
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Estimation of Similarity Between Data
Streams Using Probabilistic Data

Structures

Author:
Panagiotis REPPAS

Supervisor:
Dr. Asterios KATSIFODIMOS

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

April 7, 2024

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

Declaration of Authorship
I, Panagiotis REPPAS, declare that this thesis titled, “Estimation of Similarity Between
Data Streams Using Probabilistic Data Structures” and the work presented in it are
my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Estimation of Similarity Between Data Streams Using Probabilistic Data
Structures

by Panagiotis REPPAS

This thesis embarks on the quest to efficiently compute similarities between data
streams in real-time, a task burgeoning in importance with the advent of big data
and real-time analytics. At the heart of this endeavor is the expansion of the Condor
framework to accommodate new probabilistic data structures, tailored to meet the
distinctive challenges posed by streaming data. A notable highlight is the adapta-
tion of the DSTree data structure to a streaming environment, marking a significant
stride towards achieving the stated goal. Through an implementation within the
Condor framework, this research explores the core mechanisms for indexing and
approximating similarities, paving the way for more refined analyses. Furthermore,
a comparative study is conducted encompassing several probabilistic data struc-
tures, including HyperLogLog and Theta Sketches, examining their effectiveness in
similarity search within a streaming environment, in comparison with the DSTree
method. The evaluation of these methods will be done through a series of experi-
ments, which are meticulously designed to measure the accuracy and efficiency of
these structures, shedding light on their potential and limitations. he insights gar-
nered from this study underscore the potential of probabilistic data structures in
bolstering the speed and accuracy of similarity search in streaming data, while also
hinting at promising avenues for further research.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

vii

Acknowledgements
First and foremost, I wish to express my deepest gratitude to Prof. Katsifodimos,
whose guidance, support, and expertise were instrumental in the shaping and com-
pletion of this research.

I would also like to extend my appreciation to George Siachamis, who as an ad-
visor provided not only critical feedback but also consistent encouragement, aiding
me at every step of this research process.

My sincere thanks go to TU Delft for providing the environment and resources
that have been crucial in bringing this thesis to fruition. Being part of this esteemed
institution has been a significant chapter in my academic journey.

On a personal note, I would like to acknowledge my parents, whose faith in
my capabilities and continuous support has been the foundation on which all my
endeavors are built. I also want to express my gratitude to my friends, whose ca-
maraderie and occasional reality checks have kept me grounded throughout this
experience.

ix

Contents

Declaration of Authorship iii

Abstract v

Acknowledgements vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Possible Solutions . 2
1.3 Research Questions . 2
1.4 Contributions . 3
1.5 Outline . 3

2 Literature Review 5
2.1 Probabilistic Data Structures . 6

2.1.1 HyperLogLog . 7
2.1.2 Theta Sketch . 9

2.2 Time series . 11
2.2.1 DSTree . 12

3 Methodology 15
3.1 Apache Flink . 15
3.2 Condor . 16
3.3 Similarity Estimation Calculation . 18

3.3.1 HypeLogLog . 20
3.3.2 Theta Sketches . 21
3.3.3 DSTree . 22

MetaDataSketch . 22
DSTreeNode Append . 23
DSTreeNode Distance Calculation 26

4 Experiments and Evaluation 29
4.1 Set Up . 29
4.2 Data Sets . 30

4.2.1 Dataset for Approximate Similarity Search 30
4.2.2 Custom Data Set . 31

4.3 Efficiency Evaluation . 31
4.3.1 Response Time . 32

Synopsis Creation . 32
Similarity Calculation . 38

4.4 Accuracy Evaluation . 48
4.5 Comparing the Methods . 59

x

5 Conclusions 63
5.1 Future Work . 63

Bibliography 65

xi

List of Figures

2.1 Common distance metrics . 5
2.2 Depiction of HyperLogLog flow (reproduced from [25]). 7
2.3 Data-flow depicting all the steps of the HyperLogLog algorithm. Source:

[17] . 8
2.4 Representation of the Theta Sketch data structure. Adapted from [2] . 9
2.5 Example of an intersection operation between two Theta Sketches.

Adapted from [2] . 10
2.6 Comparison of indexing scalability for various techniques designed

for analyzing time series data. Source: [11] 12
2.7 Results of various experiments to evaluate the accuracy of many time

series analyzing techniques, regarding the accuracy when answering
similarity queries both on disk and in memory. Source: [11] 12

2.8 Example of dynamic segmentation. By applying this segmentation
it will be easier to reduce the dimensionality of the time series and
create more efficient indexes. Source: [34] 13

2.9 Examples of both cases of horizontal split. Splitting using mean and
splitting using standard deviation. Source: [34] 13

2.10 Comparison of splitting horizontal (left) and vertical split (right). Source:
[34] . 14

3.1 Synopses classification and possible optimizations for each category.
Source: [28] . 17

3.2 Detailed overview of Condor’s architecture. Source: [28] 18
3.3 The algorithm of adding a new time series in the DSTree, which was

used as the base for the streaming version of the algorithm. Source: [34] 25
3.4 The algorithm used by the static version of DSTree in order to deter-

mine the most similar time series to a given query. Source: [34] 28

4.1 HLL synopses creation times in milliseconds for data streams with
window size of 128 elements. 33

4.2 HLL synopses creation times in milliseconds for data streams with
window size of 1024 elements. 35

4.3 Theta synopses creation times in milliseconds for data streams with
window size of 128 elements. 36

4.4 Theta synopses creation times in milliseconds for data streams with
window size 1024 elements. 37

4.5 DSTree synopsis creation times in milliseconds for data streams with
window size 128. 39

4.6 DSTree synopsis creation times in milliseconds for data streams with
window size 1024. 40

4.7 Number of queries the HLL based method can answer per millisec-
ond, for window size equal to 128 and N number of synopsis. 41

xii

4.8 Number of queries the HLL based method can answer per millisec-
ond, for window size equal to 1024 and N number of synopsis. 42

4.9 Number of queries the Theta based method can answer per millisec-
ond, for window size equal to 128 and N number of synopsis. 43

4.10 Number of queries the Theta based method can answer per millisec-
ond, for window size equal to 1024 and N number of synopsis. 44

4.11 Number of queries the DSTree based method can answer per millisec-
ond, for window size equal to 128 and N number of synopsis. 46

4.12 Number of queries the DSTree based method can answer per millisec-
ond, for window size equal to 1024 and N number of synopsis. 47

4.13 Answer Throughput for various window sizes. Tree depth: 10. Node
capacity: 100. 48

4.14 Accuracy of the HLL based method, for window size equal to 128 and
N number of synopses. 49

4.15 Accuracy of the HLL based method, for window size equal to 1024
and N number of synopses. 50

4.16 Accuracy results of the HLL based method and where the dataset cre-
ated by Amsaleg and Jégou was used as input. N = 10000, W = 128 . . 51

4.17 Accuracy results for the HLL based method for datasets of different
sizes and statistical properties. 52

4.18 Accuracy of the Theta Sketch based method, for window size equal to
128 and N number of synopses. 53

4.19 Accuracy of the HLL based method, for window size equal to 1024
and N number of synopses. 54

4.20 Accuracy results for the Theta Sketch based method and where the
dataset created by Amsaleg and Jégou was used as input. N = 10000,
W = 128 . 55

4.21 Accuracy of the DSTree based method, for window size equal to 128
and N number of synopses. 56

4.22 Accuracy of the HLL based method, for window size equal to 1028
and N number of synopses. 57

4.23 Accuracy results for the DSTree based method and where the dataset
created by Amsaleg and Jégou was used as input. N = 10000, W = 128 58

4.24 Comparative analysis of accuracy. 58
4.25 Comparative analysis of the synopsis creation throughput for the stud-

ied methods. 60
4.26 Comparative analysis of the query answering throughput for the stud-

ied methods. 61
4.27 Comparative analysis of the accuracy for the studied methods when

it comes to answering approximate similarity queries. 61

1

Chapter 1

Introduction

In recent years, our digitized world has witnessed an unprecedented surge in the
volume of produced data. From the non-stop stream of social media updates to
the relentless flow of sensor-generated data, the digital footprints of human and
machine interactions is expanding exponentially, creating a vast and ever-growing
landscape of information. The speed with which the data is being generated has
also dramatically increased, mostly because it is produced by non-human entities,
such as sensors or bots, which can produce data at much higher pace than humans.
Finally, the digital era has given rise to a plethora of connected devices, online plat-
forms, and sensor networks, each contributing to the abundance of real-time infor-
mation flowing through the digital landscape [8].

This threefold increase – in volume, velocity, and variety – while it offers im-
mense potential for insights, innovation, and informed decision-making, it also in-
troduces significant challenges. The sheer scale and complexity of managing, pro-
cessing, and analyzing this amount of information necessitate the development of
advanced and efficient computational methodologies, especially in the realm of data
stream analysis. Data streams, characterized by their continuous and unbounded
nature , are a cornerstone of this data-rich environment. This is due to the fact that in
more and more applications are time-sensitive and processing speed impacts greatly
the quality of service. For example, seamless and efficient traffic among connected
vehicles or real-time fraud detection, highlight the increasing importance of data
stream analysis, as they depend on the transfer and processing of a vast amount of
data in real-time.

To address these challenges, researchers have turned towards probabilistic data
structures as a promising solution to explore. These structures find a balance be-
tween computational efficiency and a certain level of approximation, making them
adept at handling the processing of large data streams with fewer resource require-
ments compared to traditional methods. This attribute makes them especially fitting
for the domain of streaming data analysis.

This thesis investigates the application of probabilistic data structures in the
realm of data stream analysis, with the goal of devising methods for effectively mea-
suring similarity between various data streams.

1.1 Problem Statement

Data streams are sequences of data generated in a continuous manner. Determining
the similarity between data streams is crucial for a variety of practical reasons across
multiple sectors. Areas such as finance and healthcare require immediate decisions
and responses, thus making real-time analytics a necessity. Similarity calculation is
also used in applications where the goal is anomaly detection, playing a vital role in
identifying issues like network breaches and fraudulent financial transactions. For

2 Chapter 1. Introduction

example, streams from network traffic can be used to estimate similarity between
network packets to identify malicious ones, or streams from financial transactions
can be used to spot unusual behavior and thus fraudulent transactions. Moreover,
stream similarity estimation can improve the quality of personalized recommenda-
tions in online services, enhancing overall user satisfaction. Streams from user ac-
tivity can be used to estimate similarity between users and provide more efficient
recommendations on products and services. To sum up, assessing the similarity be-
tween data streams is a key task that yields valuable insights and informed decision-
making across diverse applications and industries. Consequently in order to make
data analysis algorithms and pipelines more scalable, it is important to develop more
efficient similarity search techniques.

1.2 Possible Solutions

Traditionally, data analysis techniques require the data to be stored and then ana-
lyzed off-line using algorithms that make several passes over the data and are char-
acterized by high complexity. However, data streams are by nature infinite, and data
are generated with high rates, making it impossible to store in main memory. It is
difficult to process the high velocity, high volume, and high variety data with SQL-
based tools and as a result, alternative techniques have to be considered in order to
solve the aforementioned issues.

One solution is the use of probabilistic data structures. Probabilistic data struc-
tures are a class of data structures that, as their name suggest uses randomness in
order to achieve certain properties. While, they do not guarantee to give correct an-
swers every single time, they can provide approximate answers with a high degree
of accuracy, while using less memory and time. This makes them ideal for appli-
cations where it is more important to get an answer quickly than to get a perfectly
accurate answer.

The second solution that we are going to investigate is by adopting techniques
used in time series data analysis. Time series data is a collection of quantities that
are assembled over even intervals in time and ordered chronologically. This type of
data can be found in nearly every domain such us engineering, finance, medicine
etc [21] [29]. As it can be easily understood, data streams and time series data are
two closely related concepts and share a lot of similarities. It was only natural that
we considered time-series analysis techniques as a potential candidate to tackle the
problems that arise in data streams analysis.

For the purposes of this project, the aforementioned solutions will be investi-
gated. The first is to use probabilistic data structures in order to create a summary
of a data stream for separate time intervals. Then, use these summaries to calculate
the similarity between data streams. The second approach, is to use an algorithm
designed for calculating similarity in time series data and modify it in a way that al-
lows streaming data analysis. The idea behind this approach is that data that arrive
from each separate data stream can be processed in a way similar to time series data.

1.3 Research Questions

Based on the problem statement a number of research questions can be derived. The
central inquiries driving this investigation are articulated below, organized to mirror
the procedural flow of the research:

1.4. Contributions 3

• Among the array of probabilistic data structures, how do particular structures
like HyperLogLog and Theta Sketches perform in computing similarities be-
tween data streams?

• How can a state of the art time series processing method be altered to efficiently
handle streaming data while maintaining its core functionality for similarity
search?

• How do the implemented data structures and algorithms stack up against each
other in terms of efficiency, accuracy?

• What insights emerge from the experimental assessments regarding the suit-
ability of these data structures for similarity search in streaming data?

1.4 Contributions

In this section, we outline the contributions that emerged in the process of answering
our research questions in the same order, as expressed in the previous section.

A notable endeavor within this work is the expansion of the Condor framework
to seamlessly incorporate a streaming version of DSTree and Theta Sketches. These
addressed challenges related to harmonizing these data structures with streaming
data, paving the way for a more robust similarity search mechanism within the
framework. A central contribution is the modification and implementation of a
streaming version of the DSTree. This new version of DSTree is crafted to manage
streaming data, with a special focus on efficiently determining distances between
different data streams.

Furthermore, this thesis embarked on a comprehensive evaluation to compare
several data structures through various experiments. The goal was to ascertain their
appropriateness for similarity search in a streaming environment. The analysis of-
fers insights into the performance and efficacy of these data structures, enriching the
understanding of their potential and limitations in real-time data stream analysis.

Through these contributions, this thesis has laid a solid foundation for further ex-
ploration and refinement of probabilistic data structures in streaming data analysis
within the Condor framework.

1.5 Outline

The subsequent sections of the thesis are organized as follows. Chapter 2 under-
takes a literature review on probabilistic data structures viable for calculating simi-
larity between varying data streams, alongside time series analysis techniques that
hold the potential to be adapted for use in a streaming data environment. Chapter
3 contains the design considerations and the development of an API which enables
users to select from a few renowned probabilistic data structures, and a new one
devised specifically for this work. It’s clear that the inspiration for the new data
structure stemmed from a time series analysis technique, which was then tailored to
fit a streaming scenario. Following that, Chapter 4 presents the experiments carried
out to evaluate these methods. The experiments were designed in order to mea-
sure both the efficiency and the accuracy of each approach. In the same chapter,
the results of theses experiments can also be found. Lastly, Chapter 5 provides a
conclusion to the thesis, encapsulating our work, acknowledging its limitations, and
suggesting avenues for subsequent research.

