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Abstract

In the modern age, the proliferation of electronic devices and their subsequent
waste presents an increasing environmental challenge. With the continuing
growth of technology and the urgency of sustainability becoming ever more im-
portant, there is an ever-increasing need to reimagine how we power and utilize
our devices. This has been exacerbated in the last years with the proliferation
of electric cars, which need a large amount of batteries to match the range of
existing internal combustion cars.

The motivation behind this thesis stemmed from the desire to address these
challenges head-on and create a new interactive research platform to help re-
searchers improve user interactivity in a battery-free, energy-constrained sys-
tem.

In this thesis, I cover the design, implementation, and evaluation of an innov-
ative low-power gaming research platform, in the shape of a portable gaming
console. The console’s uniqueness is derived from its key characteristics: an in-
teractive nature, a lack of traditional batteries, and a robust system for handling
intermittent power.

The term “interactive” has been redefined in the context of a battery-free
console, creating a dynamic user-console relationship that allows real-time re-
sponses to diverse user inputs and environmental factors. For example, one of
the energy harvesting methods of the console, a crank, can also behave as an
input to the system, allowing the mapping of in-game actions to crank move-
ments.

The architecture of the gaming console, both in hardware and software as-
pects, is designed from the ground up to support key characteristics such as
ease of use, future expandability, and app portability.

Due to the intermittent nature of the console, the software implementation
has been designed around a seamless checkpointing system to handle power
interruptions gracefully, where, from the point of view of the user, the game is
resumed after a power failure without any apparent loss of progress.

Finally, in order to facilitate user experiments and future work, the console
also features an efficient logging system to capture user interaction and system
performance data during experiments, alongside an easy-to-use interface that
facilitates porting of existing software to this platform.
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Preface

In an age of rapid technological advancement, the line between fantasy and real-
ity becomes increasingly blurred. The evolution of gaming consoles, in particu-
lar, has been nothing short of extraordinary. From their rudimentary beginnings
to the immersive experiences they offer today, these devices have always been a
testament to human ingenuity and the relentless pursuit of entertainment.
Moreover, it is our social responsibility to develop products that resonate with
the realities of our changing world. This project, and the research that under-
pins it, is driven by a vision to further enhance the interaction with the gaming
experience, while at the same time pushing boundaries to achieve a future where
no batteries are needed.

First and foremost, I would like to express my sincere appreciation to my
advisors, Dr. Jasper de Winkel and Dr. Przemys law Pawe lczak for their in-
valuable guidance, patience, and unwavering belief in my capabilities. Your
expertise and mentorship have been instrumental in shaping this work.
To my friends and family, your encouragement and faith in me have been my an-
chor during all these years. You’ve celebrated my victories and offered comfort
during setbacks, reminding me of the bigger picture.

Alejandro Cabrerizo Martinez de la Puente

Delft, The Netherlands
8th September 2023
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Chapter 1

Introduction

The portable device industry stands at a unique intersection, constantly bat-
tling the demands of cutting-edge performance and the ethical obligations of
environmental sustainability. Users expect high-resolution graphics, great in-
teractivity, and long use time, which often necessitates powerful hardware, a
significant energy consumption, and shapes the portable device around the bat-
tery. In fact, 25% of the volume of a modern portable device is dedicated just
to housing the battery [3], and battery degradation is also the most common
cause of early obsolescence [5]. The environmental toll of e-waste is becoming
increasingly hard to ignore, and it will become a bigger problem in the following
years as many batteries in the current lithium battery revolution will reach their
end-of-life [25].

Crafting a gaming experience that thrills without leaving a hefty environ-
mental footprint is an intricate dance. Those two factors usually contradict
each other, pushing in opposite directions.

With this in mind, this thesis aims to research whether it is possible to use
incentives such as a crank in a battery-free, energy-constrained system to im-
prove interactivity and provide a good user experience.

’Interactive’ in our context refers to the dynamic nature of the gaming con-
sole that fosters a real-time connection between the user and the system. The
console is designed to respond to user inputs - such as button pressing, crank ro-
tating, or positional adjustments - creating a constant feedback loop. The user’s
actions directly influence the console’s reactions, allowing for this two-way inter-
action. This design extends beyond the norm, integrating diverse mechanisms
like cranks and incorporating environmental energy sources like solar charging.

To achieve this, a new research platform will be developed from the ground
up, investigating novel methods to harvest energy, developing console hardware
with minimal quiescent energy consumption, and creating a software stack that
abstracts the researcher from the hardware, making porting new software pain-
less.

This software stack will have a ’checkpointing’ system, something pivotal to
handling the intermittent power that comes with these energy sources. The
term ’checkpointing’ refers to the process of saving the state of a system at
specific intervals. This process allows the system to resume from the last saved
state if a disruption (usually a power loss) occurs. In our gaming platform, this

1



Figure 1.1: Final version of the console.

capability is essential for maintaining a seamless user experience despite the
power supply’s intermittent nature.

