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Abstract

An immutable multi-map is a many-to-many map data struc-
ture with expected fast insert and lookup operations. This
data structure is used for applications processing graphs or
many-to-many relations as applied in compilers, runtimes
of programming languages, or in static analysis of object-
oriented systems. Collection data structures are assumed to
carefully balance execution time of operations with mem-
ory consumption characteristics and need to scale gracefully
from a few elements to multiple gigabytes at least. When
processing larger in-memory data sets the overhead of the
data structure encoding itself becomes a memory usage bot-
tleneck, dominating the overall performance.
In this paper we propose AXIOM, a novel hash-trie data

structure that allows for a highly efficient and type-safe
multi-map encoding by distinguishing inlined values of sin-
gleton sets fromnested sets ofmulti-mappings.AXIOM strictly
generalizes over previous hash-trie data structures by sup-
porting the processing of fine-grained type-heterogeneous
content on the implementation level (while API and language
support for type-heterogeneity are not scope of this paper).
We detail the design and optimizations of AXIOM and fur-
ther compare it against state-of-the-art immutable maps and
multi-maps in Java, Scala and Clojure. We isolate key dif-
ferences using microbenchmarks and validate the resulting
conclusions on a case study in static analysis. AXIOM reduces
the key-value storage overhead by 1.87 x; with specializing
and inlining across collection boundaries it improves by 5.1 x.

CCS Concepts · Theory of computation→Data struc-

tures design and analysis; · Information systems →
Point lookups; Data compression; Hashed file organization;
Indexed file organization;
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1 Introduction

Purely functional data structures [17] have their origins in
the domain of functional programming, but are nowadays
available in many widely-spread programming languages,
such as Java, Scala, Clojure, Erlang, Haskell and F#. From
a user’s perspective, purely functional data structures are
beneficial in many ways: immutability for collections implies
referential transparency without giving up on sharing data,
it satisfies safety requirements for having co-variant sub-
types [14], and it guarantees safe sharing of data structure
instances in the presence of concurrent computations.

This paper addresses the challenges of optimizing purely
functional multi-maps for standard libraries of programming
languages. A multi-map is a data structure that acts as an
associative array storing possibly multiple values with a
specific key. Typically multi-maps are used to store graphs
or many-to-many relations, which occur naturally in appli-
cation areas such as compilers, runtimes of programming
languages, or static analysis of object-oriented software. In
some applications it is the case that the initial raw data is
many-to-one, and further processing or exploration incre-
mentally leads to a many-to-many mapping for some of the
entries. In other applications the distribution of sizes of the
range sets in the raw data is highly skewed, such as when
representing program dependence graphs [12]. The number
of values associated with a specific key is then practically
always very low, yet there are possibly numerous excep-
tions to cater for nevertheless, where many values end up
being associated with the same key. A key insight in the
current paper is that we can exploit highly common skewed
distributions to save memory for the most frequent cases.
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In line with recent efforts of optimizing generic general
purpose collections [10, 19, 24, 26], we aim to improve collec-
tion data structures towards memory-intensive applications,
which is a preliminary for processing larger data sets that fit
into main memory.
On Java Virtual Machine (JVM) languages such as Java,

Scala and Clojure, relations are not language-supported;
rather the standard libraries of the aforementioned languages
allow the construction of multi-maps by using sets as the
values of a normal polymorphic map. The goal of this paper
is to overcome the limitations of these existing implemen-
tations of multi-maps on the JVM, improving drastically on
the memory footprint without any other loss of efficiency.
While comparable multi-maps come with a mode of 65.37 B
overhead per stored key/value item, the most compressed
encoding in this paper reaches an optimum of 12.82 B.

Contributions

1. We contribute AXIOM, a novel hash-trie data structure
that is a template for implementing data structures
that require storage and retrieval of fine-grained type-
heterogeneous content.1

2. We detail a multi-map implementation based on AXIOM

that improves overall run-time efficiency and reduces
memory footprints by 1.87 xś5.1 x over idiomaticmulti-
maps in Clojure and Scala.

3. We show that AXIOM strictly generalizes over the state-
of-the-art hash-trie data structures, namely HAMT [2]
and CHAMP [24], which are special instances of AXIOM.

All source code of data structures and benchmarks discussed
in this paper is available online.2

2 A Primer on Hash-Trie Data Structures

Hash-trie data structures form the basis of efficient immutable
unordered hash-set and hash-map implementations that are
contained in standard libraries of programming languages
such as Clojure and Scala [2, 24]. A general trie [5, 7] is an
n-ary search tree that features a large branching factor. In
a hash-trie, the search keys are the bits of the hash codes
of the elements that are stored in the prefix-tree structure.
Hash-tries are by construction memory efficient due to pre-
fix sharing, but also because child nodes are allocated lazily
only if the prefixes of two or more elements overlap.
While hash-tries allow implementing both mutable and

immutable data types, they are the de-facto standard for effi-
cient immutable collections, whereas array-based hashtables
keep predominating mutable collections. The main differ-
ence between mutable and immutable hash-trie variants lies

1This paper mainly describes the machinery of processing type-

heterogeneous data with hash-trie data structures. API and language support

for type-heterogeneity are not explicitly discussed in this paper, since the

AXIOM multi-map implementation leverages type-heterogeneity only inter-

nally for performance optimizations without exposing it to the API user.
2https://michael.steindorfer.name/papers/pldi18-artifact

in how and when trie nodes are reallocated. Mutable hash-
tries reallocate a node only if the node’s arity changes [2],
otherwise nodes are updated in-place. In contrast, immutable
hash-tries perform path-copying [17, 20] by reallocating a
whole branch, i.e., the node to-be-updated and all its parent
nodes. The resulting trie satisfies the immutability property
without modifying the previous version: it consists of a new
root node and an updated branch, while structurally sharing
all unmodified branches between both instances.
Such immutable data structures that are incrementally

constructed and that structurally share common data are
called persistent data structures [6, 11, 17]. Note that the term
persistency in the context of immutable data structures has
nothing in common with object serialization or the likewise
named property of database systems. Overall, persistency
is a much stronger property than immutability. While im-
mutability prohibits mutation, persistency enables efficient
derivations of new data structure instances. Compared to
naïve copy-on-write data structures, only a small logarithmic
delta of a data structure’s object graph is path-copied.3

Recapitulating Array Mapped Tries. In order to discuss
the contributions of the AXIOM data structure, we first con-
cisely recapitulate how Array Mapped Tries (AMTs) in gen-
eral work, and how in particular Hash-Array Mapped Tries
(HAMTs) work. Figure 1 illustrates an uncompressed AMT

multi-map data structure that stores mappings from objects
to integers, i.e., the tuples A 7→ 1, B 7→ 2, C 7→ 3, D 7→ 4,
D 7→ −4, and F 7→ 5. Note that the key D maps to multiple
numbers. For the moment, we ignore how multi-mappings
are internally stored and simply denote that D 7→ V, where
V is an arbitrary set of values. Figure 1b lists the hash codes
of tuple keys in base 10 and base 32. The hashes determine
the prefix-tree structure of the example in Figure 1a. Each
digit in the base 32 hash code notation encodes a distinct
5-bit chunk of a key’s hash code to which we will refer to
as mask. E.g., the first digit masks bits 0ś4 bits of the hash
code, the second digit masks to the bits 5ś9, etc. The masks
are then subsequently used as indices to navigate through
the prefix tree. As the name suggests, in an AMT each node
is implemented as an array of fixed size, e.g., in our case the
array is of size 32 to cater for all possible 5-bit mask values.
In Figure 1a, the array indices are displayed in the left upper
corner of each cell, the empty cells 8ś30 are elided in favor
of a concise graphical representation. For immutable collec-
tions, 5-bit prefixes experimentally yield a good performance
balance between search and update operations [3].