5

Chapter 2

Literature Review

Over recent decades, data stream analysis and processing have evolved into a major
area of focus across such as financial data analysis [36], sensor network monitoring
[37], and network traffic analysis [24], among others. Many applications require the
on-line detection of hidden patterns that may exist in different data streams, thereby
underscoring the need for algorithms that will calculate the similarity between these
streams accurately and in timely fashion. To achieve this, there are typically usually
two requirements: a measure to quantify similarity and scalable algorithms to es-
timate these measures. In a data stream environment scalability can often refer to
parallelization of the algorithms in order to ensure accelerated execution times.

Regarding the first requirement of estimating similarity between data streams,
several metrics have been examined in order to calculate the similarity between two
data streams by measuring the distance between them in a feature space. Some
common distance-based measures include the Euclidean distance, cosine distance,
dynamic time warping (DTW), and Jaccard distance. The Euclidean distance [38]
is the classic point-to-point distance between two points in a feature space. It is
calculated by taking the square root of the sum of the squared differences between
the two points in each dimension. Dynamic Time Warping (DTW) [33] is particularly
useful for comparing time series data, where the feature space is a sequence of values
over time. It is calculated by finding the alignment between the two sequences that
minimizes the distance between them. It possesses an interesting feature, as it can
account for shifts in time between the two data streams, albeit at the cost of added
complexity and thus a slowdown in response time. The cosine distance [26] is often
used when dealing with textual data, where the feature space is a vector of word
counts. It is calculated by taking the cosine of the angle between the two vectors.
Finally, Jaccard Distance [5] is calculated by the ratio of the intersection size to the
union size of two sets, providing a measure of similarity between the sets.

(A) Euclidean (B) Cosine (C) DTW (D) Jaccardian

FIGURE 2.1: Common distance metrics

Each of these distance measures serves to quantify similarity in different types
of data, and their choice would be contingent on the nature of the data streams and
the specific requirements of the analysis at hand.

6 Chapter 2. Literature Review

When it comes to the second requirement and the algorithms that can be used in
a data stream context, it is not uncommon to handle data streams as time series and
employing similar analytical techniques. Yet, the inherent complexity and distinct
properties of data streams pose challenges that prevent a direct application of these
algorithms to process the streaming data. The evolution into a distributed version
facilitates the parallel processing of data streams, harnessing the power of multiple
computing resources working simultaneously [38] [15].

Moreover, as mentioned earlier, when it comes to data stream processing, prob-
abilistic data structures emerge as an extremely useful tool, as they can handle large
amounts of data in real-time and provide approximate answers to queries with mini-
mal space usage and computation requirements. A key driver behind this capability
is their inherent design that often encompasses independent operations, which can
be executed simultaneously on distinct segments of the data structure, thereby un-
locking substantial parallelization opportunities. Another advantage of probabilis-
tic data structures for parallelization is that they are often approximate. This means
that they can be used to obtain approximate answers to queries quickly, without
having to process all of the data in a sequential order. Their structure allows differ-
ent threads to work on different parts of the data simultaneously and then combine
their results to produce an approximate answer, which translates to significant per-
formance improvements. This feature will be covered in greater detail in Chapter 3,
explaining how this feature helps in handling streaming data faster while keeping a
good balance between being accurate and not using too much computing resources.
Consequentially, researchers have turned to various probabilistic data structures to
tackle to address a range of issues in data stream environments. For instance, they’ve
used these structures to count the unique values in the incoming data [18], estimate
how often certain elements appear in a data stream [7], approximate the member-
ship of a set [10], etc. These data structures have shown promise in providing effi-
cient solutions while managing the constant flow of data, showcasing their potential
in dealing with the dynamic nature of streaming data.

2.1 Probabilistic Data Structures

In the domain of data analysis, probabilistic data structures offer efficient computa-
tional solutions for a variety of challenges. The next step is identifying structures
from this diverse pool that are adept at calculating similarities between data sets.
The selection process is guided by two primary considerations. Firstly, the size and
complexity of the opperations since the streaming environment in which they will
take place, dictates that results have to be produced in real-time. Different struc-
tures possess varying capacities and efficiencies, with some being inherently more
suitable for handling extensive or complex data sets than others. The second factor
relates to the specific similarity metric that ill be used. Although numerous metrics
are available, the focus of this research is on the Jaccard similarity. So, the chal-
lenge goes beyond just picking a structure that can handle the data’s volume and
complexity. It’s also about finding one that’s tailored to accurately calculate Jaccard
similarity. It also involves selecting the ones that are specifically tailored to facilitate
accurate Jaccard similarity calculations. Balancing these criteria is essential to en-
sure both the reliability and validity of computational results in the context of data
stream similarity assessment.

Two prominent probabilistic data structures that have caught the attention for
their efficacy in addressing these challenges are HyperLogLog (HLL) and Theta

2.1. Probabilistic Data Structures 7

Sketches. HyperLogLog is renowned for its ability to estimate cardinalities with
a relatively small memory footprint, making it a preferred choice for handling large-
scale data streams. On the other hand, Theta Sketches offer a flexible framework,
facilitating various set operations, and are particularly adept at approximating set
sizes and Jaccard similarities. Both structures, with their unique features and com-
putational strengths, will be explored and analyzed to determine their suitability
and performance in calculating similarities between data streams. The examination
of their underlying algorithms, accuracy, and resource efficiencies will provide in-
sights into their applicability in real-world scenarios.

2.1.1 HyperLogLog

HyperLogLog (HLL) is a probabilistic data structure that stands out for its ability
to estimate cardinalities, or the number of distinct elements in a dataset, with im-
pressive accuracy while consuming only a small amount of memory. This unique
feature makes it particularly valuable for large-scale data stream processing where
traditional counting methods may be infeasible due to memory constraints. Origi-
nally proposed by Morris [27] and analyzed by Flajolet [14], HyperLogLog employs
hash functions to achieve its estimations. When a new element enters the dataset, it
is hashed to produce a binary string. The number of zeros at the beginning of the
string is of particular interest because the probability that a given hashed value ends
in at least i zeros is 1/2i. Intuitively, the farther to the left the first 1 appears, the
more likely the item is a rare or unique element. By keeping track of the maximum
position of the number of zeros across all elements in the dataset, HLL can infer the
number of unique elements.

However, relying on a single maximum position could introduce variability, only
one outlier entry whose hash value has too many consecutive zeros will produce a
drastically inaccurate (overestimated) estimation of cardinality. Additionally, this
can give only a power of two estimate for the cardinality and nothing in between.
To counteract this, HLL divides the input data into multiple subsets or "buckets."
Each bucket maintains its number of zeros, and the overall cardinality is estimated
by averaging across these buckets. This division and averaging process not only im-
proves accuracy but also smoothens out potential outliers. As suggested by Frajolet
et al. the data can be assigned to buckets by using the first few (k) bits of the hash
value as an index into a bucket and compute the longest sequence of consecutive
zeros on the remaining bits.

FIGURE 2.2: Depiction of HyperLogLog flow (reproduced from [25]).

8 Chapter 2. Literature Review

In the same paper, it was also observed that outliers greatly decrease the accuracy
of this estimator. Thus, the accuracy can be improved by throwing out the largest
values before averaging. Finally, using harmonic mean instead of the geometric
mean, edges down the error rate even further with no increase in required storage.
The error rate is slightly less than, 1.04/

√
m. Where m is the number of registers.

One of the standout features of HLL is its memory efficiency. The number of
buckets can be adjusted based on the available memory, and each bucket typically
requires only a few bits of storage to track the number of leading zeros. HLL sketches
can calculate cardinality using only O(log2log2(n)) space, this is also from where the
data structure took its name. Additionally, HLL supports the merging of multiple
structures. If two HLL structures have processed different parts of a dataset, they can
be seamlessly merged to produce a cardinality estimate for the combined dataset.
This property is especially advantageous in distributed systems, where data might
be processed across different nodes.

FIGURE 2.3: Data-flow depicting all the steps of the HyperLogLog
algorithm. Source: [17]

However, like all probabilistic data structures, HLL has a trade-off between accu-
racy and memory usage. While it provides a high degree of precision with minimal
memory, there’s still an error margin. The error rates, usually a few percent, can be
reduced by allocating more memory to the structure, but they can never be entirely

2.1. Probabilistic Data Structures 9

eliminated. Moreover, HLL was designed as a means to estimate the cardinality of a
data stream and as such it cannot be used in order to estimate similarity. However,
there is a work around this handicap. Using some of its properties in order to cal-
culate the union of the produced sketches and the inclusion-exclusion principle, as
it will be studied in more depth in Chapter 3.3.1. These extra steps introduce more
complexity and increase the error rate of the solution.

In summary, HyperLogLog is a data structure that offers a compelling solution
to the cardinality estimation problem in large-scale data-sets. The are two features
that render HLL a viable solution in the studied problem. Firstly, its ability to handle
huge amounts of data and create synopsis that reduces the size of the original data
by several orders of magnitude. Secondly, the fact that the process of creating new
synopses can be broken down to smaller pieces that are executed independently, is
a necessary feature when dealing with streaming data as most of the operations are
executed in a distributed way.

2.1.2 Theta Sketch

The second data structure that will be investigated has completely different prop-
erties. In contrast with HyperLogLog, Theta Sketches [9] represent a flexible and
efficient probabilistic data structure devised for the purpose of approximating set
operations, specifically cardinalities of unions, intersections, and differences. Their
utility shines when managing vast data streams, where exact computations may be
resource-intensive or simply unfeasible. While, technically Theta Sketches do not de-
fine a single data structure, but a framework where its instantiations must specify a
threshold choosing function, a combining function and an estimator function. More
specifically, as the name suggests, the threshold function is a process that prunes
elements that do not hold a specific property, the combining function takes as input
a collection of Theta Sketches and returns a single Theta Sketch that is the union of
these sketches, and finally, A estimator function that takes as input a Theta Sketch
and returns an estimate of the unique hashed stream items present.

FIGURE 2.4: Representation of the Theta Sketch data structure.
Adapted from [2]

In our case, Theta Sketches will be a generalization of the Kth Minimum Value
(KMV) sketch [4]. The core idea behind Theta Sketches is rooted in the concept of
randomized algorithms. Each incoming item in a data stream is processed using a

10 Chapter 2. Literature Review

hash function, producing a value in the range of zero and one. A critical parameter,
denoted as θ), is determined, which signifies the threshold for filtering these hashed
values. The default value of theta is 1. When k values are inserted in the sketch theta
is still 1. When the next unique value must be inserted into the sketch, theta gets
the value of the (k+1)th minimum value and that value is removed from the cache.
Only values below the theta threshold are considered, which helps in determining
the cardinality of the set.

FIGURE 2.5: Example of an intersection operation between two Theta
Sketches. Adapted from [2]

The elegance of Theta Sketches lies in their adaptability to various set operations.
The combining function of this method is quite simple and easy to perform. When
merging two sketches, the θ) value of the resultant sketch is the minimum of the θ)
values of the original sketches. The set of hashed values of the input sketches are
then filtered based on this new threshold, providing the set of hashed values of the
new sketch. Similar principles apply for intersections and differences, with suitable
modifications in the approach as explained by the following expressions:

∆ = {∪,∩}; θα∆β = min(θα, θβ); Sα∆β = {x < θα∆β; x ∈ (Sα∆Sβ)} (2.1)

The third element of the framework, which is the estimation function, is also
quite easy to implement. In order to calculate the cardinality of the input set, after
the creation of the sketch one must divide the number of elements in the sketch with
the theta value. Another notable aspect is the error bounds of Theta Sketches. The
error in estimation is probabilistic, and its bounds can be explicitly defined based on
the space allocated to the sketch. This provides users with a clear trade-off between
accuracy and space, allowing for informed decisions based on specific application
requirements. As mentioned by Dasgupta et al., the relative standard error of the
proposed method is: 1√

k−1
, which is an improvement from the normal KMV sketch

that has an error rate of: 1√
k−2

. A significant advantage of Theta Sketches is their
space efficiency. While the memory consumption does increase with the desired
accuracy, it’s still markedly lower compared to deterministic algorithms for the same
task. Furthermore, as with HyperLogLog, multiple Theta Sketches can be combined,
which is invaluable in distributed computing environments where data might be
scattered across different nodes.

2.2. Time series 11

However, it’s worth noting that while Theta Sketches excel in approximating set
operations, they are not intended for exact computations. This is a fundamental
characteristic of probabilistic data structures, where a certain degree of approxima-
tion is accepted in favor of efficiency.

In conclusion, Theta Sketches have emerged as a robust solution for approxi-
mating set operations in the context of massive data streams. Their combination of
space efficiency, adaptability to various operations, and clear error bounds positions
them as a tool of choice for many real-time analytics and database systems as Theta
Sketches provide a scalable and efficient solution.

2.2 Time series

Data streams, characterized by their multidimensionality, play a crucial role across
diverse fields. Their temporal dimension means that patterns and sequences within
the data are as essential as the data values. Unlike other data types, data streams
require unique analysis techniques due to this multidimensional aspect. With the
surge in the volume of data streams, especially in today’s applications, the compu-
tational demands of similarity searches can become overwhelming. This has led to
a surge in research efforts aimed at developing optimized indexing methods, tech-
niques to reduce data dimensionality, and approximation strategies. The ultimate
goal is to strike a balance between computational efficiency and search accuracy,
ensuring that the results are both quick and precise.

The intricate nature of both time series and data streams, especially their tempo-
ral aspects, appears as an opportunity to transpose methods from time-series anal-
ysis into the realm of data streams. With a plethora of techniques in time-series
similarity approximation available, it was a challenge to select the best fit. To this
end, the exhaustive survey by Echihabi et al. [11] was referred to for guidance.
This survey was particularly enlightening, offering detailed comparisons of a bunch
of time-series approximation methods and supplementing them with experimental
results. This comprehensive assessment granted a clearer understanding of each
technique’s potential and challenges, ensuring that the chosen approach was both
resilient and apt for the research goals.

Echihabi et al. [11] in their survey cast a spotlight on seven standout techniques
tailored for multidimensional data. Beyond this, the survey also elaborates on inno-
vative approximate search algorithms, tailoring them exclusively to the unique de-
mands of data series analysis. These algorithms were of particular interest to us for
the purposes of this work so they will be emphasized, these algorithms are DSTree
[34], iSAX2+ [6] and VA+file [13]. Notably, their evaluation was grounded in well-
defined criteria: scalability, search efficiency, and accuracy. Their experimentation
was methodically structured into two distinct phases: index building and query an-
swering. Furthermore, the data-sets utilized were both synthetic and real, ensuring
their results had breadth and applicability.

