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AbstractÐCurved oriented patterns are dominated by high frequencies and

exhibit zero gradients on ridges and valleys. Existing curvature estimators fail

here. The characterization of curved oriented patterns based on translation

invariance lacks an estimation of local curvature and yields a biased curvature-

dependent confidence measure. Using parameterized curvilinear models we

measure the amount of local gradient energy along the model gradient as a

function of model curvature. Minimizing the residual energy yields a closed-form

solution for the local curvature estimate and the corresponding confidence

measure. We show that simple curvilinear models are applicable in the analysis of

a wide variety of curved oriented patterns.

Index TermsÐOriented patterns, anisotropy, curvature, confidence measures,

curvilinear models, gradient vector fields.
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1 INTRODUCTION

RELIABLE estimation of local features in digitized images is of great

importance for many image processing tasks (segmentation,

analysis, and classification). Depending on the class of images

under investigation, knowledge of different features is desired.

One such class of images is defined by Kass and Witkin [1] as

oriented patterns: patterns that exhibit a dominant local orienta-

tion. Examples are seismic, acoustic, wood grain, interference

patterns, and fingerprint images. Important features for these

images are estimates of local anisotropy, orientation, curvature,

and scale.

The structure tensor yields a robust estimator for local

orientation [1], [2], [3], [4] based on a local gradient vector field.

This estimator locally models the images as translation invariant

strokes. In addition to orientation estimation, this method also

yields an anisotropy measure indicating the resemblance of the

local area to a translation invariant model. This measure can also

be interpreted as a confidence measure of the estimated orienta-

tion. Both a lack of smoothness (e.g., caused by noise) and

deviations from the translation invariant model (e.g., curved

oriented patterns) are responsible for a decrease of this confidence

measure. To distinguish between the two possible causes, we

proposed a parabolic transformation which optimizes the transla-

tion invariance after transformation [5]. This method yields a

curvature estimate for curved oriented patterns as a by-product. A

shortcoming of this method is that the proposed transformation is

not orthonormal and, therefore, it lacks conservation of gradient

energy. This does not allow direct comparison of the confidence

values of different transformations. In this paper, we propose a

method to investigate the resemblance of a local pattern of

2D oriented pattern to a certain model function (e.g., circular,

parabolic). The model is represented by a parameterized transfor-

mation function of the isophotes. The method assures the

conservation of gradient energy, allowing us to compare con-

fidence measures of different transformations and, especially, of a

parameterized transformation for different parameter values. As in

[5], solving the parameter for best confidence yields a closed-form

estimate of the additional free parameter, e.g., local curvature. We

propose two curvilinear models, a parabolic and a circular model,

for the characterization of curved oriented patterns. When the

resemblance between a model and a local image is high, the

corresponding model parameters, orientation, and curvature yield

a reliable description of the local image. The method yields

features with a corresponding confidence value. All these

estimates are local and can be represented as feature maps.

Estimation of the curvature in oriented patterns is not trivial.

Worring and Smeulders [6] presented an extensive comparison

between curvature estimators applied to segmented data for which

the position and ordering of points along the contour have to be

known. For noisy oriented patterns, segmentation fails, making

these methods useless. The isophote (tangential) curvature (the

second derivative along the isophote divided by the gradient

magnitude) and the normal curvature [17] are segmentation-free

[7], [8], [17], but also fail on these images. There are three reasons

for this [5]: 1) The gradient is zero on ridges and in valleys.

2) Increasing the regularization scale of directional derivatives

suppresses the oriented pattern and reduces the signal-to-noise

ratio. 3) Opposite sides of a ridge (or valley) yield curvatures of

opposite sign which cancel out after averaging. The only two

methods which do yield a curvature estimate for oriented patterns

are either very computationally demanding [9] or are not

accompanied by a confidence measure, which makes them hard

to rely on [10].

The proposed method resembles a method for the detection of

complex symmetries as presented by BiguÈ n et al. [11], [12], [13].

