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Abstract
The research presented in this paper compares the occurrence of limit cycles under
different bifurcation mechanisms in a simple system of two-dimensional autonomous
predator–prey ODEs. Surprisingly two unconventional approaches, for a singular sys-
tem and for a system with a center, turn out to produce more limit cycles than the
traditional Andronov–Hopf bifurcation. The system has a functional response func-
tion which is a monotonically increasing cubic function of x for 0 ≤ x ≤ 1 where
x represents the prey density, and which is constant for x > 1. It acts as a proxy
for investigating more general systems. The following results are obtained. For the
Andronov–Hopf bifurcation the highest order of the weak focus is 2 and at most 2
small-amplitude limit cycles can be created. In the center bifurcation cases are shown
to exist with at least 3 limit cycles. In the singular perturbation cases are shown to
exist with at least 4 limit cycles and in some cases an exact upper bound of 2 limit
cycles is obtained. Finally we indicate how the conclusions can be extended to more
general systems. We show how an arbitrary number of limit cycles can be created
by choosing an appropriate functional response function and growth function for the
prey. One special situation is the system with group defense: the three bifurcation
mechanisms typically produce less limit cycles if a group defense element is included.
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1 Introduction

We consider the following predator–prey system describing the interaction between
preys (denoted by their density x(t)) and predators (denoted by their density y(t)). It
is referred to as the generalized Gause system [10]:

dx(t)

dt
= h(x) − p(x)y,

dy(t)

dt
= −δy + γ p(x)y.

(1.1)

This type of modelling ignores the effect of spatial diffusion and the interaction
with other species. The other restriction is that we model the death rate of the predator
in absence of any predators with an exponential decay.

The function p(x) is the functional response function describing the effectiveness
of the interaction between predator and prey, i.e. the net average amount of prey killed
during the interaction with one predator. The functional response function p(x) is a
positive function for all x > 0 and p(0) = 0. Since it is assumed that there is no group
defense by the prey population the response function is taken to be monotonically
increasing: p′(x) ≥ 0. On a finite interval, which we take to be 0 ≤ x ≤ 1, p(x) is
parameterized as a cubic function. On this interval wewill impose that p(x) is absolute
monotonically increasing, i.e. p′(x) > 0. The justification of choosing the boundary
to be at x = 1 is that the variable x can be rescaled without changing the qualitative
properties of the functions in the system. For x > 1 the function p(x) is set equal to
1. This cut-off is a generalization of the Holling I type functional response.

The motivation from a biological point of view is that in reality it is difficult to
determine the correct behaviour of the functional response function for large prey
densities (see for example the experimental data in the original Holling paper [13]).
Therefore a natural starting point is to take it to be a constant instead of choosing
some specific asymptotic behaviour like in the cases of the Holling II and Holling III
types. Moreover, there are some biological arguments to justify this cut-off, see [16].
Another reason for this choice is that it allows for some general extensions by making
a small perturbation of the functional response function.

The motivation from a mathematical point of view is that this system is rich and
covers many aspects of the other functional responses used in the literature. It is
relatively easy to study the bifurcations in this form and to extend them to more
general cases as will be done in the “Discussion” section.

Definition 1.1 The following functional response function is used:

• p(x) = x(1 + (x − 1)(a0 + a1x)) for 0 ≤ x ≤ 1, a0, a1 ∈ R,

• p(x) = 1 for x > 1.

The functional form on the interval 0 ≤ x ≤ 1 is a parametrized extension of
the Holling type I function which corresponds to the special case a0 = a1 = 0.
The two parameters a0 and a1 do not have an intrinsic biological meaning. As was
discussed in [16], there are two kinds of modelling, one is phenomenological where
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the functional response is chosen in such a way to fit experimental data, the other
are the so-called mechanistic models where the function is derived from fundamental
biological properties. Our choice is of the phenomenological type similar to what
Holling did in his paper [13]. The extension allows for different types of convexity on
the interval 0 ≤ x ≤ 1, whereas for the original Holling I function (p(x) = x), the
second derivative is identically equal to zero.

On the interval 0 ≤ x ≤ 1 we need to impose additional conditions on the param-
eters a0 and a1 to ensure that the function p(x) satisfies the basic requirements of the
functional response. The requirement of having no group defense translates into the
condition that the functional response function p(x) is monotonically increasing on
the interval 0 ≤ x ≤ 1.

A simple calculation shows that this holds true under the condition that the param-
eters a0 and a1 lie in a bounded region in the (a0, a1) plane determined by boundaries
{a2

0 + a0a1 + a2
1 − 3a1 = 0∧ a1 > 1}, a0 = 1 and a0 + a1 + 1 = 0. For convenience

we will refer to the boundary a2
0 + a0a1 + a2

1 − 3a1 = 0 ∧ a1 > 1 as D = 0. It
corresponds to the case where p(x) has an inflection point on the interval 0 < x < 1.
This boundary case itself is excluded from the analysis while in principle we will
include the other two boundary cases because they correspond to p′(x) = 0 at the end
points of the interval 0 ≤ x ≤ 1, i.e. at x = 0 and x = 1.

The three conditions on the parameters can be summarized as:

Definition 1.2 The parameter range W1 for which the functional response p(x) in (1.1)
is increasing on the interval 0 ≤ x ≤ 1 is given by the following conditions on the
parameters:

{a1 > 1 ∧ a2
0 + a0a1 + a2

1 − 3a1 < 0} ∨ {a1 ≤ 1 ∧ a0 ≤ 1 ∧ a0 + a1 + 1 ≥ 0}.

Here the border cases correspond to the following mathematical interpretation:

• D = 0: a2
0 + a0a1 + a2

1 − 3a1 = 0 ∧ a1 > 1 iff p′(x̄) = p′′(x̄) = 0, p′′′(x̄) �= 0
for some x̄ ∈ (0, 1).

• a0 = 1 iff p′(0) = 0.
• a0 + a1 + 1 = 0 iff p′(1) = 0.

The region of parameters W1 is depicted in Fig. 1 (for fixed values of k, δ, φ). The
boundary of the bounded region W1 has a reversed raindrop form in the a0, a1 plane
given by a conic and two lines as given in Definition 1.2. The boundary curve defined
through a2

0 +a0a1+a2
1 −3a1 = 0 was excluded because in that case p′(x) can become

zero for some 0 < x = xc < 1. Even though the analysis for this case is very similar
to the rest of this paper, it allows for the possibility of the functional response to be
not strictly monotonic on the open interval 0 < x < 1 which we prefer to avoid.

This choice of p(x) ensures that p(0) = 0 and p(1) = 1. A rescaling in x , y, t was
used to scale the parameter γ to become equal to 1, to position the cut-off at x = 1
and to ensure that p(1) = 1. It is similar to what was done in the predator–prey system
of type Holling I, see [14].

The function h(x) represents the growth of the prey population in the absence of
predators, which we will take to be the traditional logistic growth function.
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Fig. 1 The region of parameters W1 for which the functional response p(x) of (1.1) is non-decreasing on
the interval 0 ≤ x ≤ 1

Definition 1.3 The following growth rate function is used: h(x) = φx(1− x
k ), where

φ > 0 and k > 2.

The parameter k is the carrying capacity of the prey. In this paper we will discuss
the case where k > 2, i.e. h(x) > 0 on the interval 0 < x < k and h′(x) has a unique
zero xh for x > 1: 1 < xh = k

2 < k.
The parameter δ is the death rate of the predator when there are no preys, i.e. when

there is no food to be consumed.
We summarize and define the system:

dx(t)

dt
= h(x) − p(x)y,

dy(t)

dt
= −δy + p(x)y.

(1.2)

where the functions p(x) and h(x) are defined through the Definitions 1.1 and 1.3
respectively. The parameters in the functional response are restricted according to
Definition 1.2.

The aim of this paper is twofold.
First we discuss three bifurcation mechanisms for the creation of limit cycles in

system (1.2). The first is the standard Andronov–Hopf bifurcation which can be under-
stood through a straightforward calculation. Then we discuss two other unusual types
of bifurcation corresponding to special values of the parameters in the system: the
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bifurcation from an irregular center case and the bifurcation from a singular system.
Both surprisingly produce more limit cycles than the Andronov–Hopf bifurcation.

Then we study the generalization of these concepts to systems of Gause type (1.1)
where the functions h(x) and p(x) are left in a general form and determine underwhich
conditions the conclusions about the creation of limit cycles from the Andronov–Hopf
bifurcation, center bifurcation and singular bifurcation are still true. Another question
is: how do these bifurcations change when a group defense component is added?With
this analysis we hope to shed some light on how the number of limit cycles depends on
the prey growth rate function and the functional response function in general predator–
prey systems.

In [2] it was observed that the occurrence of limit cycles is rare in typical families of
autonomous planar ordinary differential equations. In the case of so-called polynomial
systems a numerical experiment revealed that very few systems had limit cycles. The
systemwe study in this paper on the contrary is richwith limit cycles and paradoxically
it seems to be even more difficult to find situations in which no limit cycles occur!
Therefore we consider this predator–prey system as a proxy for studying limit cycle
problems in general. It seems to be a good starting point to explore new techniques for
detecting limit cycles.We hope that the techniques and results in this paper will inspire
other researchers to extend the results to other, more general, cases. The relevance of
the study of limit cycles stems from the still unsolved 16th Hilbert problem asking for
an upper bound on the number of limit cycles in polynomial systems.

2 Singularities

The existence of a singularity in the first quadrant of the phase plane x > 0, y > 0 is
determined by the value of the parameter δ, i.e. the death rate of the predator density:

Lemma 2.1 If 0 < δ < 1, there exists a singularity A in the first quadrant of the phase

plane with coordinates: x = xg, y = yg ≡ φ(k−xg)xg
kδ

where xg satisfies:

pg ≡ p(xg) = xg(1 + (xg − 1)(a0 + a1xg)) = δ. (2.1)

The singularity A only exists for 0 < xg < 1. With the restriction p′(xg) > 0, A is an
elementary singularity of anti-saddle type, i.e. node, focus or center.

Proof The product of the eigenvalues of the linearized system at the singularity A is
given by:

pg p′(xg)yg,

which is positive under the assumptions of (1.2). 
�
It is natural in the following to introduce a new parameter xg corresponding to the
singularity of anti-saddle type related to δ through Eq. (2.1) and require that 0 < xg <

1.



   65 Page 6 of 48 A. Zegeling, R. E. Kooij

There are two singularities on the coordinate axes: a saddle O at the origin x = 0,
y = 0 and a saddle K on the axis x = k, y = 0. The saddle K has the important
property that an unstable separatrix is leaving the saddle and is entering the first
quadrant. The vertical line x = k is a line without contact and limit cycles in the
system cannot cross it, i.e. they lie in the strip 0 < x < k.

2.1 Stability of the Singularity

To study the stability of the anti-saddle A at (xg, yg) of Lemma 2.1 we transform
(1.2) to a Liénard system, because there it is more convenient to establish the stability
and order of a weak focus. Moreover, it allows for the application of uniqueness and
non-existence theorems for limit cycles in special situations. Since the singularity lies
in the strip 0 < x < 1, for establishing its local stability we can restrict our attention
to the part of the system where p(x) is a cubic polynomial and h(x) exhibits logistic
growth. We define:

Definition 2.2 Generalized Liénard system:

dx(t)

dt
= F(x) − ψ(y),

dy(t)

dt
= g(x),

(2.2)

defined in a region x ∈ (x−, x+), y ∈ (y−, y+).

After applying the transformations t → t
p(x)

and y = ev to (1.2) we arrive at
the form of a generalized Liénard system (2.2) (relabelling v → y) for the interval
0 < x < 1 with:

F(x) = φx(1 − x
k )

p(x)
− eyg = φ(k − x)

k(1 + (x − 1)(a0 + a1x))
− eyg ,

g(x) = 1 − δ

p(x)
= 1 − pg

x(1 + (x − 1)(a0 + a1x))
,

ψ(y) = ey − eyg ,

(2.3)

with x ∈ (x−, x+) = (0, 1), y ∈ (y−, y+) = (−∞,∞). For the interval x > 1 the
same transformation yields:

F(x) = φx(1 − x
k )

p(x)
− eyg = φx(k − x)

k
− eyg ,

g(x) = 1 − δ

p(x)
= 1 − pg,

ψ(y) = ey − eyg ,

(2.4)

with x ∈ (x−, x+) = (1,∞), y ∈ (y−, y+) = (−∞,∞).Here we used that p(x) = 1
for x > 1.
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The parameter yg is the y-coordinate of the singularity in the strip 0 ≤ x ≤ 1 and

is given by yg = ln(
φxg(1− xg

k )

pg
). With this definition of the functions we have ensured

that F(xg) = 0 and ψ(yg) = 0 at the singularity corresponding to the anti-saddle of
the system. This is necessary in the following when applying theorems for uniqueness
of limit cycles in system (2.3) and (2.4).

