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A B S T R A C T   

In this paper we present a magnetic resonance imaging (MRI) technique that is based on multiplicative reg-
ularization. Instead of adding a regularizing objective function to a data fidelity term, we multiply by such a 
regularizing function. By following this approach, no regularization parameter needs to be determined for each 
new data set that is acquired. Reconstructions are obtained by iteratively updating the images using short-term 
conjugate gradient-type update formulas and Polak-Ribière update directions. We show that the algorithm can 
be used as an image reconstruction algorithm and as a denoising algorithm. We illustrate the performance of the 
algorithm on two-dimensional simulated low-field MR data that is corrupted by noise and on three-dimensional 
measured data obtained from a low-field MR scanner. Our reconstruction results show that the algorithm ef-
fectively suppresses noise and produces accurate reconstructions even for low-field MR signals with a low signal- 
to-noise ratio.   

1. Introduction 

In magnetic resonance imaging (MRI), the internal structure of the 
human body is visualized using magnetic fields. To form an image, 
commercial MR scanners employ strong magnetic background fields 
with field strengths ranging from 1.5 T to 7 T. Superconducting mag-
nets are used to generate such strong background fields, which ob-
viously adds to the cost, size, and infrastructure demands of high-field 
MR scanners. In fact, the overall costs of present day MR scanners are so 
high that they are essentially out of reach for low-income and middle- 
income countries. 

Low-field MR scanners, as described in for example [1–3], may 
provide a solution to this problem. Compared with the commercial 
scanners mentioned above, a low-field scanner has a much weaker 
background field (typically in the centi- or millitesla range) and MR 
signal quality is reduced. However, a low-field scanner does not require 
any superconducting magnets and construction and maintenance costs 
are therefore significantly lower (apart from additional cost reductions 
that may be achieved). Moreover, low-field scanners may be portable as 
well and enable us to bring these scanners as diagnostic tools to rural 
areas in developing countries. For a review on low-field MRI, the reader 
is referred to [4]. 

A direct consequence of having a lower background field is that low- 
field MR scanners inevitably yield significantly noisier signals than 
their high-field counterparts. Moreover, depending on the type of low- 

field scanner that is used, the background field may not be (sufficiently) 
uniform throughout the object and the gradient fields that are used for 
imaging may not be linear or are only approximately linear within some 
subdomain of the object or body part that we want to image. Loosely 
speaking, a uniform background field and linear gradient fields ulti-
mately lead to a Fourier transform representation of the measured MR 
signals and MR imaging essentially amounts to applying an inverse 
Fourier transform to the measured data. Deviations from these ideal 
background and gradient fields lead to imaging artifacts when an in-
verse Fourier transform is applied, as can be seen in [5]. Even when the 
background field and gradient fields can be considered constant and 
linear throughout the object, then still noisy reconstructions are ob-
tained, since the acquired signals usually have a low signal-to-noise 
ratio (SNR). 

There is a vast literature on image reconstruction in MRI. An ex-
cellent overview of many relevant techniques is given in [6]. In the case 
of nonlinear gradients, a model-based image reconstruction as de-
scribed in [7,8], among others, can be employed instead of the standard 
inverse Fourier Transform. In this paper, we will make use of this 
model-based image reconstruction as well. However, other methods 
exist that correct for nonlinear magnetic fields as a post-processing step, 
i.e. on the image obtained by applying a standard technique like the 
inverse Fourier Transform to the measured data. In [9] for example, 
spherical harmonic deconvolution methods are used to achieve this 
result. 
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In this paper, we employ an MR imaging technique that, using 
model-based image reconstruction, addresses the aforementioned issues 
of imaging using nonlinear magnetic fields and the contamination of 
the signal by noise. Specifically, we pose our low-field imaging problem 
as an optimization problem that minimizes a (least-squares) data fide-
lity term in which nonuniform background fields and nonlinear gra-
dients are taken into account through a generalized signal model. 
Furthermore, noise effects are suppressed by incorporating a weighted 
L2-norm total variation objective function into the optimization pro-
cedure. Total variation regularization penalizes jumps between neigh-
boring pixels. The additive variant is often used in MR imaging to de-
noise images while still maintaining their edges, see for example 
[10–13], among many others. 

It is customary to include such a regularization term in an additive 
manner into an optimization framework. However, one of the main 
drawbacks of such an additive scheme is that an artificial regularization 
parameter must be chosen that balances the data fidelity and regular-
ization term. While methods for choosing this parameter exist, see for 
example [14], they are often computationally expensive and do not 
allow for fast (real-time) imaging. Moreover, typically a regularizing 
parameter needs to be determined for each new available data set, 
which leads to even larger computation times in case multiple data sets 
need to be processed. 

Inspired by the success of multiplicative regularization in wave field 
inversion, see [15–18], for example, we include regularization in a 
multiplicative manner as well. In the resulting iterative imaging algo-
rithm, the image is then updated using a Polak-Ribière type of con-
jugate gradient directions, see for example [19]. Two practical ad-
vantages of this scheme are that no effective regularization parameter 
needs to be computed and reconstruction results can be monitored as 
the scheme progresses. A similar multiplicative regularization approach 
was applied to image deblurring problems in [20]. 