They characterize symmetries by (coordinate) transformation

functions which transform symmetric patterns into translation

invariant patterns. The success of such a transformation is

determined by the confidence measure of the structure tensor

applied to the transformed image. A high confidence value is an

indicator for the presence of the corresponding symmetry. BiguÈ n

et al. method is an extension of the generalized Hough transform.

Detection of a symmetry pattern involves accumulation of

evidence by voting. BiguÈ n's symmetry detector requires two

orthonormal transformation functions. It measures the resem-

blance of the local differential field to two perpendicular

differential fields (indicating the symmetry), whereas our method

looks at the resemblance of the local differential field to only one

differential field (representing the shape of the isophotes). This

difference allows us to estimate model parameters by optimizing

the resemblance between the actual differential field and a model

differential field in a closed-form solution, i.e., omitting a time,

consuming voting scheme. This is not possible with the symmetry

method since neither one of the two differential fields is preferred.
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The requirement for two orthonormal transformation functions

poses an unnecessary limitation to the symmetries. For example,

such a set of functions does not exist for the parabolic model we

propose, i.e., parabolic isophotes along a linearly increasing

symmetry axis. We extend his method by noting that only the

existence of the differential fields of the two transformation

functions is essential.

2 ORIENTED PATTERNS

An oriented pattern m�x; y� can be written as a real one

dimensional function g of a model function u

m x; y� � � g u x; y;a� �� �: �1�
The model function u�x; y; a� describes the shape of the isophotes

and a contains local isophote parameters such as orientation and

curvature. Consequently, the gradient (differential field) of m,

rm � dg

du
ru; �2�

is a dg=du weighted version of the gradient of u. In oriented

patterns, we distinguish between two perpendicular orientations;

along the isophote (tangent) and along the gradient. Note that

orientation is defined on the interval �0; �i. Consequently, vectors

in opposite directions have the same orientation.

Consider the function f�x; y� representing a local image

(window) and a model function u�x; y;a�. It is of interest to what

extent f�x; y� is described by the model function u�x; y; a�. This is

measured by decomposing the derivative energy of f�x; y� into two

contributions, one parallel and one perpendicular to the

normalized differential field of u�x; y;a�. This results in the

following energies:

Ef �a� �
Z Z

rf � ru a� �
ru�a�k k

� �2

dx dy;

Er�a� �
Z Z

rf � ru a� �� �?
ru�a�k k

� �2

dx dy;

�3�

where Ef �a� denotes the fit energy and Er�a� the residual energy.

The subscript ? indicates a rotation of 90� of the vector and the

integrals represent the averaging over the local image. A quality

measure of the fit can be found by comparing the fit energy with

the residual energy. Since no a priori knowledge exists to interpret

the energy difference between the fit and the residual energy, we

normalize the difference with the total gradient energy to obtain

the following quality measure c�a�:

c a� � � Ef a� � ÿ Er a� �
Ef a� � � Er a� � ÿ 1 � c � 1: �4�

The value of c�a� varies from -1 for a pattern of which the

isophotes are exactly perpendicular to those of the model function

u�x; y; a� and +1 for a pattern which is exactly described by the

model function. The isotropic noise energy is distributed equally

between the fit and the residual energy.

More important than the quality measure for an arbitrary a is to

know which a maximizes the quality function c, i.e., maximizes Ef

and minimizes Er. The vector a contains model parameters which

describe local features. Therefore, optimizing the confidence

function c corresponds to feature estimation. Furthermore, the

quality measure c�a� informs us about the success of the fit and can

be seen as a confidence measure of the estimated features. Besides

comparing confidence measures of the same model function, it is

also possible to compare confidence measures of different model

functions. Note that the normalization of the confidence measures

is independent of the model function. By comparing optimized

confidence functions of various models, one can find out which

model describes the local pattern best.

Usually, the complexity of the confidence function does not

allow a closed-form solution of the optimization criterion. The

straight model is an exception. In the case of curvilinear models,

we avoid costly (iterative) optimization procedures by considering

approximate confidence functions which do allow closed-form

solutions.