All of this will be done with the goal of providing an excellent starting point
for future work, where researchers can test new interactive approaches and port
new software with ease. All the hardware designs, software, firmware, and doc-
umentation created for this project will be released publicly on GitHub [8] with
an open-source license. My hope is that this platform will become a stepping
stone in future studies regarding low-power gaming systems and interactivity.

Finally, the system will be evaluated to check its real-world performance and
a series of experiments will be conducted with real users to evaluate whether
the presence of interactive elements and their respective incentives improve the
interactivity and gaming experience as a whole.

Related Work

The idea to develop this platform was, in a significant way, inspired by the
success of the original ”Battery-Free Game Boy” [13] and, to a lesser degree,
the ”Motion-powered Gameboy” [28]. Therefore, some of the key future work
points in those papers were directly addressed. For example, the new screen can
now be used under low-light conditions, at the expense of using more energy
to keep good visibility outdoors. Other considerations like adding sound or
wireless connectivity were chosen to not be addressed due to their high energy
consumption requirements.

In addition to that, instead of only creating an improved battery-free gaming
console, I choose to pursue a more ambitious approach, developing an entire
hardware and software platform that is closer to the current generation of con-
soles while providing a modular and easy-to-use platform for future research.

For example, as it can be seen in Figure 1.1, the screen has been upgraded
immensely, expanding the display area to eight times more than the original
Battery-Free Game Boy [13].
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Screen size Energy harvesting
Solar (200 lux) Eletromechanical

Battery Free GB 1.76” 0.165 mW 1.2 mW
Motion-Powered GB 1.76” - 5.2 mW
Condenar (This one) 5” 0.174 mW 1400mW

Table 1.1: Related work comparison.

The input system has also been updated, it now uses a fully-featured joystick,
triggers, and the typical ”ABXY” button configuration that is common in most
state-of-the-art gaming controllers.

Lastly, the power harvesting capabilities have been enhanced significantly
(as seen in Table 1.1), with support for a modular approach and crank-based
interaction.

On average, the new approach can harvest 1000 times more power than the
button and solar strategies used in the ”Battery-Free Game Boy” [13] and 250
times more than the bi-stable actuators in the ”Motion-powered Gameboy” [28].

During the development of this gaming platform, several innovative contribu-
tions took place:

• User-focused checkpointing system: This checkpointing system, apart
from being more flexible and easier to use than other implementations [17]
[28] [13], offers a user-focused checkpointing approach, where checkpoints
only happen after a new frame has been delivered to the user. It removes
the need for just-in-time checkpointing [13], making the software stack
easier to port to different architectures.

• Flexible power harvesting approach: To allow for easier further itera-
tion, the platform supports the use of energy harvesting modules, drastic-
ally reducing the time and money it takes to research new ways of powering
the system.

• An innovative crank harvesting approach: This approach is able to
get the best of all worlds, from a custom MPPT system to bidirectional
cranking with feedback, all of that while maintaining high efficiency.

• Easy app portability: A simplified API allows easy porting and devel-
opment of hardware. New apps have access to a lot of off-the-shelf tools
like system-wide settings, internal block storage, heap management, and
a file picker. All these tools are ready to be used and are extremely easy
to implement in applications.
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Chapter 2

Proposed System
Architecture

The motivation for developing this platform was to create an easy-to-use plat-
form that would allow researchers to evaluate the impact of different forms of
user interaction in power-constrained systems.

Therefore, the platform architecture is designed with the goal of providing
an excellent gaming experience, while at the same time, letting the researcher
measure all aspects of the console (system performance, user interactivity, and
gameplay experience) without disturbing the performance of the system.

With this in mind, the system is split into two parts, the console and the
logging system. This separation is vital for the validity of the experiment results
since the presence of the logging module must not change the behavior and
performance of the console in any significant way.

2.1 Gaming Console Architecture

The chosen console architecture is shown in Figure 2.1 and Figure 2.2.
The console architecture revolves around the use of a main MCU, that is in
charge of both the real-time aspects of the system as well as the necessary
computing/emulation to run the games. It is complemented by peripherals that
add energy harvesting, button input, and video output among other things:

2.1.1 System Modularity

As one of the goals of this thesis is to create a system that can be easily iterated
and improved upon, the hardware of the console is divided into three separate
modules:

• Motherboard: Connects all the parts of the console together and con-
tains most power-related components and user input (buttons and joy-
stick).

• CPU module: The CPU module is an easily replaceable module that
contains the main processor and FLASH along with the necessary hard-
ware to output video to a screen.

5



Figure 2.1: General system architecture diagram.

• Power harvesting modules: These modules are the key to the mul-
timodal energy harvesting nature of the console. Each module is designed
to provide power to the console in a different.
This modular approach also makes it easier for the researcher to quickly
try different approaches to energy generation. For this thesis, two example
harvesting modules will be created, a solar module and a crank module.

