
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Toward an End-to-End Pipeline
from Requirements to Code
Large Language Model Supported
Coding Assistant for Knowlegde
Based Engineering Application
Development

E. Hof

Toward an End-to-End Pipeline from
Requirements to Code

Large Language Model Supported Coding
Assistant for Knowlegde Based Engineering

Application Development

by

E. Hof

in partial fulfilment of the requirements for the degree of

Master of Science in Aerospace Engineering

at the Delft University of Technology,

to be defended publicly on December 12, 2025 at 14:00.

Thesis committee:
Chair: Prof. dr. ir. L.L.M. Veldhuis
Supervisors: dr. ir. G. La Rocca

drs. ir. A.P. Gómez
External examiner: dr. ir. P. Proesmans

Place: Faculty of Aerospace Engineering, Delft
Project duration: January, 2025 – December, 2025
Student name: E. Hof
Student number: 4852680

Cover: Dependency graph of a simple multi-layer perceptron (own work)
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Copyright © Ernesto Hof, 2025
All rights reserved.

Word count: 35771

Abstract

Developing Knowledge-Based Engineering (KBE) applications remains a significant challenge in
high-tech industries like aerospace, where front-loaded product development demands extensive
automation. The manual code completion phase of these applications is particularly problematic: it
consumes considerable time, requires specialized expertise in proprietary frameworks, and creates steep
learning curves that limit broader adoption. While recent advances in Artificial Intelligence (AI) have
revolutionized software development assistance, commercial AI systems consistently fail when working
with specialized KBE frameworks, like ParaPy. In the absence of sufficient training data on proprietary
frameworks, these systems produce code that appears correct but is actually non-functional.

This research validates that retrieval-augmented approaches offer a practical alternative to retraining
models for specialized domains with limited data, such as ParaPy. In these approaches, AI systems
dynamically access domain-specific knowledge during operation rather than relying solely on their
training. This has significant implications for industries or institutions using proprietary tools where
comprehensive model retraining is economically infeasible.

The research implements this approach by developing and evaluating a dual-agent framework for
AI-assisted KBE application development that operates within industrial privacy and security constraints.
The framework comprises a Developer Agent optimized for code generation and debugging with the
ParaPy SDK, and an Educational Agent focused on ParaPy learning support and documentation. Both
agents access a knowledge infrastructure that uses semantic search over indexed ParaPy documentation,
curated examples, and technical references. Additionally, the Developer Agent employs verification
mechanisms that progressively check code at two core levels: syntax correctness (ensuring the code
follows programming language rules) and successful execution (confirming the code runs without
errors).

User testing revealed how different skill levels benefit from AI assistance. Intermediate users benefited
most, showing dramatic improvements in productivity and performance. Novice users achieved
substantial productivity gains and reduced framework-specific (ParaPy) errors significantly, with task
completion rates approaching expert baseline performance. Expert users, however, experienced slight
performance degradation due to reduced code review under time pressure. The framework successfully
reduced knowledge barriers for novice and intermediate users, broadening access to specialized
engineering tools.

Despite these successes, the framework has persistent limitations in understanding three-dimensional
spatial relationships. This is critical for KBE applications where code must define the precise position,
orientation, and assembly of physical components. The framework struggles to correctly place
components in space or apply proper rotational transformations. This produces code that may be
syntactically correct but results in misaligned parts or incorrectly oriented features. These geometric
errors require iterative refinement with human guidance, representing a fundamental limitation of the
current approach and language model architectures.

While geometric reasoning limitations suggest fundamental boundaries of current AI capabilities, the
demonstrated productivity improvements and reduced knowledge requirements establish a foundation
for broader AI adoption in knowledge-intensive engineering domains. The framework contributes a
validated operational prototype that addresses critical gaps in AI-assisted KBE development: reducing
the manual coding bottleneck, lowering knowledge barriers for new users, and providing privacy-
compliant deployment options. The framework functions most effectively as a development accelerator
requiring expert oversight, supporting human engineers rather than replacing them.

Keywords: Knowledge-Based Engineering, Large Language Models, Code Generation, ParaPy, Retrieval-
Augmented Generation, AI-Assisted Development, Aerospace Engineering, Multi-Agent Systems

i

Acknowledgements

My first and foremost gratitude goes out to my parents — Mama en Papa — as well as my family and
friends for their unwavering support, for being a place of comfort, reflection, and meaningful discussion,
and for allowing me to vent when needed. I am incredibly fortunate to have so many people close by to
rely on and talk to.

A sincere thanks goes to my university supervisor, Dr. ir. Gianfranco la Rocca, for setting me on the
path of Knowledge-Based Engineering and software development years ago, when I first attended
the Knowledge-Based Engineering course at Aerospace Engineering. Thank you for your continuous
guidance and valuable feedback throughout this thesis.

To my industry supervisor, drs. ir. Alejandro Pradas Gómez, thank you for your many insightful
feedback sessions and for offering me the opportunity to complete this thesis in collaboration with GKN
Aerospace Sweden. You made the experience in Sweden truly worthwhile, and I am certain that this
work would be of significantly lower quality without your support.

I would also like to thank ParaPy, and in particular Reinier van Dĳk and Max Baan, for giving me the
opportunity to learn and grow during my time as a part-time software engineer at ParaPy. Special
thanks to Levi van Aanholt and San Kilkis for their dedicated feedback on the implementation of AI
within the ParaPy environment.

A final and heartfelt thank you to all other employees and colleagues at both ParaPy and GKN Aerospace
who took the time to provide feedback, and who made it possible for me to conduct interviews and user
testing sessions — your contributions greatly strengthened the validity of this research.

Finally, I would like to thank all others, named and unnamed, who have directly or indirectly supported
me throughout this year in pursuit of my engineering degree.

ii

Preface

Since the start of this project, it has been both a joy and a concern to dive deeper into the world of Artificial
Intelligence. As AI capabilities continue to grow and increasingly shape our daily lives, it is easy to feel
overwhelmed by the vast amount of information available. It is truly a double-edged sword. With services like
ChatGPT becoming ever more human-like, information appears more accessible and trustworthy than ever before.
However, many people fail to understand the underlying mechanisms of these systems. At their core, models such as
ChatGPT are enormous algebraic networks, fine-tuned to predict human-like text based on natural language prompts.

While experts continue to debate whether true thinking or intelligence has been achieved—or ever will be
achieved—with current large language model architectures, the outputs of these systems remain what they
fundamentally are: natural language predictions designed to sound as plausible as possible given a user’s input.
Although companies such as OpenAI, Anthropic, and DeepSeek are extending their services by enabling models to
access external tools and up-to-date information, I often worry about the lack of fact-checking among users who
rely on AI in their daily lives.

Despite these concerns, I confidently embrace AI in my own work and have witnessed numerous positive
impacts. These include the enormous and emerging AI community spearheading open-source models, solutions,
and frameworks, supported by market leaders and professionals from industry and academia alike. The benefits
span multiple sectors: faster cancer diagnoses in healthcare, improved efficiency and cost reduction in business,
personalized education approaches, and enhanced cybersecurity measures. At the same time, we must remain
aware of the negative consequences and risks: biased models (intentional or not), ethical and privacy issues,
military applications reminiscent of “Terminator-like” scenarios, and the substantial environmental footprint of
large-scale data centres.

In a world where progress continues to accelerate exponentially, we should embrace innovation with both
optimism and caution. It will be fascinating to see how quickly the technologies and approaches I explore and
discuss here may appear archaic to future readers. Above all, it has been a joy and a privilege to investigate how I,
as a software engineer, might one day be replaced—or perhaps complemented—by the very technologies I study.

Ernesto Hof
Delft, August 2025

iii

Voorwoord

Sinds de start van dit project is het zowel een bron van enthousiasme als van zorg geweest om dieper in de wereld
van kunstmatige intelligentie te duiken. Naarmate KI-systemen krachtiger worden en een steeds grotere rol spelen
in ons dagelĳks leven, kan de hoeveelheid aan ogenschĳnlĳke informatie al snel overweldigend zĳn. Het voelt
soms als een mes dat aan twee kanten snĳdt. Diensten zoals ChatGPT ogen steeds menselĳker, waardoor kennis
toegankelĳker en betrouwbaarder lĳkt dan ooit. Toch realiseren veel mensen zich nauwelĳks hoe zulke systemen
daadwerkelĳk werken. In de kern zĳn modellen als ChatGPT niets meer dan gigantische wiskundige netwerken,
fijn afgestemd om mensachtige tekst te voorspellen op basis van natuurlĳke taal.

Terwĳl wetenschappers onderling blĳven discussiëren of we met de huidige generatie grote taalmodellen al
echt van ‘denken’ of ‘intelligentie’ kunnen spreken – en of dat punt ooit bereikt zal worden – blĳft één feit
overeind: de uitkomsten zĳn en blĳven statistische voorspellingen, ontworpen om zo aannemelĳk mogelĳk te
klinken. Bedrĳven als OpenAI, Anthropic en DeepSeek breiden hun modellen weliswaar uit met hulpmiddelen die
toegang geven tot actuele informatie, maar ik zie nog te vaak dat gebruikers klakkeloos aannemen wat KI-systemen
produceren, zonder enige vorm van factchecking.

Dat neemt niet weg dat ik KI zelf met overtuiging omarm in mĳn werk en de positieve impact ervan dagelĳks
ervaar. Deze omvat de enorme en groeiende KI-gemeenschap die opensource-modellen, oplossingen en frameworks
ontwikkelt, gesteund door marktleiders en professionals uit zowel de industrie als de academische wereld. De
voordelen strekken zich uit over meerdere sectoren: snellere kankerdiagnoses in de zorg, verbeterde efficiëntie en
kostenbesparing in het bedrĳfsleven, gepersonaliseerde onderwĳsbenaderingen en versterkte cybersecurity. Tegeli-
jkertĳd mogen we de schaduwzĳde niet uit het oog verliezen: modellen die – bewust of onbewust – bevooroordeeld
zĳn, ethische en privacyvraagstukken, militaire toepassingen die doen denken aan sciencefictionfilms en de enorme
ecologische voetafdruk van megadatacenters.

In een wereld waarin technologische vooruitgang in hoog tempo blĳft toenemen, is het zaak om innovatie
met open armen te verwelkomen, maar wel met een gezonde dosis waakzaamheid. Met fascinatie (en een lichte
dosis spanning) kĳk ik naar de toekomst en ben ik benieuwd hoe snel de technologieën en benaderingen die ik hier
bespreek, antiek zullen lĳken voor de aanstaande lezer. Voor mĳ persoonlĳk was het vooral een voorrecht om te
onderzoeken hoe ik als software engineer ooit misschien (deels) kan worden vervangen – of juist aangevuld – door
de technologieën die ik nu met zoveel nieuwsgierigheid bestudeer.

Ernesto Hof
Delft, Augustus 2025

iv

Contents

Abstract i

Acknowledgements ii

Preface iii

List of Figures ix

List of Tables xii

Nomenclature xv

I Thesis 1

1 Introduction 2

2 Research Framework 7

2.1 Objectives . 7

2.2 Main Questions . 7

2.3 Scope . 8

2.4 Requirements . 8

2.5 Structure . 9

2.6 Definitions . 9

3 Literature Review 12

3.1 Foundations of Artificial Intelligence . 12

3.1.1 Artificial Neural Networks . 14

3.1.2 Recent Developments: Transformers and Large Language Models 15

3.2 From Natural Language to Programming . 16

3.3 Design Paradigms for LLM-Based Applications . 17

3.3.1 Prompt Engineering and Orchestration . 17

3.3.2 Retrieval-Augmented Generation and Tool Use . 18

3.3.3 Fine-Tuning and Customization . 19

3.3.4 Agentic Systems and Multi-Agent Frameworks . 19

3.3.5 Frameworks, Platforms, and Service Ecosystems 20

3.4 Synthesis and Implications for KBE . 21

3.5 Measurable Success Criteria . 22

v

Contents vi

4 Industrial Study: GKN Aerospace 25

4.1 Study Purpose . 25

4.2 Findings . 26

4.3 Technical Assessment of Current AI Tools . 27

4.3.1 Implications for KBE Development . 29

4.4 Summary and Implications . 29

5 Methodology 31

5.1 Legal & Ethical Considerations . 31

5.2 Agent Creation Pipeline . 32

5.2.1 LLM Deployment, Selection & Customisation . 32

5.2.2 Prompt Engineering . 33

5.2.3 Runtime Dependencies . 33

5.2.4 Tool Development, Verification & Validation . 34

5.3 Framework Architecture and Design Approach . 35

5.4 Verification and Validation Methodology . 36

5.4.1 Unit Testing . 36

5.4.2 Automated Evaluation Framework . 36

5.4.3 Manual Case Study Approach . 37

5.4.4 User Testing Protocol . 37

5.5 Summary & Conclusion . 38

6 Agentic Framework 39

6.1 Assumptions & Limitations . 39

6.2 System Architecture Overview . 40

6.3 Baseline Performance . 42

6.3.1 Model Configurations . 42

6.3.2 Developer Agent . 42

6.3.3 Educational Agent . 45

6.4 Knowledge Infrastructure & Semantic Search . 45

6.5 Prompt Engineering Implementation . 46

6.5.1 Developer Agent Prompt Structure . 47

6.5.2 Educational Agent Prompt Structure . 48

6.5.3 Prompt Engineering Impact . 49

6.6 Tool Development & Deployment . 50

6.7 Agent Implementation . 51

6.7.1 Performance Demonstration . 52

6.8 CLI Application Design . 53

6.9 Summary & Conclusion . 53

Contents vii

7 Verification & Validation 55

7.1 Assumptions & Limitations . 55

7.2 Test Framework Foundations . 57

7.2.1 Unit Testing . 57

7.2.2 Automated Evaluation . 57

7.2.3 Large Language Model as Judge Framework . 58

7.2.4 Code Quality Framework . 58

7.2.5 Case Studies . 58

7.2.6 User Testing . 59

7.3 Unit Testing Results . 61

7.4 Automated Evaluation . 62

7.4.1 Developer Agent . 62

7.4.2 Educational Agent . 65

7.4.3 Summary . 66

7.5 Industry Case Study - TRS Application . 67

7.5.1 Variant Analysis . 67

7.5.2 Summary . 69

7.6 User Testing . 70

7.6.1 Requirement Compliance . 72

7.6.2 Summary . 74

7.7 Summary & Conclusion . 74

8 Conclusion 77

9 Discussion & Recommendations 79

II Technical Report 83

10 Language Modelling 84

10.1 Sequence Models . 84

10.2 The Transformer Architecture . 85

10.3 From Natural Language to Programming . 87

11 Implementation Details 89

11.1 Large Language Model Settings . 89

11.2 Prompt Engineering Strategies . 90

11.3 MCP Servers . 92

11.4 LLM Tool Calling . 92

12 Detailed Design 95

12.1 The Pydantic Framework: Basics & Extensions . 95

Contents viii

12.1.1 Framework Customization . 96

12.2 LLM Selection . 97

12.3 Semantic Search Engine Design . 98

12.3.1 Engine Architecture, Design & Querying Process 98

12.3.2 Filtering & Indexing of Data . 100

12.3.3 Integration . 101

12.4 Developer Agent: System Prompt Components . 102

12.4.1 Template . 102

12.4.2 Best Practices . 103

12.4.3 ParaPy Principles and Examples . 104

12.5 Educational Agent: System Prompt Components . 108

12.5.1 Template . 108

12.5.2 Best Practices . 109

12.6 Educational Agent: Incremental Performance . 110

12.6.1 Baseline Performance . 110

12.6.2 With Prompt Engineering . 114

12.6.3 Full Implementation . 118

12.7 Tool Design & Architecture . 120

12.7.1 ParaPy API Reference Search . 120

12.7.2 Code Runtime Verification . 121

12.7.3 ParaPy Documentation Search . 122

12.7.4 Tool Table . 124

12.8 Agent Deployment Details . 125

12.8.1 Structured Output Schemas . 125

12.8.2 Runtime Agent Instantiation . 125

12.8.3 Output Validation Mechanism . 126

12.9 Command Line Interface Application Design . 126

13 Evaluation Framework Design 128

13.1 Unit Testing Implementation Details . 128

13.2 Large Language Model as Judge Framework . 130

13.2.1 Evaluation Protocol . 130

13.2.2 Model Selection Rationale . 130

13.2.3 Temperature Configuration . 131

13.2.4 Developer Agent Evaluation Criteria . 131

13.2.5 Educational Agent Evaluation Criteria . 131

13.3 Code Quality Framework . 132

13.3.1 Semantic Correctness . 132

Contents ix

13.3.2 Maintainability . 133

13.3.3 PEP-8 Compliance . 133

13.3.4 Final Score Computation . 134

13.4 Developer Agent: Evaluation Cases . 134

13.5 Educational Agent: Evaluation Cases . 137

13.6 Developer Agent: LLM Judge Rubric . 139

13.7 Educational Agent: LLM Judge Rubric . 141

13.8 TRS Case Study: Skeleton Code . 143

References 144

A Extended Analysis: Industrial Study GKN 150

A.1 Methodology . 150

A.2 Findings . 151

A.2.1 Nomenclature . 151

A.2.2 Common Themes Across Interviews . 151

A.2.3 Diverging or Contradictory Findings . 155

A.2.4 Inter-Theme Relationships . 156

A.2.5 Overall Insights . 156

A.3 Summary & Conclusion . 157

A.4 Consent Form . 158

A.5 Interview Script . 159

A.6 Prompt Example and AI-Generated ParaPy Code . 162

B Supporting Material: User Testing 171

B.1 Data Collection and Processing . 171

B.2 Consent Form . 172

B.3 User Testing Script . 173

B.4 Functional Breakdown of Test Cases . 176

C Expert Grading Rubric 177

C.1 Semantic Correctness . 178

C.2 Maintainability . 179

C.3 PEP-8 Compliance . 180

D Extended Results of Automated Evaluations 183

D.1 Run Usage . 183

D.2 Agent Performance Across Evaluation Criteria . 185

D.3 Generated Geometries . 188

List of Figures

1.1 The impact of front-loaded engineering on time-to-market relative to traditional and
concurrent engineering (adapted version taken from [11], originally published in [12]). . 3

1.2 The envisioned MBSE driven approach developed during DEFAINE: the development of
a new KBE application is divided into four mains steps, highlighted in bold text (taken
from [18] which was adapted from [21]). 5

3.1 A timeline of the evolution of computer technology and the associated advances in AI [40]. 13

3.2 Overview and biological analogy of an artificial neuron and structure of an artificial
neural network: (a) structure of biological neuron; (b) overview of an artificial neuron
within a MLP with its input, weights, activation function and output; (c) structure of an
Multilayer Perceptron. [45] . 14

3.3 AI systems performance on various capabilities relative to human performance, from
1998 to 2025 [40]. 16

5.1 Top-level overview of an AI agent architecture, illustrating (1) the role of the large
language model (LLM) as the agent’s cognitive core, (2) the incorporation of tailored
system instructions to guide behaviour, and (3) the integration of external tools and
databases, possibly through MCP services. 32

5.2 Schematic overview of prompt engineering design process, taken from prompt engineer-
ing course by Anthropic. From docs.anthropic.com [accessed 03-09-2025]. 33

5.3 Illustration of tool calling within AI agentic frameworks. Shows the clear roles of the
LLM and the agent framework in action. The interaction of agents with tools follows the
through-action-observation cycle. From Pydantic AI documentation [accessed 15-10-2025]. 34

6.1 Top-level architecture of the dual-agent framework, showing the four main subsystems
and the scope boundaries of the Pydantic-based integration layer. Dashed (grey) arrows
denote communication flows between elements while the solid (black) arrows denote
logic flow. 40

6.2 Example Developer Agent run trace from Logfire, illustrating tool availability, custom
system prompts, and structured output parsing. 41

6.3 Time distribution of initialization operations across three semantic search engine classes.
Model loading operations (blue) dominate initialization time, with SphinxDocSearcher
showing notably higher index loading overhead (red) compared to the other implementa-
tions. 46

7.1 Expert reference solutions for TC1 and TC2 rendered in the ParaPy GUI. These serve as
functional correctness benchmarks for user testing evaluation. 60

7.2 Usage metrics from the automated evaluations of both the Developer and Educational
Agents, comparing the large Claude Sonnet 4 model—representative of API-based us-
age—with the smaller LLaMa 3.1 – 8B model, representative of local execution environments. 63

7.3 Performance metrics for Developer Agent evaluation, showing pass rates and code quality
breakdown into semantic, maintainability, and PEP-8 scores. 64

x

https://docs.anthropic.com/en/docs/test-and-evaluate/develop-tests
https://ai.pydantic.dev/tools/#registering-function-tools-via-decorator
https://logfire.pydantic.dev/

List of Figures xi

7.4 LLMJudge evaluation scores across six dimensions: functional correctness, completeness,
code quality, practical applicability, error handling, and explanation quality. No self-
assessment was performed for LLaMa 3.1 8B due to insufficient reasoning capacity. . . . 64

7.5 Complex geometries produced by Claude Sonnet 4 during Developer Agent evaluation,
demonstrating advanced reasoning capabilities and effective ParaPy SDK usage. 65

7.6 Automated quality scores and subscores for Educational Agent cases. LLaMa 3.1 8B
statistics reflect only one successful run. 66

7.7 LLMJudge evaluation scores across six pedagogical dimensions: pedagogical effectiveness,
content accuracy, clarity, learning path coherence, resource integration, and actionability.
No self-assessment was performed for LLaMa 3.1 8B due to insufficient reasoning capacity. 66

7.8 Comparison of expert-generated application and AI-generated solutions using the
Developer Agent. Minimal prompting shows limited performance while extended
prompts demonstrate significant improvements, with spatial orientation remaining
the primary challenge. Skeleton code completion underperforms compared to natural
language prompts. 68

7.9 High-level results from the user testing sessions involving KBE application development
using the ParaPy SDK. Metrics include development speed, ParaPy SDK-specific error
rates, functional correctness and equivalence to the expert solution, as well as a breakdown
of session time per participant. 70

7.10 Comparison of manual and AI-assisted cases per participant, with respect to code quality
as evaluated by the automated code quality framework. Scores are subdivided into the
three dimensions: semantic correctness, maintainability, and PEP-8 compliance. The
expert-level reference represents the score of the expert-developed solution, while the
baseline corresponds to the score of the provided skeleton code. Results are separated by
TC1 and TC2 to ensure accurate comparison against their respective reference solutions. 71

7.11 Error rate metrics obtained from user testing, comparing manual and AI-assisted cases
across different user experience levels. The error rate serves as an indicative measure for
assessing whether the agentic framework effectively reduces the knowledge burden on
end-users. 73

7.12 Time metrics and composite improvement scores from user testing, comparing manual
and AI-assisted cases across different experience levels. Productivity is measured in
terms of lines of code or features implemented per minute. The composite score offers a
holistic assessment of framework performance by integrating productivity, functional
correctness, and code quality. 73

10.1 Overview of transformer neural network architecture and internal attention mechanisms.
(a) illustrates the complete structural design of the transformer model, while (b) examines
how the model internally processes language by tracking connections between words,
specifically demonstrating how certain components identify and link pronouns to their
corresponding references in text. [47] . 85

10.2 Interactive visualization of transformer language model processing pipeline from the
Transformer Explainer tool. The diagram illustrates the complete data flow through
a transformer block, showing how input embeddings (left) are processed through
multi-head self-attention mechanisms (centre-left) where Query, Key, and Value vectors
compute attention weights, followed by multi-layer perceptron processing (centre-right),
and culminating in the final probability distribution over vocabulary tokens (right) for
next-token prediction. From github.io/transformer-explainer [accessed 21-08-2025]. . . 86

10.3 Overview of common sampling techniques and how they influence next token selection.
Greedy search always picks the highest probability token; top-k sampling chooses from
the top k likely tokens; nucleus sampling considers all tokens whose combined probability
mass > 𝑝. From ashutosh.dev [accesses 04-09-2025]. 87

https://poloclub.github.io/transformer-explainer/
https://www.ashutosh.dev/llms-decoded-architecture-training-and-how-large-language-models-really-work/

List of Figures xii

11.1 The effect of model temperature on the output probability distribution and subsequent
effect on sampling. 89

12.1 High-level overview of semantic search. Both indexed data and user queries are embedded
into a shared vector space using a language model. Similarity scores (e.g., cosine similarity)
are computed, and the top-matching entries are retrieved based on semantic relevance.
From https://dida.do/what-is-semantic-search [accessed 06-10-2025]. 99

12.2 Time distribution of initialization operations across three semantic search engine classes.
Model loading operations (blue) dominate initialization time, with SphinxDocSearcher
showing notably higher index loading overhead (red) compared to the other implementa-
tions. 101

12.3 Overview of the logical flow and feedback mechanisms, as well as the quick-start pathway
of the Command Line Interface (CLI) application developed for the agentic framework.
The diagram also illustrates the communication flow between the CLI and the agentic
framework. 126

13.1 Test selection decision tree mapping code changes to required test suites based on
component risk assessment. 128

13.2 Example of a Developer Agent run with the Pydantic AI TestModel in place as mock
LLM. The test mode architecture attempts to execute all tools available to the agent and
return valid responses. Note the triple execution of the run_code function at the end,
which represents the final output validation of the agent with a maximum retry count of
three. 130

D.1 Comparison of Developer Agent performance using Claude Sonnet 4 and LLaMa 3.1
– 8B. The results correspond to the skeleton code completion evaluation cases and the
associated geometries generated via the ParaPy SDK. 189

https://dida.do/what-is-semantic-search

List of Tables

3.1 Comparison of LLM Application Design Paradigms. 21

4.1 Overview of common themes identified in the interviews and their relative urgency,
based on the number of Domain Experts (DEs) referencing each theme. 26

6.1 Tool Categories and Functions Summary. 51

6.2 Requirements Traceability Matrix for research objectives 1 and 2. 54

7.1 Requirements Verification Test Plan . 56

7.2 Experiment Configuration Overview . 58

7.3 Code Quality Scoring Framework . 59

7.4 Test Coverage Dashboard - Framework Components . 62

7.5 Summary statistics of performance metrics from automated evaluation across agent types
and models. 62

7.6 Summary evaluation statistics for Developer Agent automated evaluation. 63

7.7 Summary evaluation statistics for Educational Agent automated evaluation. 65

7.8 Requirements verification results for Developer and Educational Agents based on auto-
mated evaluations. 67

7.9 Code quality comparison between expert-developed and AI-generated code for the TRS
case study using the Developer Agent. 69

7.10 Requirements validation results from user testing across expertise levels. 74

7.11 Measurable Success Criteria Compliance Matrix . 76

12.1 Tool Specifications and Implementation Details (Part 1) 124

12.2 Tool Specifications and Implementation Details (Part 2) 124

13.1 Code Quality Scoring Framework . 132

13.2 Developer Test Cases for ParaPy Assistant Evaluation . 134

13.3 Educational Test Cases for ParaPy Assistant Evaluation 138

A.1 Terms and abbreviations used by the Domain Experts (DEs) during the interviews. . . . 151

A.2 Overview of common themes identified in the interviews and their relative urgency,
based on the number of Domain Experts (DEs) referencing each theme. 152

A.3 Overview of how the proposed dual-agent system—comprising an Educational Agent
and a Coding Agent—addresses the common themes identified in the GKN interviews. 157

xiii

List of Tables xiv

B.1 Scoring Rubric for functional correctness of TC1. Each criterion is evaluated on a binary
pass/fail basis, receiving either 0 or 1 point. The resulting scores are then weighted to
calculate the total score. 176

B.2 Scoring Rubric for functional correctness of TC2. Each criterion is evaluated on a binary
pass/fail basis, receiving either 0 or 1 point. The resulting scores are then weighted to
calculate the total score. 176

D.1 Performance metrics for Developer Agent across test cases. 183

D.2 Performance metrics for Educational Agent across test cases. 184

D.3 Evaluation results for Developer Agent. 186

D.4 Evaluation results for Educational Agent. 187

Nomenclature

Symbol Definition Unit

𝑘 Number of results in top-k sampling or semantic search [-]
𝑛 Number of dimensions in vector space or number of param-

eters
[-]

𝑝 Probability threshold in nucleus sampling [-]
𝑇 Temperature parameter controlling randomness in token

selection
[-]

𝜃 Angle between vectors in cosine similarity calculation [rad]
®𝐴, ®𝐵 Vector representations in embedding space [-]

xv

Part I

Thesis

1

1
Introduction

Humankind stands at the forefront of—some argue, already within—a fourth industrial revolution,
poised to reshape our way of life [1]. Human creativity and the relentless pursuit of progress seem
deeply ingrained in our nature, driving technological innovation [2]. Amidst growing socioeconomic
challenges [3, 4, 5] and intensifying global competition, high-tech industries face constant pressure to
accelerate time to market and enhance cost efficiency of products. Aerospace Engineering is no exception;
in fact, it exemplifies a highly complex, inherently multidisciplinary, and heavily regulated sector that
stands to benefit significantly from advancements in technology and engineering methodologies.

A well-established approach to achieving these improvements is front-loaded product development, or "a
strategy that seeks to improve development performance by shifting the identification and solving of
[design] problems to earlier phases of a product development process" [6]. Front-loaded development
builds upon concurrent engineering, which enhances traditional, often highly sequential, design processes
by executing multiple design tasks in parallel. This approach aims to boost productivity and profitability
while reducing lead times and last-minute (re)work [7]. Although concurrent engineering improves upon
traditional methods, it introduces its own challenges. Engineering design is inherently multidisciplinary
and cannot be fully parallelized. Interdependent systems and design processes must rely on "advance
information" —assumptions about initially unavailable dependent data— throughout much of the
design process [8]. Consequently, concurrent engineering often creates time pressure on upstream
activities, limiting the depth of engineering work, encouraging conservative designs, and ultimately
increasing costs [8, 9].

The enhanced front-loading approach [6, 10] aims to identify and address critical bottlenecks early in
the design process by implementing automated design workflows and developing Knowledge Bases.
These tools enable rapid product design at the start of new projects by leveraging:

1. Project-to-project knowledge transfer: Standardized, centralized Knowledge Bases facilitate the
transfer of problem-solving insights from one project to the next. This reduces the time required
to resolve recurring issues and allows engineers to address potential challenges early, sometimes
even before a project begins [8].

2. Rapid problem-solving: Advanced technologies and methodologies, such as Computer-Aided
Engineering (CAE) in place of physical prototyping, accelerate problem resolution. Additionally,
iterative approaches like Design of Experiments (DOE) and optimization enable systematic
exploration and refinement of design solutions.

Figure 1.1 qualitatively illustrates the impact of front-loaded engineering on time-to-market and its
relationship with concurrent and traditional engineering design.

While other methods exist to streamline product development, the front-loaded approach enables
extensive simulations during the design phase, with the resulting designs stored in a dedicated database.
This database allows engineers to query a wide range of design variations with accurate performance
predictions at the outset of new projects. High-tech suppliers, in particular, may benefit from this
approach. Large-scale design explorations aimed at populating the database can reveal valuable patterns
or novel solutions, which could be proactively presented as proposals to potential OEMs (Original
Equipment Manufacturer) [11].

2

3

Figure 1.1: The impact of front-loaded engineering on time-to-market relative to traditional and concurrent engineering (adapted
version taken from [11], originally published in [12]).

The integration of Knowledge Based Systems and Knowledge Based Engineering (KBE) applications into
the design process is a key enabler of the front-loaded product development approach. KBE is a
technology that combines Computer-Aided Design (CAD) with Expert Systems AI to automate and
enhance engineering workflows. KBE platforms facilitate the generation and manipulation of product
geometries while embedding engineering knowledge and reasoning through specialized programming
languages. By leveraging object-oriented programming, caching, and dependency tracking, KBE
enables powerful automation for tasks such as product configuration, design space exploration, and
multidisciplinary design optimization. Originating in highly competitive industries like aerospace,
automotive, and manufacturing, KBE has become a widely adopted approach for automating workflows,
optimizing designs, and ensuring consistency across engineering tasks. [13]

At its core, developing KBE applications involves transforming ’raw’ expert knowledge from industry into
functional code using the programming language provided by the chosen KBE system. Examples of such
systems include ParaPy1, Viktor2, Siemens Knowledge Fusion3, and the Adaptive Modeling Framework
from Technosoft4. This development process is typically case-based, multi-actor, and iterative, requiring
expertise across multiple domains, including -but not limited to- knowledge acquisition and modeling,
software engineering, design optimization, and domain-specific engineering knowledge.

This complexity of KBE application development has led to various efforts to formalize and improve the
process over the years. One of the earliest and most well-known methodologies, MOKA (Methodology
and tools Oriented to Knowledge-based engineering Applications), systematically captures, organizes,
and implements engineering knowledge through formal and informal knowledge models, as well as
a neutral language knowledge model [14]. Formal models consist of structured, machine-readable
representations such as diagrams, ontologies, and specifications, while informal models capture
unstructured knowledge like design rationale, expert insights, and documentation. Other methodologies,
such as CommonKADS (Common Knowledge Acquisition and Documentation Structuring) [15] —on
which MOKA is based— or KNOMAD (Knowledge Nurture for Optimal Multidisciplinary Analysis and
Design) [16], have also been developed. However, each comes with its own limitations. At their core,
these methodologies touch (at least one of) the fundamental challenges of KBE application development,
some of which have already been implicitly mentioned [17]:

1. Case-based, ad hoc development: KBE applications are often developed on a case-by-case basis
without a structured framework or adherence to existing methodologies. A review of case
studies revealed that 81% did not explicitly adhere to a specific methodology, leading to potential

1https://parapy.nl/
2https://www.viktor.ai/
3https://plm.sw.siemens.com/en-US/nx/cad-online/
4https://www.technosoft.com/

https://parapy.nl/
https://www.viktor.ai/
https://plm.sw.siemens.com/en-US/nx/cad-online/
https://www.technosoft.com/

4

knowledge loss, misuse, under-utilization, and higher maintenance costs.
2. Tendency toward "black-box" applications: Current KBE development leans towards applications

where captured knowledge is represented as context-less data and formulas, lacking explication
and provisions for capturing design intent. A "round-trip" automatic feature is needed to
link application code back to formal and informal models for validation, update, and reuse of
underlying knowledge. The work of [18] present a first step in solving this problem.

3. Lack of knowledge re-use: The difficulty of reusing knowledge in KBE systems is closely tied
to the previous point. Higher-level knowledge, such as project constraint reasoning, problem
resolution methods, design intent, and supply chain knowledge, is often not captured or reused.

4. Limited quantitative frameworks for KBE assessment and justification: Literature reviews
indicate that KBE research has historically lacked comprehensive quantitative methods for both
evaluating implemented systems and determining the suitability of tasks for KBE representation.
Many case studies do not report time or cost benefits, and systematic frameworks to assess whether
a design task warrants KBE development —incorporating both quantifiable metrics and qualitative
considerations— remain underdeveloped. While industry practitioners may have developed
internal assessment methods, such approaches are often proprietary and absent from published
research.

To address these challenges, the recently concluded DEFAINE (Design Exploration Framework based on
AI for froNt-loaded Engineering) project proposed and partially developed a novel methodology for KBE
application development based on Model-Based Systems Engineering (MBSE) [19]. This approach provides
a structured framework for systematically capturing, developing, and maintaining KBE applications [18],
with the ultimate goal of achieving automated round-trip engineering. Figure 1.2 presents a high-level
visual representation of the MBSE approach, accompanied by a brief description below. For a detailed
discussion of the methodology and its individual steps, the reader is referred to the dedicated literature.

1. Knowledge Model: Domain experts and KBE developers collaborate to create a knowledge model
using SysML and MSoSA (Magic Systems of Systems Architect, now CATIA Magic5). This model
includes a requirements package, a process package, and a product package. SysML diagrams like
Block Definition Diagrams (BDDs) and Activity Diagrams (ADs) are used to capture the software
structure and engineering workflows [20]. More detailed information on the knowledge model
can be found in [21, 11], for a practical guide on SysML the reader is referred to [22].

2. Automatic code generation: The skeleton code of the KBE application is automatically generated
using a Translation Engine [23]. This engine processes the knowledge model to create the KBE
application architecture with all necessary classes, inputs, attributes, and part declarations.

3. Manual code completion: KBE developers manually complete the auto-generated code by adding
domain-specific knowledge and operational logic. This step turns the skeleton code into a fully
functional KBE application.

4. Model reverse engineering: The knowledge model is updated to reflect changes made during
manual code completion. Software Reverse Engineering (SRE) methods are employed to automatically
generate updated product and process models, with code-to-model (c2m) tools extracting model
information directly from the KBE application. The work of [18] represents a first step toward this
automation by demonstrating process model extraction from existing KBE applications, though
complete knowledge model updates remain an ongoing challenge.

Recently, automation tools have been introduced to streamline the KBE development workflow. The
Translation Engine [23] automates step (2) by generating skeleton code from knowledge models, while
initial reverse engineering capabilities [18] enable partial automation of step (4) through process model
extraction from existing applications. However, step (3) —manual code completion— remains entirely
unautomated and represents the critical bottleneck in the development process.

Manual code completion is both the most time-intensive phase and the most dependent on specialized
expertise for several interconnected reasons. First, developers must possess deep knowledge of
the proprietary KBE modelling language, including its syntax, semantics, and idiomatic patterns.
Unlike mainstream programming languages with extensive documentation and community support,

5https://www.3ds.com/products/catia/catia-magic

https://www.3ds.com/products/catia/catia-magic

5

Figure 1.2: The envisioned MBSE driven approach developed during DEFAINE: the development of a new KBE application is
divided into four mains steps, highlighted in bold text (taken from [18] which was adapted from [21]).

KBE frameworks like ParaPy have limited publicly available resources, steep learning curves, and
framework-specific conventions that can only be mastered through extensive hands-on experience.
Second, developers must simultaneously understand the domain-specific engineering knowledge—such
as aerodynamic principles, structural constraints, or manufacturing requirements—and translate this
knowledge into computational logic. This translation is non-trivial: engineering concepts expressed
in natural language, equations, or heuristics must be reinterpreted as object-oriented code structures,
dependency graphs, and parametric relationships within the KBE framework. Third, the iterative
nature of KBE development compounds these challenges. As requirements evolve or edge cases emerge
during testing, developers must refactor code while maintaining architectural coherence, managing
dependencies, and preserving the semantic relationships between engineering concepts and their
computational representations. This combination of framework-specific technical expertise and domain
knowledge creates a significant barrier that limits development speed, increases costs, and restricts the
scalability and broader adoption of KBE solutions.

While the MBSE-driven DEFAINE approach successfully addresses knowledge modelling and partial au-
tomation through structured methodologies, its inherently rigid, rule-based nature cannot accommodate
the flexibility required for handling the variability and context-sensitivity of manual code completion.
MBSE excels at ensuring adherence to requirements, standards, and formalized workflows—critical for
validation and traceability—but lacks the adaptive capabilities needed to interpret diverse engineering
contexts, generate context-appropriate code variations, and assist developers with varied expertise levels.
For decades, this gap persisted because automating such complex and variable tasks was considered
technically unfeasible [24].

Recent advancements in Generative Artificial Intelligence (GenAI) have fundamentally shifted this
landscape. Large Language Models (LLMs), in particular, have demonstrated capabilities that directly
address the limitations of structured approaches: pattern recognition across vast codebases, natural
language understanding for translating engineering intent into code, and flexible generation that adapts
to varying contexts and expertise levels [25]. These capabilities position LLMs as a complementary
technology to MBSE, one that can maintain the rigour and traceability of structured methodologies while
providing the adaptive flexibility required for effective code completion assistance in KBE development.

This research aims to bridge the identified gap by developing a GenAI-based virtual coding assistant, or
"copilot", specifically tailored for KBE application development using the ParaPy modelling language.
The proposed approach addresses the manual code completion bottleneck while tackling several
interconnected challenges that complicate both KBE development and the integration of GenAI into this
domain:

6

1. Closed-source environments: Many KBE modelling languages are proprietary, resulting in limited
publicly available data for training open models (e.g., ChatGPT, Claude, Mistral, DeepSeek). This
scarcity often leads to hallucinations6 in KBE-specific coding suggestions, rendering general-
purpose AI assistants ineffective for framework-specific development tasks.

2. Domain-specific requirements: KBE applications require developers to simultaneously navigate
framework-specific programming constructs and domain engineering principles. General-purpose
AI models lack access to both the proprietary framework documentation and the engineering
design rationale necessary to generate contextually appropriate code.

3. Steep learning curve and knowledge acquisition barriers: The limited availability of learning
resources, tutorial materials, and community support for proprietary KBE frameworks creates
significant onboarding challenges for new developers. The absence of interactive, context-
aware educational tools compounds these challenges, as developers must simultaneously master
programming concepts, framework-specific patterns, and domain engineering principles without
guided support.

4. Local execution and privacy: Protecting both the closed-source software used in KBE develop-
ment and the proprietary engineering data involved is a critical concern. Intellectual property
considerations, non-disclosure agreements, and competitive sensitivity often prohibit the use of
external API-based AI services, necessitating locally deployable solutions that maintain full data
sovereignty.

These challenges collectively highlight the need for specialized AI-assisted development tools that com-
bine framework-specific knowledge, domain engineering expertise, and privacy-preserving deployment
capabilities. Recent literature confirms that GenAI-based code generation is an active and evolving
area of research. A comprehensive overview of current advancements is provided in [26]. Notable
developments include the coordination of large language models (LLMs) by AI agents with specialized
roles for code generation tasks [27], as well as Meta’s proprietary AI-assisted coding toolchain [28].
These developments, along with the broader evolution of Generative Artificial Intelligence and language
modelling in particular, will be discussed in detail in the formal literature review (Chapter 3). At
the outset of this thesis project (March 18, 2025), no publicly available application was identified that
integrates generative AI approaches with KBE7.

The author explicitly notes the date of this literature review, as the field of (Generative) Artificial
Intelligence is evolving at an unprecedented pace (see Chapter 3), making it increasingly challenging
to stay up to date. Nevertheless, this research is expected to provide lasting value, particularly in the
domains of Knowledge-Based Engineering (KBE) and Aerospace Engineering. High-tech industries,
despite their reputation for producing high-quality products, often face challenges in adopting new
technologies promptly [29]. This lag is not only due to the large scale of their operations but also the
highly regulated nature of their environments. The proposed copilot tool seeks to bridge this gap by
providing a valuable solution tailored specifically for industry adoption in said environments.

This research, alongside recent works by [23, 18], aspires to pave the way for deeper AI integration
in KBE, potentially evolving toward a fully automated, human-in-the-loop, round-trip engineering
approach. Similar efforts are already emerging in industry [25]. However, this work will remain focused
on assisting developers, aligning with the prevailing consensus in academia and government that GenAI
should support rather than replace human expertise [30, 31, 32, 33]. Although this approach may seem
cautious, the vast amounts of data available in aerospace and high-tech engineering suggest immense
potential for data-driven methodologies. In particular, Generative Artificial Intelligence holds promise
for reshaping the field, an idea explored in detail in Chapter 3.

6Hallucination refers to the generation of false, misleading, or nonsensical information that appears plausible but does not
represent real data or facts. This occurs when the model confidently produces incorrect responses due to gaps in its training data
or the way it generalizes information

7Based on a Scopus search on 17-03-2025 using the following search query: "((large AND language AND models OR gen*ai)
AND *engineering AND ((coding AND assistant) OR copilot OR parapy))"

2
Research Framework

The present chapter builds upon the research gap outlined in the Introduction by consolidating it
into tangible research objectives and questions, while also defining the scope of the study. Based on
the established objectives and corresponding research questions, a set of requirements is formulated
to guide the subsequent phases of the research—namely, the literature review, system design, and
evaluation.

To clarify the direction of this research, this chapter introduces the research objectives in section 2.1,
formulates the main research questions in section 2.2, and defines the requirements for the intended
support in section 2.4, alongside a delineation of the study’s scope. The research follows four stages
inspired by the Design Research Methodology (DRM) as described by [34], which are further detailed
in section 2.5. Finally, key definitions essential for understanding the requirements and the remainder
of this thesis are provided in section 2.6.

2.1. Objectives
This AI-assisted framework directly addresses the manual code completion bottleneck in step (3) of the
MBSE-driven KBE development process. This bottleneck arises from several interconnected challenges:
the proprietary nature of the ParaPy SDK limits access to public learning resources and onboarding
support; developers must simultaneously grasp both framework-specific constructs and domain-specific
engineering knowledge, often without sufficient guidance; and the translation of engineering concepts
into executable code is time-consuming and technically demanding.

To mitigate these challenges, the framework integrates intelligent code completion and generation
with contextual explanations and ParaPy-specific guidance. It is designed to lower the entry barrier
for developers of varying expertise, accelerate development workflows, and support long-term skill
acquisition—while ensuring code quality and functional correctness are preserved.

The key objectives of this research project are:

1. To develop a locally-run, Generative AI-powered coding assistant tailored for Knowledge-Based
Engineering (KBE) application development using the ParaPy SDK.

2. To ensure the AI-generated code meets a minimum quality threshold, defined as syntactically
correct, readily executable, and functionally aligned with user intent.

3. To define and measure key performance indicators (e.g. development time, code quality, and
knowledge requirements) relevant to KBE development productivity.

4. To evaluate the assistant’s effectiveness across users with varying levels of expertise (novices vs.
experts).

2.2. Main Questions
To tackle each research objective, the following main research questions have been formulated:

7

2.3. Scope 8

1. How can a (locally-run) Large Language Model be employed to support ParaPy KBE application
development?

2. What are the minimum quality standards that AI-generated ParaPy code must meet to be
considered usable and production-ready?

3. What metrics can be used to rigorously evaluate performance improvements in KBE application
development with AI assistance?

4. How effective is the GenAI coding assistant in improving KBE application development perfor-
mance, and how does this effectiveness vary between novice and expert users?

2.3. Scope
This research focuses on developing and evaluating an AI-assisted coding framework specifically
for ParaPy SDK development, operating within the constraints of industrial privacy requirements
and proprietary framework limitations. The primary aim for the framework is to develop a KBE
application starting from skeleton code—partially completed source code structures that outline high-
level components without full implementation (as defined in section 2.6). This approach leverages
auto-generated skeleton code produced by the SysML-to-Python Translation Engine [23] as a starting
point, with the extended capability to generate complete class definitions in the absence of such skeleton
code.

Explicitly excluded from the current research scope are:

• Creation of novel LLM architectures or comprehensive training of models from scratch
• Fine-tuning of language models on ParaPy-specific datasets
• Development of sophisticated graphical user interfaces or visual programming environments

beyond the implemented CLI application
• IDE integration or inline code suggestion mechanisms
• Web-based deployment platforms or cloud infrastructure beyond API provider integration

2.4. Requirements
Based on the research questions, the following preliminary requirements have been defined. These
requirements serve as the basis for evaluating whether the developed support contributes effectively
to solving the core problem—namely, the time- and knowledge-intensive nature of KBE application
development. The requirements will be used during the verification and validation phases (Chapter 7)
to assess whether the proposed solution meets its intended goals, either fully or partially. All key terms
are underlined and formally defined in section 2.6. The structure used for requirement coding is as
follows:

REQ𝑖 − 𝑋 𝑖𝑖 − 𝑌 𝑖𝑖𝑖


𝑖 : Denotes a requirement
𝑖𝑖 : Refers to the primary associated research question (subclass)
𝑖𝑖𝑖 : Indicates the requirement number within the subclass

> REQ-1-1 : The copilot tool shall support both local LLM deployment (via Ollama or similar
frameworks) and remote LLM inference through privacy-compliant API services (e.g., OpenAI,
Anthropic, or other approved providers).

> REQ-1-2 : The copilot tool shall be capable of completing auto-generated skeleton code produced
by the SysML-to-Python Translation Engine [23] [minimum];

> REQ-1-3 : Building upon REQ-1-2, the copilot tool shall be capable of generating class definitions
even in the absence of skeleton code [extended];

> REQ-2-1 : AI-generated ParaPy code shall exhibit syntactic correctness;

> REQ-2-2 : AI-generated ParaPy code shall exhibit runtime correctness;

2.5. Structure 9

> REQ-2-3 : AI-generated ParaPy code shall exhibit functional correctness;
> REQ-3-1 : Development time shall be the primary metric used to assess performance improvements

introduced by the copilot tool in KBE application development;
> REQ-3-2 : AI-generated code shall be 100% functionally identical to manually completed, correct

code;
> REQ-3-3 : AI-generated code shall receive an expert-assigned grade reflecting its semantic correctness,

maintainability, and adherence to PEP-8 standards [35];

> REQ-3-4 : A composite score, incorporating development time, functional correctness, and the
expert-assigned quality grade, shall serve as a secondary metric to assess the overall performance
improvement delivered by the copilot tool;

> REQ-4-1 : The use of the copilot tool shall reduce the total development time of a KBE application
for both novice and expert users;

> REQ-4-2 : The use of the copilot tool shall increase the composite score (as outlined in REQ-3-4
with respect to manually completed code, for both novice and expert users;

> REQ-4-3 : The use of the copilot tool by novice users shall reduce the knowledge required for KBE
application development.

2.5. Structure
This research follows a systematic approach inspired by Design Research Methodology [34], progressing
through four main stages that structure the thesis chapters:

1. The first stage establishes the research foundation. This chapter, together with Chapter 1, defines
the research goals, questions, and scope, while formulating preliminary success criteria that guide
subsequent phases.

2. The second stage deepens understanding of the problem domain through literature review and
empirical analysis. Chapter 3 and Chapter 4 examine existing knowledge and current practices,
identifying key factors that inform the design solution and refining the evaluation criteria.

3. The third stage translates this understanding into a practical solution. Chapter 5 and Chapter 6
present the systematic design and implementation of the AI-assisted coding framework, including
its architecture, components, and deployment considerations.

4. Finally, the fourth stage evaluates the developed solution. Chapter 7 assesses both the framework’s
usability and its effectiveness in achieving the intended improvements, while Chapter 8 and
Chapter 9 synthesize findings and propose directions for future work.

The next chapter, Chapter 3, provides the literature review that maps relevant domains, existing
knowledge, and theoretical foundations supporting this research.

2.6. Definitions
1. Skeleton Code refers to a partially completed source code structure that outlines the high-level

components of a program, module, or class without implementing full functionality. It typically
includes declarations of functions, classes, parameters, and control flow placeholders (e.g., ‘pass‘
statements or ‘TODO‘ comments) that guide further development. Skeleton code serves as a
template or framework for developers to fill in with detailed logic and implementation.

An example of skeleton code from the Translation Engine [23]:
1 class Aircraft(GeomBase):
2 #: :targets: [self.wing_span]
3 max_range: float = Input()
4

5 @Attribute
6 def wing_span(self) -> float:
7 """
8

2.6. Definitions 10

9 :sources: [self.max_range]
10 """
11 return ’’’TODO fill in missing expression’’’
12

13 @Part
14 def wing(self) -> ExtrudedSolid:
15 """
16

17 :sources: [self.root_airfoil.position]
18 """
19 return ’’’TODO fill in missing expression’’’

2. A Class Definition is a syntactic construct in object-oriented programming that declares a new class,
specifying its name, attributes (also called fields or properties), methods (also called functions),
and potentially other class-level elements such as inheritance, decorators, and documentation. It
serves as a blueprint for creating instances (objects) of that class.

In Python, using the ParaPy SDK, a class definition typically follows this structure:
1 class ClassName(Base):
2 some_number: float = Input()
3 some_text: str = Input()
4 some_points: list[Point] = Input()
5

6 @Attribute
7 def some_attribute(self) -> dict[Point, float]:
8 ...
9 return a_dictionary

10

11 @Part
12 def some_geometric_part(self) -> GeomBase:
13 ...
14 return a_solid
15

16 def do_something(self) -> None:
17 """Regular python method."""
18 ...
19 return None

3. Syntactic correctness refers to whether the code adheres to the formal grammar rules of the
programming language (in this case, Python and the ParaPy SDK). A syntactically correct code
snippet can be parsed by the interpreter without producing syntax errors, and includes valid use
of language constructs such as indentation, brackets, colons, and statement structure.

Example failure:
1 def foo() print("hello")

Which raises:
1 Traceback (most recent call last):
2 File "path\to\file", line 1
3 def foo()
4 ^
5 SyntaxError: expected ’:’

4. Runtime correctness indicates that the code, once syntactically valid, executes without encounter-
ing unhandled errors during its run. This includes the successful resolution of variable names,
API calls (e.g., ParaPy-specific constructs), and handling of runtime conditions like division by
zero, file access, or invalid input.

Example failure:
1 from parapy.core import Input
2

3 class Foo(Base):
4 bar: int = Input()

Which raises:

2.6. Definitions 11

1 Traceback (most recent call last):
2 File "path\to\file", line 3, in <module>
3 class Foo(Base):
4 ^^^^
5 NameError: name ’Base’ is not defined.

5. Functional correctness refers to whether the code performs the task or behavior intended by the
user or defined in the task specification. This includes correct use of logic, accurate integration of
API elements (ParaPy SDK), and the production of expected outputs or model behaviors.

Example failure: the user prompt specifies the generation of a parametric model of an aircraft,
while the AI-generated code represent the model of a ship.

6. Semantic correctness refers to whether the code is logically sound and type-consistent beyond
mere syntactic validity. This encompasses two key dimensions: (1) type correctness—whether
variables, function arguments, and return values maintain consistent types throughout the code,
and (2) logical correctness—whether the code is free from logical flaws such as unreachable code
blocks, undefined variables, incorrect control flow, or improper API usage patterns. Semantically
correct code may execute without errors but still contains logical inconsistencies or type mismatches
that could lead to unexpected behaviour or maintenance challenges. Semantic correctness can be
assessed through static analysis techniques that detect type errors and logical inconsistencies.

7. Maintainability refers to the ease with which code can be understood, modified, extended,
and debugged by developers over time. Maintainable code exhibits clear structure, manageable
complexity, readable logic, and adherence to established coding conventions. High maintain-
ability reduces long-term development costs and facilitates collaboration among team members.
Maintainability can be quantitatively measured using complementary metrics that assess code
complexity and structure [36, 37]:

(a) Maintainability Index (MI): A composite metric ranging from 0 to 100 that combines
measures of computational complexity, control flow complexity, and code volume. Higher
MI values indicate more maintainable code.

(b) Cyclomatic Complexity (CC): A metric that quantifies the number of linearly independent
paths through a program’s source code by counting decision points. Lower CC values
indicate simpler, more maintainable code.

3
Literature Review

This chapter examines the theoretical foundations and contemporary developments in Artificial
Intelligence (AI) and Large Language Models (LLM) that are relevant to Knowledge-Based Engineering
(KBE) applications. The review establishes the technical context necessary for understanding the
industrial investigation in Chapter 4 and informs the design decisions presented in Chapter 5 and
Chapter 6.

The chapter is organized into four main sections. Section 3.1 traces Artificial Intelligence from
symbolic expert systems through neural networks to Transformer-based language models. Section 3.2
examines code generation with language models, focusing on challenges in domain-specific frameworks
with limited training data. Section 3.3 surveys four design paradigms for LLM applications: prompt
engineering, retrieval-augmented generation, fine-tuning, and agentic systems, analysing their strengths,
limitations, and use cases. Finally, section 3.4 synthesizes these findings and discusses implications for
AI-assisted KBE tools.

By the end of this chapter, readers should understand the fundamental concepts underlying modern
AI systems, the specific considerations for applying language models to code generation tasks, and
the design paradigms available for building LLM-powered applications. This foundation enables the
refinement of preliminary requirements from Chapter 2 into measurable success criteria and informs
the architectural decisions in subsequent chapters. Readers seeking a more comprehensive treatment of
language modelling foundations, including statistical approaches, sequence models, and other neural
architectures, are referred to Chapter 10.

Notion on the Use of ArXiv
The author acknowledges that articles published on arXiv are not peer-reviewed by independent sources.
However, arXiv remains highly relevant in the field of Generative AI, serving as a primary publication
platform for cutting-edge research. Major industry research laboratories frequently release preliminary
findings on arXiv, particularly for foundational model architectures and training methodologies, though
publication patterns vary significantly among organizations. While some companies like Meta and
Google DeepMind continue to publish extensively on arXiv, others increasingly utilize proprietary
publication channels or selective academic venues for their most significant developments.

3.1. Foundations of Artificial Intelligence
Artificial Intelligence (AI) is broadly defined as the science and engineering of creating machines that
exhibit intelligent behavior (e.g., performing tasks that typically require human intelligence) [38]. The
field’s formal inception is often traced to the Dartmouth Workshop of 1956, where the term “Artificial
Intelligence” was coined and AI was established as an academic discipline [39]. Early AI research in
the subsequent decades was dominated by symbolic reasoning and rule-based expert systems that
encoded domain knowledge explicitly. This era produced Expert Systems in the 1970s–1980s: software
that emulated the decision-making of human experts in narrow domains using hand-crafted if-then
rules and logical inference. A general timeline of computer technology and associated advances in AI is
illustrated in Figure 3.1.

12

3.1. Foundations of Artificial Intelligence 13

Figure 3.1: A timeline of the evolution of computer technology and the associated advances in AI [40].

Knowledge-Based Engineering (KBE) emerged directly from this expert systems paradigm as an appli-
cation of AI techniques to engineering design problems. Rather than developing as an independent
methodology, KBE represents the adaptation and specialization of AI’s rule-based reasoning approaches
to capture and automate engineering knowledge [13]. As such, KBE can be understood as a domain-
specific instantiation of symbolic AI, inheriting both its architectural principles and philosophical
approach. Both KBE and classical expert systems rely fundamentally on explicit knowledge repre-
sentation – encoding domain expertise as rules, objects, facts, and logical relationships – to automate
reasoning and decision-making in specialized domains [13]. In KBE specifically, these AI techniques
are employed to capture design rationale, engineering rules, and geometric relationships, enabling the
automation and reuse of engineering design knowledge through knowledge models and rule-based
systems.

This shared heritage with rule-based AI explains both KBE’s strengths and its limitations. Such
rule-based AI approaches proved powerful within their scope, but they suffered from the notorious
“knowledge acquisition bottleneck” [41, 42]: it was difficult and labour-intensive to extract, formalize,
and maintain the vast amount of tacit expertise that humans use, making these systems brittle and hard
to scale [43]. They also struggled to adapt to novel scenarios outside their encoded knowledge. KBE
systems, being grounded in these same AI principles, face identical challenges in knowledge elicitation,
maintenance, and generalization [17].

By the 1990s and 2000s, AI began shifting from purely rule-based systems toward machine learning
(ML) approaches. ML is a subfield of AI that gives computers the ability to learn from data and
improve through experience, rather than relying on explicit programming of every rule [38]. Instead
of engineers hard-coding knowledge, ML algorithms automatically infer patterns and decision logic
from large datasets. This paradigm shift helped overcome the knowledge bottleneck by letting models
learn complex behaviors from examples. Machine learning encompasses a variety of methods (e.g.
decision trees, support vector machines, neural networks) and has become the dominant approach for
AI in practice. In fact, within AI, data-driven learning techniques emerged as the method of choice
for tasks like computer vision, speech recognition, natural language processing, and robotics [44]. Key
subdomains of AI include:

• knowledge-based systems (expert systems, KBE techniques),
• machine learning (data-driven statistical learning algorithms), and within ML, deep learning

using neural networks,
• other specialized areas such as computer vision, natural language processing, and robotics.

3.1. Foundations of Artificial Intelligence 14

3.1.1. Artificial Neural Networks
One of the most influential approaches in modern AI is the use of artificial neural networks (ANNs):
computational systems inspired by the structure and function of biological neural networks. At their
core, ANNs aim to learn the underlying patterns or structures that govern complex, often non-linear
problems, particularly those for which explicit rules are difficult to define or encode manually (natural
language as an example). An ANN is composed of many simple, connected processing units known
as artificial neurons, organized into layers. Each neuron receives one or more input values, applies a
learnable weight to each of them, adds a bias term, and passes the result through a non-linear activation
function. This output then serves as input to the next layer of neurons. The use of weights and biases
allows the network to represent and adjust the importance of different input features, while the activation
function introduces non-linearity—crucial for learning complex patterns beyond what linear models
can represent. [44]

Neurons are typically structured into an input layer, one or more hidden layers, and an output layer. A
classic example of this architecture is the Multilayer Perceptron (MLP), as seen in Figure 3.2: a type of
feed-forward neural network in which information flows strictly in one direction: from input to output,
via the hidden layers [44]. In most MLPs, each neuron in a layer is fully connected to all neurons in the
subsequent layer. Despite its relative simplicity, the MLP forms the foundation for many more advanced
neural architectures, such as the Transformer architecture.

Figure 3.2: Overview and biological analogy of an artificial neuron and structure of an artificial neural network: (a) structure of
biological neuron; (b) overview of an artificial neuron within a MLP with its input, weights, activation function and output; (c)

structure of an Multilayer Perceptron. [45]

Training a neural network such as an MLP involves adjusting its internal weights and biases to minimize
the discrepancy between the network’s predicted outputs and the true values (i.e., the error), a typical
optimization problem encountered in engineering as well. This is most commonly achieved using the
backpropagation algorithm, which efficiently computes the gradient of the loss function with respect to
each weight and bias. These gradients are then used in an optimization algorithm—typically stochastic
gradient descent (SGD) or one of its variants—to iteratively update the parameters in a way that reduces
the overall error [46]. Through repeated exposure to large datasets, the network gradually "learns"
to approximate the function that maps inputs to desired outputs. When a neural network contains
multiple hidden layers, it is referred to as a deep neural network, and the corresponding approach is
known as deep learning. The depth of such networks enables them to extract increasingly abstract
features at each layer, ranging from simple edges in early layers of an image recognition network to

3.1. Foundations of Artificial Intelligence 15

complex patterns such as objects or semantics in later layers.

The remarkable flexibility and power of deep learning stem from this ability to automatically discover
hierarchical representations of data. This has led to significant breakthroughs in areas such as image
classification, speech recognition, and natural language processing. However, this power comes at a
cost: deep networks often operate as "black boxes", where knowledge is distributed across millions of
parameters rather than expressed in interpretable, symbolic rules. This opacity can be problematic
in domains that require explainability or verifiability. Nevertheless, the strength of neural networks,
particularly deep ones, lies in their ability to uncover subtle, high-dimensional relationships in vast,
unstructured datasets, a capability that traditional rule-based approaches struggle to match [44].

3.1.2. Recent Developments: Transformers and Large Language Models
The last decade has seen rapid advancements in AI, marked by the rise of Generative AI (GenAI) and
extremely large-scale models. Generative AI refers to systems that can generate novel content (text,
images, code, etc.) by learning patterns from vast amounts of data. A pivotal breakthrough enabling
this shift was the introduction of the Transformer architecture in 2017 [47]. The Transformer uses a
self-attention mechanism that allows each token in a sequence to directly attend to all other tokens,
regardless of distance, enabling the model to efficiently capture long-range dependencies in data. Unlike
previous recurrent architectures that processed sequences step-by-step, Transformers can process all
tokens in parallel, making them vastly more efficient to train. However, Transformers operate within a
fixed context window and maintain no persistent memory across separate interactions, each inference
call is stateless. This architectural characteristic makes prompt engineering essential: all relevant
information, instructions, and context must be explicitly included in the input prompt to guide the
model toward correct outputs [48, 49, 50]. The Transformer rapidly became the foundation for modern
language models, with adaptations like BERT1 (for understanding tasks) and GPT2 (for generation
tasks) emerging within a year of the original architecture’s introduction [51, 52]. A detailed treatment
of the evolution from statistical language models through recurrent architectures to Transformers is
provided in Chapter 10 for readers interested in the technical foundations.

Since the transformer’s debut, progress in AI has accelerated dramatically. Model sizes have grown
exponentially. For instance, OpenAI’s GPT-3 language model contains 175 billion parameters and
demonstrated unprecedented capabilities, such as fluent paragraph-length text generation and simple
reasoning, that were not observed in smaller predecessors [48]. Notably, GPT-3 showed emergent
abilities like few-shot learning. In just a few years, the field moved from tens of millions of parameters
to hundreds of billions (and, as of 2023, trillion-parameter models), accompanied by a corresponding
leap in performance and versatility. The pace of AI development has become increasingly rapid: new
state-of-the-art foundation models are now released on a monthly cadence [53]. These models are trained
on enormous datasets using massive computational resources; in fact, the compute (the required
computational resources) required for training frontier models has been doubling roughly every 5–6
months in recent years [53]. This combination of algorithmic innovation, big data, and big compute has
yielded AI systems with strikingly advanced capabilities, as seen in Figure 3.3.

Today’s generative AI systems are capable of complex language understanding and generation, creative
content production, and non-trivial reasoning and problem-solving. In software engineering, LLMs
have demonstrated strong performance as coding assistants. OpenAI’s Codex, a descendant of GPT-3
trained on programming data, translates natural language descriptions into working code across various
programming languages [54]. It powers GitHub Copilot, which assists developers by autocompleting
functions and suggesting context-aware snippets. DeepMind’s AlphaCode pushed these capabilities
further by generating and evaluating code solutions for competitive programming problems, achieving
mid-level human performance on Codeforces challenges [55]. Similarly, open-source models such
as Salesforce’s CodeGen and Meta’s InCoder have expanded the accessibility of these tools beyond
proprietary platforms.