We apply our imaging method to low-field noise-corrupted simu-
lated data using nonlinear gradient fields and to measured data ob-
tained with the low-field scanner shown in Fig. 1. This scanner consists 
of 23 rings spaced 22 mm apart. The total length of the scanner is 
50.6 cm and the bore has a diameter of 27 cm. Each ring in the array 
consists of two concentric layers of cubic neodymium boron iron 
magnets. The magnets have a side length of 12 mm and the total 
number of magnets is close to 3000. The magnets are arranged in a 
Halbach configuration such that an approximately uniform background 
field is realized within the bore of the scanner. This background field is 
pointing in a transverse direction (from left to right inside the bore in 
the photograph of Fig. 1) as opposed to the longitudinal direction as is 
common in commercial high-field scanners. Consequently, the gradient 
coils of the scanner have to be redesigned as well. A gradient coil 
especially designed for the low-field scanner that produces an ap-
proximately linear gradient in the longitudinal direction inside the bore 
is also shown in Fig. 1. Further details about the design and realization 
of the scanner and the gradient coils can be found in [2,21]. 

For different types of fruit (apple, melon) we reconstruct an image 
using data collected with the MR scanner described above. Moreover, 
the effects of a nonlinear frequency encoding gradient are also studied 

using noise-corrupted simulated data. We resort to simulated data in 
this case, since we do not have measured background or gradient fields 
available. We do stress, however, that if such measured fields are 
available, then these can be easily incorporated into our imaging 
scheme. Imaging results will be presented for a regularizing objective 
function based on the minimization of a weighted total variation term. 
We demonstrate that the method indeed effectively suppresses noise for 
a given data set without any extra computations to determine a reg-
ularization parameter. 

This paper is organized as follows. In Section 2 we introduce the 
continuous and discrete signal model and discuss the multiplicative 
regularization approach. Secondly, we present the multiplicatively 
regularized MR imaging algorithm and show that it can be used as an 
image reconstruction algorithm or as a denoising algorithm or both. In  
Section 3 we illustrate the performance of our imaging algorithm on 
simulated, noise-corrupted data and on measured data obtained with 
the low-field scanner. Finally, the conclusions can be found in Section 
4. 

2. Methods 

In Section 2.1 we will introduce the signal model and discuss the 
multiplicative regularization approach. Section 2.2 contains the details 
on the numerical discretization that is used. After that, in Section 2.3, 
the multiplicatively regularized MR imaging algorithm is presented. 

2.1. Signal modeling and regularization 

The starting point of our imaging procedure is the voltage signal v(t) 
that is measured by a receive coil of the low-field scanner. Assuming 
that the complete object is excited, we have for this signal the re-
presentation 

=v t e e X Vr( ) ( )d ,t t
r

r k r ri ( ) i2 ( , )0
(1) 

where Δω0(r) = γB0(r) − ωmod is the difference between the local 
Larmor frequency γB0(r) and the modulation frequency ωmod with γ the 
proton gyromagnetic ratio. Furthermore, X(r) is the image having the 
bounded domain as its support. The image X depends on the proton 
density, coil sensitivity, etc. and is expressed in [Vm−3], but its parti-
cular form is irrelevant for our imaging purposes. Explicit expressions 
for X can be found in [22], for example. Finally, 

=
=

tk r G r( , )
2

( , )d ,
t

0 (2) 

where G(r, τ) = Gx(r,τ)ix + Gy(r,τ)iy + Gz(r,τ)iz [Tm−1] is the gra-
dient vector due to the application of the gradient coils of the scanner. 
The above model takes background field inhomogeneities into account 
through Δω0(r) and nonuniformities in the gradient fields are taken into 
account through the spatially dependent gradient vector G. In case the 
background field can be considered uniform throughout the object, 

=B Br r( ) ,0 0 , and the gradient vector does not depend on position, 
=G r G r( , ) ( ), , our signal model simplifies to 

Fig. 1. Left: Low-field MR scanner realized at the 
Leiden University Medical Center, The Netherlands. 
The scanner consists of 23 double ring cubic neody-
mium boron iron magnets arranged in a Halbach 
configuration such that an approximately homo-
geneous field inside the bore is realized. The total 
number of magnets is close to 3000. The scanner has 
a length of 50.6 cm and the bore diameter is 27 cm. 
Right: A gradient coil realized at the Leiden 
University Medical Center and Delft University of 
Technology, The Netherlands, that produces a linear 
gradient along the longitudinal direction of the 
Halbach scanner shown on the left. 
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= =v t X t e X Vk r( ) [ ( )] ( )d ,t
r

k ri2 ( )
(3) 

where we have taken ωmod = γB0 and 

=
=

tk G( )
2

( )d .
t

0 (4)  

Clearly, in this case the signal v(t) is a three-dimensional spatial 
Fourier transform X tk[ ( )] of the image X(r). 

The data used for imaging are time samples of the voltage signal. 
Introducing the time instances tn = (n − 1)Δt for n = 1, 2, …, N with 
Δt  >  0 and taking into account that the image X has the domain as 
its support, we may write 

=d t e e X Vr( ) ( )d ,n
t t

r
r k r ri ( ) i2 ( , )n n

im
0

(5) 

for n = 1, 2, …, N and where im is the smallest cube that completely 
surrounds the domain such that X vanishes on its boundary. We refer 
to im as the imaging domain or Field of View (FOV). The side length of 
this domain is denoted by ℓ  >  0 and im has a volume V = ℓ3. 

Before discretizing the volume integral in the above signal model, it 
is convenient to first normalize the spatial coordinates. Specifically, 
writing r = ℓr' with r u and = [0, 1]u

3 the unit cube, we have 

=d t V e e X Vr( ) ( )d ,n
t t

r
r k r ri ( ) i2 ( , )n n

u
0

(6) 

where Δω0′(r′) = Δω0(ℓr′), k′(r′, tn) = ℓk(ℓr′, tn) is the scaled general-
ized Fourier vector, and X′(r′) = X(ℓr′). From now on we drop the 
primes and work with normalized spatial coordinates only. 