This separation of concerns also has the advantage of facilitating a faster
initial development, since improvements in a certain part of the system don’t
require a whole remanufacturing of the whole system.

2.1.2 Energy Storage

To store this power, a set of supercapacitors will be used to replace the conven-
tional batteries and give the console a good amount of storage. The capacitors
used need to have an extremely low ESR (Equivalent Series Resistance), due to
the intermittent nature of the system. A high ESR would make the capacitor
voltage practically disappear when a lot of current is being drawn from it (when
the backlight level is high), effectively reducing its usable size.

2.1.3 Energy Path

Due to the limited energy supply of the console, being as low power as possible
is the main constraint of the system. To this goal, the power delivery path is
optimized to provide granular control over which part of the system is powered
or not.

6



Figure 2.2

2.1.4 Computing

The processing power of the console is centered around a state-of-the-art low-
power MCU (Apollo 4) [16], which has a modest amount of computing capab-
ilities while being extremely efficient (4uA/MHz). Another key point of this
MCU is its extensive combination of peripherals, such as the Octal SPI drivers
(where eight data bits are sent on each clock cycle in parallel) that will be used
to emulate the screen interface during the implementation.

2.1.5 Screen

There are currently four different types of screens in the market that would
work in a research platform like the one designed here:

• E-INK display: This type of screen is widely available, uses no energy
while static but offers a very limited amount of colors and a very slow
refresh rate.

• MIP display: MIP (Memory In Pixel) displays offer all the benefits of
E-INK (low power consumption) while at the same time, having higher
refresh rates [6]. They are unfortunately not as widespread so finding a
commercially available MIP screen with the right size/resolution combina-
tion is not as straightforward. A LS044Q7DH01 [9] screen (4.4”, 320x240)
was tested, and even though its power consumption was appropriate for
the needs of the project (3.5mW), the user experience was severely affected
by its low resolution and it being black/white only.

• OLED: OLED screens typically feature high resolutions with the highest
power consumption unless dark colors are being displayed. The main
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drawback for our application was that OLED screens with low resolution
and big sizes are not readely available in the market.

• LCD: This is the screen type we selected since it represents a nice equi-
librium between usability (8 bit RGB, 60 FPS) and low enough power con-
sumption. The LCD part of it uses 30mW, but it can be reduced down to
18mW if it is run at 30FPS instead. Running at 30FPS also creates some
visual artifacts that can be bothersome for some people, but we made the
decision that the large energy savings outweigh this issue.
Nevertheless, LCD screens need a powerful backlight for the screen. Thank-
fully due to the non-linear way the human eye perceives light [1], it is pos-
sible to lower the backlight intensity indoors to negligible levels of power
usage (4mW) while still displaying a visible image. Unfortunately, it also
means that some kind of automatic brightness adjustment is necessary
since it would be otherwise impossible to use it outdoors. Thankfully using
the console outdoors usually also means that the increase in power input
from the solar panels is roughly proportional to the energy requirements
of the backlight to maintain good visibility, therefore partially negating
this disadvantage.

2.1.6 Software Abstraction

From the software point of view, as seen in Figure 2.1, the software stack is
made of a low-level Kernel, designed to be as lightweight as possible, with a set
of Application Layer Interfaces (APIs) that provide a layer of abstraction over
the hardware.

The Kernel itself behaves as a non-preemptive scheduler (where the apps
hold the execution until given back to the kernel or forcefully terminated), that
switches between apps and manages the system resources (storage, heap). Apart
from that, it also handles the initialization and upkeep of the underlying hard-
ware, the checkpointing system, and optimizes the power usage by powering
down unused parts of the console.

The Kernel APIs are split into five different parts: Input, Screen, Settings,
Checkpointing, and Logging. Each of these parts can be enabled or disabled at
compilation time, effectively changing the memory footprint of the Kernel. Each
one of those APIs allows hardware-agnostic access to the inputs and outputs of
the system.

2.2 Logging Module

As it was mentioned before, the logging subsystem, which is in charge of doing
real-time measurements of all aspects of the console, needs to behave as an
independent system.

If the presence of the logging system were to alter the behavior of the console,
the experiment measurements would not be valid.

This is why, a different, independent system is used to record log files for
experiments. The independent nature of this subsystem includes the use of its
own power supply and isolated inputs, which makes sure that the presence of
logging does not affect the rest of the system.

8



To incentivize this separation further, no communication is allowed from the
logging module to the main system. This way, the main system is completely
agnostic to whether logging/recording is taking place and therefore, its behavior
will be exactly the same no matter whether logging is taking place or not.

Once an experiment is finished, the stored logs can be retrieved and analyzed
offline to gain insights into the system’s operation. This is valuable for iterative
system improvements, understanding user behavior, and diagnosing any system
errors. The architecture supports an interface that allows easy retrieval and
interpretation of these logs by researchers.

