

it cannot describe the details of a hand due to the simplified geometry. Another 

articulated hand model was developed by Sridhar et al. [30] [31]. It consisted of 32 
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joints with 26 DOFs and was used for hand tracking based on RGB-D images. Tkach and 

Tagliasacchi [32] also proposed one sphere-mesh based hand template to fit the 

geometry of the hand by adjusting the positions and radii of the skeleton vertexs. The 

MANO hand model proposed by Romero et al. [33] is a hand SSM based on the data 

collected from 31 subjects. It utilizes 15 joints and is able to approach a hand using a 

combination of shape and pose parameters. Table 1 summarizes those hand models in 

the literature regarding its geometry, DOFs, accuracy, etc.  

Currently, research on the development of the hand SSM mainly focuses on the 

accuracy, the validity, the flexibility and the efficiency of the models [34]. However, not 

all models are suitable for digital twin applications, e.g. the meshes of the some SSMs 

[29] are not dense enough to represent the surface undulation, the specificity of the 

hand model was not extensively discussed, the data-driven hand model [33] may fail 

when a posture falls outside the pose space. Besides, the fitting speed of using the 

model to approach a specific subject should be fast enough for a quick response in the 

digital twin applications. 

2.2 Model Registration 
 

 Finding the correspondence between different 3D hand shapes is an important 

step in the process of building an SSM [35]. In the past, many algorithms were 

developed to tackle this problem. For instance, Amberg et al. [36] presented a non-rigid 

iterative closest point (ICP) approach for registering two shapes by iteratively minimizing 

a cost function which consists of the distance term, the stiffness term, and the landmark 

term. By involving a Markov Random Field (MRF) optimization into the isometric 
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embedding process, Chen and Koltun [37] proposed a simple non-rigid registration 

algorithm for 3D surfaces. Ma et al. [38] introduced the non-rigid point set registration 

method by taking the advantages of Gaussian mixture models, which was able to 

robustly preserve both global and local structures during matching. The dense point-to-

point correspondence algorithm proposed by Lee and Kazhdan [39] is a novel non-rigid 

registration algorithm for watertight objects. By mapping objects to unit Möbius spheres 

using a conformal map, the alignment between meshes can be established by 

performing Fast Fourier Transformation (FFT), and the registration is refined based on 

the optical flow.   

2.3 Dimension Reduction 
 
 For building an effective as well as compact SSM, dimensionality reduction 

techniques are often applied to capture the principle information of the shape 

variations with the least possible parameters. The PCA method is one of the most 

popular approach in statistical modeling  [40]–[42]. For instance, Pishchulin et al. [43] 

built a SSM of human body based on the 3D scans using the PCA. Similar works can be 

found in Allen et al. [44] where the SSM was built on 250 human body scans. The KPCA 

method is a nonlinear extension of the PCA by mapping the input data to a higher 

dimensional space with different types of kernel functions. An example application of 

using KPCA in the construction of the SSM is the active shape model segmentation 

developed by Kirschner et al. [45]. Independent Component Analysis (ICA) is another 

dimensionality reduction method which utilizes the independent non-Gaussian 

components from the mixture variables [18], and it is widely used for solving blind 
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source separation problems [19]. In a comparison of using the PCA, the KPCA and the 

ICA methods in constructing an SSM of the left ventricle, Roohi and Zoroofi [46] found 

that using the KPCA method was more appropriate regarding the accuracy of the SSM. 

However, which method is most suitable for constructing an SSM specifically for the 

hand remains unknown. 

3. APPROACH 
 
 In order to build a posture invariant hand SSM, the following steps are 

undertaken (also see Fig. 1). First, 3D scans of the human hands were collected using 

two different 3D scanners. After post-processing, one scan was selected as a template 

and a predefined articulated skeleton was embedded therein. All acquired data was 

then registered to the template and the predefined skeleton was mapped to all aligned 

scans. Using the embedded skeleton, all the scans were deformed to a same posture, 

and the SSM was built on those scans. The rest of this section presents the details of 

each step. 

3.1 Data Acquisition 
 
 Data collection was conducted at multiple sites using two different 3D scanners. 

Part of the data was captured by a hand scanning system which consisted of five 3DMD 

modular units. For short range scanning, which we are using, the system has a mean 

global accuracy of 0.2 mm [47]. Other scans were captured by a hand scanner 

developed in our previous work [48]. This scanner utilizes 50 camera modules and close-

range photogrammetry technique, and is able to achieve a mean absolute error (MAE) 

of 0.38 mm. 
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 Before data collection, informed consents were acquired from subjects. During 

the scanning process, all subjects were asked to position their right hand with a 

“standard posture”, i.e. keeping the palm flat and all fingers extended and abducted. 

The purpose of this step was to provide a good initial posture for posture alignment in 

the following steps. In total we collected 59 3D scans of human hands, where 32 were 

acquired by the 3DMD system and 27 were acquired by the self-developed hand 

scanner. Among those scans, 12 were collected from female subjects and 47 were 

males.  