Subsequently, we discretize the unit cube by subdividing this do-
main into nonoverlapping voxels, where each voxel has a positive side 
length Δx, Δy, and Δz in the x-, y-, and z-direction, respectively, and 
such that PΔx = QΔy = RΔz = 1 with P, Q, and R positive integers. The 
volume of a voxel is denoted by VΔ = ΔxΔyΔz and the centers of the 
voxels have coordinates (xp,yq,zr) with 

= +
= +
= +

x x p x
y y q y
z z r z

/2 ( 1) ,
/2 ( 1) , and
/2 ( 1) ,

p

q

r (7) 

for p = 1, 2, …, P, q = 1, 2, …, Q, and r = 1, 2, …, R. Having in-
troduced the voxelization of our imaging domain, we discretize the 
integral in (6) using the composite midpoint rule and obtain 

=V d Ax,1 (8) 

where 

= …d t d t d td [ ( ), ( ), , ( )] ,N
T

1 2 (9) 

and A is the matrix representation of the integral operator in Eq. (6). In 
case of uniform background and gradient fields and N = PQR, we have 
A = VΔF, where F the 3D Discrete Fourier Transform (DFT) matrix that 
satisfies 

= VF F I,H 1 (10) 

from which it follows that in this case AH = VΔFH =F−1. 
In practice, the measured data contains noise and the data d~ that we 

really have available is assumed to be of the form = +d~ d n, where n is 
a noise vector. Now in high-field MRI, the noise level is much lower 
than in low-field MRI and as a first approximation the background field 
and gradient fields can be taken to be uniform (independent of the 
position vector), especially compared with a low-field setting. Simply 
applying an inverse 3D-Fourier transform to the measured signal gen-
erally yields images of excellent quality in high-field MRI. In a low-field 
setting, however, the background and gradient fields may not be uni-
form within the complete object and, as mentioned earlier, the required 
signals typically have a much lower SNR. Consequently, even when the 
background and gradient fields can be considered uniform, a straight-
forward application of an inverse Fourier transform to the measured 
data will lead to very noisy reconstructions in general. 

To address both of these issues, we pose the imaging reconstruction 
problem as an optimization problem and minimize an objective func-
tion that consists of a data fidelity term describing the mismatch be-
tween observed and modeled data and a regularizing term, which 
suppresses the influence of noise on the reconstructions. In particular, 
in many regularized optimization methods the objective function that 
needs to be minimized is of the form 

= +F F Fx x x( ) ( ) ( ),data reg,add (11) 

where Fdata(x) is the data fidelity term, Freg,add(x) some regularizing 
function (often chosen to be a variant of the total variation (TV) op-
erator), and λ is a regularization parameter. The main drawback of 
using objective functions of the form (11) is that to reconstruct an 
image, the artificial regularization parameter λ needs to be selected for 
each new data set that is acquired. Strategies for choosing this para-
meter exist, of course (such as the L-curve method [23]), but such ap-
proaches are computationally demanding and generally require ex-
tensive numerical experimentation for each new available data set. 

Instead of using an additive approach, we follow [15,16,18,20], for 
example, and set up an iterative reconstruction algorithm that is based 
on multiplicative regularization in which at each iteration the objective 
function is of the form 

=F F Fx x x( ) ( ) ( ).data reg,mult (12)  

Here, Freg,mult is the regularizing function, which is, in general, of a 
different form than the regularizer in Eq. (11). Specifically, for multi-
plicative regularization, it is usually defined such that Freg,mult(x) = 1 at 
an optimal point. A major advantage of such a multiplicative approach 
is that no extra computations are required to determine an effective 
regularization parameter. Here, we focus on the application of multi-
plicative regularization to invert low-field MR data. For theoretical 
properties of multiplicative regularization the reader is referred to 
[16,24,25], for example. 

As a first step we introduce the standard 2-norm data misfit objec-
tive function as 

=F x b Ax
b

( ) ,data 2
2

2
2 (13) 

where = Vb d~1 is the scaled and noisy data vector. Subsequently, we 
set up our iterative scheme and assume that at the kth iteration we have 
some approximation xk−1 of the image available. The next iterate xk is 
now constructed by minimizing the objective function 

=F F Fx x x( ) ( ) ( ),k k1
data

1
TV (14) 

where Fk−1
TV(x) is the discretized counterpart of the weighted L2-norm 

total variation functional 

= +
+

X X
X

V( ) | |
| |

d .k
k

k kr1
TV

2
1

2

1
2

1
2u (15)  

Here, X and Xk−1 are the continuous counterparts of x and xk−1, 
respectively, and k 1

2 is given by 

= F X Vx( ) | | d .k k kr1
2 data

1
2

1
2

u (16)  

In our algorithm, we only work with this particular choice for δk−1
2, 

but other choices are possible as well, see [15,17]. In each iteration, Eq.  
(14) is minimized. This choice of FTV(x) promotes solutions that are 
piecewise constant. Note that if this process converges, we have limk→∞ 

xk−1 = x and hence limk→∞ ∇xk−1 =  ∇x, which means that limk→∞ 

Fk−1
TV(x) = 1. 

For ill-posed problems, as encountered in wavefield imaging and 
contrast source inversion (CSI), for example, the total objective function 
typically shows a convergence behavior as descibed in [15,16]. Speci-
fically, in CSI the data functional is typically large, at the start of the 
iterative process, giving a large weight to the regularizing functional. 
As the iterative process progresses, the regularizing function will start 
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to approach a value of 1 and the focus will shift towards minimizing the 
data functional, as illustrated in [26]. However, here we consider 
imaging problems which are well-posed (Fourier transform) or at least 
less ill-posed than in CSI, which means that, given a reasonable initial 
guess, the data functional will be small. Therefore, we cannot expect the 
same behavior, except that if the process converges, the regularizing 
functional will converge to 1. 