9
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Chapter 3

Hardware Implementation

In a gaming system, the hardware serves as the bedrock upon which all gaming
experiences are built, and it is therefore extremely important to choose a solid
hardware foundation that would not be a limitation for further development.
In this chapter, I will explore in detail each part of the hardware, comparing
the different solutions for each one and the challenges that they present.

3.1 Main MCU

As the main MCU of the system, we are using an Apollo 4 from Ambiq [16].
This series of MCUs has extremely low power consumption while having a lot
of processing power, memory, and peripherals. It can run up to 192MHz and
has around 2MB of RAM and 2MB of non-volatile memory.

Figure 3.1: Console Architecture

3.2 Video Output

The video output of a portable console, as described in Section 2, is likely its
most important component from the perspective of the user. Unfortunately, it
is also potentially the largest single energy consumer in the system. Therefore,
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choosing the right technology for the system is critical for achieving a good
performance-to-usability relationship.

3.2.1 Video Interface

Choosing the right video interfaces to transmit the pixel information from the
CPU to the display is also critical for achieving low power consumption. In
today’s era of high-resolution and high refresh rate displays, MIPI’s DSI [2]
protocol is used. The differential nature of DSI (two wires per signal) makes
it nearly immune to external interference and can provide extremely high data
rates with a small number of signals [2]. Unfortunately for us, high-speed differ-
ential signals, also known as Low Voltage Differential Signaling (LVDS), require
the use of transceivers that use a lot of power. For example, a state-of-the-
art single channel, low power LVDS driver (DSLVDS1001 from TI [21]), uses
23mW. Since a MIPI display interface needs at least two LVDS pairs (clock and
signal), using a MIPI DSI interface would add at least 50mW to the overlay
system power consumption.

On the other hand, one can use a parallel interface, where instead of pushing
all the bits through the same signal, one can have as many signals as bits each
pixel needs. In a typical 32-bit color system, this would mean having 32 times
more signal wires going to the display, but each one of them only has to carry
1/32 of the data compared to a MIPI DSI interface. This drastic reduction in
data rate makes it possible to use common single-ended (where only one wire
is used for each signal) transceivers instead of LVDS signal pairs. This also has
the advantage of reducing the parallel interface wire count by a factor of two,
since all the signals are now single-ended.

Therefore, the final ”cost” of using a parallel interface vs a MIPI DSI one is
having sixteen times more wires, which is justified in our application due to the
power savings.

Unfortunately, it is not practical to output video through a parallel interface
from an MCU, since it would require nearly 35 pins (32 signals, a clock, and
two synchronization signals that mark the end of a row and a frame (VSYNC,
and HSYNC respectively). MCUs usually don’t have any dedicated peripheral
capable of streaming out this many bits at a time.

To accommodate for this limitation, an SSD1963 display controller from So-
lomon Tech [15] is used. This IC is located in between the MCU and the screen
and accepts pixel data in a 6800 interface and outputs it to a 32-bit wide par-
allel interface. The 6800 interface only uses 8 data wires and two more slow
signals to indicate the type of communication that is taking place (write/read
and command/data). This allows us to use the MCU SPI peripheral in its 8-
bit wide configuration (which outputs bytes 8 bits at a time) to automatically
output a full frame of data with no CPU intervention. Nevertheless, the usage
of the SSD1963 adds 1.8mW of power consumption, which is comparable to the
power used by the MCU but an order of magnitude lower than the previous
estimations for a MIPI DSI display.

The screen that was chosen was the COM50H5M81XLC from Sharp, a 32-bit
5” Parallel LCD screen that features good low light performance [7]. The low
pixel density of this screen (resolution divided by area), further optimizes our
design, making it possible to have a large screen while reducing the amount of
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computing needed by lowering the resolution.

3.3 Energy Path

One of the advantages of this research platform is that due to its low power con-
sumption, can be powered by supercapacitors instead of conventional batteries.
In general, current lithium-based batteries are vastly superior to supercapacitors
in all performance-related metrics [11]. Energy density and power density are
significantly superior in conventional batteries whereas supercapacitors have the
advantage of having a nearly unlimited number of recharge cycles, and therefore,
not having a limited lifespan that generates e-waste.

A 6V 1.5F SCMR22H155PSBB0 [10] capacitor from Kyocera was chosen due
to its low ESR (580mOhm). This is in contrast with the KR-5R5H474-R cell
capacitors from Eaton, which have 3x more energy density but a significantly
higher ESR (50Ohms) [4]. Even though the Eaton one are denser, its high
ESR means that at our expected power draw at full backlight (30mA), they
would be dropping by nearly 1.5V, also reducing the overall system efficiency
down to 0%-30% (depending on the capacitor voltage). In contrast, with the
SCMR22H155PSBB0 [23] capacitor, its worst-case efficiency is less than 2%.