As noted in Chapter 1, recent developments suggest a complementary role for LLMs within traditional
Knowledge-Based Engineering workflows. Instead of relying exclusively on upfront modelling of

1Bidirectional Encoder Representations from Transformers
2Generative Pre-trained Transformer

3.2. From Natural Language to Programming 16

Figure 3.3: AI systems performance on various capabilities relative to human performance, from 1998 to 2025 [40].

domain rules, engineers can increasingly use LLMs to generate or refactor code and constraints, retrieve
and explain prior design cases [18], and integrate up-to-date standards or design rationale into their
development process. However, rule-based systems remain indispensable wherever determinism,
explainability, and traceability are critical, such as in the MBSE contexts [53, 50]. As generative
models gain wider adoption across engineering disciplines, a deeper understanding of their underlying
mechanisms—particularly the language modelling objectives that shape their behaviour—will be
essential to fully harness their potential.

3.2. From Natural Language to Programming
Programming languages are formal languages, but they share many characteristics with human language:
a vocabulary (keywords, identifiers), syntax rules (grammar), and even stylistic conventions [35]. It is
therefore natural to apply language modelling techniques to source code. Indeed, code can be treated
as just another form of text, and many LLMs have been trained or fine-tuned on large code corpora
(such as open-source GitHub repositories) in addition to natural language data [54]. By learning from
millions of code examples, an LLM can statistically infer how to write syntactically correct and plausible
code to accomplish a given task described in natural language. For instance, an LLM-based system can
take a prompt like "Implement a Python function to check if a number is prime" and generate a complete
function in Python to do so. This ability has huge practical implications: it can automate boilerplate
coding, assist in software development, and enable conversational interfaces for programming.

One key difference between natural language and programming is that code execution is unforgiving to
errors. A grammatical mistake in an English sentence might still be understood by a reader, but a syntax
error in code will prevent it from running. Likewise, a slightly off factual statement in prose might
go unnoticed, but a single incorrect API call in code can cause a program to crash. Thus, adherence to
syntax and semantics is paramount in code generation. LLMs generally have excellent syntax adherence
for languages seen frequently in training (such as Python, JavaScript, etc.), often producing code that

3.3. Design Paradigms for LLM-Based Applications 17

compiles or runs on first try. This is evidenced by high scores on competitive coding benchmarks
achieved by state-of-the-art models like GPT-4 or Anthropic’s Claude [54]. However, ensuring semantic
correctness (that the code does what it’s supposed to do) is a harder challenge. Models may produce
logically flawed or inefficient code that superficially looks right. There is ongoing research on evaluating
functional correctness via test suites and on making LLMs not just syntactically but semantically aligned
with user intent.

A particularly challenging scenario for code LLMs is dealing with unfamiliar or under-represented
libraries and frameworks [56, 57]. LLMs do not possess true "knowledge" of APIs but rather learn
statistical patterns from training data—public libraries with abundant training examples yield better
results, while models struggle with rare or proprietary code unless fine-tuned on it [28]. Without
retrieval mechanisms at generation time (unless augmented with external tools, see subsection 3.3.2),
LLMs are prone to hallucinate when encountering unfamiliar libraries: fabricating plausible but incorrect
function names, class definitions, or usage patterns [58, 59, 56, 60, 61]. This problem is particularly
acute for closed-source, domain-specific frameworks like ParaPy: because such code is largely absent
from public repositories, the model may invent non-existent SDK components that sound reasonable
but fail to compile or execute [57, 56]. Studies confirm that LLMs frequently produce answers rather
than abstain when uncertain, and that hallucinations increase significantly without codebase-specific
knowledge [62, 63, 64, 61, 28]. Mitigating this requires techniques beyond standard training, such as
retrieval-augmented generation (providing relevant documentation or code snippets in the prompt) or
fine-tuning on the specific library [58, 65, 28, 56].

3.3. Design Paradigms for LLM-Based Applications
The practical deployment of Large Language Models in real-world applications requires careful
consideration of how to optimize their performance for specific tasks and domains. While pre-trained
LLMs demonstrate remarkable general capabilities, translating these capabilities into effective, reliable,
and scalable applications presents distinct engineering challenges that can be addressed through four
complementary paradigms:

1. Prompt engineering and orchestration techniques operate at inference time, leveraging existing
capabilities through carefully designed inputs and multi-step workflows.

2. Retrieval-augmented generation and tool integration extend these capabilities by connecting
models to external knowledge sources and computational resources.

3. Fine-tuning approaches modify model parameters to specialize behaviour for particular domains
or tasks.

4. Agentic and multi-agent systems coordinate multiple LLM instances to handle complex, au-
tonomous problem-solving scenarios.

These paradigms are not mutually exclusive but rather represent a toolkit of strategies that can be
combined based on specific application requirements, resource constraints, and performance objectives.
Understanding their respective strengths, limitations, and optimal use cases is essential for practitioners
seeking to build robust LLM-powered systems.

3.3.1. Prompt Engineering and Orchestration
Prompt engineering uses carefully crafted input instructions to guide a pre-trained LLM’s behaviour
without altering its weights [66]. This approach leverages the model’s latent knowledge and few-shot
learning abilities: for example, chain-of-thought prompts can induce step-by-step reasoning, enabling
complex problem solving without fine-tuning [67]. Orchestration extends simple prompting into multi-
step workflows where applications decompose tasks into sequential prompts or role-based dialogues,
maintaining conversational context across turns to "plan and execute" sub-tasks in stages [68]. These
strategies require no model retraining and are highly flexible, developers can rapidly prototype new
behaviours by adjusting prompts or workflow steps [67].

The major advantage of prompt engineering lies in its accessibility: it operates at inference-time, avoiding
the cost and data requirements of model training, works with both closed APIs and open models, and
easily combines with human-in-the-loop iteration [67]. However, it faces inherent limitations. LLMs have

3.3. Design Paradigms for LLM-Based Applications 18

fixed context windows that cannot accommodate arbitrarily large instructions or knowledge, causing
complex tasks to exceed these limits [69]. Prompting alone can lead to hallucinations or inconsistent
outputs since the model remains a generalist rather than a domain specialist, and result quality is
highly sensitive to prompt wording and ordering [69]. For example, in clinical text classification,
GPT-4 prompted with clear instructions (including reasoning steps) matched specialist models without
additional fine-tuning [70], demonstrating prompt engineering’s effectiveness for bounded tasks.
However, very domain-specific or large-scale applications may require additional techniques.

In practice, orchestration frameworks implement patterns like REACT (Reasoning and Acting) [71],
where the model first reasons about what action to take, then outputs a formatted action that the
application executes, and finally receives the result to continue the dialogue. This approach is common
in conversational assistants and applications where interpretability (seeing the model’s intermediate
reasoning) is valuable. Software engineering assistants, for instance, use prompts to adopt specific
personas and structured output formats for code suggestions, enabling quick adaptation of general
LLMs to specialized query styles.

3.3.2. Retrieval-Augmented Generation and Tool Use
While prompt engineering provides a foundation for LLM interaction, many applications require access
to information beyond what can be included in the model’s context window. This limitation motivates
the second paradigm: retrieval-augmented generation and tool integration.

Retrieval-Augmented Generation (RAG) addresses fundamental LLM limitations - knowledge cut-offs,
hallucinations, and fixed context windows – by connecting models to external information sources [72].
The approach is straightforward: when a user submits a query, the application searches an external
knowledge base (such as documentation, code repositories, or specialized databases) for relevant
information. These retrieved passages are then inserted into the prompt as additional context, allowing
the LLM to generate responses grounded in current, domain-specific information rather than relying
solely on its training data [72]. For instance, a coding assistant might search a project’s documentation
when generating code, dynamically providing the model with up-to-date API references and usage
examples. By shifting knowledge storage from model parameters to searchable external sources, RAG
enables continuous updates without retraining and reduces factual errors by grounding outputs in
retrieved evidence [69].

Beyond retrieving information, LLMs can actively invoke tools to extend their capabilities, calling APIs,
executing code, performing calculations, or interacting with external systems [59]. Function-calling
frameworks enable models to output structured commands (typically JSON) that trigger external
operations, with results returned to continue generation. For example, OpenAI’s function-calling API
allows developers to register tools that GPT-4 can autonomously invoke by generating appropriate
JSON specifications [71]. Standardization efforts like Anthropic’s Model Context Protocol (MCP) aim
to provide universal interfaces for tool integration, reducing the custom integration work required
for each new capability [73]. This tool-use paradigm allows language models to offload specialized
computations (mathematics, database queries, code execution) to dedicated systems while focusing on
natural language reasoning and coordination.

Retrieval and tool augmentation are inference-time strategies that enhance LLM performance on
knowledge-intensive and interactive tasks [72]. They excel when prompts alone are insufficient:
question-answering over proprietary documents, maintaining current world knowledge, providing
up-to-date API references for code generation, or solving tasks requiring external actions. By grounding
outputs in retrieved facts, RAG reduces hallucinations and improves response credibility [72]. By
delegating deterministic operations to tools, the approach lets models focus on reasoning while
offloading computational tasks to appropriate external modules [59]. However, these benefits come
with added complexity – managing knowledge bases, implementing retrieval pipelines, handling tool
execution errors – and dependency on retrieval quality: incomplete knowledge bases or failed searches
can still produce incorrect answers. When combined with robust prompting, RAG and tool-use have
nonetheless proven effective across diverse practical applications [72].

3.3. Design Paradigms for LLM-Based Applications 19

3.3.3. Fine-Tuning and Customization
Inference-time approaches, such as prompting and retrieval, offer flexibility and enable rapid de-
ployment, but certain applications demand deeper specialization that can only be achieved through
model parameter adaptation. This consideration motivates an exploration of fine-tuning and other
customization techniques.

Finetuning involves taking a pre-trained LLM and further training it on domain-specific or task-specific
data. Unlike prompting or RAG (which operate at inference time), finetuning updates the model’s
weights during an additional training phase so that the model internalizes new knowledge or behaviour.
This can be full fine-tuning (all parameters updated) or parameter-efficient methods (updating only
small adapters like LoRA3 layers). Fine-tuning was the traditional approach to get a language model to
perform a new task: e.g. training GPT-3 on medical texts to create a specialized clinical assistant. It
remains a powerful paradigm: fine-tuned LLMs can outperform prompt-based use of a generic model,
especially when the task requires nuanced domain expertise or formatting that the base model was
never exposed to [70]. For instance, open-source models like LLaMA-2 (Meta) have been fine-tuned on
instruction-following datasets to align them with user instructions to produce LLaMA-2-Instruct, and
further fine-tuned variants exist for coding (CodeLLaMA), medicine, law, etc., achieving high accuracy
on those specialized benchmarks.

The strength of fine-tuning lies in specialization: by updating model parameters on domain-specific
data, the model encodes task-specific features that often yield more accurate and consistent outputs
than zero-shot prompting [70]. Fine-tuning is particularly valuable for structured output formats,
policy adherence, and improving smaller models that lack the emergent capabilities of frontier
systems. However, it carries significant costs: labelled datasets, computational resources, and ongoing
maintenance when base models or requirements change. Fine-tuned models risk overfitting to narrow
data, may lose general knowledge, and lack the task-switching flexibility of prompt-based approaches.
Additionally, maintaining multiple domain-specific models creates MLOps4 complexity, and even
specialized fine-tuned models can underperform larger general models in reasoning tasks [70].

Fine-tuning is typically employed when high accuracy on specific tasks is paramount and training data
is available, common in enterprise and academic contexts. In software engineering, models are often
fine-tuned on code corpora or internal codebases to align with proprietary APIs and coding standards,
yielding improvements in code completion and compile correctness. Modern practice increasingly
blends paradigms: an instruction-tuned base model might be further augmented with retrieval during
inference, exploiting the complementary strengths of parameter specialization and dynamic knowledge
access. Fine-tuning is favoured when knowledge or skills cannot be easily injected via prompts or
external tools, particularly when efficiency or latency constraints require capabilities to reside within
model parameters (such as mobile deployments without retrieval infrastructure). While techniques
like low-rank adaptation have reduced costs, fine-tuning remains resource-intensive compared to
inference-time approaches, leading practitioners to typically attempt prompt engineering and RAG first,
resorting to fine-tuning only when base model limitations cannot be overcome at inference-time [70].

3.3.4. Agentic Systems and Multi-Agent Frameworks
The paradigms discussed thus far primarily address single-model applications, but complex engi-
neering tasks often benefit from decomposition into specialized subtasks and autonomous operation
over extended workflows. This observation motivates the development of agentic and multi-agent
frameworks.

The term agent is used inconsistently across industry and research, but the distinguishing characteristic is
autonomous, goal-directed iteration rather than simple tool invocation. While tool-calling systems respond
reactively to prompts and terminate after function execution, agents pursue objectives through recursive
planning, action execution, outcome observation, and strategy adaptation [69]. This iterative, self-
directed behaviour, where an LLM operates over multiple reasoning cycles to achieve high-level goals

3Low-Rank Adaptation freezes the original model weights and trains only small additional matrices, reducing trainable
parameters by up to 10,000× while maintaining performance.

4Machine Learning Operations is the engineering discipline of deploying, versioning, and maintaining machine learning models
in production, similar to DevOps for traditional software. From cloud.google.com/architecture/mlops [accessed 21-08-2025].

https://cloud.google.com/architecture/mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

3.3. Design Paradigms for LLM-Based Applications 20

without explicit human instruction at each step, differentiates agentic systems from the inference-time
augmentation techniques discussed previously.

Multi-agent systems extend this paradigm by coordinating multiple specialized LLM instances. Research
demonstrates that LLM-based systems have "rapidly evolved from single-agent planning to operating
as multi-agent systems" [69], reflecting a shift toward distributed problem-solving architectures where
agents assume distinct roles – planner, executor, critic, domain specialist – and exchange information
through structured interactions. Each agent can leverage core paradigms (RAG for information retrieval,
fine-tuned models for specialized subtasks, orchestrated prompts for inter-agent communication)
while contributing specialized capabilities to collective problem-solving. Frameworks like CAMEL
(Communicative Agents for Mind Exploration of Large Language Models) demonstrate this through
role-playing setups where agents collaborate without direct human intervention [68].

The value proposition of agentic systems is their capacity for long-horizon, open-ended tasks that
resist decomposition into fixed workflows. By enabling recursive planning and self-coordination, these
systems can autonomously manage complex software engineering tasks, workflow automation, and
scenarios requiring parallel solution space exploration [69, 74]. However, increased autonomy introduces
complexity: agents may produce inconsistent results, enter infinite loops, or fail to converge on valid
solutions. Communication overhead scales with agent count, and architectural choices (hierarchical
coordination versus peer-to-peer interaction) critically determine system effectiveness [74]. Evaluation
and debugging present particular challenges when agents dynamically generate plans, as tracing errors
through emergent multi-agent behaviour remains non-trivial. Despite these limitations, multi-agent
architectures represent a significant evolution in LLM application design, particularly for domains
requiring modular specialization and sophisticated orchestration [69].

3.3.5. Frameworks, Platforms, and Service Ecosystems
The rise of LLM applications has been paralleled by a rich ecosystem of development tools that fall into
two broad categories: application frameworks and libraries that provide building blocks for LLM-powered
systems, and model hosting services that provide access to pre-trained models, whether through cloud
APIs or local deployment.

Application frameworks and libraries address the engineering challenges of building with LLMs
by providing abstractions for common patterns and workflows. On the open-source side, Hugging
Face’s Transformers library has become foundational for accessing and fine-tuning models [75]. It
provides a unified API to hundreds of pre-trained models (GPT-style, T5, etc.), abstracting architectural
differences and enabling easy model switching [75]. The accompanying Model Hub encourages
community-driven sharing of fine-tuned checkpoints and provides utilities for deployment from cloud
to on-device scenarios. Specialized libraries target specific paradigms: LlamaIndex (GPT-Index) offers
tools for building RAG pipelines (indexing documents, querying them, composing retrieved chunks
with prompts), while LangChain provides components for prompt chaining, tool integration, and
agent construction. These frameworks handle common patterns (conversing with vector databases,
formatting outputs, managing conversation state) allowing developers to focus on application logic
rather than infrastructure. Newer libraries like Pydantic-AI integrate LLM calls with type validation
using Pydantic schemas to parse model outputs, enforcing reliable output formats. These frameworks
emphasize developer experience by abstracting prompt templating, context management, and multi-step
control flow into reusable components, enabling software engineers to integrate LLM capabilities like
conventional software libraries.

Model hosting services provide access to pre-trained models through two deployment paradigms:
cloud-based APIs and local serving infrastructure. Cloud services like OpenAI’s ChatGPT/GPT-4,
Anthropic’s Claude, and Google’s PaLM 2 and Gemini offer high-performance models accessible
through remote endpoints. These services provide immediate access to frontier capabilities trained on
massive proprietary datasets, adaptable to diverse tasks through prompt engineering or API-provided
fine-tuning interfaces. The value proposition is operational simplicity: developers leverage cutting-edge
models without managing training infrastructure, model serving, or hardware scaling. For instance,
Claude Sonnet 4’s strong performance on reasoning and coding tasks enabled rapid development of
applications like Cursor (an AI-integrated IDE) through straightforward API integration. However,
this convenience introduces trade-offs: vendor dependency with associated pricing structures and rate

https://huggingface.co/docs/transformers/en/index
https://huggingface.co/docs/transformers/en/index
https://huggingface.co/models
https://www.llamaindex.ai/
https://www.langchain.com/
https://ai.pydantic.dev/
https://openai.com/chatgpt/
https://claude.ai
https://ai.google/discover/palm2/
https://gemini.google.com/
https://www.anthropic.com/claude
https://cursor.sh/

3.4. Synthesis and Implications for KBE 21

limits, data privacy considerations when transmitting prompts to external servers [70], and limited
customization. For applications requiring data sovereignty or offline operation, local hosting solutions
like Ollama provide streamlined deployment of open models (GPT, DeepSeek, LLaMA) on local
hardware, particularly optimized for personal workstations and on-premises environments. While
lacking the raw capability of frontier proprietary models, local hosting eliminates data transmission
concerns and vendor dependency. This dichotomy characterizes the ecosystem: cloud API services
prioritize raw capability and convenience at the cost of vendor dependency, while local hosting and
open models emphasize privacy, control, and deployment flexibility, often paired with application
frameworks to build custom solutions on self-hosted infrastructure.

3.4. Synthesis and Implications for KBE
The examination of design paradigms for LLM-based applications reveals that modern implementations
demand careful consideration of multiple technical and operational factors. These insights directly
inform the system design decisions discussed in Chapter 5 and Chapter 6, and guide the formulation of
measurable success criteria in the next section. Practitioners today can choose from four primary design
paradigms, each offering distinct advantages and trade-offs along a spectrum ranging from lightweight
inference-time modifications to full-scale model retraining. These paradigms vary in their resource
demands, flexibility, and performance characteristics, as summarized in Table 3.1.

Table 3.1: Comparison of LLM Application Design Paradigms.

Paradigm Primary Benefits Key Drawbacks Resource Re-
quirements

Optimal Use Cases Key
Sources

Prompt En-
gineering &
Orchestration

Rapid prototyping;
Model-agnostic; No
training required;
High interpretability

Context window limi-
tations; Sensitivity to
prompt wording; Lim-
ited specialization

Low
(inference-
time only)

Quick adaptation;
Conversational in-
terfaces; Bounded
tasks

[66, 67, 68,
71, 70]

Retrieval-
Augmented
Generation &
Tools

Reduces hallucina-
tions; Up-to-date
information; External
capability integration;
Scalable knowledge
base

Added system com-
plexity; Retrieval qual-
ity dependency; La-
tency overhead

Medium (in-
frastructure
required)

Knowledge-
intensive tasks;
Dynamic infor-
mation needs;
Multi-modal appli-
cations

[72, 59, 71,
73, 69]

Fine-Tuning &
Customization

Domain specialization;
Consistent outputs;
Format adherence;
Parameter efficiency
options

Resource intensive;
Risk of overfitting;
Reduced flexibility;
Model maintenance

High (train-
ing required)

Domain-specific ac-
curacy; Structured
outputs; Private de-
ployment

[70, 75]

Agentic & Multi-
Agent Systems

Complex task decom-
position; Autonomous
operation; Role special-
ization; Collaborative
problem-solving

Increased complexity;
Communication over-
head; Evaluation chal-
lenges; Potential failure
cascades

Variable
(depends on
agents)

Long-horizon tasks;
Workflow automa-
tion; Parallel pro-
cessing needs

[69, 68,
76]

Crucially, these paradigms are not mutually exclusive. Modern LLM systems often integrate multiple
approaches to capitalize on their respective strengths while mitigating individual limitations. For
example, a system may employ a fine-tuned foundation model, enrich it with retrieval-augmented
capabilities for dynamic knowledge access, and coordinate multiple specialized agents for complex task
orchestration.

These findings have direct implications for Knowledge-Based Engineering applications. LLMs can
enhance traditional KBE systems through natural language interfaces for knowledge capture and
querying, automated rule implementation via code generation, and intelligent assistance in developing
and maintaining knowledge models. However, effective integration requires a careful balance between
the deterministic, transparent behavior of rule-based systems and the probabilistic, flexible nature of
neural models.

https://ollama.com/

3.5. Measurable Success Criteria 22

3.5. Measurable Success Criteria
The presented analysis supports several key conclusions that inform the development of measurable
success criteria (MSC), outlined below, and the subsequent industrial case study in Chapter 4. These
criteria will be used to evaluate the developed framework in Chapter 7, enabling a quantifiable assessment
of the research goals defined in Chapter 2.

First, the selection of an LLM application paradigm should be guided by specific requirements, such
as accuracy, interpretability, resource constraints, and deployment context, rather than technological
novelty. Second, hybrid approaches that combine multiple paradigms are likely to yield superior
performance in complex, real-world applications. Third, the rapid evolution of the LLM ecosystem
demands flexible system architectures that can accommodate emerging capabilities and evolving
standards. Finally, effective integration of LLMs in engineering contexts requires rigorous attention to
validation, verification, and quality assurance processes to ensure reliability and trustworthiness in
critical applications.

REQ-1-1 (Framework Hosting)
The copilot tool shall support both local LLM deployment and remote LLM inference through
privacy-compliant API services.

> MSC-1-1: The copilot tool shall support local LLM deployment via the Ollama service and
remote LLM access through API services offered by approved providers (Anthropic & Groq).

REQ-1-2 (Code Completion Capability)
The developed copilot tool shall be capable of completing auto-generated skeleton code produced
by the SysML-to-Python Translation Engine.

> MSC-1-2: The copilot tool shall achieve a minimum 85% successful completion rate for
skeleton code structures, measured against a standardized test suite of ParaPy code skeletons
with varying complexity levels.

REQ-1-3 (Code Generation Capability)
Building upon REQ-1-2, the copilot tool shall be capable of generating class definitions even in the
absence of skeleton code.

> MSC-1-3 The copilot tool shall achieve a minimum 75% successful completion rate for gener-
ating class definitions from natural language specifications, measured against a standardized
test suite of ParaPy development cases with varying complexity levels.

REQ-2-1 (Syntactic Correctness)
AI-generated ParaPy code shall exhibit syntactic correctness.

> MSC-2-1 Generated code shall achieve 95% syntactic correctness as measured by automated
parsing and compilation checks.

REQ-2-2 (Runtime Correctness)
AI-generated ParaPy code shall exhibit runtime correctness.

> MSC-2-2 Generated code shall execute without runtime errors in 80% of test cases, mea-
sured through automated execution testing within controlled ParaPy environments using
standardized input parameters.

3.5. Measurable Success Criteria 23

REQ-2-3 (Functional Correctness)
AI-generated ParaPy code shall exhibit functional correctness. The paradigm analysis indicates
that functional correctness represents the most challenging aspect of code generation, particularly
for domain-specific frameworks where training data may be limited.

> MSC-2-3 Generated code shall achieve intended functionality in 70% of test scenarios,
validated through automated testing suites that compare output behaviour against reference
implementations and expert-defined acceptance criteria.

REQ-3-1 (Development Time Metric)
Development time shall be the primary metric used to assess performance improvements
introduced by the copilot tool in KBE application development.

> MSC-3-1 The primary metric to assess performance improvements introduced by the copilot
tool shall be development time reduction through controlled user studies using standardized
KBE development scenarios, with measurements captured for task completion time and
development velocity metrics (e.g., lines per minute, features per minute).

REQ-3-2 (Functional Equivalence)
AI-generated code shall be 100% functionally identical to manually completed, correct
code. The paradigm analysis reveals that achieving perfect functional equivalence may be
unrealistic given the probabilistic nature of LLM outputs, suggesting a need for refined expectations.

> MSC-3-2 AI-generated code shall achieve functional equivalence to manually completed
reference solutions in 85% of test cases, measured through comprehensive output comparison
and behaviour verification testing protocols.

REQ-3-3 (Quality Assessment)
AI-generated code shall receive an expert-assigned grade reflecting its semantic correctness
(defined in section 2.6), maintainability (using the MI and CC as defined in section 2.6), and
adherence to PEP-8 standards.

> MSC-3-3 Generated code shall receive an average expert quality score of 7.5 out of 10, using
a standardized rubric covering semantic correctness (40%), maintainability (35%), and PEP-8
compliance (25%), evaluated by qualified ParaPy domain experts.

REQ-3-4 (Composite Performance Score)
A composite score, incorporating development time, functional correctness, and expert-assigned
quality grade, shall serve as a secondary metric to assess overall performance improvement.

> MSC-3-4 The composite performance score shall be calculated as a weighted average of
normalized development time improvement (40%), functional correctness rate (35%), and
expert quality score (25%), with the copilot tool achieving a minimum composite score of
75%.

REQ-4-1 (Development Time Improvement)
The use of the copilot tool shall reduce the total development time of KBE applications for both
novice and expert users. Time reduction benefits may vary significantly between user groups due
to different baseline capabilities and adaptation patterns.

> MSC-4-1 The copilot tool shall achieve minimum development time reductions of 40% for

3.5. Measurable Success Criteria 24

novice users and 25% for expert users, measured through controlled comparative studies
using similar -but mutually exclusive- KBE development tasks and the primary metrics
introduced in [MSC-3-1].

REQ-4-2 (Composite Score Improvement)
The use of the copilot tool shall increase the composite score outlined in REQ-3-4 with respect
to manually completed code, for both novice and expert users. This requirement acknowledges
that overall performance improvement encompasses multiple quality dimensions beyond time
reduction alone.

> MSC-4-2 The copilot tool shall achieve composite score improvements of minimum 30%
for novice users and 15% for expert users compared to their baseline manual development
performance.

REQ-4-3 (Knowledge Barrier Reduction)
The use of the copilot tool by novice users shall reduce the knowledge required for KBE application
development. The paradigm analysis suggests that knowledge barrier reduction can be measured
through task completion rates and error reduction patterns.

> MSC-4-3 Novice users utilizing the copilot tool shall achieve task completion rates equivalent
to 80% of expert baseline performance and demonstrate 50% reduction in domain-specific
knowledge errors compared to unassisted novice performance.

4
Industrial Study: GKN Aerospace

This chapter presents the set of interviews conducted at GKN Aerospace Sweden, located in Trollhättan,
between May 4th and May 16th, 2025. It serves as an extension of the theoretical foundations laid out
in Chapter 3, providing empirical substantiation of the research objectives and identified knowledge
gap from both academic and industrial perspectives. The primary objective of these interviews was to
uncover current challenges and requirements surrounding the further implementation of Knowledge-
Based Engineering (KBE) within GKN’s industrial context and to explore how these findings inform the
design of the AI-supported copilot described in Chapter 6.

Following a brief introduction to GKN Aerospace, the rationale for conducting the interviews is outlined
in section 4.1. Thematic analysis [77] is used to extract recurring themes, which are presented in
section 4.2 along with relevant cross-thematic relationships. This is followed by a technical assessment
of existing AI tools in section 4.3, and a summary of key findings in section 4.4.

For brevity, only findings directly relevant to the current research are presented in this chapter. A
complete analysis, including all identified themes, relationships, and the methodology used for interview
processing, is provided in Appendix A.

Company Introduction
GKN Aerospace Sweden AB, established in October 2012 following the incorporation of Volvo Aero
into the GKN group and owned by Melrose Industries since 2018, is the parent company of GKN
Aerospace Engine Systems. Operating from Trollhättan, Sweden with approximately 1,700 employees,1
the company collaborates with major aircraft engine manufacturers including Rolls-Royce, Pratt &
Whitney, Safran, and General Electric, with components currently integrated into over 90 percent of all
new large civil aircraft worldwide.2 3 In addition to its prominent role in commercial aviation engine
programs, the company manufactures components for rocket engines used in ESA’s Ariane 5 launch
vehicle and is recognized by the European Space Agency as a Center of Excellence for rocket engine
nozzles and turbines, with particular expertise in subsystems for the Vulcain main rocket engine.4

4.1. Study Purpose
This industrial study, conducted at GKN Aerospace Sweden, substantiates the research gaps and
claims established in Chapter 1 and Chapter 3. Specifically, the study aims to verify from an industrial
perspective that the adoption and application of KBE is indeed time-intensive and knowledge-intensive,
and to identify the specific challenges users encounter during this process.

The primary objective of the interviews was to uncover the current barriers and requirements associated
with the implementation of KBE within GKN’s industrial context, and subsequently to explore how AI
can help overcome these barriers. Understanding these challenges is essential for developing effective

1From https://www.allabolag.se/bokslut/gkn-aerospace-sweden-ab/trollh%C3%A4ttan/flygplan-utrustningar-t
illverkning/2JYGBHNI63IG4 [accessed 25-09-2025]

2From https://soff.se/en/medlem/gkn-aerospace-ab/ [accessed 25-09-2025]
3From https://www.gknaerospace.com/ [accessed 25-09-2025]
4From https://www.gknaerospace.com/markets-solutions/engines/space-launcher-engines/ [accessed 25-09-2025]

25

https://www.allabolag.se/bokslut/gkn-aerospace-sweden-ab/trollh%C3%A4ttan/flygplan-utrustningar-tillverkning/2JYGBHNI63IG4
https://www.allabolag.se/bokslut/gkn-aerospace-sweden-ab/trollh%C3%A4ttan/flygplan-utrustningar-tillverkning/2JYGBHNI63IG4
https://soff.se/en/medlem/gkn-aerospace-ab/
https://www.gknaerospace.com/
https://www.gknaerospace.com/markets-solutions/engines/space-launcher-engines/

4.2. Findings 26

support systems that address real-world adoption obstacles. As outlined in requirements REQ-4-1,
REQ-4-2, and REQ-4-3 in Chapter 2, the proposed copilot must improve KBE application development
performance for both novice and expert users. To achieve this, it is critical to understand what barriers
each user group faces when engaging with KBE technology. This motivated the deliberate inclusion
of participants with varying levels of KBE experience, ranging from complete novices to seasoned
practitioners.

Participants were first introduced to the concepts of KBE and a demonstrator application (a Turbine
Rear Structure model, developed using the ParaPy SDK), followed by a guided live coding session.
This hands-on approach enabled participants to gain practical exposure to the ParaPy SDK and its
application development workflow. Subsequently, they were asked to reflect on their experience
with the demonstration, their existing knowledge of KBE principles and automation practices, and
their perceptions of how Generative AI or Large Language Model (LLM) based tools might support
similar development tasks in the future. No AI-based development tools were demonstrated or used;
participants reflected solely on their potential applicability based on their own experiences with LLMs
in other contexts.

The inclusion of novice users (individuals with limited or no prior exposure to KBE or ParaPy) was a
strategic methodological choice. These participants provide critical insight into the initial barriers to
adoption: the steepness of the learning curve, the clarity of documentation, the intuitiveness of the
framework, and the cognitive load associated with translating domain knowledge into formal KBE rules.
For instance, when a novice user reports difficulty navigating a codebase or understanding framework
conventions, this reflects not solely a shortcoming of the participant but rather provides valuable
diagnostic information about the entry barriers that must be addressed if KBE adoption is to scale
within the organization. By contrast, more experienced participants offered complementary insights
into integration challenges, toolchain heterogeneity, and organizational factors that affect sustained
KBE use. Together, these perspectives enable a holistic understanding of the factors influencing KBE
adoption across different user profiles.

4.2. Findings
The reflexive thematic analysis of interview transcripts identified eight common themes related to KBE
adoption challenges at GKN Aerospace. Table A.2 presents an overview of these themes and the number
of participants who raised each concern. While all eight themes provide valuable insights into the
organizational and technical landscape surrounding KBE implementation, the present discussion focuses
on the two themes most directly relevant to the proposed copilot: Skill Gap & Learning Curve (Theme 3)
and AI/LLM Assistance – Potential & Trust Concerns (Theme 4). These themes were universally mentioned
by all five participants and exhibit strong interdependencies that inform the design requirements for
AI-assisted KBE development tools. An overview of all themes, and their discussion, is available for
inspection in section A.2.

Table 4.1: Overview of common themes identified in the interviews and their relative urgency, based on the number of Domain
Experts (DEs) referencing each theme.

Nr Theme
DE

responses
(n = 5)

1 Inadequate knowledge capture & formalisation 5
2 Integration & tool-chain heterogeneity 5
3 Skill gap & learning curve 5
4 AI/LLM assistance – potential & trust concerns 5
5 Perceived value & benefit-effort trade-off of KBE 5
6 Usability & documentation shortcomings 4
7 Organizational & cultural barriers 5
8 Trust, reliability & validation of automated/AI solutions 3

4.3. Technical Assessment of Current AI Tools 27

Successful KBE application development requires dual competencies: deep domain knowledge in
aerospace engineering and proficiency in software development, particularly in Python, ParaPy, and
CAD APIs. This dual requirement creates a steep learning curve that emerged as a central barrier to
adoption across all five interviews. The nature and perceived severity of the skill gap varied significantly
across participants. Interviewee 1, who possessed strong programming skills, expressed concern
about colleagues without coding backgrounds. Interviewees 2 and 3 emphasized the need for broader
organizational training programs. Interviewee 4 admitted to a "lack of deep understanding" of ParaPy’s
architectural patterns yet demonstrated the ability to quickly adapt and modify existing code during
the live coding session, suggesting that with appropriate guidance, novices can become productive
relatively quickly. Poor documentation and unintuitive user interfaces compound this learning curve.
The difficulty in navigating codebases and understanding framework conventions represents a systemic
entry barrier that must be addressed for KBE adoption to scale.

Given the pervasiveness of the skill gap, participants naturally discussed how AI and LLMs might
help bridge this divide. All five interviewees reported active use of LLMs for code-related tasks, with
expectations ranging from generic code completion to domain-specific chatbots capable of explaining
ParaPy APIs. Interviewee 3 envisioned broad applicability: "A chatbot could help everywhere...
explain what is happening... mostly from a ParaPy documentation perspective." Interviewee 4 offered a
particularly clear statement of need: "I would like a chatbot with a deep knowledge of both the API and
a wealth of examples."

However, enthusiasm for AI-driven support was consistently tempered by concerns about reliability
and transparency. This reveals a fundamental paradox: AI chatbots are envisioned as learning aids
to bridge the skill gap, yet relying on AI assistance may prevent engineers from developing the deep
understanding necessary to validate and maintain KBE systems. Interviewee 2 captured this tension: "If
you are a non-programmer... asking an AI... would have been probably faster, if it would have been
a reliable answer." The interviews revealed striking contradictions in how participants conceptualize
AI’s role. Interviewee 1, despite "exclusive" daily ChatGPT use, still expressed a need for a dedicated
ParaPy-specific chatbot, while Interviewee 4, despite extensive Copilot usage, downplayed generic
code-completion features in favour of a knowledge-rich conversational agent. These positions suggest
that current AI tools, while helpful, do not fully meet the needs of KBE developers working within
specialized frameworks.

Trust concerns manifested differently across participants. Interviewee 2 warned against "blind reliance
on AI without domain-specific training," emphasizing that without explicit model fine-tuning on
ParaPy-specific knowledge, such tools would remain unreliable. Interviewee 3 took a more optimistic
view that LLMs could help explain code behaviour, acknowledging that "the technology is not yet
sufficiently mature" but seeing clear potential. Interviewee 5 found AI helpful only for proofreading
tasks, dismissing its utility for deep CAD scripting.

Two overarching insights emerged from this synthesis. First, a persistent skill gap in Python and
ParaPy programming drives both the learning curve barrier and the demand for AI-driven learning
support, yet trust in AI outputs remains low without demonstrated reliability and domain specificity.
This creates a tension: AI tools are needed to accelerate learning, but engineers are reluctant to
adopt them without confidence in their capabilities. Second, documentation quality and usability
are decisive factors for adoption. The difficulty of navigating documentation and understanding
framework conventions compounds the technical challenges of KBE implementation. Addressing these
interconnected challenges requires a support system that not only generates code but also educates
users, explains design decisions, and operates transparently.

The technical assessment that follows evaluates the current capabilities of commercial LLMs for ParaPy
code generation, providing empirical evidence of the limitations that underpin the trust concerns raised
during interviews.

4.3. Technical Assessment of Current AI Tools
To empirically validate the trust concerns and reliability questions raised during the interviews, a
technical assessment of current state-of-the-art LLMs was conducted. Five major AI platforms were

4.3. Technical Assessment of Current AI Tools 28

tested: ChatGPT (GPT-4), Claude (Anthropic), DeepSeek, Mistral, and GitHub Copilot. This pragmatic
sampling of readily accessible platforms represents the tools participants reported using in practice.
Each platform was presented with identical task descriptions requesting ParaPy code generation for
typical aerospace engineering components, representative of interactions encountered in production
[78], based on the following prompt:

1 >>> "In Python, I want to generate a parametric wing model representing the wing outer body
and inner structure. Can you write a Wing class for me in Python using the ParaPy SDK?"

The generated code was subsequently analysed for syntactic correctness, semantic accuracy, and
adherence to ParaPy SDK conventions. While the same prompt was submitted multiple times to each
model, resulting variations were minor and primarily lexical, with no meaningful impact on the syntax
or semantics of the generated code. Due to the extensive nature of the model outputs, full responses
from all platforms are available in section A.6 for reference. The technical assessment revealed six
recurring error categories, highlighting systematic gaps in current LLM capabilities when applied to
domain-specific frameworks. These patterns validate practitioner concerns initially raised in Chapter 1,
reinforced through the theoretical context in Chapter 3, and now further substantiated by the interview
findings regarding the complexity of ParaPy-based development. The most prevalent issues included:

1. Incorrect import practices
1 from parapy.core import *
2 # OR
3 from airfoils import AirfoilCurve # Non existing (ParaPy) library
4 ...
5 ...
6 ModuleNotFoundError: No module named ’airfoils’

1 import parapy.geom as ppg
2

3

4 @Input
5 def airfoil_root(self):
6 return ppg.Airfoil(...)
7 ...
8 ...
9 AttributeError: module ’parapy.geom’ has no attribute ’Airfoil’

2. Improper usage of ParaPy’s input declaration syntax
1 span = Input(15.0, validate = positive)
2 ...
3 ...
4 NameError: name ’positive’ is not defined

3. Fundamental misunderstanding of the framework’s type system
1 @Part
2 def ribs(self):
3 # Define ribs along the span of the wing
4 ribs = [] # <--violation of Part grammar in ParaPy < 2.0.0
5 num_ribs = [] # <--violation of Part grammar in ParaPy < 2.0.0
6 return ...

1 RuntimeError: First statement in body should either be a docstring or ‘‘return‘‘, found:
...

4. Inappropriate argument passing to constructors and methods
1 @Part
2 def wing_surface(self):
3 return LoftedSolid(
4 profiles=[...],
5 rulings=[...], # <-- argument does not exist
6)

1 parapy.core.exceptions.InvalidArgs: Invalid inputs found for LoftedSolid: [’rulings’].

4.4. Summary and Implications 29

5. Violations of framework organizational principles

This includes -but is not limited to- the violations of e.g. Part grammar but also the highly nested
nature of generated primitives and usage of non-existing variables.

6. Omission of essential import dependencies

This entails using hallucinated primitives that are not imported, causing name errors:
1 NameError: name ’Sweep’ is not defined

Furthermore, models consistently attempted to apply general Python programming patterns or inter-
polate from other geometric libraries rather than following ParaPy-specific conventions, hallucinating
primitives such as Translated, Scaled or Rotated for geometrical manipulations. These error patterns
indicate that current language models rely on statistical interpolation from general programming
knowledge rather than accurate understanding of domain-specific API requirements (see Chapter 10).
The consistency of these failures across different model architectures suggests fundamental limitations
in how current AI systems handle specialized frameworks with limited public training data.

4.3.1. Implications for KBE Development
This gap between general programming capabilities and specialized framework expertise partially
explains why organizations continue to face significant barriers in KBE adoption, even as AI-assisted
coding tools become ubiquitous in software development more broadly.

The poor performance of LLMs on ParaPy code generation can be attributed to the closed-source nature
of the framework. This fundamental data scarcity cannot be overcome by simply using larger or more
advanced general-purpose models. As emphasized during the interviews, this problem is compounded
in industrial contexts where cloud-based AI services are often prohibited due to data security and
confidentiality requirements. Employees in such environments are typically restricted to air-gapped or
local infrastructures that rely on open-source or smaller models with significantly fewer parameters.
These restrictions not only reduce access to cutting-edge capabilities but also exacerbate the performance
limitations observed in this assessment when applying AI to domain-specific tasks requiring deep
contextual understanding. Interviewee 1, despite being a frequent ChatGPT user, specifically expressed
a desire for a tailored, ParaPy-specific tool that could operate within local constraints: a requirement
that current general-purpose models cannot satisfy.

The identified error patterns translate into concrete design requirements for the proposed support
system. While it is reasonable to assume that these deficiencies would be less pronounced if public
language models had access to substantial ParaPy training data—or if fine-tuned specifically on ParaPy
code and documentation—such approaches fall outside the scope of the current research. Instead, the
developed system must compensate for these systematic gaps through retrieval-augmented generation,
explicit knowledge injection, and structured validation workflows. The technical assessment thus
reinforces the conclusion that effective AI assistance for KBE development necessitates purpose-built
solutions that bridge the gap between general programming capabilities and domain-specific framework
expertise.

4.4. Summary and Implications
The thematic analysis of interviews at GKN Aerospace, combined with the technical assessment of
current AI tools, reveals two critical barriers to KBE adoption that directly inform the design of an
AI-assisted support system. First, the steep learning curve associated with ParaPy requires simultaneous
mastery of domain knowledge, Python programming, and framework-specific conventions, deterring
adoption across all experience levels. Second, while participants recognize the potential of AI assistance
to flatten this learning curve, they express significant concerns about reliability, transparency, and the
risk of dependency on tools they do not fully understand. The technical assessment validates these
concerns by demonstrating that even state-of-the-art language models systematically fail to generate
functional ParaPy code due to the framework’s closed-source nature and resulting absence from training
corpora.

4.4. Summary and Implications 30

These findings motivate a refinement to the support framework outlined in Chapter 2. Requirements
REQ-4-1, REQ-4-2, and REQ-4-3 mandate improvements in KBE application development performance
for both novice and expert users. To address the skill gap while simultaneously building trust through
transparency, the proposed system introduces a dual-agent architecture comprising an Educational Agent
and a Developer Agent. This separation addresses a key tension identified in the interviews: the need for
AI assistance must be balanced against the imperative that engineers develop genuine understanding
rather than blind reliance on generated code.

An Educational Agent supports users by clarifying ParaPy’s architectural patterns, explaining framework
conventions, and assisting in navigating documentation to identify appropriate primitives. This
pedagogical role directly addresses widespread concerns that insufficient documentation increases
cognitive load, while also responding to user demands for tools with deep API knowledge and curated
examples. By emphasizing explanation over pure code generation, the Educational Agent fosters the
foundational understanding engineers need to critically evaluate outputs, thereby mitigating trust
concerns. In parallel, the Developer Agent offers programmatic assistance—functionally similar to tools
like GitHub Copilot but tailored to ParaPy development—serving users who already possess a basic
understanding of the framework.

Together, these agents address the two central themes from the interview analysis. The skill gap
can be significantly flattened through the Educational Agent’s guidance combined with the Coding
Agent’s productivity support, while concerns about AI reliability and trust are mitigated by prioritizing
transparency, explanation, and education over opaque code generation. The interview findings,
supported by the technical assessment, provide a grounded understanding of the conditions influencing
AI-driven KBE adoption at GKN Aerospace. Building on these foundations, the following chapters
detail the implementation and evaluation of this dual-agent approach, collectively called the copilot.

5
Methodology

This chapter presents the methodological approach for developing and evaluating a generative AI-
powered coding assistant tailored for Knowledge-Based Engineering application development using the
ParaPy SDK. The framework development operates under two core constraints identified in Chapter 2
and verified through the literature review (Chapter 3): (1) the scarcity of ParaPy-specific training data in
publicly available language models, leading to extensive hallucinations in code generation; and (2) the
necessity for local execution and privacy due to use of closed-source software and proprietary data.

The research design follows a three-pronged strategy rooted in the industrial case study findings.
Interview analysis revealed two distinct user needs: rapid code generation and educational support for
understanding ParaPy patterns. The methodology addresses these through a dual-agent architecture
comprising a Developer Agent optimized for code generation and an Educational Agent focused on
pedagogical support.

First, the methodology establishes a systematic pipeline for AI agent creation and deployment that
leverages retrieval-augmented generation and prompt engineering to compensate for limited ParaPy-
specific training data, maintaining compatibility with both local execution via Ollama and privacy-
compliant API services. Second, this pipeline is applied to develop the dual-agent architecture, with
each agent specialized to address one of the two distinct user needs identified through practitioner
interviews. Third, an evaluation framework is designed to measure the developed system’s performance
through automated assessment of syntactic and runtime correctness, manual case studies examining
functional accuracy and code quality, and user testing protocols that evaluate development time impact
and effectiveness across expertise levels.

5.1. Legal & Ethical Considerations
The development and evaluation of this framework involve handling proprietary ParaPy SDK materials
and potentially sensitive industrial application code, necessitating careful consideration of confidentiality
and data protection requirements. The knowledge base indexed for semantic search comprises exclusively
public-facing ParaPy documentation, API references, and approved usage examples that would be
accessible to licensed ParaPy developers through official channels. When utilizing remote API services,
only public ParaPy API documentation and syntactic patterns are transmitted within prompts. Exact
implementation details of ParaPy’s internal mechanisms remain strictly excluded from all model
interactions, preserving the distinction between understanding how to use the ParaPy API versus how
ParaPy implements its functionality. These privacy constraints limit model selection to either locally
deployed open-source models via Ollama for complete air-gapped operation, or external APIs from
Anthropic1 and Groq2 that ensure temporary or zero data retention and compliance with security

1Anthropic is an AI safety-focused company founded in 2021 by former members of OpenAI. It is the creator of Claude, a
family of large language models designed with an emphasis on safety, helpfulness, and honesty. Claude is accessible via a web
interface, API, and a suite of developer tools. From https://www.anthropic.com/ [accessed 02-10-2025].

2Groq is a semiconductor company that develops specialized AI inference processors known as Language Processing Units
(LPUs). The company offers both hardware solutions and cloud-based inference services, primarily focused on hosting open-source
models on industry-grade infrastructure to enable high-speed, low-latency inference. From https://groq.com/ [accessed
02-10-2025].

31

https://www.anthropic.com/
https://groq.com/

5.2. Agent Creation Pipeline 32

requirements.

During user testing and case study evaluation, participants’ build directories and generated code may
be collected for analysis under explicit informed consent, with participants retaining full ownership
of their intellectual contributions. Collected artifacts are anonymized prior to analysis, with any
organization-specific or proprietary design elements removed or generalized. Aggregated results and
illustrative code examples used in thesis documentation undergo review to ensure no competitive or
confidential information is disclosed, balancing the research need for authentic industrial examples
with the legitimate confidentiality concerns of participating organizations.

5.2. Agent Creation Pipeline
The successful deployment of an AI agent, whether as a single agent or within a multi-agent framework,
involves several essential steps. Whilst these steps may vary depending on the specific programming
framework and level of abstraction employed, the main steps identified in this research are as follows:

1. LLM deployment, selection and customisation;
2. System prompt development;
3. Runtime dependency configuration;
4. Tool development and deployment.

Figure 5.1: Top-level overview of an AI agent architecture, illustrating (1) the role of the large language model (LLM) as the
agent’s cognitive core, (2) the incorporation of tailored system instructions to guide behaviour, and (3) the integration of external

tools and databases, possibly through MCP services.

5.2.1. LLM Deployment, Selection & Customisation
Model deployment is the first consideration in the pipeline. The framework supports both remote
API-based deployment and local execution to balance accessibility with privacy requirements. Re-
mote deployment leverages commercial provider infrastructure (like Claude and Groq), while local
deployment enables self-hosted solutions through platforms like Ollama. This approach provides de-
ployment flexibility, accommodating cutting-edge commercial models, smaller open-source alternatives,
or proprietary in-house models.

Model selection follows deployment, driven by the fundamental trade-off between computational
requirements and output quality. Model size directly impacts memory consumption and inference speed,
with local deployment environments typically imposing stricter resource constraints. Selection balances
parameter count, required capabilities, and task complexity. Well-defined tasks benefit from smaller,

5.2. Agent Creation Pipeline 33

specialized models offering faster inference, while complex reasoning tasks require larger models
despite higher computational demands. Within multi-agent architectures, this enables task-specific
model assignment, where each agent operates with a model appropriate to its functional requirements.

Model configuration further optimizes performance for specific use cases. The current research
standardizes temperature settings to zero across all agents, minimizing stochastic sampling to maximize
reproducibility in evaluation protocols. A more elaborate list on LLM settings and their effects is
presented in section 11.1 but is not relevant for a further understanding of the framework.

5.2.2. Prompt Engineering
System prompt development constitutes the second critical step in agent deployment. As newer
models such as Claude 4 and GPT-5 follow instructions more precisely, prompt engineering has become
increasingly important. These models often require more elaborate and explanatory prompts but offer
users greater control over model behaviour in return. This research adopts Anthropic’s systematic
approach to prompt engineering, as outlined in [79] and more extensively reported in section 11.2.

Figure 5.2: Schematic overview of prompt engineering design process, taken from prompt engineering course by Anthropic.
From docs.anthropic.com [accessed 03-09-2025].

As shown in Figure 5.2, prompt engineering follows a structured design process that includes establishing
success criteria, developing test cases, and conducting iterative refinement prior to deployment. An
initial prompt is created, evaluated against test cases, and iteratively improved to arrive at a system
prompt that delivers satisfactory performance.

For the two agents in the framework, the strategies from [79] are employed to generate draft prompts
that include ParaPy SDK principles such as grammatical rules, best practices, small examples enabling
pattern recognition for difficult tasks, response guidelines, and guardrails for queries falling outside the
agent’s scope. While ParaPy information remains consistent across both agents from a broad perspective,
specific best practices, guidelines, and guardrails are tailored to each agent’s role. The draft prompts
undergo evaluation and iteration until deemed sufficient for testing in Chapter 7. Major model providers
such as Anthropic offer prompt generator and improver tools to facilitate this process, including
resources for defining success criteria, generating test cases, and designing evaluation procedures.
However, caution is advised when reusing auto-generated prompts directly, as they are often optimized
for the provider’s own models. Nevertheless, such templates serve as valuable starting points in the
prompt engineering process. For full documentation, the reader is referred to Anthropic’s official
documentation.

5.2.3. Runtime Dependencies
With the deployment infrastructure and system prompts established, the next step involves configuring
the runtime dependencies that support agent operations. Runtime dependencies are framework
components required by agent tools during execution, distinct from the deployment and configuration
steps described previously. In this framework, the primary runtime dependency is a semantic search
engine that provides dynamic access to ParaPy-specific knowledge.

The framework addresses sparse ParaPy-specific training data in commercial language models through
a local knowledge base containing ParaPy SDK documentation, usage examples, and API references.
Rather than relying solely on pre-trained knowledge, agents query this curated knowledge base through

https://docs.anthropic.com/en/docs/test-and-evaluate/develop-tests
https://docs.anthropic.com/en/docs/
https://docs.anthropic.com/en/docs/

5.2. Agent Creation Pipeline 34

a custom-built semantic search engine based on cosine similarity, as detailed in section 6.4. The search
mechanism transforms both indexed documentation and user queries into high-dimensional vector
representations, enabling similarity-based retrieval of relevant information.

The knowledge infrastructure maintains three distinct searchable collections, each optimized for different
information needs. The documentation index contains the complete ParaPy SDK documentation as
published on the official website (version 1.14.1), including explanations, tutorials, guides, and
conceptual descriptions.The example index contains isolated code snippets extracted from this same
documentation. Rather than searching through full documentation pages with surrounding text, agents
can directly search for relevant code patterns and implementations to adapt for their specific tasks. The
API reference index provides technical specifications for ParaPy functions and primitives, including what
inputs they accept, what outputs they produce, and how to use them correctly. By separating these
three types of information, agents can search more efficiently and retrieve only the most relevant content
for their specific needs.

Figure 5.3: Illustration of tool calling within AI
agentic frameworks. Shows the clear roles of the

LLM and the agent framework in action. The
interaction of agents with tools follows the

through-action-observation cycle. From
Pydantic AI documentation [accessed

15-10-2025].

The search engines are initialized when the framework starts
and remain available throughout the agent’s operation. Im-
portantly, the system does not load all documentation into the
agent’s working memory at startup. Instead, agents actively
request specific information only when needed during their
reasoning process. This on-demand approach reduces compu-
tational overhead (agents only process the documentation they
actually need) and enables agents to perform multiple searches,
refining their queries based on what they learn from previ-
ous search results. For example, an agent might first search
broadly for positioning concepts, then perform a more targeted
search for specific positioning functions after understanding
the general approach.

5.2.4. Tool Development, Verification & Valida-
tion
Large language models, by default, are limited to generating
text-based responses. Tools extend agent capabilities by en-
abling them to perform actions beyond text generation, such
as searching databases, executing code, or accessing external
APIs. In the context of this framework, tools serve as the bridge
between the agent’s reasoning capabilities and the external
resources it needs to generate correct ParaPy code. For instance,
a tool might retrieve relevant documentation from the semantic
search engine, verify the syntax of generated code, or check
whether code executes without errors.

Tool calling is a relatively recent advancement in LLM inter-
action design (see subsection 3.3.2) that enables models to
produce structured outputs specifying which tool to call and
with what parameters, typically in JSON format. Most large
commercial models support this functionality by default, while
smaller open-source models may require specific training, often
indicated by suffixes such as *instruct, *chat, or *versatile.
The interaction follows a thought-action-observation cycle: the
model reasons about the task, selects an appropriate tool, ex-
ecutes it, and integrates the tool’s output into its ongoing response, as demonstrated in Figure 5.3.
A comprehensive introduction to agents and tool calling is available through HuggingFace’s Agents
Course (last accessed 02-10-2025).

Tool development in the framework follows three guiding principles that ensure modularity and
reliability. First, each tool encapsulates a narrowly scoped capability aimed at addressing a specific
model limitation, supporting independent testing and flexible composition. Second, tools return output

https://ai.pydantic.dev/tools/#registering-function-tools-via-decorator
https://huggingface.co/learn/agents-course/unit1/tools
https://huggingface.co/learn/agents-course/unit1/tools

5.3. Framework Architecture and Design Approach 35

as structured text using consistent delimiters and labeled sections, reducing the reasoning burden on the
language model by providing clearly formatted information. Third, robust error handling distinguishes
between recoverable failures (triggering retry logic that allows the agent to adapt its approach) and
unrecoverable failures (surfaced with clear messages that halt execution as needed).

The framework implements tools across three functional categories, each targeting distinct challenges
identified during baseline evaluations. Data retrieval tools provide agents access to the semantic search
engines configured in the runtime dependencies (see previous section), enabling dynamic queries
against ParaPy documentation, code examples, and API references to address sparse training data. Code
improvement tools assist in producing framework-appropriate design patterns and idiomatic ParaPy
implementations, such as providing correct import suggestions and ParaPy primitive signatures. Code
verification tools ensure output quality through progressive validation mechanisms, enabling the agent to
check the syntax and runtime correctness of its generated code. The detailed tool development process
and complete tool inventory are elaborated in section 6.6.

5.3. Framework Architecture and Design Approach
The framework adopts a dual-agent architecture comprising a Developer Agent and an Educational Agent,
each tailored to support different aspects of KBE application development. The Developer Agent
constitutes the primary mechanism through which the framework satisfies the core requirements,
automating code generation tasks (either from scratch or from skeleton code) to address the time-intensive
nature of KBE development, as outlined in the research clarification (Chapter 2). The Educational
Agent was subsequently introduced based on insights from the industrial analysis presented in
Chapter 4, specifically addressing REQ-4-3 by flattening the steep learning curve associated with ParaPy
development and improving usability for novice users through on-demand pedagogical support.

Both agents share a common design philosophy: each is powered by an LLM (either through API
services or locally deployed), has access to semantic search functionalities (subsection 5.2.3), employs a
tailored system prompt, and utilizes specially designed tools. However, their specific implementations
differ to optimize for their distinct objectives: (1) the Developer Agent produces syntactically correct,
runtime-correct, and functional Python code using the ParaPy SDK, while (2) the Educational Agent
provides pedagogical support tailored to user expertise levels.

The Developer Agent focuses on code generation, completion, and debugging within the ParaPy SDK
environment, addressing REQ-1-2 and REQ-1-3. To maximize code generation performance, the agent
accesses only the example index and API index, minimizing noise from explanatory text present in full
documentation. The example index provides reference implementations, while the API index supplies
specifications for ParaPy primitives. The agent’s system prompt contains ParaPy principles, curated
examples reinforcing these principles, best practices for KBE development, and general reasoning
instructions, detailed in section 6.5. Tools enable semantic search access and implement verification steps
checking syntactic accuracy (REQ-2-1) and runtime correctness (REQ-2-2). Additional tools provide
import suggestions and function signatures, addressing weaknesses observed in section 4.3. All outputs
consist of executable code with minimal explanatory context.

The Educational Agent provides conceptual guidance on KBE principles and ParaPy development
patterns, specifically targeting REQ-4-3 by reducing domain knowledge requirements through on-
demand learning support. To maximize pedagogical effectiveness, this agent accesses the complete
documentation index and API index, enabling comprehensive responses with appropriate documentation
references. The system prompt is simpler than the Developer Agent’s, containing only reasoning
instructions and task descriptions without embedded ParaPy details, as this information is retrieved
on demand from the documentation index (see section 6.5). Tools focus on connecting the LLM to the
semantic search engine and selectively filtering documentation by type (quickstart content, tutorials,
API references). Rather than generating production code, this agent emphasizes structured explanations,
documentation references, and illustrative examples tailored to practitioner concerns identified in the
industrial study.

The complete tool suite for both agents is discussed in section 6.6, while exact agent implementations
are detailed in section 6.7.

5.4. Verification and Validation Methodology 36

5.4. Verification and Validation Methodology
The verification and validation strategy employs four complementary approaches, progressing from
component-level verification to system-level validation: unit testing validates core framework compo-
nents, automated evaluation assesses agent performance across comprehensive test scenarios, manual
case studies provide expert verification of complex implementations, and user testing validates practical
effectiveness with developers of varying expertise levels. This multi-tiered approach balances automated
scalability with human expert judgment, ensuring both technical correctness and practical usability.
Chapter 7 operationalizes this framework and succinctly presents its design, while the complete technical
implementation details are available in Chapter 13.

5.4.1. Unit Testing
Unit testing constitutes standard software engineering practice and serves as a prerequisite for further
verification and validation. Testing ensures core components behave as intended and verifies edge case
handling to enhance framework robustness. Critical components under test include knowledge infras-
tructure operations (semantic search accuracy and retrieval relevance, as implemented in section 6.4),
tool execution and output formatting (correct function calls and structured responses, as detailed
in section 6.6), agent configuration and initialization (proper model loading and prompt injection,
described in section 6.7), and output validation mechanisms (syntax checking and runtime verification).
Successful unit testing confirms that individual framework components operate correctly in isolation
before proceeding to integrated system evaluation. Results are presented in section 7.3.

5.4.2. Automated Evaluation Framework
The automated evaluation framework assesses both agents using test scenarios tailored to their distinct
roles. The Developer Agent is evaluated on code generation tasks spanning complexity levels from
simple code completion to complete class generation, stratified by task type (skeleton completion versus
generation from scratch) and required ParaPy features, undergoing evaluation across four dimensions:
syntactic correctness (REQ-2-1), runtime correctness (REQ-2-2), functional correctness (REQ-2-3), and
code quality (REQ-3-3). The Educational Agent is evaluated on pedagogical tasks where it responds to
developer questions, explains ParaPy concepts, and provides illustrative examples, assessed only on
functional correctness (whether explanations are accurate and helpful) and code quality for example
snippets, as syntactic and runtime validation are less relevant for pedagogical examples that may be
intentionally incomplete fragments designed to illustrate specific concepts.

The framework employs independent large language models as assessors to evaluate agent performance,
a methodology termed "LLM Judge." This approach simulates traditional academic grading, where
judges assess agent outputs against defined rubrics and their own domain knowledge, analogous to
how an instructor evaluates student work. The methodology operates on three fundamental principles.
First, independence ensures that judges are separate models from those powering the agents themselves,
introducing external assessment and mitigating self-scoring bias. Second, expertise requires judges to
possess sufficient reasoning capability and domain knowledge, typically reflected by high parameter
counts serving as a proxy for reasoning ability. Third, rubric-based assessment provides explicit scoring
guidelines across weighted quality dimensions, enabling consistent and interpretable evaluation.

The LLM Judge framework operates externally to the agentic framework developed in Chapter 6, serving
purely as an evaluator without participating in the copilot’s operation. This separation ensures
evaluation objectivity and prevents contamination of development processes with assessment logic.
The methodology employs multiple independent judges to enhance reliability and identify systematic
bias patterns, enabling inter-rater reliability analysis that reveals whether different models consistently
assess outputs similarly. Additionally, the framework includes self-assessment where the same model
that generated an output also evaluates it, revealing how confident the model is about its own work
quality. While self-assessment scores are not used as primary evaluation metrics due to inherent
bias, comparing them against independent judge assessments provides insights into whether models
accurately recognize when their outputs are strong or weak.

The assessment rubrics define weighted quality dimensions tailored to each agent’s objectives. The
Developer Agent rubric emphasizes functional correctness (25%), completeness (20%), code quality (20%),

5.4. Verification and Validation Methodology 37

practical applicability (15%), error handling (10%), and explanation clarity (10%), prioritizing whether
code works correctly and is maintainable. The Educational Agent rubric emphasizes pedagogical
effectiveness (25%), content accuracy (20%), comprehensibility (20%), learning path coherence (15%),
resource integration (10%), and actionability (10%), prioritizing teaching effectiveness and learning
support. The specific model selection, judge configurations, and detailed rubric design are presented in
section 7.4.

Complementing the functionality evaluation, the automated code quality framework operationalizes REQ-3-
3 by assessing generated code through three weighted dimensions that combine to produce an overall
quality score:

• Semantic correctness (40%) evaluates code logic and type safety through static analysis, detecting
type errors and logical flaws without executing the code. A maximum score is assigned to
error-free code, with penalties applied proportionally to the number and severity of detected
issues, ensuring code is logically sound before runtime validation occurs.

• Maintainability (35%) utilizes the Maintainability Index (MI) and Cyclomatic Complexity (CC), as
defined in MSC-3-3 and section 2.6. The MI provides a composite measure based on code volume,
complexity, and comment density, while CC quantifies the number of independent paths through
the code, together characterizing how difficult code will be to understand, modify, and extend.

• PEP-8 compliance (25%) identifies violations of Python’s official style guide [35], normalizing
violation counts against lines of code to account for implementation length.

These weights prioritize correctness and maintainability over stylistic conventions, reflecting the
practical priorities of production code development. The final quality score is computed through
weighted averaging of the three normalized dimension scores, producing a composite metric enabling
systematic comparison across different implementations and agents. Complete scoring formulas, tool
configurations, and implementation details are presented in subsection 7.2.4.

5.4.3. Manual Case Study Approach
Case studies provide detailed expert verification of agent performance on industrially-relevant applica-
tions, confirming or challenging preliminary conclusions from automated evaluations. By manually
comparing agent outputs against expert-approved reference solutions, the methodology draws con-
clusions about both output quality and the rigor of automated verification procedures. Case studies
are selected for complexity, feature breadth, and representation of production development patterns
encountered in actual ParaPy projects.

Functional analysis compares implementations against expert-developed reference solutions to verify
REQ-3-2, examining both overall system behaviour and component-level correctness. Expert review by
experienced ParaPy developers assesses architectural appropriateness, idiomatic framework usage, and
maintainability considerations that automated metrics may not fully capture. Comparison of expert
scoped development time and copilot generation time support evaluation of REQ-3-1. This approach
combines automated metrics with expert judgment, where experts evaluate code quality aspects that
are difficult to measure automatically and verify that the automated assessment frameworks produce
accurate results. The specific use cases and the evaluation of functional correctness, expert quality
scores, and automated quality scores are presented in section 7.5.

5.4.4. User Testing Protocol
User testing validates the framework through controlled studies where developers complete repre-
sentative tasks with and without AI assistance, directly addressing REQ-4-1 through REQ-4-3. This
approach moves beyond controlled evaluation scenarios to assess practical effectiveness in realistic
development workflows using the CLI application described in section 6.8. Participants are stratified by
expertise level: experts possess extensive ParaPy development experience while novices have general
programming competence but limited ParaPy exposure. This stratification tests whether the system
reduces knowledge requirements as specified in REQ-4-3 while benefiting experienced developers.