In evaluating the scalability of various indexing methods, distinct patterns and
efficiencies emerge. As depicted in Figure 2.6, iSAX2+ stands out as the most ex-
pedient in index building. Following closely are VA+file, SRS, DSTree, FLANN,
QALSH, IMI, and HNSW, in that order. Notably, despite IMI and HNSW being the
sole parallel methods in this comparison, they lagged behind, exhibiting the slowest
index-building speeds. Assessing the memory footprint of each method, as it can be

12 Chapter 2. Literature Review

seen in the same Figure, DSTree emerged as the leader in efficiency, with iSAX2+ fol-
lowing. The other techniques lagged significantly, exhibiting inefficiencies of nearly
two orders of magnitude.

FIGURE 2.6: Comparison of indexing scalability for various tech-
niques designed for analyzing time series data. Source: [11]

Shifting our focus to the evaluation of query answering efficiency and accuracy,
DSTree and iSAX2+ consistently eclipse other techniques in performance. Examin-
ing the delicate balance between query efficiency and accuracy, DSTree consistently
outperforms iSAX2+ across the majority of datasets. Although LSH techniques, typ-
ified by methods like SRS, offer assurances on the search result accuracy, they come
at a steep price, consuming both considerable time and memory resources. Conclu-
sively, in the landscape of approximate query answering, DSTree and iSAX2+ stand
out, overshadowing even state-of-the-art LSH-based methods like SRS and QALSH
in terms of both time and space efficiencies. Furthermore, they also offer more robust
theoretical guarantees.

FIGURE 2.7: Results of various experiments to evaluate the accu-
racy of many time series analyzing techniques, regarding the accu-
racy when answering similarity queries both on disk and in memory.

Source: [11]

2.2.1 DSTree

After, consulting the results of the aforementioned survey, the DSTree algorithm was
chosen as the third method to calculate similarity between data streams. Even within
this elite bracket of top-performing methods as presented in [11], DSTree establishes
itself as the superior choice for a majority of scenarios. Recognizing this distinct

2.2. Time series 13

edge, DSTree was selected as the primary method for in-depth examination in this
research. Its performance attributes undoubtedly render it a prime candidate for
efficient similarity approximation in streaming environments.

The DSTree, an indexing structure, is meticulously crafted to manage large-scale
data series datasets, balancing both storage optimization and query performance.
Central to its operation is the concept of adaptive segmentation. Instead of the con-
ventional fixed-length segmentation of the dataset as the tree grows in size and more
levels are added, DSTree opts for a more refined technique. By employing pattern-
based segmentation, it identifies natural breakpoints or changes in trends within the
data. This leads to segments of variable lengths, which are more reflective of the
underlying data patterns and ensure a highly representative indexing structure.

FIGURE 2.8: Example of dynamic segmentation. By applying this
segmentation it will be easier to reduce the dimensionality of the time

series and create more efficient indexes. Source: [34]

Inserting a time series into the DSTree involves directing it to an appropriate leaf
node, aiming to group similar series together. Starting from the root node, if it’s
a leaf with empty room, the input is placed there; otherwise, the node gets split.
If it is an internal node, the new time-series moves to the most fitting child node.
This continues until the new time-series reaches a leaf. The insertion process relies
heavily on the functions BestSplit() to determine the optimal node splitting strategy,
and routeToChild() to decide on the child node. Both functions are detailed in [34].

Partitioning time series into subsets for node assignment in the DSTree can be ac-
complished in two primary ways: horizontal splitting (H-split) and vertical splitting
(V-split). During an H-split, the segmentation remains consistent, but the time series
set divides into two separate subsets. The series are categorized into these subsets
based on specific criteria of a chosen segment - either its mean or its standard devi-
ation.

FIGURE 2.9: Examples of both cases of horizontal split.
Splitting using mean and splitting using standard deviation.

Source: [34]

14 Chapter 2. Literature Review

On the other hand, V-split refines the current segmentation by adding an extra
segment. As an example, consider Figure 2.10 where four time series share similar
mean and standard deviation values for the i-th segment, making them difficult to
distinguish through H-split. To address this, a V-split first bisects the segment, and
then the series are clustered by the mean of the left sub-segment.

FIGURE 2.10: Comparison of splitting horizontal (left) and vertical
split (right). Source: [34]

Finally, within the framework of the DSTree, two types of queries are catered
to: traditional similarity search and the estimation of distance distribution. For the
purposes of this research, the focus is squarely on the traditional similarity search,
as it’s most pertinent to the subject under investigation.

DSTree operates in a systematic, two-phase manner. The first step is to provide
a Best-So-Far (BSF) answer. Given a query, this is achieved by traversing the tree
in a similar way as if the query was to be inserted. Once a leaf node is reached the
data in the leaf node are compared with the query and the minimum distance is
calculated. After determining the BSF, a priority queue is formulated. This queue
is tasked with scrutinizing nodes that could contain series more akin to the query
than the BSF. Initially, this queue contains only the root node. The algorithm consis-
tently pulls the node with the smallest minimum distance from the priority queue.
This process continues until the priority queue is empty or an early termination cri-
terion gets triggered. This termination arises when the minimal distance surpasses
or matches the BSF’s distance. When this happens, it’s certain that no other series
in the priority queue can outmatch the BSF in similarity, allowing for their exclusion
from the search.

The DSTree, inherently developed for static data contexts, has not been directly
tailored for handling streaming data. To transition it into this realm requires several
substantive modifications, which will be analyzed in Chapter 3.3.3. Yet, prelimi-
nary assessments are promising. Initial data, even with the challenges of streaming
environments in mind, suggest that the DSTree possesses potential. With proper
adaptation, it could emerge as an efficient mechanism for evaluating the similarities
that exist between rapidly flowing data streams.

15

Chapter 3

Methodology

Handling data streams presents distinct challenges that make reliance on traditional
systems, like database management systems (DBMS), inadequate. The unbounded
nature of data streams rendered these systems inappropriate for data analysis in
streaming environments. Their fundamental architecture doesn’t support rapid and
continuous data ingestion, a vital requirement for streaming data. Beyond mere
speed, data streams brought to the fore the significance of approximation and adap-
tivity in data processing. Unlike DBMSs, which prioritize delivering exact answers
and operate based on stable, predefined queries, data streams demanded a shift in
paradigm. In the context of streams, absolute precision often took a backseat. Re-
searchers quickly realized that to effectively process and analyze streaming data,
one needed systems that could provide nearly accurate results on-the-fly, adapt to
changing data trends, and accommodate the continuous flow of incoming informa-
tion.

In recent years, the field of stream processing has seen a surge of development,
with many new frameworks emerging. With so many options available, it can be
difficult to choose the right framework for a particular use case. To make the most
informed decision, it is important to compare the different frameworks and consider
their respective strengths and weaknesses.

3.1 Apache Flink

Apache Flink stands out as a premier, open-source platform primarily tailored for
stateful processing of diverse data types, encompassing both real-time streams and
more static batches. Its distinct edge lies in its capability to remain operational non-
stop, swiftly processing incoming data. A significant portion of these computations
is executed in-memory, resulting in enhanced speed and notably reduced data pro-
cessing latency, compared to other data streams processing systems like Apache
Hive [31].

Diving deeper into its features, Flink’s advanced state management system is
hard to overlook. It offers users a guarantee that each piece of data will influence the
system only once. This "exactly-once" processing ensures impeccable data accuracy,
a vital trait when confronting challenges like out-of-sequence or tardy data entries,
scenarios Flink is adept at navigating. This is a feature that sets Flink apart from
other frameworks like Apache Storm [32].

Another advantage of Flink is its unified approach. While it’s primarily designed
for stream processing, it also offers tools for batch processing, all under one uni-
fied programming model. This flexibility allows developers to work with various
data types seamlessly. Another known framework that also offers a certain amount
of flexibility is Apache Spark. While Flink excels in low-latency, high-throughput

16 Chapter 3. Methodology

stream processing, Spark is known for its fast batch processing capabilities. Both
frameworks can process large volumes of data quickly, with Flink focusing on real-
time analytics and Spark catering to batch data processing tasks. For the purposes
of this work Apache Flink was the most preferred choice.

Flink is versatile in its application. It can power event-driven apps, real-time data
analytics, and even replace traditional batch-based processes, offering faster data
transformations. Its internal structure involves data flow graphs that outline how
data is transformed, processed, and subsequently routed to its designated endpoint,
ensuring a transparent and understandable trajectory of data movement.

In terms of reliability, Flink offers robust fault tolerance. It uses checkpoints to
save application states at regular intervals, so if there’s a system failure, minimal
data is lost. This system is also flexible, allowing developers to make changes to their
Flink job without losing the application’s state. Additionally, its distributed nature
makes it scalable. It can process data concurrently across many machines, ensuring
it can handle large data volumes. Data and application states are distributed across
nodes, which boosts performance by using local data for faster computations.

Furthermore, Flink has a number of proven connectors to popular messaging and
streaming systems, data stores and search engines like Apache Kafka and Amazon
Kinesis. It offers different programming levels, from high-level SQL streaming to
detailed APIs, so developers can choose the best tools for their tasks.

In summary, Apache Flink’s design and features make it a reliable choice for pro-
cessing large-scale data in real-time and batches. It’s because of all these strengths
that Apache Flink was regarded as the best choice for implementing our solution.

3.2 Condor

As mentioned before, synopses are summaries of data that can be used to estimate
the results of complex queries without having to process all of the data. This can lead
to significant performance improvements for data stream processing applications.
However, only a few existing stream processing frameworks support synopses as
first-class citizens [23]. and more specifically many of the existing algorithms do not
implement synopsis in a distributed fashion. This means that developers have to
manually implement support for synopses in their applications, which can be time-
consuming and error-prone. In order to tackle this issue, Poepsel-Lemaitre et al.
developed the Condor framework [28]. It is, a framework that facilitates the defini-
tion of synopsis-based streaming jobs and integrates them into datafow systems that
support window processing. Since Condor also provides an integration to Apache
Flink, it considered as a potential tool in order to implement the probabilistic data
structures described in the previous chapters. In this chapter an overview of Con-
dor will be presented, highlighting the features that make it a useful tool for the
purposes of this work.

The Condor Framework emerges as a robust solution for managing data stream
analysis, particularly oriented towards real-time or near real-time analytical scenar-
ios. Its cornerstone lies in the support for synopses, simplifying the specification and
processing of synopsis-based streaming jobs, thereby potentially enhancing the ef-
ficiency and ease of conducting real-time data analysis. More specifically, a notable
feature of Condor is its ability to represent synopses as a particular case of win-
dowed aggregate functions [20], hence allowing it to abstract internal processing
details. This abstraction is instrumental for individuals or teams keen on focusing

3.2. Condor 17

on analytical tasks, without getting entangled in the underlying mechanics of data
processing.

There are three conditions that must be covered according to the Condor model.
The unnecessary details of the internal processes must be hided in order to make
the synopsis easy to use. Additionally, the level of abstraction should not be an
obstacle for performing the computations in a distributed way, and in such a way
that the throughput would scale linearly depending on the number of nodes. Finally,
take into account the different algebraic properties of each category of synopsis and
define the optimizations that can be introduced in each one or the restrictions that
can be imposed.

The process followed by Condor consists of two parts, first is a categorization
process where synopsis are classified based on their algebraic properties. Secondly,
the exploitation of a divide and conquer strategy means that the framework can
achieve the distribution of the necessary computations across multiple nodes. By
distributing the computation, it not only facilitates high performance but also scales
linearly with the increase in data volume and complexity, which is essential for man-
aging large-scale data streams in real-time analytics.

According to the suggested model, there are five classes of synopses: mergeable,
commutative, invertible, order-based, and non-mergeable. A synopsis is a merge-
able one, when there is a function that can combine two of its instances without
alterations to the error and size guarantees [1]. Commutative synopses are a sub-
class of the mergeable ones, with the addition of an update function that follows the
commutative property. Given that feature, these synopses can accept out of order
elements. Invertible synopses, are themselves a subclass of commutative synopses,
with a function that reverts changes to a previous state. This property can be used in
order to resolve inconsistent results by decreasing updates instead of recomputing
whole windows. An ordered-based synopsis retains ordering properties for every
input element. last but not least, non-mergeable synopses only have an update func-
tion and do not hold any of the aforementioned features. Obviously in these cases
parallelism cannot be exploited and the synopses are computed in a centralized way.

FIGURE 3.1: Synopses classification and possible optimizations for
each category. Source: [28]

Furthermore, the process of translating a synopsis to an aggregate window func-
tion can be divided in three stages, divide, compute and merge. In the divide phase,
the input data stream is distributed across all available cores, with each window of
data being partitioned into multiple smaller windows to ensure a balanced distribu-
tion. Transitioning to the compute phase, the emphasis is on incrementally calculat-
ing partial aggregates. A partial synopsis is initiated and continuously updated as
new data elements arrive. This ongoing update mechanism is essential for maintain-
ing an accurate representation of the data. The compute phase reaches its conclusion

18 Chapter 3. Methodology

once all elements within the corresponding window have been incorporated into the
synopsis, signifying the readiness for the final stage. The culmination occurs in the
merge phase, where all the partial synopses are consolidated into a single result for
every window. A merge function is employed to combine these partial synopses,
ensuring a precise and comprehensive aggregation of the data.

Condor establishes the mathematical groundwork for efficient synopses compu-
tation in distributed streaming applications, ensuring high-throughput in parallel
synopsis maintenance without compromising accuracy. Its performance scales lin-
early with the parallelism degree, making it a reliable framework for real-time ana-
lytics in distributed environments.

FIGURE 3.2: Detailed overview of Condor’s architecture. Source: [28]

Through this well-structured process, HyperLogLog transcends its primary role
of cardinality estimation to become an instrumental component in a robust method-
ology for similarity calculation.

3.3 Similarity Estimation Calculation

This section showcases the details of our contribution. In the earlier discussions, we
talked about using Apache Flink to handle streaming data, and Condor for working
with probabilistic data structures. To do this, we made some additions to the Condor
framework by including two more synopsis methods. While Condor already has
twelve synopsis algorithms, including HyperLogLog, the list was expanded with the
addition of Theta Sketches and MetaDataSketch. MetaDataSketch is a custom made
synopsis that will be used for the implementation of DSTree, as it will be descried
further in Chapter 3.3.3.

However, yet, a crucial step remains - figuring out the similarity of data coming
from different streams. To enhance the processing and analysis of streaming data, a
structured approach was adopted in organizing the code. A naming convention was
introduced to maintain consistency, where each class name begins with the name of
the data structure it relates to, hereinafter referred to as ’X’. For example two such
classes are HLLBuilder and ThetaBuilder, which are part of the HyperLogLog and

3.3. Similarity Estimation Calculation 19

Theta Sketch implementation respectively. Java was the chosen language for this
endeavor, as it is one of the two languages supported by the Flink framework and
being the language in which Condor was originally written. This choice ensured a
smooth integration with the existing frameworks.