Lookup. Search is a recursive operation, which navigates
through the trie by means of indexing. We start by indexing

3On the JVM, many popular third-party collection libraries Ðincluding

Google’s Guava libraryÐ solely contain immutable data structures, but not

persistent data structures. Updating immutable data structures by means of

copy-on-write is orders of magnitude slower than updating persistent data

structures that are, for example, contained in Clojure or Scala.
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0 1

•
2 3

A 7→ 1

4 5 6

F 7→ 5

7

. . .
31

•
0

D 7→V

1 2 3

E 7→ 5

4 5 6 7

. . .
31

0 1

B 7→ 2

2 3 4

C 7→ 3

5 6 7

. . .
31

(a) uncompressed prefix search tree where each node is an array

hash(A) = 410 = 4 0 0 . . .32

hash(B) = 205010 = 2 0 2 . . .32

hash(C) = 512210 = 2 0 5 . . .32

hash(D) = 3410 = 2 1 0 . . .32

hash(E) = 13010 = 2 4 0 . . .32

hash(F ) = 710 = 7 0 0 . . .32

(b) hash codes of keys in base 32

Figure 1. Example of an uncompressed AMT data structure storing multi-map tuples in (a). The hash codes of the tuple keys
are listed under (b) in base 10 and base 32. The base 32 digits are used to navigate through the tree of fixed-size arrays. The
first digit is used to index the array on level 1, the second digit is the index for array on level 2, etc.

into the root node’s array with the first mask value. If the
array slot is empty, no search key is associated with the prefix
denoted bymask. If the array slot is indeed occupied, we have
to distinguish two further cases: it contains a key/value or
key/value-set pair, or it points to a nested array. In the former
case we can compare the search keys to decide if the search
key is present. In the latter case, we need to recurse with
the remaining mask values. E.g., to lookup key A, we index
into the root node with mask 4 and successfully encounter
a key/value pair with its key matching our search key. For
looking up key C, we have to recurse twice before we can
distinguish it from object B in the leaf node with mask 5.
Note that values B and C share the prefix sequence 2 and 0.

Insertion. Insertion reuses the navigation from lookup. The
element to be inserted is placed in the trie as soon as it can
be unambiguously distinguished from all other elements by
its prefix. If necessary, insertion lazily expands the trie and
adds new sub-nodes to distinguish prefixes on the next level.

Deletion. This operation also reuses the navigation from
lookup. After a search key is located in the tree, the payload
is removed from the node where it was stored. Deletion may
yield suboptimal tries. E.g., in Figure 1, removing the tuple
with key C leaves the tuple with key B as only element in
the node left, while it could be more efficiently stored one
level higher. Keeping a trie minimal and canonical enables
significant performance improvements [24].

Sparsity. Tries can encode arbitrary search keys that are
binary comparable. A HAMT is a specific instance of an AMT

that encodes the hash codes of the search keys in the prefix-
tree structure. As such, a hash-trie needs to support resolving
of hash collisions in case the prefixes are identical but the
search keys differ. For hash-tries, a typical uniform distribu-
tion of hash values always yields a sparse AMT with a major-
ity of empty cells per node. In the context of collections, such

a in-memory representation would be very inefficient. E.g.,
Figure 1 requires three arrays with in total 96 cells for storing
references to seven key/value pairs. For better memory effi-
ciency hash-tries normally apply some form of compression.
The most simple and wide-spread approach is to compact
the sparse array with the help of a single 32-bit bitmap [3],
eliminating all empty cells. This compaction comes at a cost:
it requires dynamic type checks to recover which type of
content is actually stored in an array cell, and it implies
that all content shares the same structural representation.
A recent approach [24] removes the cost of dynamic type
checks using one additional bitmap to distinguish stored
payload from sub-trees, but conceptually does not generalize
to multiple type-heterogeneous content categories.

3 The AXIOM Prefix-Search Tree

The design goal of AXIOM is to efficiently store and discrimi-
nate on fine-grained type-heterogeneous content. This is of
importance, because many data structure design challenges
can be mapped to heterogeneous optimization problems.

In the case of a new immutable multi-map data-structure,
mappings of any cardinality need to be supported within a
single data structure: be it 1 : 1, n : 1, or n : n. We want to let
memory performance improve or degrade gracefully as the
arities of the domain and range of a relation incrementally
grow or shrink during a computation, e.g., during constraint
solving. The unavoidable run-time overhead we introduce,
to be able to compress and switch on various content rep-
resentations, must be kept small for achieving a balanced
collection design that yet significantly saves memory. We
will evaluate the result experimentally in Sections 4 and 5.

Although the original and elegant hash-trie encoding by
Bagwell [2] forms the basis of our design, it is itself not
amenable directly to fine-grained type-heterogeneous rep-
resentations, such as needed for optimizing multi-map data
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structures. Instead we need a different representation. Simi-
lar to the changes made for more recent immutable sequence
data structures [19, 26] and binary search trees [21] we need
to break out of the original hash-trie design and add some
initial overhead to achieve what we want: a leaner and faster
implementation of multi-maps and likewise data structure
designs (that require fine-grained type-heterogeneity).

Foundations of AXIOM. The first concept behind the AXIOM

prefix-tree data structure is to use a single array to store
many different types of content. This allows us to special-
ize not only for a sparse domain like a HAMT, but also for
different classes of cardinality for the range of a relation:
singletons can be inlined, small collections can be special-
ized and large collections can be used as a general fallback.
Moreover, content can migrate easily from one to another
content representation, without having to frequently reallo-
cate the underlying array. As a result, the expected overhead
per stored element should drop significantly.

The second concept behind AXIOM is the grouping of simi-
lar content together, in consecutive array slices. For a multi-
map this translates to grouping per trie node all 1 : 1 tuples,
all 1 : n tuples, and all sub-nodes in distinct array slices
together, instead of arbitrarily mixing them. This grouping
then enables an efficient bitmap encoding to help distinguish
which array element has which type without resorting to
dynamic type checks at runtime.
The third concept behind AXIOM is that individual ele-

ments do not need to be checked for their specific type,
during iteration, streaming, or when batch-processing ele-
ments. We argue that this is the main reason why the new
encoding for separating multiple content representations
performs well with iteration-based algorithms: in AXIOM in-
ternal type-heterogeneity comes at a low cost. Observations
from implementing speculative runtime optimizations for
collection processing in dynamic languages indeed suggest
that avoiding individual type checks is a key enabler for
obtaining good overall performance [4].