A 6V 1.5F supercapacitor can store up to 20J of energy, which at our expected
power consumption of 125mW would result in 160 seconds of system life. This
number was chosen as a compromise between needing constant power input and
not incentivizing enough interaction from the user.

Energy can be added to the system by three different methods:

• USB port: The main USB port of the console can be used to charge the
capacitors. The rate of charge is limited to 500mA to comply with the
USB specification. It is also useful for debugging purposes to disable this
charging feature but keep logging enabled. This can be selected by the
researcher through a set of hardware switches next to the USB port.

• Logging module: It is likely that in some variations of an experiment,
the researcher might want to fully disincentivize the user from interacting
with the energy harvesting inputs, so the logging module can also keep the
console charged at all times. To allow for faster experiment turn-around
and ease of use, this feature is software controlled by the main MCU,
allowing for quick transitions between experiments.

• Power modules: As part of the modularity of this platform, you can plug
in up to 2 different power modules to the console. These modules have
a standardized size (60x22mm) and pinout and allow for quick iteration
of new power systems. As part of this thesis, two power modules were
developed, a crank-powered and a solar-powered one.

To facilitate maintaining a constant regulated voltage, no matter the state of
charge of the capacitors, a low-power boost converter LTC3526 [19] from Analog
Devices is used. It has 9uA of quiescent current, which is negligible compared to
the self-discharge current of supercapacitors. This boost converter generates an
”always-on” 5V rail, from which most power monitoring systems (auto wake-up,
power latches) are fed. All the other system voltages are then created from this
one following the hierarchy in Figure 3.2. This hierarchy is designed to provide
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Figure 3.2: Energy path structure.

full control over which parts of the system are enabled, which allows to save
as much power as possible if a component is not in use, while also providing
a good compromise between granularity, efficiency, and system complexity. In
Figure 3.2, arrows indicate the direction of the flow of energy and data, whereas
dashed areas delimit parts of the design that are implemented with a single
off-the-shelf component. Power converters and power switches are represented
by rectangles and signal latches by diamonds. All other symbols are direct
references to common electrical symbols, such as comparators and logic gates.
All the inputs (rounded rectangles) and the output power rails are explained in
more detail in Table 3.1.

3.4 Voltage Monitoring and Power Domains

3.4.1 Voltage Monitoring

As previously explained, the 5V rail of the console is always on. The power
monitoring systems that are fed from it take care of powering back on the
console once the energy storage has enough charge.

In a usual scenario, once the console detects that the amount of energy stored
is running low, it can choose to finish any remaining work (such as displaying
the video frame it is currently processing), enable the monitoring systems, and
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Power rail Parts powered Control
5V voltage monitoring, LCD, 3.3V, 1.8V Always on
1.8V main MCU, input, 1.2V, 1.8V-MEM User/Auto/MCU
3.3V Low power screen, 3.3V-AUX domain MCU, latched

3.3V-AUX LCD driver, LCD MCU
1.2V-AUX LCD driver MCU
1.8V-MEM external FLASH and SRAM MCU

Table 3.1: Power domains.

Figure 3.3: Solar harvesting module.

finally turn itself off. If the automatic power-on system was enabled before shut-
ting itself off, once the super-capacitor voltage reaches a certain pre-programmed
level, it will simulate a ”power-on” button press, powering on the main CPU
in the process. Once the CPU is enabled, it can choose to latch the power-on
status and therefore start this cycle all over again, or just go to sleep again if,
for example, the amount of energy stored is not high enough.

3.4.2 Power Domains

In order to save as much power as possible, the system is divided into 5 different
power domains. Each of them can be individually controlled by either the CPU
or the hardware-based voltage monitoring system:

3.5 Energy harvesting modules

The current implementation of the platform supports up to 2 power modules
installed at the same time. Each module is responsible for charging the capa-
citors when power is available and if desired, sending data to the main MCU
about the state of the module (for example, which direction and how fast the
crank is rotating).

3.6 Solar module

The solar module (Figure 3.3) is a typical solar energy MPPT buck-boost har-
vesting configuration that can handle solar panels up to 15V and has current
monitoring built-in. It also tracks the most efficient power point for the solar
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Figure 3.4: Crank harvesting module.

panels (MPPT), which is usually at around 80% of the open-circuit voltage of
the solar panels.

This module is built around the LTC3129 IC from Analog Devices and with
the current solar panel configuration, it generates between 1.5-125mW depend-
ing on the amount of light. On a sunny day, it is therefore capable of powering
the console by itself, or at least achieve a good duty cycle thanks to the inter-
mittency capabilities of the platform.

The solar panels chosen for this platform are the EXL10-4V170, some state-
of-the-art panels specifically designed for low-light conditions. As noted before,
a parallel array of 8 of these panels (50x20mm each) can produce 1.5mW under
200lux, your typical indoor lighting conditions.