For each selected data structure, a uniform structure was adhered to. Five main
classes were created for each data structure to ensure the required functionality. The
first class, named XSketch, was crafted based on the guidelines presented by Con-
dor’s development team in a demo that can be found at the project’s GitHub page.
This class is instrumental in defining the data structure and its variables, alongside
housing a merge and an update function, as dictated by Condor’s commutative syn-
opsis interface. These functions are essential for managing the data and ensuring it’s
processed accurately.

The second class, dubbed XBuilder, plays a pivotal role in creating a build con-
figuration for the corresponding data structure. It takes the input data stream and
the window size as arguments in its constructor, laying down the foundation for
processing the streaming data. The incoming streams can be of two different types,
either read from a .txt file or arriving from a Kafka queue. The utilization of Apache
Kafka will be analyzed further in Chapter 4. Embedded within XBuilder is a func-
tion designed to read the incoming data from the input stream, create a synopsis for
each window, and consequently return a stream of synopses. This function acts as
a conduit through which the raw streaming data is transformed into a structured
synopsis, ready for further analysis.

Having mapped each incoming stream to a stream of probabilistic data struc-
tures, the subsequent steps are focused on calculating the similarity between these
incoming streams using additional classes. A function named XSimilarity is intro-
duced, which is fairly straightforward— it houses a function that takes two sketches
as input and returns the measure of their similarity. Before analyzing the other func-
tion let’s add some context. The way the data will be compared in our solution is
quite simple and straight forward. here are two streams of data in play: one stream
of data arriving from a Kafka queue, and a parallel stream of queries arriving from
a second queue. Both streams are segmented into windows of identical size, and
each window from the query stream is set to be compared with every window from
the data stream received until that point. The previously explained code is utilized
to map both streams to two streams of synopses, laying down the groundwork for
similarity computation.

The final class is called XSimilarityComparator and extends Flink’s RichCoFlatMap
class, implying a common state shared between the two streams, which is a critical
feature for managing and comparing the data in sync. The initialization of this state
is carried out using the "open" function. Post initialization, as synopses arrive from
the query stream, they are appended into a list. Subsequently, whenever a synopsis
arrives from the data stream, it’s compared against all the synopses present in the
list until that point. The most similar synopsis is identified, and the result is en-
capsulated in a string. This string comprises the IDs of the two compared synopses
alongside their similarity percentage, providing a succinct yet insightful representa-
tion of the similarity between the data streams at that instance.

So, through this setup, we have a straightforward way to compare our data
streams, find out how similar they are, and get a clear output of the results. In the
following chapters we will present in greater detail how the aforementioned pro-
cess is implemented for every data structure and . We’ll unfold the intricacies of
the implementation, shedding light on the most engaging and crucial parts of the
process.

20 Chapter 3. Methodology

3.3.1 HypeLogLog

Mapping the strings of incoming data to streams of synopses was quite simple in
this case, since Condor by default comes with an implementation of the HLL sketch.
This favorable setup allowed the focus to shift towards the more critical aspect of
computing the similarity between the newly formed data streams.

HLL is traditionally known for its prowess in approximating the cardinality, es-
sentially quantifying the number of distinct elements within a dataset. While it’s not
originally devised for similarity calculations between datasets, HyperLogLog facili-
tates the straightforward calculation of the cardinality of the union of sets. To obtain
the count of the union of two sets, the HLL data structures representing the two sets
can be ’merged’ to form a new HLL data structure, from which the count can be de-
rived. The merge operation for two HLLs, provided they have an equal number of
buckets, entails comparing each pair of buckets and assigning the maximum value
from each pair to the corresponding bucket in the resultant HLL. Building on this,
the inclusion-exclusion principle comes into play to estimate the cardinality of the
intersection indirectly, using the cardinalities of the individual sets and the cardinal-
ity of their union according to the following formula:

|A ∩ B| = |A|+ |B|+ |A ∪ B|

This phase harnesses the formula of the inclusion-exclusion principle to deduce
the size of the intersection. With the size of the intersection and the size of the union
at hand, the Jaccard Similarity is computed by dividing the size of the intersection
by the size of the union.

But as mentioned and proved in [9] this approach introduces extra error and la-
tency. More specifically, while HyperLogLog (HLL) is proficient at estimating the
cardinality of union of sets, it does face challenges with other set operations, espe-
cially when the sets have significantly different sizes. When the size of the intersec-
tion is much smaller than the size of the union , HLL’s error rate can increase, which
negatively impacts the accuracy of the estimates. The error scaling behavior of HLL
in such scenarios can overwhelm the inherent accuracy advantages of this method.

While trying to find alternative methods to tackle this issue we came several
methods that use HLL. Prominent among these are an enhanced version of HLL,
dubbed HyperLogLog++ (HLL++) [16] and, maximum-likelihood-based methods
such as Maximum Likelihood Estimator (MLE), Joint Maximum Likelihood Estima-
tor (JMLE), and Ertl’s Improved method [12]. The comparison of these methods to
each other, as well as to the inclusion-exclusion approach, was presented by Baker
and Langmead [3].

In some initial tests, both HyperLogLog++ and Ertl’s Improved method didn’t
do as well as MLE, so they were not considered further for that analysis. Addition-
ally, Ertl’s Joint MLE method, despite its superior accuracy, falls short due to the
substantial latency it introduces, making it unsuitable for real-time data stream ap-
plications where speed is of the essence. On the other hand, while MLE exhibited
promising results in a static setting, its computationally intensive nature posed a sig-
nificant obstacle in data stream contexts. The method demands complex calculations
involving exponentiations, divisions, harmonic means, and iterative procedures for
finding roots of functions. This computational complexity, although manageable in
a static environment, becomes a prohibitive factor in the dynamic, fast-paced realm
of data streams. Also it is a much more complicated algorithm than the one based

3.3. Similarity Estimation Calculation 21

on the inclusion-exclusion principle without showing any significant improvement
in accuracy to justify the extra effort required to implement it.

For these reasons we decided to include the first approach, the one that is based
on the inclusion-exclusion property. In order to improve the accuracy of this method
we expanded the implementation provided by Condor by adding the following
functionality: The use of multiple hash functions can potentially lead to better dis-
tribution and representation of the data across the buckets in the HyperLogLog data
structure. Different hash functions may produce different hash values for the same
data, which could lead to a more uniform distribution of data across the buckets.
This, in turn, could help in reducing the variance and, subsequently, the error rate
in the cardinality estimation. Averaging these estimates will lead to a more accurate
and reliable estimate.

Finally, when configuring the HLL sketch, the user can configure the number of
registers as well as the number of hash functions that will be used.

3.3.2 Theta Sketches

Integrating a new data structure like theta sketches into Condor necessitates an ex-
tension of the framework. When a user brings in a new synopsis into the system,
it is crucial to manually categorize it into the right class so that Condor can recog-
nize its algebraic properties, ensuring appropriate handling within the framework.
Condor’s primary objective is to offer a framework that facilitates the specification
of synopsis-based streaming jobs in a broad sense. Therefore, the precise imple-
mentation of crucial operations like merge and update functions for each synopsis is
dependent on the user. This user-dependent nature allows for the flexibility and cus-
tomization necessary to cater to various data processing and analysis requirements,
making Condor a versatile framework for managing streaming data.

In our case, Theta Sketches are part of the Commutative Synopses category, as
declared by Condor, and thus, extends the CommutativeSynopsis class. This means
that an update and a merge function must be implemented. By defining how new
data is accommodated and how data fragments across windows are unified, these
functions play a critical role in enabling the efficient and accurate processing of
streaming data, as explained in Chapter 3.2.

Implementing the functions for integrating Theta Sketches into the Condor frame-
work was fairly straightforward. Based on the work laid down by the creators of
Theta Sketches, Dasgupta et al., in the paper [9]. This work provided a solid base
and was expanded by the Apache Datasketch [30]. For a more hands-on under-
standing and practical insights into the implementation, the Apache DataSketches
documentation was a valuable resource. The Apache DataSketches documentation,
while based on the aforementioned paper, goes a step further. It provides a deeper
exploration of the mathematical concepts that underlie Theta Sketches, making it
easier to understand the theory behind the method. At the same time, it also offers
a more abstract, high-level overview of Theta Sketches, making the method more
accessible.

The combination of the theoretical grounding from [9] and the practical insights
from the Apache DataSketches documentation facilitated a well-rounded under-
standing, aiding in a smooth implementation of the necessary functions within the
Condor framework. This balanced approach ensured that the integration of Theta
Sketches was not only accurate but also well-informed, bridging the gap between
theory and practical application effectively.

22 Chapter 3. Methodology

following the definition of the sketch, the remaining process adheres to the steps
and flow outlined in the previous chapter. The choice of Theta Sketch was driven
by its adeptness in handling set operations, which significantly simplified the task
when compared to the effort required with HyperLogLog (HLL) for calculating Jac-
card similarity between datasets. Unlike HLL, where additional efforts were nec-
essary to maneuver through set operations for similarity calculations, Theta Sketch
offered a more direct and less cumbersome approach. Theta Sketch’s inherent capa-
bility to manage set operations provided a more straightforward pathway to imple-
ment a solution for computing the Jaccardian similarity.

3.3.3 DSTree

When implementing a new feature or algorithm like DSTree within a framework like
Condor, a structured approach to coding is essential. The general outline of how the
code structure was organized is similar to the one described in the previous chapters
to ensure clarity, maintainability, and the seamless integration of the new feature.
However, the unique functionalities brought by DSTree necessitated the creation of
a new probabilistic data structure since none existed that could cater to these specific
functionalities.

MetaDataSketch

The synopsis for each window is envisioned as a data structure encapsulating two 2-
dimensional matrices. One of these matrices stores the mean values of each segment
and its sub-segments, while the other matrix houses the corresponding standard
deviation values. This dual-matrix structure serves as a compact, organized repre-
sentation of the necessary statistical data, facilitating the DSTree’s ability to execute
its operations effectively. Additionally, a third array of the same size is required,
holding the count of elements that arrived in each corresponding sub-segment of
the window. This array is required only for the update and merge functions and ca
then be discarded once the synopsis is created, in order to free memory.

For example, given a window of 32 elements and a predefined segmentation of 8
elements, the requirement was to ascertain the mean values across different segment
sizes—every 8 elements, every 16 elements, and the entire window of 32 elements.
At the first level of this hierarchy, the mean value of the entire window of 32 elements
will be computed and stored in the first row of a designated matrix. Proceeding
to the second level, the window will be separated in two halves, each consisting
of 16 elements. The mean values of these two halves will be computed separately
and stored in the second row of the matrix, with the mean of the first 16 elements
occupying the first position, and the mean of the latter 16 elements occupying the
second position. The third row will require the window to be divided into four
quarters, each containing the mean values of 8 elements. Simultaneously, a similar
process is carried out to compute and store the standard deviation values of each
segment and sub-segment, utilizing a separate matrix structured identically to the
mean values matrix.

Since MetaDataSketch implements the CommutativeSynopsis interface, an up-
date and a merge function must be implemented. The update function is crucial for
recalculating the mean and standard deviation values as new data elements arrive
in the stream. However, a key challenge emerges due to the streaming nature of the
data - typically, the calculation of mean and standard deviation requires the entire

3.3. Similarity Estimation Calculation 23

dataset to be available upfront, but in this scenario, data elements are arriving incre-
mentally. To navigate this challenge, an incremental approach is adopted to adjust
the average and standard deviation with each new data element that arrives [22].
The objective is to compute the cumulative average seamlessly as the data streams
in. This goal is facilitated by the following formula which is geared towards calcu-
lating the cumulative average:

CAn+1 = CAn +
xn+1 + CAn

n + 1

This formula requires only the knowledge of the value of the new element, the
mean value of the elements received so far and the count of these elements, infor-
mation which is readily available from the previously mentioned arrays.

The incremental calculation of the standard deviation is a bit more complicated,
in the sense that it requires the calculation of an incremental value after every new
element’s arrival [35]. These values are kept in a fourth array of the same size as the
mean values and standard deviation array. However, it is only used in the update
function and can be discarded after the synopsis of the window is complete in order
to make the algorithm more memory efficient. The formula for the calculation of
standard deviation, with only one pass over the data, is the following:

s2
n =

√
inc
n

Where increment equals:

inc =
∞

∑
i=1

(xn − µn) ∗ (xn − µn−1)

Finally, the purpose of the merge function is to combine the count, mean and
standard deviation arrays. In order to do that, the following equations are exploited
and executed per tuple of each array in order to compute the aggregate statistics and
combine the data from the different groups.

The formula for calculating the weighted mean (W) of two sets with known
means (M1 and M2), the number of elements (N1 and N2), and the total number
of elements in both sets (N1+N2) is as follows:

W =
N1 · M1 + N2 · M2

N1 + N2

The formula for calculating the combined standard deviation (SS) of two sets
with known standard deviations (S1S1 and S2S2), means (M1M1 and M2M2), the
number of elements (N1N1 and N2N2), and the total number of elements in both
sets (N1+N2N1+N2) is as follows:

S =

√
(N1 − 1) · S12 + (N2 − 1) · S22 + N1 · (M1 − W)2 + N2 · (M2 − W)2

N1 + N2

DSTreeNode Append

In adapting the DSTree data structure for streaming environments within the Con-
dor framework, a novel data structure named DSTreeNode has been introduced.
Drawing inspiration from the original DSTree as expounded in [34], it incorporates

24 Chapter 3. Methodology

modifications essential for functionality in a streaming scenario. The DSTreeNode
encapsulates various variables akin to those described in the original paper.

One of the pivotal variables is ’C’, representing the count of time series indexed
in the subtree rooted at the node in question. An array of coordinates, dubbed ’sg’,
plays a crucial role in mapping positions within the meanValues and stdDevValues
arrays of a MetaDataSketch synopsis, acting as a bridge to the statistical data. An-
other array, named ’z’ exists ,where each row stores the minimum and maximum
mean value and standard deviation of a different segment. The boolean variable
’leaf’ serves as a flag, distinguishing between internal and leaf nodes

Diving deeper into the anatomy of an internal node, it houses two pointers steer-
ing towards its child nodes, thereby crafting the hierarchical scaffold of the tree.
Each internal node also harbors a splitting strategy, denoted as ’SP’, which orches-
trates the logic for branching down to child nodes. The ’splitSegment’ variable pin-
points the position of the segment that was split in the coordinated array sg, acting as
a marker for the segment under scrutiny during the splitting decision. Complement-
ing this, the splitting value acts as a threshold, aiding in making informed branching
decisions. The mechanism of appending a new element to the Streaming DSTree is
dictated by a confluence of the splitting strategy, split segment, and splitting value.
For instance, with a splitting strategy of horizontal mean as described in 2.2.1, a split
segment of 1, and a splitting value of 10, the algorithm evaluates the mean value of
the first segment of the new element. A mean value less than 10 ushers the traversal
towards the left child, while a value exceeding 10 directs it to the right child.