2.2. Numerical discretization 

To arrive at the discretized counterpart Fk−1(x) of ℱk−1(X), we use 
the weighting function 

=
+

w
X

r( ) 1
| |k

k k
1

1
2

1
2 (17) 

and write Eq. (15) as 

F = +X w V w X Vr r r( ) ( )d ( )| | ( )d ,k k k kr r1
TV

1
2

1 1
2

u u (18) 

where = ( ), ,x y z is the nabla operator. Discretizing the integrals in  
(18) using the composite midpoint rule, we obtain 

F

+
= = =

= = =

X V w x y z

V w x y z X x y z

( ) ( , , )

( , , ) | | ( , , ).
k k p

P
q
Q

r
R

k p q r

p
P

q
Q

r
R

k p q r p q r

1
TV

1
2

1 1 1 1

1 1 1 1
2

(19)  

The partial derivatives in the gradient operator on the right-hand 
side of Eq. (19) are approximated by two-point forward or backward 
difference formulas. For example, for the partial derivative with respect 
to x we either use the forward or backward difference formulas 

+x y z

x y z

( , , ) or

( , , )

X
x p q r

X x y z X x y z
x

X
x p q r

X x y z X x y z
x

( , , ) ( , , )

( , , ) ( , , )

p q r p q r

p q r p q r

1

1
(20) 

and similar forward or backward difference formulas are used for the 
partial derivatives with respect to the y- and z-coordinate. The differ-
ence formulas are used for p = 1, 2, …, P, q = 1, 2, …, Q, and r = 1, 2, 
…, R along with the homogeneous boundary conditions 

=X x y z( , , ) 0p q r (21) 

whenever p = 0, p = P + 1, q = 0, q = Q + 1, r = 0, or r = R + 1 in 
Eq. (21). Through the latter equation we implement the boundary 
condition that the image X vanishes at the boundary of the imaging 
domain. 

Moreover, we use the forward and backward differencing matrices 
in the x, y and z directions, defined as 

=

=

D

D

1 1
1 1

1 1
1

and

1
1 1

1 1
1 1

,

;f
1

;b
1

(22) 

respectively, with ξ = {x,y,z}. The dimensions of the matrices are 
P × P for Dx;f and Dx;b, Q × Q for Dy;f and Dy;b and R × R for Dz;f and 
Dz;b. 

Denoting the 3D image array by X, we introduce its vectorized 
counterpart as x = vec(X), where we use lexicographical ordering. 
Similarly, wk−1 represents the vector form of Eq. (17). 

Having introduced these vectors and matrices, we can write Eq. (19) 
more compactly as 

F

+ + +

= + =

X V
V

V V

e e
g g g g g g

e e g g

( )
( )

,

k
TV

k
T

k

x
H

k x y
H

k y z
H

k z

k
T

k i x y z i
H

k 1

1 1
2

1

1 1 1

1
2

1 , , i

(23) 

where e is the PQR × 1 vector of ones, = wdiag( )k k1 1 , and 

=
=
=

g I I D x
g I D I x
g D I I x

( ) ,
( ) , and
( )

x R Q x

y R y P

z z Q P (24) 

with Dξ a forward or backward differencing matrix and IP, IQ and IR 

being the identity matrices of order P, Q and R, respectively, and ⊗ 
denotes the Kronecker product. Finally, substituting the gradient vec-
tors of Eq. (24) into Eq. (23) gives 

F +X F V Vx e e x L x( ) ( ) ,k k k
T

k
H

w1
TV

1
TV

1
2

1 (25) 

where Lw is a three-dimensional weighted approximate Laplacian given 
by 

=
+
+

L I I D I I D
I D I I D I
D I I D I I

( ) ( )
( ) ( )
( ) ( ).

w R Q x
T

k R Q x

R y
T

P k R y P

z
T

Q P k z Q P

1

1

1 (26)  

In practice, forward finite differences or backward finite differences 
can be used to implement the total variation functional. Another option 
is to use mixed finite differences, which combines these two. 

2.2.1. Mixed finite difference approach 
As mentioned before, the partial derivatives in Eq. (19) are ap-

proximated by forward or backward two-point finite difference for-
mulas and the differentiation matrices Dx,y,z in the above formulas are 
either all forward differentiation matrices Dx,y,z;f or backward differ-
entiation matrices Dx,y,z;b. Another option is to mix the forward and 
backward differencing operators. Specifically, introducing the forward 
and backward x-coordinate gradient vectors as 

=
=

g I I D x
g I I D x

( ) and
( )

x R Q x

x R Q x

;f ;f

;b ;b (27) 

with similar definitions for the forward and backward y- and z-co-
ordinate gradient vectors, we approximate F X( )k 1

TV as 

F

+ +=

X V e e
g g g g

( )k k
T

k
V

i x y z i
H

k i i
H

k i

1
TV

1
2

1

2 , , ;b 1 ;b ;f 1 ;f (28) 

leading to the mixed finite difference Laplacian 

=

+

+

+

+

+

L I I D I I D

I I D I I D

I D I I D I

I D I I D I

D I I D I I

D I I D I I

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( ).

w R Q x
T

k R Q x

R Q x
T

k R Q x

R y
T

P k R y P

R y
T

P k R y P

z
T

Q P k z Q P

z
T

Q P k z Q P

1
2 ;b 1 ;b
1
2 ;f 1 ;f
1
2 ;b 1 ;b
1
2 ;f 1 ;f
1
2 ;b 1 ;b
1
2 ;f 1 ;f (29)  