 Since the original scans may have some holes and spikes, during the post-

processing, holes in the scans were filled [49], and spikes were removed. Next, triangles 

representing the forearm, i.e. up to the distal sides of the radius and the ulna, were 

removed. One scan was selected, further refined and used as a template to wrap all 

other scans utilizing the program Wrap 3.4 [50]. Thus, all scans after post-processing can 

be described by the same number of vertices and triangles. Given a scan, it can be 

represented as  𝑀 ((𝑉, 𝐹)|𝑉 = (𝑣1, 𝑣2, ⋯ , 𝑣𝑗 , ⋯ , 𝑣𝑁𝑣
), 𝐹 = (𝑓1, 𝑓2, ⋯ , 𝑓𝑘 , ⋯ , 𝑓𝑁𝑓

)), 

where 𝑉 is a set of vertices in the mesh and 𝐹 is a set of faces. 𝑣𝑗  is the 3D Cartesian 

coordinate of the 𝑗𝑡ℎ  vertex in 𝑉, 𝑁𝑣 is the number of vertices, 𝑓𝑘 is the 𝑘𝑡ℎ triangle in 

𝐹, and 𝑁𝑓 is the number of triangles (in this paper, 𝑁𝑣 = 33270, 𝑁𝑓 = 66536). The 

dataset 𝐷𝑀 of all processed scans is 𝐷𝑀 = {𝑀1, 𝑀2, ⋯ , 𝑀𝑁}, where 𝑁 denotes the 

number of scans and in this paper, 𝑁 = 59. Fig. 2 presents some examples of scans 

before and after post-processing. 

3.2 Registration 
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In the post processing process, all hand scans in 𝐷𝑀 were wrapped by a template 

𝑀𝑇, therefore each scan 𝑀𝑖  had the same number of vertices and faces. However, the 

vertices in 𝑀𝑖  did not have vertex-to-vertex correspondences to 𝑀𝑇, thus a registration 

process was needed to find the corresponding vertices among hand models. Establishing 

the correspondence between scans in 𝐷𝑀 and the template is a key step in building an 

SSM. There are many ways to establish the correspondence between two meshes, e.g. 

using non-rigid ICP registration algorithms. In this paper, we adopted the algorithm 

developed by Lee and Kazhdan [39] to register the template 𝑀𝑇  to each mesh 𝑀𝑖  in 𝐷𝑀 

for establishing a map as 𝑀𝑖|𝑀𝑇 → 𝑀𝑖. The algorithm converts the correspondence 

problem between two meshes into the registration problem over two depicted spheres 

using the following steps: 1) Computing the conformal parameterization of the mesh 

over the sphere. In this step, the conformalized mean curvature flow is utilized to 

parameterize the genus-zero surface over the unit sphere [51]. With the mean curvature 

flow, the vertex on the surface is pushed towards the average position of its neighbors, 

i.e. the mesh surface evolves towards a smoother shape. Eventually, the surface after 

utilizing the conformalized mean curvature flow is converged onto the sphere; 2) 

Authalic evolution. As the conformal parameterization of the mesh over a sphere may 

lead to the extreme compressive areas on the sphere, an authalic evolution approach is 

adopted  [39] to decompress those areas; 3) Compute the Heat Kernel Signature (HKS) 

[52] of each vertex in the source and the target meshes, where the scan 𝑀𝑖  and the 

template 𝑀𝑇  can be represented as 𝐾𝑀𝑖
 and 𝐾𝑀𝑇

, respectively; 4) Rotational alignment. 
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In this step, the correspondence between two mesh is established by finding the 

rotational 𝑅∗ that maximizes the correlation between 𝐾𝑀𝑖
 and 𝐾𝑀𝑇

 as [39]:  

𝑅∗ = 𝑎𝑟𝑔 max
𝑅∈𝑆𝑂(3)

〈𝑅(𝐾𝑀𝑖
), 𝐾𝑀𝑇

〉𝑆2  (1) 

where the inner-product 〈∙〉𝑆2  is obtained by integrating the point-wise product of the 

HKS of vertices over the sphere [39]. 𝑅(𝐾𝑀𝑖
) describes the rotation result of 𝐾𝑀𝑖

 by the 

rotation 𝑅. Furthermore, a registration refinement process is conducted by using the 

optical flow to improve the accuracy of the correspondence performance. 