3 STRAIGHT-ORIENTED PATTERNS

Locally, many oriented patterns can be characterised by a straight

model. For such a pattern the model function u�x; y; a� is given by

u x; y; �� � � x cos�� y sin�; �5�
with � the orientation perpendicular to the model isophotes.

Substituting this in (3) yields

Ef ��� � 1

2
f2
x � f2

y

� �
� 1

2
f2
x ÿ f2

y

� �
cos 2�� 1

2
2fxfy sin 2�: �6�

A bar ��� denotes an averaged quantity and will from now on

replace the integrals responsible for averaging over a local image.

The confidence value c��� is

c �� � � 1

f2
x � f2

y

f2
x ÿ f2

y

� �
cos 2�� 2fxfy sin 2�

� �
: �7�

c��� can be maximized as a function of the orientation �. This

yields the following (gradient-based) orientation estimator [1], [2],

[3], [4]:

�opt � 1

2
arctan

2fxfy

f2
x ÿ f2

y

: �8�

with confidence value c��opt�:

c �opt
ÿ � � d2

g2
; where d4 � f2

x ÿ f2
y

2 � 2fxfy
2
: �9�

This confidence measure can also be interpreted as a measure for

translation invariance and shows an intuitive dependency to the

pattern orientation �opt.

c �� � � d
2 cos2 �ÿ �opt

ÿ �ÿ sin2 �ÿ �opt
ÿ �ÿ �

g2

� 1

2
c �opt
ÿ �

1� cos 2 �ÿ �opt
ÿ �ÿ �ÿ �

:

�10�

The maximum of the confidence measure c��opt� reduces due to

noise in the local image f . For a linear pattern p distorted by

additive uncorrelated noise n �f � p� n�, the confidence value

c��opt� is:

c �opt
ÿ � � d2

rfk k2
� d2

rp�rnk k2
� d2

rpk k2

rpk k2

rpk k2 � rnk k2
: �11�
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Note that the gradient noise energy is divided equally over Ef and

Er. Therefore, the numerator of c is unaffected by noise. Noise

increases the total gradient energy (denominator of c), which

lowers the confidence value c��opt�. Another reason for a lower

confidence value is a deviation between the local image and the

model function. For instance when curved lines occur, then

curvature will contribute to Er. In the next section, we will extend

the model to include curved patterns.

4 CURVED ORIENTED PATTERNS

We present two model functions which locally model curved
oriented patterns. A parabolic model

u x; y; �; �� � � 1

2
�w2 ÿ v �12�

and a concentric circle model

u x; y; �; �� � �
�����������������������������������
�2w2 � 1ÿ �v� �2

q
�13�

in which � is the curvature. The Gauge coordinates v, w are
obtained by

v � x cos�� y sin� w � ÿx sin�� y cos� �14�
Here, we discuss the parabolic approximation. For the circular

approximation, we refer to Appendix A. Using the parabolic

model function and (3), the following energies are obtained:

Ef �; �� � � �2w2f2
w ÿ 2�wfvfw � f2

v

1� �2w2

� �
;

Er �; �� � � �2w2f2
v � 2�wfvfw � f2

w

1� �2w2

� �
;

�15�

where fv and fw are the derivatives in, respectively, the v and

w direction. Finding the curvature and orientation that maximize

the confidence function requires a search in �; �-space. In this

paper, we shall not further investigate this method due to its high

computational demands. Instead, we propose a way to approx-

imate the confidence function, allowing a fast closed-form solution.