On the flip side, leaf nodes are repositories for MetaDataSketch synopses, with a
defined capacity marking the threshold of synopses they can harbor before a split is
necessitated. Hence, they contain an array of MetaDataSkethes named ’timeSeries-
MetaData’, as well as a variable named capacity and another named currentEle-
ments, which are both self explanatory.

Furthermore, the DSTreeNode class is equipped with a variety of functions to en-
sure it operates as required within the Condor framework. A crucial function among
these is the ’append’ function, which is triggered every time a new MetaDataSketch
is to be inserted into the tree. When a new MetaDataSketch is added, the first thing
that happens is an update to a value known as ’c’, which keeps count of the number
of time series indexed in the tree, incrementing it by one. If the node is not a leaf
node, a function called ’findTestValue’ is initiated first. This function checks a spe-
cific splitting strategy to decide which value from the new data will be compared
with a predefined splitting value. Depending on the outcome of this comparison,
the ’append’ function is called again on one of the child nodes, ensuring the new
data is placed in the correct part of the tree.

On the other hand, if the node where the new data is to be added is a leaf node,
the process is fairly straightforward. The new element can be added to this node
as long as there’s room. However, if the node is already full, it needs to be split to
create more space for the new element. For that purpose the split function is called.
The splitting process is a bit more complex.

Firstly, another function called ’bestSplit’ plays a crucial role when a node reaches
its capacity and needs to be split to accommodate more MetaDataSketches. As the
name ’bestSplit’ suggests, this function’s job is to determine the best way to split
the node. Specifically, it aims to find the optimal segment and the optimal splitting
strategy for the node. To find the best split, the function evaluates the benefit of
splitting for every possible strategy and every possible segment within the node.
This involves a double loop structure where the outer loop cycles through different
splitting strategies, and the inner loop goes through different segments. The process

3.3. Similarity Estimation Calculation 25

FIGURE 3.3: The algorithm of adding a new time series in the DSTree,
which was used as the base for the streaming version of the algorithm.

Source: [34]

begins by calculating a splitting value for each combination of strategy and segment,
by calling the ’findTestValue’ that we saw earlier. Based on this splitting value, it’s
determined whether the new synopsis would go to the left or the right child of the
node if a split were to happen at that point. The benefit of each possible split is
then estimated using the following formulas, as described in the original paper that
introduced this method.:

B = Qos −
Qosl + Qosr

2

Where:

Qos =
m

∑
i=1

((µmax
i − µmin

i)2 + (σmax
i)2)

After calculating the benefit ’B’ for each case, the function compares all the cal-
culated benefits. The combination of strategy and segment that yields the highest
benefit is considered the best way to split the node. The function then updates the
variables ’splitValue’, ’splitSegment’, and ’SP’ with the values from the best split
found.

Once the best splitting strategy and the segment are identified through the ’best-
Split’ function, it’s time to execute the split. The splitting could be done in two ways:
horizontally or vertically, each having different implications for the node structure.
In a horizontal split, the total number of segments within the nodes remains un-
changed. This type of split essentially redistributes the existing MetaDataSketches
between the current node and a new node, based on the determined splitting value.
The segments themselves remain as they were, maintaining their original structure.
On the other hand, a vertical split alters the structure of the segments. In this case,
the segment identified for splitting is actually divided into two sub-segments. In the
child nodes resulting from this split, the tuple that initially held the information of
the original segment is updated. Now, it holds the coordinates of the left half of the

26 Chapter 3. Methodology

split segment. Additionally, a new tuple is introduced to hold the coordinates of the
right half of the split segment.

This adjustment in the structure allows the child nodes to have more detailed
segmentation, which can potentially lead to more accurate organization and analysis
of the data contained within them. The vertical split, by creating new sub-segments,
offers a finer granularity in organizing the data, which could be beneficial in man-
aging and analyzing the streaming data in the tree structure.

DSTreeNode Distance Calculation

The DSTreeNode class also encompasses a critical functionality of identifying the
MetaDataSketch from the node’s subtree that holds the most resemblance to a given
MetaDataSketch query, along with returning the similarity value. This process of
similarity determination, as highlighted in Chapter 2.2.1, is bifurcated into two pri-
mary steps, mirrored in the code for the streaming version through the invocation
of the ’leastDistance’ function, with the query being passed as an input.

The initial step within this function triggers the call to another function dubbed
’heuristicDistance.’ The role of ’heuristicDistance’ is to traverse through the tree and
pinpoint the leaf node where the query would have been placed if it were appended
to the tree. Afterwards, ’heuristicDistance’ in turn calls a function named ’nodeDis-
tance. The ’nodeDistance’ function is tasked with computing the distance between
the query and the closest MetaDataSketch residing in the node, employing the fol-
lowing formula:

D(X, Y) ≥
√

m

∑
i=1

(µX
i − µY

i)
2 + (σX

i − σY
i)

2

Interestingly, the formula provided in the original paper comprises two separate
formulas capable of yielding the lower and upper bounds of distance. The choice
was made to utilize the lower bound as the preferred metric for distance measure-
ment. Post execution, ’heuristicDistance’ furnishes the ID of the synopsis that, up
to that point, holds the most resemblance to the query, along with an approximate
value of the distance from the query.

Following the identification of the Best-So-Far (BSF) similarity, the next step en-
tails the creation of a priority queue. This queue is instrumental in examining nodes
that might house series more similar to the query. Initially, this queue is populated
solely with the root node, setting the stage for further examinations down the tree
structure.

To populate this queue effectively, the ’groupDistanceCalc’ function is employed.
This function utilizes the following formula, to estimate the minimum distance be-
tween the query and the contents of the subtree originating from the examined node.
The essence of this formula is to quickly prune parts of the tree that are definetely
less similar to the query than the BSF.

Dmin ≥
√

m

∑
i=1

(LBµ
i + LBσ

i)

Where:

LBµ
i = (µmin

i − µX
i)

2 , if µX
i ≤ µmin

i

3.3. Similarity Estimation Calculation 27

LBµ
i = 0 , if µmin

i ≤ µX
i ≤ µmax

i

LBµ
i = (µmax

i − µX
i)

2, i f µmax
i ≤ µX

i

LBσ
i = (σmin

i − σX
i)2 , if µX

i ≤ σmin
i

LBµ
i = 0 , if σmin

i ≤ σX
i ≤ σmax

i

LBσ
i = (σmax

i − σX
i)2, i f σmax

i ≤ σX
i

If the returned value is lesser than the BSF, it indicates the potential presence of
a more similar synopsis within that node. Consequently, this node is added to the
priority queue for further scrutiny. However, if the value is greater, it implies that
the node under consideration is unlikely to contain a more similar synopsis, thus the
process moves on to the next node without adding the current node to the queue.

Upon reaching a leaf node during the traversal process, the ’nodeDistance’ func-
tion is once again called into action to scrutinize the similarity between the contents
of this leaf node and the query. Unlike internal nodes, leaf nodes house actual Meta-
DataSketches, making them the eventual targets for similarity examination. If dur-
ing this examination, a MetaDataSketch is found that bears a closer resemblance to
the query than the previously identified Best-So-Far (BSF) similarity, then the BSF is
updated to reflect this newfound similarity. This ensures that the process is contin-
ually honing in on the most similar MetaDataSketch as it navigates through the tree
structure.

28 Chapter 3. Methodology

FIGURE 3.4: The algorithm used by the static version of DSTree in or-
der to determine the most similar time series to a given query. Source:

[34]

29

Chapter 4

Experiments and Evaluation

In this chapter, the metrics and the process designated for evaluating approximate
nearest neighbor search techniques within a streaming environment are thoroughly
described. These metrics are broadly classified into two primary categories: effi-
ciency and accuracy. The efficiency metrics are designed to gauge the system’s per-
formance in terms of resource utilization and time efficiency. In contrast, accuracy
metrics are focused on assessing the correctness and quality of the similarity search
outcomes, ensuring that the results are reliable and reflective of the actual data rela-
tionships.

Moreover, to ensure a fair and comprehensive assessment, all the methods un-
der scrutiny were evaluated within the same framework through a meticulously
designed series of experiments. The experimentation process was methodically bi-
furcated into two discernible phases: index building and query answering. The
index building phase focuses on the efficiency of constructing the necessary data
structures, which is crucial for timely data processing. The query answering phase,
on the other hand, zeroes in on the accuracy and efficiency of retrieving relevant
data in response to queries, which is central to the utility of the system in real-world
scenarios.

Furthermore, the experimentation was conducted with the use of two different
kinds of synthetic data-sets. This dual-dataset approach bolsters the breadth and
applicability of our findings, ensuring the results have a broader relevance and ap-
plicability. The synthetic datasets allow for a controlled evaluation environment,
isolating and analyzing the impact of varying data characteristics.

In essence, this structured and encompassing approach to evaluation lays a ro-
bust foundation for dissecting the performance and reliability of different approx-
imate nearest neighbor search techniques. It paves the way for a thorough under-
standing and analysis in the subsequent chapters, where the nuances of each method
and the implications of their performance metrics will be delved into in greater de-
tail.

4.1 Set Up

We use our custom implementations of each method, HLL ThetaSketch and DSTree.
All methods are single core implementations.

When carrying out experiments on a personal laptop, variables such as unex-
pected background processes or system updates can affect performance, leading to
inconsistent results. To address this, each test was repeated three times, and the
reported outcomes represent the mean of these trials. Nevertheless, these external
factors mean that the specific numerical results should be taken with a grain of salt.

30 Chapter 4. Experiments and Evaluation

Instead, the focus should be on the system’s behavior and the comparative perfor-
mance under different conditions, rather than the precise numbers themselves. This
approach prioritizes understanding the relative impact of changes in the system’s
configuration over the exact figures recorded during the testing phase.

It is also worth mentioning that the absolute numbers of execution time and
throughput that will be presented are highly affected by the system’s specifications
and they would differ significantly if the same code was executed in an alternative
environment.

4.2 Data Sets

Two different datasets were used in the experiments that were conducted in order to
evaluate the aforementioned methods. The first was a set of time series created by a
research team in order to help researchers that are working on the area of similarity
search.

The second was created specifically for the purposes of this project. More details
will be presented in this section.

4.2.1 Dataset for Approximate Similarity Search

In their contribution [19], Laurent Amsaleg and Hervé Jégou introduce a compre-
hensive set of evaluation datasets to assess the performance of approximate near-
est neighbors search algorithms across various data types and database sizes. Each
dataset is meticulously structured into three subsets of vectors: base vectors, where
the search is executed; query vectors, which are used to pose search queries; and
learning vectors, employed to fine-tune the parameters intrinsic to a particular method.
Additionally, they provide a ground truth for each dataset, encapsulated in the form
of pre-computed k nearest neighbors based on their square Euclidean distance. This
ground truth serves as a benchmark against which the accuracy and of the search
algorithm under test can be measured.

The four datasets created vary in size and complexity, with three of them having
a size of 128, but differing in the number of base and query vectors they encompass.
Specifically, they contain 10K, 1M, and 1B base vectors and 100, 10K, and 10K query
vectors respectively. The fourth dataset consists of larger vectors with a size dimen-
sion of 960, encompassing 1M base vectors and 1K query vectors. This gradation
in dataset size provides a platform to evaluate how well the approximate nearest
neighbor search algorithms scale with the size of the database, a critical aspect for
real-world applicability.

The datasets are stored in three different file formats to cater to different data
types: .bvecs or .fvecs for vector files and .ivecs for the ground truth file. To enhance
usability, a Matlab script was crafted to convert these datasets into .txt file format,
which is generally easier to work with and can be used as input to a Kafka queue.

For the experimentation phase of this study, only the smallest dataset, the one
with 10K base vectors, was utilized due to the constraints posed by the hardware
resources. The experiments were carried out on a single laptop which had lim-
ited memory and computational power, making it impractical to work with larger
datasets. This decision was driven by the necessity to adhere to the available com-
putational resources while still being able to conduct meaningful experiments to
evaluate the approximate nearest neighbor search techniques in a streaming envi-
ronment. Even with this limitation, valuable insights could be gleaned from the

4.3. Efficiency Evaluation 31

experimentation on the chosen dataset, setting a foundation for further exploration
on more robust computational setups in the future.

4.2.2 Custom Data Set

Given the limitations of the dataset provided by Laurent Amsaleg and Hervé Jégou,
particularly in terms of the fixed window size of 128 and a maximum of 10,000 ele-
ments, a need arose to have a more flexible dataset for conducting a range of exper-
iments. To address this, an API was developed to generate synthetic datasets where
various parameters could be adjusted according to the experiment’s requirements.
Users have the flexibility to modify the window size, the number of windows to be
created, and the number of queries to be generated. Additionally, they have the op-
tion to choose the nature of the data – it could either be serial data beginning from a
specific number and incrementing by one, data derived from a predefined array, or
randomly generated data following a normal distribution. In the latter case, users
also have the control to adjust the mean value and the standard deviation to suit
their experiment conditions.

Once the data is generated, it’s dispatched to two separate Kafka topics. The
primary topic houses the bulk of the elements and serves as the main data stream,
while the secondary topic contains the queries that are to be compared against the
elements from the first stream.

For evaluating the outcomes of the experiments utilizing this synthetic data, a
program was developed to compare every query with the elements in the main
data stream, identifying the 100 nearest neighbors for each query. This is achieved
through a brute force approach to ensure accuracy in the results. The outcomes are
then recorded in a text file, formatted similarly to the dataset by Laurent Amsaleg
and Hervé Jégou, thus maintaining a consistent structure for easy analysis and com-
parison. This setup not only provides a platform for a variety of experiments but
also ensures that the results are structured in a manner conducive for thorough eval-
uation and analysis.

4.3 Efficiency Evaluation

Efficiency is a critical aspect in evaluating similarity search techniques, especially
in a streaming environment where timely data processing is essential. In our ex-
periments, we aim to thoroughly assess the performance and resource utilization of
these techniques using several metrics.

One of these metrics is Response Time, which measures the duration the sys-
tem takes to process a query and deliver the results, crucial in real-time applications
where delays could be detrimental. In our experiments, response time will be scru-
tinized in two distinct scenarios: during the creation of a synopsis, which involves
measuring the time taken to summarize the data stream into a compact form, and
during query execution, which involves gauging the time taken to compare an in-
coming query against all stored synopses to find the most similar one.

Another metric is Throughput, which assesses the number of records the sys-
tem can handle per millisecond, serving as an indicator of the system’s capacity and
processing speed. Like response time, throughput will be evaluated in two key sce-
narios within our experiments: synopsis creation, assessing the rate with which the

32 Chapter 4. Experiments and Evaluation

system can create synopses from the incoming records, and query execution, deter-
mining the number of queries the system can process against the stored synopses
per second.

Lastly, scalability is considered, which measures a system’s ability to handle in-
creasing data volumes efficiently. In our experiments, we aim to measure scalability
by observing any changes in response time or throughput as the workload increases.
A system that maintains a steady performance or shows only a slight performance
decline with an increased workload is considered more scalable.