Of importance for the study of limit cycles is the divergence of the vector field (2.2)
with functions (2.3) and (2.4), denoted by the following notation:

f (x) ≡ F ′(x) = φ(a1x2 − 2a1kx + ka1 + (1 − k)a0 − 1)

k(1 + (x − 1)(a0 + a1x))2

≡ φ f2(x)

k(1 + (x − 1)(a0 + a1x))2
(2.5)

for 0 ≤ x ≤ 1 and

f (x) ≡ F ′(x) = φ(k − 2x)

k
(2.6)

for x > 1.

2.2 Strong Singularity

If f (xg) �= 0 in (2.5), then the singularity A is strong and its stability is determined
by the sign of f (xg):

Lemma 2.3 System (1.2) with 0 < xg < 1 has a unique singularity A in the first
quadrant located at x = xg, y = yg. It is a strong anti-saddle which is stable (unstable)
if f2(xg) = a1x2g − 2a1kxg + ka1 + (1 − k)a0 − 1 < 0 ( f2(xg) > 0). This condition

can be reformulated as: A is stable (unstable) if a0 > aw f
0 (a1) (a0 < aw f

0 (a1)), where

aw f
0 (a1) ≡ τw f a1 + 1

1−k , with τw f ≡ x2g−2kxg+k
k−1 .

The condition a0 = aw f
0 (a1) corresponds to a line lw f with slope 1

τw f in the (a0,
a1) plane for fixed k, φ, xg , i.e. the plane is divided into two regions with different
stability of the strong singularity.

We will use the following properties of the weak-focus line lw f :

Lemma 2.4 The weak-focus line lw f defined through a0 = aw f
0 (a1) passes through

the point C: (ac
0, ac

1) where ac
0 = 1

1−k < 0, ac
1 = 0 for all 0 < xg < 1. The two

limiting cases of the family of lines lw f as a function of the parameter xg are xg = 0
and xg = 1. For xg = 0 the line passes through (a0 = 1, a1 = 1). For xg = 1 the line
is parallel to one of the boundaries of W1 (a0 + a1 + 1 = 0).

Lemma 2.5 The point C lies inside region W1. The line lw f intersects the boundary
of W1 in exactly two points for fixed 0 < xg < 1. Of the two intersection points, one
is with the conic defined by D = 0, while the other is with either the boundary line
a0 + a1 + 1 = 0 or the vertical boundary line a0 = 1.
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2.3 Center

The point C mentioned in Lemma 2.4 in the (a0, a1) plane has a special meaning for
system (1.2):

Lemma 2.6 For the parameter choice C: (a0 = 1
1−k , a1 = 0), the singularity A is a

center in system (1.2).

Proof Under the conditions of the lemma the system becomes integrable, because we
can write p(x) = x(1 + (x − 1)( 1

1−k )) = kx
(k−1) (1 − x

k ):

dx(t)

dt
= φx

(
1 − x

k

)
− p(x)y = x

(
1 − x

k

)(
φ − k

(k − 1)
y

)
,

dy(t)

dt
= y(−δ + p(x)).

(2.7)

Through separation of variables this system can be integrated. Formally the expression
for the integral of the system can be written as:

Z1(y) + Z2(x) = h, (2.8)

with

Z1(y) =
∫ y

yg

φ(k − 1) − k ỹ

(k − 1)ỹ
d ỹ,

Z2(x) =
∫ x

xg

x̃(x̃ − k)

k(−δ + p(x̃))
dx̃ .

This establishes that the anti-saddle A in the first quadrant is indeed a center for
the nonlinear system (1.2). Another simpler way to establish that A is a center is
by considering the Liénard form (2.3) and by observing that for the center case the
function F(x) becomes a constant, i.e. the divergence of the vector field is identically
equal to zero and the system becomes a Hamiltonian system.

For each h ∈ (0, h∗) the integral (2.8) represents a cycle �h in the period annulus
surrounding the center A. The value h = 0 corresponds with the inner boundary of
the period annulus: the singularity A itself. The value h = h∗ corresponds with the
cycle �h∗ tangent to the vertical line x = 1.

Since the system is cut off at x = 1, the period annulus does not extend beyond
x = 1 making it an irregular center case. 
�

2.4 Order and Stability of theWeak Focus

To study the stability of the weak focus of system (1.2) we impose the condition that
f (xg) = 0 in (2.5). This leads according to Lemma 2.3 to:
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aw f
0 (a1) = τw f a1 + 1

1 − k
, (2.9)

with τw f ≡ x2g−2kxg+k
k−1 . The stability of the weak focus then follows from the sign of

the first focal value V1 which was calculated using the computer software program
Maple.

The usual way to calculate focal values is to transform the system to a normal
form. In the case of a Liénard system this can be achieved quite easily through some
rescalings. However, we chose a more direct way to get the focal values as suggested
in [11]. In that paper the stability of a weak focus for a Liénard systemwas shown to be
determined through an elegant iterative mechanism avoiding the use of normal form
transformations. They suggested that this algorithm could also determine the order of
the weak focus and stated that in the thesis [19] a proof was given for the formulas of
the first two focal values. Since we have not been able to access this thesis, we present
a full proof of the statement here. The general case will be dealt with in a forthcoming
paper.

Proposition 2.7 Consider system (2.2) on the open strip x ∈ (r1, r2), with a continuous
function �(y) satisfying �(0) = 0, y�(y) > 0 for y �= 0. The functions g(x)

and F(x) are arbitrarily many times differentiable. Suppose there exists a unique
xg ∈ (r1, r2) such that (x − xg)g(x) > 0 for x �= xg, g′(xg) > 0. Furthermore
F ′(0) = f (0) = 0. Then the first two focal values of the weak focus at x = xg, y = 0
are proportional in sign to:

V1 ∼ f ′′(xg)g
′(xg) − f ′(xg)g

′′(xg), (2.10)

V2 ∼ 10 f ′(xg)g
′′(xg)g

′′′(xg) − 10 f ′′′(xg)g
′(xg)g

′′(xg)

+3 f iv(xg)g
′(xg)

2 − 3 f ′(xg)g
′(xg)g

iv(xg). (2.11)

In (2.11) the condition V1 = 0 from (2.10) was used to simplify the expression.

Proof For the convenience of the argument we assume that the singularity resides at
x = 0 after a shift in the x-variable.

Consider G(x−) = G(x+) with x− < 0 < x+, where G(x) ≡ ∫ x
0 g(x̄)dx̄ . In a

small enough neighborhood of x = 0 the solutions to this equation can be written in
the form x− = α(x+) where α(x+) = −x+ + O(x2+). The expansion of F(x+) −
F(α(x+)) = ∑

i≥1 Bi (x+)i has coefficients Bi which will determine the order of the
weak focus according to Theorem 2.5.1 in [12]. There it was shown that if there exists
a k ≥ 1 such that B j = 0, j = 0, . . . , 2k and B2k+1 < 0 (> 0), then the origin is a
stable (unstable) weak focus of order k.

Note that in [12] the definition of the Liénard system differs by a minus sign from
system (2.2). Therefore the statement of the result from Theorem 2.5.1 [12] was
changed by a minus sign to reflect this difference.

To obtain expressions for the signs of the focal value the leading term Bi in the
expansion of F(x+) − F(α(x+)) needs to be found. The easiest way to establish this
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seems to be by expanding the auxiliary function L(h) = F(x+(h)) − F(x−(h)), with
G(x−(h)) = h and G(x+(h)) = h, with x− < 0, x+ > 0, h > 0. Here h will also
be small by construction when x+ and x− are small. By using the Lagrange inverse
theorem the expansions of x−(h) and x+(h) can easily be obtained since we can
write G(x) = x2G1(x) where G1(x) > 0 for small enough x . The latter condition is
satisfied because by assumption g′(0) > 0. The equation G(x) = h can be written in
the form x

√
G1(x) = √

h for x > 0 and x
√

G1(x) = −√
h for x < 0. The Lagrange

inverse theorem then gives a formal expansion in the form:

x+(h) =
∞∑

n=1

λn

(√
h
)n

n! (2.12)

and

x−(h) =
∞∑

n=1

(−1)nλn

(√
h
)n

n! , (2.13)

where λn is given by:

lim
x→0

dn−1

dxn−1

[
1

μn(x)

]
,

with μ(x) ≡ √
G1(x).

First we formally expand the function F(x) and G(x):

F(x) = 1

2
F ′′(0)x2 + 1

6
F ′′′(0)x3 + 1

24
Fiv(0)x4 + 1

120
Fv(0)x5 + o(x5),

G(x) = 1

2
G ′′(0)x2 + 1

6
G ′′′(0)x3 + 1

24
Giv(0)x4 + 1

120
Gv(0)x5 + o(x5).

The function μ(x) = √
G1(x) becomes:

μ(x) =
√
1

2
G ′′(0) + 1

6
G ′′′(0)x + 1

24
Giv(0)x2 + 1

120
Gv(0)x3 + o(x3).

According to the Lagrange inverse theorem the expansion of x+(h) becomes:

x+(h) = λ1h
1
2 + 1

2
λ2h + 1

6
λ3h

3
2 + 1

24
λ4h2 + o(h2),

with

λ1 = 1

30

√
1800√
G ′′(0)

,

λ2 = −2

3

G ′′′(0)
G ′′(0)2

,
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λ3 = − 1

180

√
1800

−5G ′′′(0)2 + 3Giv(0)G ′′(0)
G ′′(0) 7

2

,

λ4 = − 4

45

40G ′′′(0)3 − 45G ′′′(0)Giv(0)G ′′(0) + 9Gv(0)G ′′(0)2

G ′′(0)5
.

The expansion for x−(h) is obtained by replacing h
1
2 in the expansion for x+(h) by

−h
1
2 .

Next these two expansions are used in the expression F(x+(h)) − F(x−(h)). The
lowest order term in h becomes:

2
√
2

3

F ′′′(0)G ′′(0) − F ′′(0)G ′′′(0)
G ′′(0) 5

2

h
3
2 .

Since h = G(x+) = 1
2G ′′(0)x2+ + o(x2+), in terms of the variable x+ used in the

expansion of Theorem 2.5.1 of [12] the above expansion term becomes:

1

3

F ′′′(0)G ′′(0) − F ′′(0)G ′′′(0)
G ′′(0)

x3+.

According to [12] this implies that if F ′′′(0)G ′′(0) − F ′′(0)G ′′′(0) > 0 (< 0), the
weak focus is unstable (stable) of order one. Since F ′′(0) = f ′(0) etcetera, the first
focal value is proportional in sign to:

f ′′(0)g′(0) − f ′(0)g′′(0) > 0.

If we impose the condition that −F ′′′(0)G ′′(0) + F ′′(0)G ′′′(0) = 0, i.e. write e.g.
f ′′(0) = f ′(0)g′′(0)

g′(0) , then we need to look at the next non-vanishing term in the expan-
sion. In F(x+(h)) − F(x−(h)) this becomes:

√
2

45

3Fv(0)G ′′(0)2 − 3G ′′(0)F ′′(0)Gv(0) − 10G ′′(0)Fiv(0)G ′′′(0) + 10F ′′(0)G ′′′(0)Giv(0)

G ′′(0) 9
2

h
5
2 .

In terms of the variable x+ used in the expansion of Theorem 2.5.1 of [11] the above
expansion term becomes:

1

180

3Fv(0)G ′′(0)2 − 3G ′′(0)F ′′(0)Gv(0) − 10G ′′(0)Fiv(0)G ′′′(0) + 10F ′′(0)G ′′′(0)Giv(0)

G ′′(0)2
x5+.

The factor in the numerator determines the sign of the leading coefficient. From this
the expression in the proposition for V2 follows. 
�

2.5 Weak Focus of Order 1

Using the expressions of the previous section and the functions in (2.3) we find that the
first focal value for system (1.2) at the singularity at x = xg , y = yg under condition
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(2.9) has the same sign as:

V1 ∼ −φ(k − 1)2a1S(xg, k, a1)

k(a1x2g − 2a1xg + a1 − 1)3(k − xg)(k − 2xg)2
, (2.14)

where S(xg, k, a1) = 4a1k2x2g − 5a1kx3g − 4a1k2xg + 4a1kx2g + 2a1x3g + 2a1k2 −
3a1kxg − 2k2 + 3kxg .

The sign in this expression is determined by the numerator factors −a1S(xg, k, a1)
and denominator factors (a1x2g−2a1xg+a1−1)3(k−xg). All other terms are obviously
positive. The factor (k − xg) is positive because xg < 1 < k.

The factor a1 in the numerator corresponds to the center caseC discussed in Lemma
2.6. The term a1x2g − 2a1xg + a1 − 1 corresponds to the intersection of lw f with the
boundary of region W1. It follows that it has fixed sign in W1 and its sign is negative,
because for a1 = 0 it is equal to − 1.