Extensive numerical testing has shown that the mixed finite-differ-
ence approach leads to faster convergence than implementations that 
use forward or backward difference operators only. Therefore, we use 
this mixed finite-difference approach in our implementation of multi-
plicative regularization. 
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2.3. MR imaging using multiplicative regularization 

As mentioned above, at the kth step of the algorithm we assume that 
we have an approximation xk−1 available. We update the image ac-
cording to the update formula 

= +x x d ,k k k k1 (30) 

where dk is the Polak-Ribière update direction given by [15] 

= +d g
g g g

g
d

Re[ ( )]
k k

k
H

k k

k
k

1

1 2
2 1

(31) 

with d0 = 0 and gk the gradient of the objective function 

=F F Fx x x( ) ( ) ( )k k1
data

1
TV (32) 

evaluated at x = xk−1. Using the product rule, this gradient is given by 

= + = +F F Fg g x x g g x g( ) ( ) ( ) ,k k k k k k k k k
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TV

1
data
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TV data data
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where we have used Fk−1
TV(xk−1) = 1 and gk

data is the gradient of Fdata 

at x = xk−1 given by 

=g b A r2k
H

k
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2
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with rk−1 = b− Axk−1 the data residual. Furthermore, gk
TV is the 

gradient of Fk−1
TV at x =xk−1 and using Eq. (25) is easily obtained as 

= Vg L x2 .k w k
TV

1 (35)  

The gradient of Fk−1 at x =xk−1 now follows as 

= + V Fg b A r x L x2[ ( ) ].k
H

k k w k2
2

1
data

1 1 (36)  

Note that for position independent background and linear gradient 
fields we have AH = F−1, i.e. AH is an inverse Fourier Transform. 

Finally, to obtain the update coefficient βk, we substitute 
x=xk−1 + βdk in the objective function Fk−1(x) = Fdata(x)Fk−1

TV(x) 
and determine the update coefficient by solving the equation 

+ =
=

F x d( ) 0.k k k1 1

k (37)  

Explicitly, Fk−1(xk−1+βdk) = Fdata(xk−1+βdk)Fk−1
TV(xk−1+βdk), 
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with 

= = =a F a ax r Ad
b

Ad
b

( ), 2 Re( ) , andk
k
H

k k
0

data
1 1

1

2
2 2

2
2

2
2 (39) 

and 

= =b V b Vx L d d L d2 Re( ) and .k
H

w k k
H

w k1 1 2 (40)  

Note that a2 and b2 are always positive. With these results, the 
update coefficient follows from Eq. (37) as the root for which the 
polynomial a0b1+a1+2(a0b2+a1b1+a2)β+3(a1b2+a2b1)β2+4a2b2β3 

is minimized. The roots can be found analytically, or using a built-in 
polynomial root-finding algorithm. To summarize, the overall algo-
rithm is as follows: 

LOW-FIELD MULTIPLICATIVELY REGULARIZED MR IMAGING  

1. Given an initial guess of the low-field MR image x0.  
2. For k = 1, 2, …,  

a) Compute the gradient vector gk as given by Eq. (36);  
b) Compute the Polak-Ribière update direction dk;  
c) Compute the update coefficient βk;  
d) Update the low-field MR image: xk = xk−1 + βkdk. 

Remark: Consider the case of position independent background and 

linear gradient fields. We then have AH =F−1 and the gradient vector 
becomes 

= + V Fg x b F r x L x( ) 2[ ( ) ].k k k k w k1 2
2 1

1
data

1 1 (41)  

As an initial guess, let us take x0 = F−1b. This initial guess is very 
noisy, but the data is exactly matched and Fdata(x0) = 0. Consequently, 
g(x0) = 0 and the algorithm stops after one iteration with x1 = x0. In 
this case of homogeneous background and linear gradient fields, which 
is often assumed in practice, we use our algorithm as a denoising al-
gorithm by setting the gradient at the kth iteration to g 
(xk−1) = Lwxk−1. We now update in directions determined by the 
gradient of the TV-term only. Starting with a masked initial guess 
x0 = MF−1b, where the mask M zeroes out any components of F−1b for 
which it is a priori known that the image at the corresponding location 
vanishes, Fdata(xk) will generally increase as k increases and if limk→∞ 

Fk−1
TV(xk) = 1 then the objective function Fk−1(x) will asymptote to 

Fdata(x∗) as k → ∞, where x∗ = limk→∞ xk−1 = limk→∞ xk is the 
converged image in which noise variations have been minimized 
(suppressed). 

3. Results 

In this section we illustrate the performance of our multiplicatively 
regularized imaging and denoising algorithm. In Section 3.1 we use the 
algorithm to reconstruct the well-known 2D Shepp-Logan phantom 
from simulated and noise-corrupted low-field data with a frequency 
encoding gradient that is nonlinear. The data matrix A is not equal to a 
standard DFT matrix in this case and simply applying an inverse DFT to 
the data would lead to highly distorted reconstructions. We therefore 
use the algorithm as an iterative reconstruction algorithm to recover 
the Shepp-Logan phantom from the data. 