These metrics are designed to provide a structured approach to compare differ-
ent similarity search techniques in a streaming context. By analyzing response time,
throughput, and scalability, we aim to gain insights into each technique’s perfor-
mance and its potential to handle escalating workloads efficiently. This rigorous
evaluation is indispensable for determining the most suitable similarity search tech-
niques for real-world streaming applications.

4.3.1 Response Time

In this section, we will delve into the time analysis of each method in two signifi-
cant aspects: the synopsis creation and query answering. The duration it takes for a
method to generate a new synopsis and the time it requires to identify the most sim-
ilar synopsis when given a query synopsis are fundamental metrics for evaluating
the performance of the methods. The results will provide valuable insights into the
suitability of each method for different streaming data scenarios and the trade-off
between synopsis creation time and query answering time.

Synopsis Creation

The process of synopsis creation is an integral part of handling streaming data. Effi-
cient synopsis creation ensures that the system can keep up with the incoming data
stream. In evaluating the performance of a method, a crucial metric to consider is
the time required to compare the query synopsis to the synopses created by the dif-
ferent data streams and provide an answer regarding the most similar one. This can
be measured directly or represented as throughput, calculated using the formula:

Throughput =
#o f Operations

Time

The first method that will be investigated is the one based on HyperLogLog.
Users have the flexibility to modify two primary settings: the count of registers and
the number of hash functions that will be used. As detailed in Condor’s documenta-
tion, the register count can range from 4 to 16, with the value indicating the logarith-
mic scale of the actual register count. For instance, setting this value to 10, translates
to the creation of a sketch that contains a total of 210 registers. The number of hash
functions refers to the number of replications that will be created and then averaged
in order to get more accurate results. A series of tests were carried out to evaluate
how the method reacts to various configurations. The outcomes are depicted in Fig-
ure 4.1 and Figure 4.2, where each line signifies a variant with a distinct count of hash
functions. The x-axis denotes the register count utilized, while the y-axis displays
the throughput of creating new synopses as it was recorded during the experiments.

Upon reviewing Figure 4.1, it is apparent that for smaller window sizes, the av-
erage number of synopses generated each second remains consistent. Furthermore,
the number of registers and the volume of incoming windows do not significantly

4.3. Efficiency Evaluation 33

(A) N = 10000, W = 128

(B) N = 30000, W = 128

(C) N = 50000, W = 128

FIGURE 4.1: HLL synopses creation times in milliseconds for data
streams with window size of 128 elements.

34 Chapter 4. Experiments and Evaluation

influence the throughput. The average throughput is constantly close to six synopses
per millisecond which is the rate with which the data arrives from the Kafka pipeline
to the system. This pattern changes when dealing with larger window sizes. When
the window sizes increase, as shown in Figure 4.2, the rate of synopsis generation
per second significantly drops. This is logical given that for a window size of 1024,
the HyperLogLog algorithm is required to produce eight times the number of hashes
compared to a window of size 128. Additionally, the larger window size necessitates
a proportional increase in comparisons to ensure each hash value is allocated to the
appropriate register.

By paying closer attention to the images it can be seen that, enhancing the register
count consistently diminishes the throughput. Additionally, implementations with
a greater count of hash functions exhibit lower throughput. This is consistent with
previous discussions: an increment in the ’number of registers’ parameter signifies
a doubling of the actual register count since the actual count is 2 raised to the power
of the given parameter. Also, increasing the ’number of hash functions’ effectively
means adding another complete set of registers, thus greatly escalating the method’s
complexity. Considering that each increment by one in the register count parameter
effectively doubles the number of registers and, by extension, the computational
workload, it is anticipated that the corresponding throughput plot would exhibit
a steep, exponential decrease. This prediction aligns with the outcomes observed
during the experimental process.

Moreover, when it comes to Theta sketches, it is a much more simple configu-
ration the k value is the only parameter that can be adjusted. The value k, being
the sole configurable parameter, determines the size of the sketch and consequently
influences the throughput of synopsis creation. The mentioned figures aim to elu-
cidate how different k values affect the number of synopses generated per millisec-
ond, providing a visual comparative analysis to better understand the performance
dynamics of theta sketches with varying configurations. The two figures show the
system’s behaviour for data streams of different window size. In the first figure the
window size is 128 and in the second case each window consists of 1024 elements.
Each sub figure shows how the system handles different number of windows. The
system has to create 10, 30 and 50 thousand synopses respectively.

The observations reveal that the throughput remains stable with varying k values
and the number of windows when the window size is 128. However, the significant
factor influencing the number of synopses created per second is the window size.
With a window size of 128, the system generates nearly 5 synopses per millisecond,
but this throughput diminishes to 2 as the window size expands to 1024. Addition-
ally, a slight decrease in throughput with an increasing k value is noticeable in the
case of a 1024-element window. The rationale behind this can be traced back to the
limited variations the k value can exhibit with a smaller 128-element window, as op-
posed to a larger 1024-element window where the alterations in k value can be more
pronounced, thereby reflecting changes in throughput.

During experimentation carried out to understand the performance of DSTree
tweaking the following configurable parameters was necessary: the amount of lev-
els the synopsis will have, referenced also as tree depth, and node capacity. Through
Figure 4.5 and Figure 4.6, the text illuminates how these parameters influence the
rate at which synopses are generated per millisecond. This study is aimed at delv-
ing deeper into the workings of DSTree to potentially optimize its configuration for
enhanced performance. By altering the tree depth and node capacity, the investiga-
tion seeks to elucidate the trade-offs and benefits associated with different configu-
rations. The figures serve as a visual representation of these experiments, offering

4.3. Efficiency Evaluation 35

(A) N = 10000, W = 1024

(B) N = 30000, W = 1024

(C) N = 50000, W = 1024

FIGURE 4.2: HLL synopses creation times in milliseconds for data
streams with window size of 1024 elements.

36 Chapter 4. Experiments and Evaluation

(A) N = 10000, W = 128

(B) N = 30000, W = 128

(C) N = 50000, W = 128

FIGURE 4.3: Theta synopses creation times in milliseconds for data
streams with window size of 128 elements.

4.3. Efficiency Evaluation 37

(A) N = 10000, W = 1024

(B) N = 30000, W = 1024

(C) N = 50000, W = 1024

FIGURE 4.4: Theta synopses creation times in milliseconds for data
streams with window size 1024 elements.

38 Chapter 4. Experiments and Evaluation

insights into the relationship between the configurable parameters and the through-
put of synopsis creation. Through this examination, a more nuanced understanding
of DSTree’s performance and the impact of its parameters is achieved, which could
be instrumental in fine-tuning the method for specific use cases or computational
environments.

The insights gathered from Figure 4.5 and Figure 4.6 indicate a consistent through-
put, unaffected by varying configurations. Additionally, the window size doesn’t
appear to significantly impact the results. A minor decrease in throughput is ob-
served with an uptick in node capacity, becoming more noticeable with a higher
volume of data being ingested, especially when the tree depth is larger. This is
logical, as a MetaData sketch synopsis with more layers offers a broader range of
window segmentation possibilities, and hence, more potential node split scenarios
to explore once a node reaches its capacity limit. While the additional time required
for this is minimal, it accumulates with an increasing influx of data, leading to a rise
in the average time for synopsis creation.

Similarity Calculation

Another crucial metric to consider is the time required to compare the query syn-
opsis to the synopses created by the different data streams and provide an answer
regarding the most similar one. The core functionality of these methods is to identify
the most similar synopsis when given a query synopsis. The time taken to provide
an answer is a direct measure of the efficiency of the method in handling query re-
quests. This metric is vital as it impacts the latency of the system in responding to
queries, which is a crucial aspect, especially in time-sensitive applications.

Figures 4.7 and 4.8 illustrate the throughput of the HyperLogLog (HLL) method
when it comes to comparing a query with the already created sketches. These experi-
ments, previously discussed, now focus on the system’s capacity to handle similarity
queries per second, and how many responses it can deliver within each scenario.

Moving on to the implementation based on Theta Sketches. The depicted out-
comes in Figure x and Figure y show the influence of the k value on the quantity
of answers the system can provide per second. It’s clear that there’s a decline in
throughput as k increases. This pattern is explained when looking into the similar-
ity calculation process. The approach involves contrasting the amount of mutual
elements in two collections - the k smallest hashed values from the query stream
and the k smallest hashed values from the data stream, holding onto the k smallest
post-comparison. It’s reasonable to deduce that as the size of these collections en-
large with a higher k, the time required for executing the comparisons and extracting
the k smallest values also stretches. Hence, the throughput, indicative of the rate of
answer production, shrinks as the comparison process becomes more time-intensive
with an increasing k value.

Figure 4.11 and Figure 4.12 illustrate the throughput of the DSTree method, show-
casing the impact of varying its parameters. DSTree has multiple adjustable pa-
rameters, and our examination aimed at understanding how modifying each would
influence the throughput. Among these parameters, the number of levels in the syn-
opsis is of paramount importance as it’s correlated to a more precise representation
of the initial values, hence, enhancing precision as discussed in Chapter 3. In the
figures, each line represents a different implementation of the method with varying
numbers of levels. The diagrams display node capacity on the x-axis and through-
put on the y-axis, where throughput is the key variable under investigation. The
variety in node capacity further provides insight into how this variable influences

4.3. Efficiency Evaluation 39

(A) N = 10000, W = 128

(B) N = 30000, W = 128

(C) N = 50000, W = 128

FIGURE 4.5: DSTree synopsis creation times in milliseconds for data
streams with window size 128.

40 Chapter 4. Experiments and Evaluation

(A) N = 10000, W = 1024

(B) N = 30000, W = 1024

(C) N = 50000, W = 1024

FIGURE 4.6: DSTree synopsis creation times in milliseconds for data
streams with window size 1024.

4.3. Efficiency Evaluation 41

(A) N = 10000, W = 128

(B) N = 30000, W = 128

(C) N = 50000, W = 128

FIGURE 4.7: Number of queries the HLL based method can answer
per millisecond, for window size equal to 128 and N number of syn-

opsis.

42 Chapter 4. Experiments and Evaluation

(A) N = 10000, W = 1024

(B) N = 30000, W = 1024

(C) N = 50000, W = 1024

FIGURE 4.8: Number of queries the HLL based method can answer
per millisecond, for window size equal to 1024 and N number of syn-

opsis.

4.3. Efficiency Evaluation 43

(A) N = 10000, W = 128

(B) N = 30000, W = 128

(C) N = 50000, W = 128

FIGURE 4.9: Number of queries the Theta based method can answer
per millisecond, for window size equal to 128 and N number of syn-

opsis.

44 Chapter 4. Experiments and Evaluation

(A) N = 10000, W = 1024

(B) N = 30000, W = 1024

(C) N = 50000, W = 1024

FIGURE 4.10: Number of queries the Theta based method can answer
per millisecond, for window size equal to 1024 and N number of syn-

opsis.

4.3. Efficiency Evaluation 45

the throughput, rendering a comprehensive understanding of the DSTree method’s
performance across different configurations.

The analysis depicted in the figures reveals a relationship between the tree depth,
node capacity, and throughput in DSTree. As anticipated, a rise in tree depth culmi-
nates in a reduction in throughput. This phenomenon can be attributed to the fact
that the initial window is separated to more segments for each a mean value and
a standard deviation has to be calculated. As the depth of the DSTree increases, so
does the complexity of the recursive functions used to compute similarities between
synopses, thus making the process becomes more computationally heavy and time-
consuming.

Contrastingly, a positive correlation is observed between the node capacity and
throughput: an augmentation in node capacity leads to a boost in throughput. This
is indicative of the system’s enhanced ability to handle data as the node capacity
expands. However, this seems to happen in an almost logarithmic rate and a point
of saturation appears to be reached post a node capacity of 100, beyond which the
throughput alterations become negligible. This plateau suggests that while aug-
menting node capacity can foster better throughput initially, there’s a threshold be-
yond which the benefits taper off. Hence, while configuring the DSTree, a judicious
selection of node capacity and tree depth is imperative to balance computational ef-
ficiency against the precision of data representation, ensuring the system is tailored
to the demands of the specific use case it is deployed for.

Another dimension of the DSTree that warranted investigation was its adaptabil-
ity to windows of varying sizes. The differing window sizes present distinct chal-
lenges and understanding how the DSTree copes with these variations is essential
for evaluating its robustness and flexibility. In the experiments illustrated in Figure
4.11, the window size is set at 128, while in Figure 4.12, it is expanded to 1024.

A notable observation from the diagrams is that a DSTree with a depth of 10 can
generate over 100 answers per second, with a window size of 128. However, this
capability diminishes when the window size is increased to 1024, with the number
of synopses created dropping to 60 per second. However, after repeating the ex-
periment for other window sizes we realized that the throughput did not increase
linearly. A more complex behavior was observed. This variation in performance
based on window size is more vividly depicted in Figure 4.13, which provides a
clearer comparative view.

The rationale for this observed behavior is as outlined below. A tree depth of
10 signifies that the lower level of the arrays that hold the statistical information, as
seen in Chapter 3.3.3, will accommodate a maximum of 512 values. If the window
size considerably exceeds this, the last level will store the average of the elements
that will arrive in a given window. For instance, with a window size of 2048, when
the synopsis will be created, each tuple in the lowest level in the synopsis arrays will
retain the average of 4 consecutive incoming elements. This scenario diminishes the
precision of calculations during the estimation of distance between two synopses.
Consequently, when the function ’groupDistanceCalc’ is invoked, a higher number
of nodes will be pruned. This reduces the count of necessary calculations for assess-
ing similarity, albeit at the cost of accuracy.

When the widow size is smaller, the number of calculations required to estimate
similarity will also be smaller. Hence, more answers can be provided per second.
So, that explains the higher throughput for window size 128.

46 Chapter 4. Experiments and Evaluation

(A) N = 10000, W = 128

(B) N = 30000, W = 128

(C) N = 50000, W = 128

FIGURE 4.11: Number of queries the DSTree based method can an-
swer per millisecond, for window size equal to 128 and N number of

synopsis.

4.3. Efficiency Evaluation 47

(A) N = 10000, W = 1024

(B) N = 30000, W = 1024

(C) N = 50000, W = 1024

FIGURE 4.12: Number of queries the DSTree based method can an-
swer per millisecond, for window size equal to 1024 and N number

of synopsis.

48 Chapter 4. Experiments and Evaluation

FIGURE 4.13: Answer Throughput for various window sizes.
Tree depth: 10. Node capacity: 100.

4.4 Accuracy Evaluation

In our investigation, we delve into the precision of established data synopsis meth-
ods—DSTree, HyperLogLog (HLL), and Theta Sketches—across a spectrum of con-
figurations. The evaluation is comprehensive, examining how tree depth, node ca-
pacity, register count, and hash functions influence each method’s accuracy. We fur-
ther scrutinize how these techniques perform under varying window sizes.