The expression S(xg, k, a1) is a linear function in the parameter a1. Setting V1 equal
to zero and solving for a1 leads to:

aw f2
1 = k(2k − 3xg)

4k2x2g − 5kx3g − 4k2xg + 4kx2g + 2x3g + 2k2 − 3kxg
≡ k(2k − 3xg)

R(xg, k)
,

(2.15)

and aw f
0 becomes after substituting (2.15) into (2.9)

aw f2
0 = −4k2xg + 4kx2g + 2x3g + 2k2 − 3kxg

4k2x2g − 5kx3g − 4k2xg + 4kx2g + 2x3g + 2k2 − 3kxg

≡ −4k2xg + 4kx2g + 2x3g + 2k2 − 3kxg

R(xg, k)
. (2.16)

Lemma 2.8 The function R(xg, k) in the denominators of (2.15) and (2.16) is positive
for the parameter values for which a weak focus occurs as described in Lemma 2.3.

Proof R(xg, k) viewed as a cubic function of xg for fixed k has a discriminant equal to
−4(64k3 − 112k2 + 99k − 54)(k − 1)2k3. By writing k = u + 2, the critical factor in
this expression 64k3 −112k2 +99k −54 becomes 64u3 +272u2 +419u +208 which
is positive for positive u, i.e. for k > 2. It implies that for k > 2 the function R(xg, k)

has one real zero. Since we have R(0, k) = 2k2 > 0 and R(1, k) = 2(k − 1)2 > 0,
for each xg ∈ (0, 1) the expression R(xg, k) > 0. 
�
Lemma 2.9 In (2.15) aw f2

1 > 1 for the parameter values for which a weak focus occurs
as described in Lemma 2.3.

Proof Substitution of (2.15) into aw f2
1 − 1 gives:

aw f2
1 − 1 = xg

( − 4k2xg + 5kx2g + 4k2 − 4kxg − 2x2g
)

R(xg, k)
≡ xgT (xg, k)

R(xg, k)
.
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The numerator contains a quadratic factor T (xg, k) which is quadratic in xg . At

xg = 0, T (0, k) = 4k2 > 0 and ∂T (xg,k)|
∂xg

|xg=0 = −4k(k + 1) < 0. At the end point

xg = 1, T (1, k) = k − 2 > 0 and ∂T (xg,k)|
∂xg

|xg=1 = −4k2 + 6k − 4 < 0, implying that

T (xg, k) > 0 for k > 2 and 0 < xg < 1. Concluding we find that aw f 2
1 − 1 > 0 for

the parameter values satisfying (2.15). 
�
For the original expression (2.14) we find that the denominator is negative and the sign
of the numerator is determined by the expression−a1(R(xg, k)a1 + R2(xg, k)). Since
we have just shown that R(xg, k) > 0 and that the zero of R(xg, k)a1 + R2(xg, k)

occurs for positive a1, it follows that:

Lemma 2.10 In system (1.2) the singularity at x = xg, y = yg is a weak focus under
condition (2.9) with additional conditions k ≥ 2, 0 < xg < 1. It is a first order

weak focus which is unstable for a1 < 0 and a1 > aw f2
1 and which is stable for

0 < a1 < aw f2
1 , where aw f2

1 satisfies (2.15).

The lemma does not state if aw f
0 , aw f2

1 corresponds to a point inside W1. To resolve
this we observe that the parametrized curve defined by (2.15) and (2.16) lies inside
part of the ellipse formed by D = 0, the upper part of the boundary of W1 according to
Lemma 2.9. It is easy to check that the parametrized curve intersects D = 0, exactly
for xg = k

2 > 1, i.e. not for a value of xg acceptable in our model.

2.6 Weak Focus of Order 2

Finally we need to establish the stability of the weak focus when the first focal value
V1 vanishes. Using Maple to calculate the next focal value V2 under the condition that
V1 vanishes, we get that the sign of V2 is determined by the following expression after
substitution of (2.15) and (2.16) into (2.11):

V2 ∼ −3φk(2k − 3xg)R(xg, k)
(
4k3 − 10k2xg + 6kx2g + x3g

)

8x5g(k − xg)4(k − 2xg)3
.

The factor R(xg, k), as we have shown before, is positive. The factors (k − 2xg)
−3

and (2k − 3xg) are positive for k > 2, 0 < xg < 1. Finally, in a similar way as was
done for other factors before, we can prove that 4k3 − 10k2xg + 6kx2g + x3g > 0. It
follows that V2 < 0, i.e. the weak focus is stable and of second order. Summarizing:

Lemma 2.11 In system (1.2) the singularity A at x = xg, y = yg is a center for
(a0 = 1

1−k , a1 = 0) and a stable weak focus of second order for the parameter values

aw f2
0 and aw f2

1 defined by (2.15) and (2.16) respectively. The curve corresponding to
a weak focus of order 2 in the (a0, a1) plane, parametrized by xg, starts for xg = 0

at (a0 = 1, a1 = 1) and remains inside W1 with aw f2
1 > 1 for 0 < xg < 1. The

weak focus cannot be of an order higher than 2, except when the center of Lemma 2.6
appears.
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Fig. 2 Stability of the singularity in the first quadrant of system (1.2) in the (a0, a1) parameter plane for
fixed φ, k, xg

By combining the results of Lemmas 2.10 and 2.11 the stability of the singularity in
the first quadrant is determined in the following way:

Proposition 2.12 In system (1.2) the singularity A at x = xg, y = yg is an anti-saddle

in region W1 (given in Definition 1.2) of the parameter space. For a0 > aw f1
0 (a1)

(a0 < aw f1
0 (a1)) the anti-saddle is strong and stable (unstable). For a0 = τw f a1+ 1

1−k
the singularity is a weak singularity:

• a stable weak focus of order 1 for 0 < a1 < aw f2
1 where aw f2

1 is given by expression

(2.15), an unstable weak focus of order 1 for a1 < 0 or a1 > aw f2
1 .

• a center for a1 = 0.
• a stable weak focus of order 2 for a0 = aw f2

0 = aw f
0 (aw f2

1 ), a1 = aw f2
1 . The

parameter pair (aw f2
0 , aw f2

1 ) lies inside W1 with aw f2
1 > 1.

The different possibilities are shown in Fig. 2.

3 Global Properties

To facilitate the analysis we introduce some useful lemmas for showing the existence
of limit cycles in (1.2).

As was shown in [16] system (1.1) is bounded under the conditions which we
imposed on h(x), p(x) and δ in Definitions 1.1, 1.2 and 1.3, i.e. any solution starting
in the first quadrant of the phase plane will enter (and stay in) a bounded region.

Lemma 3.1 System (1.2) is a bounded system. The line tangent lsep to the critical
direction of the saddle singularity at (x = k, y = 0), entering the first quadrant,
forms together with the lines x = 0 and y = 0 a triangle T with the property that
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Fig. 3 Region of inflow for the
bounded system (1.2)

all solutions starting in the first quadrant on lsep will enter T and remain inside. See
Fig. 3.

A consequence of this lemma is that limit cycles of the system will lie inside the
triangle T . Since the most right point of T is the singularity at (x = k, y = 0), limit
cycles cannot cross the vertical line x = k. Moreover it follows immediately that if
the system has exactly one singularity A—an anti-saddle—in the first quadrant, then
according to the Poincaré–Bendixson theorem the singularity A is surrounded by (at
least) one stable limit cycle if the singularity is unstable. Since the anti-saddle A is
unstable for parameter values in a significant part of region W1, we can easily indicate
a region in the parameter space where limit cycles must exist.

Lemma 3.2 In system (1.2) an odd (even) number of limit cycles surround the singu-
larity A if it is unstable (stable).

In the lemma the situation with 0 limit cycles is categorized as “even”.
Since we have established in Proposition 2.12 for which parameter values the sin-

gularity is A unstable, we can immediately show the existence of (at least) one limit
cycle for the following parameter values in region W1:

Proposition 3.3 In system (1.2) an odd number (counting multiplicities) of limit cycles
surround the singularity A (as defined in Lemma 2.1) if and only if one of the following
conditions is satisfied:

• a0 < τw f a1 + 1
1−k .

• a0 = τw f a1 + 1
1−k with a1 < 0 ∨ a1 > aw f2

1 .

with τw f defined in Lemma 2.3.

The conclusions of the proposition are indicated in Fig. 4.
For convenience of discussion in the following we will distinguish three types of

limit cycles:

Definition 3.4 A “small” limit cycle in the strip 0 < x < 1 is referred to as a limit
cycle of type I. For the unique zero of f (x) at x = k

2 for x > 1 we write x f . A
“medium” limit cycle intersecting x = 1 but not x = x f is referred to as a limit cycle
of type II. A “big” limit cycle intersecting the line x = x f is referred to as a cycle of
type III. See Fig. 5.

For system (1.2) it means that the three types correspond to the different ways a limit
cycle can cross the vertical lines where f (x), i.e. the divergence of the Liénard system,
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Fig. 4 Existence of an odd or
even number of limit cycles due
to the Poincaré–Bendixson
theorem in (1.2)

Fig. 5 Definition of cycle types
according to Definition 3.4

changes sign (i.e. the function f (x)). However, this is not a strict definition because
not for all parameter values f (x) changes sign in the interval 0 < x < 1, and not
always at x = 1. There is always a change of sign at x = x f though.

4 Andronov–Hopf Bifurcation

With the results of the stability analysis of the previous sectionswe can indicate regions
in the parameter space where small-amplitude limit cycles bifurcate according to the
Andronov–Hopf bifurcation near the weak-focus cases. This gives a natural lower
bound of 2 for the number of limit cycles in (1.2).
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Using the results of Proposition 2.12 about the stability of the anti-saddle we can
easily conclude the following standard bifurcation mechanisms of small-amplitude
limit cycles. The results are deduced by taking into account that any change in stability
of the focus will lead to the creation of a small-amplitude limit cycle.

The first result is the perturbation from the weak focus case into the strong focus
case.

Lemma 4.1 Consider a small perturbation of a weak focus at a point (a0
0 , a0

1 ) in W1

for fixed k, φ, xg, with a0
0 = τw f a0

1 + 1
1−k , (with τw f defined in Lemma 2.3) in system

(1.2) of the form:

a0 = a0
0 + λε, a1 = a0

1 + με, 0 < ε � 1.

Here λ and μ define the direction of bifurcation in the a0, a1 parameter space for fixed
k, φ, xg. Define Z ≡ λ − τw f μ.

• A stable small-amplitude limit cycle is created for Z < 0, if 0 < a1 ≤ aw f2
1 .

• An unstable small-amplitude limit cycle is created for Z > 0, if a1 < 0 or a1 >

aw f2
1 .

• No small amplitude limit cycles are created for the other cases with Z �= 0.

Note that in this lemma the stable second order weak focus case a1 = aw f2
1 is included.

The center case C does not generate a small-amplitude limit cycle according to these
bifurcation directions in parameter space.

The case not discussed in Lemma 4.1 is Z = 0, which is a bifurcation in the
direction of the weak focus line lw f . In the case of a weak focus of order 1 no limit
cycles are created in this direction, because the stability of the focus does not change.

The center case bifurcation does not generate a small-amplitude limit cycle in that
direction either except perhaps for some higher order bifurcations.However, the results
of the next sections using a uniqueness theorem for limit cycles in Liénard systems
will show that nothing special happens in that case either.

Lemma 4.2 Consider a small perturbation from a second order weak focus at a point
(a0

0 , a0
1) in W1 for fixed k, φ, xg, with a0 = aw f2

0 + τw f ε, a1 = aw f2
1 + ε + σε2,

0 < ε � 1 in system (1.2):

• For σ = 0 a stable small-amplitude limit cycle is created surrounding a first order
weak focus.

• For 0 < σ < σ ∗ two small-amplitude limit cycles are created surrounding a
strong stable focus. The inner (outer) limit cycle is unstable (stable).

• For σ = σ ∗ a semi-stable small-amplitude limit cycle is created surrounding a
strong focus.

• For other values of σ no small-amplitude limit cycles are created.

with τw f defined in Lemma 2.3.

Proof For the weak focus of order 2, the perturbation along Z = 0 takes the form
a0 = aw f2

0 + τw f ε, a1 = aw f2
1 + ε + σε2, 0 < ε � 1 because we need to consider
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Fig. 6 Andronov–Hopf
bifurcation of small-amplitude
limit cycles in (1.2)

higher order perturbations. For σ = 0 a stable small-amplitude limit cycle is created
surrounding an unstable weak focus of order 1, because we take ε > 0: in that situation
the singularity changes from a stable second order weak focus into an unstable first
order weak focus. According to Lemma 4.1 an additional unstable limit cycle can
be created by perturbing the unstable first order weak focus if Z > 0: two limit
cycles appear by perturbing the second order weak focus in an appropriate direction,
i.e. taking σ > 0, ensuring that Z > 0. It is well-known that in such a bifurcation
mechanism a semi-stable limit cycle will occur if σ is taken sufficiently large. 
�
The results are shown in Fig. 6.

Summarizing the Andronov–Hopf bifurcation results:

Proposition 4.3 At most two small-amplitude limit cycles can be created from a weak
focus in system (1.2) surrounding singularity A in the first quadrant. From the point
a0 = aw f2

0 , a1 = aw f2
1 where the system has a second order weak focus a bifurcation

curve emerges in parameter space corresponding to a semi-stable limit cycle. More-
over, there exist directions such that two small-amplitude limit cycles occur. All these
small-amplitude limit cycles are of type I as in Definition 3.4, because the cycles do
not cross x = 1.