An approximation to the orientation � can be obtained by

looking at the axis of minimal translation invariance for parabolic

and circular patterns. In the case of a circular pattern, this is the

v-axis. For a parabolic pattern, it depends on the curvature and the

window size used. For small curvatures (i.e., compared to the

window size), the minimal translation invariant axis is equal to the

w-axis. Increasing the curvature, the axis of minimal translation

invariance jumps to the w-axis. Therefore, an approximation of the

orientation needed to determine the v and w-axes in (15) can be

computed with (8). After substituting the orientation, the resulting

equations only depend on the curvature. Iterative maximization of

the confidence function in �-space is still time-consuming. We

propose approximating this maximum by using locally adapted

weighting. The weighting function of Ef and Er (denoted by the

bar �) is in its turn weighted by �1� �2w2� after which we

normalize for this weighting. This mathematical trick has a high

resemblance to normalized convolution [14]. It results in

Êf��� � �
2w2f2

w ÿ 2�wfwfv � f2
v

1� �2w2
;̂

Er��� � �
2w2f2

v � 2�wfwfv � f2
w

1� �2w2
:

�16�

A hat ��̂� above a quantity indicates an approximation. Since the fit

energy Ef might be a function of the coordinate w, as is the

adapted weighting function, optimization lead to a false curvature

estimate. Therefore, minimization of the residual energy Er is used

to find the following closed-form curvature estimate:

�̂ �
w2f2

v ÿ w2 � f2
w ÿ

�������������������������������������������������������������������������
4w2 � wfwfv

2 � ÿw2f2
v � w2 � f2

w

� �2
r

2w2 � wfwfv
: �17�

The confidence measure can now be computed in two different

ways. The confidence measure c��; �� has its maximum at �̂opt; �̂opt.

To avoid an interative search for this optimum, one can compute

c��̂; �̂� by subsitiuting �̂ and �̂ in (15) and (4). Note that estimates �̂

�̂ do not have to be equal to the values of � and � that optimize the

confidence function. However, computing c��̂; �̂� is still expensive.

A significant speed-up can be obtained by approximating the

confidence measure using the approximate energies of (16).
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Fig. 1. Confidence measure c��̂; �̂� of circular, parabolic, and straight line models

on a noise-free pattern of concentric circles.

Fig. 2. (a) Average confidence measure c��̂; �̂� for the circular model as a function
of the radius for three different SNRs (top to bottom: 20 dB, 10 dB, 6 dB). The
measure c��̂; �̂� yields a small bias for small radii. The horizontal lines indicate the
average confidence measure for, straight model for the corresponding SNR.
(b) Probability density functions of the confidence measures for the straight-
oriented patterns for the three different SNRs (top to bottom: 20 dB, 10 dB, 6 dB).



ĉ �; �� � � Êf �; �� � ÿ Êr �; �� �
Êf �; �� � � Êr �; �� � : �18�

Again, one can avoid an iterative search by substituting �̂ and �̂ in
(18), which yield ĉ��̂; �̂�.

The curvature estimator in (17) is the tangential or isophote

curvature. The normal (or gradient flow line) curvature [17] can be

computed by exchanging the v and w coordinates in (12) and (13).

5 IMPLEMENTATION

Direct computation of the curvature and the confidence measure is

a space-variant operation. This yields a high computational

demand. Fortunately, (16) to (18) can be calculated with global

convolutions which can be implemented by multiplication in the

Fourier-domain. This yields a substantial reduction in computa-

tional complexity. The derivatives fx and fy are implemented as

regularized derivative filters:

fx � f x; y� � 
 @g x; y;�g
ÿ �
@x

 !F j!x ~f !x; !y
ÿ �

~g !x; !y;�g
ÿ �

; �19�

with ~f the Fourier transform of f and g�x; y; �g� a Gaussian
regularization function of scale �g.

g�x; y; �g� � 1

2��2
g

eÿ�x
2�y2�=2�2

g  !F ~g�!x; !y;�g� � eÿ1
2 !2

x�!2
y� ��2

g : �20�

The terms of the curvature estimator and the confidence measure,

(16) and (17) , are expanded in Appendix B (the circular model is

treated in Appendix A). The remaining terms xpyqfrxf
s
y are

conveniently calculated as multiplications in the Fourier domain

xpyqfrxf
s
y � u p; q; �a� � 
 frxfsy  !