3.3 Hand Posture Correction 
 

After the registration, each hand model 𝑀𝑖  in 𝐷𝑀 can be represented as a 

triangular mesh with 𝑁𝑣 vertices and 𝑁𝑓 triangular faces, and vertices are relatively in 

the same positions on the hand object, i.e. they have a vertex-to-vertex 

correspondence. To be able to correct the differences among postures, a posture 

correction method was developed based on the embedded skeleton and following the 

principle that if the skeletons of two hands are in the same pose, then the 

corresponding meshes are also in the same posture. The proposed posture correction 

method has 3 steps: 1) skeleton generation; 2) skeleton posture correction and 3) skin 

deformation. In the first step, an articulated skeleton was developed based on previous 

work [53] [54] and embedded to the template. The skeleton is defined based on 20 

bones and 16 joints, including nine hinge joints, six condyloid joints, and a base joint, 

accounting for 27 DOFs (including 3 global orientations and 3 translations). For 

specifying the joint location in the template, we manually segmented the surface of the 

template model into 𝑁𝐾 = 16 parts following its anatomical landmarks and defined the 
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relationships between the joint locations and the segmented 3D shapes as Fig.4(a). For 

instance, assuming the interphalangeal joints are located in the center of the finger 

knuckles, the 3D position of a joint is calculated as the geometric mean of the 

corresponding finger segment boundaries. The wrist joint is taken as the mean of the 

vertices in the wrist plane. The palm joint is located at the geometric center of the palm. 

Besides those joints, five fingertip key points are specified to describe the distal 

phalanges. As the vertex-to-vertex correspondence has been established between the 

template and other scans after registration, for a vertex in the template, the position of 

its corresponding vertex on the other hand model is located at nearly the same position 

as this vertex regarding the template hand shape. For instance, for the vertices stand for 

the knuckle boundary in the template model, their corresponding vertices on the other 

scans can be used to describe the knuckle boundary of that hand as well. When the 

vertices that determine the positions of joints are known on the template, the 

corresponding vertices on the other scans can be identified, and the positions of joints 

can be calculated accordingly. Using this method, the skeleton for each hand scan can 

be established based on the template. 

In the skeleton, bones and joints are organized hierarchically with the parent-

child relationship as illustrated in Fig. 4(b). Each bone is represented by a segment 

between joints and it is denoted as 𝐵(𝐽𝑝𝑎𝑟𝑒𝑛𝑡, 𝐽𝑐ℎ𝑖𝑙𝑑), and 𝐽1 is the root joint. For 

fingertip bones, 𝐽𝑐ℎ𝑖𝑙𝑑  is the position of the corresponding fingertip key point. 

Using this representation, the skeleton 𝐿 of the hand model can be described with 

𝐿 (𝐵1(𝐽𝑝𝑎𝑟𝑒𝑛𝑡1
, 𝐽𝑐ℎ𝑖𝑙𝑑1

), ⋯ , 𝐵𝑁𝑏
(𝐽𝑝𝑎𝑟𝑒𝑛𝑡𝑁𝑏

, 𝐽𝑐ℎ𝑖𝑙𝑑𝑁𝑏
)), where 𝑁𝑏 is the number of bones. 
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Embedding this skeleton in the hand model, a hand model 𝑀𝑖  that contains both the 

surface mesh and the skeleton is described as 𝑀(𝑉, 𝐹, 𝐿). 

 For each bone in the skeleton, a local coordinate system is defined where the 

origin is set to be the parent joint. Taking the example of two adjacent bones composed 

of three joints as illustrated in Fig. 4(c). In the figure, the x-axis of the coordinate system 

for 𝐽𝑖  points towards 𝐽𝑖+1, the y-axis is perpendicular to the plane defined on joints 𝐽𝑖−1, 

𝐽𝑖  and 𝐽𝑖+1, and the z-axis is generated using the right-hand rule. Rotation matrix 𝑄𝐵 

indicates the relative rotation of x-axis between the current local coordinate and the 

articulated coordinate it based on. The homogenous transformation matrix 𝑇𝐵 between 

𝐵(𝐽𝑖−1, 𝐽𝑖) and 𝐵(𝐽𝑖, 𝐽𝑖+1) can be defined as: 

𝑇𝐵𝑖
= [

𝑄𝐵𝑖
𝑙𝐵𝑖−1

0 1
] 𝜖𝑅4×4 

(2) 

where 𝑄𝐵𝑖
 is the rotation matrix and 𝑙𝐵𝑖−1

 is the length of bone 𝐵(𝐽𝑖−1, 𝐽𝑖). Based on the 

definition of 𝑇𝐵, a particular posture of human hand can be represented as 𝐺(𝑀) =

(𝑇𝐵1
, 𝑇𝐵2

, ⋯ , 𝑇𝐵𝑁𝑏
), and the transformation matrix from the world coordinate to the 

local coordinate of bone 𝐵(𝐽𝑖, 𝐽𝑖+1) is 𝐻𝐵 = 𝑇1 ⋯ 𝑇𝑝𝐵
𝑇𝐵, where 𝑇𝑝𝐵

 is the parent 

coordinate system corresponding to 𝑇𝐵. All local coordinates systems are presented in 

Fig. 4(d). 