3.1 Generalizing Existing Hash-Trie Data Structures

The two contenders for implementing efficient unordered
hashtables for collection libraries are the HAMT [2] and the
CHAMP [24] data structure. The principles of these data struc-
tures were already covered in Section 2, with exception of
how they deal with sparsity and compression. In the follow-
ing, we first detail how HAMT and CHAMP encode the three
minimal states of a hash-trie ÐEMPTY, PAYLOAD, and NODEÐ
and, second, how AXIOM efficiently generalizes these two
data structures by supporting multiple (type-heterogeneous)
payload categories.

A Note on Type-Safety. In the context of hash-tries we in-
terchangeably use the term type-safety for type-casts that
are guaranteed to succeed, i.e., that are never type-violating.
This is an important detail to keep in mind, since generic

implementations of all three data structures on the JVM use
arrays of type Object[] for storing the payload in the search
tree, regardless of the generic type parameters. Yet, type-
safety is guaranteed by either using casts after instanceof
checks, or checked casts that rely on explicit type meta-data
that is efficiently stored in bitmaps. Figure 2 visualizes the
conceptual differences between HAMT, CHAMP and AXIOM:

HAMT (cf. Figure 2a) uses a 1-bit per branch encoding that
is insufficient to encode a HAMT’s three possible branch states
(i.e., EMPTY, PAYLOAD, and NODE). The single bitmap serves to
identify if a branch is occupied or empty, to then allocate
a dense array (Object[]) without empty cells. The resulting
dense array contains an untyped mix of PAYLOAD and NODE

instances. To discriminate between both cases, a HAMT relies
on type checks at run-time, e.g., instanceof on the JVM.

CHAMP (cf. Figure 2b) is a successor design of HAMT that
explicitly encodes all three states ÐEMPTY, PAYLOAD, and NODEÐ
with bitmaps and does not require type checks at run-time.
More specifically, CHAMP uses two distinct bitmaps: one each
for identifying the PAYLOAD and NODE states, while the EMPTY

state is implied by not being present in either bitmap. Due
to the explicit bitmap encoding of all three states, CHAMP

can permute the content of the untyped array Ðgrouping
together all payload and all nodesÐ while still being able
to track the hash-prefixes to the corresponding cells in the
dense, compacted, and permuted array. The permutation
turned out to be the key design element relevant to increase
cache locality, decrease memory footprints and to drastically
improve the performance of iteration (on average 1.3ś6.7 x)
and equality checking (on average by 3ś25.4 x).
Nevertheless, CHAMP also has limitations that prohibit

extending it to a generalized type-heterogeneous data struc-
ture. At lookup, insertion, and deletion, CHAMP sequentially
checks (in order) if the prefix is contained in the PAYLOAD

bitmap, or if it is contained in the NODE bitmap. Otherwise,
the prefix implicitly belongs to the EMPTY category. Explicitly
storing membership of each group (i.e., PAYLOAD and NODE)
in a distinct bitmap, but not explicitly storing EMPTY incurs
root limitations when extrapolating CHAMP’s design to type-
heterogeneity, as illustrated in Listing 1. Firstly, memory
overhead increases by adding dedicated bitmap for each
group membership to test (e.g., in the case of multi-maps re-
quiring one additional bitmap for the 1 : n payload category).
Secondly, negative lookups become slow, because the EMPTY

state is not explicitly encoded. Thirdly, offset-based indexing
is tedious and expensive, because offsets must be aggregated
by counting bits over scattered bitmaps.

AXIOM (cf. Figure 2c) aims to inherit the beneficial per-
formance characteristics of CHAMP by relying on content
permutation, while eliminating the restrictions that made
the data structure only applicable to (homogeneous) hash-
set and hash-map implementations. We first discuss, bitmap
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01 0 00 0 … 1 1 10

class Node {  

  Object[] content;

  int bitmap;
 

}

1x 1-bit*

   *requires additional  

   dynamic type check

Object[]

(a) HAMT

00 1 00 1 … 0 0 00

01 0 00 0 … 1 1 10

class Node {  

  Object[] content;

  int datamap;

  int nodemap;
}

2x 1-bit

Payload[] Node[]

(b) CHAMP

00 1 … 001 0 … 1

class Node {

  Object[] content;

  BitVector bitmap;  

}

1x n-bit

PayloadType1[] PayloadTypeN[] Node[]

Payload[]

…

(c) AXIOM

Figure 2. Visualization of the conceptual encoding differences between HAMT, CHAMP and AXIOM.

1 void template(int keyHash, int shift) {

2 int mask = mask(keyHash, shift);

3 int marker = 1 << mask;

4

5 if ((datamap1() & marker) != 0) {

6 int index = index(datamap1(), marker);

7 ...code for lookup, insert or delete ...

8 } else if ((datamapN() & marker) != 0) {

9 int index = count(datamap1())

10 + count(...)

11 + index(datamapN(), marker);

12 ...code for lookup, insert or delete ...

13 } else if ((nodemap() & marker) != 0) {

14 int index = count(datamap1())

15 + count(...)

16 + count(datamapN(), marker);

17 + index(nodemap(), marker);

18 ...code for lookup, insert or delete ...

19 } else {

20 // default: empty (marker not found in any bitmap)

21 ...code for lookup, insert or delete ...

22 }

23 }

Listing 1. Extrapolated CHAMP template using linear
scanning for dispatching on type-heterogeneous payload.

representations, before discussing the necessary abstractions
required to enable efficient content permutations. In contrast
to CHAMP, AXIOM uses a single bit-vector multi-bit type-tags:

Tagging Type-Heterogeneous Payload: We assign each
category that we want to discriminate a unique inte-
ger constant. E.g., a multi-map implemented with AXIOM

is supposed to discriminate between two different con-
tent representations: PAYLOAD_CATEGORY_1 = 1 identifies
a key/value pair with an inlined singleton value, and
PAYLOAD_CATEGORY_2 = 2 hints that a key is associated
with a reference to a nested set of multiple values. Se-
quential enumeration naturally extends to an arbitrary
number of categories.

1 void template(long bitmap, int keyHash, int shift) {

2 int mask = mask(keyHash, shift);

3 int type = (int) ((bitmap >>> (mask << 1)) & nBitMask);

4

5 int relativeIndex = index(bitmap, type, mask);

6 int absoluteIndex = offset(type, histogram(bitmap))

7 + weight(type) * relativeIndex;

8

9 switch (type) {

10 case EMPTY:

11 ...code for lookup, insert or delete ...

12 break;

13 case PAYLOAD_CATEGORY_1:

14 ...code for lookup, insert or delete ...

15 break;

16 case PAYLOAD_CATEGORY_2:

17 ...code for lookup, insert or delete ...

18 break;

19 case NODE:

20 ...code for lookup, insert or delete ...

21 break;

22 }

23 }

Listing 2. AXIOM template for lookup, insertion, and deletion
that processes a long bitmap with 2-bit wide entries.