5 Center Bifurcation

For the bifurcation from the center case we consider different possibilities. First we
check the existence of limit cycles for the center case itself, then we check the pertur-
bation of limit cycles from the period annulus surrounding the center singularity.

5.1 Existence of Limit Cycle Surrounding the Center

For the parameter values a0 = 1
1−k , a1 = 0 system (1.2) has a center at x = xg , y = yg

in the phase plane according to Lemma 2.6. This means that in the strip 0 ≤ x ≤ 1
the singularity is surrounded by a continuous annulus of periodic orbits, the so-called
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period annulus. The period annulus is bounded on the outside by the periodic orbit
which is tangent to the line x = 1. We denote this periodic orbit by �h∗ . The period
annulus will not continue beyond x = 1. Solutions near the outer boundary of the
annulus �h∗ , i.e. crossing the line x = 1, will spiral outwards or inwards depending
on the properties of the function h(x) and p(x) for x = 1 + ε. We consider a more
general situation (but not necessarily themost general center case of theGause system)
when this can occur, i.e. when system (1.1) has the restriction:

h(x) = cp(x), 0 ≤ x ≤ 1. (5.1)

Since we impose continuity of the functions at x = 1, necessarily c = h(1)
p(1) . No

further restrictions on p(x) are imposed for x > 1. System (1.2) is a special case with
p(x) = 1 for x > 1. The outer stability of the period annulus is determined in the
following way.

Lemma 5.1 For system (1.1) with (5.1) and γ = 1, the period annulus defined for
0 ≤ x ≤ 1 surrounding the center singularity C at x = xg, y = yg, is stable (unstable)
on the outside if h(x)p(1) < h(1)p(x) (h(x)p(1) > h(1)p(x)) for x ∈ (1, 1 + ε)

where 0 < ε � 1.

Proof For the proof we compare two systems. The first system S1 is the system for
which we want to determine the outer stability of the period annulus, i.e. system (1.1)
with conditions (5.1), γ = 1 and p′(x) > 0 on the interval 0 ≤ x ≤ 1. For x > 1 we
leave p(x) in a general form and impose only that p(x) is continuous, i.e. we impose
that limx↓1 p(x) = 1. The second system S2 is (1.1) with h(x) = cp(x), p′(x) > 0
for all x > 0, i.e. the same system as S1 but with the extra condition on p(x) imposed
on x > 1 as well.

Denote by Bh(x, y) ≡ K1(y) + K2(x) = h, where K1(y) ≡ ∫ y
yg

ỹ−c
ỹ d ỹ, K2(x) ≡∫ x

xg

p(x̃)−δ
p(x̃)

dx̃ , the solution of system S2. For 0 < h < h∗ the closed curves Bh(x, y)

lie in the strip 0 ≤ x ≤ 1, for h = h∗ the curve is tangent to x = 1 and for h > h∗ the
closed curves intersect x = 1.

In the strip 0 ≤ x ≤ 1 the vector field of S1 is tangent to Bh(x, y) by construction
since they are solutions to the same system.

The vector field of system S1 is not necessarily tangent to the vector field of system
S2 for x > 1. A simple calculation shows that for the vector field of system S1 we
have d Bh(x,y)

dt = (1− p(xg)

p(x)
)(h(x)− cp(x)) on the strip x ∈ (1, 1+ ε). Here the factor

(1 − p(xg)

p(x)
) is positive. It follows that the stability of the outer cycle tangent to x = 1

is determined by the sign of h(x) − cp(x) for x ∈ (1, 1 + ε). Since c = h(1)
p(1) the

conclusion of the lemma follows. 
�
Since for system (1.2) h′(x) > 0 and p′(x) = 0 for x = 1 + ε, it follows that
h(1 + ε)p(1) > h(1)p(1 + ε) and the previous lemma shows:

Lemma 5.2 Consider the center case for system (1.2) with a0 = 1
1−k , a1 = 0. The

period annulus bounded by the periodic orbit �h∗ , which is tangent to the vertical line
x = 1, is unstable on the outside.
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In the case of an unstable annulus we can apply the Poincaré–Bendixson theorem to
show the existence of a limit cycle in an annular region without singularities because
(1.2) is a bounded system according to Lemma 3.1.

Lemma 5.3 Consider the center case for system (1.2) with a0 = 1
1−k , a1 = 0. The

period annulus is surrounded by (at least) one stable limit cycle. According to Defini-
tion 3.4 this is a limit cycle of type III, i.e. a big cycle intersecting the line x = x f .

Proof It follows from Lemma 5.2 that the annulus bounded by the cycle tangent
to x = 1 is unstable on the outside. The Poincaré–Bendixson theorem then states
that there is an odd number of limit cycles outside this cycle not crossing the line
x = k. These limit cycles are of type II or type III. However, the type II cycles can be
excluded in the following way. The solutions of the system S2 introduced in the proof
of Lemma5.1 act as a Lyapunov-function for an open region of system S1. The quantity
d Bh(x,y)

dt = (1 − p(xg)

p(x)
)(h(x) − cp(x)) in the proof of Lemma 5.1 explicitly becomes

(for system (1.2) with a0 = 1
1−k , a1 = 0): d Bh(x,y)

dt = (1− p(xg))
φ
k (x −1)(k −1−x).

This expression has fixed sign for x < k − 1. Since we imposed that k > 2 it follows
that k − 1 > k

2 . Therefore limit cycles in the system have to cross the line x = k
2

showing that limit cycles can only be of type III. Another way to see this would be
to consider the Liénard form of the system. The value x = k − 1 would correspond
to a zero of F(x). Limit cycles in such a system would have to cross the line x = xF

where F(xF ) = 0. 
�
In [15] a condition was derived for the uniqueness of the limit cycle in the situation
of Lemma 5.3:

Lemma 5.4 [15] Consider the generalized Liénard system (2.2) and let F(x), g(x) be
continuous, piecewise differentiable functions on the open interval (r1, r2), and let
�(y) be a continuously differentiable function on R such that

(i) there exists xg ∈ (r1, r2) such that (x − xg)g(x) > 0 for x �= xg,
(ii) �(y) is monotonically increasing, �(0) = 0,
(iii) F(x) ≡ 0 for r1 ≤ x ≤ x0, with xg < x0,
(iv) there exists an xF > x0 such that F(xF ) = 0,
(v) F(x) > 0 for x0 < x < xF ,
(vi) f (x) < 0 for xF ≤ x ≤ r2 where the function f (x) is defined by d F(x)

dx , then in
the strip r1 < x < r2 system (2.2) has at most one limit cycle, which is stable
and hyperbolic if it exists.

This lemma can be applied to the center case of system (1.2):

Proposition 5.5 Consider the center case for system (1.2) with a0 = 1
1−k , a1 = 0. The

period annulus is surrounded by exactly one hyperbolic stable limit cycle. This limit
cycle is of type III.

Proof In the case of system (1.2)we take the functions as defined in (2.3) and (2.4). The
functions in Lemma 5.4 at the center case C satisfy: r1 = 0, r2 = k, �(y) = ey − 1,
x0 = 1, which verifies conditions (i), (ii), (iii). For x > 1: F(x) = φx(k−x)

k − φ(k−1)
k ,

g(x) = 1− p(xg), where we used that p(x) = 1 for x > 1. It follows that xF = k −1
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Fig. 7 Center case in (1.2) with period annulus surrounded by stable limit cycle according to Proposition
5.5

and F(x) > 0 for 1 < x < k − 1 verifying conditions (iv) and (v). Moreover
f (x) = φ(k−2x)

k < 0 for x > xF verifying condition (vi). Together with Lemma 5.3
showing the existence of the limit cyle, the proposition is proved. The limit cycle has
to cross the line x = xF > k

2 and therefore it is a type III cycle as defined in Definition
3.4. 
�

The results are shown in Fig. 7.

5.2 Perturbation of the Period Annulus

Next we consider a small neighborhood of the center case C in the parameter space
by varying the two parameters a0, a1 for fixed φ, k, xg . The perturbation takes the
form a0 = 1

1−k + τε, a1 = ε, with 0 < |ε| � 1. The period annulus at the center case
is surrounded by a hyperbolic limit cycle according to Lemma 5.3. By changing the
parameters the hyperbolic cycle will persist. It implies that after perturbation a unique
stable limit cycle of type III will exist surrounding the singularity.

Proposition 5.6 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2). For 0 < |ε| � 1 a unique
stable hyperbolic limit cycle exists of type III according to Definition 3.4.

Any other perturbed limit cycle will be of type I or II. Limit cycles can be perturbed
from the period annulus parameterized through the parameter h as indicated in equation
(2.8).

A limit cycle perturbed from a cycle �h with 0 < h < h∗ will not cross the line
x = 1 and is therefore a type I cycle.

A limit cycle perturbed from the center singularity itself is a small-amplitude cycle
and is also of type I. This bifurcation we will not study because we are looking for
lower bounds on the number of perturbed limit cycles and the center-Hopf bifurcation
does not give a higher number than we already would expect.
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The bifurcation from the other end point of the interval h = h∗ is complicated
because on the inside of the cycle �h∗ the unperturbed system has a continuum of
periodic orbits (i.e. the period annulus) while on the outside nearby solutions are
not closed but spiral outwards. The Poincaré-map near �h∗ is non-analytical for the
unperturbed system. Therefore it is difficult to study its bifurcation. Nevertheless
by using some simple stability arguments we can draw some conclusions about this
bifurcation. The perturbed cycle(s) in this case could be of type I or II. It is not clear
in advance which possibilities can be realized.

First we study the perturbation from the period annulus for 0 < h < h∗. The
occurrence of limit cycles after perturbation is governed by the zeroes of the so-called
Pontyragin-integrals (see [1]). Consider the integral of the perturbed divergence of the
vector field over the interior of an unperturbed orbit�h0 , denoted by I (h). If I (h0) = 0,
d I (h)

dh |h=h0 �= 0, then a unique hyperbolic limit cycle is created from �h0 . In general
the analysis of such integrals is quite complicated but in our case we can combine a
uniqueness theorem for Liénard systems with a continuity argument to arrive at the
conclusions we need.

To set up the Pontryagin-integrals for system (1.2) the Liénard form (2.3) is most
suitable. By writing the perturbation in terms of one small parameter ε in the form
a0 = 1

1−k + τε, a1 = ε, the divergence of the vector field f (x) in (2.5) can be
expanded in terms of ε:

f (x) = ε(τU0(x) + U1(x)) + O(ε2) ≡ −ε

(
τ

φ(k − 1)3

k(k − x)2

+φ(−x2 + 2kx − k)(k − 1)2

k(k − x)2

)
+ O(ε2). (5.2)

The corresponding Pontryagin-integrals take the form:

I (h) = τ

∫∫

I nt(�h)

U0(x)dxdy +
∫∫

I nt(�h)

U1(x)dxdy ≡ τ I0(h) + I1(h). (5.3)

A necessary condition for the creation of a limit cycle from an orbit�h is that I (h) = 0.
Since the integrandU0(x) of I0(h) has fixed sign, i.e. negative, the integral I0(h) itself
cannot be zero and the condition I (h) = 0 can be rewritten as:

τ(h) = − I1(h)

I0(h)
, (5.4)

which is a continuous well-defined function of h for every h ∈ (0, h∗). The quotient
τ(h) corresponds to a bifurcation direction in the (a0, a1) plane. The study of this
function is not easy in general, but we can apply a uniqueness theorem for limit cycles
to prove that it is monotonic in h. The direction of the weak focus lw f corresponds to
the value τw f which was discussed in the previous section, i.e. limh↓0 τ(h) = τw f .

The essence of our analysis is that the Pontryagin-integrals are complicated and
difficult to be analyzed directly. Therefore we apply an alternative technique to avoid
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the direct study of the integrals by applying a uniqueness theorem for Liénard systems.
This is similar in spirit to what was done in [17]. For other perturbations for more
general systems than (1.2), more limit cycles could be expected and currently no
alternative techniques exist avoiding the direct study of the zeroes of the Pontryagin
integrals.

Proposition 5.7 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2). No limit cycles are created
for τ ≥ τw f or τ ≤ −1. For −1 < τ < τw f at most one limit cycle is created which
is hyperbolic if it exists. The cycle if it exists is of type I according to Definition 3.4.

Proof For small ε the divergence of the perturbed vector field f (x) to first order
according to (5.2) is ε(τU0(x)+U1(x)). It is not difficult to see that this is a quadratic
expression in x which has fixed sign on the interval 0 < x < 1 if τ ≥ k

k−1 > 0 or
τ ≤ −1. In that case no limit cycles will occur.

It leaves to prove that for τw f ≤ τ < k
k−1 no limit cycles can occur and that for

−1 < τ < τw f at most one limit cycle can occur. A critical element in the following is

the function f (x)
g(x)

. Using the same perturbation form of the parameters a0 = 1
1−k +τε,

a1 = ε to first order in ε this becomes:

f (x)

g(x)
= 1

(x − xg)

[
ε

(
φ(k − 1)2x(τ (1 − k) + (x2 − 2kx + k))

k(k − x)(k − xg − x)

)
+ O(ε2)

]
.