For building a posture invariant SSM, all models in 𝐷𝑀 should have the same 

posture as that of the template 𝑀𝑇. In the second step, the skeletons of them were 

aligned. Given a hand model 𝑀 and the template model 𝑀𝑇, both posture parameters 

can be extracted as 𝐺(𝑀) and 𝐺(𝑀𝑇). Here we define the same posture of hand as they 
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have the same rotation matrix 𝑄𝐵𝑘
, i.e., all fingers have the same orientation. For 

instance, suppose 𝐵𝑖−1 and 𝐵𝑖−1
𝑇  are already aligned, to align 𝐵𝑖 to 𝐵𝑖

𝑇, the relative 

rotation matrix of 𝐵𝑖 can be calculated by 𝕋𝑖 = 𝑄𝐵𝑖
𝑇 ∙ 𝑄𝐵𝑖

−1 as shown in Fig. 5. Then the 

target position 𝐵𝑖
′ can be computed by 𝐵𝑖

′ = 𝕋𝑖 ∙ 𝐵𝑖. As only the rotation part in the 

transformation matrix is updated, the length of the bone is not changed. 

In the third step, to deform the mesh together with the skeleton, we introduced 

the linear blend skinning (LBS) algorithm [55]. Using this algorithm, a new position of a 

vertex can be computed through a weighted transformation of the associated bones as 

𝑣𝑗
′ = ∑ 𝑤𝑖(𝑣𝑗)T𝑖𝑣𝑗

𝑖𝑁𝑏
𝑖=1 , where 𝑤𝑖(𝑣𝑗) is the weight function of the 𝑖𝑡ℎ bone associated 

with the vertex  𝑣𝑗 . The deformation result based on the LBS algorithm can be 

significantly influenced by the weights, where unsuitable weights may cause 

discontinuities and show the "candy wrapper" effect when the bone undergoes a 

twisting motion. To avoid the discontinuities and produce smooth and intuitive 

deformation of the hand model, the bounded biharmonic weights between the surface 

vertexes and the bones were computed by solving the optimization problem of the 

Laplacian energy subject to bound constraints [56]. For each model in 𝐷𝑀, the posture 

correction algorithm was processed with the computed bounded biharmonic weights. 

And the 3D scan dataset 𝐷𝑀 can be updated to a new dataset 𝐷𝑀
𝑐  where the postures of 

scans were aligned. Fig. 6(a) presents the template model and Figure 6(b) and (c) shows 

two examples of 3D scans before and after posture correction. 

3.4 The Statistical Shape Models 
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An SSM represents the mean shape of the population and its variations in shape 

where the distribution of the shape variation is with respect to the mean model. One 

thing that needs to be addressed here is that even though the vertexes correspondence 

and the skeleton alignment were processed among models in 𝐷𝑀
𝑐  in the above steps, the 

spatial orientation of the models was not aligned yet. Therefore, all models in the 

dataset were aligned to the template model using the rigid ICP algorithm, then the 

mean model for computing the SSM was generated based on aligned models. Each 

vertex of the mean model was calculated as 𝑉𝑚
𝑚𝑒𝑎𝑛 = (1/𝑁) ∑ (𝑉𝑚

𝑖 )𝑁
𝑖=1  where 𝑚 is the 

index of the vertex, 𝑉𝑚
𝑖  is its corresponding vertex in the 𝑖𝑡ℎ model and 𝑁 is the number 

of models. However, such mean model can be strongly influenced by the selected 

template as the size and the shape of the template might influence the outcomes of the 

rigid registration. The General Procrustes Analysis (GPA) [57] method provides a way for 

aligning and computing the mean shape, but during the process of superimposing all 

instances to the reference model, the influence of the size of the hand, which is an 

important property of the hand, is eliminated. In this research, we proposed Algorithm 1 

based on GPA to find the optimal mean model. Using the Algorithm 1, the mean model 

was iteratively updated in each iteration until an optimal was achieved. Fig. 7 illustrates 

the RMSE between the updated mean model 𝑀𝑛𝑒𝑤 and the current mean model 𝑀𝑚𝑒𝑎𝑛 

regarding the number of iterations in Algorithm 1.  

Algorithm 1 Computing the optimal mean model 

Input: 𝐷𝑀, Threshold, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

Output: 𝑀𝑚𝑒𝑎𝑛 

1: iter = 0 

2 𝑀𝑚𝑒𝑎𝑛 = the mean model of 𝐷𝑀 

3: error = INF    
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4: while error > Threshold do  

5:     𝐷𝑀
′ = [] 

6:     for 𝑀𝑖 in 𝐷𝑀 do 

7:        𝑀𝑖
′ = 𝑀𝑖 registered to the 𝑀𝑚𝑒𝑎𝑛 

8:        𝐷𝑀
′ . 𝑎𝑝𝑝𝑒𝑛𝑑(𝑀𝑖

′) 

9:     end for 

10:     𝑀𝑛𝑒𝑤 = the mean model of 𝐷𝑀
′  

11:     error = RMSE between 𝑀𝑛𝑒𝑤 and 𝑀𝑚𝑒𝑎𝑛 

12:     𝑀𝑚𝑒𝑎𝑛 = 𝑀𝑛𝑒𝑤 

13:     𝐷𝑀 = 𝐷𝑀
′  

14:     iter ++ 

15:     if iter >= 𝑀𝑎𝑥𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 then 