Tagging a Trie’s Internal Representations: Next to the
payload categories, we have to mark nested sub-trees
with a distinct NODE category. By convention we assign
the highest category number to sub-trees, i.e., NODE = 3

in the case of an AXIOM multi-map. AXIOM accounts for
sparsity that arises from hashing with an extra tag: by
convention we decided to use the lowest number: EMPTY
= 0. These choices allows subsequent optimizations, as
we will detail later in this section.

Note that treating type-heterogeneous payload tags and in-
ternal representations alike, makes every category member-
ship explicit. Further, it allows generalizing over HAMT and
CHAMP. The former case uses only tag EMPTYwith subsequent
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dynamic type-checks, whereas the latter uses the categories
EMPTY, PAYLOAD, and NODE. The general type-heterogeneous
case utilizes a variable amount of payload categories that
needs to be fixed statically at design time of the data struc-
ture.4 We refer to AXIOM’s bounded type-heterogeneity as
type-heterogeneity of rank k , where k denotes the maxi-
mum number of supported heterogeneous types the data
structure can discriminate. For any k , a AXIOM node requires
n = ⌈loд2(k + 2)⌉ bits per branch. The constant 2 in the
formula caters for the obligatory EMPTY and NODE cases.

As highlighted in Listing 2, the unified tags allow fast dis-
patching with switch statements instead of linear probing,
without being limited by a larger number of case distinctions.
Note that all case blocks access the (payload) data by index-
ing into the Object[] content array with the absoluteIndex.
Since each case block corresponds to a specific type that
was recovered from the bitmap meta-data, AXIOM can safely
perform the corresponding type casts in each branch, which
are guaranteed to succeed.

Running Example: Multi-Maps. We continue detailing
the AXIOM’s concepts that generalize towards k data cate-
gories, while applying it to an optimized type-heterogeneous
multi-map that distinguishes between 1 : 1 and 1 : n tuples.5

In the case of a multi-map, AXIOM discriminates in total
between four states. A direct binary encoding of those four
states requires two bits (n = 2). We map one 2-bit variable
to each branch in our trie. With a branching factor of 32,
we require 32 2-bit variables to encode each branch’s state.
On the JVM, an 8-byte primitive value of type long suffices
to concisely store all 32 2-bit variables consecutively in a
single bitmap. In the resulting bitmap, the first two bits des-
ignate the state of the first branch, while the second two bits
designate the state of the second branch, etc.

3.2 Abstractions for Scalable Type-Heterogeneity

AXIOM’s regrouping into different slices is achieved by per-
muting the content of the array cells, while at the same
time keeping track of the mask values that are associated
with the elements. Permutations occur each time a value is
inserted, removed, or converts its internal representation,
e.g., in the case of a multi-map converting a singleton to a
multi-mapping upon insertion, converting from a payload to
a sub-node when prefixes collide, or inlining a node’s single
payload value in its parent node upon compaction.
Figure 3 illustrates the step-by-step construction of an

AXIOM multi-map that is equivalent to the trie of Figure 1a.
In the sequence of incremental insertions, two changes of
group membership happen that require permutation. First,
when comparing Figures 3a and 3b we can observe that

4AXIOM therefore differs from run-time type-heterogeneous data structures

structure that often are difficult to optimize.
5We assume that AXIOM will be used a template to design arbitrary collec-

tion data structures that require fine-grained type-heterogeneity.

A 7→ 1 swaps place with a newly extended sub-tree at the
root node tuple. Second, when comparing Figures 3c and
3d we can observe that the insertion of D 7→ −4, triggers a
conversion from an key/value pair to a key with a nested set
of values.

AXIOM needs to fulfill the following two criteria in order to
enable an efficient implementation of permutation. First, cal-
culating any content group’s offset within the node’s array
needs to be supported efficiently. Second, relative indexing
into an individual group needs to be supported efficiently
and be aware of compressions. We will address the two afore-
mentioned challenges in Sections 3.3 and 3.4 respectively.

3.3 Content Histograms

Streaming or iterating over a AXIOM’s content requires in-
formation about the amount and types of the whole content
that is stored in a trie node. Studies on homogeneous and
heterogeneous data structures [4] have shown that avoiding
checks on a per elements basis is indeed relevant for achiev-
ing good performance. In order to avoid such checks while
indexing into the shared array, we use histograms:

int[] histogram = new int[1 << n];

for (int branch = 0; branch < 32; branch++) {

histogram[(int) bitmap & nBitMask]++;

bitmap = bitmap >>> n;

}

This listing abstracts over the number of type distinctions
and executes in 32 iterations. The constant n is set to 2 due
to our 2-bit patterns, and consequently nBitMask is 0b11 Ð
it has the lowest n bits set to 1. In its generic form, the
code profits from default compiler optimizations such as
scalar replacement [22], to avoid allocations on the heap,
and loop unrolling. Note that for a fixed n partial evaluation
can remove the intermediate histograms completely.
For streaming, iteration or batch-processing of data, the

histograms avoids re-counting the elements of individual
categories at run-time. And, the otherwise complex code
for trie-node iteration reduces to looping through the two-
dimensional histogram using two integer indices.
An added benefit is that inlined values although stored

out of order, will be iterated over in concert, avoiding spuri-
ous recursive traversal and its associated cache misses [24].
Finally, to avoid iterating over empty positions in the tail,
iteration can exit early when the running counter reaches its
upper bound: with histograms, the total number of elements,
regardless of their types, can be calculated with the formula
32 - histogram[EMPTY] - histogram[NODE].

Calculating Groups Lengths and Offsets. A histogram
allows to efficiently derive length and offset properties. For
a type-heterogeneous AXIOM multi-map data structure, we
can provide a vector of weights = [0, 2, 2, 1] that defines
the amount object references a group-specific entry requires.
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(d) D 7→ −4, F 7→ 6.

Figure 3. An incrementally constructed and compressed AXIOM prefix search tree data structure: empty array slots are
eliminated and non-empty slots are permuted such that same-typed elements are juxtaposed. In this example nodes contains
first a sequence of 1 : 1 mappings, followed by 1 : n mappings, and at the end a sequence of sub-trees. 1 : 1 mappings are
stored in-place, whereas 1 : n mapping allocate and nest a set data structure.

EMPTY cells are dropped by compression (weight = 0), whereas
both PAYLOAD_CATEGORY_1 and PAYLOAD_CATEGORY_2 store two
references (weight = 2): the former case refers to an inlined
key/value pair, the latter case refers to a key that is accom-
panied by a reference to a nested set. The category NODE

stores a single sub-node reference (weight = 1). With the
histogram and the weight vector, we can now calculate the
length properties of the groups by component-wise multipli-
cation: lengthi = histogrami ∗weighti . From the length vector
we infer the offsets, and thus boundaries, of the groups that
are all stored within a single array:

offseti =

{
0 if i = 0

offseti−1 + lengthi−1 if i , 0

Histogram, length and offset vectors provide all information
necessary for batch-processing AXIOM trie-nodes, but also
identify group offsets that are required for relative indexing
into a group. The operation of relative indexing, on basis of
AXIOM’s bitmap encoding, is discussed next.