(5.5)

For small ε the first order term in (5.5) determines the behaviour of the quotient f (x)
g(x)

on the interval 0 ≤ x ≤ 1. This is justified because the structure for this quotient for
all admissible parameters in system (1.2) is given by (with the use of (2.2) and (2.5)):

f (x)

g(x)
∼ 1

(x − xg)

[
φx f2(x)

(1 + (x − 1)(a0 + a1x))g2(x)

]
= 1

(x − xg)
Y (x), (5.6)

where g2(x) is a quadratic function which has fixed sign in 0 ≤ x ≤ 1. The factor
(1 + (x − 1)(a0 + a1x) does not have zeroes on that interval either. Since Y (x) will
remain bounded in Y (x) for 0 < x < 1, the higher order contribution will not change
the behaviour of the first order contribution.

In the following we consider the first order term in ε of (5.5) only and define the
essential factor by:

T1(x) ≡ x(x2 − 2kx + k + τ(1 − k))

(x − k)(x − xg)(x − k + xg)
. (5.7)

In expression (5.7) we left out the positive constant factors φ(k−1)2

k which are of
no importance in the following arguments. To prove existence and uniqueness or
non-existence of limit cycles after perturbation for cycles of type I on the interval
0 ≤ x ≤ 1, we employ two standard theorems. The first is a standard non-existence
theorem, which basically asks for a “gap” in the function T1(x) near x = xg .
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Lemma 5.8 If the functions in (2.2) satisfy the following conditions:

(i) (x − xg)g(x) > 0 for x �= xg,
(ii) (x − x f ) f (x) > 0 or (x − x f ) f (x) < 0, x �= x f , x f > xg,

(iii) dψ(y)
dy > 0, ψ(0) = 0,

(iv) ∃c ∈ R such that f (x)
g(x)

= c does not have a pair of solutions (x−, x+) with
xmin < x− < xg < x+ < xmax , then the system has no limit cycles surrounding
the singularity at x = xg in the strip xmin < x < xmax .

In the case where limit cycles can exist we will apply the well-known generalization
of the so-called Zhang Zhifen theorem, see [18]:

Lemma 5.9 If the functions in (2.2) satisfy the following conditions for xmin < x <

xmax :

(i) (x − xg)g(x) > 0 for x �= xg,
(ii) (x − x f ) f (x) > 0 or (x − x f ) f (x) < 0, x �= x f , x f > xg,

(iii) dψ(y)
dy > 0, ψ(0) = 0,

(iv) f (x)
g(x)

is nondecreasing or nonincreasing in x < xg and x > x f , then the system
has at most one limit cycle surrounding the singularity at x = xg in the strip
xmin < x < xmax . It is hyperbolic if it exists.

These two lemmas in general can be combined to prove uniqueness of limit cycles for
Liénard systems in many cases (see e.g. [17]). In Lemma 5.9 the stability of the limit
cycle was left open. It will follow from the stability of the singularity, i.e. the sign of
f (xg).
Conditions (i) and (iii) in both lemmas are clearly satisfied for system (2.2) and

(2.3). As was shown before for τ ≤ −1 of τ ≥ k
k−1 > 0 the function f (x) has fixed

sign and no limit cycles can occur due to the fact that the divergence of the vector field
has fixed sign.

For −1 < τ < τw f (τ ≥ τw f ) the function f (x) has a zero x f on the interval
0 < x < 1 with x f < xg (x f > xg) and condition (ii) is satisfied as well. The critical
condition is therefore condition (iv) in both lemmas for which we will study T1(x) in
(5.7).

The function T1(x) has easily verifiable properties. It has three vertical asymptotes
at x1, x2, x3: 0 < x1 = xg < 1, 1 < x2 = k − xg < k and x3 = k > 1. The
horizontal asymptote for x → ±∞ is y = 1. Each horizontal line y = c can have at
most three intersections with the graph of the function. If for some y = c the graph
has exactly three intersections then necessarily at all three points T ′

1(x) �= 0. With this
information we will show now that always condition (iv) of Lemma 5.8 or condition
(iv) of Lemma 5.9 is satisfied.

Case 1 τw f ≤ τ < k
k−1 . In this case f (x) has two zeros. One satisfies 0 < x f < xg <

1, the other x f2 > k, i.e. to the right of the 3 vertical asymptotes, the largest of which
is positioned at x = k. Since T1(x) has zeros at x = 0 and x = x f < xg , there must
exist a local minimum at 0 < x∗ < x f with value T1(x∗) < 0.

Consider the horizontal line y = c = T1(x∗). By construction it is tangent to the
graph of y = T1(x) where it has a minimum. The equation T1(x) = c is a cubic
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Fig. 8 Existence of a gap in the
function T1(x) in (5.7) under the
condition τw f ≤ τ < k

k−1

equation in x with a double zero at x = x∗. Furthermore it has another solution for
x > k because T1(x) has a vertical asymptote at x = k, a zero at x f2 and satisfies
T1(x) < 0 for k < x < x f2 . It follows that the equation T1(x) = c − ε1, 0 < ε1 � 1,
has only one zero, i.e. for k < x < x f2 , because T1(x∗) has a local minimum for
x = x∗. In particular it follows that T1(x) = c − ε1 does not have solutions in the
interval 0 < x < 1.

In Fig. 8 the situation is illustrated. For the limiting case τ = τw f a continuity
argument gives the same result, because it is a limiting position of τw f < τ . Therefore
condition (iv) in Lemma 5.8 is satisfied if τw f ≤ τ < k

k−1 and no limit cycles occur
in the strip 0 ≤ x ≤ 1.

Case 2 −1 < τ < τw f . We will show that the function T ′
1(x) has fixed sign on the

interval 0 < x < 1 Since T1(x) < 0 for 0 < x < xg and x f < x < 1 the conclusion of
Lemma 5.9will hold. Since in this case 0 < xg < x f < 1 < k−xg < k+2−xg < x f2
it is easy to see that T1(x) < 0 for 0 < x < xg , x f < x < k −xg and k +2 < x < x f2 .
In each of these strips one boundary of the interval represents a zero of T1(x) (x = 0,
x = x f and x = x f2 respectively) and the other boundary represents a vertical
asymptote where T1(x) ↓ −∞ (x = xg , x = k − xg , x = k + 2 − xg respectively).
Since in each strip no other zeroes or asymptotes occur, it follows from the continuity
of the function T1(x) on these intervals that for each c < 0 the equation T1(x) = c
has a solution in each interval, i.e. three solutions for each c < 0 in total. Since the
intervals 0 < x < xg and x f < x < 1 are contained in the three intervals we can
immediately conclude that T ′

1(x) cannot become 0, showing that condition (iv) of
Lemma 5.9 is satisfied. This proves that under the condition −1 < τ < τw f at most
one limit cycle occurs on the interval 0 ≤ x ≤ 1 and if it appears it is hyperbolic. In
Fig. 9 this situation is illustrated.

This completes the proof of the proposition. 
�
Proposition 5.7 does not make a statement about the existence of a limit cycle.

However, the Pontryagin-integrals show the existence of limit cycles through expres-
sion (5.4). For each h a bifurcation direction τ is defined for which a perturbed limit
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Fig. 9 Monotonicity of the
function T1(x) in (5.7) under the
condition −1 < τ < τw f

cycle will occur from �h . Since the previous proposition showed that at most one limit
cycle can occur, the function τ(h) has to be monotonic. If it were not monotonic, then
there would exist a τ ∗ such that τ ∗ = τ(h) has (at least) two different solutions h1 and
h2, i.e. more than one limit cycle would be created in the τ ∗ direction in parameter
space.

The annulus has the boundary cycle �h∗ which is tangent to x = 1. Since for every
0 < h < h∗ a unique limit cycle is perturbed in the direction τ(h), by continuity also
for h = h∗ a limit cycle is created. However, since the unperturbed cycle is tangent
to x = 1 the previous argument about uniqueness does not apply anymore, because
it only showed that at most one limit cycle is perturbed in the strip 0 < x < 1. For
τ < τ ∗ no limit cycles are perturbed because they correspond to cycles crossing the
line x = 1. These cycles do not occur in (1.2) due to the cut-off of the function p(x)

at x = 1.
It remains to be determined what the stability is of this unique limit cycle created

in the direction τ1 < τ < τw f . For ε > 0 (< 0) the singularity A is a strong unstable
(stable) focus. Therefore the unique hyperbolic limit cycle in the strip 0 < x < 1 is
stable (unstable).

Summarizing the argument:

Proposition 5.10 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2). No limit cycles are created
for τ ≥ τw f or τ < τ ∗. For τ ∗ < τ < τw f exactly one limit cycle is created which
is hyperbolic if it exists. The limit cycle is of type I according to Definition 3.4. For
ε > 0 (< 0) the limit cycle is stable (unstable).

5.3 Additional Limit Cycles Perturbed from the Center Case

The results of the previous two sections showed that after perturbation of the center
case a unique (big) stable limit cycle of type III exists (Proposition 5.6) and a unique
(small) limit cycle of type I exists for the bifurcation directions τ ∗ < τ < τw f with
a0 = 1

1−k + τε, a1 = ε (Proposition 5.10). These results give a complete picture
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of the limit cycles of type I and III after perturbation of the center case. It remains
to be determined what happens with medium sized limit cycles of type II. These are
the cycles crossing x = 1 but not the line x = k

2 , the zero of f (x) for x > 1. Such
limit cycles can only be perturbed from the cycle γh∗ , the periodic orbit in the period
annulus of the center case tangent to the line x = 1. This bifurcation mechanism is
difficult to analyze due to the non-analytical behaviour of the Poincaré-map near the
cycle. However, using a continuity argument we can get some lower bounds on the
number of created type II cycles. In order to do so we will use the simple but powerful
Proposition 3.3. In terms of the bifurcation parameters near the center case, according
to Lemmas 2.3 and 2.10, the stability of the singularity A is :

Lemma 5.11 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2). For 0 < |ε| � 1 the
singularity A is:

• a stable (unstable) strong focus for ε(τ − τw f ) > 0 ( < 0).
• a stable (unstable) weak focus of order 1 for τ = τw f and ε > 0 (< 0).

According to Lemma 3.2 an even number of limit cycles surround a stable singu-
larity. It was established in Proposition 5.6 that a unique limit cycle of type III exists
for all bifurcation parameters. Together with the stability criteria of Lemma 5.11 it
follows immediately:

Lemma 5.12 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2). For 0 < |ε| � 1, at least
two limit cycles surround the singularity A if ε(τ − τw f ) > 0 or τ = τw f , ε > 0.

In this lemma the largest limit cycle is the limit cycle of type III of which the exis-
tence was proved before. The inner limit cycle could be of type I or type II depending
on the parameter choices. In the case of ε(τ − τw f ) > 0, Proposition 5.10 indicates a
subregion in parameter space where the inner cycle is a type I cycle. In the (unlikely)
case that type II cycles exist they would come in pairs bringing the total number above
2. In the remainder of the region ε(τ − τw f ) > 0 no small limit cycles exist and the
inner limit cycle needs to be a medium limit cycle of type II. For this to be true there
has to be a curve in parameter space tangent to the direction τ = τ ∗ where a limit
cycle is tangent to x = 1, i.e. it is a transition curve where a cycle of type I becomes
a type II upon crossing τ = τ ∗ .

Lemma 5.13 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2). For 0 < |ε| � 1, there is
a curve a0 = P(a1) in parameter space starting at the center case a0 = 1

1−k , a1 = 0
for which singularity A has a limit cycle tangent to the line x = 1. On one side of the
curve the limit cycle is of type I, on the other of type II according to Definition 3.4.
The curve has an asymptotic direction P ′(a1) = τ ∗ at the center case.

The previous results covered the case where the perturbed singularity was stable.
Next we consider the perturbation into the region where the singularity is unstable.

In the case τ = τw f , ε > 0, a stable weak focus of order 1 exists after perturbation.
No type I cycle will occur according to Proposition 5.10 and the inner limit cycle has
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to be a medium unstable limit cycle of type II crossing x = 1. By perturbation of the
weak focus in such a way that it changes into an unstable strong focus, an additional
type I cycle is created in an Andronov–Hopf bifurcation. It follows that situations
occur with at least three limit cycles. To see how big the region in parameter space is
with at least three limit cycles, the following simple argument gives an rough estimate.

The limit cycle of type I (if it exists) is stable if ε > 0 according to Proposition
5.10. Since the big limit cycle is stable as well, it immediately implies that in that case
(at least one) another unstable limit cycle must exist in between the two stable limit
cycles because two stable limit cycles cannot be adjacent.

A different way to arrive at this conclusion is to observe that the anti-saddle A is an
unstable strong focus for τ ∗ < τ < τw f and ε > 0. According to Proposition 3.3 an
odd number of limit cycles must surround A. Since we already found two limit cycles,
a third one has to exist as well. The type I and type III limit cycles are unique, so the
third limit cycle has to be an unstable (medium) limit cycle of type II.