16:         Break 

17: end while 

 

Based on the mean model found in Algorithm 1, to investigate the population 

variance in 𝐷𝑀
𝑐 , three dimensionality reduction methods, named PCA, KPCA and ICA, 

were used to construct SSMs of the hand. With those methods, different feature vectors 

that can describe the shape variance of the hand model were investigated. An SSM can 

be represented as the mean model plus the combination of those feature vectors:  

𝑉𝑀𝑛𝑒𝑤
= 𝑉𝑀𝑚𝑒𝑎𝑛

+ 𝜙(𝛾𝑁𝑝
) (3) 

where 𝑉𝑀𝑚𝑒𝑎𝑛
 denotes the mean model and 𝑉𝑀𝑛𝑒𝑤

 is the newly generated model. 𝑁𝑝 

represents the number of feature vectors that used for reconstruction, and 𝛾𝑁𝑝
 is the 

corresponding coefficients. Function 𝜙(∙) has different meanings regarding different 

methods. For PCA, the feature vectors are a number of uncorrelated vectors which are 

named the principal components (PCs). 𝜙(∙) expresses the linear combination of those 

PCs, e.g. 𝜙(𝛾𝑁) =  ∑ 𝛾𝑁𝑗
𝑃𝐶𝑗

𝑁𝑝

𝑗=1
. KPCA is the non-linear extension of PCA and the 

resulted principal components are based on the selected kernel function. Two types of 

kernel functions were used in this paper to construct the SSM: The Radial Basis Function 
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(RBF) and the Polynomial function (PF). With the chosen kernel function, the principal 

components for KPCA can be calculated and 𝜙(∙) expresses the progress of 

reconstruction based on those components. More details of model reconstruction 

based on KPCA can be found in [58], [46] and [59]. Different from PCA and KPCA, the 

feature vectors found based on the ICA method [19] are named independent 

components (ICs). The reconstruction function 𝜙(∙) of using the ICA can be expressed as 

a weighted sum of those independent components. There are several methods to find 

the importance of each IC regarding the SSM [18]. In the proposed research, we 

projected all data on each IC, then sorted the ICs in descending order, based on the 

variance of the projected data, where the larger the variance is, the more important this 

IC is. 

4. SELECTION OF CONSTRUCTION METHODS  
 

 In this section, the performance of the SSM generated based on PCA, RBF-KPCA, 

PF-KPCA and ICA are evaluated in terms of the compactness, the generalization ability 

and the specificity [60]. Using the approach proposed in the previous section, we built 5 

SSMs based on the posture invariant hand model dataset which consists of 59 scans, 

each has uniformly distributed 33270 vertices and 66536 faces. These 5 SSMs are: a 

PCA-based SSM, two RBF-KPCA based SSMs (gamma=0.1 and 1, where gamma is the 

parameter in RBF kernel function [46]), a PF-KPCA based SSM and an ICA based SSM. 

The compactness is often used in statistical models to quantify the efficiency of 

the model in describing the total variance in the population [12]. The compactness 

ability can be measured as the cumulated variance, and is defined as: 
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C(𝑞) =
∑ 𝜆𝑖

𝑞
𝑖=1

∑ 𝜆𝑖
𝑝
𝑖=1

 (4) 

where 𝑞 is the number of the components that are used in the model and 𝜆𝑖 is the eigen 

value of the 𝑖𝑡ℎ component [27]. 𝑝 denotes the number of all components of the SSM. 

Generally speaking, when the compactness curve quickly converges to one, it indicates 

that most of the variation in the dataset is captured with fewer components. A reduced 

number of components may simplify the system and significantly accelerate the 

computing speed when using the SSM to fit a new scan or predict a new shape. Figure 8 

shows the compactness of the different generated SSMs as the function of the number 

of components. Though the compactness of all SSMs rises with the increase of the 

number of components, the compactness of the PCA-based SSM increases faster than 

other SSMs. To reach 80% of the shape variance, only two principal components are 

needed for the PCA-based SSM while for RBF-KPCA, forty-four components are needed 

regardless of the values of the gamma. For PF-KPCA and ICA, four and twenty-four 

components are respectively required to realize the same result. Using 20 components, 

the compactness is about 98% for PCA-based SSM, and 96% for PF-KPCA. However, ICA-

based SSM can only achieve 74% of compactness with same number of components. For 

the two RBF-KPCA-based SSMs, the compactness only reaches approximately 36% with 

20 components.  