The within-subjects design enables direct comparison of individual performance while controlling for
ability differences. Participants complete two equivalent tasks in counterbalanced order (one manually

5.5. Summary & Conclusion 38

and one with AI support), controlling for learning effects and task difficulty variance. Task equivalence is
ensured through careful design matching required ParaPy features, geometric complexity, and expected
completion time.

Data collection encompasses three dimensions aligned with research objectives. Temporal metrics
capture total completion time, time to first successful execution, and debugging duration, directly
supporting evaluation of REQ-3-1 and REQ-4-1. Productivity metrics quantify code generation rate
and feature implementation velocity. Quality metrics assess functional correctness through expert
solution comparison (REQ-3-2), code quality through the automated scoring framework described in
subsection 7.2.4 (REQ-3-3), and framework-specific correctness through ParaPy-specific error analysis.
These metrics combine to produce the composite score specified in REQ-3-4.

Structured interviews and session recordings provide qualitative context for interpreting quantitative re-
sults. Post-task questionnaires capture subjective assessments of task difficulty, perceived AI helpfulness,
and solution confidence. Session recordings enable analysis of interaction patterns, prompt engineering
strategies (based on guidance provided by the framework), and integration of AI suggestions into
workflows. The complete methodology, protocols, and results are presented in section 7.6.

5.5. Summary & Conclusion
This chapter has presented a systematic approach to developing and evaluating an AI-powered coding
assistant for ParaPy-based KBE development. The methodology employs a dual-agent architecture
that addresses distinct user requirements through specialized agents: a Developer Agent optimized
for code generation tasks and an Educational Agent focused on pedagogical support. Knowledge
infrastructure employing semantic search compensates for sparse ParaPy-specific training data through
dynamic information retrieval from curated documentation, examples, and API references. Code quality
is ensured through progressive tool-based verification across syntactic and runtime correctness. A
four-tiered evaluation strategy comprising unit testing, automated evaluation, manual case studies,
and user testing provides assessment while balancing automation efficiency with qualitative expert
judgment.

The methodology directly addresses all four research objectives established in Chapter 2. The dual-agent
architecture with flexible deployment options (local via Ollama or remote via privacy-compliant API
services) satisfies the first objective concerning local execution capability and tailored KBE support. The
progressive verification tools and automated quality assessment frameworks operationalize the second
objective’s quality thresholds for syntactic (REQ-2-1), runtime (REQ-2-2), and functional correctness
(REQ-2-3). The evaluation strategy defines and measures the performance indicators specified in the
third objective, including development time reduction (REQ-3-1), functional equivalence (REQ-3-2),
code quality (REQ-3-3), and composite performance scores (REQ-3-4). Finally, the user testing protocol
enables assessment of the fourth objective concerning effectiveness across varying expertise levels
(REQ-4-1 through REQ-4-3).

The following chapter, Chapter 6, details the concrete implementation of this methodological framework,
presenting the specific design decisions, tool implementations, and system configurations that realize
the approach described here. Subsequent evaluation in Chapter 7 demonstrates how this methodology
enables rigorous assessment of the framework’s performance against the measurable success criteria
defined in the research framework.

6
Agentic Framework

This chapter presents the implementation of the dual-agent framework initially proposed in Chapter 4
and further elaborated in Chapter 5. The design builds on insights from the literature review (Chapter 3)
and the industrial study to develop a solution that addresses the challenges outlined in Chapter 2.

The chapter is structured as follows: section 6.2 introduces the overall framework architecture and
foundational implementation components. section 6.3 presents baseline performance of default models
for reference. Subsequent sections provide detailed implementation insights to support reproducibility:

• section 6.4 outlines the knowledge infrastructure and semantic search functionality integrated
into the framework.

• section 6.5 details the prompt engineering process.
• section 6.6 describes the tools developed within the framework.
• section 6.7 synthesizes the preceding elements into the final dual-agent system.
• section 6.8 introduces the Command Line Interface (CLI) application built for improved usability.
• section 6.9 concludes the chapter.

Note on Implementation
The full implementation of the framework is available for inspection on GitHub, upon request, due
to privacy and data protection constraints. The co-pilot tool is under continuous development, with
features and bug fixes being added beyond the scope of this thesis. As new requirements or usability
improvements emerge, they will be incorporated to enhance user experience and maintain relevance
within both industrial and academic contexts. For consistency and reproducibility, the results and
implementation discussed in this chapter are based on version 0.4.0 of the co-pilot tool.

6.1. Assumptions & Limitations
This section outlines the key assumptions underpinning the framework implementation and acknowl-
edges its inherent limitations. These considerations inform both the design decisions presented in this
chapter and the evaluation methodology discussed in Chapter 7.

Assumptions
The framework implementation relies on the following assumptions:

• Model Capabilities: Selected models support the necessary communication protocols and, for
local deployment via Ollama, include tool-calling capabilities through appropriate fine-tuning.
API providers maintain service availability and adhere to stated data retention policies.

• Documentation Representativeness: The indexed ParaPy documentation (version 1.14.0) remains
representative of current SDK functionality, and the semantic search indices accurately capture
the essential knowledge required for ParaPy development.

39

https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop

6.2. System Architecture Overview 40

Limitations
The framework exhibits the following limitations, some of which stem from explicit scope boundaries
defined in Chapter 2:

• Model Selection Constraints: As outlined in REQ-1-1 and discussed in section 5.1, privacy and
data protection requirements restrict model selection to locally deployed open-source models
or approved API providers (Anthropic and Groq). This constraint precludes the use of other
potentially capable commercial models.

• Index Maintenance: Semantic search indices require manual regeneration when ParaPy SDK
updates introduce new primitives, modify existing APIs, or restructure documentation. The
framework does not automatically detect or adapt to SDK version changes.

• Execution Security: The subprocess-based runtime validation system (section 6.6) executes
arbitrary Python code on the host machine, introducing potential security vulnerabilities.

• Deterministic Configuration: All examples and evaluations use a model temperature of 0.0 to
ensure reproducibility. While this maximizes consistency for comparative analysis, it eliminates
sampling diversity and may not reflect optimal configurations for all use cases. Temperature
variations primarily affect non-critical aspects such as variable naming and stylistic choices rather
than functional correctness.

• Execution Constraints: Runtime code validation imposes a default 120-second timeout to prevent
infinite loops. Complex or computationally intensive ParaPy models may exceed this limit,
resulting in false negatives during validation.

6.2. System Architecture Overview

Figure 6.1: Top-level architecture of the dual-agent framework, showing the four main subsystems and the scope boundaries of
the Pydantic-based integration layer. Dashed (grey) arrows denote communication flows between elements while the solid (black)

arrows denote logic flow.

Figure 6.1 presents a high-level system perspective of the implemented dual-agent framework. It serves
as a conceptual foundation for this chapter and a recurring point of reference in subsequent sections.

6.2. System Architecture Overview 41

The framework comprises four main subsystems, aligned with the agent creation pipeline introduced in
section 5.2:

1. LLM deployment and customization (top left),
2. Prompt engineering (top section of each agent),
3. Knowledge framework and semantic search (top middle), and
4. Tool development and deployment (center).

As outlined in section 5.3, the framework consists of two AI agents that share a common architectural
foundation but differ in implementation and intended use cases. The Developer Agent assists with code
completion, generation, and debugging for ParaPy SDK development. The Educational Agent focuses on
learning-oriented tasks and provides documentation-related support for KBE and ParaPy concepts.

The primary framework used in this research is Pydantic AI, which serves as the integration layer for
all subsystems. Figure 6.1 highlights scope boundaries, indicating which components fall within the
Pydantic framework and which remain external. Tool usage, agent instructions, structured outputs,
model architectures, and agent configurations are encapsulated within the framework. Components
such as LLM hosting, the semantic search engine, and the knowledge base exist outside the Pydantic
framework but maintain full compatibility. The foundational principles of Pydantic AI and custom
extensions introduced in this work are discussed in section 12.1.

The example in Figure 6.2 demonstrates how these components integrate during a successful Developer
Agent run. The first step involves model initialization and tool registration (Step 1a), handled
automatically by the Pydantic framework. In parallel, the model receives custom system prompts
designed specifically for ParaPy development (Step 1b). The model then invokes tools as needed;
tool design, implementation, and input/output schemas are defined within this work, while tool call
execution and output injection into model context (Steps 2–9) are managed by the Pydantic framework.
The agent verifies its output for syntactic and runtime correctness using custom validation functions
before producing a structured response that adheres to developer-defined schemas. The Pydantic
framework enforces structured output formats; developers define expected types and validation logic.
The deployment of the agents is revisited in more detail in section 6.7.

In summary, Pydantic AI manages communication and orchestration between components; developers
define and implement individual building blocks.

Figure 6.2: Example Developer Agent run trace from Logfire, illustrating tool availability, custom system prompts, and structured
output parsing.

https://ai.pydantic.dev/
https://logfire.pydantic.dev/

6.3. Baseline Performance 42

6.3. Baseline Performance
This section establishes baseline performance metrics for the two model configurations used throughout
the framework: LLaMa 3.1 8B (local) and Claude Sonnet 4 (API-based). Baseline results employ minimal
prompts without system instructions, tool integrations, or structured outputs, isolating native model
capabilities before enhancement through prompt engineering, semantic search, and verification tools.

6.3.1. Model Configurations
More extensive information on the models, including their capabilities, training processes, and data, is
presented in section 12.2.

LLaMa 3.1 8B (Local)

Meta AI - LLaMa 3.1

Ð Version: llama3.1:8b-instruct-q8_0 Ó Architecture: Dense transformer
õ Training Data: Public data from the Web � Languages: 8 languages
º Parameters: 8B z Cutoff: End of 2023
/ Context: 128K

The local configuration uses the llama3.1:8b-instruct-q8_0 variant, an instruction-tuned model with
tool-calling capabilities. While baseline evaluations do not require tool calling, this variant is used
consistently across all development phases to enable direct comparison with the fully implemented
agent. The LLaMa family was selected because it represents one of the few small-parameter models
capable of local execution while supporting tool calling, a capability requiring dedicated fine-tuning as
described in subsection 5.2.4. Although specialized coder models often yield superior performance,
those currently supported by Ollama lack tool-calling capabilities, making LLaMa 3.1 the optimal
trade-off between compatibility and performance for local deployment.

Claude Sonnet 4 (API)

Anthropic - Claude Sonnet 4

Ð Version: claude-sonnet-4-20250514 Ó Architecture: Transformer
õ Training Data: Internet corpora + proprietary � Languages: Not disclosed
º Parameters: Not disclosed (> 100B) z Cutoff: May 2025
/ Context: 200K

The API configuration uses Claude Sonnet 4, featuring a 200,000-token context window and 64,000-token
output capacity. Released in May 2025 as part of the Claude 4 family, the model’s parameter count,
architectural details, and supported languages remain undisclosed, following common practices for
proprietary models.1

6.3.2. Developer Agent
The Developer Agent baseline uses the following prompt:

1 >>> "Generate a parametric model of a simple Box using the ParaPy SDK in Python."

For reference, a correctly implemented ParaPy code snippet aligned with this prompt:
1 from parapy.core import Input, Part
2 from parapy.geom import GeomBase , Box
3

4

5 class ParametricBox(GeomBase):
6 width: float = Input()
7 length: float = Input()

1"Introducing Claude 4", from https://www.anthropic.com/news/claude-4 [accessed 06-10-2025]

https://www.anthropic.com/news/claude-4

6.3. Baseline Performance 43

8 height: float = Input()
9

10 @Part
11 def solid(self) -> Box:
12 return Box(width=self.width, length=self.depth, height=self.height)
13

14

15 if __name__ == "__main__":
16 from parapy.gui import display
17

18 obj = Box(width=1, length=1, height=1)
19 display(obj)

Both models demonstrate the domain-specific knowledge gap identified in the industrial case study
(section 4.3). LLaMa 3.1 produces syntactically valid Python but fails to apply ParaPy SDK principles
correctly. While the model partially recognizes geometric aspects (width, length, height inputs,
inheritance from geometric base classes, CAD operations), the implementation contains hallucinated
imports, fabricated methods such as pg.get_scene(), and treats parametric class inputs as regular
Python methods rather than ParaPy’s declarative Attribute slots.

1 import parapy.gui as pg
2 from parapy.core import Attribute , Field, Input, Output
3 from parapy.geom import GeomObject , Extrusion
4

5 class SimpleBox(GeomObject):
6 def __init__(self):
7 super(SimpleBox , self).__init__()
8

9 @Input
10 def length(self):
11 return 1.0
12

13 @Input
14 def width(self):
15 return 1.0
16

17 @Input
18 def height(self):
19 return 1.0
20

21 @Output
22 def box(self):
23 return Extrusion(
24 curve=GeomObject.line([0, 0, 0], [self.length(), 0, 0]),
25 start=self.width() / 2,
26 end=-self.width() / 2,
27 direction=[0, 1, 0]
28)
29

30 @Output
31 def box_edges(self):
32 return [
33 GeomObject.line([0, 0, 0], [self.length(), 0, 0]),
34 GeomObject.line([self.length(), 0, 0], [self.length(), self.width(), 0]),
35 GeomObject.line([self.length(), self.width(), 0], [0, self.width(), 0]),
36 GeomObject.line([0, self.width(), 0], [0, 0, 0])
37]
38

39 if __name__ == ’__main__’:
40 app = pg.get_scene()
41 box = SimpleBox()
42 app.add(box)

Claude Sonnet 4 generates code more closely resembling ParaPy syntax, with correct class definitions
and geometric parameter identification. However, runtime errors occur in the ParaPy GUI, including
incorrect Point type parsing for location arguments. The model lacks trained knowledge of the ParaPy
SDK and demonstrates no awareness of the CAD kernel connection underlying the framework.

6.3. Baseline Performance 44

1 from parapy.core import *
2 from parapy.geom import *
3

4

5 class SimpleBox(GeomBase):
6 """
7 A parametric box model with configurable dimensions and position.
8 """
9

10 # Input parameters
11 length = Input(10.0, validator=val.Positive())
12 width = Input(5.0, validator=val.Positive())
13 height = Input(3.0, validator=val.Positive())
14

15 # Position parameters
16 position = Input(Point(0, 0, 0))
17

18 # Optional parameters
19 centered = Input(True) # Whether the box is centered at the position
20

21 @Attribute
22 def corner_point(self):
23 """Calculate the corner point based on centering option."""
24 if self.centered:
25 return Point(
26 self.position.x - self.length / 2,
27 self.position.y - self.width / 2,
28 self.position.z - self.height / 2,
29)
30 else:
31 return self.position
32

33 @Part
34 def box(self):
35 """The main box geometry."""
36 return Box(
37 length=self.length,
38 width=self.width,
39 height=self.height,
40 position=translate(self.corner_point , "x", 0, "y", 0, "z", 0),
41)
42

43 # Additional geometric properties as attributes
44 @Attribute
45 def volume(self):
46 """Calculate the volume of the box."""
47 return self.length * self.width * self.height
48

49 @Attribute
50 def surface_area(self):
51 """Calculate the surface area of the box."""
52 return 2 * (
53 self.length * self.width
54 + self.length * self.height
55 + self.width * self.height
56)
57

58 @Attribute
59 def diagonal_length(self):
60 """Calculate the space diagonal of the box."""
61 return (self.length**2 + self.width**2 + self.height**2) ** 0.5
62

63

64 # Example usage and test cases
65 if __name__ == "__main__":
66 from parapy.gui import display
67

68 # Create a simple box instance
69 simple_box = SimpleBox(
70 length=20.0, width=10.0, height=5.0, position=Point(0, 0, 0), centered=True
71)

6.4. Knowledge Infrastructure & Semantic Search 45

72

73 display(simple_box)

These results confirm the persistent domain-specific knowledge gap discussed in section 4.3, where
models trained on open-source code and general programming examples lack exposure to specialized
frameworks like ParaPy. This limitation manifests as hallucinated syntax, violated design rules, and
failure to follow ParaPy’s grammar and semantics.

6.3.3. Educational Agent
The Educational Agent baseline uses the following prompt:

1 >>> "How can I create an L-shaped flange extrusion using the ParaPy SDK?"

Without semantic search or pedagogical prompts, both models misinterpret the educational intent
and default to code generation. LLaMa 3.1 produces explanatory text followed by code containing
hallucinated methods, incorrect class structures, and non-existent primitives. Claude Sonnet 4 generates
more detailed explanations but similarly provides code snippets with runtime errors and incorrect
SDK usage. Neither model recognizes that educational queries require documentation-grounded
explanations rather than speculative code generation.

Both models fail to provide learning-oriented support. Responses lack documentation references, omit
concept explanations, and do not guide users toward correct implementation patterns. This behavior
reinforces findings from the industrial study (subsection 4.3.1) that general-purpose models cannot
adequately support domain-specific development without targeted augmentation. Complete baseline
responses are available in subsection 12.6.1.

The following sections address these limitations through semantic search infrastructure (section 6.4),
targeted prompt engineering (section 6.5), and progressive verification tools (section 6.6).

6.4. Knowledge Infrastructure & Semantic Search
As discussed in the previous section, the primary limitation of commercial off-the-shelf LLMs lies in
their inability to reliably generate code involving domain-specific frameworks. While fine-tuning is
explicitly out of scope (see Chapter 2), two viable strategies remain: enriching the system prompt with
additional context and equipping agents with tools to retrieve external information. Both approaches
are pursued in this work.

The framework implements a semantic search engine to provide dynamic access to ParaPy-specific knowl-
edge, as introduced conceptually in subsection 5.2.3. The implementation employs theSentenceTransformers
library with the all-MiniLM-L6-v2 embedding model, which maps text into a 384-dimensional vector
space. Three distinct search engines were developed, each optimized for different information types:

• SphinxDocSearcher retrieves content from the complete ParaPy SDK documentation (version
1.14.0), including tutorials, guides, and conceptual descriptions. The indexing system parses
Sphinx-generated output and preserves semantic structure through content classification and
strategic metadata weighting.

• ExampleSearcher provides access to curated ParaPy code snippets extracted from the docu-
mentation source tree. AST-based docstring parsing generates descriptive labels, while vector
normalization ensures representational fairness between short and long examples.

• APISemanticSearcher indexes callable objects from core ParaPy libraries (core, geom, exchange,
mesh) through runtime introspection. Each entry includes qualified names, signatures, and
docstrings, with dual indexing (dot-separated and space-separated forms) to improve matching
across different query styles.

All indices support optional encryption to address data privacy requirements outlined in section 5.1.
Indices are pre-built, encrypted, and stored as JSON files to avoid repeated computational overhead.
At runtime, the Pydantic framework injects these search engines as dependencies into agent context
through dedicated dataclasses, enabling tools to query indexed content on demand.

6.5. Prompt Engineering Implementation 46

Figure 6.3: Time distribution of initialization operations across three semantic search engine classes. Model loading operations
(blue) dominate initialization time, with SphinxDocSearcher showing notably higher index loading overhead (red) compared to

the other implementations.

Runtime profiling (Figure 12.2) reveals that initialization overhead is dominated by embedding model
loading, followed by index decryption and loading. The SphinxDocSearcher exhibits the highest
overhead due to its larger index size. To minimize query latency, all engines are instantiated once
during agent startup rather than at each tool invocation. While this introduces a modest initial delay, it
significantly reduces inference-time costs by avoiding redundant processing.

Detailed implementation specifications, including filtering strategies, indexing algorithms, mathematical
formulations, and integration patterns, are provided in section 12.3. The integration of these search
engines into the agent toolset is discussed in section 6.6.

6.5. Prompt Engineering Implementation
This section details the implementation of system prompts for both agents, building on the method-
ological foundation established in subsection 5.2.2. The design adopts Anthropic’s prompt engineering
principles [79], including clear instructions, template structures, illustrative examples, chain-of-thought
reasoning, XML-like formatting, and role prompting (for a summary, see section 11.2). Both agents
share a common architectural foundation while incorporating content tailored to their distinct purposes:
code generation for the Developer Agent and pedagogical support for the Educational Agent.

System prompts operate as templates with runtime substitution. Template placeholders (marked with
$variable_name) are replaced with actual content when the agent processes a user query. This enables
dynamic injection of retrieved documentation, curated examples, and user requests while maintaining
consistent prompt structure. The substitution process employs simple Python string templates, that
merge all relevant information before feeding the complete prompt to the respective agent. Both agents
incorporate four foundational components that establish their operational framework:

Role Prompting Each agent receives a distinct identity aligned with its purpose. The Developer Agent
is positioned as a code generation assistant, while the Educational Agent functions as a learning guide
for KBE and ParaPy development. Role definitions appear at the beginning of each system prompt and
frame subsequent instructions.

Chain-of-Thought Reasoning Both agents employ multi-step reasoning strategies before generating
outputs. The Developer Agent follows: analyze → identify → plan → map → check → consider, while

6.5. Prompt Engineering Implementation 47

the Educational Agent uses: analyze → identify → determine → plan. These thinking steps are explicitly
specified in the system prompt and guide the model through structured problem decomposition.

Best Practices Configurable guidelines establish coding standards, validation strategies, and interaction
patterns. Best practices are provided through template substitution (the $best_practises placeholder)
and define agent behaviour boundaries. These guidelines serve as a baseline but can be customized for
specific organizational contexts during production deployment.

Guardrails Boundary conditions define queries outside agent scope and specify appropriate redirection
responses. Guardrails prevent agents from attempting tasks beyond their expertise or knowledge
domains.

6.5.1. Developer Agent Prompt Structure
The Developer Agent system prompt assembles multiple components through template substitution to
optimize code generation performance. The complete template is provided in section 12.4. The template
includes five runtime-substituted components:

• $documentation: The PARAPY_PRINCIPLES constant (see subsection 12.4.3) summarizes fundamen-
tal architecture, slot types, syntax patterns, and constraints. This provides conceptual grounding
before presenting code examples.

• $examples: The PARAPY_EXAMPLES constant (see subsection 12.4.3), containing curated code
snippets demonstrating ParaPy syntax patterns. These examples are distinct from the semantic
search results; they provide static pattern recognition templates embedded directly in the prompt,
focusing on core grammatical structures like Input, Attribute, and Part definitions.

• $best_practises: The DEVELOPER_BEST_PRACTISES constant (see subsection 12.4.2), which spec-
ifies implementation rules, message passing syntax, data integrity requirements, validation
strategies, and code quality standards. These guidelines establish operational boundaries for code
generation.

• $request: The user’s query, appended verbatim at runtime. May optionally include file contents
provided through the CLI application (see section 6.8).

Best Practices Implementation
The Developer Agent best practices (subsection 12.4.2) establish critical implementation constraints that
address ParaPy’s unique requirements. Key guidelines include:

• Part Grammar Restrictions: Enforces that Part methods contain only an optional docstring and
return statement, moving complex logic to Attribute slots. This addresses ParaPy’s declarative
programming model and lazy evaluation requirements.

• Message Passing Syntax: Specifies correct formatting for pass_down and map_down operations,
which are essential for ParaPy’s dependency tracking.

• Data Integrity: Prohibits in-place mutations that break dependency tracking, a critical constraint
for maintaining ParaPy’s reactive evaluation model.

• Import Practices: Explicitly prohibits wildcard imports to improve code clarity and maintainability.
• KBE Mindset: Emphasizes parametric thinking, systematic decomposition, and architecture

planning, reflecting Knowledge-Based Engineering principles of automation, reusability, and
knowledge capture.

Notably, PEP-8 compliance is not explicitly listed in the best practices, despite being an evaluation
criterion (REQ-3-3). The decision to rely on models’ pretrained knowledge of Python style guidelines
rather than explicit instruction reflects a design trade-off between prompt length and specificity. This
discrepancy is discussed further in Chapter 9.

ParaPy Principles and Examples
The PARAPY_PRINCIPLES constant (subsection 12.4.3) provides a structured explanation of ParaPy’s core
concepts, including Base and GeomBase classes, slot types, positioning mechanisms, quantification, and

6.5. Prompt Engineering Implementation 48

grammar constraints. This content functions as a condensed reference manual embedded in the prompt,
enabling the model to understand ParaPy-specific patterns without requiring extensive pretraining on
the framework.

The PARAPY_EXAMPLES section within the same constant presents seven curated code snippets demon-
strating correct syntax for Input, Attribute, and Part definitions, including advanced features like
quantification and DynamicType. These examples serve as pattern recognition templates, enabling the
model to mimic correct grammatical structures. However, positioning and orientation examples are
limited to basic transformations (translate, rotate90). The semantic search infrastructure (section 6.4)
may provide additional positioning examples if relevant to the user query, but coverage depends
on query formulation and index content. This limitation in static positioning examples potentially
contributes to observed positioning errors in generated code, as discussed in Chapter 7.

6.5.2. Educational Agent Prompt Structure
The Educational Agent system prompt prioritizes pedagogical effectiveness over code generation,
reflecting distinct design objectives. The complete template is provided in section 12.5. The Educational
Agent template includes three runtime-substituted components:

• $request: The user’s query, presented at the beginning of the prompt to establish context.
• $best_practises: The EDUCATIONAL_BEST_PRACTISES constant (see subsection 12.5.2), which

defines response guidelines, learning support strategies, scope management, and adaptive
communication patterns.

• No $documentation or $examples placeholders appear in the template. Early experiments
demonstrated that the Educational Agent achieves satisfactory performance without static code
examples embedded in the prompt, instead relying entirely on semantic search tools for dynamic
content retrieval during execution.

The Educational Agent’s reliance on runtime semantic search rather than static prompt content reflects
a fundamental design difference from the Developer Agent. As detailed in subsection 5.2.3, the
Educational Agent uses SphinxDocSearcher to access the complete ParaPy SDK documentation and
APISemanticSearcher for API references. These search engines are invoked dynamically through
tool calls when the agent requires documentation context, enabling access to significantly more
content than could be embedded in a static prompt. This architecture explains how the Educational
Agent can reference specific documentation sections and provide detailed examples without explicit
$documentation placeholders in its template.

Best Practices Implementation
The Educational Agent best practices (subsection 12.5.2) establish pedagogical guidelines that distinguish
it from the Developer Agent:

• Core Documentation and Accuracy: Emphasizes basing responses on retrieved documentation,
explicitly stating information gaps when queries exceed available knowledge, and providing
actionable steps tailored to user experience level.

• Knowledge-Based Engineering Mindset: Emphasizes declarative design capture where relation-
ships are defined through Attribute slots that automatically update when dependencies change,
rather than procedural calculation sequences that require manual recalculation. This enables
parametric models where engineering intent is preserved through ParaPy’s dependency tracking
and lazy evaluation.

• Adaptive Communication: Instructs the agent to match response complexity to user expertise,
identify prerequisite knowledge gaps, and prioritize learning paths for overwhelmed users.

• Learning Support: Normalizes learning difficulties, sets realistic expectations, and provides
focused starting points rather than comprehensive overviews.

• Scope Management: Distinguishes between ParaPy SDK capabilities and broader programming
or CAD tool questions. This complements the explicit guardrails in the system prompt; while
guardrails provide templated redirection responses for out-of-scope queries, scope management

6.5. Prompt Engineering Implementation 49

guidelines inform the agent’s reasoning about categorization and appropriate depth of response
for boundary cases.

• Practical Guidance: Prioritizes actionable advice with specific next steps, relevant code examples
from documentation, and logical follow-up topics for continued learning.

The KBE mindset guidelines assume LLMs possess understanding of caching, dependency tracking,
and lazy evaluation through semantic search retrieval of relevant documentation. The educational
prompt does not explicitly enumerate these concepts because they are covered in the indexed ParaPy
documentation that agents access through tools. When queries involve these topics, the agent retrieves
appropriate documentation sections and explains concepts based on retrieved content. The effectiveness
of this approach is evaluated in Chapter 7 and discussed in Chapter 9.

6.5.3. Prompt Engineering Impact
To demonstrate the effectiveness of enhanced system prompts, both agents were re-evaluated using the
same baseline queries from section 6.3. These results illustrate intermediate performance before tool
integration and semantic search.

Developer Agent with Prompt Engineering
For the Developer Agent, the baseline prompt "Generate a parametric model of a simple Box using the
ParaPy SDK in Python" was re-evaluated with the complete system prompt structure.

Claude Sonnet 4 (API):
1 from parapy.core import Input
2 from parapy.geom import Box, GeomBase
3

4

5 class ParametricBox(GeomBase):
6 """
7 A parametric box model with configurable dimensions.
8

9 This class creates a box geometry with user-defined width, length, and height.
10 Inherits positioning capabilities from GeomBase for easy placement and orientation.
11 """
12

13 # Input parameters for box dimensions
14 width = Input(
15 1.0,
16 validator=lambda x: x > 0,
17 label="Width",
18 doc="Width of the box in the X direction",
19)
20

21 length = Input(
22 1.0,
23 validator=lambda x: x > 0,
24 label="Length",
25 doc="Length of the box in the Y direction",
26)
27

28 height = Input(
29 1.0,
30 validator=lambda x: x > 0,
31 label="Height",
32 doc="Height of the box in the Z direction",
33)
34

35 @Part
36 def box(self):
37 """The main box geometry"""
38 return Box(
39 width=self.width,
40 length=self.length,
41 height=self.height,
42 position=self.position ,
43)

6.6. Tool Development & Deployment 50

44

45

46 if __name__ == "__main__":
47 from parapy.gui import display
48

49 # Create a parametric box with custom dimensions
50 my_box = ParametricBox(width=2.0, length=3.0, height=1.5)
51 display(my_box)

LLaMA 3.1 8B (Local):
1 from parapy.core import Base, Input, Attribute
2 from parapy.geom import Box
3

4 class SimpleBox(Base):
5 length = Input(1)
6 width = Input(1)
7 height = Input(1)
8

9 @Attribute
10 def volume(self):
11 return self.length * self.width * self.height
12

13 @Part
14 def box(self):
15 return Box(length=self.length, width=self.width, height=self.height)
16

17

18 if __name__ == ’__main__’:
19 from parapy.gui import display
20 obj = (SimpleBox(length=2, width=3, height=4))
21 display(obj)

Both models demonstrate improved adherence to ParaPy grammar and semantic conventions compared
to baseline performance. While neither implementation is fully executable, they avoid the elaborate,
hallucinated attributes and methods that characterized baseline outputs. The more concise, focused
responses indicate that targeted prompt engineering successfully guides models toward domain-specific
patterns even without tool integration or semantic search.

Educational Agent with Prompt Engineering
The Educational Agent’s intermediate performance with prompt engineering is presented in section 12.6
to avoid redundancy in the main text. Results demonstrate improved response structure and pedagogical
focus compared to baseline configurations, though functional accuracy remains limited without semantic
search access to actual documentation.

The next section describes the tool development that enables agents to access semantic search indices,
validate code syntax and runtime correctness, and perform other specialized operations that enhance
the prompt engineering foundation established here.

6.6. Tool Development & Deployment
Building on the semantic search infrastructure and prompt engineering foundations, this section
describes the tools that enable agents to retrieve domain-specific information, verify code correctness,
and enhance generation quality. Tools are organized into four functional categories corresponding to
the distinct capabilities required by each agent:

The Developer Agent tools emphasize code generation support through access to curated examples
(ExampleSearcher), API specifications (APISemanticSearcher), import suggestions, and validation
mechanisms. The Educational Agent tools prioritize pedagogical content through comprehensive
documentation access (SphinxDocSearcher) with flexible filtering by content type (tutorial, guide, API
reference). Code verification tools (syntax checking via check_syntax() and runtime validation via
run_code()) enable the Developer Agent to validate outputs before finalizing responses, implementing
the progressive verification strategy outlined in subsection 5.2.4.

6.7. Agent Implementation 51

Table 6.1: Tool Categories and Functions Summary.

Category Count Tools Primary Function
Data Retrieval
(Developer)

4 DT01-DT04 Retrieve ParaPy examples and API interface specifi-
cations

Data Retrieval
(Educational)

5 ET01-ET05 Retrieve ParaPy documentation with optional code
examples

Code Improve-
ment

2 DT05-DT06 Provide import suggestions and primitive metadata

Code Verification 2 DT07-DT08 Verify syntactic and runtime correctness

All tools follow a consistent architectural pattern separating core logic from presentation. Each tool
implements domain-specific functionality (semantic search queries, code execution, syntax validation)
and returns structured data objects. Wrapper functions transform these objects into formatted text
suitable for prompt injection, enabling both programmatic access and agent-compatible output. This
separation ensures maintainability and enables reuse across different presentation contexts. For example,
suggest_apis() returns structured APISuggestion objects containing metadata, scores, and docstrings,
while suggest_apis_text() formats these suggestions as readable text for agent consumption.

A complete tool inventory with technical specifications is provided in subsection 12.7.4. Detailed imple-
mentation walkthroughs for representative tools, including the API reference search (suggest_apis),
runtime verification (run_code), and documentation search (search_educational), are presented in
section 12.7. Full implementations with inline documentation are accessible via the tools subpackage.

The integration of these tools with system prompts, structured outputs, and semantic search dependen-
cies forms the complete agent implementation described in the next section.

6.7. Agent Implementation
This section synthesizes the semantic search infrastructure (section 6.4), system prompts (section 6.5),
and tool suite (section 6.6) into fully operational agents within the Pydantic AI framework. Both agents
are instantiated via factory functions that configure model selection, system prompts, tool access, and
structured output schemas based on agent role.

The Developer Agent receives access to tools DT01 through DT08, covering data retrieval from curated
examples and API references, import suggestions, and progressive verification through syntax checking
and runtime validation. Outputs conform to the DevOutput structure, which enforces inclusion
of descriptive explanations, completed code, and documentation of problems encountered during
execution. An output validator automatically invokes run_code() to verify runtime correctness before
finalizing responses. If validation fails, a ModelRetry exception prompts code revision within configured
retry limits. Complete output schema specifications, validation mechanisms, and runtime instantiation
details are provided in section 12.8.

The Educational Agent accesses tools ET01 through ET05 for documentation retrieval, plus DT01 and
DT03 for API reference and example searches. Outputs follow the EduOutput structure, requiring
direct answers, optional step-by-step guides, relevant code examples with documentation references,
suggested next steps, and concluding invitations for follow-up questions. This structure enforces
pedagogical completeness while maintaining flexibility for varied query types. Unlike the Developer
Agent, the Educational Agent does not employ output validation, as responses prioritize pedagogical
clarity over executable completeness.

Both agents operate at temperature 0.0 for reproducibility, following the deterministic configuration
outlined in section 6.1. Complete agent configurations, including dependency injection specifications
and retry behavior, are implemented in the agents subpackage.

https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/tools
https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/agents

6.7. Agent Implementation 52

6.7.1. Performance Demonstration
The following examples demonstrate fully integrated Developer Agent performance using the baseline
prompt from section 6.3. Both models now generate syntactically correct, runtime-executable ParaPy
code adhering to SDK grammar and best practices, representing substantial improvement over baseline
performance. Educational Agent results exhibiting similar improvements are provided in section 12.6,
where both models demonstrate pedagogically structured responses grounded in retrieved documen-
tation with correct API references and implementation guidance. Comprehensive evaluation across
varying complexity levels for both agents is presented in Chapter 7.

1 >>> "Generate a parametric model of a simple Box using the ParaPy SDK in Python."

Developer Agent: LLaMa 3.1 8B (Local)
1 from parapy.core import Base, Input, Attribute , Part
2 from parapy.geom import Box
3

4

5 class ParamBox(Base):
6 width = Input(1)
7 height = Input(1)
8 length = Input(1)
9

10 @Attribute
11 def area(self):
12 return self.width * self.height
13

14 @Attribute
15 def volume(self):
16 return self.area * self.length
17

18 @Part
19 def box(self):
20 return Box(pass_down="width, height, length")
21

22

23 if __name__ == ’__main__’:
24 from parapy.gui import display
25 obj = (Box(width=2, height=3, length=4))
26 display(obj)

Developer Agent: Claude Sonnet 4 (API)
1 from parapy.core import Base, Input, Attribute , Part
2 from parapy.geom import Box
3

4

5 class ParametricBox(Base):
6 """A parametric box model with configurable dimensions and properties."""
7

8 # Required input for width
9 width = Input()

10

11 # Optional inputs with default values
12 length = Input(2.0)
13 height = Input(1.0)
14

15 # Optional color input
16 color = Input("blue")
17

18 @Attribute
19 def volume(self):
20 """Calculate the volume of the box."""
21 return self.width * self.length * self.height
22

23 @Attribute
24 def surface_area(self):
25 """Calculate the surface area of the box."""
26 return 2 * (self.width * self.length +
27 self.width * self.height +

6.8. CLI Application Design 53

28 self.length * self.height)
29

30 @Part
31 def box(self):
32 """The main box geometry."""
33 return Box(width=self.width,
34 length=self.length,
35 height=self.height,
36 color=self.color)
37

38

39 if __name__ == ’__main__’:
40 from parapy.gui import display
41

42 # Create an instance with required width parameter
43 obj = ParametricBox(width=3.0)
44 display(obj)

Both agents are exposed to users through the CLI application described in the next section, which
provides model selection, parameter configuration, and file upload capabilities while maintaining the
single-turn interaction mode defined by the framework’s architectural constraints.

6.8. CLI Application Design
To make the agentic framework more accessible to users developing KBE applications, a Command
Line Interface (CLI) application was developed on top of the framework to enhance user interaction
and to allow the copilot tool to run alongside the codebase under development. Although the CLI
does not introduce additional capabilities, such as codebase awareness, file read/write permissions, or
IDE integration, it significantly improves usability by abstracting away tedious setup steps, preventing
runtime errors, and reducing initialization time. The application provides a structured configuration
workflow that guides users through mode selection (Developer or Educational), model provider
configuration (local via Ollama or remote via approved API providers), and optional model settings
adjustments. Configurations are persisted locally, enabling streamlined quick-start functionality in
subsequent sessions. A visual overview of the CLI’s logical flow and communication with the underlying
framework is presented in Figure 12.3.

During interactive sessions, users can leverage several utility commands to enhance their workflow.
The CLI supports dynamic mode switching (/mode), model changes (/model), settings adjustment
(/settings), and application restart (/restart) without terminating the session. A particularly useful
feature is the /file command, which appends file contents directly to the agent’s context, enabling
analysis of specific code files. File contents persist across the session until explicitly cleared via the
/clear command. All agent interactions are managed through a dedicated function that handles error
propagation and formats structured agent outputs into human-readable console text.

With the completion of the Command Line Interface, the framework achieves full end-to-end functionality:
from model configuration and agent interaction to user-facing deployment. The CLI operationalizes
the framework for practical use while exemplifying its modular design philosophy, allowing seamless
integration of local and remote models within a controlled environment. Importantly, all interactions
follow a single-turn model: previous messages are neither recorded nor added to the agent’s context for
subsequent runs, maintaining stateless operation aligned with the framework’s design. Comprehensive
technical details of the CLI implementation, including the complete interaction flow, command
specifications, and underlying functions, are provided in section 12.9. Having now detailed the
architecture, implementation, and user interaction layers of the agentic framework, the following section
concludes the chapter by reflecting on the key design outcomes, their alignment with the research
objectives, and their implications for subsequent evaluation.

6.9. Summary & Conclusion
This chapter presented the design and implementation of a dual-agent framework for ParaPy SDK
development, directly addressing the first two research objectives introduced in Chapter 1. Through
a structured design process encompassing LLM deployment, knowledge infrastructure, prompt

6.9. Summary & Conclusion 54

engineering, tool development, and user interface design, the framework delivers a solution to the
challenges of domain-specific code generation within Knowledge-Based Engineering contexts. The
specific requirements addressed in this chapter are summarized in Table 6.2.

Table 6.2: Requirements Traceability Matrix for research objectives 1 and 2.

Req. Implementation Reference

REQ-1-1 Custom Agent wrapper with unified local/API deployment supporting Ollama and
allowed API providers, accessible through the CLI

section 12.1

REQ-1-2,
REQ-1-3

Developer Agent with structured output (DevOutput), comprehensive toolset (DT01–
DT08), semantic search integration, and ParaPy-specific prompt engineering

section 6.4,
6.5, 6.6, 6.7

REQ-2-1 Syntax verification via check_syntax() tool and ParaPy-specific prompt engineering
with SDK examples and best practices

section 6.5,
6.6

REQ-2-2 Subprocess-based run_code() execution with mandatory output validation and ParaPy-
specific prompt engineering with SDK examples and best practice

section 6.5,
6.6

REQ-2-3 Semantic search infrastructure through ExampleDocSearcher & APISemanticSearcher
and associated tools, iterative refinement via ModelRetrymechanism

section 6.4,
6.6

Baseline experiments (section 6.3) established that both local (LLaMa 3.1) and API-based (Claude
Sonnet 4) models exhibit fundamental limitations when applied to domain-specific frameworks
without additional context, manifesting as syntax hallucinations and violations of ParaPy’s declarative
programming model. Enhanced prompt engineering (section 6.5) improved structural coherence
but proved insufficient to eliminate hallucinated method calls. The full framework implementation
(section 6.7), integrating semantic search, domain-specific tools, and output validation, successfully
generated syntactically correct, runtime-executable ParaPy code in single-shot interactions, representing
substantial improvement over baseline performance.

Beyond fulfilling the stated requirements, the chapter contributes several reusable technical compo-
nents: (i) a modular, encryption-capable semantic search infrastructure with specialized engines for
documentation, examples, and API references; (ii) a consistent tool architecture separating core logic
from presentation; and (iii) a user-friendly CLI application abstracting framework complexity. These
components are generalizable to other domain-specific code generation contexts beyond ParaPy.

The framework does exhibit certain limitations that warrant acknowledgment. It requires re-indexing
for SDK updates, introduces security considerations through subprocess execution, and operates in
single-turn mode without conversation history. More significantly, the performance improvements
demonstrated in this chapter are based on illustrative examples rather than systematic evaluation.
Quantitative assessment across metrics such as correctness rates, token efficiency, and latency is reserved
for Chapter 7.

This chapter establishes the technical foundation for the evaluation phase. The next chapter systematically
evaluates the framework’s performance through controlled experiments, assesses alignment with defined
requirements, and analyses behaviour across varying complexity levels to determine whether the
framework meets quality thresholds necessary for practical deployment in industrial KBE development
contexts.

7
Verification & Validation

This chapter evaluates the dual-agent framework described in Chapter 6 against the requirements and
objectives outlined in Chapter 2. A comprehensive verification and validation strategy is applied to
assess whether the framework achieves the intended improvements in KBE application development.
The outcomes presented in this chapter serve as the foundation for the conclusion (Chapter 8) and
recommendations (Chapter 9) chapters, where the usability and applicability of the framework will be
critically assessed. It is in those chapters that a final judgment will be made as to whether the research
gap identified in Chapter 2 has been (partially) addressed by the proposed approach.

To assess the framework’s performance and determine whether the specified requirements have been
met, a four-pronged evaluation strategy is employed. Building on the foundations laid in Chapter 5, the
specific implementation of each verification and validation procedure is first described in section 7.2,
with the aim of promoting transparency and reproducibility. Table 7.1 provides a summary and
reference overview, mapping each requirement to its corresponding evaluation method and the section
in which it is addressed. The chapter then proceeds with the following evaluation components:

1. Unit Testing (section 7.3): This initial verification approach tests core components (e.g., wrappers,
functions) to ensure correctness, stability, and future maintainability of the codebase.

2. Automated Evaluation (section 7.4): Using the Evals package by PydanticAI, this step evaluates
the agent’s output in terms of syntax validity, runtime correctness, response accuracy, and code
quality.

3. Manual Case Studies (section 7.5): To reinforce findings from the automated evaluation and
address potential weaknesses, this section presents a case study from industrial settings. It
includes manual validation of runtime behaviour, syntax and functional correctness, alongside
expert reviews of code quality.

4. User Testing (section 7.6): This final approach focuses on verifying whether REQ-4-1, REQ-4-2,
and REQ-4-3 are met in real-world usage. Through testing with actual users from industry, it is
assessed whether the copilot tool effectively supports KBE application development in practice.

Drawing from all four evaluation components, particularly the user testing results, a synthesis of
findings and key conclusions is presented in section 7.7. A Requirements Traceability Matrix is included
at the end of the chapter in Table 7.11, summarizing the extent to which each requirement has been
fulfilled based on the testing strategies outlined in Table 7.1.

7.1. Assumptions & Limitations
This section addresses the key assumptions and limitations encountered during the verification and
validation process, which should be considered when interpreting the results presented in this chapter.

Methodological Assumptions
• Determinism and Reproducibility: Despite setting temperature to 𝑇 = 0.0 for all evaluations,

fully deterministic behaviour cannot be guaranteed due to inherent stochasticity in sampling

55

7.1. Assumptions & Limitations 56

mechanisms and floating-point operations. Minor output differences may occur across repeated
runs.

• Judge Model Selection: The LLMJudge framework employs models with varying parameter counts.
Qwen3 operates with only 32 billion parameters, below the preferred threshold for complex
reasoning tasks, potentially impacting assessment reliability. LLaMa 3.1 – 8B was excluded from
self-reflection due to insufficient reasoning capacity.

• Enhanced Prompting for Smaller Models: The LLaMa 3.1 – 8B model received an extended
system prompt during automated evaluations to improve schema adherence. This guidance was
not provided to Claude Sonnet 4, introducing methodological inconsistency that may affect direct
comparability.

Table 7.1: Requirements Verification Test Plan

Req. ID Test Scenarios Success Criteria Results

REQ-1-1 By implementation, not covered in this chapter Local deployment via Ollama and API deploy-
ment via allowed providers

N/A

REQ-1-2 Evaluation Cases (developer) & Case Studies us-
ing a comprehensive suite of automatic evaluators
for syntax correctness, runtime correctness, LLM-
asserted quality and automated/expert reviewed
code quality score

Minimum 85% successful completion rate for
skeleton code structures

section 7.4,
7.5

REQ-1-3 Evaluation Cases (developer) & Case Studies us-
ing a comprehensive suite of automatic evaluators
for syntax correctness, runtime correctness, LLM-
asserted quality and automated/expert reviewed
code quality score

Minimum 75% successful completion rate for gen-
erating class definitions from natural language
specifications

section 7.4,
7.5

REQ-2-1 Automated syntax checking through
check_syntax and SyntaxEvaluator

Generated code shall achieve syntactic correctness
in 95% of test scenarios

section 7.4,
7.5, 7.6

REQ-2-2 Automated runtime checking through run_code
and RuntimeEvaluator

Generated code shall execute without runtime
errors in 80% of test scenarios

section 7.4,
7.5, 7.6

REQ-2-3 Manual comparison of functional correctness of
Case Studies and User Testing against reference
solutions. Automated testing by LLM in Evalua-
ton Cases (soft)

Generated code shall achieve intended function-
ality in 70% of test scenarios

section 7.5,
7.6

REQ-3-1 Comparison of case studies w.r.t manual solution
and test cases in user testing

Primary performance improvements introduced
by the co-pilot tool shall be measured in develop-
ment time reduction

section 7.6

REQ-3-2 Manual comparison of functional equivalence of
Case Studies and User Testing against reference
solutions

Functional equivalence to manually completed
reference solutions in 85% of test scenarios

section 7.5,
7.6

REQ-3-3 Manual expert review, or automated review
through QualityEvaluator for evaluation cases,
case studies and code generated from user testing

Expert quality score of 7.5 out of 10, using a stan-
dardized rubric covering semantic correctness
(40%), maintainability (35%), and PEP-8 compli-
ance (25%)

section 7.4,
7.5, 7.6

REQ-3-4 Case studies and user testing by implementation Composite performance score of normalized de-
velopment time improvement (40%), functional
correctness rate (35%), and expert quality score
(25%), with a minimum composite score of 75%

section 7.5,
7.6

REQ-4-1 Time metrics of case studies (partially) and user
testing

Minimum development time reductions of 40%
for novice users and 25% for expert users

section 7.5,
7.6

REQ-4-2 Time metrics (development time) and coding met-
rics (functional correctness and quality score) of
user testing

Composite score improvements of minimum 30%
for novice users and 15% for expert users

section 7.6

REQ-4-3 Time & code metrics and coded questions of user
testing

Novice task completion rates equivalent to 80% of
expert baseline performance and a 50% reduction
in domain-specific knowledge errors compared
to unassisted novice performance

section 7.6

User Testing Limitations
• Task Comprehension as Part of Timed Sessions: The 20-minute sessions included time for

task comprehension, conflating understanding with execution efficiency. This may disadvantage
participants less familiar with the problem domain, though it reflects realistic usage scenarios.

• Sample Size and Composition: Nine participants represent a limited sample size, restricting

7.2. Test Framework Foundations 57

statistical generalizability. ParaPy employees may introduce familiarity bias, and the controlled
environment may have created social desirability effects.

• Test Environment Constraints: Testing under time pressure in monitored settings may not
represent typical development workflows. Artificial constraints may have influenced decision-
making patterns, particularly regarding code review depth.

Framework Limitations
• Educational Agent Misuse: During user testing, several participants used the Educational Agent

to generate production code rather than relying on the Developer Agent, significantly impacting
code quality metrics in affected cases.

These assumptions and limitations should be considered when evaluating the framework’s compliance
with specified requirements and when interpreting findings presented in Table 7.11. They also inform
recommendations for future work in Chapter 9.

7.2. Test Framework Foundations
This section outlines the specific implementation of the verification and validation (V&V) methods
employed in the remainder of this chapter. While Chapter 5 introduced the conceptual foundations of
the evaluation strategy, the current section—and the chapter as a whole—focuses on how these methods
have been operationalized in practice. In essence, this section serves as a design overview of the V&V
suite, preceding the presentation and discussion of results in the subsequent sections. To reflect this
role, the structure of this section mirrors the structure of the chapter itself.

Unless otherwise indicated, the full implementation of each method is included here. Additional
supporting material, including outputs and logs too extensive for the main text, is made available in
Part II and the appendices. The complete V&V codebase is accessible via the project repository on
GitHub.

7.2.1. Unit Testing
Unit testing ensures that core components behave as intended and that newly added features do
not compromise existing framework functionality. While unit tests do not directly address research
requirements, they form the foundational verification layer, as further testing is meaningful only when
core components function correctly. Moreover, unit testing represents standard software engineering
practice that prevents breaking changes in production environments.

The framework employs pytest with a test suite structured to mirror the src folder hierarchy, enabling
efficient execution of targeted tests in response to changes within specific sub-packages. Figure 13.1
illustrates the decision tree for test prioritization and selection based on code changes. Tests employ
patching to isolate functionality and snapshot testing to verify exact output matches against reference
implementations.

Because the framework relies heavily on large language models, traditional integration testing becomes
impractical due to non-deterministic model outputs. The automated evaluations of the next section fill
this gap through evaluation methods specifically designed for LLM-based systems. The full test suite
and coverage report for the current framework (version 0.4.0) are detailed in section 7.3. Complete
implementation specifications, including concrete test examples, patching patterns, snapshot testing
methodology, and the TestModel feature, are provided in section 13.1.

7.2.2. Automated Evaluation
The automated evaluation implements the framework described in section 5.4, executing both agents
across comprehensive test scenarios. Test cases are stratified by complexity and task type, with complete
specifications provided in section 13.4 and section 13.5. Evaluation employs two model configurations:
Claude Sonnet 4 (API-based) and LLaMa 3.1 – 8B (local via Groq API for accelerated testing, functionally
equivalent to Ollama deployment). This dual-model approach enables assessment of behavioral
differences between large API-accessible models and smaller local execution models.

https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop

7.2. Test Framework Foundations 58

Evaluation categories implement the four-dimensional assessment methodology: syntax validation via
check_syntax(), runtime verification via run_code(), functional assessment via LLMJudge, and quality
scoring via the automated quality framework. Structural conformance additionally validates output
adherence to predefined schemas (DevOutput, EduOutput).

The LLMJudge and automated quality frameworks are detailed in subsection 7.2.3 and subsection 7.2.4
respectively, including specific model configurations, scoring implementations, and evaluation execution
protocols. Results are presented in section 7.4.

7.2.3. Large Language Model as Judge Framework
This section details the specific implementation of the LLM Judge framework described in section 5.4.
Table 7.2 presents the experiment configuration, specifying agent models, judge models, and tempera-
ture settings across eight evaluation scenarios encompassing both self-assessment and independent
evaluation.

Table 7.2: Experiment Configuration Overview

Nr. Experiment Agent
Model

LLM Judge
Model

Agent
Temperature

LLM Judge
Temperature

1 self-reflection-claude claude-4-sonnet-20250514 claude-4-sonnet-20250514 0.0 0.0
2 self-reflection-llama3.1 meta:llama-3.1-8b NA 0.0 0.0
3 claude-gpt-variance claude-4-sonnet-20250514 openai:gpt-oss-120b 0.0 0.0
4 llama3.1-gpt-variance meta:llama-3.1-8b 0.0 0.0
5 claude-qwen3-variance claude-4-sonnet-20250514 qwen:qwen-3-32b 0.0 0.0
6 llama3.1-qwen3-variance meta:llama-3.1-8b 0.0 0.0
7 claude-llama3.3-variance claude-4-sonnet-20250514 meta:llama-3.3-70b-versatile 0.0 0.0
8 llama3.1-llama3.3-variance meta:llama-3.1-8b 0.0 0.0

Three judge models were selected from Groq’s approved provider list: GPT-OSS-120B, LLaMa 3.3 – 70B,
and Qwen3 – 32B. While Qwen3 – 32B falls below the preferred parameter threshold, it was included
due to absence of higher-capacity alternatives within the approved environment. LLaMa 3.1 – 8B was
excluded from self-assessment (experiment 2) due to insufficient reasoning capacity for evaluation tasks.
While comprehensive multi-dimensional studies varying agent models, judge models, and temperature
settings could provide deeper insights, computational and financial resource constraints necessitated
focus on the most critical evaluation comparisons.

The complete judge system prompts implementing the rubrics defined in section 5.4 are provided in
section 13.6 and section 13.7. Detailed rationale for model selection, temperature configuration, and
requirement mappings for each evaluation criterion are documented in section 13.2.

7.2.4. Code Quality Framework
The automated code quality framework operationalizes REQ-3-3 through the three-dimensional
assessment methodology described in section 5.4. Implementation employs industry-standard Python
libraries: mypy for type checking, pylint for logical correctness, radon for maintainability metrics, and
pycodestyle for PEP-8 compliance. Table 7.3 presents the complete scoring methodology, including
tools, scoring rules, and dimension weights.

Tool configurations include ParaPy-specific adjustments to reduce false positives. For mypy, custom
arguments handle dynamic ParaPy features and missing type stubs. For pylint, specific error codes
triggered by unsupported ParaPy constructs are excluded from scoring. The final quality score combines
normalized sub-scores through weighted averaging as specified in MSC-3-3. Complete implementation
specifications, including tool configurations, scoring formulas, and ParaPy-specific adjustments, are
provided in section 13.3.

7.2.5. Case Studies
The case study methodology described in section 5.4 is implemented through evaluation of a Turbine
Rear Structure (TRS) demonstration application provided by ParaPy. This application was selected
for its comprehensive coverage of ParaPy capabilities, including geometric primitives, translation and

7.2. Test Framework Foundations 59

Dimension Sub-metric Tool Scoring Rule Weight

Semantic Correct-
ness

Type Errors (𝑁𝑡𝑦𝑝𝑒) mypy
Maximum: 5 points
Deduction: -0.5 pts per error 40%

Logical Errors
(𝑁𝑙𝑜𝑔𝑖𝑐)

pylint
Maximum: 5 points
Deduction: -1.0 pts per error

Maintainability Maintainability In-
dex (MI)

radon Maximum: 100 points (MI) 35%

Cyclomatic Com-
plexity (CC)

radon
Maximum: 3 points
Tiered Scoring:
max(0, 3 − ⌊𝐶𝐶/5⌋)

PEP-8 Compli-
ance

Style Violations per
100 LOC (𝑣100)

pycodestyle Maximum: 10 points 25%

LOC: Lines of Code

Table 7.3: Code Quality Scoring Framework

orientation operations, boolean operations, and meshing for FEM analysis, ensuring broad evaluation
of the agent’s accessible knowledge base (section 6.4).

Skeleton code for completion tasks was derived directly from the expert implementation by stripping
implementation logic from major attributes and components while removing non-essential helper
functions. This approach minimizes variance relative to the reference solution, enabling controlled
comparison of agent-generated versus expert-developed implementations.

Scoping of the required effort for manual completion of the case study was established through
consultation with ParaPy engineers:

• Expert ParaPy developer (daily SDK experience): approximately 4 hours
• Proficient ParaPy user (typical engineer): approximately 8 hours
• Programming-proficient but ParaPy-inexperienced developer: approximately 2 days

Based on these estimates, the baseline temporal effort is conservatively set at 8 hours.

The evaluation protocol applies the automated assessment pipeline (section 7.4) for syntax, runtime, and
quality scoring, supplemented by manual functional analysis comparing generated implementations
against the expert reference at both system and component levels. Expert review by ParaPy employees
employs the rubric defined in Appendix C. For code quality benchmarking, the expert solution is
assigned a reference score of 10 as the highest achievable standard. Complete case study results,
including variant analysis, functional correctness assessment, and code quality comparisons, are
presented in section 7.5. The demonstration application source code and generated outputs are available
in the case_study directory on GitHub.

7.2.6. User Testing
The user testing protocol described in section 5.4 was implemented through controlled sessions with nine
industry participants from GKN Aerospace Sweden and ParaPy B.V. This section details the participant
composition, test case specifications, and data collection procedures employed during evaluation.

Participants
Nine participants took part in the user testing sessions, representing diverse professional backgrounds
across aerospace engineering and software development. All participants are academically trained
in technological fields but vary in Python programming experience, ParaPy SDK proficiency, and
CAD software familiarity. The ParaPy employee subset includes developers involved in SDK platform
development yet possessing limited KBE application development experience, ensuring expertise

https://github.com/ErnestoHof/parapy_copilot/tree/develop/reporting/v_and_v_case_study

7.2. Test Framework Foundations 60

stratification within the sample. Prior to sessions, participants reviewed and signed consent forms
granting permission to use collected data for research purposes and anonymous presentation. The
consent form is available in section B.2.

Test Cases

(a) Expert reference solution for TC1 (Aircraft Mounting Bracket). (b) Expert reference solution for TC2 (Y-Pipe Connector).

Figure 7.1: Expert reference solutions for TC1 and TC2 rendered in the ParaPy GUI. These serve as functional correctness
benchmarks for user testing evaluation.

Two mutually exclusive test cases of comparable difficulty were developed: an aircraft mounting bracket
geometry and a Y-pipe connector geometry. Each test case is provided as skeleton code requiring
implementation completion within 20-minute timed sessions. Participants were randomly assigned to
Group A or Group B, completing one case manually and one with AI assistance in counterbalanced
order to mitigate ordering effects. Complete test case specifications and expert solutions are available in
the user_testing folder on GitHub. Interview scripts are provided in section B.3. Figure 7.1 shows the
expert solutions of the two test cases rendered in the ParaPy GUI.

Test Case 1 (TC1): Aircraft Mounting Bracket

TC1 requires development of an L-shaped mounting bracket for aircraft avionics systems featuring
mounting holes, lightening holes for weight reduction, and structural stiffener ribs. The implementation
tests geometric translation and orientation, primitive selection, and advanced boolean operations while
enforcing aerospace edge distance requirements (2.5D rule). Key skeleton code structure:

1 class AircraftBracket(GeomBase):
2 mounting_hole_diameter = Input()
3 base_thickness = Input()
4 flange_height = Input()
5 flange_length = Input()
6

7 @Attribute
8 def mounting_hole_positions(self) -> Sequence[Position]:
9 """TODO: Apply 2.5D rule"""

10 pass
11

12 @Part
13 def flange(self) -> ...:
14 """TODO: L-shaped solid with holes"""
15 pass

Test Case 2 (TC2): Y-Pipe Connector

TC2 requires development of a Y-shaped pipe connector for fluid systems with configurable branch
angles and consistent wall thickness. While comparable in complexity to TC1, it emphasizes boolean
operations over positioning tasks, requiring smooth junction transitions and proper pipe cutting
operations. Key skeleton code structure:

1 class PipeConnector(GeomBase):
2 inner_diameter = Input()
3 wall_thickness = Input()
4 branch_angle = Input()
5

6 @Part

https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/user_testing

7.3. Unit Testing Results 61

7 def inlet_pipe(self) -> ThinWalledPipe:
8 """TODO: Base inlet pipe"""
9 pass

10

11 @Part
12 def solid_y_connector(self) -> ...:
13 """TODO: Merged Y-connector with cut pipes"""
14 pass

Data Collection and Functional Correctness Scoring
Session data comprises three categories of metrics. Temporal metrics capture completion time, execution
time, and debugging duration. Productivity metrics quantify lines of code written and features
implemented, where a feature is defined as any class subcomponent (method, attribute, or part)
executing without error. Quality metrics include ParaPy-specific error counts, automated quality scores
from the code quality framework, and functional correctness assessed through comparison with expert
solutions.

Functional correctness evaluation compares participant implementations against expert reference
solutions. Evaluation employs structured rubrics assessing both component-level and system-level
functionality. Each rubric criterion receives a binary score: 1 point if the criterion is satisfied, 0 points if
not. These binary scores are then multiplied by predefined weights and summed to produce a final
correctness percentage.

For TC1 (Aircraft Mounting Bracket), the rubric evaluates 15 criteria across five subcomponents:
base flange construction, rib implementation, mounting hole placement, lightening hole placement,
and boolean operations. All hole-related criteria include compliance with the 2.5D aerospace edge
distance rule. For TC2 (Y-Pipe Connector), the rubric evaluates 13 criteria across six subcomponents:
outer diameter calculation, thin-walled pipe implementation, inlet pipe construction, two outlet pipe
constructions, and boolean solid operations. Complete rubric specifications with criterion weights are
provided in section B.4.

7.3. Unit Testing Results
Table 7.4 presents the test coverage scores and associated tests used to verify the base implementation of
the framework. A total coverage score of 76% is achieved, with all tests passing in the current version
0.4.0 of the framework. This is considered an acceptable result, particularly given that the core
functionalities, defined as the agent core, model wrapper, semantic search engine, and tool framework,
each achieve close to 100% test coverage. In contrast, secondary components such as the CLI application
attain lower coverage.

Although the CLI is important for eventual user experience and adoption in both academic and industrial
contexts, it does not reflect core architectural decisions or influence the design principles underlying the
framework. As such, it is considered of lower academic relevance. Nonetheless, these components are
still tested and covered to enhance confidence in the framework and to support long-term maintainability.

The evaluator package warrants special attention. This package implements the four evaluation dimen-
sions employed throughout the chapter: syntax validation via check_syntax(), runtime verification
via run_code(), functional assessment via the LLM Judge framework, and quality scoring via the
automated code quality framework. While independent of the core framework functionality and not
affecting runtime performance, verification through testing remains essential. These evaluators are
used extensively in subsequent sections for automated evaluation (section 7.4), case study assessment
(section 7.5), and user testing analysis (section 7.6). The full coverage reports can be accessed in the
coverage directory on GitHub.

https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/coverage

7.4. Automated Evaluation 62

Component Coverage Breakdown
Overall Coverage: 76% Tests Run: 716/716
Last Run: 2025-10-17 09:41 Build: 0.4.0

Component Coverage Tests

Agent Core 100% (59 tests)

Data Types 84% (NA*)

Model Wrapper 100% (15 tests)

Prompt Engineering 72% (NA*)

Semantic Search Engine 99.4% (62 tests)

Tool Framework 92% (253 tests)

CLI Application 51% (192 tests)

Utility Package 99% (73 tests)

Evaluator Package 77% (62 tests)
* – These functionalities are tested within the dedicated sub-packages that use them, not separately.

Table 7.4: Test Coverage Dashboard - Framework Components

7.4. Automated Evaluation

Table 7.5: Summary statistics of performance metrics from automated evaluation across agent types and models.

Agent Type Model Input Tokens Output Tokens Runtime (s) Requests Tool Calls

Developer claude_sonnet_4 146234 ± 97068 9828 ± 8397 141.79 ± 93.02 12.2 ± 5.5 10.7 ± 4.6
Developer llama_3.1_8b 75858 ± 166117 1643 ± 4205 32.23 ± 38.20 6.3 ± 3.0 4.4 ± 3.6
Educational claude_sonnet_4 18835 ± 5874 1451 ± 326 31.12 ± 5.16 3.3 ± 0.7 4.4 ± 1.4
Educational llama_3.1_8b 3569 ± 2723 109 ± 112 1.02 ± 0.32 1.1 ± 0.9 0.6 ± 0.5

This section presents the automated evaluation results for both agents using the test cases from Table 13.2
and Table 13.3. The analysis assesses whether requirements REQ-1-2, REQ-1-3, REQ-2-1 through REQ-
2-3, and REQ-3-3 are satisfied within the scope of automated testing. Extended results are available in
Appendix D.

Table 7.5 and Figure 7.2 summarize usage patterns across both agents and models. Claude Sonnet 4
consistently consumes more resources than LLaMa 3.1 8B, particularly in token usage (Figure 7.2c).
Since language models process text through sequential operations, higher token counts directly increase
computational requirements and runtime (Figure 7.2a). Tool usage differs between agents as well. The
Developer Agent calls tools more frequently than the Educational Agent because it iteratively refines
code based on validation feedback from run_code and check_syntax tools. The Educational Agent
typically produces responses in a single pass without requiring code validation cycles.