Lemma 5.14 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2). For 0 < ε < 1, an unstable
limit cycle of type II exists surrounding singularity A for τ ∗ < τ < τw f .

It remains to be determined what will happen with the type I and type II limit cycles
when the bifurcation direction becomes τ < τ ∗. No type I cycles occur according to
Proposition 5.10, meaning that just like in the situation of Lemma 5.13 a transition
curve exists where the type I cycle changes into a type II cycle. This curve is tangent
to the line in the τ = τ ∗ direction. Therefore there will be a region where two type II
cycles exist simultaneously together with the type III cycle.

To understand what happens to the two medium type II cycles, consider the bifur-
cation directions τ < −1 < τ ∗. In that direction the divergence of the vector field
(5.2) has fixed sign on the interval 0 < x < 1 and only changes sign for the full (1.2)
system at x = k

2 . It follows that:

Lemma 5.15 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2). For 0 < ε < 1, no type I
or type II limit cycle (according to the Definition 3.4) occurs for τ < −1. The system
has a unique stable limit cycle of type III.

The lemma indicates that the type I and type II limit cyles for τ ∗ < τ < τw f and
ε > 0 must disappear if τ is decreased from τ ∗ before reaching τ = −1. This can
only be achieved through the occurrence of a semi-stable limit cycle of type II, since
the type III cycle is unique and hyperbolic in this perturbation.

Lemma 5.16 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2). For 0 < ε < 1, there
is a curve a0 = P2(a1) in parameter space starting at the center case a0 = 1

1−k ,
a1 = 0 for which singularity A has a semi-stable limit cycle of type II according to the
Definition 3.4. The curve has an asymptotic direction P ′

1(a1) = τ̃ at the center case,
with −1 < τ̃ ≤ τ ∗. With 0 < ε2 < 1, for τ = τ̃ − ε2, the system has no medium limit
cycles in the neighborhood of the semi-stable limit cycle. For τ = τ̃ + ε2, the system
has two medium limit cycles in the neighborhood of the semi-stable limit cycle.
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Remark: the bifurcation direction τ̃ is unknown to us, although it seems reasonable
(confirmed by a numerical experiment) that it is actually equal to τ ∗.

Combining all the lemmas of this section, the following overall conclusion can be
reached about the bifurcation of limit cycles from the center case in system (1.2):

Theorem 5.17 Consider the perturbation a0 = 1
1−k + τε, a1 = ε from the period

annulus surrounding the center singularity of system (1.2) for 0 < |ε| � 1.
For all bifurcation directions a unique limit cycle of type III exists.

• For ε < 0 τ < τ̃ one limit cycle of type II exists.
τ = τ̃ one limit cycle tangent to x = 1 exists.
τ̃ < τ < τw f one limit cycle of type I exists.
τ ≥ τw f no limit cycles of type I or II exist.

• For ε > 0
τ < τ̃ no limit cycles of type I or II exist.
τ = τ̃ one semi-stable limit cycle of type II exists.
τ̃ < τ < τ ∗ two limit cycles of type II exist.
τ = τ ∗ one limit cycle tangent to x = 1 exists inside a limit cycle of type II.
τ ∗ < τ < τw f one limit cycle of type I exists inside a limit cycle of type II.
τ ≥ τw f one limit cycle of type II exists.

A direct consequence of this theorem is that there exist bifurcations from the center
case with (at least) three limit cycles surrounding A. To prove that the number is
exactly three the bifurcation mechanism of limit cycles from the boundary of the
period annulus �h∗ needs to be understood which is out of the scope of this paper.

Proposition 5.18 Consider the center case for system (1.2) with a0 = 1
1−k , a1 = 0.

There exists a perturbation of a0, a1 with fixed δ, k, φ such that (at least) three limit
cycles appear surrounding the strong focus.

The cases are shown in Fig. 10.
Some numerical results for these bifurcations are shown in Figs. 11, 12, 13 and 14.

6 Singular Bifurcation Near ı = 1

The previous bifurcationmechanisms showed the existence of two limit cycles created
from a Andronov–Hopf bifurcation and three limit cycles from a center case bifurca-
tion. In [16] the limit of δ ↑ 1 was discussed for the situation of a0 = a1 = 0 in (1.2),
a system traditionally referred to as the Holling I system. It was proved that when the
singularity is a focus, then exactly two limit cycles are created after perturbation of
the singular system δ = 1. In our case (1.2) also degenerates into a singular system
when xg = 1 which is equivalent to δ = 1. Using the same techniques we can study
the bifurcation of limit cycles when xg = 1− ε in (1.2). We obtain results for special
cases, but we note that the general singular perturbation problem in system (1.2) with
δ ↑ 1 remains open.

The singularity A after perturbation is an anti-saddle, which means it can be either
a focus or a node. In this section we only consider the focus-case because the node
case is much more complicated and leads to more difficult singular problems.
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Fig. 10 Bifurcation of limit cycles from the center case in system (1.2) according to Theorem 5.17

Fig. 11 Perturbation of the
center case C for a0 = 1

1−k ,
a1 = 0, in system (1.2). The
case ε > 0, τ = τw f of Theorem
5.17: one type II and one type III
limit cycle surrounding a weak
focus of order one. The
parameters in system (1.2) are:
φ = 1, k = 4, δ = 7936

9375 ,

a0 = − 169
375 , a1 = 1

5 . The stable
limit cycle is displayed in green,
the unstable limit cycle in red
(color figure online)
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Fig. 12 Perturbation of the
center case C for a0 = 1

1−k ,
a1 = 0, in system (1.2). The
case ε > 0, τ∗ < τ < τw f of
Theorem 5.17: one type I, one
type II and one type III limit
cycle surrounding a strong focus.
The parameters in system (1.2)
are: φ = 1, k = 4, δ = 7936

9375 ,

a0 = − 341
750 , a1 = 41

200 . The
stable limit cycles are displayed
in green, the unstable limit cycle
in red (color figure online)

Fig. 13 Perturbation of the center case C for a0 = 1
1−k , a1 = 0, in system (1.2). The case ε > 0,

τ̃ < τ < τ∗ of Theorem 5.17: two type II limit cycles and one type III limit cycle surrounding a strong
focus. The parameters in system (1.2) are: φ = 1, k = 4, δ = 7936

9375 , a0 = − 22,334
46,875 , a1 = 2903

12,500 . The
stable limit cycle of type III is displayed in green, the two medium limit cycles of type II in blue. Since
both medium limit cycles are perturbed from the boundary cycle �h∗ , it is difficult to distinguish them in
the figure. The two values x M AX_small and x M AX_medium represent the largest x-values these two
cycles reach, showing how close the cycles are positioned (color figure online)

Fig. 14 Perturbation of the
center case C for a0 = 1

1−k ,
a1 = 0, in system (1.2). The
case ε > 0, τ < τ̃ of Theorem
5.17: just after a semi-stable
limit cycle of type II has
disappeared and one type III
limit cycle surrounding a strong
focus is left. The parameters in
system (1.2) are: φ = 1, k = 4,
δ = 7936

9375 , a0 = − 89,339
187,500 ,

a1 = 11,613
50,000 . The stable limit

cycle is displayed in green (color
figure online)
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Fig. 15 Singular system (1.2)
with δ = 1

The condition for A to be a focus is:

φ <
4p′(xg)

(
1 − xg

k

)
((

1 − 2xg
k

)
p(xg) − p′(xg)

(
1 − xg

k

))2 .

For xg close to 1, this condition reduces to:

φ <
4p′(1)

(
1 − 1

k

)
((
1 − 2

k

) − p′(1)
(
1 − 1

k

))2 ,

where we used that p(1) = 1.
This condition means: for fixed a0, a1, k, xg , the singularity A is a focus if φ is

chosen to be sufficiently small. In the following it is assumed that this choice has been
made.

6.1 The Degenerate System for xg = 1

For xg = 1 system (1.2) degenerates in the following way. For 0 ≤ x < 1 the system
remains regular. The singularity A at xg = 1 moved to the line x = 1. For x ≥ 1 the
system becomes singular because dy

dt ≡ 0. The system has a continuum of singularities
lying on the parabola y = φx(1 − x

k ). Outside the parabola the solution set consists
of horizontal lines y = c. After perturbation, i.e. xg = 1 − ε, the solutions moving
close to the parabola are referred to as the slow solutions and the solutions near the
horizontal lines as fast solutions, because of the different time scales these solutions
refer to.

The unperturbed situation is shown in Fig. 15.

6.2 Perturbation of the Degenerate System

A conclusion from [16] is that the perturbed singular system in the case of a focus can
only contain limit cycles coming from the degenerate singularity at x = xg = 1 and
from a big singular cycle as indicated in Fig. 16. The big singular cycle consists of 3
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Fig. 16 Singular cycle
consisting of 3 fast parts (I, II,
III) and 1 slow part (IV) for
system (1.2) with δ = 1

fast solutions -one fast solution (II) of the regular system on the interval 0 < x < 1
and 2 fast solutions (I, III) formed by horizontal lines for x > 1- and a slow solution
(IV) being part of the continuum of singularities for x > 1. This situation is shown in
Fig. 16.

The important observation is that the slow part of the big cycle is formed by the
continuum of solutions defined for k

2 < x < k, i.e. the part where the divergence of the
perturbed vector field has fixed sign (because the unique zero of f (x) for x > 1 occurs
for x = k

2 ). According to the singular bifurcation theory (see [3–9]) the stability of
perturbed cycles is determined by the sign of the slow divergence integral, which is
essentially the integral of the perturbed divergence over the slow part. In this case that
integral has to be negative because f (x) < 0 for the slow part. It follows immediately
that in our case this integral has to be negative and therefore that only one limit cycle
can be created from perturbing the big cycle in the unperturbed system for the focus
case. It is stable and it is hyperbolic when it exists.

The analysis of the singular system in [16] was based on a blow-up of the singularity
A through a transformation of the type x1 = x−xg

1−xg
, y1 = y−yg

1−xg
which maps the

singularity to the origin while keeping the boundary x = 1 in tact. After a rescaling in
time t → kt the blown-up system takes the form (after restoring the notation x1 → x ,
y1 → y) for the region x > 1:

x > 1

dx(t)

dt
= P0(x, y) + O(ε),

dy(t)

dt
= Q0(x, y) + O(ε),

P0(x, y) = −a0kφ − a1kφ + a0φ + a1φ − kφ + φ + (kφ − 2φ)x − ky,

Q0(x, y) = φ(k − 1)(1 + a0 + a1).

(6.1)

The choice of the blow-up transformation was motivated by the fact that it ensured
that the line x = 1 remained in the finite part of the plane, i.e. we kept it at x1 = 1.
The scaling in y was adjusted accordingly in such a way that the singular nature of the
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system disappeared after transformation. The original interval 0 ≤ x ≤ 1 is mapped
onto the interval x ≤ 1 in the new coordinates.

The zeroth order terms in ε are sufficient for the analysis in the region x > 1
because for no parameter values the terms will vanish identically, i.e. it is a regular
linear system, and the phase portrait is structurally stable under small perturbations.
Here we exclude the boundary case a0 + a1 + 1 = 0 of W1. The system for x > 1
is exactly the same as obtained in [16] which is not surprising because for x > 1 we
imposed the same Holling I structure.

For x ≤ 1 the analysis requires higher order terms under certain conditions. It turns
out that two cases need to be considered related to the limiting position of the weak
focus line in the a0, a1 parameter plane.

6.2.1 Singular Perturbation for a0 �= a1k−a1+1
1−k

For fixed k and φ the singular system with ε = 0 depends on 2 parameters a0 and a1.
The condition a0 = a1k−a1+1

1−k corresponds to the limiting position of the weak focus

line lw f of the previous sections. It implies: if a0 = a1k−a1+1
1−k , then a weak focus can

be perturbed from the singular system, but if a0 �= a1k−a1+1
1−k for ε = 0 then only a

strong anti-saddle can be perturbed. In the latter case the perturbation is similar to that
studied in [16]. The equilibrium point at the origin of the blown-up system is a strong
singularity. For the study of the perturbed system in that case it is sufficient to consider
the zeroth order term only:

x ≤ 1, a0 �= a1k−a1+1
1−k

dx(t)

dt
= P0(x, y) + O(ε),

dy(t)

dt
= Q0(x, y) + O(ε),

P0(x, y) = φ((1 − k)(a0 + a1) − 1)x − ky,

Q0(x, y) = (k − 1)φ(1 + a0 + a1)x .

(6.2)

The system for x > 1 has one important property: it has an invariant line representing
the stable separatrix of a saddle singularity at infinity. This solution exits the blown-up
system at this infinite saddle.

Lemma 6.1 System (6.1) has one invariant line l given by y = yl(x) ≡ φ(k−2)
k x −

(k−1)(k+(k−2)φ)
k(k−2) . System (6.1) has two singularities at infinity: a saddle S with a stable

separatrix, formed by the invariant line l, approaching it from the finite part of the
phase plane and a stable node N at the end of the x-axis. See Fig. 17 where the phase
portrait is shown on the Poincaré sphere.