3.4 Relative Indexing into a Particular Group

While some operations require knowledge about the distri-
bution of all content stored in a node, others are satisfied by
accessing a single element of one particular data category.
In an uncompressed AMT the mask directly reflects the array
index. In an AMT the node’s array is therefore totally ordered
by the monotonously increasing mask values. This property
can be exploited for relative indexing into a compressed con-
tent group [2]. In AXIOM, mask and index do usually differ
due to permutation of the cells. AXIOM preserves the total
ordering amongst values that belong to a specific group ac-
cording to their mask values in presence of permutation. The
concept of relative indexing [2] therefore remains applica-
ble to individual groups, however hardware and standard
library bit-counting Application Program Interfaces (APIs),

1 int index(long unfilteredBitmap, int type, int mask) {

2 long bitmap = filter(unfilteredBitmap, type);

3 long marker = 1L << (mask << 1);

4 return Long.bitCount(bitmap & (marker - 1));

5 }

6

7 long filter(long bitmap, int type) {

8 long mask = 0x5555555555555555L;

9 long masked0 = mask & bitmap;

10 long masked1 = mask & (bitmap >> 1);

11

12 switch (type) {

13 case EMPTY:

14 return (masked0 ^ mask) & (masked1 ^ mask);

15 case PAYLOAD_CATEGORY_1:

16 return masked0 & (masked1 ^ mask);

17 case PAYLOAD_CATEGORY_2:

18 return masked1 & (masked0 ^ mask);

19 case NODE:

20 return masked0 & masked1;

21 }

22 }

Listing 3. Reducing of multi-bit patterns to single bits for
relative indexing into a group’s sorted sequence.

which are also used in case of HAMT, do not support counting
occurrences of n-bit long literals in bit-vectors efficiently; a
challenge that we address in this section.

Template for Lookup, Insertion, and Deletion. Listing 2
illustrates a Java source template for how lookup, insertion,
or deletion operations would retrieve a cell’s group mem-
bership. The template function takes three arguments: the
bitmap itself, the hash code of the search key, and the shift
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value that corresponds to the trie-node’s level and subse-
quently allows retrieving the 5-bit mask of the keyHash ac-
cording to the node’s level.

The mask (line 2) is used to recover the type pattern (line 3)
from the bitmap: first, the offset of the type pattern corre-
sponding to mask value is calculated with mask << 1; second,
the 2-bit pattern is shifted to the start of the bitmap with the
help of the offset, and finally retrieved with the nBitMask.
With a type, the lookup, insertion or deletion operation

then directly jumps to the relevant case handler (lines 9ś22).
The search key’s relative index within a group (line 5) is cal-
culated by counting how many times the same type occurs
in the bitmap before the search key’s position. Remember
that all elements within a group remain totally-ordered ac-
cording to their mask values. The relativeIndex, together
with the vectors that are derived from the histogram (offset
and weight), lets AXIOM determine the absolute index (line 6)
of the content within the node’s array. The weight is used
for a group-internal offset, because each content category of
can be mapped to consume multiple physical array slots. We
will continue with first discussing preliminary performance
considerations of relative indexing on platforms such as the
JVM, before detailing the algorithm.

Performance Considerations. Bit-counting APIs that are
efficiently compiled to hardware instructions on the X86 /
X86_64 architectures are frequently encountered in standard
libraries of programming languages. E.g., the Java standard
library does contain bit count operations for int and long,
which count the number of bits that are set to 1. The afore-
mentioned APIs unfortunately do not cover counting n-bit
patterns with n > 1, which are necessary for our encoding.
In order to leverage the efficiency of the hardware bit-count
operations, we introduce bitmap pre-processing filters that
simplify multi-bit patterns to single bits. Listing 3 (lines 7ś22)
shows the filter function, which receives two arguments: an
unfiltered bitmap, and the bit-pattern of the type to search for.
Matching entries are reduced to 01 (i.e., a single bit set to 1),
while all non-matching entries are reset to 00. The resulting
bitmap can be fed into standard bit-counting operations.

Implementation Details. Listing 3 (lines 1ś5) shows a com-
plete Java implementation of the relative indexing operation.
For ease of understanding, we will explain the operation
by example, by calculating the index of the tuple F 7→ 6
from the root node from Figure 3d. The node contains three
entries: masks 4 and 9 belong to DATA_CATEGORY_1 (bit-pattern
01), and mask 2 refers to a NODE (bit-pattern 11). The interme-
diate results are listed below:

unfilteredBitmap = 0031 . . . 019 00 00 00 00 01 00 11 00 000

bitmap = 0031 . . . 019 00 00 00 00 01 00 00 00 000

(marker − 1) = 0031 . . . 009 11 11 11 11 11 11 11 11 110

bitmap & (marker − 1) = 0031 . . . 009 00 00 00 00 01 00 00 00 000

First, the bitmap is filtered according to the type that desig-
nates the group into which we want to index. After applying
the filter, both DATA_CATEGORY_1 entries remain, but the NODE

entry is removed from the filtered bitmap.
Second, we create a marker, i.e., a single bit that is set to 1,

at the position where the mask’s 2-bit pattern is stored in the
bitmap. For tuple F 7→ 6, the mask value of the key equals 9.
The constant 1L is shifted to the final marker position with
the mask value that is scaled to 2-bit patterns (mask << 1).
The marker is then used to create a another bit-mask that
has all bits left of the marker’s position set to 1 (marker - 1).
Finally, the new bit-mask allows us to count all occur-

rences of type to the left of the position of F 7→ 6 according
to the total ordering within a group (bitmap & (marker -

1))). In our example, invoking Long.bitCount returns value
1, the resulting relative index of the tuple F 7→ 6 within the
DATA_CATEGORY_1. Note that the bit-count expression (line 4)
also occurs in HAMT’s simple compression. However, AXIOM
generalizes this operation to support permutations by apply-
ing bitmap pre-processing and filtering, and offset scaling.

3.5 Roadmap of Evaluation

In our evaluation we will show that type-heterogeneous
AXIOMmulti-map offers better performance than comparable
composite multi-maps in Scala and Clojure (Section 4), while
generalizing with little overhead over state-of-the-art maps
(Section 5). A real-world use-case (Section 6) underlines the
effectiveness of type-heterogeneous AXIOMmulti-mapswhen
used as a graph for solving static analysis problems.
The source code of the data structures and benchmarks

used in this paper is available online.6 In order to counter
concerns about internal validity, we would like to mention
that the data structures presented in this paper are well
tested and used in production in the runtime of a mature
programming language.7

4 Case Study: Persistent Multi-Maps

We start by evaluating the performance characteristics of
a type-heterogeneous AXIOM multi-map against idiomatic
multi-map implementations in Clojure and Scala. Both lan-
guages are used widely in industry and the open-source
world, and feature sophisticated and well engineered im-
mutable collections in their standard libraries. Neither lan-
guage provides native immutable multi-maps out of the
box though, but nevertheless both languages suggest id-
iomatic solutions to transform normal polymorphic maps
with nested sets into multi-maps.