Subsequently, in Section 3.2 we apply our algorithm to data as 
measured by the low-field scanner described in [2]. This scanner has 
been constructed such that the background and gradient fields are ap-
proximately constant and linear throughout the imaging domain. We 
take this into account in our data model and the data matrix A is as-
sumed to be equal to a scaled three-dimensional DFT matrix in this case 
(see Eq. (10)). The algorithm is now used as a denoising algorithm and 
images of an apple and a melon will be presented to demonstrate the 
performance of the method on measured data for which a Fourier signal 
representation is assumed to be applicable. In Section 3.3, we compare 
our multiplicatively regularized 2D and 3D results with images ob-
tained by solving the additively regularized minimization problem 

= +x b Ax Txarg min { },x
add

2
2

1 (42) 

where the second term is the total variation term, with T the anisotropic 
total variation operator, which we define as 
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for 2D and 3D, respectively. We solve this minimization problem using 
the Alternating Direction Method of Multipliers (ADMM), see for ex-
ample [27]. 

The experiments were carried out in MATLAB R2015a on a desktop 
PC with an Intel(R) Xeon(R) W-2123 CPU (3.60GHz). 

3.1. Two-dimensional imaging of simulated noise-corrupted low-field MR 
data 

In low-field MRI, inhomogeneities may be present in the back-
ground field and gradients may not be perfectly linear. To investigate 
the performance of the algorithm as an image reconstruction algorithm 
in such cases, we consider a two-dimensional low-field reconstruction 
problem in which field perturbations are taken into account. Many 
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different field perturbations can be considered, of course, but in all 
cases signals are obtained for which the relationship between the signal 
and the object is no longer governed by a DFT. To fix the idea, we 
therefore focus on signal generation in an MR scanner in which the 
frequency encoding gradient is not perfectly linear. Specifically, we 
introduce a perturbation of the gradient field that is relative to the 
gradient strength. To this end, we scale the frequency encoding gra-
dient such that we can describe its strength to be in the range [−.5, .5) 
and we use x and y to denote the location in the Field of View (FoV) 
such that =x .5 corresponds to the left and =x .5 to the right 
boundary of the FoV, and =y .5 and =y .5 to the lower and upper 
boundary, respectively. The gradient field is now perturbed by the 
function + +x y x y.5 .05 .352 2. The unperturbed gradient field is shown 
in Fig. 2a, while the perturbed gradient field is shown in Fig. 2b. 

Since the background and (nonlinear) gradient profiles are known, 
we can use the discretized version of Eq. (5) to obtain the model matrix 
A. As an image or model solution, we take the Shepp-Logan phantom of  
Fig. 3a and we use matrix A to generate the data. Subsequently, white 
Gaussian noise with an SNR of 20 is added to the data in the frequency 
domain. We note that not taking the distorted gradient into account 
leads to the image shown in Fig. 3b, which is obviously a deformed 
image of the true object. 

Having the noise-corrupted data available, we apply our multi-
plicative regularization scheme to this data in an attempt to reconstruct 
the Shepp-Logan model solution. Mixed finite differences and the 2D 
version of the Laplacian matrix given in Eq. (29) are used to implement 
the total variation functional. As an initial guess, we use x0 = αAHb, 
where α is chosen such that Fdata(x0) is minimized. This initial guess is 
depicted in Fig. 3c. Subsequently, we use this x0 to define F0

TV(x), and 
start iterating. The reconstruction that we obtain after 50 iterations is 
shown in Fig. 3d. The algorithm's progress is shown in the Appendix, 
where we can see that the algorithm manages to progressively denoise 
the image, while maintaining the edges and structures in the phantom. 

Fig. 4 shows the value of the objective function F(x) as a function of 
the iteration number, for the two-dimensional Shepp-Logan image. The 
values of FTV(x) and Fdata(x) are plotted as well. We note that, as ex-
pected, FTV converges to 1, while the other two steadily grow to a larger 
value that enables this convergence. The increasing value of Fdata(x) can 
be explained by the observation that our matrix A does not deviate all 
that much from a Fourier Transform, which means that the term 
∥b − Ax0∥2 is close to 0. However, since x0 is too noisy, this solution 
does not meet the smoothness requirements of the total variation 
functional. Instead we iterate towards a solution that minimizes the 
least-squares term under the constraint that FTV(x) is equal to 1. One 
iteration takes 1.79 s, which is relatively long but this can be explained 
by the fact that we need to explicitly calculate the matrix A and its 
transpose, since we cannot rely on the Fast Fourier Transform (FFT) due 
to the nonlinear gradient. 

Additionally, we consider the same Shepp-Logan phantom, but with 
a decreased SNR of 5. This is more realistic in a low-field MRI setting. 
The inverse FFT reconstruction, initial guess and the multiplicatively 
regularized reconstruction are shown in Fig. 5b, c and d, respectively, 
and for different iteration numbers, the reconstructions are shown in 
the Appendix. This result was obtained after 50 iterations. We see that 
the algorithm manages to denoise the image, but some structures are 
lost. This is not due to the method itself, but because the SNR is simply 
too low. As will be shown later, an additively regularized method is not 
able to recover these structures either. The convergence plots are shown 
in Fig. 6, which showcase the same behavior as in the higher SNR case. 

3.2. Three-dimensional imaging of measured data 

This section contains our imaging results of an apple and a melon 
that were scanned using the low-field scanner of [2]. Images of slices 
through these pieces of fruit will be presented. 

Fig. 2. In an ideal scenario, the frequency encoding gradient is linear (a). In these simulations, however, the gradient is perturbed and nonlinear (b). The black lines 
are contour lines. 

Fig. 3. Reconstruction results.  
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3.2.1. Apple experiment 
In our first experiment, an apple is imaged using a spin-echo se-

quence whose parameters are given in Table 1. As an initial guess, we 

take a masked version of the three-dimensional inverse DFT of the 
signals obtained during the apple experiment. The 35th slice of this 
initial guess is shown in Fig. 7a. Clearly, the initial guess is con-
taminated by noise and the mask that is used is visible. We use this 
initial guess to determine F0

TV(x), after which we start the iterative 
process. 