The lemma implies immediately that there should exist a stable big limit cycle
outside the blown-up system (6.1) and (6.2). Since the only possible other limiting
position of a limit cycle outside the blown-up singularity A is the big cycle of Fig. 16,
we conclude:
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Fig. 17 Invariant line and phase
portrait of the system (6.1) for
x > 1 with ε = 0 for the focus
case, depicted on the Poincaré
sphere

Fig. 18 The two cases of the blown-up system (6.1) and (6.2) for ε = 0. In the case of an unstable focus
no limit cycles occur, while for the stable focus a hyperbolic unstable limit cycle occurs

Lemma 6.2 For system (1.2) with xg = 1− ε, 0 < ε � 1, a unique hyperbolic stable
limit cycle exists of type III, if a0 �= a1k−a1+1

1−k .

According to Proposition 3.3 we can conclude that for the case of a stable singularity
A after perturbation a second limit cycle must exist. This follows also from singular
perturbation theory. System (6.1) and (6.2) is essentially the same system studied in
[16] where it was proved that the blown-up system contains a unique unstable limit
cycle crossing the line x = 1 if the singularity A is a stable focus. If it is an unstable
focus it is quite easy to prove that no cycles are contained in the blown-up system. In
Fig. 18 the two situations in the blown-up system are depicted.

The conclusion is that for this case a sharp limit on the existence and upper bound
of perturbed limit cycles can be given:

Proposition 6.3 For system (1.2) with xg = 1 − ε, 0 < ε � 1, a0 �= a1k−a1+1
1−k , a

unique hyperbolic stable limit cycle exists if A is a focus. This stable limit cycle is of
type III. If the focus is stable then an additional limit cycle exists which is hyperbolic
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and unstable. This stable limit cycle is of type II. For an unstable focus no other limit
cycles exist.

6.2.2 Singular Perturbation for a0 = a1k−a1+1
1−k

If a0 = a1k−a1+1
1−k for ε = 0, then the perturbation of the singular system for fixed φ

and k is much more complicated, because the blown-up system will be structurally
unstable in contrast to the previous sectionwhere the blown-up systemwas structurally
stable.

The first observation is that the existence of a unique stable limit cycle of type III
follows in the same way as was shown in the previous section. The reason being that
the system for 0 ≤ x ≤ 1 in the original coordinates has no influence on the behaviour
of the solutions, because Lemma 6.1 still holds in the region x > 1.

However, in this particular case there is an even simpler proof possible because the
system will resemble the center case of (1.2), where we proved the global existence
and uniqueness of the type III limit cycle.

The first step is to blow up the system around the singularity A in the same way
as for the other cases. For x > 1 nothing essentially changed and system (6.1) can be
used. For x ≤ 1 higher order terms in ε will play a role, for a0 = a1k−a1+1

1−k we get:

x ≤ 1, a0 = a1k−a1+1
1−k

dx(t)

dt
= P0(x, y) + εP1(x, y) + O(ε2),

dy(t)

dt
= Q0(x, y) + εQ1(x, y) + O(ε2),

P0(x, y) = −ky,

P1(x, y) = 1

1 − k

(( − 2a1k2φ − 2a1φ + 4a1φk
)
x + (2k − k2)y

+(k2 − 2k)xy + (
a1k2φ − 2a1kφ + a1φ

)
x2

)
,

Q0(x, y) = φ(k − 2)x,

Q1(x, y) = −x

1 − k

( − 2φk2a1 − 2φ − 2φa1 + 2φk + 4φa1k + (k2 − 2k)y

+(
a1k2φ − kφ − 2a1kφ + φ + a1φ

)
x
)
. (6.3)

Here for ε = 0 the blown-up system for x ≤ 1 contains a period annulus formed by
the ellipses which are the solutions of the corresponding linear system. It is therefore
structurally unstable, implying that it is not clear what will happen for ε �= 0. The
period annulus is bounded on the outside by the ellipse tangent to the line x = 1. This
creates a similar situation in the blown-up system as for the center case we studied in
the previous sections. The limit cycles created from the period annulus (i.e. the cycles
lying in the region x < 1) after perturbation correspond to the cycles labelled type I.
They basically correspond to a regular Andronov–Hopf-bifurcation. The upper bound
on the number of small cycles should be equal to the maximum order of the weak
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Fig. 19 The blown-up system
(6.1), (6.3) for ε = 0,
a0 = a1k−a1+1

1−k . A period
annulus formed by ellipses
exists for x ≤ 1, which is
unstable on the outside

focus, which is two in the case of system (1.2), but the full proof is not given here
because it involves calculations involving higher order expansions in ε.

Essentially we have established that for a0 = a1k−a1+1
1−k the unperturbed system has

a similar structure as for the center case of (1.2) and the techniques of the previous
sections can be applied.

The stability of the period annulus in the blown-up system is determined through
Lemma 5.1. A simple check using the system for x > 1 of the blown-up system (6.1)
shows that:

Lemma 6.4 For system (1.2) with xg = 1− ε, 0 < ε � 1, a0 = a1k−a1+1
1−k , the system

(6.1), (6.3) contains a period annulus in the strip 0 ≤ x ≤ 1 consisting of ellipses and
is unstable on the outside for x > 1 in the limit ε ↓ 0.

The situation is depicted in Fig. 19.
The conclusion from Lemma 6.4 is that the blown-up system has an unstable period

annulus. Combined with the fact the system (1.2) is a bounded system the conclusion
from the Poincaré–Bendixson theorem then shows the existence of the big stable
limit cycle after perturbation. After all, limit cycles can only be perturbed from the
singularity A and the big singular cycle from Fig. 16:

Lemma 6.5 If system (1.2) contains a focus or center, then a unique stable hyperbolic
limit cycle of type III is created from the singular system xg = 1− ε, 0 < ε � 1. This
big cycle exists independent of the stability of the perturbed singularity.

Similar to the observations in the previous sections, it follows that if the perturbed
system has a stable singularity, then there exist two limit cycles, i.e. an additional limit
cycle exists which is unstable lying inside the stable cycle of type III. The type of
this second cycle is not clear, because in principle it could have been created from
the outer cycle in the period annulus touching the line x = 1 or it could directly have
come from the period annulus itself.
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Fig. 20 Two limit cycles created surrounding a second order weak focus in (1.2) for xg = 1 − ε, a0 =
a1k−a1+1

1−k . The parameters in system (1.2) are: φ = 1, k = 3, δ = 35,721
38,350 , a0 = − 1258

767 , a1 = 1100
767 . The

stable limit cycle is displayed in green, the unstable limit cycle in red (color figure online)

6.2.3 Singular Perturbation of a Weak Focus of Order 2 for a0 = a1k−a1+1
1−k

The full analysis of the singular perturbation is left for further research. For our pur-
poseswe observe that system (1.2) contains parameter values for which a stable second
order weak focus occurs according to Proposition 2.12. Therefore the previous dis-
cussion shows that:

Proposition 6.6 If a second order weak focus is perturbed from the singular system
(1.2) with xg = 1, then the second order weak focus is surrounded by (at least) two
limit cycles. One limit cycle is of type III, stable and hyperbolic. The other limit cycle
is of type I or II and unstable.

In Fig. 20 a numerical solution is shown for this proposition. The two limit cycles
can be observed surrounding a second order weak focus in (1.2).

Next we perturb exactly two small-amplitude limit cycles from the second order
weak focus through the standard Andronov–Hopf bifurcation as described in Propo-
sition 4.2 leading to:

Proposition 6.7 The singular system (1.2) with xg = 1 can be perturbed in such a
way that exactly 4 limit cycles are created surrounding the singularity. The outer limit
cycle is stable and of type III, one is an unstable limit cycle of type I or II, and two are
small-amplitude limit cycles of type I.

An example of these 4 perturbed limit cycles is shown in Fig. 21.

7 Bifurcation Curves

An important but difficult question is how to explain the existence of 3 limit cycles
in a center bifurcation and the existence of 4 limit cycles in a singular bifurcation
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Fig. 21 A numerical example of 4 perturbed limit cycles from a singular system (1.2) with δ = 1. The
parameters in system (1.2) are: φ = 1, k = 3, δ = 35,719,184,511

38,350,000,000 , a0 = − 630,524,029
383,500,000 , a1 = 220,767

153,400 . The
stable limit cycles are displayed in green, the unstable limit cycles in red (color figure online)

in the parameter space by continuously varying the parameters. The information of
the previous sections can be summarized in terms of bifurcations curves for semi-
stable limit cycles. These bifurcation curves essentially determine the number of limit
cycles when parameter values are varied. In this section the approach will be to find an
explanation in termsof bifurcation curves for semi-stable limit cycles. The terminology
“curve” is used to indicate that the parameter set is typically displayed in the (a0, a1)
plane for fixed k, φ, xg . In this plane the semi-stable limit cycles typically occur
for parameter sets represented by curves, although a formal proof for this is difficult
because the standard technique of so-called rotated vector field parameters does not
seem to apply to system (1.2).

In region W1 of the parameter space near the center case C a bifurcation curve for
semi-stable limit cycles SC emerges on one side of the weak focus line lw f . In the same
fashion a bifurcation curve Sw f emerges from the second order weak focus point. The
situation is displayed in Fig. 22.

These two bifurcation curves alone cannot explain the results we obtained for xg

close to 1. In that singular perturbation 4 limit cycles were found near the second
order weak focus point. Moreover, the two semi-stable limit cycle curves SC and
Sw f correspond to essentially different types of semi-stable limit cycles. Near the
center case C the semi-stable limit cycle is created from two limit cycles nearest to
the unstable singularity A, i.e. the semi-stable limit cycle is stable on the inside and
unstable on the outside. On the other hand in the Andronov–Hopf bifurcation near the
second order weak focus, the singularity inside the semi-stable limit cycle is stable,
i.e. the semi-stable limit cycle is unstable on the inside and stable on the outside.
Therefore the bifurcation curves cannot be connected in a straightforward way.

To explain the co-existence of two essentially different semi-stable limit cycle
curves and the occurrence of 4 limit cycles in a singular perturbation, we arrive at
the picture of Fig. 23. A third semi-stable limit cycle bifurcation curve S3 is shown.
It is connected together with the curve SC at a point T where the system has a triple
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Fig. 22 Two bifurcation curves
for semi-stable limit cycles
emerging from the center case C
and the second order weak focus
point for system (1.2) in the
parameter region for (a0, a1) in
W1 for fixed k, φ, xg

Fig. 23 Three bifurcation curves for semi-stable limit cycles for system (1.2) in the parameter region for
(a0, a1) in W1 for fixed k, φ, xg . There is a point T where a limit cycle of multiplicity 3 occurs. Note
that there is an intersection of two bifurcation curves for semi-stable limit cycles where the system has a
singularity surrounded by two semi-stable limit cycles

limit cycle. The curve S3 represents semi-stable limit cycles of the same type as for
curve Sw f , i.e. unstable on the inside and stable on the outside. The figure indicates
the number of limit cycles in the regions of the parameter space. Note that W1 is not
indicated here because it is not clear how the relative position of T and S3 are relative
to the boundaries of W1. There is numerical evidence that the point T does enter W1
for some xg .

An interesting special case is the origin in the (a0, a1) plane: can it lie in the region
where 4 limit cycles occur? Numerically it seems to be unlikely but a formal proof is
difficult. The origin, where a0 = a1 = 0, corresponds to the case of a Holling I type
functional response where singular pertubation from the case xg = 1 showed that at
most two limit cycles occur (see e.g. [16]). It is not a priori clear if perhaps the Holling
I case could lie in the parameter region where 4 limit cycles appear when xg is varied.

Another reason why T should enter W1 is that for k ↓ 2 the bifurcation curves
become restricted in their behaviour. This is due to the fact that for k = 2 the period
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Fig. 24 Two bifurcation curves
for semi-stable limit cycles
emerging from the center case C
and the second order weak focus
point for system (1.2) with k = 2
in the parameter region for (a0,
a1) in W1 for fixed φ, xg

Fig. 25 The emerging of the
semi-stable limit cycle
bifurcation curve SC and triple
limit cycle point T for system
(1.2) with k = 2 + ε in the
parameter region for (a0, a1) in
W1 for fixed φ, xg

annulus becomes stable according to the criterion in Lemma 5.1. It is not difficult to
prove that the period annulus for k = 2 is not surrounded by limit cycles. It implies that
for k = 2+ ε in the center case a stable limit cycle is created from the boundary cycle
of the annulus. The argument leading to three limit cycles does not apply anymore
for k = 2 and near the center case only two limit cycles can be created, not three. A
simple check using the stabilities of the weak focus shows that for k = 2 a semi-stable
limit cycle bifurcation curve of the type S3 will emerge in the region a0 > 1

1−k . The
result is shown in Fig. 24.

The problem then becomes to explain how the curve SC and the point T , which
exist for k > 2, disappear when k approaches 2. The explanation is that for k = 2+ ε

the curve SC and triple limit cycle point T need to emerge from the center point C .
This is displayed in Fig. 25.