VanderHart and Neufeld [27, p. 100ś103] propose a so-
lution for Clojure based on protocols, which are Clojure’s
solution for ad-hoc polymorphism that is similar to type
classes in Haskell [18, 28]. Comparable to AXIOM, values are

6https://michael.steindorfer.name/papers/pldi18-artifact
7https://www.rascal-mpl.org

290

https://michael.steindorfer.name/papers/pldi18-artifact
https://www.rascal-mpl.org


To-Many or To-One? All-in-One! PLDI’18, June 18ś22, 2018, Philadelphia, PA, USA

●

●
●●●

●
●●●

Lookup Lookup
(Fail)

Insert Delete Footprint
(32−bit)

Footprint
(64−bit)

R
eg

re
ss

io
n 

or
 Im

pr
ov

em
en

t

neutral

2x

3x

4x

Figure 4. Performance comparison of an AXIOM multi-map
against an idiomatic multi-map in Clojure (baseline).
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Figure 5. Performance comparison of an AXIOM multi-map
against an idiomatic multi-map in Scala (baseline).

●
●

●

Lookup Lookup
(Fail)

Insert Delete Iteration
(Key)

Iteration
(Entry)

R
eg

re
ss

io
n 

or
 Im

pr
ov

em
en

t

1.50x

1.25x

neutral

1.25x

1.50x

1.75x

2x

Figure 6. Performance comparison of an AXIOM multi-map
against a CHAMP map (baseline).

stored either as a singleton or a nested set, however untyped.
The multi-map protocol performs the necessary dynamic
type checks and handles all possible case distinctions for
lookup, insertion, and deletion.
Scala programmers would idiomatically use a trait for

hoisting a regular map to a multi-map, by nesting typed
sets as values of polymorphic maps. Scala’s standard library
unfortunately only contains a trait for mutable maps. We
therefore ported the standard library’s program logic of their
mutable multi-map trait to the immutable case.

Assumptions. With the microbenchmarks of Sections 4 and
5 we evaluate the performance of individual operations in
a controlled and synthetic setting that does not account
for cost functions for hashCode and equals methods. The
case study of Section 6 in contrast uses objects with costly
hashCode and equals implementations.

4.1 Operations under Test

Insert: We call insertion in three bursts, each time with 8
random parameters to exercise different trie paths.8 Firstly
we provoke full matches (key and value present), secondly
partial matches (only key present), and thirdly no matches
(neither key nor value present). Next to insertion of a new
key, this mixed workload also triggers promotions from
singletons to full collections.

Delete: We call deletion in two bursts, each time with 8 ran-
dom parameters. Provoking again full matches and partial
matches. Next to deletion of a key, this mixed workload
also triggers demotions from full collections to singletons,
and compaction of trie nodes where applicable.

Lookup: We call lookup in two bursts to provoke full and
partial matches. This test isolates how well the discrimi-
nation between singletons and full collections works.

Lookup (Fail): In a single burst with 8 random parameters
we test unsuccessful lookups. We assume this test equiva-
lent to Delete with no match.

To exercise if we can indeed exploit skewed distributions, we
use for each size data point 50 % of 1 : 1 mappings and 50 %
of 1 : 2 mappings. Although fixing the size of nested value
sets may seem artificial, it allows us to precisely observe the
singleton case, promotions to value sets, and demotions to
singletons. The effect of larger value sets on memory usage
and time can be inferred from that without the need for
additional experiments.

4.2 Hypotheses

Hypothesis 1: We expect the performance of lookup, dele-
tion, and insertion of an AXIOM multi-map to be equal
or better to the competitors performance. AXIOM natively
supports multi-maps in a space-efficient way and should
execute faster than a hoisted multi-map in Clojure or Scala.

Hypothesis 2: Only for unsuccessful lookups we expect
that AXIOM performs worse than Scala, based on results
from related work [24] that explain the inherent differ-
ences between Scala’s implementation and other hash-tries
when it comes to memoizing hash codes.

Hypothesis 3: We expect average memory savings of at
least 50 % compared to Scala, due to the omission of nested
collections for singletons. We cannot assume space saving
over Clojure in this regard since it also inlines singletons.
Still we expect observable memory savings due to Clojure’s
simple compression that may contain empty array cells
(in contrast to AXIOM’s compression by permutation).

4.3 Experiment Setup

The benchmarks were executed on a computer with 16GB
RAM and an Intel Core i7-2600 CPU that has a base fre-
quency of 3.40GHz, 8MB Last-Level Cache and 64 B cache
lines. The software stack consisted of Fedora 20 operating

8For < 8 elements, we duplicated the elements until we reached 8 samples.
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system (Linux kernel 3.17) and an OpenJDK (JDK 8u65) JVM.
We disabled CPU frequency scaling and fixed the JVM heap
sizes to 8GB for benchmark execution.

To obtain statistically rigorous performance numbers, we
adhere to best practices for (micro-)benchmarking on the JVM

as for example discussed in Georges et al. [8], Kalibera and
Jones [15]. We measure the execution time of the operations
under test with the Java Microbenchmarking Harness (JMH),
which is a framework to overcome the pitfalls of microbench-
marking. We configured JMH to invoke the Garbage Collec-
tor (GC) between measurement iterations to reduce a pos-
sible confounding effect of the GC on time measurements.
For all experiments JMH performs 20 measurement iterations
of one second each, after a warmup period of 10 equally
long iterations. The precise numbers of benchmark iteration
were obtained from tuning our benchmark setup to finish in
reasonable time while still yielding accurate measurements
with errors smaller than 1%. Additional to the median run-
time we report the measurement error as Median Absolute
Deviation (MAD), which is a robust statistical measure of vari-
ability that is resilient to small numbers of outliers. Memory
footprints of the data structure heap graphs are obtained at
runtime with Google’s memory-measurer library.9

Random Test Data Generation. In our evaluation we use
collections of sizes 2x for x ∈ [1, 23], a size range which
was previously used to measure the performance of hash-
tries [2, 24]. For every size data point, we create a fresh
collection instance populated with numbers from a random
number generator. Random integers are used to model the
distribution of the hash codes of the keys. In our case a
uniform distribution from random integers models a good
hash code implementation.

Protecting againstAccidental Trie Shapes andBadMem-
ory Locations. We repeat every experiment for each size
data point five times. Each time we use a different input tree
that is generated from a unique seed. This counters possible
biases introduced by the accidental shape of the tries, and
accidental bad locations in main memory.

4.4 Experiment Results

Figures 4 and 5 show the relative differences of an AXIOM

multi-map compared to the implementations in Clojure and
Scala. Note that both figures use different x-axis scales due
to diverging improvement factors. We summarize the data
points of the runswith the five different trees with their medi-
ans. Each box plot visualizes the measurements for the whole
range of input size parameters. We report improvements
as speedups factors (measurementother/measurementAXIOM)
above the neutral line, and degradations as slowdown fac-
tors below the neutral line, i.e., the inverse of the speedup
equation. We now evaluate our hypotheses:

9http://openjdk.java.net/projects/code-tools/jmh/

Confirmation of Hypothesis 1: Performance strictly im-
proved over the competition, as expected. Lookup, Insert,
and Delete perform by a median 1.47 x, 1.31 x, and 1.31 x
faster than Scala, respectively. AXIOM clearly outperforms
Clojure with a median speedups of 2.68 x, 2.17 x, and 2.23 x
respectively for the aforementioned operations.