Additionally, in order to evaluate the accuracy of each method,the dataset by
Laurent Amsaleg and Hervé Jégou will also be incorporated. It includes 10,000 win-
dows of 128-size samples and 100 equivalent-sized queries with a reference file for
the closest time series match. This dataset, alongside the custom datasets crafted
from the generator we developed, and have been used in the previous chapter ex-
periments, serves as the foundation for our accuracy assessments.

Firstly, the findings for the HyperLogLog (HLL) technique will be displayed,
following the same format as the preceding chapter. Figure ?? depicts the perfor-
mance variations with each curve corresponding to a distinct number of hash func-
tions utilized. The x-axis indicates the number of registers involved, while the y-axis
quantifies the method’s accuracy, depicted as the percentage of accurate responses
delivered.

Given the probabilistic nature of the synopses and the potential similarity of data
from the random generator, a response is considered accurate if it ranks within the
top ten most similar, rather than only the most similar. This approach is justified by
the fact that, against the backdrop of 10,000 to 50,000 synopses, the top ten represents
a minimal subset, thus still ensuring a high standard for accuracy.

The data clearly indicates that in both cases, accuracy improves with a rise in the
number of registers, showing a positive correlation between register count and hash
function quantity on accuracy. Additionally, it’s more efficient to boost accuracy by
augmenting the number of hash functions rather than registers. Unlike increasing
registers, which doubles memory and computation needs, adding more hash func-
tions does not have as significant an impact, since it only introduces an additional
set of registers without doubling the existing ones. Finally, the number of time series
compared doesn’t have an impact on the accuracy of the method.

4.4. Accuracy Evaluation 49

(A) N = 10000, W = 128

(B) N = 30000, W = 128

(C) N = 50000, W = 128

FIGURE 4.14: Accuracy of the HLL based method, for window size
equal to 128 and N number of synopses.

50 Chapter 4. Experiments and Evaluation

(A) N = 10000, W = 1024

(B) N = 30000, W = 1024

(C) N = 50000, W = 1024

FIGURE 4.15: Accuracy of the HLL based method, for window size
equal to 1024 and N number of synopses.

4.4. Accuracy Evaluation 51

In Figure 4.14, the results from the dataset by Laurent Amsaleg and Hervé Jégou
are presented, which comprises 10,000 distinct time series, each of size 128.

FIGURE 4.16: Accuracy results of the HLL based method and where
the dataset created by Amsaleg and Jégou was used as input.

N = 10000, W = 128

It is obvious that the method shows a great improvement in accuracy when han-
dling data coming from the second dataset. This is more evident in Figure 4.17,
where a comparative analysis can be conducted. The marked improvement in accu-
racy for this dataset, as compared to the custom-generated dataset, can be attributed
to the distinct statistical characteristics of the two datasets. Crucially, as noted in
[3], when the intersection size of two sets considerably exceeds the union size, the
accuracy of similarity calculations using HLL-based methods tends to be lower.

Figure 4.17 shows the performance of the algorithm when having to deal with a
dataset of 10.000 time series of size 128 coming from the custom made dataset, one
of size 128 coming from the second dataset and one of size 1028 coming again from
the custom data set. The number of hash function is set to four, but the results are
similar when that number changes.

Another interesting observation is that the accuracy of the method reduces when
the window size increases but the number of registers remains the same. This is
easily explained since with the larger number of elements in a given window a larger
synopsis has to be created in order to more efficiently describe them.

Following the previously established format when analyzing the accuracy of
Theta Sketches, he outcomes for window sizes of 128 and 1024 are displayed in
Figures 4.18 and 4.19 respectively. The analysis is relatively straightforward since
there’s only one parameter to consider. Also, in Figure 4.20 the results from the
second dataset are presented.

The performance of the algorithm appears consistent across various conditions,
with efficiency improving linearly as the parameter k increases. Notably, the algo-
rithm’s effectiveness is not influenced by larger window sizes or a higher influx of
incoming time series.

As observed with the HyperLogLog (HLL) method, the dataset supplied by Am-
saleg et al. exhibits distinct characteristics. There is an increase in accuracy, indicat-
ing that this particular dataset interacts with the Theta sketch method in a manner

52 Chapter 4. Experiments and Evaluation

FIGURE 4.17: Accuracy results for the HLL based method for datasets
of different sizes and statistical properties.

that enhances its ability to correctly estimate similarities between time series data.
This could be attributed to the dataset’s unique statistical properties.

Last but not least, the final segment of the experimental results focuses on the
streaming implementation of the DSTree method. Figures 4.21 and 4.22 detail how
the accuracy of similarity estimation is affected by two parameters: the depth of the
synopsis and the node capacity. Similar to previous methods, tests were also carried
out using the second dataset provided by Amsaleg et al., with outcomes illustrated
in figure 4.23. These figures collectively aim to shed light on the efficacy of DSTree’s
parameters in producing accurate similarity estimations in a streaming data context.

The analysis of the results reveals a key insight: the accuracy of the DSTree
method is significantly enhanced by increasing the number of levels in the synop-
sis. This improvement is anticipated because more levels mean less aggregation is
needed in constructing the synopsis, allowing for a finer representation of the orig-
inal time series. Hence, the synopsis retains a higher fidelity to the original data,
leading to more precise similarity estimations. This is also verified from the fact that
for window size of 128 and depth greater than seven, the accuracy reaches one hun-
dred percent, as in that case the synopsis is so big that holds every element from the
original data.

The observations also indicate that altering the node capacity within the DSTree
method does not substantially affect accuracy. Therefore, when adjusting this pa-
rameter, it’s crucial to consider its influence on throughput rather than on accuracy.
This suggests that while node capacity may affect processing speed or memory us-
age, it does not necessarily contribute to the precision of the similarity estimations
between time series data.

Another aspect impacting accuracy is the volume of data series integrated into
the tree. The results demonstrate that the accuracy slightly diminishes when the
input consists of 50,000 data series compared to when the tree comprises 30,000 or
10,000 synopses. This discrepancy is more pronounced for windows of larger sizes,
suggesting that the tree’s performance in accurately representing the data may de-
grade as the quantity of data increases, particularly when dealing with more exten-
sive data windows.

A plausible explanation for the decrease in accuracy as the tree size increases

4.4. Accuracy Evaluation 53

(A) N = 10000, W = 128

(B) N = 30000, W = 128

(C) N = 50000, W = 128

FIGURE 4.18: Accuracy of the Theta Sketch based method, for win-
dow size equal to 128 and N number of synopses.

54 Chapter 4. Experiments and Evaluation

(A) N = 10000, W = 1024

(B) N = 30000, W = 1024

(C) N = 50000, W = 1024

FIGURE 4.19: Accuracy of the HLL based method, for window size
equal to 1024 and N number of synopses.

4.4. Accuracy Evaluation 55

FIGURE 4.20: Accuracy results for the Theta Sketch based method
and where the dataset created by Amsaleg and Jégou was used as

input.
N = 10000, W = 128

could be tied to the ’groupDistanceCalc’ function, which is designed to expedite the
search process by pruning subtrees. In a larger tree, this function may inadvertently
prune larger subtrees that could contain the correct answer, thereby compromising
accuracy. Essentially, the pruning process is a trade-off between speed and precision,
and as the tree expands, the likelihood of excluding the optimal subtree becomes
higher, leading to a potential drop in the system’s ability to correctly identify the
most similar time series.

The outcomes from the second dataset demonstrate a notable improvement in
accuracy compared to those from the custom dataset. This aligns with observations
made with the HyperLogLog (HLL) based method. Such an increase in precision
could be attributed to the inherent statistical characteristics of the time series data
in the second dataset. Since the DSTree method relies heavily on the statistical at-
tributes of the time series and their various segments and subsegments, the second
dataset’s properties may be more conducive to the DSTree algorithm, resulting in
more accurate similarity estimations. This suggests that the second dataset’s struc-
ture potentially aligns better with the method’s operational dynamics, hence en-
hancing its effectiveness. Another explanation is be that, the similarity of time series
within the custom dataset created for this study negatively influenced the accuracy
of all three tested methods. This is evident as the data points were too akin to each
other, complicating the task of accurately identifying similarities. On the contrary,
the dataset provided by Amsaleg et al. contained time series with sufficient variance,
which allowed the methods to more effectively distinguish and identify the correct
similarities. The more distinct the time series, the easier it is for methods like HLL,
Theta Sketches, and DSTree to perform accurate similarity estimations, highlighting
the importance of dataset diversity in evaluating such algorithms.

56 Chapter 4. Experiments and Evaluation

(A) N = 10000, W = 128

(B) N = 30000, W = 128

(C) N = 50000, W = 128

FIGURE 4.21: Accuracy of the DSTree based method, for window size
equal to 128 and N number of synopses.

4.4. Accuracy Evaluation 57

(A) N = 10000, W = 1024

(B) N = 30000, W = 1024

(C) N = 50000, W = 1024

FIGURE 4.22: Accuracy of the HLL based method, for window size
equal to 1028 and N number of synopses.

58 Chapter 4. Experiments and Evaluation

FIGURE 4.23: Accuracy results for the DSTree based method and
where the dataset created by Amsaleg and Jégou was used as input.

N = 10000, W = 128

FIGURE 4.24: Comparative analysis of accuracy.

4.5. Comparing the Methods 59

4.5 Comparing the Methods

Comparing the three methods — HyperLogLog (HLL), Theta Sketches, and DSTree
— in terms of memory utilization and performance is a practical approach to eval-
uate their efficiency and accuracy. Given that each algorithm operates on distinct
principles and offers different levers for accuracy and efficiency, standardizing the
comparison based on memory usage is a reasonable strategy.

By configuring each method to generate synopses of equivalent size, we can
control for memory use and focus on how each method utilizes this resource to
maximize efficiency (throughput) and accuracy (correct similarity detection). For
instance, HLL uses registers and hash functions, Theta Sketches adjust through the
parameter k, and DSTree through tree depth and node capacity. Then the chosen
configurations will be subjected to both of the available datasets, when the incoming
windows are of size 128 and only in the custom dataset for windows of size 1024.
Another important feature is for the synopsis to be of less size than the window,
since otherwise the concept of synopsis becomes irrelevant.

In essence, this comparative analysis will highlight which method delivers the
best trade-off between memory usage and the twin objectives of accuracy and effi-
ciency. The findings will be particularly relevant for applications where memory is
a constraint but performance cannot be compromised, such as processing streams of
data in real-time.

The parameters of the HLL-based implementation significantly affect the mem-
ory usage and computational complexity of the algorithm. The ‘number of registers’
parameter dictates the space complexity as it determines the count of registers uti-
lized, which is 2(number of registers). Meanwhile, the ‘number of hash functions’ parameter
influences both space and time complexity, as it indicates how many sets of these
registers are employed during the hashing process. For example, with parameters
set to 5 for the number of registers and 2 for the number of hash functions, the algo-
rithm would use 25 × 2 = 64 integers for its computation. The same memory usage
can also be achieved with parameters set to 4 for the number of registers and 4 for
the number of hash functions.

Calculations for memory allocation in Theta Sketch are more straightforward.
The value of k directly corresponds to the number of registers used. To match the
memory usage of other methods, k is set to 63. Along with an additional integer to
store the theta value, the total memory requirement amounts to 64 integers. This
simplicity in memory calculation allows for easier configuration of Theta Sketches
when memory usage is a critical constraint.

For the DSTree, the memory requirement is determined by the depth of the tree.
With a tree depth set to 5, the lowest level of the synopsis array has a size of 24,
while the sizes for the higher levels decrease exponentially (23, 22, . . .). Consequently,
one array level requires 25 integers. Since DSTree utilizes two arrays — one for
storing mean values of the segments and another for their standard deviation — the
combined memory requirement totals 2 × 25 = 26 integers. This calculation ensures
that the DSTree has sufficient memory allocation to store its structural components
effectively. The node capacity will be set to 100 since from the earlier experiments we
saw that this value maximizes the throughput, while at the same time is irrelevant
to the accuracy of the method.

Given the outcomes from prior tests, where the HyperLogLog method’s accu-
racy dropped to zero even when applying 256 registers for 128-sized windows, it’s
evident that reducing to a mere 32 registers would not yield viable results. As such,

60 Chapter 4. Experiments and Evaluation

the HyperLogLog method will be excluded from forthcoming comparative analyses,
leaving just the Theta Sketches and DSTree methods for evaluation.

As illustrated in Figure 4.27, the comparative results of the three methods are
presented in a unified plot for ease of analysis. Each method’s performance is plotted
to facilitate a direct comparison. This consolidated visualization aids in discerning
the efficiency and efficacy of each method under the same memory constraints.

FIGURE 4.25: Comparative analysis of the synopsis creation through-
put for the studied methods.

When examining smaller window sizes, it is evident that both methods are ca-
pable of meeting the output rate established by the Kafka pipeline. This suggests
that they can generate synopses without causing a bottleneck, as their rate of cre-
ation is the same. However, the advantage of the DSTree method becomes apparent
with larger window sizes. In such cases, DSTree maintains its level of performance,
continuing to generate new synopses at the rate at which they arrive. In contrast,
the throughput of Theta Sketches’ synopsis creation falls significantly, managing to
produce only a little more than one synopsis per second on average.

In assessing the query response speed of the two methods, DSTree demonstrates
a clear superiority, processing queries nearly 50 times quicker than the Theta Sketches-
based method. The disparity in performance becomes even more pronounced with
larger window sizes, with DSTree delivering answers 167 times faster than Theta
Sketches. This efficiency is due to the faster traversal possible in a tree-like structure
to locate the closest match, as opposed to comparing the query against every synop-
sis. Additionally, the pruning capabilities of DSTree significantly enhance its speed,
explaining the substantial gap in the response throughput between these methods.

Contrary to the previous metrics, DSTree falls significantly short in accuracy
when compared to the Theta Sketch algorithm. As illustrated in Figure 4.27, even

4.5. Comparing the Methods 61

FIGURE 4.26: Comparative analysis of the query answering through-
put for the studied methods.

FIGURE 4.27: Comparative analysis of the accuracy for the studied
methods when it comes to answering approximate similarity queries.

62 Chapter 4. Experiments and Evaluation

when leveraging the dataset provided by Amsaleg et al.—where DSTree performs
at its best—it still achieves only half the accuracy of the Theta Sketch method. The
disparity is even more pronounced with the custom dataset, particularly for smaller
window sizes. Although there is a slight increase in DSTree’s accuracy with larger
windows, this improvement is marginal and overshadowed by the concurrent en-
hancement of Theta Sketch’s results.