7.4.1. Developer Agent
Table 7.6 presents performance metrics for the Developer Agent across the four evaluation dimensions:
syntactic correctness, runtime correctness, functional quality (assessed by LLMJudge), and overall code

https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/agents
https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/dtypes
https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/models
https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/prompts
https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/semantic_search_engine
https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/tools
https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/ui
https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/src/utils
https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/evals

7.4. Automated Evaluation 63

de
ve

lop
er-

cla
ud

e_
son

ne
t_4

de
ve

lop
er-

lla
ma_

3.1
_8

b

ed
uc

ati
on

al-
cla

ud
e_

son
ne

t_4

ed
uc

ati
on

al-
lla

ma_
3.1

_8
b

0

20

40

60

80

100

120

140

Av
er

ag
e

R
un

tim
e

(s
ec

on
ds

)

141.8

32.2 31.1

1.0

(a) Average runtime per case.

de
ve

lop
er-

cla
ud

e_
son

ne
t_4

de
ve

lop
er-

lla
ma_

3.1
_8

b

ed
uc

ati
on

al-
cla

ud
e_

son
ne

t_4

ed
uc

ati
on

al-
lla

ma_
3.1

_8
b

0

2

4

6

8

10

Av
er

ag
e

To
ol

 C
al

ls

10.7

4.4 4.4

0.6

(b) Average number of tool calls per run (developer and educational)

de
ve

lop
er-

cla
ud

e_
son

ne
t_4

de
ve

lop
er-

lla
ma_

3.1
_8

b

ed
uc

ati
on

al-
cla

ud
e_

son
ne

t_4

ed
uc

ati
on

al-
lla

ma_
3.1

_8
b

0

25000

50000

75000

100000

125000

150000

Av
er

ag
e

To
ke

ns

Input Tokens
Output Tokens

(c) Average number of total tokens per run, split between input and
output tokens.

de
ve

lop
er-

cla
ud

e_
son

ne
t_4

de
ve

lop
er-

lla
ma_

3.1
_8

b

ed
uc

ati
on

al-
cla

ud
e_

son
ne

t_4

ed
uc

ati
on

al-
lla

ma_
3.1

_8
b

0

2

4

6

8

10

12

Av
er

ag
e

R
eq

ue
st

s

12.2

6.3

3.3

1.1

(d) Average number of requests per run.

Figure 7.2: Usage metrics from the automated evaluations of both the Developer and Educational Agents, comparing the large
Claude Sonnet 4 model—representative of API-based usage—with the smaller LLaMa 3.1 – 8B model, representative of local

execution environments.

quality (from the automated framework), and additionally structured output production. Claude Sonnet
4 substantially outperforms LLaMa 3.1 8B across all metrics. The smaller model struggled particularly
with tool-calling schema adherence despite its 128K token context window, frequently limiting itself
to basic functions like run_code and check_syntax or failing to call tools entirely. This restricted tool
engagement prevented effective use of the knowledge framework and contributed to high failure rates,
suggesting that smaller models lack the capacity to generalize across multiple structured tool schemas.

Table 7.6: Summary evaluation statistics for Developer Agent automated evaluation.

Model isinstance % Syntax % Runtime % Quality Judge Avg N
Claude Sonnet 4 86.1 86.1 77.8 7.88 4.13 36
LLaMa 3.1 - 8B 41.7 55.6 50.0 6.10 2.30 36

The quality analysis (Figure 7.3) reveals that while only Claude Sonnet 4 meets the overall quality
threshold, both models demonstrate strong semantic correctness, with LLaMa consistently scoring
above 7.5. Most quality deductions stem from maintainability and PEP-8 compliance rather than logical
correctness, suggesting that external formatting tools could address these deficiencies in use cases
prioritizing functional accuracy. The LLMJudge evaluation (Figure 7.4) confirms Claude’s superiority
across all dimensions while identifying error handling as a universal weakness. This finding has
significant implications: while evaluation cases are stand-alone, production KBE applications require
robust error handling in production. Self-assessment results (Figure 7.4b) show no strong bias, with
Claude often rating its own outputs slightly lower than independent judges. The following section
complements these quantitative metrics through visual inspection of generated ParaPy geometries,

7.4. Automated Evaluation 64

Isinstance Check Syntax Check Runtime Check
0

20

40

60

80

100

Pa
ss

 R
at

e
(%

)
claude_sonnet_4
llama_3.1_8b

(a) Instance check rates for Developer Agent cases.

Semantic
(40%)

Maintainability
(35%)

PEP-8
(25%)

Total
Score

0

2

4

6

8

10

12

Sc
or

e
(0

-1
0

sc
al

e)

9.46

6.95
6.65

7.88
8.50

5.10

3.64

6.10

Component Scores Weighted Total

claude_sonnet_4
llama_3.1_8b

(b) Quality scores and sub-scores.

Figure 7.3: Performance metrics for Developer Agent evaluation, showing pass rates and code quality breakdown into semantic,
maintainability, and PEP-8 scores.

gpt_oss_120b

llama_3.3_70b
qwen3_32b

claude_sonnet_4_judge
0

1

2

3

4

Av
er

ag
e

To
ta

l S
co

re

claude_sonnet_4
llama_3.1_8b

(a) LLMJudge scores by model.

Fun
cti

on
al

Corr
ect

ne
ss

Com
ple

ten
ess

Cod
e Q

ua
lity

Prac
tic

al A
pp

lic
ab

ilit
y

Erro
r H

an
dli

ng

Exp
lan

ati
on

 Q
ua

lity

Evaluation Criteria

0

1

2

3

4

Av
er

ag
e

Sc
or

e

Independent Judges vs Self-Evaluation
claude_sonnet_4 (Independent)
claude_sonnet_4 (Self-eval)
llama_3.1_8b (Independent)
llama_3.1_8b (Self-eval)

(b) Self-assessment by Claude Sonnet 4.

Figure 7.4: LLMJudge evaluation scores across six dimensions: functional correctness, completeness, code quality, practical
applicability, error handling, and explanation quality. No self-assessment was performed for LLaMa 3.1 8B due to insufficient

reasoning capacity.

examining spatial reasoning capabilities critical for CAD applications that numerical scores may not
fully capture.

Generated ParaPy Models
Visual inspection of geometric outputs reveals substantial performance differences between models.
Claude Sonnet 4 demonstrates strong capability in skeleton code completion tasks (see Figure D.1
in appendix), correctly applying ParaPy principles including quantification constructs in cases D-29
and D-36, and multi-step construction in D-13 requiring multiple section profiles before LoftedSolid
generation. Claude consistently identifies appropriate geometric primitives and sequences operations
correctly, attributed to effective use of the semantic API search engine. Figure 7.5 shows additional
complex geometries generated from scratch, including gear-like structures and organic forms in cases
D-5 and D-10. LLaMa 3.1 8B performs significantly worse, frequently failing to generate executable
code or selecting inappropriate primitives despite occasionally applying ParaPy principles correctly.
This stems from limited tool engagement, rarely invoking suggest_apis and restricting itself primarily
to run_code and check_syntax, preventing effective knowledge framework utilization.

Both models exhibit significant limitations in spatial reasoning and 3D positioning tasks. The successful
geometries primarily involve simple 1D translations or 2D layouts (e.g., case D-19), but performance
degrades substantially when 3D positioning and orientation are required, with models frequently
misplacing components or applying incorrect rotations. This reflects a fundamental architectural
constraint and/or implementation failure: LLMs trained predominantly on text and code lack inherent
geometric intuition despite producing syntactically correct geometric operations. Future work should
explore geometry-aware feedback components (AI-based or traditional software) that enable iterative
refinement based on spatial correctness alongside syntax and runtime validation, addressing this core
limitation. The findings presented here are substantiated in section 7.5 through manual review of a

7.4. Automated Evaluation 65

Figure 7.5: Complex geometries produced by Claude Sonnet 4 during Developer Agent evaluation, demonstrating advanced
reasoning capabilities and effective ParaPy SDK usage.

turbine rear structure case study.

7.4.2. Educational Agent
Table 7.7 presents performance metrics for the Educational Agent evaluation cases. Claude Sonnet 4
achieved 100% successful output generation with consistent quality, while LLaMa 3.1 8B demonstrated
limited effectiveness with only 52.2% successful runs. The quality score comparison requires careful
interpretation: LLaMa’s reported score of 7.30 derives from a single successful run, while Claude’s
7.28 score reflects consistent performance across all 23 cases. The sub-score analysis (Figure 7.6)
reveals that lower overall quality scores stem primarily from PEP-8 compliance rather than semantic
or maintainability issues. This is expected for educational code snippets, which prioritize clarity and
illustration over production formatting standards. Excluding PEP-8 considerations, Claude substantially
exceeds the 7.5 quality threshold, demonstrating strong semantic correctness and maintainability in
pedagogical contexts.

Table 7.7: Summary evaluation statistics for Educational Agent automated evaluation.

Model isinstance [%] Quality Judge Avg N
Claude Sonnet 4 100.0 7.28 4.33 23
LLaMa 3.1 - 8B 52.2 7.30* 2.06 23

* – The quality score of LLaMa 3.1 - 8B is based on one valid run only.

The LLMJudge evaluation (Figure 7.7) confirms Claude’s superiority across all six pedagogical dimensions,
with self-assessment scores (Figure 7.7b) closely aligned with independent judge evaluations, showing
no systematic bias. The sub-score analysis identifies resource integration as Claude’s relative weakness,
suggesting incomplete utilization of the documentation framework and opportunities for improved

7.4. Automated Evaluation 66

Semantic
(40%)

Maintainability
(35%)

PEP-8
(25%)

Total
Score

0

2

4

6

8

10

12

Sc
or

e
(0

-1
0

sc
al

e) 8.29

9.34

2.77

7.28

9.50
10.00

0.00

7.30

Component Scores Weighted Total

claude_sonnet_4
llama_3.1_8b

Figure 7.6: Automated quality scores and subscores for Educational Agent cases. LLaMa 3.1 8B statistics reflect only one
successful run.

gpt_oss_120b

llama_3.3_70b
qwen3_32b

0

1

2

3

4

Av
er

ag
e

To
ta

l S
co

re

claude_sonnet_4
llama_3.1_8b

(a) LLMJudge scores by model.

Ped
ag

og
ica

l E
ffe

cti
ve

ne
ss

Con
ten

t A
ccu

rac
y

Clar
ity

Lear
nin

g P
ath

 Coh
ere

nc
e

Reso
urc

e I
nte

gra
tio

n

Acti
on

ab
ilit

y

Evaluation Criteria

0

1

2

3

4

5

Av
er

ag
e

Sc
or

e

Independent Judges vs Self-Evaluation
claude_sonnet_4 (Independent)
claude_sonnet_4 (Self-eval)
llama_3.1_8b (Independent)
llama_3.1_8b (Self-eval)

(b) Self-assessment by Claude Sonnet 4.

Figure 7.7: LLMJudge evaluation scores across six pedagogical dimensions: pedagogical effectiveness, content accuracy, clarity,
learning path coherence, resource integration, and actionability. No self-assessment was performed for LLaMa 3.1 8B due to

insufficient reasoning capacity.

guidance toward relevant references. LLaMa demonstrates uniformly poor performance across all
dimensions without particular strengths, reinforcing earlier observations about tool usage limitations.
These Educational Agent results, combined with the Developer Agent assessment, complete the
automated evaluation phase and establish the foundation for requirement compliance mapping in
Table 7.8.

7.4.3. Summary
This section concludes the automated evaluation of both the Developer and Educational Agents and
assesses whether the requirements targeted during these evaluations have been met, based on the
results presented. The insights gained from this analysis will inform the subsequent discussion of the
Developer Agent in the following section, and the broader validation of the Educational Agent and
overall framework in section 7.6.

Important notes on the score computation in Table 7.8 are:

• To determine the skeleton code (REQ-1-1) and class definition (REQ-1-2) completion rates,
evaluation cases D13–D15 and D27–D36 are classified as skeleton code generation tasks; all other cases
are treated as class definition generation tasks.

• The passing rates for syntax correctness (REQ-2-1), runtime correctness (REQ-2-2) and code quality
(REQ-3-3) are taken directly from the results in Table 7.6 and Table 7.7.

• Functional correctness rates (REQ-2-3) are computed based on the percentage of evaluation cases in
which the average judge score met or exceeded the threshold of 3.0.

7.5. Industry Case Study - TRS Application 67

Table 7.8: Requirements verification results for Developer and Educational Agents based on automated evaluations.

Developer Agent Educational Agent
Requirement Pass metric Claude Sonnet 4 LLaMa 3.1 - 8B Claude Sonnet 4 LLaMa 3.1 - 8B

REQ-1-2 Minimum 85% successful com-
pletion rate for skeleton code
completion

85% 23.1% NA NA

REQ-1-3 Minimum 75% successful com-
pletion rate for class definition
generation

87.0% 53.2% NA NA

REQ-2-1 95% passing rate for syntax cor-
rectness of generated code

86.1% 55.6% NA NA

REQ-2-2 80% passing rate for runtime cor-
rectness of generated code

77.8% 50.0% NA NA

REQ-2-3 Intended functionality (LLM-
Judge score > 3.0) in 70% of test
scenarios

91.7% 8.3% 100% 34.8%

REQ-3-3 Minimum average expert quality
score of 7.5 out of 10

7.88 6.10 7.28* 7.3**

* – When excluding PEP-8 score, the code quality exceeds the 7.5 threshold.
** – The quality score of LLaMa 3.1 - 8B is based on one run only.

7.5. Industry Case Study - TRS Application
This section presents the industry case study of a Turbine Rear Structure (TRS) demonstration application.
It serves to consolidate the findings from section 7.4 and the requirements evaluated therein—namely
REQ-1-2, REQ-1-3, REQ-2-1 through REQ-2-3, and REQ-3-3—in order to draw final conclusions on the
framework’s verification before proceeding to validation via end-user testing in section 7.6.

What follows is a detailed manual evaluation of the code and geometries generated by the Developer
Agent. This includes checks for syntax and runtime correctness, code quality (evaluated via both the
automated framework and expert review), and functional correctness—including geometric accuracy.
The manual code review was conducted by an independent ParaPy employee, using the evaluation
rubric defined in Appendix C.

7.5.1. Variant Analysis
Figure 7.8 presents geometries generated by the Developer Agent across four evaluation scenarios
compared to the expert-developed reference. The Minimal Prompt case uses a single-sentence instruction,
the Skeleton Code Completion case provides stripped expert implementation structure, and the Extended
Prompt cases (I and II) offer progressively detailed natural language specifications of required subcom-
ponents and geometric properties. All code and geometry outputs are available in the case_study
directory on GitHub, with corresponding quality scores and runtimes summarized in Table 7.9.

Minimal Prompt
1 >>> "Create a parametric model of a turbine rear structure (TRS)."

The minimal prompt demonstrates poor functional performance despite achieving relatively high
automated code quality scores, highlighting the distinction between syntactic correctness and engineering
validity. While the agent correctly identifies TRS components (casings, flanges, blades), the generated
geometry lacks functional accuracy: casings are solid rather than hollow (preventing airflow), and blade
geometry resembles simplified toy structures rather than engineering-grade components. The 134-
second generation time represents substantial acceleration over the 8-hour expert baseline, revealing a
use case differentiation: experienced ParaPy users can leverage the framework for rapid base architecture
generation followed by manual refinement, while novice users may struggle with the cognitive load of
identifying and correcting functional deficiencies without domain expertise to guide debugging efforts.

Skeleton Code
1 >>> "Complete the following skeleton code of a turbine rear structure (TRS) parametric model:
2

3 <skeleton code>"

https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/reporting/v_and_v/case_study

7.5. Industry Case Study - TRS Application 68

Figure 7.8: Comparison of expert-generated application and AI-generated solutions using the Developer Agent. Minimal
prompting shows limited performance while extended prompts demonstrate significant improvements, with spatial orientation

remaining the primary challenge. Skeleton code completion underperforms compared to natural language prompts.

See section 13.8 for the skeleton code.

The skeleton code completion case demonstrates counterintuitive results, appearing visually superior
to the minimal prompt but exhibiting lower functional performance than extended natural language
prompts. Despite correctly modeling hollow casings (unlike Extended Prompt I), the implementation
failed to generate valid solid geometry or successful mesh outputs, indicating parametric pipeline
breakdown. Expert review confirmed the lowest code quality among AI variants, primarily due to
reduced semantic correctness scores. The functional deficiencies stem from two factors: recurring error
misclassification where the Developer Agent interprets ParaPy GUI runtime errors as known SDK
limitations rather than output faults, preventing effective iterative refinement; and model overconstraint,
where partially completed code structures limit generative flexibility compared to open-ended natural
language prompts.

An additional experiment using skeleton code derived from Extended Prompt II output (agent completing
its own previously generated structure) showed marginal geometry improvements but continued solid
generation and meshing failures, confirming that performance degradation results from external skeletal
constraints rather than architectural discrepancies between expert and AI solutions. This finding
suggests that skeleton-based workflows, while conceptually aligned with the MBSE translation engine
integration goal (Chapter 2), may inadvertently constrain model reasoning capacity and reduce output
quality.

Extended Prompt
1 >>> "I need to develop a parametric model of a turbine rear structure (TRS).
2 It consists of a ring shaped outer case and inner case, with simple guide vanes inbetween.
3 I then need to make one solid from the sub-solids (inner case, outer case, and guide vanes)
4 and mesh it for use in FEM solvers. You should make sure to develop all necessary components
5 for successfully meshing in ParaPy. Finally, the solid should be written to a .step file."

The extended prompt cases demonstrate superior performance across all evaluated dimensions. Extended
Prompt I achieved higher maintainability index scores despite slightly lower overall quality due to
increased PEP-8 violations and cyclomatic complexity from expanded codebase size. The lack of
explicit hollow casing specifications led to solid body generation, underscoring the model’s limitation

7.5. Industry Case Study - TRS Application 69

in inferring unstated engineering requirements. However, successful solid generation and mesh control
application marked substantial improvement over previous cases.

1 >>> "I need to develop a parametric model of a turbine rear structure (TRS).
2 It consists of a hollow, cylinder shaped outer case and inner case, with ovally-shaped guide

vanes inbetween.
3 I then need to make one solid from the sub-solids (inner case, outer case, and guide vanes)
4 and mesh it for use in FEM solvers. You should make sure to develop all necessary components
5 for successfully meshing in ParaPy. Finally, the solid should be written to a .step file."

Extended Prompt II produced the highest-quality output, closely approximating expert solutions while
requiring only 2% of manual development time (640 seconds versus 8 hours). Detailed geometric
specifications enabled correct hollow casing construction, oval vane extrusion, valid solid definition,
and successful meshing, achieving optimal results in both automated quality assessment and expert
evaluation. The persistent limitation remains spatial reasoning: vane orientation errors occurred
across all cases despite prompt improvements, reflecting the fundamental LLM constraint in 3D
coordinate system understanding discussed in section 7.4. This deficiency persists without explicit
spatial instructions and represents a broader architectural limitation when applying language models
to geometrically complex engineering tasks, as further demonstrated in section 7.6.

Table 7.9: Code quality comparison between expert-developed and AI-generated code for the TRS case study using the Developer
Agent.

Variant Quality Score Semantic
Score

Maintainability
Score

PEP-8
Score Effort Remarks

Auto Expert Auto Expert Auto Expert Auto Expert Auto Expert

Baseline 8.84 10 10.0 10 8.13 10 8 10 NA 8 h
MI: 73.26
CC: 1.23
PEP-8: 1

Minimal Prompt 8.56 NA 10.0 NA 7.32 NA 8.0 NA 134s 8 h
MI: 61.66
CC: 1.08
PEP-8: 3

From Skeleton Code 8.09 7.3 10.0 6.0 7.41 9.0 6.0 7.0 505s 8 h
MI: 63.05
CC: 1.13
PEP-8: 5

Extended Prompt - I 8.12 NA 10.0 NA 7.48 NA 6.0 NA 335s 8 h
MI: 63.98
CC: 1.42
PEP-8: 5

Extended Prompt - II 8.62 7.7 10.0 7.0 7.48 9.0 8.0 7.0 640s 8 h
MI: 64.06
CC: 1.14
PEP-8: 5

7.5.2. Summary
This section investigated Developer Agent performance across four industry-derived test scenarios, with
all generated code achieving syntactic and runtime correctness while successfully defining parametric
class structures from both skeleton code and natural language inputs. The 100% pass rate across all
TRS variants, including complex tasks, reinforces findings for REQ-1-2 and REQ-1-3 while justifying
reassessment of REQ-2-1 and REQ-2-2 from the near-threshold automated evaluation results. All
outputs exhibited sufficient code quality, supporting REQ-3-3 compliance. However, persistent spatial
reasoning limitations necessitate marking REQ-1-2, REQ-1-3, and REQ-3-3 as "partially fulfilled" in
Table 7.11, while REQ-2-1 and REQ-2-2 achieve full compliance.

The framework substantially exceeded time reduction objectives (REQ-3-1), generating code in 2% of
manual development time (Table 7.9), marking this requirement as fulfilled. Functional equivalence
(REQ-3-2) receives partial fulfillment: while Extended Prompt II closely approximates expert solutions,
persistent vane orientation errors limit immediate production deployability. Two critical limitations
emerged: the Developer Agent’s misclassification of ParaPy GUI runtime errors as SDK limitations
rather than output faults, disrupting iterative refinement; and fundamental spatial reasoning deficiencies
requiring future integration of geometric validation modules, as discussed in Chapter 9.

This concludes the verification phase covering requirements through REQ-3-3, providing sufficient

7.6. User Testing 70

P1 P4 P7 P9 P2 P3 P5 P6 P8

Participant

0

2

4

6

8

10

12

14

16

C
ou

nt

Manual Features
AI Features
Manual Errors
AI Errors

(a) Features completed vs errors (absolute counts)

P4 P7 P9 P2 P5 P6 P8

Participant

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Er
ro

rs
 p

er
 F

ea
tu

re

0.00 0.00 0.00

2.00

0.50

1.00

2.00

0.11
0.00 0.00

1.67

0.60

0.13
0.00

+17%

-20%

+87%

+100%
Manual
AI-Assisted

(b) ParaPy error rate: errors normalized by features completed, positive
values denote a decrease of normalized errors in the AI-assisted case w.r.t

the manual case.

P1 P4 P7 P9 P2 P3 P5 P6 P8

Participant

0

20

40

60

80

100

Fu
nc

tio
na

l C
or

re
ct

ne
ss

 (%
 o

f e
xp

er
t s

ol
ut

io
n)

Manual
AI-Assisted
Expert level

(c) Functional correctness comparison (normalized to expert solution)

P1 P4 P7 P9 P2 P3 P5 P6 P8

Participant

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
(m

in
ut

es
)

Manual Execution
Manual Debug
AI Execution
AI Debug

(d) Time breakdown: manual vs. AI-assisted

Figure 7.9: High-level results from the user testing sessions involving KBE application development using the ParaPy SDK.
Metrics include development speed, ParaPy SDK-specific error rates, functional correctness and equivalence to the expert

solution, as well as a breakdown of session time per participant.

confidence to progress to validation. The next phase evaluates whether high-level research goals from
Chapter 2 are achieved through user testing, addressing REQ-3-4, REQ-4-1, REQ-4-2, and REQ-4-3.

7.6. User Testing
Figure 7.9 presents the high-level outcomes of the user testing sessions, broken down by participant. A
key observation from Figure 7.9a is that, in nearly all cases, AI-assisted sessions resulted in a higher
number of completed features compared to manual sessions. It should be noted, however, that feature
completion here refers solely to syntactically and runtime-valid outputs—it does not guarantee functional
correctness. While it may initially appear that this increase in completed features also leads to more
ParaPy-specific errors (e.g., Part violations), Figure 7.9b reveals otherwise: when normalized against the
number of implemented features, the use of the agentic framework actually reduces ParaPy-related
coding errors, particularly for novice users (a point expanded upon later).

Figure 7.9d shows the breakdown of session time across execution and debugging phases. It reveals
that many participants failed to achieve a successful run within the allotted time. This justifies the use
of normalized temporal metrics—such as features per minute or lines of code per minute—rather than
absolute time, for evaluating framework performance.

Figure 7.9c compares the functional correctness of solutions between manual and AI-assisted sessions.
The results vary: in several cases, AI-assisted solutions outperform their manual counterparts due to the
higher number of implemented features. However, in other instances, functional correctness is lower
in the AI-assisted case. This is largely due to geometrical limitations—especially in positioning and
orientation—already identified in previous evaluations. These issues often resulted in functionally
incorrect geometry, even when more features were technically implemented. In contrast, manually
developed solutions may have included fewer features, but those features were generally geometrically
sound.

One particularly noteworthy case (P7) achieved 100% functional correctness in the AI-assisted session.
It was the only instance in which a fully correct solution was produced, matching the expert-developed
reference. This outcome was achieved through human-in-the-loop iterative development, where

7.6. User Testing 71

generated code was incrementally improved by feeding it back into the Developer Agent with detailed
clarifications of the errors encountered—particularly those related to orientation and positioning. This
process enabled the participant to overcome the model’s spatial limitations and arrive at a correct
solution within 20 minutes—a task that would typically take experts approximately 2 hours. This result
lends strong support to earlier suggestions that incorporating geometric feedback mechanisms into
the framework could drastically improve its ability to generate functionally correct geometry, a point
further explored in Chapter 9.

P1 P4 P7 P9

Participant

0

2

4

6

8

10

Q
ua

lit
y

Sc
or

e
(1

-1
0)

Semantic Quality - Test Case 1

Manual
AI-Assisted
Baseline
Expert
Target Range

P2 P3 P5 P6 P8

Participant

0

2

4

6

8

10

Q
ua

lit
y

Sc
or

e
(1

-1
0)

Semantic Quality - Test Case 2

Manual
AI-Assisted
Baseline
Expert
Target Range

P1 P4 P7 P9

Participant

0

2

4

6

8

10

Q
ua

lit
y

Sc
or

e
(1

-1
0)

Maintainability - Test Case 1

Manual
AI-Assisted
Baseline
Expert
Target Range

P2 P3 P5 P6 P8

Participant

0

2

4

6

8

10

Q
ua

lit
y

Sc
or

e
(1

-1
0)

Maintainability - Test Case 2

Manual
AI-Assisted
Baseline
Expert
Target Range

P1 P4 P7 P9

Participant

0

2

4

6

8

10

Q
ua

lit
y

Sc
or

e
(1

-1
0)

PEP-8 Compliance - Test Case 1

Manual
AI-Assisted
Baseline
Expert
Target Range

P2 P3 P5 P6 P8

Participant

0

2

4

6

8

10

Q
ua

lit
y

Sc
or

e
(1

-1
0)

PEP-8 Compliance - Test Case 2

Manual
AI-Assisted
Baseline
Expert
Target Range

P1 P4 P7 P9

Participant

0

2

4

6

8

10

Q
ua

lit
y

Sc
or

e
(1

-1
0)

Overall Quality - Test Case 1

Manual
AI-Assisted
Baseline
Expert
Target Range

P2 P3 P5 P6 P8

Participant

0

2

4

6

8

10

Q
ua

lit
y

Sc
or

e
(1

-1
0)

Overall Quality - Test Case 2

Manual
AI-Assisted
Baseline
Expert
Target Range

Figure 7.10: Comparison of manual and AI-assisted cases per participant, with respect to code quality as evaluated by the
automated code quality framework. Scores are subdivided into the three dimensions: semantic correctness, maintainability, and

PEP-8 compliance. The expert-level reference represents the score of the expert-developed solution, while the baseline
corresponds to the score of the provided skeleton code. Results are separated by TC1 and TC2 to ensure accurate comparison

against their respective reference solutions.

Aside from functional correctness, Figure 7.10 compares the manual and AI-assisted solutions in terms
of code quality. Test cases are separated into TC1 and TC2 to enable valid comparison against their
respective expert and baseline reference scores. For TC1, code quality varied across participants, with
no clear trend favoring either manual or AI-assisted approaches—suggesting comparable performance.
However, in TC2, a larger proportion of AI-assisted cases received lower quality scores than their manual

7.6. User Testing 72

counterparts.

Looking at the sub-scores for each case, TC1 again shows minimal variation between the two approaches,
with participants often achieving equal or similarly distributed scores. In TC2, the most significant
contributor to lower AI-assisted scores was semantic correctness, followed by PEP-8 compliance. While
PEP-8 violations are generally considered less critical to core framework performance, the decrease in
semantic quality is more concerning, as it indicates fundamental issues in code logic or structure.

This drop in semantic quality can be partially attributed to a recurring observation made throughout
this thesis: the model’s difficulty with geometric reasoning. However, a second contributing factor
emerged during user testing—namely, the misuse of the Educational Agent. Several participants used
the Educational Agent to generate complete, functional code implementations rather than relying on
the Developer Agent. As the Educational Agent lacks the full toolset and knowledge framework of the
Developer Agent, it often produced incorrect or incomplete ParaPy code, which negatively impacted
the final code quality in TC2.

Despite these limitations, the results do not show conclusive evidence that the agentic framework
consistently improves code quality. TC1, where misuse of the Educational Agent was minimal, still
presents mixed outcomes. While the sample size is too small for statistically robust conclusions, the
current data suggests that the agentic framework does not have a consistent positive or negative impact
on code quality produced by end-users.

Taken together, these findings indicate that the primary benefit of the agentic framework lies in reducing
development time (as seen in the number of features completed) and alleviating the knowledge burden
for users. This is supported both by the higher number of implemented features in the AI-assisted cases
and the lower rate of ParaPy-specific errors per feature. The next subsection will quantify these effects
further and evaluate whether the tested requirements have been met based on the results from user
testing.

7.6.1. Requirement Compliance
The observations regarding increased productivity, absence of consistent improvements in code quality
or functionality, and reductions in error rates are visualized in Figure 7.11 and Figure 7.12, respectively.
Figure 7.11a and Figure 7.11b show that, depending on the chosen metric, the agentic framework can
both increase and decrease the error rate.

With respect to errors per feature implemented (indicative for testing REQ-4-3), the framework leads to a
marked reduction in domain-specific errors—particularly for novice and intermediate users—indicating
improved robustness per unit of functional output. However, for expert users, the opposite effect is
observed, with a slight increase in errors per feature when using the AI-assisted approach. In contrast,
when measuring errors per 100 lines of code, the trend is less pronounced. For novice users, the
framework slightly increases the error rate, while for intermediate and expert users, the error rate
marginally decreases. This discrepancy between metrics highlights a limitation of LOC-based evaluation:
the presence of non-functional or redundant ("dead") code can dilute the error rate without improving
overall correctness or quality.

As such, error rate per feature is deemed a more rigorous and meaningful indicator of knowledge
burden and logical correctness. The observed reductions for novice and intermediate users suggest
that the framework successfully alleviates domain-specific knowledge requirements. For expert users,
however, a slight regression is observed. This can likely be attributed to two factors: time pressure
during testing, which discourages in-depth code review, and the misuse of the Educational Agent for
code generation—resulting in blind copy-pasting rather than critical evaluation of generated output.
Since expert users typically catch errors during manual development, this reduced review effort may
lead to increased oversight.

This pattern—improved productivity paired with decreased review effort—may also explain why code
quality and functional correctness do not consistently improve in the AI-assisted cases. In conclusion,
the agentic framework appears to reduce knowledge burden for novice and intermediate users, while
providing marginal or slightly negative effects for expert users in terms of error rate. These insights will
inform the final conclusions and requirement assessments presented in subsection 7.6.2.

7.6. User Testing 73

Overall Novice Intermediate Expert

Expertise Level
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Er
ro

rs
 p

er
 F

ea
tu

re

0.79

0.44

2.00

0.89

0.33

0.04

0.25

0.36

Manual
AI-Assisted

(a) ParaPy-specific error rate, measured as the number of errors per
feature implemented, segmented by user experience level.

Overall Novice Intermediate Expert

Expertise Level
0

2

4

6

8

10

12

14

16

Er
ro

rs
 p

er
 1

00
 L

in
es

 o
f C

od
e

5.60

8.19

11.25

16.02

1.39

0.45

6.25

4.15

Manual
AI-Assisted

(b) ParaPy-specific error rate, measured as errors per 100 lines of code
(LOC), segmented by user experience level.

Figure 7.11: Error rate metrics obtained from user testing, comparing manual and AI-assisted cases across different user
experience levels. The error rate serves as an indicative measure for assessing whether the agentic framework effectively reduces

the knowledge burden on end-users.

Overall Novice Intermediate Expert

Expertise Level
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fe
at

ur
es

 p
er

 M
in

ut
e

0.12

0.39

0.02

0.28

0.12

0.58

0.32

0.35

Manual
AI-Assisted

(a) Productivity: features completed per minute (at 20 min)

Overall Novice Intermediate Expert

Expertise Level
0

1

2

3

4

Li
ne

s
of

 C
od

e
pe

r M
in

ut
e

1.2

3.1

0.3

2.4

1.7

4.5

2.1
2.2

Manual
AI-Assisted

(b) Productivity: LOC written per minute (at 20 min.)

Overall Novice Intermediate Expert

Expertise Level
0

5

10

15

20

25

30

35

40

C
om

po
si

te
 S

co
re 28.7

32.3

24.4

26.6 26.8

37.9

40.4

35.1

Manual
AI-Assisted

(c) Composite score: 40% LOC/min + 35% functional correctness + 25%
code quality.

Overall Novice Intermediate Expert

Expertise Level

10

0

10

20

30

40

C
om

po
si

te
 S

co
re

 Im
pr

ov
em

en
t (

%
)

13.6%

9.0%

37.9%

-13.4%

(d) Composite score improvements: AI vs manual

Figure 7.12: Time metrics and composite improvement scores from user testing, comparing manual and AI-assisted cases across
different experience levels. Productivity is measured in terms of lines of code or features implemented per minute. The composite
score offers a holistic assessment of framework performance by integrating productivity, functional correctness, and code quality.

Finally, Figure 7.12 quantifies and consolidates the observations made throughout this section by
illustrating the measured improvements in productivity—addressing REQ-4-1—as well as the overall
composite score defined by REQ-3-4, including the required improvement threshold specified by
REQ4-2.

As shown in Figure 7.12a and Figure 7.12b, the Developer Agent leads to increased development speed
across all experience levels—measured in both features completed per minute and lines of code written
per minute. As expected, the most substantial productivity gains are observed among novice and
intermediate users, for whom the framework alleviates more of the knowledge burden.

More revealing is the composite score displayed in Figure 7.12c, which represents a weighted average

7.7. Summary & Conclusion 74

of three key performance indicators defined by REQ-3-4: code output rate (LOC/min), functional
correctness, and code quality. Here, an interesting phenomenon emerges: intermediate users exhibit
the largest increase in composite performance, surpassing even novice users. In contrast, expert users
experience a decline in composite score despite increased raw development speed.

This pattern aligns with earlier observations concerning code quality, error rate, and functional
correctness. While expert users benefit from faster generation of code, the meaningfulness of that
output—defined by its correctness and maintainability—declines. This is likely due to reduced time for
manual review and the potential misuse of the Educational Agent, leading to less critically evaluated
outputs. The particularly strong performance of intermediate users can be explained by their optimal
balance of experience. Unlike novices, they are not overwhelmed by ParaPy’s complexity and have
enough domain knowledge to validate and adapt the generated code. At the same time, they are not yet
as proficient as experts, making them more reliant on the copilot, and thus more likely to benefit from
its assistance. Their ability to both leverage and supervise the agent’s output likely contributes to the
highest observed gains in composite performance.

7.6.2. Summary

Table 7.10: Requirements validation results from user testing across expertise levels.

Performance
Requirement Pass metric Novice Intermediate Expert Remark

REQ-3-4 The composite performance score shall
be calculated as a weighted average of
normalized development time improve-
ment (40%), functional correctness rate
(35%), and expert quality score (25%)

Yes Yes Yes By implementation

REQ-4-1 The co-pilot tool shall achieve minimum
development time reductions of 40% for
novice users and 25% for expert users

-1300% -383% +9% Based on features/minute

REQ-4-2 The co-pilot tool shall achieve composite
score improvements of minimum 30% for
novice users and 15% for expert users

+9.0% +37.9%* -13.4%

REQ-4-3 Novice users utilizing the co-pilot tool
shall achieve task completion rates equiv-
alent to 80% of expert baseline perfor-
mance** and demonstrate 50% reduction
in domain-specific knowledge errors

87.5%
-55.5%

181.3%
-87%

100%
+44%

Task completion**
Error reduction (errors/feature)

* – Indeterminate as it is higher than 30% but not defined in the MSC.
** – Based on features/minute relative to expert features per minute for manual case

The observations made in the preceding section provide the basis for a final judgment on the requirements
tested through user testing, alongside a discussion of encountered limitations. This assessment, together
with the evaluations presented in subsection 7.4.3 and subsection 7.5.2, culminates in the final verification
and validation judgment for the agentic framework. These findings are consolidated in the form of
a Requirements Traceability Matrix (RTM) in Table 7.11. The RTM, alongside the key observations,
limitations, and conclusions presented throughout this chapter, serves as the foundation for the overall
conclusions in Chapter 8 and informs the future research directions outlined in Chapter 9. Finally,
Table 7.10 summarizes the requirements assessed through user testing and determines whether they
have been met, based on the measurable success criteria introduced in section 3.5 and the metrics
discussed above.

7.7. Summary & Conclusion
This chapter presented the verification and validation of the developed agentic framework for KBE
application development using the ParaPy SDK. Through a multi-faceted evaluation strategy encom-
passing unit testing, automated evaluation, manual case studies, and end-user validation, the framework

7.7. Summary & Conclusion 75

was assessed against requirements established in Chapter 2. The Requirements Traceability Matrix in
Table 7.11 consolidates these findings, demonstrating that 8 of 13 measurable success criteria were fully
met and 5 partially met.

The verification phase established foundational confidence through 76% overall code coverage with
100% test success rate, with critical subsystems achieving near-complete coverage. Automated evalua-
tions revealed substantial performance differences between model configurations: Claude Sonnet 4
demonstrated superior performance with 86.1% syntax correctness, 77.8% runtime correctness, and
7.88/10 code quality scores, while LLaMa 3.1 8B struggled with structured output generation and
tool utilization, achieving only 41.7% successful instantiation. The TRS industry case study confirmed
that all code variants achieved syntactic and runtime correctness (REQ-2-1, REQ-2-2), with Extended
Prompt II producing geometry closely approximating expert solutions in 2% of baseline development
time. However, persistent spatial reasoning limitations prevented full functional equivalence (REQ-3-2),
highlighting fundamental constraints of LLM-based approaches for geometric tasks.

User testing with nine industry participants validated the framework’s effectiveness in reducing
development time (REQ-4-1) and knowledge barriers (REQ-4-3), with novice and intermediate users
achieving 1300% and 383% improvements in features per minute respectively, and domain-specific error
rates decreasing by 55.5% and 87%. However, the framework’s impact on code quality and functional
correctness proved nuanced: intermediate users experienced the largest composite score improvement
(+37.9%), while expert users showed slight decline (-13.4%), attributed to reduced code review effort
and occasional Educational Agent misuse. This pattern indicates that the framework’s primary value
lies in accelerating development velocity and reducing knowledge burden rather than consistently
improving output quality, suggesting deployment as a development aid requiring expert review rather
than autonomous code generation.

The differential effectiveness across expertise levels reveals an "optimal assistance zone" where interme-
diate users, possessing sufficient domain knowledge to validate outputs while still facing knowledge
gaps, derive maximum benefit. The composite score requirements (REQ-3-4, REQ-4-2) were met for
intermediate users but not for expert users, confirming that framework value depends critically on user
expertise level. These findings, combined with persistent spatial reasoning limitations and occasional
error misclassification by the Developer Agent, emphasize the need for geometric validation modules
and organizational safeguards to maintain quality standards, as discussed in Chapter 9. The verification
and validation results provide the foundation for the concluding assessment in Chapter 8, where overall
research contribution and gap closure are evaluated, and inform the technical improvements and
deployment strategies proposed in Chapter 9.

7.7.
Sum

m
ary

&
Conclusion

76

Table 7.11: Measurable Success Criteria Compliance Matrix

Req. ID Requirement Compliance Method Justification Source
MSC-1-1 The co-pilot tool shall support local LLM deployment via the Ollama service and

web-based access through API services offered by approved providers.
Yes By implementa-

tion
Verified through system architecture im-
plementation and deployment testing.

Chapter 6,
section 7.3

MSC-1-2 The co-pilot tool shall achieve a minimum 85% successful completion rate for
skeleton code structures, measured against a standardized test suite of ParaPy
code skeletons with varying complexity levels.

Partial Testing: verifica-
tion and valida-
tion

Initial verification through automated eval-
uations with conclusive compliance from
manual evaluations. Validation through
user testing.

section 7.4,
7.5

MSC-1-3 The co-pilot tool shall achieve a minimum 75% successful completion rate for
generating class definitions from natural language specifications, measured against
a standardized test suite of ParaPy development cases with varying complexity
levels.

Partial Testing: verifica-
tion and valida-
tion

Initial verification through automated eval-
uations with conclusive compliance from
manual evaluations. Validation through
user testing.

section 7.4,
7.5

MSC-2-1 Generated code shall achieve 95% syntactic correctness as measured by automated
parsing and compilation checks.

Yes Testing: verifica-
tion

Verification through automated and man-
ual evaluations, compliance through man-
ual evaluation.

section 7.4,
7.5

MSC-2-2 Generated code shall execute without runtime errors in 80% of test cases, measured
through automated execution testing within controlled ParaPy environments using
standardized input parameters.

Yes Testing: verifica-
tion

Verification through automated and man-
ual evaluations, compliance through man-
ual evaluation.

section 7.4,
7.5

MSC-2-3 Generated code shall achieve intended functionality in 70% of test scenarios,
validated through automated testing suites that compare output behaviour against
reference implementations and expert-defined acceptance criteria.

Partial Testing: verifica-
tion and valida-
tion

Initial verification through automated eval-
uations with conclusive compliance from
manual evaluations. Further validation
through user testing.

section 7.4,
7.5 , 7.6

MSC-3-1 The primary metric to assess performance improvements introduced by the co-pilot
tool shall be development time reduction through controlled user studies using
standardized KBE development scenarios, with measurements captured for task
completion time and development velocity metrics (e.g., lines per minute, features
per minute).

Yes By implementa-
tion

Implemented through industry case study
analysis and end-user testing.

section 7.5,
7.6

MSC-3-2 AI-generated code shall achieve functional equivalence to manually completed
reference solutions in 85% of test cases, measured through comprehensive output
comparison and behaviour verification testing protocols.

Partial Testing: verifica-
tion and valida-
tion

Initial verification through manual evalua-
tion of case study. Validation through user
testing.

section 7.5,
7.6

MSC-3-3 Generated code shall receive an average expert quality score of 7.5 out of 10, using
a standardized rubric covering semantic correctness (40%), maintainability (35%),
and PEP-8 compliance (25%), evaluated by qualified ParaPy domain experts.

Yes By implementa-
tion and sub-
sequent verifica-
tion

Implemented through automated code
quality framework and/or structured ex-
pert evaluation protocol with standardized
rubric and scoring methodology. Verified
through automated evaluations with com-
pliance from manual evaluations. Further
validated through end-user testing.

subsection 7.2.4,
section 7.5,
7.6

MSC-3-4 The composite performance score shall be calculated as a weighted average of
normalized development time improvement (40%), functional correctness rate
(35%), and expert quality score (25%), with the co-pilot tool achieving a minimum
composite score of 75%.

Yes By implementa-
tion

Implemented through automated scoring
calculation system combining metrics from
MSC-3-1, MSC-3-2, and MSC-3-3.

section 7.6

MSC-4-1 The co-pilot tool shall achieve minimum development time reductions of 40% for
novice users and 25% for expert users, measured through controlled comparative
studies using similar but mutually exclusive KBE development tasks and the
primary metrics introduced in MSC-3-1.

Yes Testing: valida-
tion

Validated through user testing and case
study.

section 7.6

MSC-4-2 The co-pilot tool shall achieve composite score improvements of minimum 30%
for novice users and 15% for expert users compared to their baseline manual
development performance.

Partial Testing: valida-
tion

Validated through user testing. section 7.6

MSC-4-3 Novice users utilizing the co-pilot tool shall achieve task completion rates equivalent
to 80% of expert baseline performance and demonstrate 50% reduction in domain-
specific knowledge errors compared to unassisted novice performance.

Yes Testing: valida-
tion

Validated through user testing. section 7.6

8
Conclusion

This research addressed the persistent challenge of time- and knowledge-intensive Knowledge-Based
Engineering application development by developing and evaluating a generative AI-powered coding
assistant specifically tailored for the ParaPy SDK. Through systematic investigation spanning literature
analysis, industrial case studies, framework development, and comprehensive evaluation, this work
demonstrates that large language models can effectively support domain-specific code generation
when appropriately augmented with specialized knowledge infrastructure and progressive verification
mechanisms.

The research was motivated by converging challenges in modern engineering automation. Front-loaded
engineering approaches, essential to high-tech industries, require extensive automation through KBE
applications. However, developing these applications remains prohibitively time-consuming and
dependent on specialized expertise that combines domain engineering knowledge with proficiency
in proprietary programming frameworks. While recent advances in generative AI have transformed
general software development, commercial language models lack the specialized knowledge necessary
for domain-specific frameworks, leading to extensive hallucinations and non-functional code generation.
The MBSE-driven DEFAINE methodology successfully automated knowledge modeling and round-trip
engineering but left manual code completion as a critical bottleneck, representing both the most
time-intensive development phase and the most dependent on domain-specific expertise.

Industrial validation at GKN Aerospace Sweden substantiated these challenges through interviews
with domain experts, revealing systematic barriers to KBE adoption including fragmented knowledge
management, steep learning curves for proprietary frameworks, integration complexity across heteroge-
neous toolchains, and organizational hesitancy driven by uncertain return on investment. Technical
assessment confirmed that even state-of-the-art commercial language models consistently generate
non-functional ParaPy code when prompted without domain-specific augmentation, validating the
need for specialized intervention beyond general-purpose AI coding assistants.

The developed dual-agent framework directly addresses this gap through four principal contributions.
First, a provider-agnostic architecture supports both local and API-based deployment with flexible
model selection, satisfying diverse security requirements encountered in industrial contexts while
enabling air-gapped operation when necessary. Second, a comprehensive knowledge infrastructure
employs semantic search over indexed ParaPy documentation, examples, and API specifications,
enabling dynamic information retrieval without computationally expensive fine-tuning or dependency
on static prompt engineering alone. The system maintains three distinct indices optimized for different
retrieval patterns, performing lazy evaluation to minimize token consumption while maintaining access
to comprehensive domain knowledge. Third, progressive verification mechanisms ensure syntactic
and runtime correctness through automated validation tools integrated into the generation pipeline.
Fourth, role-specialized agents optimize for distinct user needs: a Developer Agent focused on code
generation, completion, and debugging, and an Educational Agent providing conceptual guidance and
documentation-based learning support.

Comprehensive evaluation through automated testing, manual case studies, and controlled user testing
with nine industry participants validated framework effectiveness against established requirements. The

77

78

framework achieved substantial productivity improvements, with novice users demonstrating 1300%
gains and intermediate users 383% gains in features implemented per minute. Code quality metrics
confirmed that generated implementations meet professional standards, with Claude Sonnet 4 achieving
86.1% syntactic correctness, 77.8% runtime correctness, and average quality scores of 7.88 out of 10. The
Turbine Rear Structure case study demonstrated that detailed natural language specifications enable
generation of production-quality implementations in approximately 2% of expert manual development
time.

However, user testing revealed nuanced patterns in framework effectiveness across expertise levels.
Intermediate users derived the greatest benefit, achieving 37.9% composite score improvements, while
expert users experienced slight performance regression despite increased development velocity. This
differential impact challenges assumptions about universal productivity enhancement, suggesting
instead that AI coding assistants function most effectively as accelerators for users with sufficient domain
knowledge to critically assess generated outputs but who still face knowledge gaps that the framework
addresses. Novice users achieved 87.5% of expert baseline task completion rates with 55.5% reduction
in domain-specific errors, validating the framework’s effectiveness in reducing knowledge barriers.
These findings reveal an "optimal assistance zone" where tool capabilities align precisely with user
needs, requiring both conceptual understanding to formulate effective queries and recognize semantic
violations, and knowledge gaps that semantic search and verification tools effectively address.

The research acknowledges fundamental limitations establishing interpretive boundaries for the findings.
The framework exhibits persistent constraints in spatial reasoning and 3D geometric understanding,
stemming from underlying language model architectures lacking inherent geometric intuition. This
limitation manifests as incorrect component positioning and orientation in complex assemblies, requiring
either explicit spatial guidance or iterative human-in-the-loop refinement. The Developer Agent
occasionally misclassifies ParaPy GUI runtime errors as known SDK limitations rather than faults in
generated code, disrupting autonomous error resolution. The evaluation methodology operated under
finite sampling constraints, with user testing limited to nine participants and automated evaluation
covering bounded test cases. While stratified by expertise level, samples may not capture full diversity
of ParaPy development scenarios across different industrial contexts.

Despite these limitations, the research makes significant contributions to both Knowledge-Based
Engineering practice and AI-assisted software development theory. The empirical validation of retrieval-
augmented generation as viable alternative to fine-tuning in data-sparse domains informs ongoing
debates about language model adaptation strategies. The automated code quality framework provides
scalable methodology for evaluating AI-generated specialized code that extends beyond ParaPy to other
domain-specific development contexts. The concept of an optimal assistance zone where intermediate
expertise maximizes AI tool benefit has broader implications for deployment strategies across various
technical domains.

This work demonstrates that AI-powered coding assistants can play valuable roles in industrial KBE
development when deployed with clear understanding of their limitations, supported by robust
verification mechanisms, and integrated into organizational practices preserving human expertise and
oversight. The framework meaningfully addresses identified research gaps while defining boundaries
of current AI-assisted development capabilities. Rather than replacing human expertise, effective AI
assistance augments performance for users capable of interpreting, correcting, and integrating generated
suggestions. The observed quality decline among experts under time constraints emphasizes the need
for organizational safeguards maintaining standards in accelerated workflows. As generative AI tools
continue evolving, the insights and evidence presented provide grounded foundation for responsible
adoption supporting human engineers rather than replacing them, enabling acceleration of development
velocity while preserving critical evaluation and domain expertise essential to high-quality engineering
work.

9
Discussion & Recommendations

This chapter interprets the empirical findings from verification and validation, synthesizing them within
the broader context of AI-assisted software development and Knowledge-Based Engineering practice.
Rather than restating results, the discussion examines why particular outcomes emerged, what they
reveal about the nature of AI-assisted KBE development, and how these insights should inform future
research and industrial deployment strategies.

Interpretation of Core Findings
The user testing results revealed a counter-intuitive pattern where intermediate users derived the
greatest benefit from the framework, achieving 383% improvement in features per minute and 37.9%
composite score improvement, while expert users experienced slight performance degradation with
13.4% composite score decline despite comparable raw productivity gains. This outcome contradicts
assumptions that AI coding assistants universally enhance productivity, instead suggesting a more
nuanced relationship between tool effectiveness and user expertise.

This differential impact can be explained through what might be termed an "optimal assistance zone"
where the tool’s capabilities align precisely with user needs. Intermediate users possess sufficient
domain knowledge to critically evaluate generated code but still face knowledge gaps that the framework
effectively addresses through semantic search infrastructure surfacing relevant API methods and usage
patterns. They understand ParaPy’s core concepts well enough to recognize syntactically correct but
semantically flawed suggestions, yet benefit substantially from documentation retrieval and verification
tools. Expert users, having internalized common patterns through extensive practice, gained less from
retrieval augmentation and exhibited reduced critical evaluation under time pressure, prioritizing
development velocity over thorough validation. The error rate metrics confirm this pattern: experts
showed 44% increase in errors per feature when using AI assistance, while novices demonstrated
55.5% reduction and intermediate users 87% reduction. Novice users, despite showing substantial
error reduction, lacked the conceptual framework to formulate effective queries or recognize when
generated code violated deeper design principles, though the Educational Agent partially addressed
this limitation.

Furthermore, the framework exhibited consistent difficulties with 3D geometric reasoning across all
evaluation contexts, with generated code frequently mispositioning components or applying incorrect
rotations. This limitation reflects a fundamental architectural constraint of transformer-based language
models [47], which learn statistical patterns over discrete token sequences but lack inherent geometric
intuition. While models can produce syntactically valid coordinate transformations and geometric
operations, they cannot reason about the spatial relationships these operations create.

This constraint was significantly exacerbated by deliberate omissions in framework design. The curated
example set within the Developer Agent system prompt lacked demonstrations related to positioning
and orientation, despite these concepts being consistently identified as the most challenging aspects
of KBE application development. Positioning examples were limited to basic transformations such as
translate and rotate90, leaving agents dependent on learned knowledge and incidentally retrieved
positioning information through semantic search, which proved insufficient for complex spatial tasks.
Additionally, the system prompt deliberately excluded information on ParaPy’s distinguishing features

79

80

including dependency tracking and lazy evaluation mechanisms, reflecting an initial assessment that
these concepts were not essential for generating syntactically and runtime-correct code. While generated
implementations achieved high correctness rates, this omission may have contributed to suboptimal
exploitation of ParaPy’s reactive programming model.

Furthermore, the LLM-judge methodology assessed PEP-8 compliance as a code quality dimension
weighted at 25%, yet agents received no explicit instructions or reference materials on Python coding
standards beyond their pre-training knowledge. This discrepancy between evaluation criteria and
generation guidance may have introduced systematic assessment bias, as models were judged on
adherence to standards they were not explicitly instructed to follow. The decision to rely on models’
pretrained knowledge reflected a design trade-off between prompt length and specificity, but explicit
inclusion of style guidelines could improve consistency.

The finding reinforces broader understanding that retrieval-augmented generation and tool use cannot
fully compensate for capabilities absent from the base model architecture [58]. Semantic search provides
syntactic patterns and API specifications but cannot supply geometric reasoning. This suggests an upper
bound on what inference-time interventions can achieve without architectural modifications. However,
the successful case of participant P7 achieving 100% functional correctness through human-in-the-loop
iteration demonstrates that spatial correctness can be attained through structured workflows. By
providing detailed descriptions of geometric errors, the user enabled the Developer Agent to converge
on correct solutions within the time limit, suggesting a practical mitigation strategy where the framework
accelerates iteration cycles through rapid generation-evaluation loops guided by explicit spatial feedback.

Validation of RAG for Sparse Training Domains and Technology Landscape
The framework’s successful generation of functional ParaPy code despite minimal representation
in public training data provides empirical validation for retrieval-augmented generation as a viable
alternative to fine-tuning in data-sparse domains [72]. Baseline assessments established that even
state-of-the-art models produce non-functional ParaPy code when operating without domain-specific
augmentation. The full implementation, integrating semantic search and progressive verification,
achieved 86.1% syntax correctness and 77.8% runtime correctness for Claude Sonnet 4, representing
substantial improvement occurring entirely through inference-time interventions. However, results also
reveal limitations of pure RAG approaches. The persistent spatial reasoning difficulties indicate that
some capabilities cannot be injected through retrieval alone, suggesting a more nuanced understanding
of when RAG suffices versus when architectural modifications or fine-tuning become necessary.

During the research period, the landscape of AI-assisted development tools evolved rapidly. Claude
Code, which integrates large language models with command-line interfaces and supports the Model
Context Protocol [73] for tool integration, emerged as a potentially relevant platform. However, several
factors justified development of a custom framework. First, Claude Code became publicly available late
in the research timeline, after core architectural decisions had been established and implementation was
substantially complete. The rapid pace of innovation in generative AI makes it challenging to build
academic research around continuously shifting technological foundations. Second, implementing the
framework as a subagent within Claude Code would place the solution behind a commercial paywall,
limiting accessibility for organizations with budget constraints or requiring air-gapped deployment. The
custom framework’s support for both local execution via Ollama and privacy-compliant API services
addresses diverse industrial requirements that proprietary platforms may not satisfy. Third, the research
aimed to demonstrate principles applicable beyond any single platform, establishing generalizable
insights about retrieval-augmented generation, progressive verification, and dual-agent architectures
that transcend specific implementation choices.

Nevertheless, converting semantic search engines to MCP-compliant servers would enable the frame-
work to leverage ecosystem developments automatically, facilitate benchmarking against alternative
approaches, and reduce vendor lock-in by supporting multiple agent frameworks. This approach
balances the research goal of platform-independent validation with pragmatic recognition that stan-
dardization accelerates adoption and community contribution.

81

Recommendations for Future Work
Based on the empirical findings and theoretical analysis, the following recommendations guide future
research and development:

Develop geometric feedback mechanisms. Implement automated geometric validation tools that
compare generated component positions and orientations against explicit spatial requirements, detecting
positioning errors without visual inspection. Such tools could operate as additional verification layers
in the progressive verification pipeline, instantiating components, extracting spatial properties, and
comparing them against formalized requirements. While technically challenging, automatic geometric
validation could substantially elevate functional correctness.

Investigate fine-tuning as complementary strategy. While the current research deliberately excluded
fine-tuning to validate RAG effectiveness in isolation, future work should explore fine-tuning on
ParaPy-specific datasets as both an alternative and enhancement to the retrieval-based approach.
Fine-tuning could address limitations in spatial reasoning, dependency tracking understanding, and
idiomatic pattern generation that retrieval alone cannot fully resolve. Training incorporating geometric
visualizations alongside code may develop stronger spatial reasoning capabilities [44]. Combining fine-
tuned models with semantic search infrastructure may yield superior performance to either technique
in isolation.

Enhance system prompt coverage. Revise Developer Agent system prompts to explicitly include PEP-8
style guidelines, comprehensive positioning and orientation best practices with detailed examples, and
explanations of ParaPy’s distinguishing features including dependency tracking and lazy evaluation.
While semantic search compensates for such omissions, static inclusion of fundamental concepts ensures
consistent guidance across all generation scenarios.

Convert to MCP-compliant architecture. Refactor knowledge infrastructure and tools as standardized
MCP servers to enable broader adoption, facilitate community contributions, and reduce maintenance
burden while maintaining interoperability with multiple agent platforms.

Extend verification beyond syntax and runtime. Enhance the progressive verification system to include
semantic correctness checks through formal verification methods, property-based testing, or integration
with additional static analysis tools.

Develop deployment best practices. Create comprehensive guidance for organizations adopting the
framework, including staged rollout strategies targeting intermediate users first, training programs
emphasizing critical evaluation of generated code, and quality assurance processes tailored to different
user segments.

Generalize beyond ParaPy. Extract reusable components and patterns to create a framework-agnostic
approach applicable to other domain-specific programming environments with limited training data,
demonstrating broader applicability and facilitating knowledge transfer.

Concluding Remarks
This research demonstrates that AI-powered coding assistants can meaningfully support Knowledge-
Based Engineering development for proprietary frameworks when appropriately augmented with
domain-specific knowledge infrastructure and progressive verification mechanisms. The framework’s
effectiveness varies substantially across expertise levels, revealing an optimal assistance zone where
intermediate users derive maximum benefit. Persistent spatial reasoning limitations reflect fundamental
constraints of transformer-based architectures, establishing clear boundaries for inference-time inter-
ventions. The successful application of retrieval-augmented generation validates this approach for
data-sparse domains while highlighting scenarios where fine-tuning or architectural modifications
become necessary.

For aerospace industry practitioners and KBE developers, the framework offers immediately deployable
capabilities for accelerating development velocity and reducing knowledge barriers. However, success
requires careful attention to deployment strategies, user training, and organizational safeguards
preserving quality standards. The framework should be positioned as a development accelerator
requiring expert oversight rather than an autonomous code generator, with particular focus on
intermediate users who benefit most while possessing sufficient expertise for critical evaluation.

82

As generative AI capabilities continue advancing, the principles demonstrated here provide foundation
for responsible integration of AI assistance in engineering practice. Thoughtful architecture design,
progressive verification, expertise-aware deployment, and honest acknowledgment of limitations enable
strategic augmentation of human expertise rather than replacement. The goal remains supporting
engineers in producing high-quality work more efficiently while preserving the critical thinking and
domain knowledge essential to engineering excellence.

Part II

Technical Report

83

10
Language Modelling

Early approaches to language modelling were statistical in nature. A language model assigns probabilities
to sequences of words, and the simplest models used 𝑛-gram statistics – probabilities of the next word
based on the previous 𝑛 − 1 words. For example, a unigram model uses single-word frequencies,
a bigram model conditions on the last word, and so on. These 𝑛-gram models were supported by
information-theoretic insights from the mid-20th century. In 1951, [80] estimated the entropy of the
English language by asking humans to predict upcoming letters, effectively constructing a basic 𝑛-gram
predictor. Such models capture local word correlations but suffer when long-range context or unseen
word combinations appear. Work in the 1980s and 90s (e.g., Jelinek and others at IBM) refined 𝑛-gram
modelling with smoothing techniques to handle sparsity, yet the fundamental "curse of dimensionality"
remained: a language model would likely encounter sequences at test time that never appeared in
training [81].

A major paradigm shift occurred in the early 2000s with the introduction of neural language models.
[81] proposed a Neural Probabilistic Language Model that learns a distributed representation (vector
embedding) for each word, in addition to learning the next-word probability function. By mapping
words to continuous vectors, the model generalizes to unseen word sequences: if a new sequence
contains words similar (in embedding space) to a known sequence, it can assign it a higher probability
[81]. This model, implemented as a feed-forward neural network, significantly outperformed traditional
𝑛-grams by leveraging learned word similarities. Soon after, [82] popularized efficient techniques
to learn word embeddings on large corpora (the Word2Vec skip-gram and CBOW models in 2013),
demonstrating that embedding spaces can capture semantic relationships (e.g., king – man + woman ≈
queen). Word embeddings became a foundational idea in NLP, enabling neural models to represent text
in a dense, informative way rather than as sparse one-hot vectors.

10.1. Sequence Models
While feed-forward networks with embeddings handled fixed-length context windows, researchers
sought models that could naturally handle sequences of arbitrary length. Recurrent Neural Networks
(RNNs) achieved this by maintaining a hidden state that is updated word by word, effectively reading
in sequences of unbounded length. In practice, however, vanilla RNNs were hard to train on long
sequences due to vanishing/exploding gradients. The introduction of the Long Short-Term Memory
(LSTM) architecture by Hochreiter and Schmidhuber (1997) addressed this issue by incorporating
gating mechanisms [83]. LSTMs use an explicit memory cell and gates (input, forget, output) to control
information flow, thereby preserving long-range dependencies and mitigating gradient decay. With
LSTMs (and the simplified Gated Recurrent Unit, GRU, introduced in 2014), RNN-based language
models could finally capture much longer context than 𝑛-grams. Throughout the 2010s, LSTMs became
the workhorse for language modelling and translation, achieving state-of-the-art results on many
benchmarks. [83]

However, a limitation of RNN/LSTM models is their sequential nature: processing tokens one by one
prevents parallelization across sequence positions during training. This made training on very long
sequences slow and computationally costly [47]. To address both efficiency and long-range modeling,

84

10.2. The Transformer Architecture 85

researchers also experimented with Convolutional Neural Networks (CNNs) for language. CNN-based
sequence models apply learned filters over text windows and can be stacked to increase receptive field.
Notably, a fully convolutional seq2seq model by [84] showed that CNNs can parallelize computations
over all timesteps and still achieve competitive accuracy with LSTMs. Their convolutional model
outperformed a deep LSTM on large-scale translation tasks while running an order of magnitude faster
by leveraging parallelism. Although CNNs do not capture arbitrarily long dependencies as easily as
RNNs (they rely on stacking or dilations for wider context), this work proved that recurrence was not
the only way to model sequences. [84]

10.2. The Transformer Architecture
The next revolution came with the Transformer architecture introduced in 2017 by Google Brain [47]. The
Transformer eliminated recurrence entirely, relying on self-attention mechanisms to model dependencies
between any pair of tokens, regardless of their distance. In a Transformer, each input token position
attends to all other positions within the sequence, computing weighted averages of their representations.
Crucially, this attention mechanism is highly parallelizable: all tokens in a layer can be processed
simultaneously (since positional dependencies are handled via attention weights rather than sequential
state passing). This enabled training on very long sequences with much greater speed than RNNs,
overcoming the sequential bottleneck that had limited previous models. The Transformer’s success
was immediate – it not only improved machine translation quality, but soon became the backbone of
nearly all state-of-the-art language models. Within a year, the Transformer was adapted for language
understanding in the form of BERT (Bidirectional Encoder Representations, 2018 [51]) and for language
generation in GPT (Generative Pre-trained Transformer, first version in 2018 [52]). These models
demonstrated the power of pre-training on massive text corpora and then fine-tuning for downstream
tasks, kicking off the era of pre-trained language models. [47]

(a) Transformer architecture. (b) Attention heads.

Figure 10.1: Overview of transformer neural network architecture and internal attention mechanisms. (a) illustrates the complete
structural design of the transformer model, while (b) examines how the model internally processes language by tracking

connections between words, specifically demonstrating how certain components identify and link pronouns to their
corresponding references in text. [47]

10.2. The Transformer Architecture 86

Modern Large Language Models (LLMs) build upon the Transformer architecture and scale it to
unprecedented sizes. We define Large Language Models as neural networks with billions of parameters
trained on vast text corpora to predict and generate human-like text. The GPT series in particular
showed that increasing model size and training data leads to remarkable emergent capabilities. GPT-2
(2019) with 1.5 billion parameters already produced fluent long-form text, and shortly after, GPT-3
(2020) pushed the scale to 175 billion parameters, introducing the phenomenon of few-shot learning
[48]. GPT-3 demonstrated that a sufficiently large Transformer-based LM can perform new tasks
from only a few examples or instructions given in the prompt (without parameter updates). This
was a striking result: scaling up the model and training on diverse internet text made it surprisingly
general and adaptable. Subsequently, even larger models have been developed (e.g., with hundreds
of billions or trillions of parameters), though often with sparse or mixture-of-experts architectures to
manage efficiency. Researchers also improved LLM capabilities via fine-tuning approaches. One key
development was instruction tuning and reinforcement learning from human feedback (RLHF) to make
models follow user instructions and preferences [85]. This yielded more interactive and helpful models,
the most famous example being ChatGPT (released by OpenAI in late 2022), which is essentially a
GPT-based model fine-tuned to produce conversational, user-aligned responses.