Confirmation of Hypothesis 2: As expected from related
work studies, AXIOM performs worse than Scala for nega-
tive lookups. Runtimes increased by a median 1.27 x and at
maximum by 1.58 x. Compared to Clojure, AXIOM improves
performance of negative lookups by a median 1.54 x. Note
that Clojure, like AXIOM, only stores hash-code prefixes
and does not memoize the full hashes.

Confirmation of Hypothesis 3: Also, as expected, mem-
ory footprints improve by a median factor of 1.71 x (32-bit)
and 1.69 x (64-bit) over Scala, and by a median factor of
1.73 x (32-bit) and 1.85 x (64-bit) over Clojure.

Even Smaller Footprints. We additionally compared two
variants of AXIOM: one with fusion applied, and one that
applied memory-layout specialization on top of fusion. In
relation to both Clojure and Scala, memory footprints low-
ered on average by 2.43 x in the former setting, and by 5.1 x
in the latter. Fusion had a strictly positive impact on ex-
ecution times (due to less memory indirections), whereas
specialization added a performance penalty of circa 20 %.

Discussion. We were surprised that the memory footprints
of Clojure’s and Scala’s multi-map implementations are al-
most equal. From related work [24] we knew the typical
trade-offs of both libraries: Scala mainly optimizes for run-
time performance, while Clojure optimizes for low memory
footprints. Code inspection revealed the cause of the relative
improvement: Scala’s hash-set does specialize singletons.
In this laboratory setup, an AXIOM multi-map resulted in

improved runtimes of lookup, insertion, and deletion Ðwith
the notable exception of negative lookups when compared to
ScalaÐ while also significantly lowering memory footprints.

5 Case Study: Persistent Maps

In this section we evaluate the performance characteristics
of AXIOM against CHAMP, a comparable data structure for
immutable collections [24], to isolate the effects that are
incurred by generalizing AXIOM towards type-heterogeneity
that uses bitmap pre-processing and content histograms.

5.1 Operations under Test

To make AXIOM comparable to CHAMP, we use for each size
data point 100 % of 1 : 1 mappings. The basic benchmarking
setup and methodology is extensively outlined in Section 4.
We test the same operations as in the previous section, how-
ever add Iteration (Key) and Iteration (Entry), which test the
overhead of iterating through the map’s keys and iteration
through a flattened sequence of entries.
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5.2 Hypotheses

Hypothesis 4: We expect AXIOM’s runtime performance of
lookup, deletion, and insertion to be similar comparable to
CHAMP’s runtime performance, but never better. As AXIOM
generalizes over specialized approaches such as CHAMP,
running times should not degrade below a certain thresh-
old; we feel that 25 % for median values and 50 % for maxi-
mum values would about be acceptable as a trade-off.

Hypothesis 5: Iteration over an AXIOM data structure is
more complex than iterating over a regular map. However,
due to the histogram abstraction, which early terminates
when a node’s payload is exhausted, we assume that the
performance of AXIOM should be on a par with CHAMP.

Hypothesis 6: Memory footprints of AXIOM should in the-
ory match CHAMP’s footprints; both designs starkly differ
in implementation choices, but they share the same 64-bit
bitmap encoding overhead per node.

5.3 Experiment Results

Figure 6 reports for each benchmark the ranges of runtime
improvements or degradations; we do conclude:

(Partial) Confirmation of Hypothesis 4: At all the basic
operations, AXIOM’s performance was strictly worse than
the performance of the special-purpose CHAMP data struc-
ture. Lookup, Lookup (Fail), Insert and Delete degraded
by a median 27 %, 24 %, 4 %, and 18 % respectively. All re-
sults stayed within the expected bounds, with exception
of Lookup, which missed the target by 2 %.

(Partial) Confirmation of Hypothesis 5: Counter to our
intuition, both data structures yield different characteris-
tics. AXIOM improved Iteration (Key) by a median 48 % and
Iteration (Entry) by a median 25 %.

Confirmation of Hypothesis 6: As anticipated, AXIOM ex-
actly matches the footprint of CHAMP. The footprint data
points were therefore elided from Figure 6.

Discussion. When used as a map, AXIOM achieves accept-
able runtimes across all tested operations, although it clearly
lags behind the special-purpose CHAMP map. Especially for
lookup and deletion, processing of 2-bit states and bitmap
filtering does add up, whereas insertion seems only slightly
affected. On the positive note, the histogram abstractions for
batch-processing of AXIOM trie nodes positively influence
performance of key- and key/value pair iteration even for
the map use case (average speedups between 25ś48%).

6 Case Study: Static Program Analysis

The microbenchmarks of the previous two sections help to
separate individual factors that influence AXIOM’s perfor-
mance, but they do not show the support for the expected
improvements on an algorithm łin the wildž. To add this
perspective, we selected computing control-flow dominators
using fixed point computation over collections of nodes [1].

A

B C

D

E

(a) Control-Flow Graph

A

B C D

E

(b) Dominator Tree

Figure 7. Example of a control-flow graph (a) and its domi-
nator tree (b) that is derived from the dominance equations.

Dominators are widely used in practice [9], e.g., in compilers
for structural analysis and detection of natural loops, and
to calculate control dependencies and program dependence
graphs [12] for purposes of program analysis or optimization.
Although we do not claim the algorithm in this section

to be representative of all applications of multi-maps, it is a
basic implementation of a well known and fundamental algo-
rithm in program analysis. It has been used before to evaluate
the efficiency of hash-trie set and map implementations [24],
where sets were nested as the values a polymorphic map for
simulating multi-maps with basic collection types.

Shape of Data and Data Set Selection. The nodes in the
control-flow graph graphs are complex recursive ASTs with
arbitrarily expensive (but linear) complexity for hashCode and
equals. More importantly, the effect of type-heterogeneous
AXIOM’s multi-map encoding does depend on the accidental
shape of the data, as it is initially produced from the raw
control-flow graphs, and as it is dynamically generated by the
incremental progression of the algorithm. Figure 7 shows a
simple example of a control-flow graph (a) and its dominator
tree (b) that is derived from the following equations:

Dom(n0) = {n0}

Dom(n) =
©­«

⋂
p∈preds(n)

Dom(p)
ª®¬
∪ {n}

As visible from the example, both the control-flow graph
and the dominator tree representation freely mix 1 : 1 and
1 : n mappings and exercise AXIOM’s type-heterogeneity as
well. We implemented the two dominance equations directly
on top of the multi-maps. The Dom and preds relations are
implemented as multi-maps, instead of using sets as the
values of polymorphic maps. Our code uses projections, and
set union and intersection in a fixed-point loop. The big
intersection is not implemented directly, but staged by first
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Table 1. Runtimes of AXIOM for the CFG dominators experi-
ment per CFG count, and statistics over preds relation about
shape of data (unique keys, tuples, 1 : 1 mappings).