F
~u�p; q; �a�F frxf

s
y

n o
: �21�

For the window function, we choose a Gaussian of scale �a. The
Fourier transform of the filter u�� is

u p; q; �a� � � xpyqg�x; y; �a�  !F ~u�p; q; �t� � jp�q @
p�q~g�!x; !y;�a�

@!px@!
q
�

:

�22�
Due to the high frequency character of oriented patterns, �g should

be kept small, i.e., tuned to the frequency characteristics of the

cross-section of a line. Noise suppression is accomplished by

averaging all terms by Gaussian window (size �a), i.e., the size of

the curvilinear model.

6 EXPERIMENTS

In this section the proposed algorithms are tested on synthetic and

real-world images. The feature extraction which we presented is

based upon finding a maximum of the confidence measure in

parameter space c�a�. The curvature of oriented patterns corre-

sponds to the position of the maximum in c��; ��-space. To avoid

searching �; �-space, the approximations �̂ and �̂ are proposed.

With these, an approximated confidence measure ĉ and the exact

confidence measure c may be computed. The goal of the

experiments is to investigate the performance of these approxima-

tions as a function of the curvature. Also, the robustness with

respect to the noise is checked. The tests are performed on a

concentric circle image f�x; y� � sin
���������������
x2 � y2

p
� '

� �
� n (see Fig. 1)

in which n � N 0; �2
n

ÿ �
and ' is a phase-term set randomly for

every noise-realization. For the signal-to-noise ratio, we use

SNR � 10 log h2
�
�2
n

ÿ �
, where h is the contrast difference and �n

the standard deviation of the noise. Be aware that the proposed

algorithms are based on the gradient energy of the local image.

Thus, an increase of the pattern frequency will usually result in a

higher SNR (gradient energy versus filtered noise variance) and,

therefore, a better performance. All experiments on the concentric

circle image are based on 100 measurements. Unless mentioned

otherwise the sigma sizes are �g � 1:0 and �a � 5:0.

Confidence measure as selection criterion. The importance of

choosing the right model is illustrated in Fig. 1, which shows the

confidence measures of the circular, parabolic, and straight model

applied to a noise-free pattern of concentric circles. It is clear that,

for high curvatures, the deviation of the straight and the parabolic

model form the circle pattern results in a significantly lower value

of the confidence measure.

Bias of the actual confidence measure. To investigate to what

extent the optimum of the confidence function in �; �-space is

found, we compare the average confidence measure of the circular

model applied to curved patterns with the average confidence

measure of a straight model applied to a straight pattern. Both

images have identical signal-to-noise ratios. The confidence

measure c��; �� of a curvilinear model can be slightly higher than

the confidence measure of a straight model. This slight increase is
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Fig. 3. Rms error between the actual confidence measure and its approximation as
a function of the radius. (a) Approximate parabolic model applied to concentric
circle patterns of various SNR (top-to-bottom: 6 dB, 10 dB, 20 dB). (b) Approximate
circular model applied to concentric circle patterns of various SNR (top-to-bottom:
6 dB, 10 dB, 20 dB).



caused by the fact that the curved model allows for two parameters

to adjust to the noise.

The average confidence measure c��̂; �̂� of the circular model

applied to the concentric circles is depicted in Fig. 2 for three SNR's

(20dB, 10dB, 6dB). It clearly shows that, for small radii, the average

confidence measure c��̂; �̂�, decreases. This is caused by an

increasing discrepancy between the approximated ��̂; �̂� and the

optimal ��opt; �opt� for small radii. Note, c��opt; �opt� does not

decrease for small radii. Fig. 2b indicates the variation around the

average confidence measure for the straight model. Increasing the

window size (local image) reduces the variation in exchange of a

further decrease of c��̂; �̂� for small radii.

Approximation error of the confidence measure. In Section 4,

we presented two methods for computing the confidence measure,

the actual confidence measure c��̂; �̂� and an approximation

ĉ��̂; �̂�. In Fig. 3, the rms (root-mean-square) error due to this

approximation is depicted for the circular and the parabolic model.

For both models, these errors are small. Only for high curvatures

(small radii), it may be worthwhile to compute the actual

confidence measure.