A typical large Transformer-based LM today operates as follows. First, the input text (prompt) is
tokenized (e.g. into subword units) and converted to input embeddings. Positional encodings are
added to indicate token positions. The Transformer then processes the sequence through multiple
layers of self-attention and feed-forward networks [47]. In a decoder-only LM (like GPT), each token
attends to earlier tokens (causal attention) and the model outputs a probability distribution over the
next-token vocabulary at each step; in an encoder-decoder model (like the original Transformer or T5), an
encoder first processes the source text (e.g. a prompt or context) bidirectionally, and a decoder then
generates outputs attending both to the encoder representations and earlier decoder outputs [47, 86].
In either case, generation is done iteratively: at deployment time, the model produces one token at a
time, feeding it back in as input in an auto-regressive manner [48]. The context window of the model
defines how many tokens it can attend to at once; anything beyond that is truncated or must be handled
via techniques like windowed attention or external memory. Importantly, Transformers do not have
persistent long-term memory beyond this context window – they are stateless between inference calls,
which is why prompt engineering (including relevant information in the prompt) is crucial to getting
correct outputs [48, 49, 50].

Figure 10.2: Interactive visualization of transformer language model processing pipeline from the Transformer Explainer tool.
The diagram illustrates the complete data flow through a transformer block, showing how input embeddings (left) are processed

through multi-head self-attention mechanisms (centre-left) where Query, Key, and Value vectors compute attention weights,
followed by multi-layer perceptron processing (centre-right), and culminating in the final probability distribution over vocabulary

tokens (right) for next-token prediction. From github.io/transformer-explainer [accessed 21-08-2025].

When producing text, LLMs use a decoding strategy to sample the next token from the probability
distribution. Choices include greedy decoding (always pick highest probability token), beam search, or
stochastic methods like top-𝑘 sampling and nucleus sampling that introduce randomness to generate

https://poloclub.github.io/transformer-explainer/

10.3. From Natural Language to Programming 87

more varied outputs [87, 50]. The strategy can significantly affect the style and correctness of generated
text. For example, code generation often benefits from more deterministic decoding (to preserve
syntax), whereas open-ended creative writing may use nucleus sampling to avoid repetitive or overly
conservative outputs [87]. The flexibility of decoding methods allows a single trained model to serve
different purposes. In practical deployments (e.g., via an API or an interactive system), these models are
often augmented with safety filters or external tools, but fundamentally the process remains: encode
prompt into internal embeddings, repeatedly apply self-attention layers to update representations, and
sample next tokens until completion [47, 85, 59, 58].

Figure 10.3: Overview of common sampling techniques and how they influence next token selection. Greedy search always picks
the highest probability token; top-k sampling chooses from the top k likely tokens; nucleus sampling considers all tokens whose

combined probability mass > 𝑝. From ashutosh.dev [accesses 04-09-2025].

10.3. From Natural Language to Programming
Programming languages are formal languages, but they share many characteristics with human language:
a vocabulary (keywords, identifiers), syntax rules (grammar), and even stylistic conventions [35]. It is
therefore natural to apply language modelling techniques to source code. Indeed, code can be treated
as just another form of text, and many LLMs have been trained or fine-tuned on large code corpora
(such as open-source GitHub repositories) in addition to natural language data [54]. By learning from
millions of code examples, an LLM can statistically infer how to write syntactically correct and plausible
code to accomplish a given task described in natural language. For instance, an LLM-based system can
take a prompt like "Implement a Python function to check if a number is prime" and generate a complete
function in Python to do so. This ability has huge practical implications: it can automate boilerplate
coding, assist in software development, and enable conversational interfaces for programming.

Several dedicated code-focused LLMs have emerged. OpenAI’s Codex (2021) was a version of GPT-3
fine-tuned on billions of lines of source code, achieving impressive results in generating correct solutions
to programming challenges (it was evaluated on the HumanEval benchmark of Python problems,
solving a majority of them) [54]. Codex powers GitHub’s Copilot, an AI pair-programmer that suggests
code completions inside IDEs [88]. Copilot is trained on public GitHub code and is specialized at
producing code that not only is syntactically correct but also matches common libraries’ usage patterns.
Other organizations have introduced their own code models; for example, DeepMind’s AlphaCode
and Google’s PaLM-Coder have tackled competitive programming problems, and open-source efforts
like StarCoder (by HuggingFace BigCode) and DeepSeek-Coder (by Peking University) have released
reasonably sized models (6–30B parameters) that perform well on code generation benchmarks [89].

https://www.ashutosh.dev/llms-decoded-architecture-training-and-how-large-language-models-really-work/

10.3. From Natural Language to Programming 88

These models are all based on Transformers and are often initialized from a general LLM then further
trained on code, as code has different characteristics (for example, needing to predict exact punctuation,
indents, and respecting programming syntax).

One key difference between natural language and programming is that code execution is unforgiving to
errors. A grammatical mistake in an English sentence might still be understood by a reader, but a syntax
error in code will prevent it from running. Likewise, a slightly off factual statement in prose might
go unnoticed, but a single incorrect API call in code can cause a program to crash. Thus, adherence to
syntax and semantics is paramount in code generation. LLMs generally have excellent syntax adherence
for languages seen frequently in training (such as Python, JavaScript, etc.), often producing code that
compiles or runs on first try. This is evidenced by high scores on competitive coding benchmarks
achieved by state-of-the-art models like GPT-4 or Anthropic’s Claude [54]. However, ensuring semantic
correctness (that the code does what it’s supposed to do) is a harder challenge. Models may produce
logically flawed or inefficient code that superficially looks right. There is ongoing research on evaluating
functional correctness via test suites and on making LLMs not just syntactically but semantically aligned
with user intent.

A particularly challenging scenario for code LLMs is dealing with unfamiliar or under-represented
libraries and frameworks [56, 57]. An LLM cannot have true "knowledge" of an API it was never trained
on; at best it can make educated guesses by analogy to similar libraries [57]. In fact, a LLM does
not possess true "knowledge" of any API—public or company-specific—but the abundance of public
libraries in training data ensures higher statistical likelihood of producing correct usage; conversely,
models benefit markedly when fine-tuned on private, in-house code and APIs [28]. Unlike a human
programmer who might read documentation when encountering an unknown library, a vanilla LLM
has no retrieval mechanism at generation time (unless augmented with external tools) [58, 59]. As
a result, when asked to generate code using a rare or proprietary library, the model is prone to
hallucinate—i.e., to fabricate function/package names or usage patterns that sound plausible but are
incorrect [56, 60, 61]. Hallucination in code generation is often easy to detect empirically: the generated
code fails to compile/run or does not pass tests [54, 61]. Studies also show that LLMs will frequently
produce an answer rather than abstain when uncertain, which contributes to hallucinations [62, 63, 64].

When the target library is a closed-source, domain-specific framework, like ParaPy, this issue becomes
pronounced. Because such code is largely absent from public repositories, a general-purpose LLM has
likely never seen the library’s classes or functions during training [57]. Consequently, when prompted
to generate Python code with ParaPy, the model may invent class names, methods, or import statements
that do not exist in the actual SDK [56, 60]. Repository-level studies and industrial deployments observe
the same pattern: without codebase-specific knowledge, hallucinations increase and correctness drops
[61, 28]. Mitigating this requires techniques beyond standard LM training, such as retrieval-augmented
generation (providing relevant documentation or code snippets to the prompt) or fine-tuning the model
on the specific library [58, 65, 28, 56].

11
Implementation Details

11.1. Large Language Model Settings
Maximum number of tokens

A hard limit on generated tokens that prevents excessive output and controls computational costs.
When reached, generation terminates immediately regardless of response completeness. Tokens are
discrete text processing units that may not correspond directly to words, as tokenisation schemes
often split words into multiple tokens.

Model temperature
Controls token selection by modifying the probability distribution during softmax normalisation.
Values below 1 (𝑇 < 1) concentrate probability on higher-likelihood tokens, producing more
deterministic outputs suitable for code generation. Values above 1 (𝑇 > 1) flatten the distribution,
increasing creativity for generative tasks. The optimal setting varies by task, model architecture,
and other sampling parameters. While 𝑇 = 0 approaches deterministic selection, implementation
details and floating-point precision may introduce minor variations.

Figure 11.1: The effect of model temperature on the output probability distribution and subsequent effect on sampling.

Type of sampling
Sampling algorithms (detailed in Chapter 3) determine how the model selects tokens from the
probability distribution. Greedy sampling, which selects the highest probability token, produces
optimal results for code generation tasks. Stochastic methods such as top-k and nuclear sampling
perform better for natural language generation. The sampling method directly affects output

89

11.2. Prompt Engineering Strategies 90

determinism and creativity.

Token penalty
[Framework-specific] Reduces repetitive content by penalising tokens based on their previous
appearance or frequency. This mechanism decreases the likelihood of repeated tokens, promoting
more diverse output generation.

(Logit) bias
[Framework-specific] Enables fine-grained control over vocabulary by manually modifying the
likelihood of specified tokens. Developers can increase or decrease the probability of specific terms
appearing in the output, useful for enforcing terminology conventions (KBE, ParaPy).

Stop sequence
[Framework-specific] Defines custom sequences that trigger generation termination. While models
typically stop upon producing an end-of-sequence token (e.g., <end>)—which generally occurs
when the preceding text statistically resembles natural endpoints seen in the model’s training
data—custom stop sequences allow for the specification of domain-specific patterns (such as
punctuation marks, keywords, or formatting tokens) that indicate completion. This feature is
particularly useful for structured outputs or when integrating models with external systems that
rely on specific delimiters or formatting conventions.

The latter three settings often vary across frameworks. For example, Pydantic AI includes provider-
specific settings to enforce particular reasoning behaviours. Not all settings are compatible with all
providers, particularly Ollama models. To ensure maximum compatibility, the current framework
modifies only general settings applicable across all models. After configuration, the LLM is ready for
deployment in agent applications, operating either remotely or locally as required.

11.2. Prompt Engineering Strategies
Use prompt templates

Templates with variables for dynamic content (user inputs, documentation, tool calls) improve
prompt management. In Python, this utilises string Template objects or f-strings. Benefits include:

• Consistency across interactions
• Efficiency through modular content swapping
• Testability with rapid case testing
• Scalability as complexity increases
• Version control through separation of core prompts from dynamic inputs

Be clear and direct
Commercial Off-The-Shelf (COTS) models lack context about KBE conventions and ParaPy-specific
requirements. Precise explanation of requirements produces better results. Anthropic’s "golden
rule of clear prompting" states: "Show your prompt to a colleague, ideally someone who has
minimal context on the task, and ask them to follow the instructions. If they are confused, the
model [Claude] will likely be too." [79]

Use examples (multishot prompting)
Well-crafted examples can dramatically improve the accuracy, consistency and quality of the output.
Effective examples are:

• Relevant to expected use cases;
• Diverse, covering edge cases and potential challenges;
• Clear, with consistent formatting and tagging, e.g. <example>.

11.2. Prompt Engineering Strategies 91

1 <example>
2 Input: Give me a parametric box using the ParaPy SDK.
3 Code:
4 ‘‘‘
5 from parapy.core import Attribute , Input
6 from parapy.geom import GeomBase
7

8 class Box(Base):
9 width: float = Input()

10 depth: float = Input()
11 height: float = Input()
12

13 @Attribute
14 def volume(self) -> float:
15 return self.width * self.depth * self.height
16

17 ‘‘‘
18 </example>

Chain of thought (CoT) prompting
CoT prompting improves performance on complex tasks by encouraging step-by-step reasoning.
Benefits include:[79]:

• Accuracy in mathematical calculations and logical analysis or generally complex tasks;
• Coherence through structured thinking;
• Debugging capabilities by exposing the reasoning process.

CoT approaches include:
1. Basic prompt: including "think step-by-step" in the prompt;
2. Guided prompt: outlining specific reasoning steps;
3. Structured prompt: using XML tags to separate reasoning from final output.

This technique increases both output length and latency but can significantly improve performance
on complex tasks. However, not all tasks require such in-depth reasoning, and developers may risk
overengineering this aspect of the prompt design.

Using XML tags
XML tags organise multi-component prompts, improving:

• Clarity through component separation;
• Accuracy by reducing misinterpretation;
• Flexibility in prompt management;
• Parseability of structured outputs.

Best practices include consistent tag naming and hierarchical nesting for complex aerospace
engineering prompts.

Role prompting
Assigning a specific role to the model (e.g., "aerospace engineer specialising in knowledge based
engineering") enhances performance through:

• Enhanced accuracy in designs analysis and software engineering tasks;
• Tailored tone appropriate for technical engineering communication;
• Improved focus on aerospace, KBE and/or ParaPy requirements.

Major model providers, such as Anthropic, offer prompt generator and improver tools to support the
process of prompt engineering. These tools often include additional resources for defining success
criteria, generating test cases, and designing evaluation procedures. For full documentation, the reader
is referred to Anthropic’s official documentation.

https://docs.anthropic.com/en/docs/

11.3. MCP Servers 92

11.3. MCP Servers
Despite not leveraging MCP1 servers, the framework remains fully MCP-compliant, allowing future
replacement or extension. As such, the in-house semantic search engine could be easily converted
into an MCP-compatible implementation, offering a pathway to broader adoption and standardization.
Examples of such MCP implementations include:

• Documentation MCPs such as Context7, Docs, Docy, and MCP Documentation Server, which
retrieve up-to-date documentation and examples from source repositories and inject them into
prompts.

• MCP Run Python, an MCP developed by Pydantic AI, which enables secure, sandboxed Python
code execution.

An extended, community-maintained list of reference implementations is available via the official MCP
GitHub organization at: Model Context Protocol Servers.

Implementation Note
While the framework is fully compatible with MCP servers, none are used in this research. At the time
of writing, these servers offer no meaningful advantages over the in-house semantic search solution
described in section 6.4. Most documentation MCP servers do not support hosting or isolating local
datasets, and those that do typically adopt design principles similar to those already implemented here.
As a result, adopting external MCPs would reduce control and flexibility without delivering added
value.

The same rationale applies to Python-execution MCPs. Although sandboxing introduces clear security
benefits, these environments typically do not support the execution of closed-source libraries such as
ParaPy. Supporting such use cases would require custom extensions, which were deemed out of scope
given the sufficient performance and safety of the current tool implementation.

11.4. LLM Tool Calling
Tool calling involves the use of a language model that has been trained or fine-tuned to generate structured
tool-calling responses. Most large commercial models support this functionality by default, while
open-source models—particularly smaller ones—may not consistently exhibit this behaviour. When they
do, their names often include suffixes such as *instruct, *chat, or *versatile to indicate instruction-
following or tool-compatible capabilities. Within an agent system, tool calling typically follows a
thought–action–observation cycle, where the model reasons about the task, selects an appropriate tool,
and integrates the tool’s output into its ongoing response, Figure 5.3 visually demonstrates this. This
process consists of the following steps:

1. Inclusion of available tool signatures (e.g., function definitions) in the system prompt, informing
the model of the tools at its disposal.

1 system_prompt = """You are a useful AI assistant capable of calling tools to improve
user experience.

2

3 You have access to the following tools:
4 {tools_description}
5 """

A typical tool signature might look like:
1 {
2 "name": "get_weather_at_location",
3 "description": "Find the current weather at :param ‘‘location‘‘ through our OS

FreeWeather API.",
4 "parameters": {
5 "type": object,
6 "properties": {
7 "location": {
8 "description": null,

1MCP servers provide standardised context to language models through JSON-RPC 2.0 protocol, as detailed in Chapter 3.

https://github.com/upstash/context7
https://github.com/da1z/docsmcp
https://github.com/oborchers/mcp-server-docy
https://github.com/andrea9293/mcp-documentation-server
https://github.com/pydantic/mcp-run-python
https://github.com/modelcontextprotocol/servers?tab=readme-ov-file
https://www.jsonrpc.org/

11.4. LLM Tool Calling 93

9 "type": "string"
10 }
11 },
12 "required": ["location"],
13 },
14 }
15 """

2. Streaming the model’s output until a complete tool-calling schema is produced. Generation is
paused at this point.

1 <thinking >The user asked a question related to the weather in Delft, this probably means
I have to call the ‘get_weather_at_location ‘ function, let me see</thinking >

2

3 {
4 "action": "tool_call",
5 "function": "get_weather_at_location",
6 "input": {
7 "location": "Delft, Netherlands"
8 }
9 }

3. Executing the specified tool using the parameters provided in the schema.
1 >>> get_weather_at_location(location="Delft")
2 ...
3 "The current weather in Delft, the Netherlands is: rainy with a non-existing change of

sun."

4. Optionally validating the output returned by the tool.
5. Appending the tool’s output to the current agent response.

1 <system>
2 You are a useful AI assistant capable of calling tools to improve user experience.
3

4 You have access to the following tools:
5 {
6 "name": "get_weather_at_location",
7 "description": "Find the current weather at :param ‘‘location‘‘ through our OS

FreeWeather API.",
8 "parameters": {
9 "type": object,

10 "properties": {
11 "location": {
12 "description": null,
13 "type": "string"
14 }
15 },
16 "required": ["location"],
17 },
18 }
19 </system>
20 <user>
21 What is the weather like in Delft today?
22 </user>
23 <system>
24 <thinking >The user asked a question related to the weather in Delft, this probably means

I have to call the ‘get_weather_at_location ‘ function, let me see</thinking >
25

26 {
27 "action": "tool_call",
28 "function": "get_weather_at_location",
29 "input": {
30 "location": "Delft, Netherlands"
31 }
32 }
33

34 <tool_out >
35 The current weather in Delft, the Netherlands is: rainy with a non-existing chance of

sun.

11.4. LLM Tool Calling 94

36 </tool_out >
37 </system>

6. Resuming generation, optionally repeating the tool-calling process if additional calls are needed.

12
Detailed Design

12.1. The Pydantic Framework: Basics & Extensions
The primary framework used in this research is Pydantic AI, specifically its initial official release, version
1.0.0 (published on 05-09-2025). Although earlier development and testing were conducted using
pre-release versions, the current implementation has been fully aligned and is compatible with version
1.0.0. The core of the Pydantic AI (and the current) framework is the Agent class, which can be though
of as a container for [90]:

• LLM Model
The default language model associated with the agent. A Pydantic AI agent model consists of two
core components: the Model, tailored to the specific communication protocol of the provider, and
a Provider, which establishes the API connection. The agent framework abstracts over different
providers via custom inference logic, offering a provider-agnostic interface. For instance, initializing
an agent with the string "groq:llama-3.3-70b-versatile" will automatically instantiate a
GroqModelwith the correct GroqProvider.

• Model Settings
Model settings further customize model behaviour and may include provider-specific parameters.
These are passed as a dictionary to the model_settings argument. Common settings include:

– max_tokens – The maximum number of tokens to generate before stopping.

– temperature – Controls response randomness through soft-max normalization (see subsec-
tion 5.2.1).

– timeout – Overrides the default request timeout (in seconds).

– top_p – Enables nucleus sampling by considering tokens that make up the top-p probability
mass (see subsection 5.2.1).

• System Prompt & Instructions
System prompts and instructions serve as inputs to the LLM at runtime. These can be:

– Static – Known at development time and passed directly via the instructions argument.
– Dynamic – Derived at runtime through functions decorated with @agent.instructions.

The distinction lies in persistence: when an agent is provided with a message_history, system
prompts are retained, while instructions are only visible in the current interaction. This separation
is especially useful in multi-agent setups where agents must be assigned distinct roles without
cluttering shared context.

• Structured Output Type(s)
Pydantic AI supports structured outputs to enhance type safety in GenAI workflows. These
outputs may include standard Python types (e.g., lists, dictionaries), data classes, or full Pydantic
models. Output adherence is enforced through one of three supported strategies [90]:

95

https://ai.pydantic.dev/

12.1. The Pydantic Framework: Basics & Extensions 96

1. Tool Output – Uses tool calls to return structured data as JSON schemas; this is the default
method.

2. Native Output – Relies on the LLM’s built-in support for producing JSON-conformant text.
Support varies by model.

3. Prompted Output – Embeds a JSON schema into the prompt and parses the response.
Universally compatible but less reliable.

• Dependency Type Constraint
Pydantic AI uses a dependency injection system to provide agents with additional runtime context.
The deps_type field enforces type safety in this process. Incorrect dependency typing may result
in runtime errors. Implementation details are discussed in section 6.6.

• Function Tool(s) and Toolsets
Function tools enable agents to perform external actions or retrieve supplementary information
to enhance response quality [90]. Tools may be grouped into Toolsets, which serve a common
purpose and can be registered collectively. Tool calling allows LLMs to emit JSON schemas
describing the tool to be called—a process handled transparently by the Pydantic framework. For
background, see subsection 3.3.2 and subsection 5.2.4.

The aforementioned points synthesize into the following common signature for a Pydantic AI agent.
This structure captures the key configuration elements required to instantiate an agent capable of tool
use, structured output, dependency injection, and provider-agnostic model interaction. It serves both as
a conceptual summary and as a practical template for initializing agents in the framework.

1 agent = Agent(
2 model=.., # type: str | Model
3 model_settings=.., # type: dict
4 system_prompt=.., # type: str
5 output_type=.., # type: object | Callable
6 deps_type=.., # type: object
7 tools=..., # type: Sequence[Tool]
8)

12.1.1. Framework Customization
The pydantic_ai.Agent class uses the model argument to specify which language model the agent
should deploy. This argument can be provided either as a string or as an explicit Model instance. When
passed as a string, the model type is inferred from a prefix—for example, ’anthropic:model_name’
triggers the initialization of an AnthropicModel using the specified model_name, paired with the
corresponding AnthropicProvider.

For local models deployed via Ollama (in accordance with the compatibility constraints discussed in the
prescriptive study, see REQ-1-1), the user is required to manually instantiate both the model and its
provider. This involves using the OpenAIChatModel class (as Ollama uses the OpenAI communication
protocol as outlined in subsection 5.2.1) in combination with an OllamaProvider, as demonstrated
below:

1 local_agent = Agent(
2 OpenAIChatModel(
3 model_name="qwen2.5-coder:latest",
4 provider=OllamaProvider(base_url="https://localhost:11434/v1"),
5)
6)

To simplify local deployment and unify the initialization process for all model types, a custom wrapper
around the Agent class has been developed. This wrapper supports string-based model selection for
both locally hosted Ollama models and models served via external API providers. It extends the built-in
model inference logic by detecting when a local model is referenced, checking whether it is available
on the host machine, and instantiating the corresponding OpenAIChatModel with the appropriate
provider. Importantly, the wrapper preserves full compatibility with the original pydantic_ai.Agent
class, including its method signatures and support for explicit Model instances. This enhancement
allows for a more concise initialization syntax:

12.2. LLM Selection 97

1 local_agent = Agent("ollama:qwen2.5-coder:latest")

In addition to model inference adaptation, a local runmethod has been introduced in the agent wrapper.
This method shadows the original Agent.run signature but adds an exception-handling layer to improve
user experience, particularly in the CLI application discussed in section 6.8. If unexpected model
behaviour is detected—most notably when structured output fails due to retry limits—the method
attempts to return the AgentRunResult as a raw string. This fallback has proven useful in practice,
as such failures often occur despite the model having produced a meaningful response. All other
exceptions are re-raised to preserve standard debugging behaviour. The fallback behaviour can be
disabled by setting raise_ = True, in which case the custom run method becomes functionally identical
to pydantic_ai.Agent.run.

12.2. LLM Selection
LLaMa 3.1 (Local)

Meta AI - LLaMa 3.1

Ð Version: llama3.1:8b Ó Architecture: Dense transformer
õ Training Data: Public data from the Web � Languages: 8 languages
º Parameters: 8B z Cutoff: End of 2023
/ Context: 128K

LLaMa 3.1 is Meta’s latest generation of open-source foundation models that is also supported by
Ollama, released in July 20241. The family includes three models with 8B, 70B, and 405B parameters.
The flagship LLaMa 3.1 405B is a dense Transformer with 405 billion parameters and a context window
of up to 128K tokens. Meta opted for a standard dense Transformer model architecture with minor
adaptations, rather than a mixture-of-experts model, to maximize training stability. The models were
trained on over 16,000 H100 GPUs using over 15 trillion tokens, making the 405B the first LLaMa model
trained at this scale. To support production inference, the models were quantized from 16-bit (BF16) to
8-bit (FP8) numerics, allowing the 405B model to run within a single server node. [91]

The pre-training dataset was created from various sources containing knowledge until the end of
2023, with much of the data obtained from web scraping. The final data mix comprises approximately
50% general knowledge tokens, 25% mathematical and reasoning tokens, 17% code tokens, and 8%
multilingual tokens covering 176 languages. The web data underwent extensive cleaning including PII
and safety filtering, HTML parsing optimized for mathematical and code content, and multiple rounds
of de-duplication at URL, document, and line levels. Domain-specific pipelines extracted code and
math-relevant content, with quality filtering performed using both heuristic methods and model-based
classifiers trained on LLaMa 2 predictions. For post-training, Meta used synthetic data generation to
produce the majority of supervised fine-tuning examples, with several rounds of alignment involving
Supervised Fine-Tuning, Rejection Sampling, and Direct Preference Optimization. A final annealing
phase on small amounts of high-quality code and mathematical data further boosted benchmark
performance, though training sets from commonly used benchmarks were excluded to preserve true
few-shot learning evaluation. [91]

1"Introducing LLaMa 3.1: Our most capable models to date", from https://ai.meta.com/blog/meta-llama-3-1/ [accessed
10-10-2025]

https://ai.meta.com/blog/meta-llama-3-1/

12.3. Semantic Search Engine Design 98

Claude Sonnet 4 (API)
Anthropic - Claude Sonnet 4

Ð Version: claude-4-sonnet-20250514 Ó Architecture: Transformer
õ Training Data: Internet corpora + proprietary � Languages: Not disclosed
º Parameters: Not disclosed (> 100B) z Cutoff: May 2025
/ Context: 200K

Claude Sonnet 4 is part of the Claude 4 family, which includes two models: Claude Opus 4 and
Claude Sonnet 4, both released in May 2025. The model features a 200,000-token context window for
comprehensive document processing and a 64,000-token output capacity for extensive code generation
and analysis. As is common with proprietary models, the exact number of parameters, architectural
details, and supported languages have not been publicly disclosed.2

Claude Opus 4 and Claude Sonnet 4 were trained on a proprietary mix of publicly available information
on the Internet as of March 2025, as well as non-public data from third parties, data provided by
data-labelling services and paid contractors, data from Claude users who have opted in to have their
data used for training, and data generated internally at Anthropic. The training process employed
several data cleaning and filtering methods, including deduplication and classification. [92]

For web data collection, Anthropic operates a general-purpose web crawler that follows industry-
standard practices with respect to "robots.txt" instructions and does not access password-protected
pages or those requiring sign-in or CAPTCHA verification. The models were trained with a focus
on being helpful, honest, and harmless, using techniques including human feedback, Constitutional
AI based on principles such as the UN’s Universal Declaration of Human Rights, and the training of
selected character traits. [92]

12.3. Semantic Search Engine Design
This section details the implementation of the semantic search engine introduced in section 6.4. The
architecture comprises three main components: the engine design and querying process, the filtering
and indexing of data sources, and the integration into the agent toolset. The engine design and querying
mechanism are described in the first subsection. The filtering and indexing strategies applied to ParaPy
documentation, example sets, and API references are covered in the second subsection. The section
concludes with integration details.

12.3.1. Engine Architecture, Design & Querying Process
Semantic search is an information retrieval technique that focuses on understanding the meaning, intent,
and context of a user’s query rather than relying solely on exact keyword matches3. Leveraging natural
language processing, machine learning, and vector embeddings, semantic search enables systems to
recognize synonyms, related terms, and contextual nuances to retrieve more relevant results.

In a typical semantic search engine, data is embedded into a high-dimensional vector space. Similarity
metrics such as cosine similarity are then used to retrieve the most relevant entries. In this research, the
semantic search engine serves as a core component of the dual-agent framework, enabling access to
indexed information from three distinct sources: the ParaPy documentation, curated usage examples,
and the ParaPy API reference.

This implementation uses the SentenceTransformers library developed by HuggingFace, which offers
streamlined tools for applying state-of-the-art embedding and reranker models. The embedding
model selected is all-MiniLM-L6-v2, chosen for its satisfactory semantic performance and lightweight
footprint. While these models are technically language models, they are trained on ranked datasets
to specialize in sentence similarity and embedding tasks. Unlike large generative transformers, these
models are smaller, faster, and purpose-built for tasks like clustering and semantic retrieval. The

2"Introducing Claude 4", from https://www.anthropic.com/news/claude-4 [accessed 06-10-2025]
3From https://www.geeksforgeeks.org/nlp/what-is-semantic-search/ [accessed 06-10-2025]

https://www.sbert.net/
https://www.anthropic.com/news/claude-4
https://www.geeksforgeeks.org/nlp/what-is-semantic-search/

12.3. Semantic Search Engine Design 99

Figure 12.1: High-level overview of semantic search. Both indexed data and user queries are embedded into a shared vector
space using a language model. Similarity scores (e.g., cosine similarity) are computed, and the top-matching entries are retrieved

based on semantic relevance. From https://dida.do/what-is-semantic-search [accessed 06-10-2025].

all-MiniLM-L6-v2model maps text inputs into a 384-dimensional dense vector space, offering a balance
between performance and efficiency.

The semantic search engine operates with the following core workflow:

• Index loading and optional decryption: One of the data indexes (documentation, examples, or
API) is loaded from disk and optionally decrypted. Encryption ensures privacy and protects
potentially sensitive domain knowledge in production settings. Once decrypted, the index is only
accessible in human-readable format during runtime.

• Entry parsing: Each index is stored in JSON format. Upon loading, entries are parsed into
dedicated dataclass instances, defined by semantic search subclasses depending on the data
source. API entries include function signatures and docstrings; documentation entries contain
titles, content, and tags.

• Vector embedding: The SentenceTransformers module embeds parsed entries into an 𝑛-
dimensional vector space using the selected embedding model, yielding a vector representation
for each entry.

• Querying: Upon a user or agent query, the input is embedded into the same vector space using
the same embedding model. Cosine similarity is calculated between the query vector and all
indexed vectors. A ranked list of results is produced, with the top-𝑘 entries (based on similarity
scores) returned for contextual injection into the agent response.

Mathematically, the cosine similarity between two 𝑛-dimensional vectors ®𝐴 and ®𝐵 is computed as:

similarity = 𝑆𝐶(𝐴, 𝐵) := cos(𝜃) =
®𝐴 · ®𝐵
| ®𝐴|| ®𝐵|

=

∑𝑛
𝑖=1 𝐴𝑖𝐵𝑖√∑𝑛

𝑖=1 𝐴
2
𝑖
·
√∑𝑛

𝑖=1 𝐵
2
𝑖

, (12.1)

This similarity score ranges from -1 (completely dissimilar) to 1 (identical), with 0 indicating orthogonal
or unrelated meanings.

The base semantic search engine implementation is extended by three subclasses (one each for
documentation, examples, and API search), which define additional functionalities and tailor the
dataclass structure to the information type. This modular design ensures reusability while enabling
customization per index type.

https://dida.do/what-is-semantic-search

12.3. Semantic Search Engine Design 100

12.3.2. Filtering & Indexing of Data
The primary source for building the documentation and example indexes is the ParaPy documentation,
as available at https://parapy.nl/docs/parapy/latest/. For this research, access to the full
documentation build directories (version 1.14.0) was granted under conditions of data privacy
and protection of proprietary content (see section 5.1 for details). For indexing the API reference,
the implemented algorithm relies on runtime introspection of installed libraries within the current
environment.

ParaPy Documentation
The documentation indexing system parses Sphinx-generated output to create a searchable index while
preserving the semantic structure of the original documentation. It classifies content into five categories:
tutorials, guides, API references, examples, and general reference material, using pattern-based logic.
This classification enables filtered retrieval aligned with user intent (e.g., a tutorial versus a detailed
API reference). The parser supports full HTML directory trees or the searchindex.js file, using the
BeautifulSoupmodule for HTML parsing.

Content is captured at multiple levels of granularity. Long pages are broken down into subsection
entries to allow more precise semantic matching. Code blocks are extracted from highlighted code
sections, while API cross-references are detected via Sphinx-specific markup (e.g., code.xref.py
or .reference.internal). The resulting metadata enables both content-based and reference-based
retrieval. Strategic weighting is applied during embedding to prioritize high-value content such as
titles, breadcrumbs4, and document type tags, biasing semantic similarity toward these elements. This
introduces domain knowledge into the vector space structure. Optional index encryption is supported
to address privacy concerns, ensuring confidential documentation content is only human-readable at
runtime.

The entire documentation index can be built once, encrypted, and stored locally as a JSON file. At
runtime, this file is decrypted and loaded by the SphinxDocSearcher engine for use in the agent’s
semantic search tools.

ParaPy Examples
The example code indexing system is built from the documentation source tree, filtered to retain only
example Python files while preserving directory structure. Descriptive labels are extracted directly
from Python docstrings using Abstract Syntax Tree (AST) parsing. The system prioritizes module-level
docstrings, then falls back to the first public class or function, and finally to the filename, ensuring
resilience against inconsistent documentation practices. AST parsing ensures robustness by avoiding
misclassification of comments or strings as documentation.

To ensure representational fairness between short and long examples, embedding vectors are normalized
to unit length. This enforces cosine similarity as the comparison metric, emphasizing conceptual rather
than textual similarity. The indexing process recursively scans the filtered directory, omits irrelevant
subdirectories (e.g., .git, .venv, pycache), generates embeddings, and saves them in encrypted format.
At runtime, these are loaded via the ExampleSearcher engine for use in agent tools.

API Reference
The API indexing system uses the inspectmodule to extract callable objects through runtime introspec-
tion. Recursive traversal is configurable via a top_level_only flag to balance coverage and performance.
For large libraries, full recursion may introduce excessive indexing overhead and noise. Extracted
metadata includes qualified names, signatures, docstrings, object types, and module sources.

To optimize for searchability, each entry duplicates the API name in both dot-separated and space-
separated forms (e.g., parapy.geom.Box vs. parapy geom box). This improves matching for different
user query styles. Function signatures provide parameter context, while leading docstring lines provide
semantic context for ranking.

The system separates live object extraction from persistent storage. Extracted objects are converted
into compact metadata dictionaries without runtime references, enabling cross-platform deployment

4Breadcrumbs are navigation trails that show the hierarchical path to a documentation page, typically displayed at the top of
the page as a sequence of links separated by arrows or chevrons (e.g., "Home > User Guide > Getting Started > Installation").

https://parapy.nl/docs/parapy/latest/

12.3. Semantic Search Engine Design 101

of indexes. In the current implementation, only a limited subset of core ParaPy libraries (core, geom,
exchange, and mesh) is included. This choice balances comprehensiveness with storage and loading
efficiency. Full runtime introspection is supported but deliberately avoided due to latency concerns. The
final indexes are encrypted and later loaded into the APISemanticSearcher for use in the agent tools.

12.3.3. Integration
The final step in implementing semantic search functionality is making the search engines accessible to
the agents via tool context. The framework includes three semantic search engines:

• SphinxDocSearcher for full ParaPy documentation retrieval,
• ExampleSearcher for searching curated ParaPy example files,
• APISemanticSearcher for indexing and querying API references of pre-selected modules.

Figure 12.2: Time distribution of initialization operations across three semantic search engine classes. Model loading operations
(blue) dominate initialization time, with SphinxDocSearcher showing notably higher index loading overhead (red) compared to

the other implementations.

The Pydantic framework supports injecting runtime dependencies into the agent context, which can be
used by system prompts, tools, and output validators. These dependencies can be any Python object;
however, this framework uses dataclasses to encapsulate them.

At runtime, these dependencies are exposed via the agent’s RunContext, which includes access
to dependencies, message history, usage metrics, and retry counters (see section 6.6 for further
implementation details). In this framework, the Developer and Educational agents are given access to
specific search engines as follows:

1 @dataclass
2 class DevDependencies:
3 """Run dependencies for ParaPy Developer Copilot."""
4

5 doc_searcher: "ExampleSearcher"
6 api_searcher: "APISemanticSearcher"
7

8

9 @dataclass
10 class EduDependencies:
11 """Run dependencies for ParaPy Educational Copilot."""
12

13 doc_searcher: "SphinxDocSearcher"
14 api_searcher: "APISemanticSearcher"

12.4. Developer Agent: System Prompt Components 102

As the index-building process can take several minutes depending on dataset size, this supports the
earlier design decision to pre-index and store semantic search data. Runtime profiling for all three
semantic search engines is shown in Figure 12.2. The primary computational overhead arises from
loading the embedding model, followed by decrypting and loading the index files. Among the engines,
the SphinxDocSearcher exhibits the highest total overhead, primarily due to its considerably larger
index size. To mitigate these costs during runtime, all engines are instantiated and embedded once
during agent startup rather than at each tool invocation. While this approach introduces a modest initial
delay, it significantly reduces query latency and avoids redundant processing during inference.

12.4. Developer Agent: System Prompt Components
This section presents the complete system prompt components for the Developer Agent, as discussed in
section 6.5. The system prompt operates as a template with runtime substitution, where placeholders
marked with $variable_name are replaced with actual content during agent execution. The template
structure, substitution mechanism, and design rationale are detailed in the main chapter.

12.4.1. Template
The template below defines the Developer Agent’s system prompt structure. Runtime placeholders
include:

• $documentation: The PARAPY_PRINCIPLES constant
• $examples: The PARAPY_EXAMPLES constant (static code snippets)
• $best_practises: The DEVELOPER_BEST_PRACTISES constant
• $request: The user’s query with optional file contents

1 DEVELOPER_TEMPLATE: Template = Template(
2 """
3 First, here is the ParaPy documentation you should reference:
4

5 <parapy_docs >
6 $documentation
7 </parapy_docs >
8

9 Here are code examples using the ParaPy SDK to get you familiar with its usage:
10 <parapy_examples >
11 $examples
12 </parapy_examples >
13

14 Your task is to generate Python code using the ParaPy SDK based on the provided documentation
and a specific request. When writing the code, follow these guidelines:

15

16 1. Use the appropriate ParaPy classes and decorators (e.g., Base, Input, Attribute , Part) as
described in the documentation.

17 2. Ensure that your code follows the correct syntax and grammar for each ParaPy component.
18 3. Use meaningful variable and class names that reflect their purpose.
19 4. Include comments to explain complex parts of the code or design decisions.
20 5. If the request involves multiple classes or components , structure your code logically and

use proper indentation.
21

22 Furthermore , adhere to the following best practises in your responses:
23 <best_practices >
24 $best_practises
25 </best_practices >
26

27 Here is the specific request for Python code:
28

29 <code_request >
30 $request
31 </code_request >
32

33 Before generating the code, work through the following steps:
34

35 <thinking_steps >
36 1. **Analyze the request**: Break down what the code needs to accomplish

12.4. Developer Agent: System Prompt Components 103

37 2. **Identify required components**: Which ParaPy classes, decorators , and
38 patterns from the documentation are needed?
39 3. **Plan the structure**: How should classes be organized? What’s the
40 hierarchy?
41 4. **Map to documentation**: Which specific documentation sections and
42 examples are most relevant?
43 5. **Check best practices**: How do the best practices apply to this
44 specific implementation?
45 6. **Consider edge cases**: What potential issues should be addressed?
46 </thinking_steps >
47

48 First, work through these thinking steps explicitly , then generate the final code
implementation based on the ParaPy documentation and the code request.

49

50 Be sure to output your results as instructed.
51

52 Remember to adhere to ParaPy’s specific syntax and requirements , especially for Input,
Attribute , and Part components. If you need to make any assumptions about the
requirements , state them clearly in your explanation.

53

54 <guardrails >
55 If the question is non-coding related or lacks context, respond with "I am specifically

designed to assist in and help with code completion/generation. Please provide more
context on the coding task."

56 </guardrails >
57 """
58)

12.4.2. Best Practices
The best practices constant establishes implementation rules, syntax requirements, and coding stan-
dards for the Developer Agent. These guidelines are injected into the system prompt through the
$best_practises placeholder. Key sections include Part grammar restrictions, message passing syntax,
data integrity requirements, validation strategies, code quality standards, and KBE mindset principles.

1 DEVELOPER_BEST_PRACTISES = """
2 Critical Implementation Rules:
3 - Part methods can ONLY contain an optional docstring followed by a return statement - NO

exceptions
4 - Move ALL complex logic (loops, conditionals , print statements , intermediate variables) to

Attribute slots
5 - The child proxy (child.index, child.previous , child.next) is only available within Part

context
6 - For conditional Part instantiation , use ‘‘DynamicType ‘‘ to respect Part grammar
7

8 Message Passing Syntax:
9 - pass_down uses string format: pass_down="slot1, slot2, slot3"

10 - map_down uses mapping syntax: map_down="parent_slot ->child_slot"
11 - Prefer explicit coupling over implicit defaulting/trickle-down for maintainability
12

13 Data Integrity:
14 - Avoid in-place mutations of slot values - they break dependency tracking
15 - Always go through slot setters to trigger proper dependency invalidation
16 - Use ParaPy’s List class for mutable sequences that need dependency tracking
17

18 Validation Strategy:
19 - Validate inputs at the source using validators on Input slots
20 - Catch invalid values early rather than in dependent calculations
21 - Use labels on Input slots to improve UI clarity
22

23 Code Quality:
24 - Do not use wildcard (*) imports - import specific classes and functions
25 - Choose GeomBase over Base for any geometry -related classes needing positioning
26 - Include docstrings for classes following ParaPy documentation conventions
27 - Comment non-obvious design decisions or complex attribute calculations
28

29 Knowledge -Based Engineering Mindset
30 - Emphasize parametric thinking and design intent over specific geometry creation
31 - Teach the "why" behind KBE principles: automation , reusability , and knowledge capture
32 - Highlight how ParaPy concepts transfer to broader engineering automation skills

12.4. Developer Agent: System Prompt Components 104

33 - Encourage systematic decomposition of engineering problems into logical components
34 - Stress the importance of proper architecture and planning before implementation
35 - Explain trade-offs between flexibility , complexity , and maintainability
36 """

12.4.3. ParaPy Principles and Examples
This constant provides structured explanation of ParaPy’s core concepts and curated code snippets. The
PARAPY_PRINCIPLES section covers fundamental architecture, slot types, syntax patterns, positioning
mechanisms, advanced features, and grammar constraints. The PARAPY_EXAMPLES section presents
seven code snippets demonstrating correct ParaPy syntax for various features. This content is embedded
in the prompt to provide pattern recognition templates and conceptual grounding.

1 PARAPY_PRINCIPLES = """
2 # ParaPy Core Principles
3

4 ## Fundamental Architecture
5

6 ### Base Class Options
7 - **Base**: Core class for all ParaPy objects
8 - **GeomBase**: Alternative to Base for geometry primitives with built-in positioning
9 - Classes are populated with **Slots** rather than traditional methods and data members

10 - Three slot types: ‘Input‘, ‘Attribute ‘, and ‘Part‘
11

12 ### GeomBase Features
13 GeomBase inherits from Base and adds geometric positioning capabilities:
14

15 - Provides ‘position ‘, ‘location ‘, and ‘orientation ‘ slots that are ‘defaulting ‘
16 - Values inherited from parent objects unless explicitly overridden
17 - Enables relative positioning using transformation functions
18 - Key slots:
19 - ‘position ‘: Combined location and orientation (Position instance with methods for

translate , rotate, align, reflect, etc.)
20 - ‘location ‘: Point in 3D space (defaults to Point(0, 0, 0))
21 - ‘orientation ‘: 3D orientation vectors (defaults to world coordinate system)
22

23 Example usage pattern:
24 ‘‘‘python
25 from parapy.geom import Box, GeomBase , translate , rotate90
26

27 class MyClass(GeomBase):
28 @Part
29 def child1(self):
30 return Box(position=translate(self.position, x=2))
31

32 @Part
33 def child2(self):
34 return Box(position=rotate90(translate(self.child1.position , x=2), ’x’))
35 ‘‘‘
36

37 ## Slot Types and Syntax
38

39 ### Input Slots
40 - Values settable by user or parent object
41 - Can be required , optional with defaults , or derived
42 - Syntax: ‘name = Input(default_value , **kwargs)‘
43 - Support validation , preprocessing , defaulting , and trickle-down
44

45 ### Attribute Slots
46 - Output slots implementing engineering rules
47 - Values derived from expressions using other slots
48 - Syntax: ‘@Attribute ‘ decorator on methods
49 - Complete freedom in implementation logic
50

51 ### Part Slots
52 - Return other ParaPy class instances (children)
53 - Form compositional parent-child relationships
54 - **Strict grammar requirements**: Only return statement allowed (plus optional docstring)
55 - Syntax: ‘@Part‘ decorator returning class instantiation
56 - Support quantification , message passing, and conditional creation

12.4. Developer Agent: System Prompt Components 105

57

58 ## Slot Declaration Patterns
59

60 ### Three Valid Syntaxes
61 1. **Class attribute style**: ‘name = Slot(getter, **kwargs)‘
62 2. **Decorator style**: ‘@Slot(**kwargs)‘ on methods
63 3. **Hybrid style**: ‘name = Slot(derived, **kwargs)‘ + ‘@name.getter‘
64

65 ### Reserved Keywords in Parts
66 - ‘hidden ‘: Hide from product tree
67 - ‘suppress ‘: Complete suppression (returns Undefined)
68 - ‘quantify ‘: Create sequences of children
69 - ‘pass_down ‘: Pass identically named slots to children
70 - ‘map_down ‘: Map parent slots to child slots with different names
71

72 ## Advanced Features
73

74 ### Quantification and Child Proxy
75 - Use ‘quantify=N‘ to create sequences of child objects
76 - Access ‘child.index‘, ‘child.previous ‘, ‘child.next‘ within Part context
77 - Child proxy only available within ‘@Part‘ decorated methods
78

79 ### Dynamic Typing
80 - Use ‘DynamicType ‘ for conditional Part instantiation
81 - Respects Part grammar while allowing type selection based on slot values
82

83 ## Constraints and Rules
84

85 ### Part Grammar Restrictions
86 - Only optional docstring + return statement allowed
87 - Cannot include print statements , loops, or complex logic
88 - Must return ParaPy class instance or use ‘DynamicType ‘
89 - Cannot return Python lists (use ‘quantify ‘ instead)
90

91 ### Mutability Considerations
92 - Avoid in-place mutations of slot values
93 - Use immutable patterns or ParaPy’s ‘List‘ class for mutable sequences
94 - In-place mutations break dependency tracking
95 """
96

97 PARAPY_EXAMPLES = """
98 1. An example of a typical ParaPy class covering all three Slot types and different syntaxes.
99 ‘‘‘python

100 from parapy.core import Base, Input, Attribute , Part, derived
101 from parapy.geom import Box
102

103

104 class MyClass(Base):
105

106 width = Input(1)
107 height = Input(derived)
108

109 @height.getter
110 def height(self):
111 return self.length + 1
112

113 @Attribute
114 def length(self):
115 return 2 * self.width
116

117 @Part
118 def box(self):
119 return Box(pass_down="width, length, height")
120

121

122 if __name__ == ’__main__’:
123 from parapy.gui import display
124 obj = (MyClass(width=2))
125 display(obj)
126 ‘‘‘
127

12.4. Developer Agent: System Prompt Components 106

128 2. An example clarifying the use of the Input Slot:
129 ‘‘‘python
130 from parapy.core import Base, Input
131

132 class ClassWithDefaultInput(Base):
133 length = Input(5)
134

135 class ClassWithRequiredInput(Base):
136 length = Input()
137

138 class ClassWithDerivedInput(Base):
139 length = Input(5)
140

141 @Input
142 def height(self):
143 return self.length * 2
144 ‘‘‘
145

146 3. An example of three attributes in a Rocket class would be:
147 ‘‘‘python
148 from parapy.core import Base, Input, Attribute
149

150 class MyRocket(Base):
151 length = Input(5)
152

153 @Attribute
154 def height(self):
155 return self.length / 15
156

157 @Attribute
158 def maximum_altitude(self):
159 print("Calculating maximum altitude")
160 return 42
161

162 @Attribute
163 def weight(self):
164 print("Calculating weight")
165 return self.length * 1500
166

167

168 if __name__ == ’__main__’:
169 from parapy.gui import display
170 obj = (MyRocket())
171 display(obj)
172 ‘‘‘
173

174 4. An example of a Part in a Wing class:
175 ‘‘‘python
176 from parapy.core import Base, Input, Part
177

178 class Airfoil(Base):
179 thickness = Input(0.1)
180 chord = Input(1)
181

182 class Wing(Base):
183 thickness = Input(0.2)
184 chord = Input(2)
185

186 @Part
187 def airfoil(self):
188 return Airfoil(pass_down="thickness",
189 chord=self.chord,
190 hidden=self.chord >= 3,
191 suppress=self.chord >= 4)
192

193

194 if __name__ == ’__main__’:
195 from parapy.gui import display
196 obj = (Wing(thickness=0.2, chord=1.5))
197 display(obj)
198 ‘‘‘

12.4. Developer Agent: System Prompt Components 107

199

200 5. An example showing the violation of Part Slot grammar:
201 ‘‘‘python
202 from parapy.core import Base, Part
203 from parapy.geom import Box
204

205 class WrongPart(Base):
206

207 @Part
208 def something(self):
209 print(’Show me something’)
210 return Box(1,2,3)
211

212 class AnotherWrongPart(Base):
213

214 @Part
215 def boxes(self):
216 return [Box(1,2,3), Box(2,3,4), Box(3,4,5)]
217 ‘‘‘
218

219 6. An example showing the use of ‘quantify ‘ within Part expressions:
220 ‘‘‘python
221 from parapy.core import Base, Part, child
222 from parapy.geom import Box
223

224 class QuantifyDemo(Base):
225

226 @Part
227 def boxes(self):
228 return Box(quantify=3,
229 width=1 + child.index,
230 length=2 + child.index,
231 height=3 + child.index)
232

233

234 class QuantifyDemoAdvanced(Base):
235

236 @Part
237 def boxes(self):
238 return Box(quantify=3,
239 width=(1
240 if child.index == 0 else
241 child.previous.width + 1),
242 length=(2
243 if child.index == 0 else
244 child.previous.length + 1),
245 height=(3
246 if child.index == 0 else
247 child.previous.height + 1))
248 ‘‘‘
249

250 7. An example of the DynamicType class within Part Slot expressions (USE SPARINGLY):
251 ‘‘‘python
252 from parapy.core import Base, Input, Part, DynamicType
253

254 class Zoo(Base):
255 area = Input(’Sumatra’)
256

257 @Part
258 def child(self):
259 return DynamicType(
260 type=(Monkey if self.area == ’Sumatra’ else Donkey),
261 radius=1, height=2, width=3, length=4)
262

263

264 if __name__ == ’__main__’:
265 from parapy.gui import display
266 obj = (Zoo())
267 display(obj)
268 ‘‘‘
269 """

12.5. Educational Agent: System Prompt Components 108

12.5. Educational Agent: System Prompt Components
This section presents the complete system prompt components for the Educational Agent, as discussed
in section 6.5. Unlike the Developer Agent, the Educational Agent relies primarily on dynamic semantic
search rather than static code examples embedded in the prompt. The template reflects this design
choice through its structure and placeholder composition.

12.5.1. Template
The template below defines the Educational Agent’s system prompt structure. Runtime placeholders
include:

• $request: The user’s query presented at the beginning
• $best_practises: The EDUCATIONAL_BEST_PRACTISES constant

Note the absence of $documentation and $examples placeholders. The Educational Agent accesses
documentation dynamically through SphinxDocSearcher and APISemanticSearcher tools during
execution rather than receiving static content in the system prompt.

1 EDUCATIONAL_TEMPLATE: Template = Template(
2 """
3 Here is the user’s query:
4 <user_query >
5 $request
6 </user_query >
7

8 Your role is to act as a knowledgeable ParaPy SDK learning assistant. You should help users
with:

9 - Getting started guides and initial setup
10 - Learning paths tailored to their experience level
11 - Step-by-step tutorials for specific tasks
12 - Documentation explanations and clarifications
13 - Code examples and best practices
14 - Troubleshooting common issues
15

16 Guidelines for your responses:
17 <best_practices >
18 $best_practises
19 </best_practices >
20

21 Before providing your response, work through the following steps:
22

23 <thinking_steps >
24 1. Analyze what the user is asking for
25 2. Identify the most relevant sections of the documentation
26 3. Determine the appropriate level of detail and complexity for your response
27 4. Plan the structure of your answer
28 </thinking_steps >
29

30 First, work through these thinking steps explicitly , then provide your final response.
31

32 Be sure to output your results as instructed.
33

34 <guardrails >
35 If the user’s query is not related to ParaPy SDK development , learning , or documentation ,

politely redirect them by saying "I’m specifically designed to help with ParaPy SDK
learning and development. Could you please ask a question related to ParaPy SDK
documentation , tutorials , or getting started?"

36 If the user specifically asks about ParaPy development related to web deployment and WebGUIs,
politely redirect them by saying "Unfortunately , my current version only has extensive
knowledge of the core ParaPy libraries (‘core‘, ‘geom‘, ‘mesh‘ and ‘exchange ‘). For
guidance on web deployment and using the ParaPy WebGUI, please visit the official
documentation at: https://parapy.nl/docs/webgui/latest/learn/. There, you’ll find step-by
-step instructions for building and deploying Python-based web applications with ParaPy".

37

38 Other relevant ParaPy libraries that you do not have active knowledge on, include:
39 - ‘AVL‘: This package is an interface for AVL (Athena Vortex Lattice), a tool for aircraft

aerodynamic and flight-dynamic analyses.

12.5. Educational Agent: System Prompt Components 109

40 - ‘BIM‘: ParaPy BIM contains the building blocks to create and share parametric BIM models.
Use the variety of ready-to-use parametric AEC objects and automatically write your
ParaPy model to Industry Foundation Classes (IFC) format for sharing you model.

41 - ‘CST‘: The CST package implements the CST-parametrization (Class-Shape function
Transformation) for airfoils in ParaPy.

42 - ‘Aero‘: The goal of the Aircraft SDK is to support the modeling and analysis of aerial
vehicles in a fast, flexible , accurate, and intuitive way.

43 - ‘FlightStream ‘: This package is an interface for FlightStream , an aerodynamic simulation
tool.

44 - ‘XFOIL‘: This package is an interface for XFOIL, a tool for the and design and analysis of
airfoils.

45 </guardrails >
46 """
47)

12.5.2. Best Practices
The best practices constant establishes pedagogical guidelines, learning support strategies, adaptive
communication patterns, and scope management principles for the Educational Agent. These guidelines
are injected into the system prompt through the $best_practises placeholder. Key sections include
documentation accuracy requirements, KBE mindset teaching, adaptive communication strategies,
learning support principles, scope management, and practical guidance approaches.

1 EDUCATIONAL_BEST_PRACTISES = """
2 Core Documentation and Accuracy
3 - Always base your answers on the provided documentation
4 - If the user’s question cannot be fully answered from the documentation , clearly state what

information is missing
5 - Provide practical , actionable advice with specific steps when possible
6 - Include relevant code examples from the documentation when helpful
7 - Suggest logical next steps or related topics the user might want to explore
8 - Tailor your response complexity to match the user’s apparent experience level
9

10 Knowledge -Based Engineering Mindset
11 - Emphasize parametric thinking and design intent over specific geometry creation
12 - Teach the "why" behind KBE principles: automation , reusability , and knowledge capture
13 - Highlight how ParaPy concepts transfer to broader engineering automation skills
14 - Encourage systematic decomposition of engineering problems into logical components
15 - Stress the importance of proper architecture and planning before implementation
16 - Explain trade-offs between flexibility , complexity , and maintainability
17

18 Adaptive Communication
19 - Match response complexity to the user’s demonstrated experience level
20 - When users request content mismatched to their level, identify missing prerequisites first
21 - Help prioritize when users present scattered concerns
22 - Address the underlying problem when confusion leads to misdirected questions
23

24 Learning Support
25 - Normalize learning difficulties and acknowledge frustration as part of the process
26 - Set realistic expectations about learning timelines and achievable goals
27 - Explain why fundamentals matter for long-term success, even when users seek shortcuts
28 - Provide focused starting points for overwhelmed users rather than comprehensive overviews
29 - Break complex topics into sequential , prerequisite -aware learning paths
30

31 Scope Management
32 - Recognize when questions fall outside ParaPy SDK scope and redirect appropriately
33 - Clarify distinctions between ParaPy, Python programming , CAD tools, and unrelated software
34 - When users compare incompatible technologies , explain category differences
35 - Acknowledge when problems require approaches beyond ParaPy’s capabilities
36

37 Practical Guidance
38 - Provide actionable advice with specific , concrete next steps
39 - Include relevant code examples from documentation when helpful
40 - Suggest logical follow-up topics for continued learning
41 - Guide users to specific documentation sections rather than pointing to entire manuals
42 - Balance immediate problem-solving with sustainable long-term learning strategies
43 """

12.6. Educational Agent: Incremental Performance 110

12.6. Educational Agent: Incremental Performance
This section presents the incremental performance of the Educational Agent across three implementation
stages: (1) baseline configuration without documentation or retrieval, (2) enhanced prompt engineering,
and (3) full framework integration with semantic search and tools. All examples use a model temperature
of 0.0 and are based on the same user query:

1 >>> "How can I create an L-shaped flange extrusion using the ParaPy SDK?"

The local model selected for the Educational Agent is LLaMA 3.1 8B, an instruction-tuned variant with
tool-calling capabilities. This model is trained primarily on general natural language data rather than
code-specific corpora, making it more suitable for educational dialogue compared to specialized coding
models. The API-based configuration uses Claude Sonnet 4. While baseline and prompt-engineered
configurations do not require tool-calling capabilities, the same fine-tuned variant is used throughout to
ensure consistency. Comprehensive evaluation across multiple use cases is presented in Chapter 7.

12.6.1. Baseline Performance
Baseline configurations operate without dedicated system prompts, semantic search, documentation
retrieval, or curated examples. The agents receive only minimal prompts and lack access to ParaPy-
specific knowledge infrastructure. Responses reflect the model’s pre-trained knowledge, which is
insufficient for accurate ParaPy SDK guidance.

User Query
1 >>> "How can I create an L-shaped flange extrusion using the ParaPy SDK?"

Claude Sonnet 4 (API)
1 I’ll explain how to create an L-shaped flange extrusion using the ParaPy SDK. Here’s a step-

by-step approach:
2

3 ## Basic L-Shaped Flange Extrusion
4

5 ‘‘‘python
6 from parapy.core import *
7 from parapy.geom import *
8

9 class LShapedFlange(GeomBase):
10

11 # Input parameters
12 width = Input(100.0, doc="Width of the horizontal part")
13 height = Input(80.0, doc="Height of the vertical part")
14 thickness = Input(10.0, doc="Thickness of both parts")
15 extrusion_length = Input(50.0, doc="Length of extrusion")
16

17 @Part
18 def l_profile(self):
19 """Create the L-shaped profile as a face"""
20 return Face(
21 surface_from_curves=[
22 self.outer_curve,
23 self.inner_curve
24]
25)
26

27 @Part
28 def outer_curve(self):
29 """Outer boundary of the L-shape"""
30 points = [
31 Point(0, 0, 0),
32 Point(self.width, 0, 0),
33 Point(self.width, self.thickness , 0),
34 Point(self.thickness , self.thickness , 0),
35 Point(self.thickness , self.height, 0),
36 Point(0, self.height, 0),
37 Point(0, 0, 0) # Close the curve
38]

12.6. Educational Agent: Incremental Performance 111

39 return PolylineCurve(points)
40

41 @Part
42 def inner_curve(self):
43 """Inner boundary (if you want a hollow L-shape)"""
44 # For a solid L-shape, you might not need this
45 # This creates a small inner cutout as an example
46 inner_offset = 5.0
47 points = [
48 Point(inner_offset, inner_offset, 0),
49 Point(inner_offset, self.height - inner_offset, 0),
50 Point(self.thickness - inner_offset, self.height - inner_offset, 0),
51 Point(self.thickness - inner_offset, self.thickness + inner_offset, 0),
52 Point(self.width - inner_offset, self.thickness + inner_offset, 0),
53 Point(self.width - inner_offset, inner_offset, 0),
54 Point(inner_offset, inner_offset, 0)
55]
56 return PolylineCurve(points)
57

58 @Part
59 def extruded_flange(self):
60 """Extrude the L-shaped profile"""
61 return ExtrudedSolid(
62 island=self.l_profile,
63 distance=self.extrusion_length,
64 direction=Vector(0, 0, 1) # Extrude in Z direction
65)
66

67 # Usage
68 if __name__ == ’__main__’:
69 flange = LShapedFlange()
70 flange.view()
71 ‘‘‘
72

73 ## Alternative Approach Using Boolean Operations
74

75 ‘‘‘python
76 from parapy.core import *
77 from parapy.geom import *
78

79 class LShapedFlangeBoolean(GeomBase):
80

81 # Input parameters
82 width = Input(100.0)
83 height = Input(80.0)
84 thickness = Input(10.0)
85 extrusion_length = Input(50.0)
86

87 @Part
88 def horizontal_part(self):
89 """Horizontal part of the L"""
90 return Box(
91 width=self.width,
92 length=self.thickness ,
93 height=self.extrusion_length,
94 position=Point(0, 0, 0)
95)
96

97 @Part
98 def vertical_part(self):
99 """Vertical part of the L"""

100 return Box(
101 width=self.thickness ,
102 length=self.height,
103 height=self.extrusion_length,
104 position=Point(0, 0, 0)
105)
106

107 @Part
108 def l_flange(self):
109 """Union of horizontal and vertical parts"""

12.6. Educational Agent: Incremental Performance 112

110 return FusedSolid(
111 shape_in=self.horizontal_part,
112 tool=self.vertical_part
113)
114

115 # Usage
116 if __name__ == ’__main__’:
117 flange = LShapedFlangeBoolean()
118 flange.view()
119 ‘‘‘
120

121 ## Advanced Version with Rounded Corners
122

123 ‘‘‘python
124 from parapy.core import *
125 from parapy.geom import *
126

127 class AdvancedLFlange(GeomBase):
128

129 width = Input(100.0)
130 height = Input(80.0)
131 thickness = Input(10.0)
132 extrusion_length = Input(50.0)
133 fillet_radius = Input(5.0, doc="Radius for rounded corners")
134

135 @Part
136 def base_l_shape(self):
137 """Create basic L-shape using boolean union"""
138 horizontal = Box(
139 width=self.width,
140 length=self.thickness ,
141 height=self.extrusion_length
142)
143

144 vertical = Box(
145 width=self.thickness ,
146 length=self.height,
147 height=self.extrusion_length
148)
149

150 return FusedSolid(shape_in=horizontal , tool=vertical)
151

152 @Part
153 def filleted_flange(self):
154 """Add fillets to the L-shape"""
155 return FilletedSolid(
156 built_from=self.base_l_shape,
157 radius=self.fillet_radius,
158 edges=self.base_l_shape.edges # Fillet all edges
159)
160

161 # Usage
162 if __name__ == ’__main__’:
163 flange = AdvancedLFlange()
164 flange.view()
165 ‘‘‘
166

167 ## Key Points:
168

169 1. **Profile Creation**: Define the L-shaped cross-section using points and curves
170 2. **Extrusion**: Use ‘ExtrudedSolid ‘ to create 3D geometry from 2D profile
171 3. **Boolean Operations**: Alternative approach using ‘FusedSolid ‘ to combine rectangular

parts
172 4. **Parametric Design**: All dimensions are controlled by input parameters
173 5. **Visualization**: Use ‘.view()‘ to display the result
174

175 ## Common Parameters to Consider:
176

177 - Flange dimensions (width, height, thickness)
178 - Extrusion length/distance
179 - Corner radius for fillets

12.6. Educational Agent: Incremental Performance 113

180 - Material properties
181 - Hole patterns (if needed)
182 - Orientation and positioning
183

184 Choose the approach that best fits your specific requirements. The boolean operation method
is often simpler for basic shapes, while the profile-based extrusion gives you more
control over complex geometries.

LLaMA 3.1 (Local)
1 To create an L-shaped flange using the ParaPy SDK, you’ll need to define a 3D model that

represents your design and then use the SDK’s functionality to export it in a format
suitable for 3D printing or other manufacturing processes.

2

3 Here is a step-by-step guide on how to achieve this:
4

5 ### Step 1: Install ParaPy
6

7 First, ensure you have ParaPy installed. You can install it via pip if you haven’t already:
8

9 ‘‘‘bash
10 pip install parapy
11 ‘‘‘
12

13 ### Step 2: Define Your L-Shaped Flange in Python
14

15 Create a new Python file (e.g., ‘l_flange.py‘) and define your design using the ParaPy SDK.
This example will create an L-shaped flange with dimensions that you can adjust.