#CFG CHAMP AXIOM #Keys #Tuples % 1 : 1

4096 173 s 174 s 315 009 331 218 91 %

2048 84 s 85 s 162 418 170 635 91 %

1024 64 s 62 s 88 952 93 232 92 %

512 28 s 28 s 43 666 45 743 92 %

256 19 s 18 s 21 946 22 997 92 %

128 14 s 14 s 13 025 13 583 93 %

producing a set of sets for the predecessors and intersecting
the respective sets with each other.
For our experiment, we used a data set that contains the

complete control-flow graphs for all units of code of the
widely-used content management systemWordpress.10 The
data set file has the size of 260.6MB in serialized form and
origins from a corpus that is used to analyze PHP applica-
tions [13]. The data set contains ±5000 control-flow graphs
for all units of code (function, method and script). We con-
sider the size of the data sufficient for our evaluation, because
the algorithm of computing dominators equations is mostly
CPU-bound. Relative space savings due to AXIOM’s encoding
should translate to bigger data sets as well. One main goal of
this evaluation is show the applicability of AXIOM to shapes
of data that occur in real life.
Like before, we used JMH to measure execution time. We

ran the dominator calculations on a random selection of the
aforementioned graphs. The set of selected graphs range
between a size of from 128 to 4096 in exponential steps. We
measured as well the number of many-to-one and many-to-
many entries in the multi-maps.

Hypotheses. On the one hand, since the Dom relation is ex-
pected to be many-to-many with large value sets it should
not generate any space savings but at least it should not
degrade the runtime performance either compared to CHAMP

(Hypothesis 7). On the other hand we expect the preds rela-
tion to be mostly one-to-one and we should get good benefit
from the inlining of singletons (Hypothesis 8).

Results. Table 1 shows that the mean runtimes for CHAMP

and AXIOM are almost identical (at most ±2 s difference). Due
to equal runtimes, AXIOM retains the same magnitude of
speedups that CHAMP yielded over Clojure and Scala [24],
fromminimal 9.9 x to 28.1 x. We also observed that the shape
of data in the preds relation contains a high number of 1 : 1
mappings (median 92 %) and that the average ratio of unique

10https://wordpress.com

keys to tuples is 1.05 x. The outcome suggests that a type-
heterogeneous AXIOM multi-map is an excellent choice for
reverse indices. In the case of control-flow graphs edges
frequently flow into a set of nodes, however in an inversed
graph the parent of a node is mostly unique (cf. Figure 7).
We conclude both Hypothesis 7 and Hypothesis 8 to be

confirmed. In the case of Wordpress, the CFG algorithm turns
out to profit over CHAMP in terms of memory savings from
AXIOM’s optimizations for 1 : 1 mappings. The preds rela-
tion compresses by 4.4×, from 37.7MB (CHAMP) to 8.4MB
(AXIOM) even without specialization applied. In this case, the
algorithmic experiment is dominated by efficiency of set and
relational algebra operations and memory turnover in the
fixed-point loop, rather than the memory footprint of the
preds relation (which is calculated outside of the loop).

7 Related Work

Efficient Immutable Hashtables based on Prefix Trees.
The two contenders for implementing efficient unordered
hashtables for collection libraries, HAMT [2] and CHAMP [24],
were discussed in Section 2. Although not reaching peak
performance of CHAMP, AXIOM generalizes over CHAMP with
low overhead and introduces with histograms an abstraction
that scales to multiple content categories. Therefore, AXIOM
is flexible enough to implement a range of efficient type-
heterogeneous data structures.

Reducing theMemory Footprint of Collections is a goal
of other people as well. Steindorfer and Vinju [2014] spe-
cialized internal trie nodes to gain memory savings of 55 %
for maps and 78% for sets at median while adding 20ś40%
runtime overhead for lookup. Their approach minimized the
amount of specializations to mitigate effects on code bloat
and run-time performance. Gil and Shimron [2012] identified
sources of memory inefficiencies in Java’s mutable collec-
tions and proposed compaction techniques to counter them.
They improved memory footprints of Java’s Hash{Map,Set}
and Tree{Map,Set} data structures by 20ś77 %.We observed
that through added heterogeneity, AXIOM by design allows
to dispatch on various internal memory representation of
payload to significantly reduce memory footprints.

TrieData Structures for In-MemoryDatabases. Leis et al.
[16] proposed the Adaptive Radix Tree (ART), a general pur-
pose index structure for in-memory databases that Ðinstead
of hashingÐ encodes the data itself in the prefix tree, similar
to AMTs. Hashing is avoided by ART because it only allows
point queries (due to unordered storage) and does not sup-
port range queries. ART represents an ephemeral andmutable
data storage, AXIOM in contrast is tailored towards immutable
data representations. ART uses 8-bit prefix masks for imple-
menting an 256-ary tree, compared to AXIOM’s 5-bit prefix
masks that yield a 32-ary tree. For immutable collections, 5-
bit prefixes experimentally yield good performance balance
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between search and update operations [3]. ART internally
offers four different node sizes (4, 16, 48, 256) to less fre-
quently resize nodes. In the context of collections, such an
approach wastes memory due to common empty cells. In
contrast, AXIOM resizes on each immutable update (excluding
the transient case) and does not contain empty cells at all.
While basic concepts of both trie-based approaches overlap,
the chosen trade-offs clearly address different use cases. ART
aims to be a (mutable) general purpose index structure, how-
ever forgoes hashtable indexing performance and compact
representation. AXIOM in contrast allows the implementation
of mutable and immutable unordered hashtables that are
memory efficient, and more specifically aims to be a flexible
template for type-heterogeneous collection data structures.

Variability of Features in the Domain of Collections.
Steindorfer and Vinju [25] performed a preliminary study
about feature variability in collection data structures and im-
plementation choices for implementing those features. The
authors presented a concise framework for implementing
various purely functional collection data structures, and fur-
ther covered a software product line that relieves collection
library designers from optimizing for the general case. While
this paper was partly inspired by the findings of Steindorfer
and Vinju, we contribute a novel and sophisticated type-
heterogeneous data structure that would subsume multiple
points in their presented solution space. AXIOM is suitable
for handwritten collection libraries that supply a minimal
set of efficient abstractions while maximizing utility.

8 Conclusion

We proposed AXIOM, a new design for hash-array mapped
tries that strictly generalizes previous solutions by Bagwell
[2] and Steindorfer and Vinju [24]. AXIOM allows the imple-
mentation of efficient map and multi-map data structures.
When used as a map, AXIOM is on average between 4ś27%
slower at lookup, insertion, and deletion than the most ef-
ficient immutable hashtables we tested, while offering bet-
ter iteration performance (25ś48 %). AXIOM’s performance
shines when compared to idiomatic multi-maps in Clojure
and Scala: runtimes are usually on a par or better, while
significantly saving memory (1.87ś5.1 x, depending on the
configuration). We note that a type-heterogeneous AXIOM

multi-map is especially suited for reverse indices (e.g., of
control-flow graphs) that turn many-to-many content into
mostly many-to-one content, while efficiently catering for a
few many-to-many cases.
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