Robustness of the curvature estimator. It is important to test

the robustness of the curvature estimation. In Fig. 4, the noise

sensitivity of the parabolic and circular curvature estimators is

depicted. Both models were applied to the concentric circles. The

coefficient-of-variation �CV � �=�� of both models is similar for

the middle and high SNRs, but the parabolic models performs

better for low SNRs. Considering the advantage of the circular

curvature estimator due to the exact match between the model and

the pattern, we show that the parabolic curvature estimator suffers

less from the approximations. The parabolic curvature estimator

performs at least as well over a wide range of curvatures. Only for

high curvatures, the circular model can take advantage of the exact

match. In practice, one can compute the curvature corresponding

to both models. The one with the highest confidence measure is

preferred because its model yields a better description of the data.

Application of curvilinear models to real-world data sets. In

Fig. 5, an interference pattern, together with the curvature and

confidence estimation for both the parabolic and circular model, is

depicted. As expected, the parabolic model fails in the middle of

the ellipses, as indicated by an abrupt drop of the confidence

measure. The circular confidence measure hardly decreases for the

circles at the top and the bottom of the image. For the flatter

ellipses on the left and the right, the mismatch between the model

and the pattern is slightly larger. In the difference image between

the circular and parabolic confidence measures, the lighter areas

indicate a better description of the circular model, whereas, in the

darker areas, the parabolic model yields a better fit. The slightly

darker lines denote an almost perfect parabolic line pattern. The

isophote curvature fails at the ridges (dark lines) and valleys

(white lines) as expected (see Section 1).

The estimated local curvature of a fingerprint and a CT cross-

section of a tree-trunk are depicted in Fig. 6. Both curvilinear

models produced similar results. The dark lines in the logarith-

mically stretched curvature images denote locally straight patterns.

Both peaks in the fingerprints curvature correspond to important

minutia for fingerprint recognition [15], [16]. The isophote
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Fig. 4. Curvature estimators using curvilinear models: black line = parabolic model, gray line = circular model. (a), (b) and (c) Coefficient-of-variation (CV) for the parabolic
and circular model-based curvature estimators for different SNR (20 dB,10 dB, 6dB). (d) Bias of parabolic and circular model based curvature estimators (SNR = 10 dB)
(thick gray line indicates the noise-free bias of curvature using the parabolic model).



curvature fails at the ridges (dark lines) and valleys (white lines) as

expected (see Section 1). The curvilinear curvature can be used to

improve (to prevent jumping the rails) the ridge tracking [16],

which is already based on orientation estimation. The high

confidence measures (white areas in confidence images) indicate

a perfect fit of the model and a reliable curvature estimate.
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Fig. 5. (a) Interference pattern of a vibrating plate. The superimposed circle denotes the size of the curvilinear model. (b) and (c) Confidence measures for, respectively,

the circular and parabolic model (range [0,1]) computed with �g � 1:0 and �a � 5:0. (d) Difference in confidence measure between circular and parabolic model (range

[-0.5, 0.5]). (e) and (f) Estimated curvatures �̂ for respectively the circular and parabolic model (log stretched). (g) Isophote curvature at scale � � 5 (range [-1,1]).



7 CONCLUSIONS

In this paper, we present a method to compare a local image with a

model function. A quality measure indicates the resemblance

between the local image and the model function. Feature extraction

is obtained by optimization of the quality function as a function of

the parameters which represent the feature. The quality function is

interpreted as a confidence measure for the measured features. We

propose two curvilinear models to describe curved oriented
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Fig. 6. (a) Fingerprint image. (b) CT image of trunk. (c) and (d) The estimated curvature �̂ using the parabolic model (log stretched) at �g � 1:0 and �a � 5:0. (e) and

(f) The confidence measure of the parabolic model (range [0, 1]), (g) and (h) Isophote curvature at scale � � 5 (range [-1, 1]).



patterns. To avoid searching �; �-space, we propose, closed-form

solution for approximations to the actual parameters of the

curvilinear models �̂ and �̂. Instead of the exact confidence

measure c��̂; �̂� an approximation ĉ��̂; �̂�, can be computed

resulting in a huge reduction in computational demand. We

demonstrate that these approximations yield good results for

almost all curvatures. Only for the highest curvatures, one might

decide to compute c��̂; �̂� or (even more computationally demand-

ing) to iterate in �; �-space for c��opt; �opt�.