16

17 ‘‘‘python
18 from parapy.core import BaseObject
19 from parapy.geom import Point, Vector, Solid, Extrusion
20

21 class LFlange(BaseObject):
22 def __init__(self):
23 super(LFlange, self).__init__()
24

25 @Property
26 def length(self):
27 return 100.0 # Length of the flange
28

29 @Property
30 def width(self):
31 return 50.0 # Width of the flange
32

33 @Property
34 def height(self):
35 return 10.0 # Height of the flange
36

37 @Property
38 def thickness(self):
39 return 2.0 # Thickness of the flange
40

41 @Property
42 def angle(self):
43 return 90.0 # Angle between the two parts of the L-shape
44

45 @Property
46 def origin(self):
47 return Point(0, 0, 0)
48

49 @Property
50 def direction(self):
51 return Vector(1, 0, 0)
52

53 @Property
54 def axis(self):
55 return self.direction
56

57 @Property
58 def cross_section(self):

12.6. Educational Agent: Incremental Performance 114

59 # Define the cross-section of the extrusion (in this case, a rectangle)
60 return Solid(
61 Point(-self.width/2, -self.thickness/2, 0),
62 Point(self.width/2, -self.thickness/2, 0),
63 Point(self.width/2, self.thickness/2, 0),
64 Point(-self.width/2, self.thickness/2, 0)
65)
66

67 @Property
68 def extrusion(self):
69 # Extrude the cross-section along the axis defined by direction and angle
70 return Extrusion(
71 self.cross_section,
72 start=self.origin,
73 end=self.origin + Vector(self.length, 0, 0),
74 axis=self.axis,
75 angle=self.angle
76)
77 ‘‘‘
78

79 ### Step 3: Run Your Script
80

81 Run your Python script to generate the L-shaped flange. This will create a ParaPy object that
you can then export in various formats.

82

83 ‘‘‘bash
84 parapy l_flange.py --export stl
85 ‘‘‘
86

87 This command exports the design as an STL file, which is suitable for 3D printing or other
manufacturing processes.

88

89 ### Notes
90

91 - Adjust the dimensions and properties (‘length‘, ‘width‘, ‘height‘, ‘thickness ‘, ‘angle ‘) in
the Python script to suit your specific needs.

92 - The example provided here creates a simple L-shaped flange. Depending on your design
requirements , you might need more complex geometries or additional features like holes or
chamfers.

93

94 This guide should give you a basic understanding of how to create and export 3D models using
ParaPy.

12.6.2. With Prompt Engineering
This configuration introduces enhanced system prompts that establish the agent’s pedagogical role,
define response structure, and provide basic SDK-specific guidance. Documentation and semantic
search remain unavailable; improvements derive solely from instruction refinement.

User Query
1 >>> "How can I create an L-shaped flange extrusion using the ParaPy SDK?"

Claude Sonnet 4 (API)
1 <thinking_steps>
2 1. **Analyze what the user is asking for**: The user wants to learn how to create an

extrusion of an L-shaped flange using the ParaPy SDK. This involves:
3 - Creating an L-shaped profile/cross-section
4 - Extruding that profile to create a 3D solid
5 - Understanding the geometric modeling concepts in ParaPy
6

7 2. **Identify the most relevant sections of the documentation**: This would involve:
8 - ParaPy geometry creation (likely ‘parapy.geom‘)
9 - Profile/curve creation for the L-shape

10 - Extrusion operations
11 - Solid modeling concepts
12

13 3. **Determine the appropriate level of detail and complexity**: The user seems to have a
specific geometric goal in mind, suggesting some familiarity with CAD concepts. I should
provide:

12.6. Educational Agent: Incremental Performance 115

14 - A clear step-by-step approach
15 - Code examples showing the L-shape creation and extrusion
16 - Explanation of the parametric thinking behind the approach
17

18 4. **Plan the structure of my answer**:
19 - Brief overview of the approach
20 - Step-by-step breakdown of creating the L-shaped profile
21 - Extrusion process
22 - Complete code example
23 - Best practices and parametric considerations
24 </thinking_steps>
25

26 Great question! Creating an extruded L-shaped flange is a perfect example of parametric
geometric modeling with ParaPy. Let me walk you through the process step-by-step.

27

28 ## Approach Overview
29

30 To create an L-shaped flange extrusion , you’ll need to:
31 1. Define the L-shaped profile as a closed curve
32 2. Use ParaPy’s extrusion capabilities to create the 3D solid
33 3. Make it parametric so you can easily modify dimensions
34

35 ## Step-by-Step Implementation
36

37 Here’s a complete example showing how to create a parametric L-shaped flange:
38

39 ‘‘‘python
40 from parapy.core import *
41 from parapy.geom import *
42

43 class LShapedFlange(GeomBase):
44 # Parametric inputs for the L-shape dimensions
45 width = Input(100.0, doc="Width of the horizontal leg")
46 height = Input(80.0, doc="Height of the vertical leg")
47 thickness = Input(10.0, doc="Thickness of both legs")
48 extrusion_length = Input(20.0, doc="Length of extrusion")
49

50 @Part
51 def l_profile(self):
52 """Create the L-shaped profile as a closed curve"""
53 return PolyCurve(
54 points=[
55 Point(0, 0, 0), # Bottom-left corner
56 Point(self.width, 0, 0), # Bottom-right corner
57 Point(self.width, self.thickness , 0), # Inner corner bottom
58 Point(self.thickness , self.thickness , 0), # Inner corner
59 Point(self.thickness , self.height, 0), # Inner corner top
60 Point(0, self.height, 0), # Top-left corner
61 Point(0, 0, 0) # Close the curve
62],
63 closed=True
64)
65

66 @Part
67 def l_face(self):
68 """Create a face from the L-shaped profile"""
69 return Face(surface_from_curves=self.l_profile)
70

71 @Part
72 def extruded_flange(self):
73 """Extrude the L-shaped face to create the 3D flange"""
74 return ExtrudedSolid(
75 face=self.l_face,
76 direction=Vector(0, 0, 1), # Extrude in Z direction
77 distance=self.extrusion_length
78)
79

80 if __name__ == ’__main__’:
81 obj = LShapedFlange()
82 obj.generate()
83 ‘‘‘

12.6. Educational Agent: Incremental Performance 116

84

85 ## Key Concepts Explained
86

87 ### 1. **Parametric Design**
88 Notice how all dimensions are defined as ‘Input‘ parameters. This makes your flange fully

parametric - you can easily create different sizes by changing the input values.
89

90 ### 2. **Profile Creation**
91 The L-shape is created using ‘PolyCurve ‘ with carefully calculated points. The profile starts

at the origin and traces the L-shape clockwise , ensuring it’s a closed curve.
92

93 ### 3. **Face Generation**
94 The ‘Face‘ part converts your 2D profile curve into a surface that can be extruded.
95

96 ### 4. **Extrusion**
97 ‘ExtrudedSolid ‘ takes the face and extrudes it along a specified direction and distance.
98

99 ## Alternative Approach Using Rectangles
100

101 For more complex L-shapes or if you prefer a different approach , you could also create the L-
shape by combining two rectangles:

102

103 ‘‘‘python
104 @Part
105 def horizontal_leg(self):
106 return Box(width=self.width, length=self.thickness , height=self.extrusion_length)
107

108 @Part
109 def vertical_leg(self):
110 return Box(
111 width=self.thickness ,
112 length=self.height,
113 height=self.extrusion_length,
114 position=Point(0, 0, 0)
115)
116

117 @Part
118 def combined_flange(self):
119 return FusedSolid(shape_in=self.horizontal_leg, tool=self.vertical_leg)
120 ‘‘‘
121

122 ## Best Practices for Parametric Flanges
123

124 1. **Design Intent**: Think about which dimensions are most important to control and make
those your primary inputs

125 2. **Constraints**: Consider adding validation to ensure thickness doesn’t exceed width/
height

126 3. **Positioning**: Add position and orientation parameters if you need to place the flange
in different locations

127 4. **Material Properties**: Consider adding inputs for material properties if needed for
analysis

128

129 ## Next Steps
130

131 Once you have this basic L-shaped flange, you might want to explore:
132 - Adding holes or cutouts using ‘SubtractedSolid ‘
133 - Creating arrays of flanges using ‘LinearPattern ‘
134 - Adding fillets to the corners using ‘FilletedSolid ‘
135 - Integrating with assembly models
136

137 This parametric approach captures your design knowledge and makes it reusable - you can
easily generate different flange sizes or integrate this component into larger assemblies
!

LLaMA 3.1 (Local)
1 To provide an accurate response to the user’s query, I will follow the thinking steps

outlined below:
2

3 **Step 1: Analyze what the user is asking for**
4

12.6. Educational Agent: Incremental Performance 117

5 The user wants to know how to create an extrusion of an L-shaped flange using the ParaPy SDK.
6

7 **Step 2: Identify the most relevant sections of the documentation**
8

9 Based on the user’s query, I will focus on the "Geometry" and "Extrusions" sections of the
ParaPy documentation. Specifically , I will look at the ‘geom‘ library, which provides
functions for creating and manipulating geometric shapes.

10

11 **Step 3: Determine the appropriate level of detail and complexity for my response**
12

13 Given that the user is likely a beginner or intermediate developer , I will provide a step-by-
step guide to creating an extrusion of an L-shaped flange using ParaPy. I will use simple
language and focus on providing practical advice with specific code examples.

14

15 **Step 4: Plan the structure of my answer**
16

17 Here is the outline for my response:
18

19 I. Introduction to Extrusions in ParaPy
20

21 * Brief overview of extrusions and their importance in CAD design
22 * Explanation of how to create an extrusion using the ‘geom‘ library
23

24 II. Creating an L-Shaped Flange
25

26 * Step-by-step guide to creating a 2D profile for the flange
27 * Explanation of how to use the ‘geom.extrude()‘ function to create the extrusion
28

29 III. Example Code and Next Steps
30

31 * Provide a code example demonstrating how to create an extrusion of an L-shaped flange using
ParaPy

32 * Suggest logical next steps for continued learning, such as exploring other geometry
creation functions or learning about more advanced topics like parametric design.

33

34 Here is my final response:
35

36 **Creating an Extrusion of an L-Shaped Flange with ParaPy**
37

38 To create an extrusion of an L-shaped flange using the ParaPy SDK, follow these steps:
39

40 ### Step 1: Create a 2D Profile for the Flange
41

42 First, you need to create a 2D profile for the flange. You can use the ‘geom‘ library to
create a simple rectangle with two parallel lines:

43 ‘‘‘python
44 import geom
45

46 # Define the dimensions of the flange
47 width = 10
48 height = 20
49

50 # Create a rectangle with two parallel lines
51 profile = geom.rectangle(width, height)
52 ‘‘‘
53 ### Step 2: Extrude the Profile
54

55 Next, use the ‘geom.extrude()‘ function to create an extrusion from the profile:
56 ‘‘‘python
57 extrusion = geom.extrude(profile, direction=[0, 1])
58 ‘‘‘
59 This will create a simple extrusion of the L-shaped flange.
60

61 ### Example Code and Next Steps
62

63 Here is the complete code example:
64 ‘‘‘python
65 import geom
66

67 # Define the dimensions of the flange
68 width = 10

12.6. Educational Agent: Incremental Performance 118

69 height = 20
70

71 # Create a rectangle with two parallel lines
72 profile = geom.rectangle(width, height)
73

74 # Extrude the profile
75 extrusion = geom.extrude(profile, direction=[0, 1])
76

77 print(extrusion)
78 ‘‘‘
79 This code will output the extruded L-shaped flange.
80

81 For next steps, I recommend exploring other geometry creation functions in the ‘geom‘ library
or learning about more advanced topics like parametric design. You can find more
information on these topics in the ParaPy documentation.

82

83 I hope this helps! Let me know if you have any further questions.

12.6.3. Full Implementation
The full implementation integrates semantic search infrastructure, enabling retrieval from indexed
ParaPy documentation and API references. Tools provide access to domain-specific knowledge,
supporting accurate, documentation-grounded responses.

User Query
1 >>> "How can I create an L-shaped flange extrusion using the ParaPy SDK?"

Claude Sonnet 4 (API)
1 To create an extrusion of an L-shaped flange using the ParaPy SDK, you’ll need to follow a

two-step process: first create the L-shaped profile as a Wire, then extrude it using
ExtrudedSolid. Here’s how to approach this:

2

3 **Step 1: Create the L-shaped Profile**
4 The L-shape can be created by connecting multiple LineSegments into a Wire. You’ll define the

corner points of your L-shape and connect them with line segments.
5

6 **Step 2: Extrude the Profile**
7 Use the ExtrudedSolid class to extrude your L-shaped profile along a specified direction and

distance.
8

9 The key classes you’ll use are:
10 - ‘Point‘: To define corner coordinates of your L-shape
11 - ‘LineSegment ‘: To create the individual edges of the L-shape
12 - ‘Wire‘: To connect the line segments into a closed profile
13 - ‘ExtrudedSolid ‘: To perform the extrusion operation
14

15 This approach leverages ParaPy’s parametric capabilities , allowing you to easily modify the L
-shape dimensions , extrusion distance, and direction by changing input parameters.

16

17

18 STEP-BY-STEP GUIDE
19

20 1. Import the necessary ParaPy geometry classes: Point, LineSegment , Wire, and ExtrudedSolid
21

22 2. Define the corner points of your L-shaped profile using Point objects with appropriate
coordinates

23

24 3. Create LineSegment objects connecting consecutive points to form the L-shape outline
25

26 4. Combine the line segments into a Wire object to create a closed profile
27

28 5. Use ExtrudedSolid with your Wire as the ’island’ parameter and specify the extrusion
distance

29

30 6. Optionally add holes to your flange by creating additional Wire objects and passing them
as the ’holes’ parameter

31

32

12.6. Educational Agent: Incremental Performance 119

33 CODE EXAMPLES
34

35 Example 1: Basic L-shaped flange extrusion
36

37 # Basic L-shaped flange extrusion
38 from parapy.geom import Point, LineSegment , Wire, ExtrudedSolid
39

40 # Define L-shape corner points (example dimensions)
41 points = [
42 Point(0, 0, 0), # Bottom-left corner
43 Point(3, 0, 0), # Bottom-right of horizontal leg
44 Point(3, 1, 0), # Inner corner of L
45 Point(1, 1, 0), # Inner corner continued
46 Point(1, 4, 0), # Top of vertical leg
47 Point(0, 4, 0), # Top-left corner
48 Point(0, 0, 0) # Close the profile
49]
50

51 # Create line segments
52 segments = []
53 for i in range(len(points)-1):
54 segments.append(LineSegment(start=points[i], end=points[i+1]))
55

56 # Create the L-shaped profile wire
57 l_profile = Wire(segments)
58

59 # Extrude the L-shape
60 flange = ExtrudedSolid(island=l_profile, distance=0.5)
61

62

63 Example 2: L-shaped flange with mounting holes
64

65 # L-shaped flange with mounting holes
66 from parapy.geom import Point, LineSegment , Wire, ExtrudedSolid , Circle
67

68 # Create L-profile (same as above)
69 l_profile = Wire(segments)
70

71 # Add circular holes for mounting
72 hole1 = Circle(radius=0.2, position=Position(0.5, 0.5, 0))
73 hole2 = Circle(radius=0.2, position=Position(2.5, 0.5, 0))
74 hole3 = Circle(radius=0.2, position=Position(0.5, 3.5, 0))
75

76 # Extrude with holes
77 flange_with_holes = ExtrudedSolid(
78 island=l_profile,
79 distance=0.5,
80 holes=[hole1, hole2, hole3]
81)
82

83

84 NEXT STEPS
85

86 After creating your basic L-shaped flange extrusion , consider exploring these advanced topics
:

87

88 1. **Parametric Design**: Wrap your flange creation in a ParaPy Part class with Input
parameters for dimensions , making it easily configurable

89

90 2. **Alternative Extrusion Methods**: Explore ExtrudedShell for thin-walled flanges or
SweptSolid for more complex sweep operations

91

92 3. **Boolean Operations**: Learn about Cut, Fuse, and Common operations to add features like
chamfers , fillets, or additional mounting tabs

93

94 4. **Positioning and Orientation**: Study the Position class to place your flange at specific
locations and orientations in 3D space

95

96 5. **Material Properties and Analysis**: Investigate how to add material properties and
integrate with analysis tools for structural validation

97

12.7. Tool Design & Architecture 120

98

99 I’m here to help you with any follow-up questions about ParaPy geometry creation , parametric
modeling , or specific implementation details for your L-shaped flange project!

LLaMA 3.1 (Local)
1 Unfortunately , the search results do not provide a direct answer to how to create an

extrusion of an L-shaped flange using ParaPy SDK. However, based on the provided
documentation , it appears that you can use the ‘BSplineSurface ‘ class to create a surface
and then use the ‘extrude‘ method to create an extrusion.

2

3 Here is an example code snippet that demonstrates how to create an extrusion of a rectangular
surface:

4

5 ‘‘‘
6 from parapy.geom import BSplineSurface
7

8 # Create a rectangular surface
9 rect_surface = BSplineSurface(

10 [0, 1], [0, 1],
11 [[(0, 0), (1, 0)], [(0, 1), (1, 1)]]
12)
13

14 # Extrude the surface
15 extruded_surface = rect_surface.extrude(10)
16 ‘‘‘
17

18 You can modify this code to create an L-shaped flange by adjusting the control points of the
‘BSplineSurface ‘ class.

19

20 Please note that this is just a basic example and you may need to adjust it according to your
specific requirements. Additionally , you will need to have ParaPy SDK installed in your
Python environment to run this code.

12.7. Tool Design & Architecture
To provide deeper insight into the custom tools developed, this section presents a detailed walk-
through of two to three representative tools, with a particular focus on those that integrate semantic
search functionality. A step-by-step development approach is employed to support reproducibility,
followed by illustrative (preliminary) results. Interactive examples for all functions are available in
tool_examples.py.

12.7.1. ParaPy API Reference Search
The suggest_apis() [DT01] function interfaces with the APISemanticSearcher (section 6.4), which
holds the indexed API primitives (subsection 12.3.2). It implements a dispatch strategy that selects
specific search methods based on the provided filters. Without filters, it performs a general semantic
search using search_by_functionality(). If a library filter is provided, it invokes search_by_module()
to search within a specific library’s namespace. A type filter triggers search_by_type(), retrieving
primitive types (functions, classes, methods). When both filters are present, the function calls the generic
search()method and applies filtering client-side.

Raw results from the APISemanticSearcher are transformed into structured APISuggestion objects.
For each result, the function extracts the first line of the docstring as a preview (truncated to 100
characters), infers the library name from the module path, and compiles relevant metadata (name,
signature, type, module) along with the similarity score. Low-relevance results are filtered using
the min_score threshold, and the output is limited to a maximum of max_results suggestions. This
transformation layer bridges the gap between the raw index entries and the structured output expected
by downstream functions.

The suggest_apis_text() wrapper calls suggest_apis() and formats the resulting APISuggestion
objects into text via format_for_agent(). This formatted string includes API names, similarity scores, li-
brary information, and docstring previews, and is structured for prompt injection into the agent’s context.
The separation between suggest_apis() (which returns structured data) and suggest_apis_text()
(which returns formatted text) mirrors the design pattern used in the documentation search inter-

https://github.com/ErnestoHof/parapy_copilot/blob/0.4.0-develop/examples/tool_examples.py

12.7. Tool Design & Architecture 121

face—core logic generates structured results, while wrappers handle presentation. As outlined in
subsection 5.2.4, this approach enables both programmatic access to suggestion data and convenient
formatted output for direct agent use.

A typical interaction with the suggest_apis_text() function (invoked by the agent) appears as follows:
1 >>> suggest_apis_text(ctx, "create yellow box")
2 ...
3 ...
4 >>> """
5 === API text suggestions for: ’create yellow box’ ===
6 API Suggestions:
7 ==
8

9 1. Cube (Score: 0.282)
10 Library: parapy.geom.occ.primitives
11 Description: A :class:‘Box‘ with equal dimensions.
12

13 2. Box (Score: 0.282)
14 Library: parapy.geom.occ.primitives
15 Description: A box with dimensions :attr:‘width‘, :attr:‘length‘ and :attr:‘height ‘.
16

17 3. Compound (Score: 0.225)
18 Library: parapy.geom.occ.compound
19 Description: Make a compound from a list of shapes, :attr:‘built_from ‘.
20 """

12.7.2. Code Runtime Verification
The runtime validation system executes Python code in isolated subprocesses to verify correctness.
Instead of using Python’s exec() function, it writes the code to temporary files and runs them using
new Python interpreter instances via subprocess.run(). This ensures that decorator validation and
import-time checks behave identically to direct file execution, avoiding subtle semantic differences
associated with exec(). This subprocess-based approach also enables timeout-based protection against
infinite loops (default: 120 seconds) and captures stdout, stderr, and exit codes for analysis. However,
since it allows arbitrary code execution on the host machine, it poses a security risk. It must therefore be
used with caution and strictly within the current framework.

The run_code() [DT07] wrapper formats execution results into structured markdown and implements
failure-as-exception behaviour using ModelRetry. When execution fails or produces stderr output
(with raise_for_warnings=True), the function raises a ModelRetry exception containing the error
type, message, traceback, executed code, and a summary. This ensures the AI agent revises faulty
code rather than proceeding with errors. The separation between the core execution logic (_run_code)
and formatted error reporting (run_code) aligns with the design pattern seen throughout the tool
modules—decoupling mechanics from presentation.

A ParaPy-specific filtering step addresses a known issue: repeated display() calls used for 3D
visualization may fail during runtime. The filter_parapy_code() function uses AST parsing to
identify ParaPy classes decorated with @Attribute and @Part, removes all display() calls, and adds
code to access all decorated members. This triggers lazy evaluation of the object graph without requiring
GUI operations. The filtering logic extracts class structures through AST traversal, identifies instantiated
objects in the if __name__ == "__main__" block, and synthesizes member access statements that
force evaluation. This preserves the logical semantics of the original code while eliminating repeated
operations, thus enabling validation of ParaPy logic in automated workflows, such as those used in
performance evaluation (section 7.4).

A typical interaction with the run_code() function (invoked by the agent) appears as follows:
1 from src.tools import run_code
2

3 >>> run_code("print(’hello world!’)")
4 ...
5 """
6 ## Runtime Execution Analysis
7

https://ai.pydantic.dev/api/exceptions/#pydantic_ai.exceptions.ModelRetry

12.7. Tool Design & Architecture 122

8 ### Execution Status
9 **Result**: SUCCESS - Code executed without errors

10 """
11 >>> run_code(
12 """
13 def foo(bar: int)
14 x = 1 + 2
15 return x
16 """
17)
18 ...
19 """
20 ### Execution Status
21 **Result**: FAILED - Warnings/errors detected in stderr
22 **Error Type**: ‘SyntaxError ‘
23 **Error Message**: expected ’:’
24

25 ### Error Output
26 ‘‘‘
27 File "C:\Users\ernes\AppData\Local\Temp\tmp11r1b5io.py", line 2
28 def foo(bar: int)
29 ^
30 SyntaxError: expected ’:’
31 ‘‘‘
32 ...
33 ...
34 """

12.7.3. ParaPy Documentation Search
This function underpins tools ET01–ET05. The search_educational() function provides an interface
between AI agents and the SphinxDocSearcher (section 6.4), which contains the indexed Sphinx
documentation (subsection 12.3.2). The function retrieves all indexed entries using the searcher’s
search()method and applies domain-specific filtering and scoring logic.

The architecture separates low-level semantic search (handled by SphinxDocSearcher) from application-
level filtering and result formatting (handled by search_educational). The function supports two
primary filters: content-type filtering restricts results to specific documentation categories (e.g., tutorial,
guide, API, example, reference), allowing agents to request pedagogically relevant content; score boosting
increases the relevance score (by 1.2x) for entries containing code examples, under the assumption that
example-driven content has higher instructional value. Keyword-based exclusion is also supported to
remove irrelevant matches.

After filtering, results are sorted by adjusted scores, and the top-k entries are returned. The for-
matting layer provides two presentation options. The search_educational_full() wrapper calls
search_educational() and uses format_search_results() to generate formatted output with con-
tent previews (up to 500 characters), code examples (first two per entry, up to 300 characters each),
API references, breadcrumbs, and metadata. The search_educational_compact() wrapper uses
format_search_results_compact() to produce single-line summaries with minimal previews.

This dual-formatting strategy addresses token budget constraints: comprehensive results are used when
space permits, while compact results maximize coverage under stricter limits. Both wrappers return text
ready for prompt injection into the agent’s context. A typical interaction with the search_educational()
function (invoked by the agent) appears as follows:

1 >>> search_educational_compact(ctx, "aircraft wing")
2 ...
3 """
4 === Compact search: ’aircraft wing’ (type: None) ===
5 (’Relevant Documentation:\n’
6 ’1. primiplane.py (example) | Path: Documentation | Has 1 code examples | ’
7 ’References: Cylinder , primiplane.zip\n’
8 ’ primiplane.py >>NoteAPIs linksBoxCylinderDownload this ’
9 ’example:primiplane.zipfrommathimportradiansfrom...\n’

10 ...
11 ...

12.7. Tool Design & Architecture 123

12 """

12.7. Tool Design & Architecture 124

12.7.4. Tool Table
Table 12.1: Tool Specifications and Implementation Details (Part 1)

Tool ID Tool Name Purpose Category Input Schema

DT01 suggest_apis Get API suggestions of ParaPy libraries, based on a natural language query. Data Retrieval ctx: RunContext[DevDependencies]
query: str

DT02 suggest_with_context Get API suggestions with additional context for AI agents. Data Retrieval
ctx: RunContext[DevDependencies]
query: str
context: Optional[Dict[str, any]]

DT03 get_indexed_api_libraries Get all indexed libraries used within the API semantic search engine. Data Retrieval ctx: RunContext[DevDependencies]

DT04 get_parapy_examples Get relevant examples in ParaPy documentation. Data Retrieval ctx: RunContext[DevDependencies]
query: str

DT05 _describe_symbol_safe Import module_name, resolve symbol_name, and return a structured description of its inputs/parameters. Code Improvement module_name: str
symbol_name: str

DT06 _suggest_imports Suggest import statements for names that are used but not defined/imported. Code Improvement code: str
DT07 _run_code Execute a Python snippet to validate runtime correctness. Code Verification code: str
DT08 _check_syntax Check syntactic correctness of a Python snippet without executing it Code Verification code: str

ET01 _get_learning_path Get a structured learning path for a topic Data Retrieval ctx: RunContext[EduDependencies]
topic: str

ET02 _get_quickstart_content Get quickstart and getting started content for ParaPy development. Data Retrieval ctx: RunContext[EduDependencies]

ET03 search_educational_compact Search for educational content with filtering options. Return a compacted format. Data Retrieval ctx: RunContext[EduDependencies]
query: str

ET04 search_educational_full Search for educational content with filtering options and return full results. Data Retrieval ctx: RunContext[EduDependencies]
query: str

ET05 find_examples Find content with relevant code examples. Data Retrieval ctx: RunContext[EduDependencies]
query: str

Table 12.2: Tool Specifications and Implementation Details (Part 2)

Tool ID Output Type Parser Func* Verification (root_dir=’tests/tools’) GitHub Ref (root_dir=’src/tools’)

DT01 List[APISuggestion] suggest_apis_text ./test_api_inspector.py::TestSuggestApis ./api_inspector.py#L74
DT02 Dict[str, any] NA ./test_api_inspector.py::TestSuggestWithContext ./api_inspector.py#L154
DT03 str NA NA ./api_inspector.py#L24
DT04 str NA ./test_doc_searcher.py ./doc_searcher.py#L9
DT05 SignatureInfo describe_symbol ./test_export_signature.py ./export_signature.py#L56
DT06 SuggestImportsResult suggest_imports ./test_import_suggestor.py ./import_suggestor.py#L195
DT07 RuntimeCheckResult run_code ./test_runtime_correctness.py ./runtime_correctness.py#L115
DT08 SyntaxCheckResult check_syntax ./test_syntax_correctness.py ./syntax_correctness.py#L86
ET01 Dict[str, List[Tuple[SphinxDocEntry, float]]] get_learning_path ./educational/test_get_learning_path.py ./educational/get_learning_path.py#L32
ET02 List[Tuple[SphinxDocEntry, float]] get_quickstart_content ./educational/test_get_quickstart_guide.py ./educational/get_quickstart_guide.py#L43
ET03 List[Tuple[SphinxDocEntry, float]] format_search_results_compact ./educational/test_search_educational.py::TestSearchEducationalCompact ./educational/search_educational.py#L9
ET04 List[Tuple[SphinxDocEntry, float]] format_search_results ./educational/test_search_educational.py::TestSearchEducationalFull ./educational/search_educational.py#L35
ET05 List[Tuple[SphinxDocEntry, float]] format_search_results ./educational/test_search_educational.py::TestFindExamples ./educational/search_educational.py#L63

12.8. Agent Deployment Details 125

12.8. Agent Deployment Details
This section provides detailed specifications for agent output structures, runtime instantiation, and
validation mechanisms that complement the integration overview in section 6.7.

12.8.1. Structured Output Schemas
The Developer Agent outputs conform to the DevOutput structure, which enforces three required fields:

• description: Descriptive explanation of the implementation approach, design decisions, and any
assumptions made.

• completed_code: Syntactically and runtime-correct ParaPy code when the query involves code
generation. Empty string for non-coding queries.

• problems_solved: Documentation of problems encountered during code execution and their
resolutions, providing transparency about the iterative refinement process.

The Educational Agent outputs follow the EduOutput structure, designed to support pedagogical
completeness:

• direct_answer: Concise yet comprehensive response to the user’s primary question, grounded in
retrieved documentation.

• step_by_step_guide: Structured procedural guidance when queries require sequential imple-
mentation steps. Optional field populated based on query type.

• code_examples: Relevant code snippets with documentation references, illustrating concepts
discussed in the answer. May be intentionally incomplete to focus on specific patterns.

• next_steps: Suggestions for continued learning, related topics to explore, or follow-up actions to
reinforce understanding.

• end_offer: Invitation to ask follow-up questions, maintaining engagement and encouraging
iterative learning.

These structures are implemented as Pydantic models, enabling automatic validation and ensuring
consistent output formatting across all agent interactions.

12.8.2. Runtime Agent Instantiation
Agent prompts are dynamically constructed at runtime by populating the templates described in
section 6.5 with user input and retrieved documentation. The populated prompt is passed via the
instructions argument to the Agent.run() function. This function requires dependency instances
(DevDependencies or EduDependencies) containing initialized semantic search engines, as described in
section 6.4.

The following pseudocode illustrates the agent instantiation pattern and execution flow:
1 agent = Agent(
2 model=model,
3 model_settings=model_settings ,
4 system_prompt=DEVELOPER_SYSTEM_PROMPT | EDUCATIONAL_SYSTEM_PROMPT , # depending on agent
5 output_type=DevOutput | EduOutput , # depending on agent
6 deps_type=DevDependencies | EduDependencies , # depending on the agent
7 tools=DevTools | EduTools, # depending on the agent
8)
9

10 ...
11 ...
12

13 dev_agent.run(
14 user_prompt=create_developer_prompt(),
15 deps=DevDependencies(),
16)
17

18 edu_agent.run(
19 user_prompt=create_educational_prompt(),
20 deps=EduDependencies(),

12.9. Command Line Interface Application Design 126

21)

The Agent class wraps the Pydantic AI framework, providing unified access to both local (Ollama)
and API-based (Anthropic, Groq) model deployments. The system_prompt defines agent role and
operational guidelines, while tools specifies the functions accessible during execution. The result_type
enforces structured output schemas through Pydantic validation.

12.8.3. Output Validation Mechanism
The Developer Agent employs an output_validator that re-validates generated code before finalizing
responses. This validator invokes run_code() to verify runtime correctness of the completed_code
field. If execution succeeds without errors, the output is returned to the user. If runtime errors occur,
a ModelRetry exception is raised, prompting the agent to revise its implementation. This mechanism
operates within the same retry limit configured for the agent’s general error recovery behaviour.

This validation pipeline ensures that even when the Developer Agent fails to proactively invoke
run_code() during its reasoning process, runtime correctness is guaranteed before code delivery to
users. The Educational Agent does not employ output validation, as its responses prioritize pedagogical
clarity over executable completeness.

12.9. Command Line Interface Application Design

Figure 12.3: Overview of the logical flow and feedback mechanisms, as well as the quick-start pathway of the Command Line
Interface (CLI) application developed for the agentic framework. The diagram also illustrates the communication flow between

the CLI and the agentic framework.

Figure 12.3 illustrates the functional flow of the application. The CLI abstracts away the otherwise
tedious setup steps involved in configuring the framework, thereby preventing runtime errors and
reducing initialization time. The user begins by selecting the operational mode appropriate for the
current stage of development. This mode can later be switched at any time during a session using the
/mode command.

After selecting the mode, the user proceeds to configure the model provider—either locally through
Ollama or remotely via an approved API provider (Anthropic or Groq, for versions <=0.4.0). The user

12.9. Command Line Interface Application Design 127

can then select from a list of known models or specify a custom model name. This flexibility allows
newly released models to be used immediately without requiring framework updates, though such
models are used at the user’s own risk, as compatibility is not guaranteed and may result in runtime
errors. For Ollama-based deployments, users must ensure that the chosen model supports tool calling;
failure to do so may also trigger runtime errors.

The application verifies whether Ollama is installed locally and checks for the availability of the selected
model. If the model is not found on the machine but exists in the Ollama model hub, it is automatically
downloaded. For API-based deployments, the user is prompted to enter an API key if one is not already
stored in the .env file. The final step before initiating interaction involves optionally adjusting model
parameters such as temperature, sampling rate, and maximum output tokens. Once setup is complete,
the configuration is saved to a local settings file, allowing a streamlined quick-start in future sessions.

During an interactive session, several commands are available: users can switch the current mode (/mode),
restart the application (/restart), change the model (/model), adjust model settings (/settings), or exit
the program. The /file command allows users to append the contents of a selected file to the agent’s
context. This is achieved by reading the file via the read_file_content() function and appending its
raw string content to the active user query. File contents persist across the session and can be manually
cleared using the /clear command if no longer needed.

Interaction with the underlying agent framework—the main focus of Chapter 6—is managed by
the run_agent_interaction() function. This function handles error propagation and formats the
structured outputs of the agents into human-readable text for display in the console. While the interface
resembles a chatbot, all interactions are single-turn: previous messages are neither recorded nor added
to the agent’s context for subsequent runs.

13
Evaluation Framework Design

13.1. Unit Testing Implementation Details

Figure 13.1: Test selection decision tree mapping code changes
to required test suites based on component risk assessment.

This section provides detailed implementation
specifications for the unit testing approach em-
ployed in the framework verification process. The
testing suite is implemented using pytest, with
the structure mirroring the hierarchy of the src
folder. This one-to-one mapping between source
code and tests allows for efficient execution of tar-
geted tests in response to changes within specific
sub-packages.

Each unit test is designed to isolate the functional-
ity of the feature under test, making use of patching
where applicable. This involves replacing exter-
nal dependencies with controlled test substitutes.
For example, if a function reads input from a user
file, the test patches this behaviour by supplying
consistent, mock input, thereby removing uncon-
trolled variability from the test scope and ensuring
reproducibility. In addition, snapshot testing is em-
ployed wherever possible to verify that the output
of a function or component exactly matches an
expected reference output (the snapshot). This
approach allows for strict one-to-one comparisons
of output structure and content, making it easier
to detect even minor regressions or unintended
changes in behaviour when the codebase evolves.

While achieving 100% test coverage is desirable
in theory, the testing suite focuses on covering all
critical components and includes integration tests
where feasible. However, because the framework
relies heavily on large language models (LLMs),
traditional integration testing becomes increas-
ingly impractical due to the non-deterministic na-
ture of model outputs. To address this, the Evals
package from Pydantic AI is employed, as it is
specifically designed for evaluating LLM-based
systems.

128

13.1. Unit Testing Implementation Details 129

Concrete Test Examples
One important unit test focuses on the API semantic searcher and reflects the architectural testing
principles adopted throughout the framework. Critical functionalities that are not directly targeted
by the unit under test are patched out. Mock data is employed to maximize reproducibility and to
ensure that the search_by_functionality capability of the semantic search engine behaves as expected.
Because the mock data is well-structured and its content is known in advance, the expected search
results can be clearly defined, enabling precise validation of the engine’s behaviour against a synthetic
but controlled index.

1 @patch("src.semantic_search_engine.base.SentenceTransformer")
2 @pytest.mark.asyncio
3 async def test_search_by_functionality(self, mock_transformer , temp_api_index_file):
4 """Test search by functionality."""
5 mock_model_instance = Mock()
6 mock_model_instance.encode.return_value = np.array([[0.1, 0.2, 0.3, 0.4]])
7 mock_transformer.return_value = mock_model_instance
8

9 searcher = APISemanticSearcher(temp_api_index_file)
10 results = await searcher.search_by_functionality("create array", k=2)
11

12 assert len(results) == 2
13 for entry, score in results:
14 assert isinstance(entry, APIEntry)
15 assert isinstance(score, float)
16 assert 0.0 <= score <= 1.0

Another example concerns the execution of ParaPy code through the run_code function, which includes
an optional decoding step to handle raw string-formatted code, an output that may occasionally be
produced by smaller models. In these cases, snapshot testing is employed to verify the output one-to-one,
ensuring that even subtle changes are immediately flagged. This is particularly important given the
critical role this functionality plays in the correct operation of the Developer Agent.

1 def test_parapy_execution(self, snapshot):
2 code = """
3 from parapy.core import Part, Input
4 from parapy.geom import GeomBase , Box
5

6

7 class SimpleBox(GeomBase):
8 width: float = Input()
9 depth: float = Input()

10 height: float = Input()
11

12 @Part
13 def box(self) -> Box:
14 return Box(width=self.width, length=self.depth, height=self.height)
15

16 if __name__ == ’__main__’:
17 from parapy.gui import display
18 obj = SimpleBox(width=1, depth=1, height=1)
19 display(obj)
20 """
21

22 result = run_code(code)
23

24 snapshot.assert_match(result, "parapy_execution.md")

1 def test_decoding_escaped_newlines_in_code(self, snapshot):
2 """Test that _run_code decodes \\n escape sequences in code structure."""
3 # This simulates code from an LLM with literal \n for line breaks
4 escaped_code = "print(’Line 1’)\\nprint(’Line 2’)"
5 result = _run_code(escaped_code)
6

7 snapshot.assert_match(str(result), "decoding_escaped_newlines_in_code.md")

Test Model
A quick sanity check used during development, and serving as a basis for more elaborate testing such as
the evaluations presented in section 7.4, is the TestModel feature of the Pydantic AI framework. When

13.2. Large Language Model as Judge Framework 130

a developed agent is configured to use the test model as a mock LLM, the framework automatically
attempts to invoke all tools available to the agent and returns either plain text or structured responses,
depending on the agent’s expected output format.

This test model was consistently employed prior to the release of new features and before formal test
coverage analysis was conducted, ensuring that the core implementation of newly developed tools
remained compatible with the agent framework. A typical run of the Developer Agent using the test
model is shown in Figure 13.2.

Figure 13.2: Example of a Developer Agent run with the Pydantic AI TestModel in place as mock LLM. The test mode
architecture attempts to execute all tools available to the agent and return valid responses. Note the triple execution of the
run_code function at the end, which represents the final output validation of the agent with a maximum retry count of three.

13.2. Large Language Model as Judge Framework
This section provides detailed specifications for the LLM Judge evaluation framework, including model
selection rationale, temperature configuration, and complete criterion descriptions with requirement
mappings.

13.2.1. Evaluation Protocol
The evaluation methodology follows a systematic protocol: each agent (Developer and Educational) is
executed once per evaluation case at a fixed temperature setting (𝑇 = 0.0) to maximize reproducibility.
The resulting outputs are then evaluated by multiple LLM judges, including the agent’s own model and
two to three alternative models, using dedicated rubrics for developer- and education-specific tasks.
By holding agent outputs constant across all judge evaluations, the methodology isolates variance in
scoring behaviour and removes randomness introduced by repeated agent executions. All LLM judges
operate deterministically at 𝑇 = 0.0 to ensure consistent, reproducible scoring across runs.

13.2.2. Model Selection Rationale
The evaluation methodology employs distinct models for agent execution and judge evaluation to ensure
scientific rigour. Using separate models for judging mitigates self-assessment bias, where a model may
favourably rate its own outputs, akin to human self-evaluation, and promotes objectivity by introducing
independent evaluation perspectives. This strategy more accurately reflects real-world scenarios in
which outputs are reviewed by diverse stakeholders, thereby enhancing the external validity of the
findings.

The selected judge models, GPT-OSS-120B, LLaMa 3.3 – 70B, and Qwen3 – 32B, represent the most suitable
options available under the constraint of using models with sufficient reasoning capacity (i.e., large
parameter counts) from the set of permitted model providers. All three were selected from Groq’s list of
publicly available models. Although Qwen3 – 32B falls below the preferred parameter threshold, it was
included due to the absence of higher-capacity alternatives within the same environment. For similar
reasons, no self-assessment is performed using the LLaMa 3.1 – 8B model. Its limited parameter count
renders it unsuitable for the extended reasoning tasks required in self-evaluation. Including it would
likely compromise result quality, though its exclusion introduces some methodological incompleteness.

13.2. Large Language Model as Judge Framework 131

Consistency is maintained by using the same judge model for all evaluations of a given agent, while
multiple judge models are employed to assess inter-rater reliability and identify potential bias patterns.
To evaluate the extent of self-bias, the agent model is also used, alongside the independent judge models,
to assess its own outputs. As previously noted, models must be sufficiently large (i.e., greater than 50B
parameters) to ensure adequate reasoning capabilities for this task.

13.2.3. Temperature Configuration
While model selection plays a central role in evaluation quality, temperature settings are equally critical
for ensuring reproducibility and consistency. All judge models operate at a fixed temperature of
𝑇 = 0.0, eliminating variance due to stochastic sampling and ensuring that identical inputs yield
identical evaluations. Similarly, all agent executions are conducted at 𝑇 = 0.0 to maintain consistent
outputs across different judge assessments. This deterministic configuration guarantees that observed
differences in judge scores reflect genuine quality differences rather than random variation, thereby
strengthening the validity of the requirement compliance assessments.

13.2.4. Developer Agent Evaluation Criteria
The Developer Agent’s code generation outputs are evaluated by the LLM judge using six weighted
criteria, each rated on a 1–5 scale with clearly defined thresholds. A score of 3 or higher indicates
acceptable (i.e., passing) quality. The judge has access to the same ParaPy documentation and best
practices as the Developer Agent, ensuring consistency in evaluation against established standards.

While the LLM judge framework is primarily designed to evaluate REQ-2-3, it also provides partial or
indirect coverage of several other requirements, as detailed below:

1. Functional Correctness (25%) – Directly addresses REQ-2-3 by assessing whether the generated
solution correctly implements the requested functionality using appropriate ParaPy constructs
and patterns. This criterion also provides soft coverage of REQ-1-2 and REQ-1-3, relating to
skeleton completion and standalone generation capabilities.

2. Completeness (20%) – Evaluates whether the solution comprehensively addresses all aspects
of the user request. This indirectly supports REQ-1-2 and REQ-1-3, ensuring that the copilot
produces production-ready, holistic responses rather than partial outputs.

3. Code Quality & Standards (20%) – Directly supports REQ-3-3 by evaluating adherence to PEP-8
conventions, semantic correctness, maintainability, code structure, and documentation quality,
albeit through less rigorous analysis than the code quality framework.

4. Practical Applicability (15%) – Assesses whether the generated code is usable in real-world ParaPy
projects beyond mere functional correctness. This contributes to evaluating adoption potential
and time savings, as described in REQ-4-1, and tests the agent’s contextual understanding of
engineering workflows.

5. Error Handling & Robustness (10%) – Evaluates production-readiness through the handling of
edge cases and input validation. This is particularly relevant to REQ-4-3, which emphasizes support
for novice users who may lack the expertise to implement robust error handling themselves.

6. Explanation Quality (10%) – Assesses the educational value of the agent’s responses. This supports
knowledge transfer and learning, particularly for novice users, in alignment with REQ-4-3.

13.2.5. Educational Agent Evaluation Criteria
The Educational Agent’s outputs are evaluated by the LLM judge using six criteria specifically designed to
assess pedagogical effectiveness and learning support. The judge has access to the best practices defined
in the Educational Agent’s system prompt, ensuring alignment with its instructional objectives. Notably,
these best practices include explicit guidance on Knowledge-Based Engineering principles, emphasizing
declarative design capture, dependency tracking, and lazy evaluation as core ParaPy concepts (see
subsection 12.5.2). The judge evaluates whether the Educational Agent effectively communicates these
principles in its pedagogical responses.

While the LLM judge framework is primarily focused on evaluating REQ-2-3, it also provides partial or
indirect coverage of additional learning-related requirements, as outlined below:

13.3. Code Quality Framework 132

1. Pedagogical Effectiveness (25%) – The primary criterion, directly supporting REQ-4-3, assesses
how well the agent scaffolds learning and facilitates progressive understanding.

2. Content Accuracy (20%) – Ensures that educational explanations are factually correct and aligned
with current ParaPy practices, helping to prevent misconceptions and build user trust.

3. Clarity & Comprehensibility (20%) – Evaluates whether explanations are appropriately tailored
to the user’s experience level, using clear and accessible language. This is particularly important
for novice users, as emphasized in REQ-4-3.

4. Learning Path Coherence (15%) – Assesses the logical structure and progression of the learning
guidance, ensuring appropriate scaffolding that supports efficient skill acquisition and time
savings (REQ-4-1).

5. Resource Integration (10%) – Evaluates the agent’s ability to guide users toward relevant external
resources and documentation, promoting self-sufficiency rather than replacing official materials.

6. Actionability (10%) – Assesses whether the learning guidance results in clear, concrete next steps
rather than vague advice. This helps accelerate learning and reduce user frustration, particularly
for novices (REQ-4-3).

13.3. Code Quality Framework
This section provides detailed specifications for the automated code quality assessment framework,
including tool configurations, scoring formulas, and ParaPy-specific adjustments.

The quality framework evaluates three key dimensions of code quality: semantic correctness, main-
tainability, and PEP-8 compliance, each contributing to a weighted final score in line with REQ-3-3.
These dimensions collectively reflect whether the generated code is logically sound, easy to understand
and modify, and adheres to standard Python coding conventions. Each metric is computed using
well-established Python libraries commonly adopted in both industry and research.

Dimension Sub-metric Tool Scoring Rule Weight

Semantic Correct-
ness

Type Errors (𝑁𝑡𝑦𝑝𝑒) mypy
Maximum: 5 points
Deduction: -0.5 pts per error 40%

Logical Errors
(𝑁𝑙𝑜𝑔𝑖𝑐)

pylint
Maximum: 5 points
Deduction: -1.0 pts per error

Maintainability Maintainability In-
dex (MI)

radon Maximum: 100 points (MI) 35%

Cyclomatic Com-
plexity (CC)

radon
Maximum: 3 points
Tiered Scoring:
max(0, 3 − ⌊𝐶𝐶/5⌋)

PEP-8 Compli-
ance

Style Violations per
100 LOC (𝑣100)

pycodestyle Maximum: 10 points 25%

LOC: Lines of Code

Table 13.1: Code Quality Scoring Framework

13.3.1. Semantic Correctness
Semantic correctness is assessed using two widely adopted static analysis tools: mypy for type checking
and pylint for logical correctness.

• mypy is a static type checker for Python. It verifies type consistency based on optional type
hints, enabling early detection of mismatched data types or incorrect function signatures. In this
framework, several custom arguments are passed to mypy to reduce false positives caused by the

https://mypy.readthedocs.io/en/latest/
https://www.pylint.org/

13.3. Code Quality Framework 133

dynamic or unsupported features of ParaPy:

– –ignore-missing-imports: Ignores missing type stubs for third-party libraries (e.g., ParaPy),
preventing errors when type information is unavailable.

– –allow-untyped-decorators: Permits the use of decorators (such as @Attribute) without
explicit type annotations, avoiding unnecessary type-checking errors.

– –allow-subclassing-any: Allows subclassing from types of unknown origin (such as
GeomBase), which may otherwise raise errors due to incomplete type information.

• pylint is a Python linter that performs a broad range of static code checks, including detection of
unreachable code, undefined variables, and other logical flaws. Only critical errors, specifically
those in the error (E) and fatal (F) categories, are considered for scoring. Error codes identified
as false positives (E0401, E0633, E1130, and E11331), typically caused by unsupported ParaPy
constructs, are excluded from the evaluation.

The semantic correctness subscore is capped at 10 points, with 5 points allocated to type correctness
and 5 points to logical correctness. For each error reported by mypy, 0.5 points are deducted from the
type correctness score (minimum 0). For each error reported by pylint, 1 point is deducted from the
logical correctness score (minimum 0). The total score is computed as shown in Equation 13.1.

𝑠𝑐𝑜𝑟𝑒𝑠𝑒𝑚 = max
{
0, (10 − 0.5 · 𝑁𝑡𝑦𝑝𝑒 − 1.0 · 𝑁𝑙𝑜𝑔𝑖𝑐)

}
(13.1)

13.3.2. Maintainability
Maintainability is evaluated using the radon library, a Python tool for analyzing code complexity and
maintainability. The reader is referred to [36, 37] for dedicated literature on software maintainability
and the principles applied by radon.

• Maintainability Index (MI) is a composite metric derived from lines of code, cyclomatic complexity,
and Halstead volume2. It provides a general indication of how easy a piece of code is to understand
and modify.

• Cyclomatic Complexity (CC) quantifies the number of independent decision paths in the code
(e.g., loops and conditionals), with higher values indicating more complex and potentially
harder-to-maintain structures.

The maintainability subscore has a maximum of 10 points, weighted 70% on the Maintainability Index
(MI) and 30% on the Cyclomatic Complexity (CC). Since the MI produced by radon is already scaled
from 0 to 100, it only needs to be linearly rescaled to fit the 0–10 scoring range. For the CC component, a
tiered scoring system is applied as defined in Table 7.3. The final maintainability score is computed
using Equation 13.2.

𝑠𝑐𝑜𝑟𝑒𝑚𝑎𝑖𝑛𝑡 = 7.0 · 𝑀𝐼

100 + 𝑠𝑐𝑜𝑟𝑒(𝐶𝐶) (13.2)

13.3.3. PEP-8 Compliance
Style consistency is evaluated using pycodestyle, a tool that checks Python code against the PEP-8 style
guide, the official convention for Python formatting [35]. pycodestyle is also used by other popular
tools such as flake8, making it a well-established and reliable choice for linting.

The framework considers all PEP-8 violation categories reported by pycodestyle, including but not
limited to whitespace issues, line length violations, indentation inconsistencies, naming convention
violations, and import ordering. No violation types are excluded from scoring. Common violations

1E0401: "Used when pylint has been unable to import a module."
E0633: "Used when something which is not a sequence is used in an unpack assignment."
E1130: "Emitted when a unary operand is used on an object which does not support this type of operation."
E1133: "Used when a non-iterable value is used in place where iterable is expected."
From https://pylint.readthedocs.io [accessed 18-10-2025]

2"Halstead’s Software Metrics - Software Engineering", from https://www.geeksforgeeks.org/software-engineering/softw
are-engineering-halsteads-software-metrics/ [accessed 14-10-2025]

https://radon.readthedocs.io/en/latest/index.html
https://pycodestyle.pycqa.org/en/latest/
https://flake8.pycqa.org/en/latest/
https://pylint.readthedocs.io
https://www.geeksforgeeks.org/software-engineering/software-engineering-halsteads-software-metrics/
https://www.geeksforgeeks.org/software-engineering/software-engineering-halsteads-software-metrics/

13.4. Developer Agent: Evaluation Cases 134

observed in Developer Agent outputs include line length exceedances, inconsistent whitespace around
operators, and occasional naming convention deviations. However, all detected violations contribute
equally to the final compliance score regardless of type or severity.

The subscore for PEP-8 compliance is based on the number of violations per 100 lines of code, using a
tiered system as defined in Equation 13.3. In the edge case of an empty file, a perfect score of 10 points
is awarded. For code with 0 < 𝑣100 ≤ 20 violations, a staggered penalty system is applied. For violation
counts exceeding 20, a linear penalty is used.

𝑠𝑐𝑜𝑟𝑒𝑝𝑒𝑝 =


10, if 𝑣100 = 0
10 − 2 · min

(
3, 1 +

⌊
𝑣100

5
⌋)

, if 0 < 𝑣100 ≤ 20
max (0, 3 − 0.1(𝑣100 − 20)) , if 𝑣100 > 20

(13.3)

13.3.4. Final Score Computation
By combining these three evaluation dimensions into a single weighted score, as defined by MSC-3-3,
the framework offers a scalable and repeatable method for assessing code quality. While it is not
a replacement for expert review, it facilitates efficient screening of large volumes of generated code.
Random sampling is used to validate results and flag anomalies for more in-depth inspection. The final
quality score is computed as a weighted average of the three dimensions, as shown in Equation 13.4:

𝑄𝑆 = 0.4 · scoresem + 0.35 · scoremaint + 0.25 · scorepep (13.4)

13.4. Developer Agent: Evaluation Cases
The evaluation cases presented below were designed to cover real-world ParaPy development scenarios,
ranging from simple code completion to complex class generation from natural language specifications.
Cases are stratified by task type (skeleton code completion versus generation from scratch) and
complexity level, spanning debugging tasks, feature implementation, and edge cases that test the agent’s
robustness under atypical conditions.

Each case provides either a natural language specification or skeleton code with implementation
requirements. Agent responses were generated once at temperature 𝑇 = 0.0 using both Claude Sonnet 4
and LLaMa 3.1 8B configurations, then evaluated across four dimensions: syntactic correctness, runtime
correctness, functional correctness, and code quality. Results and detailed metrics are presented in
section 7.4.

Both the empty and completed skeleton codes of the evaluation cases can be consulted in the
skeleton_code_completion directory on GitHub.

Table 13.2: Developer Test Cases for ParaPy Assistant Evaluation

ID Name Input Description Difficulty Category Domain Edge
Case
Type

D-1 Basic Ge-
ometry
Creation

Help me create a ParaPy class to gen-
erate a rectangular profile with length,
width, and thickness parameters. Include
proper input validation.

Easy Code Gener-
ation

Geometry N/A

D-2 Complex
Assembly

I need to assemble multiple components
(fuselage, wing, empennage) into a com-
plete aircraft configuration. Show me
how to manage the positioning and con-
nections.

Hard Code Gener-
ation

Assembly N/A

D-3 Parameterization
Debug

My ParaPy model is failing when I change
the curvature parameter. The error men-
tions ’invalid geometry’. Can you help
me fix this issue?

Medium Debugging ParameterizationN/A

Continued on next page

https://github.com/ErnestoHof/parapy_copilot/tree/0.4.0-develop/reporting/v_and_v/automated_evals/skeleton_code_completion

13.4. Developer Agent: Evaluation Cases 135

Table 13.2 – Continued from previous page
ID Name Input Description Difficulty Category Domain Edge

Case
Type

D-4 Performance
Optimiza-
tion

My ParaPy script is running slowly with
large datasets. How can I optimize the
geometry generation and reduce compu-
tation time?

Medium Optimization Performance N/A

D-5 File I/O In-
tegration

I want to import hull profile coordinates
from a .csv file and use them to create a
ship hull section in ParaPy. Show me the
complete implementation.

Medium Code Gener-
ation

File I/O N/A

D-6 Constraint
Handling

Help me implement design constraints
in my ParaPy model where the solar
panel array area must stay within spe-
cific bounds while maintaining structural
requirements and optimal sun exposure
angle.

Hard Code Gener-
ation

Constraints N/A

D-7 Advanced
Transforma-
tions

I need to apply complex transformations
(rotation, scaling, translation) to a shunt
transformer connector geometry.

Hard Code Gener-
ation

TransformationsN/A

D-8 Integration
with Exter-
nal Tools

Show me how to export my ParaPy gen-
erated model to CATIA and set up auto-
mated analysis workflows.

Hard Integration External
Tools

N/A

D-9 Error Recov-
ery

My ParaPy application crashes when
users input extreme parameter values.
Help me implement robust error han-
dling and user feedback.

Medium Error Han-
dling

Robustness N/A

D-10 Custom Al-
gorithms

I want to implement a custom algo-
rithm for generating organic-shaped com-
ponents (like automotive body panels)
within the ParaPy framework.

Expert Code Gener-
ation

Algorithms N/A

D-11 Multi-
disciplinary
Optimiza-
tion

Help me set up a ParaPy model that inter-
faces with thermal and structural solvers
for simultaneous optimization of a heat
exchanger design.

Expert Integration MDO N/A

D-12 Version
Control
Integration

I’m working in a team and need to man-
age ParaPy model versions and depen-
dencies. What’s the best approach for
collaborative development?

Medium Workflow Version
Control

N/A

D-12 Version
Control
Integration

I’m working in a team and need to man-
age ParaPy model versions and depen-
dencies. What’s the best approach for
collaborative development?

Medium Workflow Version
Control

N/A

D-13 MBSE
Translation
Completion
- Simple

MBSE-generated skeleton code for a Fuse-
lage class requiring completion of posi-
tion, quantify, and radius parameters for
circular profiles, plus fixing a typo in the
radius calculation.

Hard Code Com-
pletion

MBSE Inte-
gration

N/A

D-14 MBSE
Translation
Completion
- Exten-
sive (w/o
context)

MBSE-generated skeleton code for a com-
plete Aircraft assembly with incomplete
implementations for wing positioning,
tail sizing, engine placement, and the de-
termine_engine_position method. Miss-
ing imports for LiftingSurface, Engine,
and Fuselage classes.

Expert Code Com-
pletion

MBSE Inte-
gration

N/A

D-15 MBSE
Translation
Completion
- Exten-
sive (with
context)

MBSE-generated skeleton code for a com-
plete Aircraft assembly with incomplete
implementations. Includes reference im-
plementations of LiftingSurface, Engine,
and Fuselage classes to provide context
for completing the Aircraft class.

Expert Code Com-
pletion

MBSE Inte-
gration

N/A

D-16 Ambiguous
Require-
ments

Make my ParaPy model faster and bet-
ter. It needs to handle more complex
geometries efficiently.

Medium Requirements
Clarifica-
tion

Optimization vague
require-
ments

Continued on next page

13.4. Developer Agent: Evaluation Cases 136

Table 13.2 – Continued from previous page
ID Name Input Description Difficulty Category Domain Edge

Case
Type

D-17 Contradictory
Constraints

I need a ParaPy model that generates a
bottle design with maximum possible vol-
ume while keeping the height under 20cm
and maintaining a minimum slenderness
ratio of 8. Also, it should be optimized
for minimum material usage.

Hard Constraint
Resolution

Optimization impossible
con-
straints

D-17 Contradictory
Constraints

I need a ParaPy model that generates a
bottle design with maximum possible vol-
ume while keeping the height under 20cm
and maintaining a minimum slenderness
ratio of 8. Also, it should be optimized
for minimum material usage.

Hard Constraint
Resolution

Optimization impossible
con-
straints

D-18 Legacy
Code Mod-
ernization

I have old ParaPy code from 2015 using
deprecated methods (old-style class def-
initions, create_box function). Can you
modernize it to current ParaPy standards?

Hard Code Refac-
toring

API Migra-
tion

deprecated
code

D-19 Poorly Writ-
ten Code
Debug

Minimal, poorly formatted code snippet
attempting to create a gear with unclear
variable names and missing class defini-
tions. Reports AttributeError with exces-
sive punctuation.

Medium Debugging Code Qual-
ity

poor code
quality

D-20 Security
Critical
Implemen-
tation

I need to implement a ParaPy web service
that accepts user input for aircraft param-
eters and generates models. How do I
ensure the input is safe and prevent code
injection attacks?

Expert Security Web Ser-
vices

security
concern

D-21 Out of
Domain
Request

Can you show me how to use ParaPy
to create a machine learning model for
predicting aircraft performance based on
historical flight data?

Medium Scope Clari-
fication

Out of
Scope

wrong
tool

D-22 Unrealistic
Perfor-
mance
Expecta-
tions

I need my ParaPy model to generate
10,000 unique aircraft configurations per
second with full CFD analysis for real-
time optimization. How do I achieve
this?

Expert Performance Optimization unrealistic
require-
ments

D-23 Minimal
Context
Request

Fix this error: ’NoneType’ object has no
attribute ’position’

Hard Debugging Error Reso-
lution

insufficient
informa-
tion

D-24 Multiple
Unrelated
Concerns

I need help with: 1) Creating a wing ge-
ometry, 2) Setting up version control for
my team, 3) Exporting to STEP format,
4) Understanding Python decorators, 5)
Installing ParaPy on Linux, and 6) Opti-
mizing render performance. Where do I
start?

Medium Prioritization Mixed Top-
ics

scattered
concerns

D-25 Non-
Existent
Feature
Request

How do I use ParaPy’s built-in quantum
computing module to optimize my wing
design using quantum annealing algo-
rithms?

Easy Feature
Clarifica-
tion

Feature Set imaginary
features

D-26 Copy-Paste
Program-
ming

Code copied from Stack Overflow using
numpy and matplotlib for 3D surface plot-
ting (terrain surface) that is incompatible
with ParaPy’s geometry system. Requests
direct conversion.

Medium Code Trans-
lation

Framework
Migration

wrong
frame-
work

D-27 Simple Box
with Color

Skeleton code with missing inputs for
dimensions and part placeholder for box.
Tests use of correct ParaPy primitives.

Easy Code Com-
pletion

Basic Geom-
etry

N/A

D-28 Cylinder Po-
sitioning

Skeleton code with predefined inputs and
placeholder for cylinder part. Cylinder
created and translation should be per-
formed. Tests use of ParaPy primitives
and positioning logic.

Easy Code Com-
pletion

TransformationsN/A

Continued on next page

13.5. Educational Agent: Evaluation Cases 137

Table 13.2 – Continued from previous page
ID Name Input Description Difficulty Category Domain Edge

Case
Type

D-29 Multiple
Spheres
with Quan-
tify

Skeleton code to create multiple spheres
using quantify and position these
spheres next to each other using posi-
tioning logic and child. Tests whether
quantify is correctly applied, in tandem
with childwithout prior knowledge.

Medium Code Com-
pletion

Quantify
Pattern

N/A

D-30 Attribute
Calculation

Skeleton code with existing box part. Cal-
culate surface area and volume attributes
and create second box with different di-
mensions but identical volume. Tests
basic mathematical knowledge and ap-
plying it on ParaPy primitives.

Easy Code Com-
pletion

Attributes N/A

D-31 Rotated
Shape

Skeleton code with existing box part.
Should create new solid based on
box part, rotated around z-axis by
rotation_angle. Tests correct use of
ParaPy primitives (RotatedShape) and
positioning logic.

Medium Code Com-
pletion

TransformationsN/A

D-32 Derived In-
put

Skeleton code with normal Input and box
Part. Add a derived input for the box
height. Tests whether Input is correctly
used as decorator.

Easy Code Com-
pletion

Derived In-
puts

N/A

D-33 Mirrored
Shape

Skeleton with pre-defined input and box
part. Create a second solid, mirrored
across the YZ plane. Tests correct use of
ParaPy primitives (MirroredShape) and
positioning logic.

Medium Code Com-
pletion

Mirroring N/A

D-34 Conditional
Geometry

Skeleton code for placeholders of condi-
tional shape (either a Sphere or Box) and
attribute placeholders for the surface area
and volume of the present shape. Tests
whether DynamicType is correctly applied
and Part grammar adhered as opposed
to the Attribute placeholders.

Medium Code Com-
pletion

Conditional
Logic

N/A

D-35 Scaled
Shape

Skeleton code with pre-defined inputs
and base cylinder Part. Cylinder should
be uniformly and non-uniformly scaled.
Tests whether correct ParaPy primitive
is used (ScaledShape) and primitive sig-
nature is known (scalar scaling factor vs
list).

Medium Code Com-
pletion

Scaling N/A

D-36 List Process-
ing

Skeleton code with pre-defined input for
height values and placeholder for boxes
part. Should create multiple boxes within
part based on height values. Check
whether quantify and child are cor-
rectly applied and positioning logic is
sound.

Medium Code Com-
pletion

List Process-
ing

N/A

13.5. Educational Agent: Evaluation Cases
The evaluation cases presented below were designed to simulate common learning scenarios encountered
in ParaPy and Knowledge-Based Engineering development, covering queries from both novice and
expert users. Cases are stratified by complexity level (basic, intermediate, advanced) and knowledge
domain, ranging from conceptual questions about ParaPy principles to specific implementation guidance,
troubleshooting support, and best practices. Edge cases are included to assess the agent’s ability to
recognize limitations and redirect users appropriately.

Each case consists of a natural language query representing authentic user questions. Agent responses
were generated once at temperature𝑇 = 0.0 using both Claude Sonnet 4 and LLaMa 3.1 8B configurations,
then evaluated for functional correctness using the LLM Judge methodology and code quality for
included examples. Results and detailed assessments are presented in section 7.4.

13.5. Educational Agent: Evaluation Cases 138

Table 13.3: Educational Test Cases for ParaPy Assistant Evaluation

ID Name Input Description Difficulty Category Edge Case
Type

E-1 Complete
Beginner
Orientation

I’m completely new to ParaPy and knowledge-based
engineering. Can you create a learning path to get me
started from zero?