To remove the noise from the initial image, we use the algorithm as 
a denoising algorithm and use a mixed differences approach with the 
Laplacian matrix of Eq. (29) in the discretized total variation functional. 
One iteration takes approximately 0.3 s. This is very fast compared to 
the Shepp-Logan problem, for which the problem is smaller (64 × 64 
pixels instead of 64 × 64 × 64 pixels), which can be explained by the 
fact that here, the FFT can be employed. We observe that the amount of 
noise in the image decreases as the iteration process continues, as can 

Fig. 4. Plots of the objective function value F(x) (left), which is equal to the product of FTV(x) (middle) and Fdata(x)(right), for the two-dimensional Shepp-Logan 
image. 

Fig. 5. Reconstruction results for an SNR of 5.  

Fig. 6. Plots of the objective function value F(x) (left), which is equal to the product of FTV(x) (middle) and Fdata(x) (right), for the two-dimensional Shepp-Logan 
image. In this case, the SNR was lowered to 5. 

Table 1 
Parameter settings for the apple imaging experiment.    

Parameter Value  

Repetition time (TR) 3 s 
Echo time (TE) 30 ms 
Number of complex data points 64 × 64 × 64 
Imaging domain/FoV 128 × 128 × 128 mm3 

Pulse duration 100 μs 
Acquisition bandwidth 10 kHz 
Number of averages 1 
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be seen in Fig. 15 in the Appendix. After 30 iterations an image of good 
quality is obtained, with the apple's shape and seeds being clearly 
visible and the noise having been eliminated. Fig. 8 shows the con-
vergence plots for our algorithm. Again, we see that FTV converges to 1. 
Iterating further leads to a result that is somewhat oversmoothed, 
which is similar to the 2D results with a low SNR. Therefore, it is ad-
visable to stop the iterative process early (semi-convergence). Finally, 
we note that the reconstructed images are obtained essentially in real- 
time and the reconstructions can be monitored as the iterative scheme 
progresses, which is of great importance in practice when a scanner is 
used for diagnostic purposes. Fig. 8 shows a three-dimensional visua-
lization of the reconstructed apple. 

3.2.2. Melon experiment 
In our second experiment, a melon is imaged using a spin-echo se-

quence with the parameter settings given in Table 2. Here too, we 

construct an initial guess by masking the image that is obtained by 
applying an inverse three-dimensional DFT on the data. Note that this 
data set has twice as many data points in each Cartesian direction as the 
data set in the apple experiment. The 64th slice of the initial guess is 
shown in Fig. 10a. The mask that is used is clearly visible and again a 
very noisy initial image is obtained. To remove this noise, we use mixed 
finite differences to implement the total variation functional and the 
resulting reconstruction of the melon is shown in Fig. 10b. As can be 
seen in Fig. 16 in the Appendix, the noise level in the images decreases 
with the iteration number. We note that some individual pixels appear 
overly bright or dark, which may be removed by iterating further but 
this leads to oversmoothing, since the SNR is very low. We therefore 
terminate the iterative process after 20 iterations. Finally, even though 
the complex data set of the melon is eight times larger than the apple 
data set, the method still produces images essentially in real time that 
can be monitored as the scheme progresses. A three-dimensional vi-
sualization of the melon is shown in Fig. 9b. Each iteration takes ap-
proximately 2 s. In Fig. 11, the convergence plots are shown, which 
follow the same pattern as before. 

3.3. Additive and multiplicative regularization 

Finally, in Fig. 12, our multiplicatively regularized reconstructions 
are shown next to additively regularized reconstructions. We tuned the 
regularization parameter λ in a heuristic manner such that the back-
ground noise disappears, while the different structures are still visible. 
For all experiments, we used 10 ADMM iterations and within each 

Fig. 7. Reconstruction result of the 35th slice of the apple.  

Fig. 8. Plots of the objective function value F(x) (left), which is equal to the product of FTV(x) (middle) and Fdata(x) (right), for the three-dimensional apple image.  

Table 2 
Parameter settings for the melon imaging experiment.    

Parameter Value  

Repetition time (TR) 2000 ms 
Echo time (TE) 30 ms 
Number of complex data points 128 × 128 × 128 
Imaging domain/FoV 200 × 200 × 200 mm3 

Pulse duration 100 μs 
Acquisition bandwidth 20 kHz 
Number of averages 1 

M. de Leeuw den Bouter, et al.   Magnetic Resonance Imaging 75 (2021) 21–33

28



Fig. 9. Three-dimensional visualization of the reconstructed apple (a) and melon (b) obtained after 20 iterations using mixed finite differences.  

Fig. 10. Reconstruction result of the 64th slice of the melon.  

Fig. 11. Plots of the objective function value F(x) (left), which is equal to the product of FTV(x) (middle) and Fdata(x) (right), for the three-dimensional melon image.  
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ADMM iteration, we used 10 iterations of the Conjugate Gradient (CG) 
algorithm to solve the first minimization problem. We observe that, in 
terms of image quality, additive and multiplicative regularization yield 
comparable results, but no parameter tuning is required in the multi-
plicative case. This is reflected in the peak signal-to-noise ratios (PSNR), 

shown in Table 3, which we were only able to calculate for the simu-
lated case because no ground truth was available for the measured data. 
We see that multiplicative regularization achieves a somewhat higher 
PSNR for low SNR and a marginally lower PSNR for high SNR. Fur-
thermore, in Table 4, the computing times for the 2 different algorithms 
(our algorithm and the ADMM algorithm solving the additively reg-
ularized problem) are shown. We note that it might be possible to lower 
the computation time for the additively regularized problem by low-
ering the amount of either ADMM or CG iterations. This table shows 
that, for our test problems, the computation times for multiplicative 
regularization are quite competitive compared to additive regulariza-
tion. Additionally, the computation time shown for additive regular-
ization does not include the time spent searching for an appropriate 
regularization parameter (requiring repeated execution of the algo-
rithm in general), which is a problem that is completely eliminated 
when using a multiplicatively regularized approach. 