63

Chapter 5

Conclusions

The analysis of the three distinct methods—HyperLogLog (HLL), Theta Sketches,
and DSTree—reveals clear trade-offs between memory usage, throughput, and ac-
curacy. HLL, while advantageous in scenarios requiring less memory, does not
perform well when restricted to a lower number of registers, as accuracy drops to
zero. On the other hand, DSTree offers impressive throughput in both synopsis cre-
ation and query response, vastly outperforming Theta Sketches, especially as win-
dow sizes increase. However, this speed comes at a cost to accuracy, where Theta
Sketches consistently outperforms DSTree, maintaining higher accuracy across vary-
ing datasets and window sizes.

These results suggest that the choice of method depends heavily on the specific
requirements of the application. For tasks where speed is critical and approximate
answers are acceptable, DSTree may be the preferred choice. Conversely, for appli-
cations where precision is paramount, Theta Sketches would be more appropriate,
despite its slower performance.

Ultimately, this comparison underscores the importance of understanding the
characteristics of the data and the priorities of the application. No one method
emerges as superior in all aspects; hence, the decision must be based on a balanced
consideration of the trade-offs involved.

5.1 Future Work

In contemplating the future trajectory of streaming data analysis, particularly in the
context of methods like DSTree, HyperLogLog (HLL), and Theta Sketches, there
emerges a landscape ripe with opportunities for enhancement and innovation.

One pivotal avenue is the scalability and handling of larger datasets. As the vol-
ume of data continues to expand, the need to efficiently process and analyze these
vast datasets becomes increasingly critical. This necessitates not only improvements
in existing methods but also the exploration of new algorithms that can scale effec-
tively while maintaining, or even improving, accuracy and efficiency.

Another technical aspect that shows promise for future development is the opti-
mization of these methods for varied datasets. The performance variability observed
across different datasets suggests an opportunity for algorithms that can dynam-
ically adapt based on the statistical properties of the data. This adaptability could
significantly enhance the precision and applicability of these methods across diverse
data streams.

Further, comprehensive comparative studies stand as a vital component of future
work. There’s a clear need for more in-depth and exhaustive comparisons between
methods like HLL, Theta Sketches, and DSTree under various conditions. Such stud-
ies would uncover nuanced insights into each method’s strengths, weaknesses, and
optimal use cases, guiding practitioners in making informed choices.

64 Chapter 5. Conclusions

Another technical frontier involves the development of automated configuration
selection tools. These would employ algorithms or AI to recommend the most ef-
fective configurations for specific datasets and objectives, thereby streamlining the
setup process and optimizing performance.

Continuing the technical exploration, expanding the range of datasets used in
testing, particularly with real-world time series data from a variety of domains, is
essential. This will not only validate the existing methods but also help in fine-
tuning them to handle the complexities and peculiarities of different types of data.

In addition, the development of comprehensive, user-friendly tools and plat-
forms that encapsulate these methods could significantly democratize access to ad-
vanced data analysis techniques. Making these methods accessible and easy to use
for a broader audience can catalyze their adoption in diverse fields.

Lastly, comparing DSTree and similar methods with other prevalent techniques
for estimating similarity in data streams, like MinHash, is crucial. This comparison
would not only highlight the relative strengths and shortcomings of these methods
but also pave the way for hybrid approaches that combine the best elements of dif-
ferent methods to achieve superior performance.

By focusing on these technical aspects, future research and development in the
field of streaming data analysis can lead to significant advancements, making these
methods more robust, versatile, and applicable across a wide array of real-world sce-
narios. This progress will be instrumental in harnessing the full potential of stream-
ing data, driving innovation and insights in numerous domains.

65

Bibliography

[1] Pankaj Agarwal et al. “Mergeable Summaries”. In: ACM Transactions on Database
Systems (TODS) 38 (May 2012). DOI: 10.1145/2213556.2213562.

[2] Apache Datasketches: The Theta Sketch Framework. URL: https://datasketches.
apache.org/docs/Theta.

[3] Daniel Baker and Ben Langmead. “Dashing: fast and accurate genomic dis-
tances with HyperLogLog”. In: Genome Biology 20 (Dec. 2019). DOI: 10.1186/
s13059-019-1875-0.

[4] Bar-Yossef et al. “Counting Distinct Elements in a Data Stream”. In: Sept. 2002.
ISBN: 978-3-540-44147-2. DOI: 10.1007/3-540-45726-7_1.

[5] Marc Bury and Chris Schwiegelshohn. “Efficient Similarity Search in Dynamic
Data Streams”. In: IEEE Transactions on Knowledge and Data Engineering PP
(May 2016). DOI: 10.1109/TKDE.2019.2916858.

[6] Alessandro Camerra et al. “Beyond one billion time series: Indexing and min-
ing very large time series collections with iSAX2+”. In: Knowledge and Informa-
tion Systems 39 (Apr. 2014). DOI: 10.1007/s10115-012-0606-6.

[7] Graham Cormode and Senthilmurugan Muthukrishnan. “An improved data
stream summary: The Count-Min Sketch and its applications”. In: Journal of
Algorithms 55 (Apr. 2005), pp. 58–75. DOI: 10.1016/j.jalgor.2003.12.001.

[8] J. Gantz D. Reinsel and J. Rydning. “Data age 2025: The evolution of data to
life-critical. Don’t Focus on Big Data”. In: (2017).

[9] Anirban Dasgupta et al. “A Framework for Estimating Stream Expression Car-
dinalities”. In: (Oct. 2015).

[10] Fan Deng and Davood Rafiei. “Approximately detecting duplicates for stream-
ing data using stable bloom filters”. In: June 2006, pp. 25–36. DOI: 10.1145/
1142473.1142477.

[11] Karima Echihabi et al. “Return of the Lernaean Hydra: experimental evalua-
tion of data series approximate similarity search”. In: Proceedings of the VLDB
Endowment 13 (Nov. 2019), pp. 403–420. DOI: 10.14778/3368289.3368303.

[12] Otmar Ertl. “New cardinality estimation algorithms for HyperLogLog sketches”.
In: (Feb. 2017).

[13] Hakan Ferhatosmanoglu et al. “Vector Approximation based Indexing for Non-
uniform High Dimensional Data Sets”. In: Proceedings of the 9th ACM Interna-
tional Conference on Information and Knowledge Management (CIKM), Washington,
DC, USA (Nov. 2000). DOI: 10.1145/354756.354820.

[14] Philippe Flajolet et al. “HyperLogLog: The analysis of a near-optimal cardinal-
ity estimation algorithm”. In: Discrete Mathematics Theoretical Computer Science
DMTCS Proceedings vol. AH,... (Mar. 2012). DOI: 10.46298/dmtcs.3545.

https://doi.org/10.1145/2213556.2213562
https://datasketches.apache.org/docs/Theta
https://datasketches.apache.org/docs/Theta
https://doi.org/10.1186/s13059-019-1875-0
https://doi.org/10.1186/s13059-019-1875-0
https://doi.org/10.1007/3-540-45726-7_1
https://doi.org/10.1109/TKDE.2019.2916858
https://doi.org/10.1007/s10115-012-0606-6
https://doi.org/10.1016/j.jalgor.2003.12.001
https://doi.org/10.1145/1142473.1142477
https://doi.org/10.1145/1142473.1142477
https://doi.org/10.14778/3368289.3368303
https://doi.org/10.1145/354756.354820
https://doi.org/10.46298/dmtcs.3545

66 Bibliography

[15] Tian Guo, Saket Sathe, and Karl Aberer. “Fast Distributed Correlation Dis-
covery Over Streaming Time-Series Data”. In: Oct. 2015, pp. 1161–1170. DOI:
10.1145/2806416.2806440.

[16] Stefan Heule, Marc Nunkesser, and Alexander Hall. “HyperLogLog in prac-
tice: Algorithmic engineering of a state of the art cardinality estimation al-
gorithm”. In: ACM International Conference Proceeding Series (Mar. 2013). DOI:
10.1145/2452376.2452456.

[17] HuperLogLog: A probabilistic Data Structure. URL: https : / / www . https : / /
pangaj.github.io/HyperLogLog.

[18] T.s Jayram and D. Sivakumar. “Counting Distinct Elements in a Data Stream”.
In: (May 2003).

[19] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. “Product Quantization
for Nearest Neighbor Search”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 33.1 (Jan. 2011), pp. 117–128. DOI: 10.1109/TPAMI.2010.57.
URL: https://inria.hal.science/inria-00514462.

[20] Paulo Jesus, Carlos Baquero, and Paulo Almeida. “A Survey of Distributed
Data Aggregation Algorithms”. In: Communications Surveys Tutorials, IEEE 17
(Oct. 2011). DOI: 10.1109/COMST.2014.2354398.

[21] Kunio Kashino, Gavin Smith, and H. Murase. “Time-series active search for
quick retrieval of audio and video”. In: vol. 6. Apr. 1999, 2993 –2996 vol.6.
ISBN: 0-7803-5041-3. DOI: 10.1109/ICASSP.1999.757470.

[22] D.E. Knuth. The Art of Computer Programming: Fundamental algorithms. Addison-
Wesley series in computer science and information processing. Addison-Wesley
Publishing Company, 1969. ISBN: 9780201038019. URL: https://books.google.
gr/books?id=ZIlQAAAAMAAJ.

[23] Antonios Kontaxakis et al. “And synopses for all: A synopses data engine for
extreme scale analytics-as-a-service”. In: Information Systems 116 (May 2023),
p. 102221. DOI: 10.1016/j.is.2023.102221.

[24] Flip Korn, Senthilmurugan Muthukrishnan, and Yihua Wu. “Modeling skew
in data streams”. In: June 2006, pp. 181–192. DOI: 10.1145/1142473.1142495.

[25] Rafał Kozik, Marek Pawlicki, and Michał Choraś. “A new method of hybrid
time window embedding with transformer-based traffic data classification in
IoT-networked environment”. In: Pattern Analysis and Applications 24 (Nov.
2021). DOI: 10.1007/s10044-021-00980-2.

[26] Naama Kraus, David Carmel, and Idit Keidar. “Fishing in the Stream: Similar-
ity Search over Endless Data”. In: (Aug. 2017).

[27] Morris and Robert. “Counting large numbers of events in small registers”. In:
Commun. ACM 21 (Oct. 1978), pp. 840–. DOI: 10.1145/359619.359627.

[28] Rudi Poepsel Lemaitre et al. “In the Land of Data Streams where Synopses are
Missing, the One Framework to Bring Them All”. In: vol. 14. June 2021. DOI:
10.14778/3467861.3467871.

[29] Dennis Shasha. “Tuning Time Series Queries in Finance: Case Studies and Rec-
ommendations.” In: IEEE Data Eng. Bull. 22 (Jan. 1999), pp. 40–46.

[30] Theta Sketch Framework. URL: \url{https://datasketches.apache.org/docs/
Theta/ThetaSketchFramework.html}.

https://doi.org/10.1145/2806416.2806440
https://doi.org/10.1145/2452376.2452456
https://www.https://pangaj.github.io/HyperLogLog
https://www.https://pangaj.github.io/HyperLogLog
https://doi.org/10.1109/TPAMI.2010.57
https://inria.hal.science/inria-00514462
https://doi.org/10.1109/COMST.2014.2354398
https://doi.org/10.1109/ICASSP.1999.757470
https://books.google.gr/books?id=ZIlQAAAAMAAJ
https://books.google.gr/books?id=ZIlQAAAAMAAJ
https://doi.org/10.1016/j.is.2023.102221
https://doi.org/10.1145/1142473.1142495
https://doi.org/10.1007/s10044-021-00980-2
https://doi.org/10.1145/359619.359627
https://doi.org/10.14778/3467861.3467871
\url{https://datasketches.apache.org/docs/Theta/ThetaSketchFramework.html}
\url{https://datasketches.apache.org/docs/Theta/ThetaSketchFramework.html}

Bibliography 67

[31] Ashish Thusoo et al. “Hive - A Warehousing Solution Over a Map-Reduce
Framework.” In: PVLDB 2 (Aug. 2009), pp. 1626–1629. DOI: 10.14778/1687553.
1687609.

[32] Ankit Toshniwal et al. “Storm@twitter”. In: (June 2014). DOI: 10.1145/2588555.
2595641.

[33] Machiko Toyoda, Yasushi Sakurai, and Toshikazu Ichikawa. “Identifying Sim-
ilar Subsequences in Data Streams”. In: Sept. 2008, pp. 210–224. ISBN: 978-3-
540-85653-5. DOI: 10.1007/978-3-540-85654-2_23.

[34] Yang Wang et al. “A data-adaptive and dynamic segmentation index for whole
matching on time series”. In: Proceedings of the VLDB Endowment 6 (Aug. 2013),
pp. 793–804. DOI: 10.14778/2536206.2536208.

[35] B. P. Welford. “Note on a Method for Calculating Corrected Sums of Squares
and Products”. In: Technometrics 4.3 (1962), pp. 419–420. DOI: 10.1080/00401706.
1962.10490022. eprint: https://www.tandfonline.com/doi/pdf/10.1080/
00401706.1962.10490022. URL: https://www.tandfonline.com/doi/abs/
10.1080/00401706.1962.10490022.

[36] Huanmei Wu, Betty Salzberg, and Donghui Zhang. “Online Event-driven Sub-
sequence Matching over Financial Data Streams.” In: June 2004, pp. 23–34.
DOI: 10.1145/1007568.1007574.

[37] Yunyue Zhu and Dennis Shasha. “Efficient Elastic Burst Detection in Data
Streams”. In: (Apr. 2003). DOI: 10.1145/956750.956789.

[38] Ariane Ziehn et al. “Time Series Similarity Search for Streaming Data in Dis-
tributed Systems”. In: Mar. 2019.

https://doi.org/10.14778/1687553.1687609
https://doi.org/10.14778/1687553.1687609
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1145/2588555.2595641
https://doi.org/10.1007/978-3-540-85654-2_23
https://doi.org/10.14778/2536206.2536208
https://doi.org/10.1080/00401706.1962.10490022
https://doi.org/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/pdf/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
https://www.tandfonline.com/doi/abs/10.1080/00401706.1962.10490022
https://doi.org/10.1145/1007568.1007574
https://doi.org/10.1145/956750.956789

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Problem Statement
	Possible Solutions
	Research Questions
	Contributions
	Outline

	Literature Review
	Probabilistic Data Structures
	HyperLogLog
	Theta Sketch

	Time series
	DSTree

	Methodology
	Apache Flink
	Condor
	Similarity Estimation Calculation
	HypeLogLog
	Theta Sketches
	DSTree
	MetaDataSketch
	DSTreeNode Append
	DSTreeNode Distance Calculation

	Experiments and Evaluation
	Set Up
	Data Sets
	Dataset for Approximate Similarity Search
	Custom Data Set

	Efficiency Evaluation
	Response Time
	Synopsis Creation
	Similarity Calculation

	Accuracy Evaluation
	Comparing the Methods

	Conclusions
	Future Work

	Bibliography