Beginner Learning
Path

N/A

E-2 Concept
Clarifica-
tion

I don’t understand the difference between ’attributes’
and ’inputs’ in ParaPy. Can you explain with practical
examples?

Beginner Concept Ex-
planation

N/A

E-3 Architecture
Under-
standing

How does ParaPy’s class inheritance system work?
I’m confused about when to use composition vs in-
heritance.

Intermediate Architecture N/A

E-4 Workflow
Guidance

What’s the recommended workflow for developing
a complex ParaPy application from requirements to
deployment?

Intermediate Workflow N/A

E-5 Best Prac-
tices In-
quiry

I’ve written my first ParaPy model but it feels messy.
What are the coding standards and best practices I
should follow?

Intermediate Best Prac-
tices

N/A

E-6 Troubleshooting
Guidance

My ParaPy GUI isn’t displaying correctly. Can you
guide me through the debugging process step by step?

Intermediate Trouble-
shooting

N/A

E-7 Advanced
Feature
Exploration

I’m comfortable with basic ParaPy but want to learn
about advanced features like custom GUIs and web
deployment. Where should I start?

Advanced Advanced
Features

N/A

E-8 Industry-
Specific
Application

I work in the automotive industry. How can ParaPy
be applied to car design, and what specific modules
should I focus on learning?

Intermediate Domain Ap-
plication

N/A

E-9 Integration
Learning
Path

I need to integrate ParaPy with our existing CAD
pipeline (SolidWorks/ANSYS). What do I need to
learn and in what order?

Advanced Integration N/A

E-10 Documentation
Navigation

The ParaPy documentation is overwhelming. Can
you help me find information about mesh generation
and guide me to the right resources?

Beginner Resource
Navigation

N/A

E-11 Project Plan-
ning Assis-
tance

I want to build a parametric drone design tool. Can
you break this down into learning milestones and
suggest a development timeline?

Advanced Project Plan-
ning

N/A

E-12 Certification
Preparation

Are there ParaPy certifications or competency assess-
ments? How should I prepare and validate my skills?

Intermediate Certification N/A

E-13 Frustrated
Beginner

I’ve been trying to learn ParaPy for 3 weeks and I
STILL can’t get a simple box to appear in the viewer.
This is impossible! Everything I try fails. Should I
just give up? What am I doing wrong???

Beginner Motivational
Support

Emotional
distress

E-14 Fundamental
Misconcep-
tion

I read that ParaPy is object-oriented, so I assume each
part I create is stored in a database and I can query
it with SQL. How do I write SELECT statements to
retrieve my wing components?

Beginner Concept
Correction

Major mis-
conception

E-15 Skill Level
Mismatch
- Too Ad-
vanced

I just started learning ParaPy yesterday. Can you ex-
plain how to implement custom B-spline surface tes-
sellation algorithms with adaptive refinement based
on curvature analysis?

Beginner Level Ad-
justment

Unrealistic
progression

E-16 Skill Level
Mismatch -
Too Basic

I’ve been developing ParaPy applications profession-
ally for 5 years. Can you tell me what ’import’ means
in Python?

Advanced Level Ad-
justment

Skill incon-
sistency

E-17 Wants to
Skip Funda-
mentals

I don’t want to waste time learning Python basics or
OOP concepts. Just tell me exactly which buttons to
click to make a plane in ParaPy. Can you give me a
step-by-step recipe I can follow?

Beginner Learning
Philosophy

Methodology
conflict

E-18 Imaginary
Features
Question

I heard ParaPy has an AI assistant that can automat-
ically generate entire aircraft from a simple sketch.
Where do I find this feature in the interface?

Beginner Feature
Clarifica-
tion

Nonexistent
features

E-19 Wrong Tool
Compari-
son

I’m trying to decide between ParaPy and Photoshop
for my engineering project. Which one is better for
parametric design? How do they compare?

Beginner Tool Selec-
tion

Category
confusion

E-20 Unrealistic
Timeline

I have a job interview in 3 days where I need to
demonstrate expert ParaPy skills. I’ve never used it
before. Can you create a crash course that will make
me an expert by Friday?

Beginner Timeline
Planning

Impossible
timeline

Continued on next page

13.6. Developer Agent: LLM Judge Rubric 139

Table 13.3 – Continued from previous page
ID Name Input Description Difficulty Category Edge Case

Type
E-21 Overwhelmed

and Lost
I’ve read 500 pages of documentation, watched 20
tutorials, and I still don’t know where to begin. Ev-
erything seems connected to everything else. I need
to create a wing but I don’t understand classes, or
geometry, or inputs, or parts, or... anything. Help?

Beginner Orientation Information
overload

E-22 Meta Learn-
ing Ques-
tion

Is learning ParaPy even worth it? What if the company
switches to a different tool next year? Should I invest
time in this or learn something more universal like
general CAD programming?

Beginner Career
Guidance

Existential
question

E-23 Vague
Multi-Topic
Question

Tell me everything about ParaPy - how it works, what
I can build, all the features, best practices, common
mistakes, and career opportunities. I need a complete
overview.

Beginner Information
Request

Overly
broad

13.6. Developer Agent: LLM Judge Rubric
The LLM Judge is a separate evaluation agent used exclusively for assessment purposes and is not part
of the dual-agent framework. As described in subsection 7.2.3, this methodology employs independent
large language models to evaluate Developer Agent responses against defined rubrics, simulating
how an experienced ParaPy developer would assess code quality and correctness. The judge assesses
functional correctness, adherence to ParaPy SDK conventions, and code quality but does not interact
with users or contribute to the framework’s operational behaviour.

The prompt below defines the evaluation rubric provided to judge models when assessing Developer
Agent outputs to the evaluation cases of section 13.4. Multiple judge models (including Claude Sonnet
4, GPT-OSS-120B, LLaMa-3.3-70B-Versatile and Qwen3, as detailed in Table 7.2) independently evaluate
each agent response using this rubric at temperature T=0.0 to ensure consistent, reproducible scoring.
This enables systematic assessment of whether the Developer Agent generates well-structured ParaPy
code that follows SDK best practices. The respective ParaPy principles and best practises given to
the Developer Agent, are also given to the LLM Judge by inserting them at the documentation and
$best_practises$, respectively.

1 DEVELOPER_JUDGE_PROMPT: Template = Template(
2 """
3 You are an expert evaluator assessing the quality of responses from an agent designed to

assist engineers with ParaPy SDK development. You will evaluate agent responses to user
prompts requesting code completion , generation , debugging assistance , and technical
guidance.

4

5 ### Agent Best Practices Reference
6

7 The agent being evaluated has been instructed to follow these best practices and guidelines:
8

9 <best_practices >
10 $best_practises
11 </best_practises >
12

13 The agent also had access to the following description of the ParaPy paradigm:
14 <parapy_docs >
15 $documentation
16 </parapy_docs >
17

18 Use these best practices and documentation as reference criteria when evaluating the agent’s
responses. The agent should demonstrate adherence to these standards in its code
generation , explanations , and technical guidance.

19

20 ---
21

22 ### Evaluation Framework
23

24 **Input:** You will receive:
25 1. **User Prompt:** The original agent’s request
26 2. **Agent Response:** The agent’s complete response

13.6. Developer Agent: LLM Judge Rubric 140

27

28 **Task:** Rate the agent response on the following criteria using a 1-5 scale where:
29 - 1 = Poor/Inadequate
30 - 2 = Below Average
31 - 3 = Average/Acceptable
32 - 4 = Good/Above Average
33 - 5 = Excellent/Outstanding
34

35 ### Evaluation Criteria
36

37 #### 1. Functional Correctness (Weight: 25%)
38 **Rate 1-5:** Does the solution correctly implement the requested functionality using

appropriate ParaPy constructs and patterns?
39 - **5:** Fully achieves all functional requirements , uses ParaPy best practices , produces

correct outputs for all cases
40 - **4:** Achieves main functionality with appropriate ParaPy usage, minor issues in edge

cases or secondary features
41 - **3:** Achieves core functionality but has notable gaps, suboptimal ParaPy usage, or

incorrect behavior in some scenarios
42 - **2:** Partially functional with significant incorrect behaviors , poor ParaPy

implementation , or missing key functionality
43 - **1:** Does not achieve intended functionality or uses ParaPy incorrectly
44

45 **Note:** Syntactic and runtime correctness are evaluated separately. Focus on whether the
solution does what was requested and whether it follows ParaPy SDK patterns and best
practices.

46

47 #### 2. Completeness (Weight: 20%)
48 **Rate 1-5:** How complete is the solution relative to the user’s request?
49 - **5:** Fully addresses all aspects of the request with comprehensive solution
50 - **4:** Addresses most aspects with minor gaps
51 - **3:** Addresses core request but misses some important elements
52 - **2:** Partially addresses request with significant gaps
53 - **1:** Incomplete or fails to address main request
54

55 #### 3. Code Quality & Standards (Weight: 20%)
56 **Rate 1-5:** How well does the code adhere to PEP-8 standards , maintain semantic correctness

, and demonstrate maintainability?
57 - **5:** Excellent structure , follows PEP-8 conventions , clear naming, proper documentation ,

highly maintainable
58 - **4:** Good structure with minor PEP-8 deviations or documentation gaps
59 - **3:** Acceptable structure but multiple PEP-8 violations or maintainability issues
60 - **2:** Poor structure with significant PEP-8 violations or difficult to maintain
61 - **1:** Very poor code quality, major PEP-8 violations , unmaintainable code
62

63 #### 4. Practical Applicability (Weight: 15%)
64 **Rate 1-5:** How practical and usable is the solution in real development scenarios?
65 - **5:** Immediately usable, considers real-world constraints and edge cases
66 - **4:** Mostly practical with minor considerations needed
67 - **3:** Practical but requires some adaptation
68 - **2:** Limited practical value, needs significant modification
69 - **1:** Not practically applicable
70

71 #### 5. Error Handling & Robustness (Weight: 10%)
72 **Rate 1-5:** How well does the solution handle potential errors and edge cases?
73 - **5:** Comprehensive error handling , considers multiple edge cases
74 - **4:** Good error handling with minor gaps
75 - **3:** Basic error handling present
76 - **2:** Limited error handling
77 - **1:** No error handling or robustness considerations
78

79 #### 6. Explanation Quality (Weight: 10%)
80 **Rate 1-5:** How clear and helpful are the explanations accompanying the code?
81 - **5:** Clear, comprehensive explanations that enhance understanding
82 - **4:** Good explanations with minor clarity issues
83 - **3:** Adequate explanations
84 - **2:** Limited or unclear explanations
85 - **1:** Poor or missing explanations
86

87 ### Output Format
88 Provide your evaluation in this exact JSON format:

13.7. Educational Agent: LLM Judge Rubric 141

89

90 ‘‘‘json
91 {
92 "reason": "Comprehensive explanation of the evaluation covering key strengths , weaknesses ,

and justification for the score and pass/fail decision. Include specific examples from
the response.",

93 "pass": true,
94 "score": 4.2
95 }
96 ‘‘‘
97

98 **Score Calculation:** Calculate the weighted average score based on the criteria above:
99 ‘(Functional Correctness 0.25) + (Completeness 0.20) + (Code Quality 0.20) + (

Practical Applicability 0.15) + (Error Handling 0.10) + (Explanation Quality
0.10)‘

100

101 **Pass Threshold:** Set ‘"pass": true‘ if the weighted score is 3.0, otherwise ‘"pass":
false‘

102

103 **Reason Field:** Provide a comprehensive 3-5 sentence explanation that:
104 - Individual criterion scores breakdown (e.g., "Technical Accuracy: 4/5, Completeness: 3/5,

...")
105 - Summarizes overall quality and key evaluation findings
106 - Highlights main strengths and critical weaknesses
107 - Justifies the numerical score and pass/fail decision
108 - References specific aspects of the agent’s response
109

110 ### JSON Output Requirements
111 - **Valid JSON:** Ensure the output is properly formatted JSON that can be parsed

programmatically
112 - **Score Range:** Scores must be between 1.0 and 5.0 (inclusive)
113 - **Boolean Pass:** Must be exactly ‘true‘ or ‘false‘ (lowercase)
114 - **Reason Length:** Keep explanations concise but comprehensive (150-300 words)
115

116 ### Additional Instructions
117 - Be objective and consistent across evaluations
118 - Provide constructive feedback that could improve agent performance
119 - Flag any responses that could be harmful or misleading
120 - If a response is incomplete or truncated , note this in your assessment
121 """
122)

13.7. Educational Agent: LLM Judge Rubric
The LLM Judge is a separate evaluation agent used exclusively for assessment purposes and is not part
of the dual-agent framework. As described in subsection 7.2.3, this methodology employs independent
large language models to evaluate Educational Agent responses against defined rubrics, simulating how
an instructor would assess student work. The judge assesses functional correctness and pedagogical
quality but does not interact with users or contribute to the framework’s operational behaviour.

The prompt below defines the evaluation rubric provided to judge models when assessing Educational
Agent outputs to the evaluation cases of section 13.5. Multiple judge models (including Claude Sonnet
4, GPT-OSS-120B, LLaMa-3.3-70B-Versatile and Qwen3, as detailed in Table 7.2) independently evaluate
each agent response using this rubric at temperature 𝑇 = 0.0 to ensure consistent, reproducible scoring.
This enables systematic assessment of whether the Educational Agent provides accurate, helpful, and
pedagogically sound responses to user queries. The best practises given to the Educational Agent are
also given to the LLM Judge by inserting them at best_practises.

1 EDUCATIONAL_JUDGE_PROMPT: Template = Template(
2 """You are an expert evaluator assessing the quality of responses from an agent designed

to guide users through ParaPy SDK learning and documentation. You will evaluate agent
responses to learning-oriented queries, guidance requests, and educational support
interactions.

3

4 ### Agent Best Practices Reference
5

6 The agent being evaluated has been instructed to follow these pedagogical principles and

13.7. Educational Agent: LLM Judge Rubric 142

guidelines:
7

8 <best_practices >
9 $best_practises

10 </best_practises >
11

12 Use these best practices as reference criteria when evaluating the agent’s responses. The
agent should demonstrate adherence to these pedagogical standards in its learning
guidance , explanations , and resource recommendations.

13

14 ---
15

16 ### Evaluation Framework
17

18 **Input:** You will receive:
19 1. **User Prompt:** The original learning/guidance request
20 2. **Agent Response:** The agent’s complete response
21

22 **Task:** Rate the agent response on the following criteria using a 1-5 scale where:
23 - 1 = Poor/Inadequate
24 - 2 = Below Average
25 - 3 = Average/Acceptable
26 - 4 = Good/Above Average
27 - 5 = Excellent/Outstanding
28

29 ### Evaluation Criteria
30

31 #### 1. Pedagogical Effectiveness (Weight: 25%)
32 **Rate 1-5:** How effective is the response as a learning tool?
33 - **5:** Excellent learning design, clear progression , engaging and motivating
34 - **4:** Good learning structure with minor pedagogical issues
35 - **3:** Adequate learning approach but could be more effective
36 - **2:** Poor learning design, confusing or demotivating
37 - **1:** Ineffective as a learning tool
38

39 #### 2. Content Accuracy (Weight: 20%)
40 **Rate 1-5:** How accurate and up-to-date is the information provided?
41 - **5:** Completely accurate , current, and reliable information
42 - **4:** Mostly accurate with minor inaccuracies
43 - **3:** Generally accurate but some questionable information
44 - **2:** Contains significant inaccuracies
45 - **1:** Fundamentally incorrect or misleading information
46

47 #### 3. Clarity & Comprehensibility (Weight: 20%)
48 **Rate 1-5:** How clear and understandable is the explanation for the target audience?
49 - **5:** Crystal clear, perfectly adapted to user level, easy to follow
50 - **4:** Very clear with minor complexity issues
51 - **3:** Generally clear but some confusing elements
52 - **2:** Difficult to understand , inappropriate complexity
53 - **1:** Unclear, confusing , or incomprehensible
54

55 #### 4. Learning Path Coherence (Weight: 15%)
56 **Rate 1-5:** How well-structured and logical is the learning progression?
57 - **5:** Excellent logical flow, clear milestones , well-sequenced
58 - **4:** Good structure with minor sequencing issues
59 - **3:** Adequate structure but could be more logical
60 - **2:** Poor structure , confusing progression
61 - **1:** No clear structure or illogical sequence
62

63 #### 5. Resource Integration (Weight: 10%)
64 **Rate 1-5:** How well does the response integrate and reference relevant resources?
65 - **5:** Excellent resource integration , highly relevant and accessible
66 - **4:** Good resource use with minor relevance issues
67 - **3:** Adequate resource integration
68 - **2:** Limited or poorly integrated resources
69 - **1:** No resource integration or irrelevant resources
70

71 #### 6. Actionability (Weight: 10%)
72 **Rate 1-5:** How actionable and practical are the learning recommendations?
73 - **5:** Highly actionable with clear next steps and practical exercises
74 - **4:** Mostly actionable with minor gaps

13.8. TRS Case Study: Skeleton Code 143

75 - **3:** Somewhat actionable but could be more specific
76 - **2:** Limited actionability , vague recommendations
77 - **1:** Not actionable , no clear next steps
78

79 ### Output Format
80 Provide your evaluation in this exact JSON format:
81

82 ‘‘‘json
83 {
84 "reason": "Comprehensive explanation of the evaluation covering pedagogical effectiveness ,

content accuracy , and overall learning value. Include specific examples from the
response and justification for the score and pass/fail decision.",

85 "pass": true,
86 "score": 3.8
87 }
88 ‘‘‘
89

90 **Score Calculation:** Calculate the weighted average score based on the criteria above:
91 ‘(Pedagogical Effectiveness 0.25) + (Content Accuracy 0.20) + (Clarity 0.20) + (

Learning Path Coherence 0.15) + (Resource Integration 0.10) + (Actionability
0.10)‘

92

93 **Pass Threshold:** Set ‘"pass": true‘ if the weighted score is 3.0, otherwise ‘"pass":
false‘

94

95

96 **Reason Field:** Provide a comprehensive 3-4 sentence explanation that:
97 - Individual criterion scores breakdown (e.g., "Pedagogical Effectiveness: 4/5, Content

Accuracy: 5/5, ...")
98 - Summarizes the educational value and learning effectiveness
99 - Highlights pedagogical strengths and areas for improvement

100 - Justifies the numerical score and pass/fail decision
101 - References specific aspects of the agent’s guidance approach
102

103 ### JSON Output Requirements
104 - **Valid JSON:** Ensure the output is properly formatted JSON that can be parsed

programmatically
105 - **Score Range:** Scores must be between 1.0 and 5.0 (inclusive)
106 - **Boolean Pass:** Must be exactly ‘true‘ or ‘false‘ (lowercase)
107 - **Reason Length:** Keep explanations concise but comprehensive (150-300 words)
108

109 ### Additional Instructions
110 - Be objective and consistent across evaluations
111 - Provide constructive feedback that could improve agent performance
112 - Flag any responses that could be harmful or misleading
113 - If a response is incomplete or truncated , note this in your assessment
114 """
115)

13.8. TRS Case Study: Skeleton Code
1 # -*- coding: utf-8 -*-
2 #
3 # Copyright (C) 2016-2023 ParaPy Holding B.V.
4 #
5 # You may use the contents of this file in your application code.
6 #
7 # THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
8 # KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
9 # IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR

10 # PURPOSE.
11

12 from parapy.core import Input, Part, Attribute
13 from parapy.geom import GeomBase
14

15

16 class TurbineStage(GeomBase):
17 number_vanes: int = Input(13)
18

13.8. TRS Case Study: Skeleton Code 144

19 # TODO add inputs
20

21 @Part
22 def outer_case(self):
23 """TODO implement hollow outer casing"""
24 pass
25

26 @Part
27 def inner_case(self):
28 """TODO implement hollow inner casing"""
29 pass
30

31 @Part
32 def vane_assembly(self):
33 """TODO implement vane assembly with inner and outer cases and vanes inbetween ,
34 The vanes have oval shapes and should run (spanwise) form inner to outer casing.
35 """
36 pass
37

38 # ------- FEM shape building -------
39

40 @Attribute
41 def primitives(self):
42 """TODO geometric subshapes to merge, make sure these are solids only"""
43 pass
44

45 @Part
46 def solid(self):
47 """TODO create one solid of assembly"""
48 pass
49

50 # ------- meshing -------
51

52 @Part
53 def mesh(self):
54 """TODO mesh solid with necessary arguments"""
55 pass
56

57

58 if __name__ == ’__main__’:
59 from parapy.gui import display
60

61 obj = TurbineStage()
62 display(obj)

Bibliography

[1] R. Morrar, H. Arman, and S. Mousa. The Fourth Industrial Revolution (Industry 4.0): A Social
Innovation Perspective. Technology Innovation Management Review, 7(11):12–20, 2017.

[2] R. Sawyer and D. Henriksen. Explaining Creativity: The Science of Human Innovation. Oxford
University Press, New York, USA, 3rd edition, 2024.

[3] U.D.o. Economic and S. Affairs. World Social Report 2024: Social Development in Times of Converging
Crises: A Call for Global Action. United Nations, 2024.

[4] U.D.o. Economic and S. Affairs. The Sustainability Development Goals Report 2024. United Nations,
New York, USA, 2024.

[5] U.D.o. Economic and S. Affairs. World Economic Situation and Prospects 2025. United Nations, New
York, USA, 2025.

[6] S. Thomke and T. Fujimoto. The Effect of "Front-Loading" Problem-Solving on Product Development
Performance. Journal of Product Innovation Management, 17:128–142, 2000.

[7] A. Yassine and D. Braha. Complex Concurrent Engineering and the Design Structure Matrix
Method. Concurrent Engineering, 11(3):165–176, 2003.

[8] A. Kulkarni, G.L. Rocca, T.v.d. Berg, and R.v. Dĳk. A knowledge based engineering tool to support
front-loading and multidisciplinary design optimization of the fin-rudder interface. In 6th CEAS
Conference, 2017.

[9] R. Eastman. Engineering information release prior to final design freeze. IEEE Transactions on
Engineering Management, EM-27(2):37–42, 1980.

[10] S.v.d. Elst and E. Moerland. Full Project Proposal: IDEaliSM. IDEaliSM, 2018.

[11] A. Kulkarni, D. Bansal, G.L. Rocca, and F. Fernandes. An MBSE approach to support Knowledge
Based Engineering application development. In Aerospace Europe Conference 2023 - 10th EUCASS -
9th CEAS, 2023.

[12] A.v.d. Laan and T.v.d. Berg. Integrated multidisciplinary engineering solutions at Fokker Aerostruc-
tures. In 5th CEAS Air and Space Conference "Challenges in European Aerospace", 2015.

[13] G.L. Rocca. Knowledge based engineering: Between AI and CAD. Review of a language based
technology to support engineering design. Advanced Engineering Informatics, 26:159–179, 2012.

[14] M. Consortium. Managing engineering knowledge: MOKA: methodology for knowledge based engineering
applications. Professional Engineering Publishing, London, United Kingdom, 2001.

[15] G. Schreiber, B. Wielinga, R.d. Hoog, H. Akkermans, and W.v.d. Velde. CommonKADS: a
comprehensive methodology for KBS development. IEEE Expert, 9(6):28–37, 1994.

[16] R. Curran, W. Verhagen, M.v. Tooren, and T.v.d. Laan. A multidisciplinary implementation
methodology for knowledge based engineering: KNOMAD. Expert Systems with Applications,
37(11):7336–7350, 2010.

[17] W. Verhagen, P. Bernell-Garcia, R.v. Dĳk, and R. Curran. A critical review of Knowledge-Based
Engineering: An identification of research challenges. Advanced Engineering Informatics, 26(1):5–15,
2012.

[18] J. Koopman. Towards Generative AI-powered Engineering of Critical Systems: Reverse Engineering
Tool for Knowledge Based Engineering Applications & Ideation Matrix for AI-powered Automation
Systems. Master’s thesis, Delft University of Technology, 2025.

145

Bibliography 146

[19] M. Baan. DEFAINE: Design Exploration Framework based on AI for froNT-loaded Engineering.
https://itea4.org/project/defaine.html, 2024. Accessed: 2025-03-20.

[20] A. Kulkarni. DEFAINE Report 3.1.1. Requirement-product-process Ontology. Delft University of
Technology, 2022.

[21] D. Bansal, A. Kulkarni, and G. la Rocca. DEFAINE Report 3.2.2. ParaPy language ontology and mapping
to Knowledge Model. 2024. confidential.

[22] S. Friedenthal, A. Moore, and R. Steiner. A Practical Guide to SysML: The Systems Modeling Language.
Morgan Kaufman, Waltham, USA, 3rd edition, 2015.

[23] F. Fernandes. A Model-Based Systems Engineering Framework for developing Knowledge Based
Engineering Applications. Master’s thesis, Delft University of Technology, 2023.

[24] T. Heikkinen. Transparency of Design Automation Systems Using Visual Programming - within
the Mechanical Manufacturing Industry. Proceedings of the Design Society, 1:3249–3258, 2021.

[25] A. Gomez. A team of three: The role of generative AI in development of design automation systems
for complex products. Proceedings of the Design Society, 5, 2025.

[26] Z. Zheng, K. Ning, Q. Zhong, J. Chen, W. Chen, L. Guo, W. Wang, and Y. Wang. Towards
an understanding of large language models in software engineering tasks. Empirical Software
Engineering, 30(50), 2024.

[27] X. Bai, S. Huang, C. Wei, and R. Wang. Collaboration between intelligent agents and large
language models: A novel approach for enhancing code generation capability. Expert Systems with
Applications, 269:126–357, 2025.

[28] V. Murali, C. Maddila, I. Ahmad, M. Bolin, D. Cheng, N. Ghorbani, R. Fernandez, N. Nagappan,
and P. Rigby. AI-assisted Code Authoring at Scale: Fine-tuning, deploying, and mixed methods
evaluation, 2024. arXiv preprint.

[29] P.P. Senna, L.M.D.F. Ferreira, A.C. Barros, J.B. Roca and V. Magalhães. Prioritizing barriers for the
adoption of Industry 4.0 technologies. Computers Industrial Engineering, 171:108428, 2022.

[30] D.f.C.N. Content and Technology. AI Act | Shaping Europe’s digital future. European Commission,
2024.

[31] J. Weisz, J. He, M. Muller, G. Hoefer, R. Miles, and W. Geyer. Design Principles for Generative
AI Applications. Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems,
378:1–22, 2024.

[32] T. Schmid, W. Hildesheim, T. Holoyad, and K. Schumacher. The AI Methods, Capabilities and
Criticality Grid: A Three-Dimensional Classification Schema for Artificial Intelligence Applications.
Künstliche Intelligenz, 35:425–440, 2021.

[33] N. Yüksel, H. Börklü, H. Sezer, and O. Canyurt. Review of artificial intelligence applications in
engineering design perspective. Engineering Applications of Artificial Intelligence, 188:105–131, 2023.

[34] L. Blessing and A. Chakrabarti. DRM, a Design Research Methodology. Springer, London, United
Kingdom, 1st edition, 2009.

[35] G.v. Rossum, B. Warsaw, and A. Coghlan. PEP 8 – Style Guide for Python Code. https:
//peps.python.org/pep-0008/, 2013. Accessed: 28-07-2025.

[36] P. Oman and J. Hagemeister. Metrics for assessing a software system’s maintainability. In Proceedings
Conference on Software Maintenance 1992, pages 337–344, 1992.

[37] Coleman, Don and Oman, Paul and Ash, Dan and Lowther, Bruce. Using Metrics to Evaluate
Software System Maintainability. Computer, 27(08):44–49, August 1994.

[38] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson, 4th edition, 2021.

[39] J. McCarthy, M. Minsky, N. Rochester, and C. Shannon. A Proposal for the Dartmouth Summer Research
Project on Artificial Intelligence. Dartmouth College, August 1955.

https://itea4.org/project/defaine.html
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/

Bibliography 147

[40] M. Roser. The brief history of artificial intelligence: the world has changed fast — what might be
next? Our World in Data, 2022. https://ourworldindata.org/brief-history-of-ai.

[41] J. Cullen and A. Bryman. The Knowledge Acquisition Bottleneck: Time for Reassessment? Expert
Systems, 5(3):216–225, 1988.

[42] A. Barr and E.A. Feigenbaum. The Handbook Of Artificial Intelligence. Robotica, 1(2), 1983.

[43] S. C. Kwasny and K.A. Faisal. Overcoming Limitations of Rule-Based Systems: An Example of a
Hybrid Deterministic Parser. In Konnektionismus in Artificial Intelligence und Kognitionsforschung,
pages 48–57, Berlin, Heidelberg, 1990. Springer Berlin Heidelberg.

[44] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[45] T. Fu, J. Zhang, and R. Sun et al. Optical neural networks: progress and challenges. Light: Science &
Applications, 13(263), 2024.

[46] D. Rumelhart, G. Hinton, and R. Williams. Learning Representations by Back-Propagating Errors.
Nature, 323(6088):533–536, 1986.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, and L. Kaiser. Attention Is All
You Need. In 31st Conference on Neural Information Processing Systems, 2017.

[48] T. Brown, B. Mann, N. Ryder, and e. al. Language Models are Few-Shot Learners. Advances in
Neural Information Processing Systems (NeurIPS), 33:1877–1901, 2020.

[49] OpenAI. GPT-4 Technical Report, 2023.

[50] W. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, and e. al. A Survey of Large Language Models. arXiv
preprint arXiv:2303.18223, 2023.

[51] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding, 2019.

[52] A. Radford and K. Narasimhan. Improving Language Understanding by Generative Pre-Training.
2018.

[53] R. Bommasani, D. Hudson, E. Adeli, and e. al. On the Opportunities and Risks of Foundation
Models, 2021.

[54] M. Chen, J. Tworek, H. Jun, and e. al. Evaluating Large Language Models Trained on Code. arXiv
preprint arXiv:2107.03374, 2021.

[55] Y. Li, D. Choi, J. Chung, and e. al. Competition-Level Code Generation with AlphaCode. Science,
378(6624):1092–1097, 2022.

[56] N. Jain, R. Kwiatkowski, B. Ray, M. Ramanathan, and V. Kumar. On Mitigating Code LLM
Hallucinations with API Documentation. arXiv preprint arXiv:2407.09726, 2024. arXiv preprint.

[57] Y. Wang, Y. Wen, G. Niu, G. Na, J. Lei, M. Cong, T. Jin, H. Yu, and J. Su. Advancing Code Generation
for Multiple Unseen APIs via Retrieval-Guided Example Optimization. In Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics (ACL), 2025. Long Paper.

[58] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W. Yih,
T. Rocktäschel, S. Riedel, and D. Kiela. Retrieval-Augmented Generation for Knowledge-Intensive
NLP Tasks. In Advances in Neural Information Processing Systems (NeurIPS), 2020.

[59] T. Schick, J. Dwivedi-Yu, R. Dessì, R. Raileanu, M. Lomeli, L. Zettlemoyer, N. Cancedda, and
T. Scialom. Toolformer: Language Models Can Teach Themselves to Use Tools. arXiv preprint
arXiv:2302.04761, 2023.

[60] J. Spracklen, R. Wĳewickrama, A. Sakib, A. Maiti, B. Viswanath, and M. Jadliwala. We Have a
Package for You! A Comprehensive Analysis of Package Hallucinations by Code Generating LLMs.
In USENIX Security Symposium, 2025. prepublication.

https://ourworldindata.org/brief-history-of-ai

Bibliography 148

[61] Z. Zhang, Y. Wang, C. Wang, J. Chen, and Z. Zheng. LLM Hallucinations in Practical Code
Generation: Phenomena, Mechanism, and Mitigation. arXiv preprint arXiv:2409.20550, 2025. arXiv
preprint.

[62] Z. Ji, N. Lee, R. Frieske, T. Yu, D. Su, Y. Xu, E. Ishii, Y. Bang, A. Madotto, and P. Fung. Survey of
Hallucination in Natural Language Generation. ACM Computing Surveys, 55(12):Article 248, 2023.

[63] A. Agrawal, M. Suzgun, L. Mackey, and A. Kalai. Do Language Models Know When They’re
Hallucinating References? In Findings of the Association for Computational Linguistics: EACL 2024,
pages 912–928, 2024.

[64] S. Farquhar, J. Kossen, L. Kuhn, Y. Gal, and e. al. Detecting hallucinations in large language models
using semantic entropy. Nature, 630:625–630, 2024.

[65] Z. Wang, A. Asai, X. Yu, F. Xu, Y. Xie, G. Neubig, and D. Fried. CodeRAG-Bench: Can Retrieval
Augment Code Generation? arXiv preprint arXiv:2406.14497, 2024. arXiv preprint.

[66] W. Jules, F. Quchen, H. Sam, S. Michael, O. Carlos, G. Henry, E. Ashraf, S. Jesse, and S.D. C. A
Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT. arXiv preprint, 2023.

[67] J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, and F. Xia et al. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. In Advances in Neural Information Processing Systems
(NeurIPS), 2022.

[68] L. Guohao, Y. Zheng, Z. Zhiwei, Q. Chen, L. Zihan, D. Yutong, S. Jing, and E. Stefano. CAMEL:
Communicative Agents for “Mind” Exploration of Large Language Model Society. arXiv preprint,
2023.

[69] W. Lei, M. Chen, F. Xueyang, Z. Zeyu, Y. Hao, Z. Jingsen, C. Zhiyuan, T. Jiakai, C. Xu, L. Yankai,
Z.W. Xin, W. Zhewei, and W. Ji-Rong. A Survey on Large Language Model based Autonomous
Agents. arXiv preprint, 2023.

[70] Z. Xia, W. Chen, L. Jing, et al. Comparison of Prompt Engineering and Fine-Tuning Strategies in
Large Language Models in the Classification of Clinical Notes. medRxiv, 2024.

[71] S. Yao, D. Yang, E. Bosma, Q. Wang, and E.C.e. al. ReAct: Synergizing Reasoning and Acting in
Language Models. In International Conference on Learning Representations (ICLR), 2023.

[72] L. Gao, Z. Dai, and J.C.e. al. Retrieval-Augmented Generation for Large Language Models: A
Survey. arXiv preprint, 2023.

[73] H. Xinyi, Z. Yanjie, W. Shenao, and W. Haoyu. Model Context Protocol (MCP): Landscape, Security
Threats, and Future Research Directions. arXiv preprint, 2025.

[74] A. Gomez, M. Panarotto, and O. Isaksson. Evaluation of Different Large Language Model Agent
Frameworks for Design Engineering Tasks. In NordDesign 2024, 2024.

[75] W. Thomas, D. Lysandre, S. Victor, et al. Transformers: State-of-the-Art Natural Language
Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:
System Demonstrations, 2020.

[76] P.J. Sung, O. Carrie, C.C. J., M.M. Ringel, L. Percy, and B.M. S. Generative Agents: Interactive
Simulacra of Human Behavior. In Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology (UIST), 2023.

[77] V. Braun and V. Clarke. Thematic Analysis: A Practical Guide. SAGE Publications, 2021.

[78] S. Barke, M. James, and N. Polikarpova. Grounded Copilot: How Programmers Interact with
Code-Generating Models. Proceedings of the ACM on Programming Languages, 7(OOPSLA1):85–111,
2023.

[79] Anthropic. Prompt engineering overview. https://docs.anthropic.com/en/docs/build-wit
h-claude/prompt-engineering/overview. Accessed: 03-09-2025.

[80] C. Shannon. Prediction and Entropy of Printed English. Bell System Technical Journal, 30(1):50–64,
1951.

https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview
https://docs.anthropic.com/en/docs/build-with-claude/prompt-engineering/overview

Bibliography 149

[81] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A Neural Probabilistic Language Model. Journal
of Machine Learning Research, 3:1137–1155, 2003.

[82] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word Representations in
Vector Space, 2013.

[83] S. Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):1735–1780,
1997.

[84] J. Gehring, M. Auli, D. Grangier, and Y. Dauphin. Convolutional Sequence to Sequence Learning.
In Proceedings of the 34th International Conference on Machine Learning (ICML), pages 1243–1252, 2017.

[85] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, and e. al. Training Language Models to
Follow Instructions with Human Feedback. arXiv preprint arXiv:2203.02155, 2022.

[86] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. Liu. Exploring
the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning
Research, 21(140):1–67, 2020.

[87] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi. The Curious Case of Neural Text Degeneration.
In International Conference on Learning Representations (ICLR), 2020.

[88] GitHub Copilot. https://github.com/features/copilot, 2025. Accessed: 2025-08-20.

[89] D. Guo, Q. Zhu, D. Yang, et al. DeepSeek-Coder: When the Large Language Model Meets
Programming – The Rise of Code Intelligence. arXiv preprint arXiv:2401.14196, 2024.

[90] Pydantic Services Inc. Pydantic AI - GenAI Agent Framework, the Pydantic way. https:
//ai.pydantic.dev/. Accessed: 02-10-2025.

[91] LLama Team, AI Meta. The Llama 3 Herd of Models, 7 2024.

[92] Anthropic. System Card: Claude Opus 4 & Claude Sonnet 4. 5 2025.

https://github.com/features/copilot
https://ai.pydantic.dev/
https://ai.pydantic.dev/

A
Extended Analysis: Industrial Study

GKN

This appendix presents the complete interview data and analysis from the industrial study conducted
at GKN Aerospace Sweden, as summarized in Chapter 4. The study aimed to validate the research
gaps identified in Chapter 1 and Chapter 3 by examining, from an industrial perspective, whether KBE
adoption is indeed time-intensive and knowledge-intensive, and by identifying the specific challenges
users encounter during this process.

Semi-structured interviews were conducted with five domain experts at GKN Aerospace Sweden
between May 4th, 2025, and May 16th, 2025. Participants were selected for their involvement in software
development, engineering automation, and/or AI-KBE integration initiatives, representing a diverse
range of technical competencies in KBE application development using the ParaPy framework. This
diversity in roles and expertise was strategically chosen to capture both the entry barriers faced by
novices and the sustained adoption challenges experienced by more experienced practitioners.

Each interview lasted between 60 and 90 minutes and followed a semi-structured format that balanced
consistency across sessions with the flexibility to explore individual perspectives. Participants were
first introduced to the concepts of KBE and a demonstrator application (a ParaPy-based Turbine Rear
Structure model), followed by a guided live coding session. This hands-on approach enabled participants
to gain practical exposure to the ParaPy SDK and its application development workflow. Subsequently,
they were asked to reflect on their experience with the demonstration, their existing knowledge of KBE
principles and automation practices, and their perceptions of how Generative AI or LLM tools might
support similar development tasks in the future. No AI-based development tools were demonstrated or
used during the interviews.

The interview guide consisted of open-ended questions focusing on AI-KBE integration challenges,
perceived benefits, organizational readiness, and technical barriers. All sessions were audio-recorded
with participant consent and subsequently transcribed verbatim. The consent form is included in
section A.4, and the full interview script is provided in section A.5.

The analysis employed reflexive thematic analysis following the six-phase approach outlined by [77],
with particular focus on two themes most relevant to the proposed support system: Skill Gap & Learning
Curve and AI/LLM Assistance – Potential & Trust Concerns. These themes, which emerged universally
across all five participants, directly informed the design of the dual-agent architecture discussed in
Chapter 6. The complete thematic analysis, including all eight identified themes, individual interview
summaries, and representative quotes, is presented in the sections that follow.

A.1. Methodology
The analysis was based on reflexive thematic analysis, following the six-phase approach outlined by
[77]:

1. Familiarization with the data through repeated reading of the transcripts.

150

A.2. Findings 151

2. Initial coding, using both manual annotation and local AI-assisted suggestions.
3. Theme development by grouping related codes.
4. Reviewing and refining themes to ensure internal coherence and distinctiveness.
5. Defining and naming themes in relation to the research objectives.
6. Producing a thematic narrative, supported by illustrative quotes from the interviews.

To enhance efficiency and consistency during initial coding, a local large language model (LLM) was
employed to generate interview summaries and identify candidate themes. Prompts were developed to
extract both high-level themes and representative quotes. While AI was used to support the coding
process, all outputs were manually reviewed, validated, and revised by the researcher to ensure
interpretative rigour.

Following the individual analysis of each interview, a second round of synthesis was conducted to
identify patterns across participants. This cross-case analysis focused on consolidating recurring themes,
highlighting contradictions, and exploring relationships between the identified challenges. The purpose
of this synthesis was to distill the collective meaning of participants’ accounts, uncover shared challenges
and opportunities, and generate analytically robust findings suitable for presentation in the current
chapter. All participants reflected on the practicalities of using AI-driven KBE tools—primarily ParaPy,
Siemens NX 1 with a Copilot, and Knowledge Fusion 2 —within existing design and analysis workflows.

A.2. Findings
Although the distribution of experience has been addressed at a general level above, it is useful to
further contextualize the participants’ backgrounds. Interviewee 5 is the most senior member of the
group, both in terms of chronological age and professional experience. In contrast, Interviewees 2 and 4
are junior employees, each holding a PhD and relatively early in their professional careers. Interviewees
1 and 3 represent an intermediate category, with experience levels situated between these two extremes.

A.2.1. Nomenclature
Table A.1: Terms and abbreviations used by the Domain Experts (DEs) during the interviews.

Abbreviation Definition
AML Adaptive Modelling Language (KBE modelling framework)
ANSA CAE pre-processing tool developed by BETA CAE Systems 3

ANSYS Comprehensive suite of CAE software developed by ANSYS, Inc. 4

CFD Computational Fluid Dynamics
CFX CFD software developed by ANSYS
DC Design Convention(s)
DP Design Practise(s)
NX Siemens NX1

PLM Product Lifecycle Management
ROI Return On Investment
SAP Systems, Applications, and Products
TRS Turbine Rear Structure

A.2.2. Common Themes Across Interviews
Inadequate Knowledge Capture & Formalisation
All five interviewees mention this theme.

Knowledge about design rules, standards, and past analyses is stored in disparate PLM documents,
scripts, reports, or “ask-an-expert” conversations. No unified, query-able knowledge base exists, making
reuse error-prone.

A.2. Findings 152

Table A.2: Overview of common themes identified in the interviews and their relative urgency, based on the number of Domain
Experts (DEs) referencing each theme.

Nr Theme
DE

responses
(n = 5)

1 Inadequate knowledge capture & formalisation 5
2 Integration & tool-chain heterogeneity 5
3 Skill gap & learning curve 5
4 AI/LLM assistance – potential & trust concerns 5
5 Perceived value & benefit-effort trade-off of KBE 5
6 Usability & documentation shortcomings 4
7 Organizational & cultural barriers 5
8 Trust, reliability & validation of automated/AI solutions 3

• “Right, so we have documents that basically describe them [design rules, lessons learned and/or
best practises] and they’re stored somewhere on some sort of PLM platform.” - Interviewee 1

• “There are certain documents and standards and some scripts which kind of incorporate our
knowledge... also on top of that, we have DPs and best practices in certain teams... It is kind of
spread out in multiple ways.” - Interviewee 3

• “We have the system with the DPs, the design practices, the DC post to fulfil that function... there
is also mentoring, and you have the more senior people helping the engineers.” - Interviewee 4

• “We have three Single Sources of Truth now... Teamcenter, we have SAP, and we have GitHub.” -
Interviewee 5

All participants noted the scattering of knowledge across the organization, though the form it takes
varies. Interviewee 1 emphasized reliance on informal peer support; Interviewee 2 highlighted the
absence of a formalized knowledge base; Interviewee 3 pointed to the use of scripts and standards;
Interviewee 4 referred to distributed design practices (DPs, DC); and Interviewee 5 described the
existence of multiple, competing “single sources of truth.”

Integration & Tool-Chain Heterogeneity
All five interviewees mention this theme.

KBE tools (ParaPy, AML, Knowledge Fusion, [Siemens] NX-journaling) must interoperate with CAD (NX,
ANSA), PLM (Teamcenter), CFD (ANSYS/CFX), optimisation, and version-control systems. Persistent
friction arises from data-exchange formats, proprietary APIs, and the need to bridge legacy and modern
platforms.

• “My concerns are what exactly is the benefit of this [ParaPy] application over a well-parametrized
NX model?” - Interviewee 2

• “We had an attempt that we call ‘Engineering Work Bench’... it has not been used so much.” -
Interviewee 5

• “A lot of the time when we run parametric studies or something like that, you kind of have to just
repeat the same thing six times on your own, manually.” -Interviewee 1

The perceived sources of difficulty varied across participants. Interviewee 1 identified the absence of a
formal automation framework; Interviewee 2 expressed concern about inadequate data flow to the PLM
system; Interviewee 3 noted that integration is significantly easier when all components are developed
in Python; Interviewee 4 highlighted the persistence of manual post-processing; and Interviewee 5
described platform fragmentation as a strategic barrier to progress.

Skill Gap & Learning Curve
All five interviewees mention this theme.

A.2. Findings 153

Successful KBE requires engineers to be proficient both in domain knowledge and in software develop-
ment (Python/ParaPy, CAD APIs). The steep learning curve deters adoption, especially for designers
without coding experience.

• [What do you see as the biggest technical challenges to adopting this kind of KBE in your day-to-day
engineering work?] “For me as an employee, there is the learning curve.” - Interviewee 2

• “[For] a designer who has no Python experience.. [extending an KBE appi] would be pretty tall
requirement.” - Interviewee 3

• “The entire ParaPy way of thinking with the parts and attributes. . . I’m not very familiar with
developing in this framework... the main thing is... knowing what the clever or the best approach
is” - Interviewee 4

• “We need a couple [engineers] that will be able to work in this, so it’s difficult [to integrate].” -
Interviewee 5

• “If you’re fully unaware of something like this [an existing ParaPy codebase], LLMs are incredibly
helpful.” - Interviewee 1

While all participants acknowledged the existence of a skill gap, their perceptions of its severity varied.
Interviewee 1 considered their own coding skills sufficient but expressed concern about colleagues
without programming experience. Interviewees 2 and 3 emphasized the need for broader organizational
training. Interviewee 4 admitted to a “lack of deep understanding,” yet demonstrated the ability to
quickly adapt and modify existing code. In contrast, Interviewee 5 viewed the presence of a stable pool
of NX-proficient engineers as a mitigating factor.

AI/LLM Assistance – Potential & Trust Concerns
All five interviewees mention this theme.

Participants use ChatGPT, Copilot, Gemini, or locally hosted LLMs for code snippets, documentation,
and troubleshooting. Expectations range from generic code-completion to domain-specific chatbots that
can explain ParaPy APIs. Simultaneously, there is scepticism about reliability, “black-box” behaviour,
and the need for validation.

• “I’ve used large language models exclusively since they launched.” - Interviewee 1
• “If you are a non-programmer... asking an AI... would have been probably faster, if it would have

been a reliable answer.” - Interviewee 2
• “A chatbot could help everywhere... explain what is happening... mostly from a ParaPy documen-

tation perspective.” - Interviewee 3
• “I would like a chatbot with a deep knowledge of both the API and a wealth of examples.” -

Interviewee 4

Views on the role of AI assistants varied among participants. Interviewee 1 expressed interest in a
ParaPy-specific conversational assistant. Interviewee 2 remained sceptical of such tools unless the
underlying model is explicitly trained on domain-specific knowledge. Interviewee 3 regarded large
language models (LLMs) as a potential remedy for the steep learning curve but acknowledged that the
technology is not yet sufficiently mature. Interviewee 4 prioritized the development of a knowledge-rich
chatbot over generic code-completion tools. In contrast, Interviewee 5 saw limited value in AI for
deep CAD scripting and emphasized the importance of proofreading of design documents over design
automation.

Perceived Value & Benefit-Effort Trade-off of KBE
All five interviewees mention this theme.

The TRS app demo demonstrated the promise of end-to-end automation (geometry → mesh → CFD →
post-processing). However, participants differ on when the payoff justifies the upfront development
cost.

• “The level of integration [of the TRS app] . . . is not seen at GKN currently.” - Interviewee 1

A.2. Findings 154

• “It is really powerful [the TRS app]... but I think that a lot of KBE applications, they focus on the
creation of design information, while not really representing the actual context of the information,
which would turn it into actual knowledge.” - Interviewee 2

• “It opens up a lot of possibility, but also it has this curve, like the effort to benefit curve, which we
need to know where it will cross.” - Interviewee 3

• “This is really powerful and potentially super useful... but the biggest fear... is that we cannot get
the support that we need in the future.” - Interviewee 4

• “We need a clear business case . . . otherwise we stick with NX.” - Interviewee 5

Participants expressed differing views on the practical value and strategic implications of KBE tools.
Interviewee 1 was enthusiastic about the potential for rapid visualization and real-time geometry
updates. Interviewee 2 raised concerns about the opacity of embedded knowledge structures, despite
acknowledging the technical capabilities of such systems. Interviewee 3 characterized KBE as most
suitable for early-stage conceptual work, where the benefit must outweigh the required effort. Interviewee
4 recognized the value of automation but expressed concern over potential vendor lock-in. Finally,
Interviewee 5 argued that existing NX workflows already address most engineering needs, framing the
adoption of new KBE tools as a strategic rather than a technical decision.

Usability & Documentation Shortcomings
Four out of five interviewees mention this theme.

Code bases are large, partly documented, and engineers struggle to locate relevant objects, understand
parameter interactions, or visualise geometry without sketches. Desired UI features include bi-directional
mapping of GUI actions to code.

• “The biggest hurdle . . . is understanding the existing code and the parameterisation.” - Interviewee
2

• “If you click on an object . . . the tool would point you to the code... that would be incredible.” -
Interviewee 1

• “It’s just easier for humans... to read geometry or drawings than to read code.” - Interviewee 2
• “Having a web GUI would just be a game-changer for us in Solid Mechanics.” - Interviewee 1

Several participants raised concerns related to code transparency and documentation. Interviewee
1 emphasized the importance of visual-to-code traceability. Interviewee 2 pointed to inadequate
documentation, noting that code comments alone are insufficient. Interviewee 3 highlighted the
absence of systematic testing, which was viewed as a related documentation and maintainability issue.
Interviewee 4 reported difficulty navigating the codebase, further underscoring the need for improved
structural clarity.

Organizational & Cultural Barriers
All five interviewees mention this theme.

Adoption is constrained by management commitment, business-case justification, fear of vendor lock-in,
and the need to up-skill a large engineering workforce.

• “If it still requires a programming background, it’ll alienate some engineers.” - Interviewee 1
• “Spreading that approach through the company would require quite a bit of education and

training.” - Interviewee 2
• “Cultural tension – you need to be really good at Python and also you should be really good

at engineering and what knowledge to encode and how you can encode that efficiently using
Python.” - Interviewee 3

• “Chicken-and-egg problem. . . you want to know it can solve future problems before you invest.” -
Interviewee 4

• “I mean, you need to show why ParaPy is... that way of doing parametric models and so on is
better than NX.” - Interviewee 5

A.2. Findings 155

A common thread across the interviews is that technical feasibility alone is insufficient without strategic
alignment. Interviewee 1 highlighted that programming requirements risk alienating engineers without
coding backgrounds, creating a barrier to widespread adoption. Interviewee 2 emphasized that scaling
the approach would require substantial organizational investment in education and training. Interviewee
3 identified a cultural tension inherent in KBE: engineers must excel both in their domain expertise and
in Python programming, while also understanding how to efficiently encode knowledge. Interviewee 4
articulated a chicken-and-egg problem wherein management requires evidence that the technology
can solve future problems before committing resources. Finally, Interviewee 5 argued that adoption
ultimately depends on demonstrating a clear business case showing why ParaPy offers advantages over
existing tools like NX.

Trust, Reliability & Validation of Automated/AI Solutions
A moderate three out of five interviewees mention this theme.

Participants express concern over the lack of systematic testing, the “black-box” nature of AI suggestions,
and the risk of hidden errors in safety-critical aerospace applications.

• “If you use an AI that understands the code for me, I don’t understand the code.” - Interviewee 2
• “There’s a lack of automated tests. . . yet I assume the CFD results are reliable.” - Interviewee 3

Trust emerged as a cross-cutting concern, closely linked to both skill gaps and perceptions of AI. The
lack of systematic testing was often attributed to limited expertise, while concerns about AI-generated
code reflected apprehension toward black-box systems. Interviewee 2 expressed explicit distrust of AI-
generated code, emphasizing the need for transparency and control. In contrast, Interviewee 3 was more
optimistic, suggesting that LLMs could assist by explaining code behaviour. This contrast highlights a
broader tension between confidence in automation and the need for validation and interpretability.

A.2.3. Diverging or Contradictory Findings
• AI Usage vs. Perceived Need

Interviewee 1 reports exclusive daily ChatGPT use yet still asks for a dedicated ParaPy chatbot;
Interviewee 4 uses Copilot extensively but downplays its importance, preferring a knowledge-rich
chatbot.

• Value of KBE vs. Opacity

Interviewee 1 sees the integrated TRS workflow as a game-changer; Interviewee 2 praises the
demo’s power but repeatedly stresses that knowledge is hidden, making the tool feel like a black
box.

• Scope of KBE Applicability

Interviewee 1 envisions KBE for non-conformance modelling and rapid geometry updates;
Interviewee 2 questions added value over a well-parameterised NX model; Interviewee 3 limits
KBE to early-stage, CFD-driven studies; Interviewee 5 argues NX already covers most needs.

• Trust in AI-Generated Code

Interviewee 2 warns against blind reliance on AI without domain-specific training; Interviewee 3
believes an LLM can explain code and thus mitigate risk; Interviewee 5 finds AI helpful only for
proofreading, not for deep CAD scripting.

• Automation Tools Existence

Interviewee 1 states “we have in-house Python utilities” yet also claims no automation tools exist
in his department (00:06:30), indicating a semantic split between ad-hoc scripts and formalised
automation frameworks.

• Vendor Dependency vs. Openness

Interviewee 4 worries about future vendor support for ParaPy; Interviewee 5 is comfortable with
vendor-specific LLMs (e.g., ANSYS) and sees little need for internal AI development.

A.2. Findings 156

A.2.4. Inter-Theme Relationships
• Skill Gap // Integration Challenges

Without sufficient programming expertise, engineers cannot create the adapters needed for
seamless data exchange between CAD/PLM and KBE tools, exacerbating the integration problem.

• Knowledge Capture Deficiency // Trust & Validation

Scattered, undocumented knowledge leads to black-box perceptions, reducing confidence in
automated outputs and making validation harder.

• AI/LLM Assistance // Skill Gap

AI chatbots are explicitly envisioned as learning aids to bridge the skill gap; however, the trust
issue (Theme 8) tempers this benefit—engineers may rely on AI without fully understanding the
underlying code.

• Organizational Barriers // Perceived ROI Management’s demand for a clear business case (Theme
7) directly influences whether the perceived value (Theme 5) of KBE is acted upon; lack of ROI
evidence stalls investment in training or tooling.

• Usability & Documentation // Adoption Poor documentation and unintuitive UI increase the
learning curve, reinforcing the skill gap and organizational resistance. Conversely, a bi-directional
UI (Theme 6) could lower barriers and improve trust. While such an interface is not implemented
in the current work, the MBSE-driven KBE approach in [23] presents a promising direction: by
enabling traceability from SysML-modeled rules directly to corresponding ParaPy code snippets,
it takes an important step toward realizing bi-directional integration.

• Effort-Benefit Trade-off // Trust & Validation When developers perceive the initial effort as high
(Theme 1, 3), they demand robust testing and transparent knowledge to justify investment—thus
trust and validation become prerequisites for perceived benefit.

• Vendor Dependency // Integration & Heterogeneity Fear of being locked into a vendor-specific
KBE platform (Theme 4) heightens concerns about tool heterogeneity and the cost of integration
with existing PLM/CAD ecosystems.

A.2.5. Overall Insights
• [IS-Insight-I]

Fragmented knowledge management is a systemic barrier. Across all interviewees, expertise
lives in scattered scripts, PLM documents, and informal mentoring, preventing reliable reuse and
eroding trust in automated tools.

• [IS-Insight-II]

A persistent skill gap—especially in Python/ParaPy programming—drives both the learning-curve
barrier and the demand for AI-driven learning support. Yet, trust in AI outputs remains low
without domain-specific training and systematic validation.

• [IS-Insight-III]

The perceived value of AI-enhanced KBE hinges on a clear benefit-effort threshold. Early-stage,
concept-generation tasks are widely seen as the sweet spot, whereas detailed solid-mechanics or
certification-critical work is still considered unsuitable.

• [IS-Insight-IV]

Organisational and cultural constraints (business case, management endorsement, vendor
lock-in) dominate over pure technical feasibility. Even when the technology works, adoption
stalls without strategic alignment and dedicated up-skilling programmes.

• [IS-Insight-V]

Usability, documentation, and bi-directional UI are decisive for adoption. Participants repeatedly
called for a web-based front-end that maps GUI actions to code snippets, reducing reliance on
deep code inspection and fostering confidence.

A.3. Summary & Conclusion 157

These insights suggest that successful deployment of AI-augmented KBE at GKN (and similar industrial
contexts) requires a co-evolution of knowledge capture frameworks, skill-development pathways, trust-
worthy AI assistants, and tightly-integrated, user-centred tooling—all underpinned by a demonstrable
ROI that convinces senior management to invest in the required cultural shift.

A.3. Summary & Conclusion
Table A.3: Overview of how the proposed dual-agent system—comprising an Educational Agent and a Coding

Agent—addresses the common themes identified in the GKN interviews.

Nr Theme Addressed? Rationale

1 Inadequate knowledge capture &
formalisation

No Organisational issue related to the implementation of KBE. Also
partially covered already by the approach in [23]

2 Integration & tool-chain heterogeneity Partly Incorporation of KBE tools (and ParaPy) can be sped up by use
of Coding Agent

3 Skill gap & learning curve Yes Learning curve can be significantly flattened by both the
Educational and Coding Agent

4 AI/LLM assistance – potential & trust
concerns

Yes Perfect example of how the Educational Agent can be employed
[The notion of needing a model fine-tuned on domain specific knowledge

(Interviewee 2) can be rejected by the findings in subsection 3.3.2]
5 Perceived value & benefit-effort trade-off of

KBE
Partly Agent framework can lower perceived effort and provide

"passive" support
6 Usability & documentation shortcomings Partly Documentation issue can be solved with Educational Agent but

development of (G)UIs is outside of scope.
7 Organizational & cultural barriers Partly Agent framework can lower pressure of effort on management

decisions
8 Trust, reliability & validation of

automated/AI solutions
Partly Valid point. Can be partly addressed by keeping to a supportive

role and providing transparency w.r.t the agent context

This appendix presented the complete interview data from five semi-structured sessions conducted
at GKN Aerospace Sweden, Trollhättan, between May 4th and May 16th, 2025. The participants,
representing diverse backgrounds and expertise levels, provided insights into (i) current knowledge
capture and automation practices, (ii) experiences with the ParaPy-based Turbine Rear Structure (TRS)
demonstrator, (iii) the use of LLMs for coding and learning, and (iv) organizational, technical, and
cultural factors influencing KBE adoption.

The thematic analysis identified eight common themes, with two emerging as most directly relevant
to the proposed support system: Skill Gap & Learning Curve and AI/LLM Assistance – Potential & Trust
Concerns. These themes were universally mentioned by all five participants and revealed a fundamental
tension: while AI assistance is seen as necessary to flatten the steep learning curve associated with
ParaPy development, participants expressed significant concerns about reliability, transparency, and the
risk of engineers becoming dependent on tools they do not fully understand.

A technical assessment of current state-of-the-art LLMs, presented in section 4.3, provided empirical
validation of these concerns by demonstrating the systematic failure of even advanced commercial
models to generate functional ParaPy code. This assessment confirmed that the trust concerns raised
during interviews are grounded in genuine limitations of current AI tools when applied to specialized
frameworks.

Based on these findings, a dual-agent architecture was proposed to address both the skill gap and
trust concerns. The Educational Agent focuses on guiding users in understanding ParaPy’s architectural
patterns, explaining framework conventions, and helping navigate documentation, thereby building the
foundational knowledge necessary for engineers to validate AI-generated outputs. The Developer Agent
operates in parallel to provide programmatic assistance for users with basic framework understanding,
incorporating retrieval-augmented generation, explicit knowledge injection from ParaPy documentation,
and structured validation workflows.

Table A.3 illustrates how this dual-agent system addresses the eight common themes identified during
the interviews. The two themes most directly relevant to the research are fully addressed, while other
themes are partially addressed or remain outside the scope of this work due to their organizational or
infrastructure-related nature.

A.4. Consent Form 158

A.4. Consent Form
You are being invited to participate in a research study as part of the project “Large Language Model
Supported Coding Assistant for Knowlegde Based Engineering (KBE) Application Development”. This study is
carried out by Ernesto Hof (ehof@tudelft.nl) for a MSc. thesis project at the Delft University of Technology
-situated in Delft, the Netherlands- under supervision of Gianfranco La Rocca (g.larocca@tudelft.nl) and
Alejandro Pradas Gomez (alejandro.pradas@chalmers.se).

The purpose of this study is to capture the requirements and current challenges involved in the further
implementation of KBE, specifically using the ParaPy SDKi, in combination with GenAIii/LLMiii-based
tools that can support this process within the company GKN. To this end, a series of interviews will be
conducted with GKN employees from various technical backgrounds. The findings of this research will
be used to validate and/or refine the preliminary requirements identified in the literature review of the
MSc thesis, thereby ensuring better alignment with the current needs of GKN.

The data collected during the interviews will be used for the researcher’s MSc thesis project and will be
anonymized in any resulting publications (e.g., the thesis report). Publications will primarily present
aggregated results. Specific, anonymized quotations may be included; however, full transcripts or
recordings will not be published.

To the best of our ability, your responses will be kept confidential. We will minimize any risks through
the following measures:

– Interviews will be conducted on-site using offline recording tools.

– Recordings and transcripts will be processed exclusively on local devices.

– Recordings and unprocessed (i.e., identifiable) transcripts will be shared only with supervising
researchers. They will not be transferred to any third parties, including web- or cloud-based
services.

– Recordings and unprocessed transcripts will be permanently deleted at the conclusion of the
research project (Dec 2025).

Your participation in this interview is entirely voluntary, and you may withdraw at any time. You are
also free to decline to answer any individual questions. Furthermore, until 1 Sep 2025, you may: 1)
request access to your data in order to (partially) rectify or delete it; 2) submit a written request to be
excluded from the study, upon which all associated data (both processed and unprocessed) will be
removed. After this date, preliminary results may have already been submitted, and exclusion from the
study cannot be guaranteed.

Please sign below to consent to the terms of this study:

Name of participant Date Signature

mailto:ehof@tudelft.nl
mailto:g.larocca@tudelft.n
mailto:alejandro.pradas@chalmers.se

A.5. Interview Script 159

A.5. Interview Script
KBE & LLMs in Aerospace (Engine) Design – GKN Aeroengines AB (Trollhättan)
The following script was used to conduct the interviews at GKN Aeroengines AB in Trollhättan, Sweden between
May 4th and May 16th, 2025. Text enclosed in square brackets (e.g., “[...])” denotes roles within the interview,
while text enclosed in asterisks (e.g., “*...*”) and marked bold, indicates actions.

1. Introduction and Background
Q1.0. [Interviewer] Welcome and thank you for taking the time to conduct this interview. In short,
this interview is aimed at getting a better understanding of the current challenges and requirements
involved in the further implementation of KBE within GKN, specifically using the ParaPy Software
Development Kit (which we will get to later), in combination with GenAI/LLMs-based tools that can
support this process. I will also introduce myself: I am Ernesto, currently doing my MSc thesis at the
Delft University of Technology (in the track of Flight Performance and Propulsion) in cooperation with
GKN and/or Alex. I am in Trollhättan for 2 weeks now to gather as much information as possible and
to co-develop the tool with Alex.

turn on recorder

Q1.1. [Interviewer] Have you read and do you agree to the consent form that was sent to your prior
to this interview?

[Interviewee] ...

Q1.2. [Interviewer] Can you briefly introduce yourself and describe your role and involvement within
the design process here at GKN?

[Interviewee] ...

Q1.3. [Interviewer] Do you have any experience with programming and/or scripting? If so, in what
language(s)?

[Interviewee] ...

Q1.4. [Interviewer] Have you heard of or worked with Knowledge Based Engineering (KBE) before?
If yes, how would you define or describe KBE based on your understanding?

[Interviewee] ...

Q1.5. [Interviewer] Have you used AI assistants like ChatGPT, GitHub Copilot, or similar tools before,
both professionally or personally?

[Interviewee] ...

Q1.o1 (Optional) [Interviewer] What tools or systems do you regularly use to support your engineering
work?

[Interviewee] ...

Q1.o2 (Optional) [Interviewer] How is expert knowledge – such as design rules, lessons learned, or
best practices – typically shared or reused in your team?

[Interviewee] ...

o1. (Optional) Explanation of KBE and ParaPy
*at this point, you may provide a brief introduction to KBE and ParaPy as context for the next questions
[All by Interviewer]*

Knowledge based engineering (KBE) is engineering using domain specific product and process
knowledge stored into software applications, called KBE applications, developed using a high level
programming language, called KBE language, provided by specialized software tools, called KBE.

KBE aims at improving the quality and reducing time and cost of (complex) product development by:

A.5. Interview Script 160

• Automation of repetitive and non-creative design tasks
• Enabling multidisciplinary integration in all phases of the design process
• Formalization and preservation for re-use of valuable domain specific knowledge
• ParaPy is a software platform that enables engineers to create, integrate and deploy smart KBE

applications without needing proficiency in software engineering.

2. TRS App Demonstration
Q2.1. [Interviewer] Do you have any question or need further clarification on the concepts of KBE
and ParaPy?

[Interviewee] ...