The generalization represents the ability of the SSM in describing the instance 

that is not in the training set. To measure the generalization ability, a leave-one-out 

strategy was adopted. Using this method, an SSM was built using all models but one in 
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the dataset, then the excluded model was fitted by the SSM where the weight of each 

component that yields the best fit to the model was found through minimizing the 

RMSE between two models. This process iterated and the mean of the minimized 

RMSEs was taken as the generalization G(𝑞), where 𝑞 is the number of components 

used in the SSM. Fig. 9 presents G(𝑞) of the five SSMs regarding different number of 

components used in the model. Increasing the number of components constantly 

decreases the generalization error for all models, and the PCA, PF-KPCA, and ICA models 

respectively achieved 1.29 ± 0.16 mm, 1.57 ± 0.47 mm, and 1.17 ± 0.17 mm accuracy 

when 15 PCs were used. The generalization error for RBF-KPCA-based model was higher 

relative to the other three models, which was found to be 2.39 ± 1.56 mm, and 2.09 ± 

1.27 mm when gamma was set to 0.1 and 1, respectively. With 20 PCs, the accuracy 

further improved to 1.21 ± 0.14 mm, 1.44 ± 0.39 mm and 1.08 ± 0.15 mm for PCA, PF-

KPCA and ICA. Even the results for RBF-KPCA-based models became better, they were 

2.25 ± 1.5 mm (gamma=0.1) and 1.99 ± 1.25 mm (gamma=1). In summary, the 

performance of PCA-based and ICA-based SSMs were the best regarding generalization 

ability, where the ICA based SSM had slightly smaller error.  

Specificity (𝑆𝑠𝑝𝑒(𝑞)) describes the ability of the SSM can generate the new 

instance that are similar to the models in the training set. It is measured by 1) 

generating a population of randomly and uniformly distributed models based on the 

generated SSM; 2) measuring the average distance of the generated models to their 

nearest models in the training set. The specificity is defined as: 
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𝑆𝑠𝑝𝑒(𝑞) =
1

𝑁𝑠𝑝𝑒
∑ 𝑚𝑖𝑛‖𝑀𝑢(𝑞) − 𝑀𝑢

′ ‖; (𝑞 = 1, ⋯ , 𝑝)

𝑁𝑠𝑝𝑒

𝑢=1

 (5) 

where 𝑀𝑢(𝑞) is the sample that generated with the first 𝑞 components in the SSM, and 

𝑝 is the number of all components in the SSM. 𝑁𝑠𝑝𝑒 denotes the number of randomly 

generated models and was taken as 10000 in this paper. The closest sample in training 

set to 𝑀𝑢(𝑞) is denoted as 𝑀𝑢
′ . The specificity for PCA, PF-KPCA, RBF-KPCA and ICA is 

shown in Fig. 10, where the specificity of RBF-KPCAs (gamma= 0.1 and 1) are the 

smallest, and the result of PF-KPCA is larger than the other four models.   

In summary, regarding the compactness of the SSMs, fewer components are 

needed when using PCA or PF-KPCA. However, the generalization error of the PF-KPCA-

based SSM shows a larger error than the PCA-based SSM. By balancing the needed 

accuracy, the computational efficiency, the SSM built based on PCA with 20 PCs was 

selected as the hand SSM for its high compactness and relatively high accuracy.  

5. EXPERIMENT & DISCUSSION 
 

 A self-developed Python program was used to analyze the data and build the 

model. The computing time of registering each scan to the template was less than one 

minute with an Intel i7-6700 processor at 4G HZ. For the data analysis, it took less than 5 

minutes to compute each SSM (PCA, RBF-KPCA, PF-KPCA, ICA) using the same computer.  

The proposed SSM generated based on posture invariant hand models can approach a 

given 3D scan with relatively high accuracy. To verify this, we constructed another SSM 

directly from the acquired scans without posture correction. In Fig. 11, the first six 

components of the posture invariant SSM and the SSM without posture correction are 
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shown. Fig. 12 illustrates the difference between the compactness of the two SSMs 

regarding the number of principal components, where the posture invariant SSM is 

more compact than the SSM without posture correction. For example, in order to 

describe 90% of the shape variation, the SSM without posture correction needs eight 

components while for the posture invariant SSM, only four components are needed. 

When we inspect the SSM without posture correction, we can also notice that the 

posture variation is also considered as a shape variation.  

An SSM with high compactness has many advantages. As discussed in previous 

sections, it will save computing time when the SSM is used to fit a scan and it will 

decrease the risk of overfitting. In general, the more principle components present in 

the shape model, the worse the precision of the estimated shape model parameters 

[14].  