These panels, as seen in Figure 1.1 are placed in a way that avoids parts of
the console where it is likely that the hands of the user would cover or shadow
during normal gameplay.

The output current from the panels can then be optionally amplified by an
INA180 amplifier from TI, so that the logging system can easily record it.

3.7 Crank Module

During the development of this thesis, the cranking module (Figure 3.4) went
through a lot of iterations. At first, the approach was similar to the one used
in the solar module, a simple boost converter capable of taking the 2-4V from
the motor input and charging the supercapacitors at 5V. Nevertheless, this
approach is hugely inefficient. When a motor is used as a generator, it has
a characteristic current vs voltage curve that determines at which % load the
generator operated more efficiently. Since efficiently harvesting energy from a
motor is not as common as doing it from a solar panel, there are no off-the-shelf
solutions that offer a good Maximum Power Point Tracking (MPPT) system
for motor inputs. With that in mind, a custom MPPT tracking system was
developed.

3.7.1 Custom MPPT System

The custom MPPT tracking system revolves around a small, very efficient MCU
(NHS3152 from NXP), that controls when a buck-boost converter needs to be
enabled for the crank to operate at its most efficient speed and load. The MCU
constantly monitors the input voltage, periodically disconnects the converter for
a small amount of time to measure the open circuit voltage, and runs a custom

16



algorithm that makes a decision on whether the converter should be enabled
or not in order to stay in the most efficient range. Since this MCU is powered
by the converter output itself, it also needs to make sure that it periodically
enables the converter so it can recharge a series of input capacitors that keep
the MCU alive while the converter is not running.

3.7.2 Bidirectional Cranking

The power input of this module is a conventional DC brushed motor, so the
polarity of its output voltage changes depending on the direction of rotation.
This makes it necessary to either block the inverse voltage (not allowing cranking
in one direction) or rectify the input power before delivering it to the buck-boost
converter. Therefore, there are different approaches that can be taken to address
this situation:

Blocking diode

This is the simplest solution, where a diode is placed in series with either one
of the motor terminals (See Figure 3.5a). Due to the reverse current-blocking
nature of a diode, it will block current flow in one direction, creating an open
circuit from the point of view of the motor. With this approach, if the user tries
to crank if the wrong direction, the crank will offer no resistance, letting the
user turn it as quickly as possible. After testing, this was deemed the correct
approach, since it feels like no work is being done and the user will quickly start
cranking in the other direction. Unfortunately, due to having a diode in series
with the circuit, part of the energy will be lost in the forward voltage of the
diode. Since the motors used output anywhere from 1-4V under load, the 0.7V
drop from the diode will result in only 30-82.5% efficiency, depending on the
cranking speed. A Schottky diode can also be used here, since it has a lower
voltage drop (0.35V), resulting in higher efficiencies (65-91.25%). Nevertheless,
Schottky diodes have the downside of having significantly increased reverse cur-
rent and lower blocking voltage, which under certain conditions (such as fast
reverse cranking, where there is no load, so easy to achieve) can damage the
electronics.

Inverse nypass diode

This approach (Figure 3.5b) is similar to the blocking one, but the placement
of the diode is slightly different. In order to avoid the voltage drop across the
diode, the diode is put in parallel instead of in series to short the motor when it
is being cranked in the wrong direction. This makes this solution nearly 100%
efficient but has two downsides:

• Crank feeling: Due to the diode behaving as a short-circuit when the
crank is being rotated in the wrong direction, the user will feel like they
are doing a lot of work, furthermore incentivizing the cranking in this
(wrong) direction. If this continues for a certain period of time, it is also
possible for the diode to overheat and burn, since all the cranked power
is dissipated in the diode itself.
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(a) Blocking diode approach. (b) Bypass diode approach.

(c) Bridge rectifier approach. (d) Ideal full-bridge approach

Figure 3.5: Crank harvesting approaches.

• Residual negative voltage: Due to the nature of a diode, even if a
diode is in its conductive region, it will still have a small voltage drop
across it. This means that when the system is cranking in the wrong
direction, and the diode, therefore, behaves as a theoretical short, there
will still be a small voltage across it. This means that it won’t be able to
clamp the negative voltage to 0V, but to its forward voltage. If a Schottky
diode is used, then there will be around -0.3V, which might be big enough
to damage certain sensitive components or affect the overall long-time
reliability. In testing performed with this approach, this small negative
voltage was not large enough to break any hardware, but long-term effects
are unknown.

Signal rectification

The goal of this solution is to provide a way to allow bidirectional cranking,
which might be useful to add certain interactions during gameplay. For example,
we used this to control how the pieces in the game ”Tetris” were rotated, adding
even more incentive to use the energy-harvesting features of the platform. This
approach uses a full bridge rectifier, as seen in Figure 3.5b, to provide two
symmetrical rectification paths for the input current. Unfortunately, with this
approach you always have two diodes in series with your circuits, resulting in
twice the voltage drop as with the original one. Even with Schottky diodes,
the efficiency of the approach is quite bad, in the 30-82.5% range, depending on
cranking speed.