Q2.2. [Interviewer] What follows is a short description of a KBE application, developed using ParaPy,
for the design and analysis of the turbine rear structure. A short app demonstration will follow. Based
on this demonstration, you will answer questions related to the implementation of KBE and ParaPy.

[Interviewee] ...

Q2.3. [Interviewer] The TRS app is a KBE application to:

• Generate parametrized geometry from 2D blade profiles to a full 3D turbine rear structure, based
on common inputs encountered in industry:

– NACA codes, CST parametrization or coordinate files for airfoil sections;
– Chord, sweep, twist, thickness, lean angle for 3D blade geometry;
– The complexity of the blades can be increased by adding more blade sections along the span

• Automatically mesh the geometry for analysis in CFX. Meshing settings can be set from within the
app.

• Perform RANS analysis with turbulence model of choice (selectable from within the app) using
CFX from the app interface.

• Automatic processing of CFX output data, available for inspection both within CFX and by internal
analysis. Analyses include:

– The pressure, temperature, velocity and swirl profiles
– Mass- and area-averaged pressure coefficients of the TRS
– Decrease of swirl angle

...what follows is a short video demonstration of the app.

show video demonstration

Q2.4. [Interviewer] Do you have any questions regarding the app, both its design and usage?

[Interviewee] ...

3. Perception of KBE and AI
Q3.1. [Interviewer] Based on the TRS app demonstration, do you think tools like these could be
useful in your current or future work? Why or why not?

[Interviewee] ...

Q3.2. [Interviewer] You will now see an isolated code snippet from the TRS app, representing the
blade geometry.

show code of Blade class and viewer next to each other

Q3.3. [Interviewer] Given the task of adding a blade twist to the ‘Blade‘ class, i.e. rotating the whole
blade about its spanwise axis, how would you do this? Please talk through your thought process as
much as possible.

A.5. Interview Script 161

[Interviewee] ...

interviewee performs task

Q3.4. [Interviewer] Looking back at the task you just performed w.r.t KBE application development,
would you say an AI assistant would have been helpful during the development? If yes, what kind
of support would you find most useful to aid in your coding (e.g. chatbot window, code completion,
documentation explanation)?

[Interviewee] ...

Q3.5. [Interviewer] What would you say was the biggest hurdle/challenge in the previous task?

[Interviewee] ...

Q3.6. [Interviewer] What do you see as the biggest technical challenges to adopting KBE in your
day-to-day engineering work? Both personally and within the company?

[Interviewee] ...

Q3.o1. (Optional) [Interviewer] What advantages do you see in using tools that formalize or automate
engineering knowledge?

[Interviewee] ...

Q3.o2. (Optional) [Interviewer] Do you believe AI tools could realistically support tasks such as rule
creation, documentation, or design decision-making?

[Interviewee] ...

4. Barriers to Adoption and Trust
The following questions are bonus if time allows.

Q4.1. [Interviewer] What are the main challenges you foresee in adopting KBE or AI-based tools in
your team or organization?

[Interviewee] ...

Q4.2. [Interviewer] How difficult do you think it is to formalize your domain expertise into structured
rules or logic?

[Interviewee] ...

Q4.3. [Interviewer] Do you consider trust or validation a key issue when using AI-generated outputs
in engineering? What would help increase your trust in such tools?

[Interviewee] ...

Q4.4. [Interviewer] Are there any organizational, cultural, or regulatory constraints (e.g., resistance to
change, safety certification, standards compliance) that may hinder adoption of these technologies?

[Interviewee] ...

5. Closure
Q5.1. [Interviewer] Those were all the questions. If would like to thank you for your time and letting
me conduct the interview. Do you have any further questions or comments?

[Interviewee] ...

turn off recorder

A.6. Prompt Example and AI-Generated ParaPy Code 162

A.6. Prompt Example and AI-Generated ParaPy Code
All of the following code and prompts were produced at the start of the thesis project, the 26th of
February, 2025. The produced output of the models was a response to the following prompt:

1 >>> In Python, I want to generate a parametric wing model representing the wing outer body
and inner structure. Can you write a Wing class for me in Python using the ParaPy SDK?

Anthropic - Claude
1 from parapy.core import *
2 from parapy.geom import *
3 import numpy as np
4

5

6 class WingSpar(GeomBase):
7 """A class representing a wing spar structure"""
8

9 # Position parameters
10 position = Input(0.3) # Position along chord (0.0-1.0)
11

12 # Parent reference
13 wing = Input()
14

15 # Structural parameters
16 thickness = Input(0.01) # Spar thickness
17 height_ratio = Input(0.8) # Height ratio compared to airfoil height
18

19 @Attribute
20 def path(self):
21 """The path of the spar along the wing span"""
22 return self.wing.planform_curve.scale_u(self.position)
23

24 @Part
25 def solid(self):
26 """The 3D representation of the spar"""
27 return LoftedSolid(
28 profiles=[
29 Rectangle(
30 width=self.thickness ,
31 height=self.wing.airfoil_height(u) * self.height_ratio ,
32 position=pos,
33)
34 for u, pos in zip(
35 np.linspace(0, 1, 20), self.path.equidistant_points(20)
36)
37],
38 mesh_deflection=1e-4,
39)
40

41

42 class WingRib(GeomBase):
43 """A class representing a wing rib structure"""
44

45 # Position parameters
46 position = Input(0.5) # Position along span (0.0-1.0)
47

48 # Parent reference
49 wing = Input()
50

51 # Structural parameters
52 thickness = Input(0.008) # Rib thickness
53

54 @Attribute
55 def airfoil_curve(self):
56 """The airfoil curve at this rib position"""
57 return self.wing.airfoil_curves[
58 int(self.position * (len(self.wing.airfoil_curves) - 1))
59]
60

A.6. Prompt Example and AI-Generated ParaPy Code 163

61 @Part
62 def solid(self):
63 """The 3D representation of the rib"""
64 return ExtrudedSolid(
65 profile=self.airfoil_curve ,
66 direction=self.wing.chord_vector(self.position) * self.thickness ,
67 mesh_deflection=1e-4,
68)
69

70

71 class Wing(GeomBase):
72 """A parametric wing model with internal structure"""
73

74 # Basic wing parameters
75 span = Input(36.0) # Wing span in meters
76 root_chord = Input(6.0) # Root chord length in meters
77 tip_chord = Input(1.5) # Tip chord length in meters
78 sweep_angle = Input(30.0) # Sweep angle in degrees
79 dihedral_angle = Input(5.0) # Dihedral angle in degrees
80

81 # Airfoil parameters
82 root_airfoil = Input("NACA0015") # Airfoil at root
83 tip_airfoil = Input("NACA0012") # Airfoil at tip
84 num_sections = Input(10) # Number of sections for internal representation
85

86 # Structural parameters
87 num_spars = Input(3) # Number of spars
88 num_ribs = Input(12) # Number of ribs
89

90 @Attribute
91 def spar_positions(self):
92 """Positions of spars along chord"""
93 return np.linspace(0.15, 0.7, self.num_spars)
94

95 @Attribute
96 def rib_positions(self):
97 """Positions of ribs along span"""
98 return np.linspace(0, 1, self.num_ribs)
99

100 @Attribute
101 def root_position(self):
102 """The position of the wing root"""
103 return Position(0, 0, 0)
104

105 @Attribute
106 def tip_position(self):
107 """The position of the wing tip"""
108 x_offset = self.span * np.tan(np.radians(self.sweep_angle))
109 z_offset = self.span * np.tan(np.radians(self.dihedral_angle))
110 return Position(x_offset, self.span, z_offset)
111

112 @Attribute
113 def planform_curve(self):
114 """The curve representing the wing planform (leading edge)"""
115 return BSplineCurve(control_points=[self.root_position , self.tip_position])
116

117 @Attribute
118 def chord_vector(self):
119 """Function returning chord vector at given span position (0-1)"""
120

121 def chord_vector_at_position(u):
122 direction = Vector(1, 0, 0)
123 return direction.rotate(
124 angle=np.radians(self.sweep_angle), axis=Vector(0, 0, 1)
125)
126

127 return chord_vector_at_position
128

129 @Attribute
130 def chord_length(self):
131 """Function returning chord length at given span position (0-1)"""

A.6. Prompt Example and AI-Generated ParaPy Code 164

132

133 def chord_at_position(u):
134 return self.root_chord + u * (self.tip_chord - self.root_chord)
135

136 return chord_at_position
137

138 @Attribute
139 def airfoil_curves(self):
140 """List of airfoil curves at different span positions"""
141 curves = []
142 for i in range(self.num_sections):
143 u = i / (self.num_sections - 1)
144 # Interpolate between root and tip airfoil
145 if i == 0:
146 airfoil_name = self.root_airfoil
147 elif i == self.num_sections - 1:
148 airfoil_name = self.tip_airfoil
149 else:
150 # Simple linear interpolation for demonstration
151 # Real implementation would interpolate airfoil coordinates
152 airfoil_name = self.root_airfoil
153

154 # Position of this section along span
155 section_position = self.planform_curve.point_at(u)
156

157 # Current chord length
158 chord = self.chord_length(u)
159

160 # Create a scaled airfoil curve at the right position
161 curves.append(
162 self.create_airfoil_curve(airfoil_name , section_position , chord, u)
163)
164

165 return curves
166

167 def create_airfoil_curve(self, airfoil_name , position , chord, u):
168 """Create an airfoil curve from a NACA code"""
169 # Simplified - in a real implementation , would read airfoil data from database
170 # This example just creates a basic airfoil shape for demonstration
171

172 if airfoil_name.startswith("NACA"):
173 thickness = int(airfoil_name[4:]) / 100.0
174 else:
175 thickness = 0.12 # Default
176

177 # Very simplified airfoil for demonstration
178 points = []
179 for x in np.linspace(0, 1, 50):
180 # Simple thickness formula (not accurate NACA)
181 t = (
182 5
183 * thickness
184 * (
185 0.2969 * np.sqrt(x)
186 - 0.1260 * x
187 - 0.3516 * x**2
188 + 0.2843 * x**3
189 - 0.1015 * x**4
190)
191)
192 if x < 0.01 or x > 0.99: # Force sharp leading edge and trailing edge
193 t = 0
194 points.append(Point(x, 0, t))
195 points.insert(0, Point(x, 0, -t))
196

197 # Create a closed curve
198 curve = BSplineCurve(points, degree=2)
199

200 # Scale and position
201 curve = curve.scale(chord)
202 curve = curve.translate(position.vector)

A.6. Prompt Example and AI-Generated ParaPy Code 165

203 curve = curve.rotate(
204 angle=np.radians(self.sweep_angle), axis=Vector(0, 0, 1), center=position
205)
206

207 return curve
208

209 @Attribute
210 def airfoil_height(self):
211 """Function returning airfoil height at given span position (0-1)"""
212

213 def height_at_position(u):
214 # Simplified approximation - would be more accurate with actual airfoil data
215 thickness_root = (
216 int(self.root_airfoil[4:]) / 100.0
217 if self.root_airfoil.startswith("NACA")
218 else 0.12
219)
220 thickness_tip = (
221 int(self.tip_airfoil[4:]) / 100.0
222 if self.tip_airfoil.startswith("NACA")
223 else 0.12
224)
225 thickness = thickness_root + u * (thickness_tip - thickness_root)
226 return self.chord_length(u) * thickness
227

228 return height_at_position
229

230 @Part
231 def spars(self):
232 """The wing spars"""
233 return WingSpar(
234 wing=self,
235 position=position ,
236 quantify=len(self.spar_positions),
237 position_index=lambda i: self.spar_positions[i],
238)
239

240 @Part
241 def ribs(self):
242 """The wing ribs"""
243 return WingRib(
244 wing=self,
245 position=position ,
246 quantify=len(self.rib_positions),
247 position_index=lambda i: self.rib_positions[i],
248)
249

250 @Part
251 def skin(self):
252 """The wing skin (outer surface)"""
253 return LoftedSolid(profiles=self.airfoil_curves , mesh_deflection=1e-4)
254

255 # Optional visualization helpers
256 @Part
257 def wing_box(self):
258 """Wing box (space between front and rear spar)"""
259 return LoftedSolid(
260 profiles=[
261 section.solid.intersection(
262 self.spars[0].solid.union(self.spars[-1].solid)
263)
264 for section in self.ribs
265],
266 mesh_deflection=1e-4,
267 hidden=True, # Hidden by default for cleaner visualization
268)
269

270

271 if __name__ == "__main__":
272 from parapy.gui import display
273

A.6. Prompt Example and AI-Generated ParaPy Code 166

274 # Create a wing with default parameters
275 wing = Wing()
276

277 # Display the wing
278 display(wing)

Deepseek
1 from parapy.geom import *
2 from parapy.core import *
3

4

5 class Wing(GeomBase):
6 # Wing parameters
7 span = Input(10.0) # Wing span
8 root_chord = Input(2.0) # Root chord length
9 tip_chord = Input(1.0) # Tip chord length

10 sweep_angle = Input(20.0) # Sweep angle in degrees
11 dihedral_angle = Input(5.0) # Dihedral angle in degrees
12 thickness_ratio = Input(0.12) # Thickness ratio of the airfoil
13

14 # Inner structure parameters
15 num_spars = Input(2) # Number of spars
16 num_ribs = Input(5) # Number of ribs
17 spar_thickness = Input(0.02) # Thickness of the spars
18 rib_thickness = Input(0.01) # Thickness of the ribs
19

20 @Attribute
21 def airfoil_points(self):
22 # Define a simple symmetric airfoil (NACA 0012)
23 # This is a simplified representation for demonstration purposes
24 return [
25 Point(0, 0, 0),
26 Point(0.5, 0.06, 0),
27 Point(1, 0, 0),
28 Point(0.5, -0.06, 0),
29 Point(0, 0, 0),
30]
31

32 @Part
33 def outer_surface(self):
34 return LoftedShell(
35 profiles=[
36 Translated(
37 Scaled(
38 Rotated(
39 PolygonalFace(self.airfoil_points),
40 angle=self.sweep_angle ,
41 vector=Vector(1, 0, 0),
42),
43 factor=(self.root_chord , self.thickness_ratio , 1),
44),
45 vector=Vector(0, 0, 0),
46),
47 Translated(
48 Scaled(
49 Rotated(
50 PolygonalFace(self.airfoil_points),
51 angle=self.sweep_angle ,
52 vector=Vector(1, 0, 0),
53),
54 factor=(self.tip_chord , self.thickness_ratio , 1),
55),
56 vector=Vector(
57 0, self.span, self.span * tan(radians(self.dihedral_angle))
58),
59),
60]
61)
62

63 @Part

A.6. Prompt Example and AI-Generated ParaPy Code 167

64 def spars(self):
65 return [
66 ExtrudedSurface(
67 profile=Polygon(
68 points=[
69 Point(
70 i * self.root_chord / (self.num_spars + 1),
71 0,
72 -self.thickness_ratio * self.root_chord / 2,
73),
74 Point(
75 i * self.tip_chord / (self.num_spars + 1),
76 self.span,
77 -self.thickness_ratio * self.tip_chord / 2,
78),
79 Point(
80 i * self.tip_chord / (self.num_spars + 1),
81 self.span,
82 self.thickness_ratio * self.tip_chord / 2,
83),
84 Point(
85 i * self.root_chord / (self.num_spars + 1),
86 0,
87 self.thickness_ratio * self.root_chord / 2,
88),
89]
90),
91 vector=Vector(0, 0, self.spar_thickness),
92)
93 for i in range(1, self.num_spars + 1)
94]
95

96 @Part
97 def ribs(self):
98 return [
99 ExtrudedSurface(

100 profile=Polygon(
101 points=[
102 Point(
103 0,
104 j * self.span / (self.num_ribs + 1),
105 -self.thickness_ratio * self.root_chord / 2,
106),
107 Point(
108 self.root_chord ,
109 j * self.span / (self.num_ribs + 1),
110 -self.thickness_ratio * self.root_chord / 2,
111),
112 Point(
113 self.root_chord ,
114 j * self.span / (self.num_ribs + 1),
115 self.thickness_ratio * self.root_chord / 2,
116),
117 Point(
118 0,
119 j * self.span / (self.num_ribs + 1),
120 self.thickness_ratio * self.root_chord / 2,
121),
122]
123),
124 vector=Vector(0, 0, self.rib_thickness),
125)
126 for j in range(1, self.num_ribs + 1)
127]

GitHub - Copilot
1 from parapy.core import Base, Input, Part
2 from parapy.geom import Fused, LoftedSolid , Rectangle , RotatedShape , TranslatedShape
3

4

A.6. Prompt Example and AI-Generated ParaPy Code 168

5 class Wing(Base):
6 span = Input(10.0) # Wing span
7 chord_root = Input(2.0) # Root chord length
8 chord_tip = Input(1.0) # Tip chord length
9 thickness = Input(0.1) # Wing thickness

10

11 @Part
12 def root_airfoil(self):
13 return Rectangle(width=self.chord_root , height=self.thickness)
14

15 @Part
16 def tip_airfoil(self):
17 return TranslatedShape(
18 shape_in=Rectangle(width=self.chord_tip , height=self.thickness),
19 displacement=(self.span, 0, 0),
20)
21

22 @Part
23 def wing_body(self):
24 return LoftedSolid(profiles=[self.root_airfoil , self.tip_airfoil])
25

26 @Part
27 def spar(self):
28 return RotatedShape(
29 shape_in=Rectangle(width=self.thickness , height=self.span),
30 rotation_point=(0, 0, 0),
31 vector=(0, 1, 0),
32 angle=90,
33)
34

35 @Part
36 def wing_structure(self):
37 return Fused([self.wing_body , self.spar])

Mistral AI - Le Chat
1 from parapy.core import *
2 from parapy.geom import *
3 from parapy.exchange import *
4

5

6 class Wing(GeomBase):
7 # Define the parameters for the wing
8 span = Input(15.0, validate=positive) # Wing span in meters
9 root_chord = Input(3.0, validate=positive) # Root chord length in meters

10 tip_chord = Input(1.5, validate=positive) # Tip chord length in meters
11 sweep_angle = Input(20.0, validate=positive) # Sweep angle in degrees
12 dihedral_angle = Input(5.0) # Dihedral angle in degrees
13 airfoil_thickness = Input(0.12) # Airfoil thickness as a fraction of the chord
14

15 @Attribute
16 def airfoil(self):
17 # Define a simple airfoil shape using a NACA 4-digit series
18 return NACA4(self.airfoil_thickness)
19

20 @Part
21 def wing_surface(self):
22 # Create the wing surface using the defined parameters
23 return LoftedSolid(
24 profiles=[
25 self.airfoil.scaled(self.root_chord),
26 self.airfoil.scaled(self.tip_chord).translated(
27 x=self.span / 2, z=self.span / 2 * tan(radians(self.dihedral_angle))
28),
29],
30 rulings=[
31 LineSegment(
32 start=Point(0, 0, 0),
33 end=Point(
34 self.span / 2,
35 0,

A.6. Prompt Example and AI-Generated ParaPy Code 169

36 self.span / 2 * tan(radians(self.dihedral_angle)),
37),
38).rotated(self.sweep_angle)
39],
40)
41

42 @Part
43 def spar(self):
44 # Define a simple spar running along the span of the wing
45 return Box(length=self.span, width=0.1, height=0.1).translated(
46 x=self.root_chord / 4, z=0.05
47)
48

49 @Part
50 def ribs(self):
51 # Define ribs along the span of the wing
52 ribs = []
53 num_ribs = 10
54 for i in range(num_ribs):
55 position = self.span * i / (num_ribs - 1)
56 rib = self.airfoil.scaled(
57 self.root_chord
58 - (self.root_chord - self.tip_chord) * i / (num_ribs - 1)
59)
60 ribs.append(
61 rib.translated(
62 x=position, z=position * tan(radians(self.dihedral_angle))
63)
64)
65 return ribs

OpenAI - ChatGPT
1 from parapy.core import Base, Input, Part
2 from parapy.geom import Fused, LoftedSolid , LineSegment , Plane
3 from parapy.exchange.step import STEPWriter
4

5

6 class Wing(Base):
7 """A parametric wing model with an aerodynamic outer shape and internal structure."""
8

9 span = Input(10.0) # Wing span in meters
10 root_chord = Input(2.0) # Root chord length in meters
11 tip_chord = Input(1.0) # Tip chord length in meters
12 airfoil_root = Input("NACA0012") # Root airfoil profile
13 airfoil_tip = Input("NACA0012") # Tip airfoil profile
14

15 @Part
16 def wing_surface(self):
17 """Defines the aerodynamic wing outer shape."""
18 return LoftedSolid(
19 profiles=[
20 self.create_airfoil(self.airfoil_root , self.root_chord , (0, 0, 0)),
21 self.create_airfoil(
22 self.airfoil_tip , self.tip_chord , (self.span, 0, 0)
23),
24]
25)
26

27 @Part
28 def front_spar(self):
29 """Defines a front spar as an internal structure element."""
30 return LineSegment(
31 start=(0, 0.2 * self.root_chord , 0),
32 end=(self.span, 0.2 * self.tip_chord , 0),
33)
34

35 @Part
36 def rear_spar(self):
37 """Defines a rear spar as an internal structure element."""
38 return LineSegment(

A.6. Prompt Example and AI-Generated ParaPy Code 170

39 start=(0, 0.7 * self.root_chord , 0),
40 end=(self.span, 0.7 * self.tip_chord , 0),
41)
42

43 @Part
44 def wing_structure(self):
45 """Combines all structural elements."""
46 return Fused(children=[self.front_spar , self.rear_spar])
47

48 def create_airfoil(self, airfoil_name , chord, position):
49 """Creates an airfoil profile at a given position."""
50 # For simplicity , this function could be expanded to read airfoil coordinates
51 return Plane(position=position)
52

53 def export_to_step(self, filename="wing_model.step"):
54 """Exports the wing geometry to a STEP file."""
55 writer = STEPWriter(self.wing_surface)
56 writer.write(filename)

B
Supporting Material: User Testing

B.1. Data Collection and Processing
The data obtained from the user testing sessions consisted of two primary components: (1) the sessions
themselves, which involved screen and audio recordings that were subsequently transcribed and
analysed, and (2) the analysis of the (semi-)completed test cases to extract key performance metrics.

The transcribed recordings were examined to identify recurring themes and notable observations that
could help interpret—or potentially challenge—the numerical results. This qualitative dataset includes
observations from the sessions as well as participants’ responses to structured interview questions. Each
response was assigned one or more thematic codes, which are presented alongside the corresponding
quantitative results to provide contextual explanation.

The quantitative data includes metrics extracted from the (semi-)completed test case files and participants’
development processes. As outlined in Chapter 5, this data comprises both time-based measures—such
as execution time and debugging time—and code productivity metrics. Productivity is evaluated
based on the number of added lines of code and added features (where a feature is defined as a
class subcomponent—e.g., method, attribute, or part—that executes without error, regardless of full
functionality). Additional metrics include the number of ParaPy-specific errors encountered (e.g., part
grammar violations), automated code quality scores (from the quality assessment framework), and
functional correctness as compared to the expert solution. A detailed breakdown of the functional
correctness scoring for both test cases is presented in the appendix in section B.4.

171

B.2. Consent Form 172

B.2. Consent Form
You are being invited to participate in testing sessions as part of the project “Large Language Model
Supported Coding Assistant for Knowlegde Based Engineering (KBE) Application Development”. This study is
carried out by Ernesto Hof (ehof@tudelft.nl) for a MSc. thesis project at the Delft University of Technology
-situated in Delft, the Netherlands- under supervision of Gianfranco La Rocca (g.larocca@tudelft.nl) and
Alejandro Pradas Gomez (alejandro.pradas@chalmers.se).

The purpose of the user testing is to assess whether the developed GenAI-assisted tool demonstrably
improves performance in the development of KBE applications using the ParaPy SDK, for both novice
and expert industry users. To this end, a series of user testing sessions will be conducted with employees
from GKN Aerospace Sweden and ParaPy B.V., representing a range of technical backgrounds. The
findings from these sessions will be used to evaluate whether the requirements outlined in the research
introduction have been met, and to determine whether the thesis has (partially) addressed the identified
research gap through the development of a successful product.

The data collected during the interviews will be used for the researcher’s MSc thesis project and will be
anonymized in any resulting publications (e.g., the thesis report). Publications will primarily present
aggregated results. Specific, anonymized quotations may be included; however, full transcripts or
recordings will not be published.

To the best of our ability, your responses will be kept confidential. We will minimize any risks through
the following measures:

– Interviews will be conducted on-site using offline recording tools whenever possible but will take
place via MS Teams when remote participation is the only option.

– Recordings and transcripts will be processed exclusively on local devices.

– Recordings and unprocessed (i.e., identifiable) transcripts will be shared only with supervising
researchers if necessary. They will not be transferred to any third parties, including web- or
cloud-based services.

– Recordings and unprocessed transcripts will be permanently deleted at the conclusion of the
research project (Dec 2025).

Your participation in this interview is entirely voluntary, and you may withdraw at any time. You are
also free to decline to answer any individual questions. Furthermore, until 24 Oct 2025, you may: 1)
request access to your data in order to (partially) rectify or delete it; 2) submit a written request to be
excluded from the study, upon which all associated data (both processed and unprocessed) will be
removed. After this date, preliminary results may have already been submitted, and exclusion from the
study cannot be guaranteed.

Please sign below to consent to the terms of this study:

Name of participant Date Signature

mailto:ehof@tudelft.nl
mailto:g.larocca@tudelft.nl
mailto:alejandro.pradas@chalmers.se

B.3. User Testing Script 173

B.3. User Testing Script
LLM assisted KBE application development – ParaPy Copilot – GKN Aeroengines
AB (Trollhättan, SE) | ParaPy B.V. (Delft, NL)
The following script was used to conduct the user testing sessions at GKN Aeroengines AB and ParaPy B.V.
between October 6th and October 10th, 2025. Text enclosed in square brackets (e.g., “[...])” denotes roles within the
interview, while text enclosed in asterisks (e.g., “*...*”) and marked bold, indicates actions.

1. Introduction and Background
Q1.0. [Interviewer] Welcome and thank you for taking the time to participate in the user testing of
my MSc thesis. In short, these user testing sessions are aimed at evaluating whether the goals set in the
research, as well as the research gap identified, have been (partially) met by the developed copilot tool.
As outlined in the research, the main goal of the copilot tool is to assist both novice and expert users in
the development of KBE applications using the ParaPy SDK.

turn on recorder

Q1.1. [Interviewer] Have you read, and do you agree to the consent form that was sent to you prior to
this interview?

[Interviewee] ...

Q1.2. [Interviewer] Can you briefly introduce yourself and describe your role within GKN/ParaPy?

[Interviewee] ...

Q1.3. [Interviewer] What is your experience with programming and/or scripting? Would you
describe yourself more as a novice or expert when it comes to (KBE) programming? What languages do
you have experience in? What experience do you have with ParaPy?

[Interviewee] ...

Q1.4. [Interviewer] Do you have experience with CAD and/or CAE programs? If so, to what extend?

[Interviewee] ...

Q1.5. [Interviewer] Have you used AI assistants like ChatGPT, GitHub Copilot, or similar tools before,
both professionally and personally?

[Interviewee] ...

Q1.o1. (For people who were already interviewed in May) [Interviewer] Based on the above questions,
have any of these aspects changed significantly since our last session in May? Have you adopted KBE
more in your day-to-day engineering work?

[Interviewee] ...

2. Tool Introduction
Q2.1. [Interviewer] We will move on now to the introduction of the copilot tool. Firstly, have you
followed the installation instructions that were sent to you and is the tool ready to use?

[Interviewee] ...

install tool if not done (see installation instructions)

Q2.2. [Interviewer] The developed copilot tool is an AI-assisted framework that is designed to assist
developers in KBE application development using the ParaPy SDK. The framework is user accessible
through a CLI interface and features two agent modes: a Developer agent tasked specifically with code
suggestion/completion/debug requests, and an Educational agent aimed at guiding the user through
the ParaPy documentation and providing more theoretical background on all things KBE/ParaPy
development related. You will have access to the tool with pre-defined settings. Although it is not
recommended, you are free to alter the model and model settings. Furthermore, you have several
commands at your disposal (these will be repeated in the CLI as well):

B.3. User Testing Script 174

• /restart: restart the application from scratch
• /model: change the model powering the agent
• /mode: switch mode (educational ↔ developer)
• /settings: change the model settings
• /file or /f: append file content to the prompt/context
• /clear or /c: clear the file content from the prompt; file contents are persisted during sessions
• /help: show available commands
• ‘exit‘ or ‘quit‘: quit the application

Important to note is that the agent uses a one-time pipeline, so there is no message history saved within
sessions. Do you have any questions regarding the tool and its usage?

[Interviewee] ...

Q2.3. [Interviewer] You will now get the task of completing two KBE application cases from minimal
skeleton code. Based on which group you are in (A or B), you will either start with case 1 or case 2
without AI assistance, after which you will complete the remaining case with AI assistance. You will get
20 minutes for each task. The cases are not designed to be completed in 20 minutes, so do not worry if
you cannot complete all features. Furthermore, I recommend having the ParaPy documentation open in
your browser as well. During testing, I will be available for question not related to the implementation
of the particular user case.

Do you have any questions about the test cases and/or the task at hand?

[Interviewee] ...

Proceed with both test cases with a small break in between but without asking questions

3. Core Testing
Q3.1. [Interviewer] In one sentence, how would you describe your experience using the copilot tool
versus coding manually?

[Interviewee] ...

Q3.2. [Interviewer] Which test case did you find most challenging, and why?

[Interviewee] ...

Q3.3. [Interviewer] When using the copilot, did the suggestions align with what you intended to
write? Can you give a specific example?

[Interviewee] ...

Q3.4. [Interviewer] Did you feel the need to verify or modify the AI suggestions? How often, would
you say – rarely, sometimes, or frequently?

[Interviewee] ...

Q3.5. [Interviewer] On a scale from 1-10, and based on your experience with programming and
ParaPy, what grade would you give the generated code of the agent?

[Interviewee] . . .

Q3.6. [Interviewer] For the (aerospace) components specifically, do you feel the AI understood the
domain requirements? What worked well or poorly?

[Interviewee] ...

Q3.7. [Interviewer] Based on today’s experience, in what situations would you prefer using the copilot
versus coding manually?

[Interviewee] ...

B.3. User Testing Script 175

Q3.8. [Interviewer] As someone [new to/experienced with] ParaPy, did the AI help you learn new
patterns or did it hinder your understanding?

[Interviewee] ...

Q3.9. [Interviewer] What is the one thing you would change about the copilot to make it more useful
for (aerospace/your company) KBE development?

[Interviewee] ...

4. Closure
Q4.1. [Interviewer] Those were all the questions. I would like to thank you for your time and for
letting me conduct this interview. Do you have any further questions or comments?

[Interviewee] ...

turn off recorder

B.4. Functional Breakdown of Test Cases 176

B.4. Functional Breakdown of Test Cases
TC1 - Aircraft Mounting Bracket

Table B.1: Scoring Rubric for functional correctness of TC1. Each criterion is evaluated on a binary pass/fail basis, receiving
either 0 or 1 point. The resulting scores are then weighted to calculate the total score.

Subcomponent Criteria Weight [%]

Base Flange
Correct use of geometrical primitives and operations 6.67
Correctly dimensioned and/or positioned 6.67
Correct application of 2.5D rule 6.67

Rib
Correct use of geometrical primitives and operations 6.67
Correctly dimensioned and/or positioned 6.67
Correct application of 2.5D rule 6.67

Mounting Holes
Correctly dimensioned and/or positioned 6.67
Correct application of 2.5D rule 6.67
Correctly implemented holes as tools for boolean operation 6.67

Lightning Holes

Correct dimension (derived) 6.67
Correct positions 6.67
Correct application of 2.5D rule 6.67
Correctly implemented holes as tools for boolean operation 6.67

Boolean Solid Correct base shape employed 10
Correct tools employed 10

Total Score 100

TC2 - Y-Pipe Connector
Table B.2: Scoring Rubric for functional correctness of TC2. Each criterion is evaluated on a binary pass/fail basis, receiving

either 0 or 1 point. The resulting scores are then weighted to calculate the total score.

Subcomponent Criteria Weight [%]

Correct Outer Diameter (derived) 5

Thin Walled Pipe Correct use of geometrical primitives and operations 9.5
Correctly dimensioned 9.5

Inlet Pipe Correctly dimensioned 9.5
Correctly positioned 9.5

Outlet Pipe 1 Correctly dimensioned 9.5
Correctly positioned 9.5

Outlet Pipe 2 Correctly dimensioned 9.5
Correctly positioned 9.5

Boolean Solid
Correctly cut pipes into shape 6.3
Correct base shape employed 6.3
Correct tools employed 6.3

Total Score 100

C
Expert Grading Rubric

Code Quality Grading Rubric for Generated ParaPy Code

Submission Size: 200–400 lines
Target Quality: 7.5/10 average
Evaluation Time: 10–15 minutes
Evaluator: ParaPy Domain Expert

Thank you for taking the time to evaluate these code snippets for my MSc thesis.
Your expertise in programming and familiarity with ParaPy will significantly contribute to the assessment
of the agent framework’s performance.

Instructions
You will be provided with the following materials:

1. An expert-developed ParaPy application (for reference);

2. Code generated solely from natural language prompts, based on the expert application (the
original prompt is included in the file);

3. Code generated from a pre-defined skeleton, derived from the expert-developed code (you will
receive the skeleton code as well).

For each code example:

1. Run the code and compare its output and behavior to the reference implementation;

2. Score each section by selecting the appropriate score within the 0–10 range;

3. Document major issues in the space provided;

4. Record the final scores in the summary table.

You don’t need to document every minor issue — just assign scores based on overall impression
within each category.

177

C.1. Semantic Correctness 178

C.1. Semantic Correctness
Does the code work correctly and use ParaPy properly?

Functional Equivalence & Framework Usage
Circle your score:

Score Criteria
9–10 ✓ Produces identical results to reference solution

✓ Handles all parametrization correctly
✓ Correct ParaPy framework usage throughout
✓ No functional errors

7–8 ✓ Correct for most components
✓ Minor issues with 1–2 (edge) cases
✓ Generally correct ParaPy usage with minor mistakes
✓ Overall behavior is correct

5–6 ✓ Works for simple components
! Fails on several other components
! Some ParaPy framework misuse
! Some incorrect outputs or logic errors

3–4 ! Incorrect outputs for many components
! Significant ParaPy framework misuse
! Significant functional problems
! Missing key functionality

0–2 × Does not work / crashes
× Completely wrong behavior
× Fundamental ParaPy misunderstandings
× Missing most functionality

Section 1 Score: / 10

ParaPy Framework Check (if applicable)
Check correct usage of:

@Input— Defines configurable parameters
@Attribute— Used for computed/cached values
@Part— Creates child components properly
Base / GeomBase— Inherits appropriately
quantify()— Used correctly for collections
child. references — Proper parent-child relationships
DynamicType— Correct dynamic instantiation

Major issues:

C.2. Maintainability 179

C.2. Maintainability
Is the code readable, organized, and maintainable?

Code Quality & Structure
Circle your score:

Score Criteria
9–10 ✓ Clean, professional code

✓ Clear structure and naming
✓ Simple, elegant solutions
✓ Well-documented with docstrings
✓ Low complexity, easy to understand

7–8 ✓ Generally clear and readable
✓ Good organization and naming
✓ Reasonable complexity
✓ Adequate documentation

5–6 ! Somewhat unclear or messy
! Inconsistent naming or structure
! Higher complexity than needed
! Minimal documentation

3–4 ! Difficult to understand
! Poor organization
! Very complex/convoluted
! Little to no documentation

0–2 × Incomprehensible
× Chaotic structure
× Unmaintainable complexity
× No documentation

Section 2 Score: / 10

Red Flags (check if present)
Functions/methods > 50 lines
Nesting depth > 3 levels
Unclear variable names (x, temp, data1)
No docstrings on classes or key methods
Duplicate code blocks
Overly complex logic

Major issues:

C.3. PEP-8 Compliance 180

C.3. PEP-8 Compliance
Does the code follow Python style conventions?

Style & Formatting
Circle your score:

Score Typical Violations Quality
9–10 0–5 violations Excellent — Professional style
7–8 6–15 violations Good — Minor style issues
5–6 16–30 violations Adequate — Several style problems
3–4 31–50 violations Poor — Many style issues
0–2 50+ violations Unacceptable — No style adherence

Section 3 Score: / 10

Common Issues (check if widespread)
Wrong naming conventions (classes, functions)
Lines too long (>88 characters)
Inconsistent indentation or spacing
Missing blank lines between classes/functions
Poor import organization
Whitespace issues (x=1+2 vs x = 1 + 2)

Major issues:

C.3. PEP-8 Compliance 181

Score Summary

Section Score (0–10)
Semantic Correctness

Maintainability

PEP-8 Compliance

Overall Assessment
Key Strengths:

Key Weaknesses:

Would you use this code in production?

Yes, as-is
Yes, with minor fixes
No, needs significant revision

Submission Information
Submission ID:

Evaluator Name:

Date:

Evaluation Time: minutes

C.3. PEP-8 Compliance 182

Appendix: Quick Reference
Semantic Correctness Red Flags

• Crashes or exceptions during execution

• Wrong outputs for test cases

• Missing required functionality

• Incorrect ParaPy framework usage (@Attribute, @Part)

• Undefined variables or attributes

Maintainability Red Flags
• Functions longer than 50 lines

• Nesting depth > 3 levels

• No docstrings

• Unclear variable names (x, temp, data)

• Duplicate code blocks

• “Magic numbers” without explanation

PEP-8 Red Flags
• Inconsistent indentation

• Lines > 100 characters

• Wrong naming conventions (e.g., myFunction, MyVariable)

• Missing spaces around operators

• Disorganized imports

• Trailing whitespace

Evaluation Tips
1. Run the code first — Does it work?

2. Compare to reference — Is it functionally equivalent?

3. Skim for structure — Is it organized?

4. Check complexity — Is it simple enough?

5. Scan for style — Does it look professional?

Time-Saving Approach
• Spend 40% of time on semantic correctness (most important)

• Spend 35% on maintainability (scan for readability)

• Spend 25% on PEP-8 (quick style check)

D
Extended Results of Automated

Evaluations

D.1. Run Usage
Developer Agent

Table D.1: Performance metrics for Developer Agent across test cases.

Case ID Model Input Tokens Output Tokens Runtime (s) Requests Tool Calls
D-1 Claude Sonnet 4 152,360 3,530 102.00 19.0 18.0
D-2 Claude Sonnet 4 108,790 6,528 102.00 13.0 12.0
D-3 Claude Sonnet 4 109,648 6,695 120.00 12.0 10.0
D-4 Claude Sonnet 4 263,896 15,805 195.00 18.0 14.0
D-5 Claude Sonnet 4 240,996 12,470 185.00 17.0 14.0
D-6 Claude Sonnet 4 176,758 9,696 120.00 nan 17.0
D-7 Claude Sonnet 4 315,076 11,630 186.00 21.0 18.0
D-8 Claude Sonnet 4 191,484 18,887 222.00 15.0 12.0
D-9 Claude Sonnet 4 241,613 20,431 231.00 18.0 14.0
D-10 Claude Sonnet 4 271,205 16,374 235.00 21.0 17.0
D-11 Claude Sonnet 4 237,834 40,094 478.00 nan 15.0
D-12 Claude Sonnet 4 122,285 12,129 131.00 nan 11.0
D-13 Claude Sonnet 4 71,960 4,191 81.80 9.0 8.0
D-14 Claude Sonnet 4 172,317 17,870 218.00 nan 9.0
D-15 Claude Sonnet 4 199,167 17,366 228.00 nan 16.0
D-16 Claude Sonnet 4 411,401 20,789 303.00 nan 12.0
D-17 Claude Sonnet 4 198,092 15,141 186.00 17.0 13.0
D-18 Claude Sonnet 4 57,098 2,030 53.50 8.0 6.0
D-19 Claude Sonnet 4 336,693 13,353 218.00 25.0 21.0
D-20 Claude Sonnet 4 544,626 3,268 127.00 50.0* 50.0*
D-21 Claude Sonnet 4 126,064 14,242 155.00 10.0 7.0
D-22 Claude Sonnet 4 138,356 15,146 181.00 11.0 8.0
D-23 Claude Sonnet 4 132,182 7,581 136.00 11.0 8.0
D-24 Claude Sonnet 4 147,497 13,931 188.00 12.0 9.0
D-25 Claude Sonnet 4 22,995 3,456 65.70 4.0 3.0
D-26 Claude Sonnet 4 79,543 3,749 75.60 11.0 10.0
D-27 Claude Sonnet 4 39,087 1,449 44.80 6.0 5.0
D-28 Claude Sonnet 4 69,230 1,589 56.20 10.0 9.0
D-29 Claude Sonnet 4 55,272 1,668 48.80 8.0 7.0
D-30 Claude Sonnet 4 79,485 4,897 86.40 10.0 9.0

Continued on next page

183

D.1. Run Usage 184

Table D.1 – continued from previous page

Case ID Model Input Tokens Output Tokens Runtime (s) Requests Tool Calls
D-31 Claude Sonnet 4 40,640 1,576 49.50 6.0 5.0
D-32 Claude Sonnet 4 16,469 1,029 35.50 3.0 2.0
D-33 Claude Sonnet 4 100,028 2,023 69.70 12.0 11.0
D-34 Claude Sonnet 4 102,197 2,834 68.40 13.0 11.0
D-35 Claude Sonnet 4 30,182 1,651 41.80 5.0 4.0
D-36 Claude Sonnet 4 60,282 2,158 64.80 9.0 8.0
D-1 LLaMa 3.1 - 8B 46,180 948 24.00 7.0 4.0
D-2 LLaMa 3.1 - 8B 42,717 1,657 52.80 6.0 2.0
D-3 LLaMa 3.1 - 8B 22,581 566 21.30 nan 4.0
D-4 LLaMa 3.1 - 8B 28,919 735 32.20 5.0 3.0
D-5 LLaMa 3.1 - 8B 24,563 855 13.80 nan 4.0
D-6 LLaMa 3.1 - 8B 22,554 576 23.20 nan 4.0
D-7 LLaMa 3.1 - 8B 513,033 1,390 47.10 nan 50.0*
D-8 LLaMa 3.1 - 8B 15,902 526 11.30 3.0 2.0
D-9 LLaMa 3.1 - 8B 22,551 570 21.40 nan 4.0
D-10 LLaMa 3.1 - 8B 24,326 372 21.50 nan 4.0
D-11 LLaMa 3.1 - 8B 16,520 963 12.50 3.0 2.0
D-12 LLaMa 3.1 - 8B 903,703 1,888 197.00 nan 14.0
D-13 LLaMa 3.1 - 8B 11,831 513 9.05 nan 2.0
D-14 LLaMa 3.1 - 8B 64,273 4,553 42.80 nan 2.0
D-15 LLaMa 3.1 - 8B 0 0 3.10 nan 0.0
D-16 LLaMa 3.1 - 8B 28,857 794 35.30 5.0 3.0
D-17 LLaMa 3.1 - 8B 31,926 662 23.70 5.0 3.0
D-18 LLaMa 3.1 - 8B 16,157 445 14.80 3.0 2.0
D-19 LLaMa 3.1 - 8B 55,424 642 15.50 10.0 9.0
D-20 LLaMa 3.1 - 8B 10,503 280 17.50 nan 2.0
D-21 LLaMa 3.1 - 8B 10,512 334 7.81 nan 2.0
D-22 LLaMa 3.1 - 8B 42,259 1,316 136.00 7.0 2.0
D-23 LLaMa 3.1 - 8B 0 0 0.80 nan 0.0
D-24 LLaMa 3.1 - 8B 31,715 528 17.70 5.0 3.0
D-25 LLaMa 3.1 - 8B 10,402 122 5.78 nan 2.0
D-26 LLaMa 3.1 - 8B 10,706 263 6.25 nan 2.0
D-27 LLaMa 3.1 - 8B 42,892 800 31.40 7.0 4.0
D-28 LLaMa 3.1 - 8B 462,768 1,122 33.90 nan 50.0*
D-29 LLaMa 3.1 - 8B 85,487 1,138 38.70 nan 13.0
D-30 LLaMa 3.1 - 8B 47,594 840 29.50 8.0 7.0
D-31 LLaMa 3.1 - 8B 441,822 1,296 32.90 nan 50.0*
D-32 LLaMa 3.1 - 8B 420,887 896 64.70 14.0 12.0
D-33 LLaMa 3.1 - 8B 158,698 24,576 35.00 nan nan
D-34 LLaMa 3.1 - 8B 97,155 2,228 34.30 nan 9.0
D-35 LLaMa 3.1 - 8B 88,870 2,106 34.20 nan 9.0
D-36 LLaMa 3.1 - 8B 66,662 1,523 28.70 nan 6.0

* – These extremities were results of failed runs and as such are excluded from the data processing.

Educational Agent
Table D.2: Performance metrics for Educational Agent across test cases.

Case ID Model Input Tokens Output Tokens Runtime (s) Requests Tool Calls
E-1 Claude Sonnet 4 12,884 1,426 30.10 3.0 4.0

Continued on next page

D.2. Agent Performance Across Evaluation Criteria 185

Table D.2 – continued from previous page

Case ID Model Input Tokens Output Tokens Runtime (s) Requests Tool Calls
E-2 Claude Sonnet 4 2,970 1,827 30.90 1.0 0.0
E-3 Claude Sonnet 4 19,984 1,591 32.10 3.0 4.0
E-4 Claude Sonnet 4 25,430 1,442 31.70 4.0 6.0
E-5 Claude Sonnet 4 18,561 1,829 36.60 3.0 4.0
E-6 Claude Sonnet 4 26,575 1,469 33.40 4.0 6.0
E-7 Claude Sonnet 4 20,572 1,236 29.90 4.0 4.0
E-8 Claude Sonnet 4 28,970 1,660 38.90 4.0 6.0
E-9 Claude Sonnet 4 17,379 1,450 30.20 3.0 4.0
E-10 Claude Sonnet 4 17,855 1,605 31.40 3.0 4.0
E-11 Claude Sonnet 4 19,749 1,473 32.40 3.0 4.0
E-12 Claude Sonnet 4 17,768 1,450 31.70 3.0 5.0
E-13 Claude Sonnet 4 16,655 1,152 23.90 3.0 4.0
E-14 Claude Sonnet 4 16,213 1,325 29.80 3.0 5.0
E-15 Claude Sonnet 4 16,098 1,577 31.50 3.0 5.0
E-16 Claude Sonnet 4 15,484 752 21.30 4.0 3.0
E-17 Claude Sonnet 4 22,740 1,722 33.90 4.0 5.0
E-18 Claude Sonnet 4 29,341 914 23.80 4.0 6.0
E-19 Claude Sonnet 4 11,190 1,111 24.20 3.0 3.0
E-20 Claude Sonnet 4 18,044 2,072 40.80 3.0 5.0
E-21 Claude Sonnet 4 23,228 1,240 29.20 4.0 6.0
E-22 Claude Sonnet 4 14,613 1,076 26.70 3.0 3.0
E-23 Claude Sonnet 4 20,907 1,968 41.40 3.0 6.0
E-1 LLaMa 3.1 - 8B 0 0 0.54 0.0 0.0
E-2 LLaMa 3.1 - 8B 7,354 233 1.28 2.0 1.0
E-3 LLaMa 3.1 - 8B 6,416 311 1.18 2.0 1.0
E-4 LLaMa 3.1 - 8B 3,073 13 1.10 nan 1.0
E-5 LLaMa 3.1 - 8B 6,249 126 1.03 2.0 1.0
E-6 LLaMa 3.1 - 8B 3,077 180 0.64 1.0 0.0
E-7 LLaMa 3.1 - 8B 7,176 285 1.37 2.0 1.0
E-8 LLaMa 3.1 - 8B 3,083 13 1.02 nan 1.0
E-9 LLaMa 3.1 - 8B 0 0 0.30 0.0 0.0
E-10 LLaMa 3.1 - 8B 3,080 18 1.25 nan 1.0
E-11 LLaMa 3.1 - 8B 0 0 0.47 0.0 0.0
E-12 LLaMa 3.1 - 8B 3,074 38 1.64 nan 1.0
E-13 LLaMa 3.1 - 8B 0 0 0.73 0.0 0.0
E-14 LLaMa 3.1 - 8B 6,281 150 1.09 2.0 1.0
E-15 LLaMa 3.1 - 8B 7,152 205 1.19 2.0 1.0
E-16 LLaMa 3.1 - 8B 6,432 224 1.15 2.0 1.0
E-17 LLaMa 3.1 - 8B 0 0 0.99 0.0 0.0
E-18 LLaMa 3.1 - 8B 3,085 13 0.94 nan 1.0
E-19 LLaMa 3.1 - 8B 3,085 40 1.45 nan 1.0
E-20 LLaMa 3.1 - 8B 7,261 194 1.29 2.0 1.0
E-21 LLaMa 3.1 - 8B 3,115 283 1.01 1.0 0.0
E-22 LLaMa 3.1 - 8B 0 0 1.01 0.0 0.0
E-23 LLaMa 3.1 - 8B 3,092 182 0.86 1.0 0.0

D.2. Agent Performance Across Evaluation Criteria
Developer Agent

D.2. Agent Performance Across Evaluation Criteria 186

Table D.3: Evaluation results for Developer Agent.

Case ID Model isinstance Syntax Runtime Quality GPT OSS Llama 3.3 Qwen3
D-7 Claude Sonnet 4 ✓ ✓ ✓ 8.2 4.5 4.2 4.8
D-16 Claude Sonnet 4 × × × 4.0 2.8 4.2 4.0
D-30 Claude Sonnet 4 ✓ ✓ ✓ 8.3 4.6 4.2 4.8
D-1 Claude Sonnet 4 ✓ ✓ ✓ 8.0 4.7 4.2 4.9
D-2 Claude Sonnet 4 ✓ ✓ ✓ 8.6 4.2 4.5 4.9
D-34 Claude Sonnet 4 ✓ ✓ ✓ 9.0 3.6 4.1 4.9
D-6 Claude Sonnet 4 × × × 6.5 1.8 4.2 3.2
D-17 Claude Sonnet 4 ✓ ✓ × 7.9 3.8 4.5 4.8
D-26 Claude Sonnet 4 ✓ ✓ ✓ 8.5 4.2 4.2 4.8
D-10 Claude Sonnet 4 ✓ ✓ ✓ 8.0 4.4 4.2 4.6
D-28 Claude Sonnet 4 ✓ ✓ ✓ 9.3 4.5 4.0 4.4
D-32 Claude Sonnet 4 ✓ ✓ ✓ 8.1 4.7 4.2 4.6
D-9 Claude Sonnet 4 ✓ ✓ ✓ 6.3 4.6 4.5 5.0
D-5 Claude Sonnet 4 ✓ ✓ ✓ 7.6 4.3 4.5 4.9
D-8 Claude Sonnet 4 ✓ ✓ ✓ 8.0 4.3 4.2 4.1
D-18 Claude Sonnet 4 ✓ ✓ ✓ 9.4 4.7 4.3 4.8
D-36 Claude Sonnet 4 ✓ ✓ ✓ 8.0 3.4 4.2 4.9
D-15 Claude Sonnet 4 × ✓ ✓ N/A 1.1 1.5 1.0
D-14 Claude Sonnet 4 × × × 6.0 3.2 4.2 4.8
D-13 Claude Sonnet 4 ✓ ✓ ✓ 8.8 4.4 4.2 4.8
D-23 Claude Sonnet 4 ✓ ✓ ✓ 9.5 4.6 4.2 5.0
D-33 Claude Sonnet 4 ✓ ✓ ✓ 9.7 4.5 4.2 4.9
D11 Claude Sonnet 4 × × × 4.0 3.5 4.2 4.8
D-29 Claude Sonnet 4 ✓ ✓ ✓ 9.2 4.5 4.2 4.9
D-24 Claude Sonnet 4 ✓ ✓ ✓ 7.8 3.9 4.2 3.7
D-25 Claude Sonnet 4 ✓ ✓ × 7.8 4.3 4.2 4.2
D-21 Claude Sonnet 4 ✓ ✓ × 8.1 4.7 4.2 4.9
D-3 Claude Sonnet 4 ✓ ✓ ✓ 8.2 4.4 4.2 5.0
D-4 Claude Sonnet 4 ✓ ✓ ✓ 7.4 3.2 4.2 4.8
D-19 Claude Sonnet 4 ✓ ✓ ✓ 8.6 3.9 4.2 4.8
D-31 Claude Sonnet 4 ✓ ✓ ✓ 9.6 4.5 4.2 4.3
D-35 Claude Sonnet 4 ✓ ✓ ✓ 9.1 4.5 4.2 4.9
D-20 Claude Sonnet 4 ✓ ✓ ✓ N/A 1.0 1.0 1.0
D-27 Claude Sonnet 4 ✓ ✓ ✓ 8.7 4.7 4.9 4.8
D-22 Claude Sonnet 4 ✓ ✓ ✓ 7.4 3.5 4.2 4.3
D-12 Claude Sonnet 4 ✓ × × 4.0 2.1 4.0 4.1
D-7 LLaMa 3.1 - 8B × ✓ ✓ N/A 1.0 1.0 1.0
D-16 LLaMa 3.1 - 8B ✓ ✓ ✓ 8.7 1.2 4.2 2.4
D-30 LLaMa 3.1 - 8B ✓ ✓ ✓ 8.9 4.1 4.1 4.7
D-1 LLaMa 3.1 - 8B ✓ ✓ ✓ 9.1 2.5 3.5 2.2
D-2 LLaMa 3.1 - 8B ✓ ✓ × 8.2 2.4 4.2 3.4
D-34 LLaMa 3.1 - 8B × × × 4.0 2.4 3.7 3.1
D-6 LLaMa 3.1 - 8B × × × 4.0 1.2 2.1 2.9
D-17 LLaMa 3.1 - 8B ✓ ✓ ✓ 9.1 1.6 4.2 2.5
D-26 LLaMa 3.1 - 8B × × × 4.0 1.2 1.0 1.4
D-10 LLaMa 3.1 - 8B × × × 4.0 1.2 3.5 2.0
D-28 LLaMa 3.1 - 8B × ✓ ✓ N/A 1.0 1.0 1.0
D-32 LLaMa 3.1 - 8B ✓ ✓ ✓ 8.2 4.3 4.1 4.2
D-9 LLaMa 3.1 - 8B × × × 4.0 1.2 2.5 1.6
D-5 LLaMa 3.1 - 8B ✓ × × 4.0 1.8 2.4 1.4
D-8 LLaMa 3.1 - 8B ✓ ✓ ✓ 9.7 2.1 3.1 2.0

Continued on next page

D.2. Agent Performance Across Evaluation Criteria 187

Table D.3 – continued from previous page

Case ID Model isinstance Syntax Runtime Quality GPT OSS Llama 3.3 Qwen3
D-18 LLaMa 3.1 - 8B ✓ ✓ ✓ 8.1 2.1 4.1 4.8
D-36 LLaMa 3.1 - 8B × × × 4.0 1.9 4.2 2.0
D-15 LLaMa 3.1 - 8B × ✓ ✓ N/A 1.0 3.5 1.0
D-14 LLaMa 3.1 - 8B × × × 4.0 1.3 2.5 2.2
D-13 LLaMa 3.1 - 8B × × × 4.0 1.0 2.5 1.6
D-23 LLaMa 3.1 - 8B × ✓ ✓ N/A 1.0 1.0 1.0
D-33 LLaMa 3.1 - 8B × ✓ ✓ N/A 1.0 1.0 1.0
D11 LLaMa 3.1 - 8B ✓ ✓ ✓ 8.9 2.0 4.2 3.0
D-29 LLaMa 3.1 - 8B × × × 4.0 1.4 2.5 1.6
D-24 LLaMa 3.1 - 8B ✓ ✓ ✓ N/A 1.4 3.8 2.1
D-25 LLaMa 3.1 - 8B × × × 4.0 1.2 1.4 1.4
D-21 LLaMa 3.1 - 8B × × × 4.0 1.0 4.2 1.4
D-3 LLaMa 3.1 - 8B × × × 4.0 1.0 2.2 2.2
D-4 LLaMa 3.1 - 8B ✓ ✓ ✓ 9.2 1.2 4.2 2.2
D-19 LLaMa 3.1 - 8B ✓ ✓ ✓ N/A 2.1 4.2 2.9
D-31 LLaMa 3.1 - 8B × ✓ ✓ N/A 1.0 1.7 1.0
D-35 LLaMa 3.1 - 8B × × × 4.0 1.3 3.9 3.1
D-20 LLaMa 3.1 - 8B × × × 4.0 1.0 2.1 1.6
D-27 LLaMa 3.1 - 8B ✓ ✓ ✓ 8.3 4.2 4.2 4.5
D-22 LLaMa 3.1 - 8B ✓ ✓ × 9.7 1.3 4.2 1.9
D-12 LLaMa 3.1 - 8B × × × 4.0 1.2 1.8 1.4

Educational Agent
Table D.4: Evaluation results for Educational Agent.

Case ID Model isinstance Quality GPT OSS Llama 3.3 Qwen3
E-7 Claude Sonnet 4 ✓ 6.8 4.3 4.1 4.8
E-3 Claude Sonnet 4 ✓ 6.5 4.1 4.4 4.1
E-5 Claude Sonnet 4 ✓ 7.4 4.1 4.1 4.8
E-12 Claude Sonnet 4 ✓ 7.3 4.1 4.5 4.7
E-1 Claude Sonnet 4 ✓ 8.7 3.9 4.3 4.6
E-2 Claude Sonnet 4 ✓ 6.3 4.2 4.2 4.5
E-10 Claude Sonnet 4 ✓ 8.8 3.9 4.2 5.0
E-13 Claude Sonnet 4 ✓ 8.5 4.2 4.3 4.9
E-14 Claude Sonnet 4 ✓ 7.2 4.2 4.4 4.9
E-18 Claude Sonnet 4 ✓ N/A 4.1 4.1 N/A
E-8 Claude Sonnet 4 ✓ 6.1 4.1 4.3 4.9
E-9 Claude Sonnet 4 ✓ 7.5 4.1 4.3 4.3
E-22 Claude Sonnet 4 ✓ 8.0 4.1 4.4 4.5
E-21 Claude Sonnet 4 ✓ 6.7 3.9 4.3 4.9
E-11 Claude Sonnet 4 ✓ 6.7 3.9 4.1 4.5
E-15 Claude Sonnet 4 ✓ 8.3 4.2 4.2 4.9
E-16 Claude Sonnet 4 ✓ 7.3 4.1 4.1 4.2
E-6 Claude Sonnet 4 ✓ 6.8 4.5 4.1 4.3
E-20 Claude Sonnet 4 ✓ 6.8 4.3 4.1 4.7
E-23 Claude Sonnet 4 ✓ 6.5 4.3 4.3 4.1
E-17 Claude Sonnet 4 ✓ 6.7 4.2 4.1 4.2
E-4 Claude Sonnet 4 ✓ 7.3 4.2 4.4 4.5
E-19 Claude Sonnet 4 ✓ 7.7 4.1 4.1 4.8

Continued on next page

D.3. Generated Geometries 188

Table D.4 – continued from previous page

Case ID Model isinstance Quality GPT OSS Llama 3.3 Qwen3
E-7 LLaMa 3.1 - 8B ✓ N/A 3.7 4.0 4.3
E-3 LLaMa 3.1 - 8B ✓ N/A 2.8 3.8 3.9
E-5 LLaMa 3.1 - 8B ✓ N/A 1.6 2.6 2.1
E-12 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0
E-1 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0
E-2 LLaMa 3.1 - 8B ✓ N/A 2.8 3.3 4.0
E-10 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0
E-13 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0
E-14 LLaMa 3.1 - 8B ✓ N/A 1.5 2.7 2.1
E-18 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0
E-8 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0
E-9 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0
E-22 LLaMa 3.1 - 8B ✓ N/A 1.0 1.0 1.0
E-21 LLaMa 3.1 - 8B ✓ 7.3 3.9 4.1 4.3
E-11 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0
E-15 LLaMa 3.1 - 8B ✓ N/A 2.6 2.7 3.1
E-16 LLaMa 3.1 - 8B ✓ N/A 3.1 3.8 3.3
E-6 LLaMa 3.1 - 8B ✓ N/A 3.2 3.5 3.8
E-20 LLaMa 3.1 - 8B ✓ N/A 2.8 3.8 2.6
E-23 LLaMa 3.1 - 8B ✓ N/A 2.4 4.0 3.6
E-17 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.4
E-4 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0
E-19 LLaMa 3.1 - 8B × N/A 1.0 1.0 1.0

D.3. Generated Geometries

D.3. Generated Geometries 189

Figure D.1: Comparison of Developer Agent performance using Claude Sonnet 4 and LLaMa 3.1 – 8B. The results correspond to
the skeleton code completion evaluation cases and the associated geometries generated via the ParaPy SDK.

	Abstract
	Acknowledgements
	Preface
	List of Figures
	List of Tables
	Nomenclature
	I Thesis
	Introduction
	Research Framework
	Objectives
	Main Questions
	Scope
	Requirements
	Structure
	Definitions

	Literature Review
	Foundations of Artificial Intelligence
	Artificial Neural Networks
	Recent Developments: Transformers and Large Language Models

	From Natural Language to Programming
	Design Paradigms for LLM-Based Applications
	Prompt Engineering and Orchestration
	Retrieval-Augmented Generation and Tool Use
	Fine-Tuning and Customization
	Agentic Systems and Multi-Agent Frameworks
	Frameworks, Platforms, and Service Ecosystems

	Synthesis and Implications for KBE
	Measurable Success Criteria

	Industrial Study: GKN Aerospace
	Study Purpose
	Findings
	Technical Assessment of Current AI Tools
	Implications for KBE Development

	Summary and Implications

	Methodology
	Legal & Ethical Considerations
	Agent Creation Pipeline
	LLM Deployment, Selection & Customisation
	Prompt Engineering
	Runtime Dependencies
	Tool Development, Verification & Validation

	Framework Architecture and Design Approach
	Verification and Validation Methodology
	Unit Testing
	Automated Evaluation Framework
	Manual Case Study Approach
	User Testing Protocol

	Summary & Conclusion

	Agentic Framework
	Assumptions & Limitations
	System Architecture Overview
	Baseline Performance
	Model Configurations
	Developer Agent
	Educational Agent

	Knowledge Infrastructure & Semantic Search
	Prompt Engineering Implementation
	Developer Agent Prompt Structure
	Educational Agent Prompt Structure
	Prompt Engineering Impact

	Tool Development & Deployment
	Agent Implementation
	Performance Demonstration

	CLI Application Design
	Summary & Conclusion

	Verification & Validation
	Assumptions & Limitations
	Test Framework Foundations
	Unit Testing
	Automated Evaluation
	Large Language Model as Judge Framework
	Code Quality Framework
	Case Studies
	User Testing

	Unit Testing Results
	Automated Evaluation
	Developer Agent
	Educational Agent
	Summary

	Industry Case Study - TRS Application
	Variant Analysis
	Summary

	User Testing
	Requirement Compliance
	Summary

	Summary & Conclusion

	Conclusion
	Discussion & Recommendations

	II Technical Report
	Language Modelling
	Sequence Models
	The Transformer Architecture
	From Natural Language to Programming

	Implementation Details
	Large Language Model Settings
	Prompt Engineering Strategies
	MCP Servers
	LLM Tool Calling

	Detailed Design
	The Pydantic Framework: Basics & Extensions
	Framework Customization

	LLM Selection
	Semantic Search Engine Design
	Engine Architecture, Design & Querying Process
	Filtering & Indexing of Data
	Integration

	Developer Agent: System Prompt Components
	Template
	Best Practices
	ParaPy Principles and Examples

	Educational Agent: System Prompt Components
	Template
	Best Practices

	Educational Agent: Incremental Performance
	Baseline Performance
	With Prompt Engineering
	Full Implementation

	Tool Design & Architecture
	ParaPy API Reference Search
	Code Runtime Verification
	ParaPy Documentation Search
	Tool Table

	Agent Deployment Details
	Structured Output Schemas
	Runtime Agent Instantiation
	Output Validation Mechanism

	Command Line Interface Application Design

	Evaluation Framework Design
	Unit Testing Implementation Details
	Large Language Model as Judge Framework
	Evaluation Protocol
	Model Selection Rationale
	Temperature Configuration
	Developer Agent Evaluation Criteria
	Educational Agent Evaluation Criteria

	Code Quality Framework
	Semantic Correctness
	Maintainability
	PEP-8 Compliance
	Final Score Computation

	Developer Agent: Evaluation Cases
	Educational Agent: Evaluation Cases
	Developer Agent: LLM Judge Rubric
	Educational Agent: LLM Judge Rubric
	TRS Case Study: Skeleton Code

	References
	Extended Analysis: Industrial Study GKN
	Methodology
	Findings
	Nomenclature
	Common Themes Across Interviews
	Diverging or Contradictory Findings
	Inter-Theme Relationships
	Overall Insights

	Summary & Conclusion
	Consent Form
	Interview Script
	Prompt Example and AI-Generated ParaPy Code

	Supporting Material: User Testing
	Data Collection and Processing
	Consent Form
	User Testing Script
	Functional Breakdown of Test Cases

	Expert Grading Rubric
	Semantic Correctness
	Maintainability
	PEP-8 Compliance

	Extended Results of Automated Evaluations
	Run Usage
	Agent Performance Across Evaluation Criteria
	Generated Geometries