 To validate the accuracy of the proposed SSM, we acquired a new 3D scan of 

human hand using the close-range photogrammetry hand scanner. The scan was aligned 

to the standard gesture first, then the above two SSMs were used to fit the scan. The 

fitting errors of the two SSMs are presented in Fig. 13(a) regarding the number of 

principal components. It can be found that the proposed posture invariant SSM 

outperformed the SSM without posture correction regardless of the number of PCs used 

in the model. Fig. 13(b) shows the fitting errors where twenty PCs were used regarding 

two models, respectively. It can be found that in this case, the RMSE was 4.91 mm by 

fitting the SSM without posture correction to the hand. The RMSE was lowered to 0.73 

mm when it is fitted with the posture invariant SSM. 
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 The fitted model in Fig. 13(b) has a standard posture. To further validate the 

usability of the proposed SSM, we restored the fitted SSM to the original posture of 

another scan using the embedded skeleton and the LBS algorithm. This process is 

presented in Fig. 14 step by step. First, the acquired 3D scan (in yellow) was aligned with 

the template and deformed to the standard posture (in red), then the SSM was used to 

fit the scan with the standard posture (in green). In this case, the RMSE between the 

SSM and the deformed scan was measured as 0.63 mm. The fitted model was restored 

to the original posture of the scan (in magenta) using the inverse of the deformation 

matrix identified in the first step. The RMSE between the restored SSM (in magenta) and 

the original 3D scan (in yellow) was 1.69 mm. This error was larger than the RMSE 

between two models in the standard posture, mainly due to the errors introduced by 

the LBS algorithm. Though the LBS algorithm was developed to simulate the free-form 

deformation in reality, there are gaps in-between. This highlights the need for an SSM 

with different postures constructed from 4D scanning data for a more accurate 

approximation of human hand in different postures.  

High accuracy, posture invariant models, are essential to the adoption and wider 

usage of human digital models in applications such as human-integrated digital twin 

applications, virtual reality, anthropometric study, and personalized product design. 

Figure 15 presents a case study of a personalized design of 3D printed hand splint, which 

is used to stabilize and support the thumb. In this design application, the developed SSM 

was integrated into the computational design approach of the hand splint based on 

Rhino® Grasshopper®. In the figure, the mean model of the hand was used in the center 
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of the figure where at the left, the PC1 of the SSM was adjusted to +3σ, and at the right, 

the PC1 of the SSM was set as -3σ. By adjusting the parameters of each PC of the SSM, 

the model was able to quickly fit an individual human hand and the personalized hand 

splint can be regenerated automatically.  

At this stage, the proposed 3D SSM only has one “valid” posture and other 

postures can be achieved by skeleton based deformation algorithms, e.g. linear blend 

skinning. Current research is directed toward a 4D SSM, where multiple “valid” postures 

will be established. It is expected by establishing those “key frames”, the deformation of 

human hand will be more accurate in the simulation of the movement of the human 

hands.   

 

6. CONCLUSION 
 

 In this paper, we proposed a posture invariant hand SSM to overcome the 

posture variances among different 3D scans. Using an Möbius sphere-based algorithm, 

the correspondence between 3D scans of human hands can be established. By 

embedding an articulated skeleton in each scan, the postures of all scans were aligned 

to a standard posture. Using those scans and based on a comparison of the performance 

of several SSMs using the principal component analysis, the RBF-Kernel Principal 

Component Analysis, the PF-Kernel Principal Component Analysis and the Independent 

Component Analysis methods, we selected the PCA method to build the posture 

invariant SSM. The results of the leave-one-out experiments indicated that the proposed 

SSM is able to reach an accuracy of 1.21± 0.14 mm in fitting 3D hand scans. Further 
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comparison with an SSM without posture correction indicated that though it might be 

expensive in the construction, the proposed posture invariant SSM can approach a 

human hand with much higher accuracy and/or less PCs.  
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NOMENCLATURE 
 

𝑉 The set of vertices in the mesh 
𝐹 The set of faces in the mesh 

𝑁𝑣 The number of vertices  
𝑁𝑓 The number of triangles  

𝑣𝑗  The 3D Cartesian coordinate of the 𝑗𝑡ℎ vertex in 𝑉 

𝑓𝑘 The 𝑘𝑡ℎ triangle in 𝐹 
𝑁 The number of scans 

𝐷𝑀 The dataset of all scans 
𝑀𝑖 The 𝑖𝑡ℎ model in 𝐷𝑀 
𝐾𝑀𝑖

 The signals for the hand scan 𝑀𝑖  

𝐾𝑀𝑇
 The signals for the template 𝑀𝑇  

𝑅∗ The rotation 
𝑀𝑇 The template model 
𝐵 The bone of the hand skeleton 
𝐽 The joint of the hand skeleton 

𝑁𝑏 The number of bones 
𝐿 The hand skeleton 

𝑄𝐵 The rotation matrix of bone 𝐵 
𝑙𝐵 The length of bone 𝐵 
𝑇𝐵 The transformation matrix of bone 𝐵 