The chosen solution - An ideal bridge rectifier with MPPT support

The chosen solution shown in Figure 3.5c is based on the ”Signal rectification”
approach, where a full bridge rectifier with bypassing MOSFETs is used.

In this approach, each diode of the bridge rectifier has a complementary MOS-
FET which is off by default and can be controlled from the MCU of the mod-
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Figure 3.6: Logging module.

ule. By enabling a MOSFET, its respective diode is bypassed, removing the
voltage drop and only leaving a small resistance in place (The RDSon, resist-
ance of the MOSFET when conducting, 35 mOhm). This makes this approach
highly efficient, 98-99% (not taking into account the energy used by the MCU,
which is already there to provide MPPT). This approach requires a companion
MCU, which is responsible for detecting the current cranking direction, and
then switching the correct set of two MOSFETs on to enter the ”ideal” mode.
This can be risky, if, for some reason, a bug in the code or external interference,
the wrong combination of MOSFETs is turned on, and a large negative voltage
might be created in the input, damaging the whole system. It is especially im-
portant for the MCU to be constantly monitoring the motor inputs since the
user might change the direction of cranking at any time.

Another necessary protection mechanism is that, if the motor voltage is too
low (slow cranking), it is safer to disable all MOSFETs, since it is more likely
that a change in direction will happen and it could cause damage if te system
can not detect it fast enough.
Finally, it is possible to add a diode in reverse (as explained in the ”Inverse by-
pass diode” approach) after the ideal bridge rectification. This joint approach
makes sure that, if for some reason, the ideal bridge implementation is faulty
and accidentally generates a negative voltage, the reverse diode will short it
and clamp the power rail to its forward voltage. This is especially useful during
development to avoid costly mistakes, but it can also be left there after develop-
ment since it is not a detriment to the efficiency, it just wastes a small amount
of area.

3.8 Logging Module

The logging module (Figure 3.6) is a compact module that can be used to
measure and log different system parameters without affecting the behavior of
the system being measured. Its main use case is to provide logging capabilities
to study the behavior of the user and the system during controlled experiments.
It is built around the wireless ESP32 MCU, which is a powerful yet cost-effective
solution to sample all the necessary logging data channels while supporting WiFi
and Bluetooth connectivity for future expandability. It is powered by its own
battery to avoid interfering with the game console itself. This along with having
isolated inputs coming from the rest of the system, ensures that the presence
of this module has no effect on the rest of the platform. All the data that the
module samples are stored in a microSD card for easy extraction.

A communication link exists between the main system and the logging mod-
ule. In order to prevent the module from having an effect on the main system,
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all communication happening between the both (to log extra things) is only
one way, from the system to the logging module. This way, there is no way
the logging module could affect the behavior of the main MCU. As part of this
communication channel, the system can tell the logging module to start/stop
an experiment and can log up to 8 extra channels of data, to be used at the
researcher’s discretion
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Chapter 4

Software Implementation

In this chapter, the layers of software that abstract the hardware in our console
are unpacked, detailing the mechanisms and design philosophies that govern its
operation and provide an easy-to-use interface to the researcher and end-user.

4.1 System Kernel

The system kernel is built as a non-checkpointed (the kernel state is not saved
by the checkpointing system), non-preemptive (it is up to the application to
return control back to the kernel) lightweight abstraction layer on top of the
hardware to make porting applications easy.
The system kernel is not checkpointed since the amount of time it takes to ini-
tialize the kernel each time (2.25 ms, as can be seen in Figure 5.6) is insignificant
compared to the time it takes to get the hardware ready during startup. This
decision also simplified the checkpointing process, reducing the amount of data
stored in each checkpoint.
Since this kernel is not checkpointed, during startup it is in charge of initializing
the hardware and kernel component, restoring the last checkpoint, and finally
giving the execution back to the application itself. Due to the non-preemptive
nature of the kernel, it uses the API calls that the application calls at the end
of each frame to do the necessary housekeeping tasks such as checkpointing and
drawing charge level indicators and other interface objects on top of each ap-
plication. The kernel also includes other things like a power failure-safe flash
file system, file picker UI, settings menu, home menu, and a download mode to
upload files to the console, which will be explained later in this chapter.