Then finally by continuation of parameters, varying xg to arrive at the situation of
the singularly perturbed system xg = 1−ε as shown in Fig. 23 , it is clear that the point

T will move from close to C (Fig. 25) with a0 < 1
1−k to a point a0 > aw f2

0 (Fig. 23).
Doing so it has to cross the weak focus line lw f for some xg , i.e. there are parameter
values in system (1.2) for which an unstable first order weak focus is surrounded by a
stable third order multiple limit cycle. The bifurcation diagram is displayed in Fig. 26.

8 Discussion

In this paperwe introduced three bifurcationmechanisms for a special typeof predator–
prey system. The natural question arises how these results can be extended to general
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Fig. 26 Existence of a triple
limit cycle surrounding a stable
first order weak foucs for system
(1.2) in the parameter region for
(a0, a1) in W1 for fixed k, φ, xg

systems of the form (1.1). Each of the three bifurcation mechanisms used some special
information of the function form of (1.2) but not all. In particular:

• The Andronov–Hopf bifurcation used the functions on the interval 0 ≤ x ≤ 1
only because the calculation of the focal values is based on the behaviour of the
functions near the singularity at x = xg . The choices of p(x) = 1 and logistic
growth function h(x) (according to definition (1.3)) for x > 1 have no impact: the
results of Proposition 2.12 hold true for any p(x) and h(x) defined for x > 1.

• The center bifurcation occurs for a specific choice of p(x) and h(x) on the interval
0 ≤ x ≤ 1, i.e. they are proportional. The bifurcation mechanism can be easily
extended to more general p(x) and h(x) defined on x > 1.

• The singular perturbation is not influenced by the choice of p(x) and h(x) on the
interval 0 ≤ x ≤ 1, as long as the system has a singularity of focus type collapsing
onto the line x = 1 for xg ↑ 1. The restriction is basically that p(x) = 1 for x > 1.
Even the functional form of h(x) does not have to be fixed for x > 1.

In short it means that the Andronov–Hopf bifurcation mechanism allows for general
p(x), h(x) on x > 1, the center bifurcation mechanism allows for general p(x), h(x)

on x > 1 when p(x) and h(x) are proportional on 0 ≤ x ≤ 1, and the singular
perturbation mechanism essentially needs p(x) = 1 for x > 1. The three bifurca-
tion mechanisms cover different aspects of modelling small, medium and large prey
densities.

Moreover the results can give information about smooth perturbations of these
choices. For example: in the singular case perturbation results can be applied to a
situation where p(x) = 1 + ε(x) with 0 < |ε(x)| � 1. This is a situation where one
assumes that the functional response function does not change much for larger x .

In the next subsections we briefly indicate some interesting observations that can
be made for these three bifurcation mechanisms. It is virtually impossible to draw
conclusions about the general system (1.1) but wewould like to point out some distinct
trends in the bifurcations.

8.1 Andronov–Hopf Bifurcation

For the general Gause system (1.1) with γ = 1 the conditions to have a weak focus
are as follows:

To have an anti-saddle at (xg, yg) we must have p′(xg) > 0.
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Additionally for this anti-saddle to be a weak focus

h′(xg)p(xg) − h(xg)p′(xg) = 0

must hold true.
The stability of the weak focus is determined by the sign of the first focal value.

The expression determining this sign is (using Maple):

−h′(xg)
2h′′(xg)p(xg)

2 + h(xg)h
′(xg)

2 p(xg)p′′(xg) + h(xg)h
′(xg)h

′′′(xg)p(xg)
2 +

−h(xg)
2h′(xg)p(xg)p′′′(xg) − h(xg)

2h′′(xg)p(xg)p′′(xg) + h(xg)
3 p′′(xg)

2,

where we used that it is a weak focus by writing p′(xg) = h′(xg)p(xg)

h(xg)
.

If this expression is equal to zero, then we get a second (or higher) order weak
focus. Summarizing we get:

Lemma 8.1 The singularity A of system (1.1)with γ = 1 at (xg, yg), where yg = h(xg)

δ

and p(xg) = δ, is an elementary anti-saddle iff p′(xg) > 0. If p′(xg) �= h′(xg)p(xg)

h(xg)
,

it is a strong anti-saddle. If p′(xg) = h′(xg)p(xg)

h(xg)
, then it is a first order weak focus if

p′′′(xg) �= W1(xg)

h(xg)2h′(xg)p(xg)
, where

W1(xg) = −h′(xg)
2h′′(xg)p(xg)

2 + h(xg)h
′(xg)

2 p(xg)p′′(xg)

+ h(xg)h
′(xg)h

′′′(xg)p(xg)
2 +

−h(xg)
2h′′(xg)p(xg)p′′(xg) + h(xg)

3 p′′(xg)
2.

It is a second (or higher) order weak focus iff p′(xg) > 0, p′(xg) = h′(xg)p(xg)

h(xg)
,

p′′′(xg) = W1(xg)

h(xg)2h′(xg)p(xg)
.

It is difficult to draw general conclusions from this lemma. However, a simple obser-
vation is that for any weak focus necessarily p′(xg) > 0. It means that adding a group
defense component does not have an impact on the order of the weak focus. Group
defense would imply the existence of values of x where p′(x) < 0. At those points
though a weak focus cannot appear. The Andronov–Hopf bifurcation for the general
Gause-system is therefore determined by the functions p(x) and h(x) for those values
of the prey densitities where group defense does not play a role.

For the choice of a cubic functional response p(x), it turned out that a second order
weak focus can occur for parameter values in W1. It was stable. Interestingly enough,
if a second order weak focus in system (1.1) would be unstable, Lemma 3.2 shows
that it would be surrounded by a stable limit cycle, so generically, independent of the
behaviour of p(x), h(x) for x > 1 the system could have at least three limit cycles!
It is not clear if there is a deeper reason why in system (1.2) the second order weak
focus turned out to be stable.



   65 Page 44 of 48 A. Zegeling, R. E. Kooij

For system (1.2) it is easy to check that at the weak focus of order 2 the convexity
of p(x) is fixed. Substitution of the values for a0 and a1 according to (2.16) and (2.15)
respectively into p′′(xg) gives:

p′′(xg) ≡ xg(2k − xg)(k − 2xg) > 0.

The second order weak focus can only appear on the part of p(x) where the function
is concave up. It is a remarkable feature which does not necessarily seem to be true
for the general case. At the center case C it can easily be checked that p′′(xg) < 0.

Another interesting observation is that if we allow group defense into system (1.2)
then no weak focus of order two can appear in system (1.2). It is the situation when the
region of interest W1 is extended with parameter values such that p(x) has exactly one
local maximum on the interval 0 ≤ x ≤ 1. It is easily verified that this corresponds
to a region W2 defined through a0 + a1 + 1 < 0 ∧ a1 < 1. By following similar
calculations as were done for the region W1 the conclusion is that no second order
weak focus occurs for k > 1. Again it is not clear if this has a deeper reason or
if it is a manifestation of the specific choices of the functions p(x) and h(x). In
general, systems with group defense have been found with a second order weak focus.
Nevertheless in our restricted family it does not occur.

8.2 Center Bifurcation

The bifurcation of 3 limit cycles from the center case C in (1.2) was essentially based
on two mechanisms. The center case itself contained a stable limit cycle surrounding
the period annulus and it was possible to bifurcate a stable weak focus of order one
from the center which created a second unstable limit cycle from the outer boundary
of the period annulus. A third limit cycle was then created from the weak focus in an
Andronov–Hopf bifurcation.

How does this extend to general cases? Suppose system (1.1) has a period annulus
on the interval 0 ≤ x ≤ 1, i.e. h(x) = cp(x). According to Lemma 5.1 the local
behaviour of the two functions for x = 1 + ε will determine the outer stability of the
annulus. In particular the graphical interpretation is that if the graph H of y = h(x) lies
above (below) the graph P of y = cp(x), then the annulus is unstable (stable). Under
rather general conditions system (1.1) will be bounded and the Poincaré–Bendixson
shows that at least one stable limit cycle surrounds the annulus if H lies above P .
Since we assume here that p(x) is increasing and that in the general case h(x) will
have a zero for x > 1, it follows that the graphs of H and P will intersect at least
once. See Fig. 27.

This case was discussed in more detail in [15] where the case of uniqueness of the
surrounding limit cycle was discussed as well.

Since the relative position of the graphs H and P determines the stability of the
period annulus it is easy to create an example of a center case surrounded by M limit
cycles with M ∈ N. This is established by starting with a situation where H lies above
P for x = 1 + ε. This implies the existence of a stable limit cycle surrounding the
annulus. For fixed h(x) we will perturb p(x) in such a way that a second limit cycle
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Fig. 27 General position of the
graphs of H: y = h(x) and P:
y = cp(x) for which a stable
limit cycle surrounds the center
case in system (1.1) if for
0 ≤ x ≤ 1, h(x) = cp(x)

Fig. 28 The graphs of H: y = h(x) and P: y = cp(x) such that an unstable limit cycle is created from the
outer boundary surrounding the center case in system (1.1) if for 0 ≤ x ≤ 1, h(x) = cp(x)

is created from the cycle tangent to x = 1. Change p(x) into p2(x) = p(1) + t2(x)

on the interval 1 < x < 1 + ε2 with t2(1) = 0 and c(p′(1) + t ′2(1)) > h′(1), with
0 < ε2 � 1. The function t2(x) is assumed to be differentiable at x = 1 and its
derivative is chosen large enough to make P lie above H near x = 1. On the interval
x ≥ 1 + ε2 continue with the original p(x) lifted to make p2(x) is continuous, i.e.
p2(x) = p(x) + t2(1+ ε2). Since t2(x) was assumed to be differentiable the constant
t2(1 + ε2) can be made small enough to ensure that the original intersection between
H and P is not removed. The situation is illustrated in Fig. 28.

By choosing ε2 sufficiently small the original stable limit cycle is kept. However,
the period annulus has become stable on the outside because the relative positions of
H and P have changed. The Poincaré–Bendixson theorem then states that inside the
original stable limit cycle and the outer boundary of the annulus (i.e. the cycle tangent
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Fig. 29 The graphs of y = h(x)

and y = cp(x) such that M − 1
limit cycles are created from the
outer boundary surrounding the
center case in system (1.1) if for
0 ≤ x ≤ 1, h(x) = cp(x)

to x = 1) an unstable limit cycle must exist. It was created from the outer boundary of
the annulus. It is not difficult to see that by continuing this procedure of switching the
positions of H and P near x = 1 an arbitrary number of limit cycles can be created,
see Fig. 29. Essentially it means that locally M −1 extra intersections of the graphs H
and P need to be created. These M − 1 new limit cycles are of the type II as defined
in 3.4. The first limit cycle will be of type III because it has to cross the value of x
where the first intersection of H and P occurs. This intersection wil lie to the right of
the zero of the function f (x) in the Liénard form of the system.

This shows that with little effort systems of the type (1.1) can be constructed where
M − 1 type II limit cycles occur and 1 limit cycle of type III. Next we can perturb the
center and try to create a stable weak focus of order one. A simple analysis of the first
focal value as given in Lemma 8.1 shows that it is possible to do this generically. This
is due to the fact that from a center typically a weak focus can be created and that it
can be unstable or stable depending on the bifurcation direction.

According to this heuristic argument generically if a center situation occurs of this
type, M +2 limit cycles can be created from a center case where 2 are of type I, M −1
are of type II and 1 is of type III.

We note that for systems with group defense a similar argument could hold true
for the creation of the M − 1 limit cycles of type II and the one limit cyle of type
III. Additional conditions need to be imposed though, because systems with group
defense can have a saddle singularity in the first quadrant which could prevent the
use of the Poincaré–Bendixson theorem. It shows again that systems without group
defense are more flexible for creating a multiple number of limit cycles.

Finally we note that these mechanisms give a minimum number of limit cycles
after bifurcation but not an upper bound which is obviously a much more difficult
task. For some special cases this can be done though. For example: in the limit φ ↓ 0
the system becomes singular and perturbation techniques can be applied to find the
maximum number of the perturbed limit cycles. This will be done in a forthcoming
paper.



Several Bifurcation Mechanisms for Limit Cycles in a… Page 47 of 48    65 

8.3 Singular Bifurcation

Essentially the analysis of the system (1.2) for δ ↑ 1 extends literally to the general
case if we impose that p(x) = 1 for x > 1. Following the argument of the previous
sections we get that the perturbed system will always have exactly two limit cycles,
one of type II and one of type III if the perturbed singularity is a strong stable focus
and the function h(x) satisfies h′(1) > 0. This latter condition is necessary to ensure
that the blown-up system contains an unstable manifold entering the region x > 1.
These two limit cycles will also exist for the perturbation into the weak focus cases if
a stable weak focus is created. If a stable weak focus of order 1 can be perturbed then
in total 3 limit cyles can occur. If a stable focus of second order can be created then 4
limit cycles can occur after perturbation, etcetera.

Here also the choice of a group defense element in p(x)will complicate the analysis
and it is not easy to see how many limit cycles can be created, mainly because of the
possibility of a saddle singularity in the phase plane.
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