𝐺(𝑀) The posture of the model 𝑀 
𝐻𝐵 The transformation matrix from the world coordinate to the local 

coordinate of bone 𝐵 
𝑇𝑝𝐵

 The parent coordinate system corresponding to 𝑇𝐵 

𝕋𝑖 The relative rotation matrix of bone 𝐵𝑖 

𝑤𝑖(𝑣𝑗) The weight function of the 𝑖𝑡ℎ bone associated with the vertex  𝑣𝑗  

𝐷𝑀
𝑐  The dataset that all postures of scans are aligned 

𝑚 The index of the vertex 
𝑉𝑚

𝑚𝑒𝑎𝑛 The mean position of 𝑚𝑡ℎ vertex  
𝑉𝑀𝑛𝑒𝑤

 The vertexes of the new generated model based on SSM 

𝑉𝑀𝑚𝑒𝑎𝑛
 The mean model for SSM 

𝑁𝑝 The number of feature vectors that used for reconstruction 

𝛾𝑗 The contribution of the component 𝑃𝐶𝑗 

𝑃𝐶𝑗 The 𝑗𝑡ℎ principal component 
∅(∙) The reconstruction   

C(𝑞) The compactness of SSM with 𝑞 components 
G(𝑞) The generalization ability of the SSM with 𝑞 components 

𝑆𝑠𝑝𝑒(𝑞) The specificity of the SSM with 𝑞 components 

𝑀𝑢(𝑞) The sample that generated with the first 𝑞 components in SSM 
𝑁𝑠𝑝𝑒 The number of randomly generated models 

𝑀𝑢
′  The closest sample in training set to 𝑀𝑢(𝑞) 
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Table 1. List of hand models in the literature 

 

Sources Hand model Geometry DOF Accuracy(mm) 
Accuracy 
measures 

Statistical 
Model 

Oikonomidis 
et al. [29] 

 

Cones, 
Spheres, 
ellipsoid 

26 (including 6 
for global 
transformation) 

HOPEa: 3-29 
PEHIb: 12-47 

MAEc of 
landmarks 

NO 

Remero et 
al. [33] 

 

Vertexes 
and faces 

15 (without 
global 
transformation) 

0.93 MAEc 

between 
surfaces 

YES 

Sridhar et al. 
[31] 

 

Vertices 
and faces 

26 (including 6 
for global 
transformation) 

13.24 MAEc of 
landmarks 
over all 
frames 

NO 

Tkach et al. 
[32] 

 

Sphere -
mesh 

26 (including 6 
for global 
transformation) 

N/A N/A NO 

Khamis et 
al. [53] 

 

Vertices 
and faces 

28 (including 6 
for global 
transformation) 

RMSEd: 2.8-
3.2 
MAEc: 1.8-2.1 

RMSEd and 
MAEc 
between 
surfaces 

NO 

a: Hand-object pose estimation 
b: Pose estimation of hands in isolation 
c: Mean absolute error 
d: Root mean square error 
Pictures courtesy of the corresponding articles 
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Fig. 1 The proposed approach for building a posture invariant hand SSM. 
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Fig. 2 3D scans of human hands (Top row: The raw data of a 3D scan and an example 
of post-processing, where a spike was removed. The bottom row:  4 examples of 3D 

scans after post-processing.). 
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Fig. 3 Establishing correspondence between the template and a scan with different 

postures. 
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(a) Segmented hand model and the 
embedded skeleton 

(b) The hierarchical relationship of bone 
segments and joints in the skeleton. The 
number in a circle means the number of 

DOFs that this joint has, circles in gray are 
the fingertips, which have no DOF. 

  
(c) The local coordinate of 𝐵𝑖. (d) Coordinates of all joints. 

Fig. 4 Embedding a skeleton in the hand.  
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Fig. 5 Align 𝐵𝑖 to 𝐵𝑖

𝑇 for posture correction. 
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Fig. 6 Posture correction. a) The template hand model. b, c) Two examples of the 

posture correction. In each example, the first row shows the dorsal and side views of 
the original model before posture correction. The second row presents the result 

after posture correction. 
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Fig. 7 The RMSE between 𝑀𝑚𝑒𝑎𝑛 and 𝑀𝑛𝑒𝑤 regarding the number of iterations in 

Algorithm 1. 
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Fig. 8 The compactness regarding the number of PCs. 
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Fig. 9 The fitting error regarding the number of components. 
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Fig. 10 The specificity regarding the number of components. 
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(a) Effects of the first six components (from -3σ to +3σ) of the SSM without posture 

correction. Deviations among the fingers are clearly visible 

 
(b) Effects of the first six components (from -3σ to +3σ) of the posture invariant SSM. 

Less deviations are observed regarding the posture 
Fig. 11 Effects of the first six components of the SSM without posture correction and 

the posture invariant SSM. 
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Fig. 12 Comparison of the compactness for the posture invariant SSM and the SSM 
without posture correction. The bar graph shows the compactness of each PC, and 

the line graph illustrates the cumulative compactness of two SSM models.  
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(a) 

 
(b) 

Fig. 13 The fitting error comparation between two SSMs. (a) The model fitting error 
regarding the number of components. (b) The error distribution of fitting the scan 

with two SSMs (20 PCs).   
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Fig. 14 Restoring the original posture of the fitted model.  
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Fig. 15 Personalized hand split design based on the proposed hand SSM 

 