4. Conclusions 

In this paper we applied a multiplicative regularization approach to 
low-field MR imaging. By multiplying a least-squares data fidelity 
function by a regularizing total variation function that is differentiable, 
we avoid the problem of having to determine and compute a regular-
ization parameter as is required for additive regularization. The re-
sulting multiplicative regularization problem is nonlinear and solved by 
a nonlinear conjugate gradient scheme with Polak-Ribière update di-
rections. Furthermore, we showed that the algorithm can be used as an 
image reconstruction and denoising algorithm by applying the method 
to two-dimensional noise-corrupted MR data obtained with a nonlinear 
gradient field and to three-dimensional measured data obtained with a 
low-field Halbach scanner. We demonstrated that multiplicative reg-
ularization yields very promising results, converging within a few 
iterations, whether we are dealing with two-dimensional noisy data for 
which a Fourier signal representation is no longer valid, or with three- 
dimensional measured data for which a Fourier transform relationship 
between signal and image can be assumed. Moreover, accurate re-
constructions are obtained essentially in real time in case a Fourier 
signal model is applicable. We observed that in case of a low SNR, it is 
better to stop the iterative process somewhat early (semi-convergence), 
to maintain the edges in the image. For a high SNR, edges are preserved 
while noise is eliminated, even for a large number of iterations. 

In this work, we focused on a low-field MRI setting with one single 
receiver coil. However, multiplicative regularization may also be ap-
plied to multicoil high-field MRI, of course, and we intend to test its 
performance against more standard high-field reconstruction techni-
ques used today. 

Moreover, in future work we will also focus on incorporating 
measured background and gradient fields of practical low-field MR 
scanners into the data model that is used in our multiplicative reg-
ularization scheme. Obviously, this is particularly important in case the 
background and gradient fields are such that a standard Fourier 
transform signal representation is no longer valid, since otherwise sig-
nificant distortions in the image are obtained as we demonstrated for 
two-dimensional simulated MR data. Standard FFTs can no longer be 
used in this case and accurate images may only be obtained by solving 
the image reconstruction problem as an optimization problem. In our 
multiplicative scheme, forming matrix-vector products with the model 
matrix A is then the main computational bottleneck, since computing 
the action of the Laplacian of the total variation functional on a vector 
involves sparse finite difference operators only. Consequently, to reduce 
the reconstruction time of the method, efficient routines to compute 
matrix-vector products with the data matrix A have to be developed, 
possibly involving nonuniform FFTs. Finally, we intend to include 
compressed sensing techniques into our multiplicative regularization 
framework as well, since this may lead to reduced scan times and a 
reduction of motion artifacts, for example. 

Fig. 12. Images of the Shepp-Logan phantom using simulated data with an SNR 
of 20 (top row) and an SNR of 5 (second row), an apple based on measured data 
(third row), and a melon based on measured data (bottom row), using additive 
regularization (left column) and multiplicative regularization (right column). 
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Fig. 13. Reconstruction of the Shepp-Logan phantom, with an SNR of 20, for different iteration numbers.  

Fig. 14. Reconstruction of the Shepp-Logan phantom, with an SNR of 5, for different iteration numbers.  
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Fig. 15. Reconstruction of the 35th slice of the apple for different iteration numbers.  

Fig. 16. Reconstruction of the 64th slice of the melon for different iteration numbers.  

Table 3 
PSNR for different reconstructions of the Shepp-Logan phantom.      

Multiplicative regularization Additive regularization  

SNR 20 37.30 37.34 
SNR 5 33.83 30.41 

Table 4 
Computing time (and total number of iterations) for the different reconstruc-
tions in seconds.      

Multiplicative regularization Additive regularization  

Shepp-Logan (SNR 20) 94.19 (50 iterations) 194.81 (100 iterations) 
Shepp-Logan (SNR 5) 89.87 (50 iterations) 193.29 (100 iterations) 
Apple 5.42 (30 iterations) 6.3 (100 iterations) 
Melon 36.50 (20 iterations) 81.20 (100 iterations) 
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Appendix A. Increasing the number of iterations 

In Figs. 13 and 14, the Shepp-Logan reconstructions (for an SNR of 
20 and an SNR of 5) are shown for a larger number of iterations. We see 
that in the low SNR case, the result becomes very blurry and we lose all 
the small structures in the image if we iterate too long. In the case of a 
higher SNR of 20, some oversmoothing is taking place when the 
iteration number exceeds 50 but much less severely than in the low SNR 
case. We see something similar happening in Figs. 15 and 16, where the 
apple and melon reconstructions are shown for a larger number of 
iterations. We see that, for the apple experiment, increasing the number 
of iterations to 45 yields an image that is slightly blurrier than the 
image obtained after 30 iterations, which is the result that is shown in  
Fig. 7. However, for the melon, we see that when the number of 
iterations exceeds approximately 20, the amount of blur in the image 
becomes excessive. 

These observations suggest that stopping the algorithm before full 
convergence is attained yields a solution of better quality. This is 
especially important in case of a low SNR. 
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