APPENDIX A

For a concentric circle model, u x; y; �; �� � �
�����������������������������������
�2w2 � 1ÿ �v� �2

q
, the

fit and residual energies are

Ef �� � � �1ÿ �v�2f2
v ÿ 2�w�1ÿ �v�fvfw � �2w2f2

w

�1ÿ �v�2 � �2w2

 !

Er �� � � �1ÿ �v�2f2
w � 2�w�1ÿ �v�fvfw � �2w2f2

v

�1ÿ �v�2 � �2w2

 !
:

�23�

To obtain a closed-form solution for the curvature and the

confidence measure, the local energies are computed inside a

�2w2 � 1ÿ �v� �2
� �

-weighted space-variant window. This yields

Êf �
�2 v2f2

v � 2vwfvfw � w2f2
w

� �
� 2� ÿvf2

v ÿ wfvfw
� �

� f2
v

1ÿ 2�v� �2 v2 � w2
� �

� A�
2 � 2B�� C
1�D�2

Êr �
�2 v2f2

w ÿ 2vwfvfw � w2f2
v

� �
� 2� ÿvf2

w � wfvfw
� �

� f2
w

1ÿ 2�v� �2 v2 � w2
� �

� E�
2 � 2F��G
1�D�2

;

�24�

with v � 0. The minimization of the residual energy yields an

approximation of the curvature:

�̂ �
E ÿGDÿ

���������������������������������������������
4F 2D� ÿE �GD� �2

q
2FD

: �25�

The terms of Êf andÊg are expanded with (14) and

fv � fx cos�� fy sin� fw � ÿfx sin�� fy cos�: �26�
This results in

A � x2f2
x � 2xyfxfy � y2f2

y

B � ÿ xf2
x � yfxfy

� �
cos�ÿ xfxfy � yf2

y

� �
sin�

C � f2
x cos2 �� 2fxfy cos� sin�� f2

y sin2 �

D � 2�2
a

E � x2f2
y ÿ 2xyfxfy � y2f2

x

F � yfxfy ÿ xf2
y

� �
cos�� xfxfy ÿ yf2

x

� �
sin�

G � f2
y cos2 �ÿ 2fxfy cos� sin�� f2

x sin2 �:

8>>>>>>>>>>>><>>>>>>>>>>>>:
�27�

The averaged terms can be computed as global convolutions (see

Section 5). The approximated confidence function is computed with

ĉ � �
2�Aÿ E� � 2��Bÿ F � � �C ÿG�
�2�A� E� � 2��B� F � � �C �G� : �28�

APPENDIX B

The terms for the parabolic confidence measure (16 ) and curvature
estimator (17 ) are

w2f2
w � y2f2

y cos4 �ÿ 2 xyf2
y � y2fxfy

� �
cos3 � sin�

� x2f2
y � 4xyfxfy � y2f2

x

� �
cos2 � sin2 �

�2 ÿx2fxfy ÿ xyf2
x

� �
cos� sin3 �� x2f2

x sin4 �

w2f2
v � y2f2

x cos4 �ÿ 2 xyf2
x ÿ y2fxfy

� �
cos3 � sin�

� x2f2
x ÿ 4xyfxfy � y2f2

y

� �
cos2 � sin2 �

�2 x2fxfy ÿ 2xyf2
y

� �
cos� sin3 �� x2f2

y sin4 �

wfvfw � yfxfy cos3 �� ÿxfxfy ÿ y f2
x ÿ f2

y

� �� �
cos2 � sin�

� x f2
x ÿ f2

y

� �
ÿ yfxfy

� �
cos� sin2 �� xfxfy sin3 �

w2 � �2
a

8>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>:

�29�

for f2
v and f2

w, see term, C and G in Appendix A.
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