4.1.1 System Drivers

To abstract and simplify the porting process for new applications, each sys-
tem component has its own driver, with a user-friendly API. This also allows
supporting different hardware and platform revisions with no changes from the
researcher’s point of view.
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Graphics

The graphics driver is implemented as a hardware-agnostic abstraction layer,
and it handles queuing draw commands, double buffering, and vertical syn-
chronization of the screen. To display a new frame on the screen, an application
can queue draw commands to update the information being shown, and then
let the kernel know that the current frame is done drawing. The graphics driver
handles the delivery of new frames to the LCD controller, making sure that
it is only done when the screen is not being refreshed, to avoid screen tearing
issues. The LCD controller uses the 6800 interface, which is not usually directly
supported by any peripherals in modern MCUs. A typical 6800 interface uses
one clock, 8 data, a read/write, and a data/command signals, where before any
packets are transferred, the read/write and data/command signals are set to the
correct value to indicate the type of operation being carried out and then left in
that state while the 8 data lanes and clock transfer the data one bit per clock
cycle. This simplicity made it possible to repurpose one of the MSPI peripherals
in the MCU to handle most of the work. If one manually sets the read/write and
data/command pins manually and then starts a normal MSPI transaction, you
can use the Direct Memory Access (DMA) features of the MSPI peripheral to
do most of the transaction in the background. This frees up the CPU to start
processing the next frame while the current one is being sent to the display
controller buffer.
A double-buffered approach is used to let the CPU work while the last frame is
being sent. Unfortunately, double-buffering has the drawback of using a lot of
memory. Each frame (320x240 pixels, 32bit color) uses 2.5Mbit of memory, and
since we have two of them, nearly 5Mbit of fast RAM is used just to allocate
the framebuffers.
If the researcher porting a game needs this extra RAM, this double buffering
system can be easily disabled, switching back to using only 1 buffer, or even
no buffers at all (directly drawing to the display). Each of these approaches is
slower than the one before, so unless this extra RAM is absolutely needed, it
might be a better idea to try optimizing the RAM usage of the app in particular
instead.

Due to the impossibility of saving and restoring these framebuffers (due to
their size) on checkpoints, a checkpointing system that happens at the end of
each frame is utilized. This lets us avoid storing the contents of these buffers,
freeing 10Mbit of FLASH (since we also double-buffer our checkpoints) that can
be used in porting a larger number of apps or more complex ones.

Screen

Each screen driver is responsible for translating the low-level commands coming
from the graphics driver so that they can be applied to the physical screen. For
example, the screen driver is responsible for abstracting things like setting the
screen brightness, contrast, and image rotation and sending either full frames
or parts of a frame. Many of these features are designed to be optional, and
if any of them is impossible with a certain hardware configuration, the system
will automatically (during compilation) best adapt to what is available.
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Crank Module

As explained in the previous chapter, the crank module has a MCU on it that is
responsible for tracking the most efficient point of the crank motor and making
the bridge rectifier ideal. The firmware that runs on the MCU, as explained
in Algorithm 1 evaluates these parameters at 10K̇Hz and takes the appropriate
decisions to maintain maximum efficiency.

Algorithm 1 Sense Motor Direction and Control Bridge.

while true do
Measure sense motor direction sense inputs
if both sense inputs are high OR both are low then

Turn off ideal bridge {Disable the bridge if both sense inputs are similar
because this is an unknown state}
Return {Exit the loop}

end if
if only one is high then
if Input1 is high then

Enable bridge in direction 1
else

Enable bridge in direction 2
end if

end if
Write to DAC to disable the DCDC converter {Disable the DC-DC con-
verter to take an unloaded sample}
Wait 100u̇S {Wait for the input voltage to stabilize}
Take voltage measurement from the MCU supply capacitor
if MCU voltage < 3V then

Wait 10ṁS {Avoid shutting down by waiting additional time}
Continue {Proceed to the next loop iteration}

end if
Read input voltage from correct sense input {Use MPPT algorithm to
maintain the input voltage in its most efficient point}
if loaded measurement is less than 50% of the unloaded measurement
then

Enable the DCDC converter by writing to the DAC
else

Continue {Do nothing and proceed to next loop iteration}
end if

end while

Flash

The Flash subsystem is split into two parts:

• Internal Flash driver: This driver is in charge of providing a hardware-
independent abstraction of fast, persistent storage. Its goal is to also
provide seamless byte-level access to this memory, removing size and align-
ment requirements.
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• External Flash driver: This driver has a scope similar to the internal
flash one, but it also has to deal with mapping the external flash memory
so that it can be accessed by the typical read/write CPU instructions.
In our MCU, this is implemented by using the Execute in Place (XIP)
capabilities of an MSPI peripheral. Unfortunately, due to the limitations
of the MSPI implementation in the Apollo 4 (in contrast with the Apollo
3), XIP data read operations are not cached by the internal CPU cache.
This lack of caching reduces its performance significantly, so a configurable
4-way associative cache is also implemented in software that allows speed-
ups of up to ten times in common memory operations:

4.1.2 Applications

This Kernel uses the concept of ”Apps” to provide modularity and limit de-
pendencies between parts of the system. Each app in the system is independent
from each other and they have no way of interacting with each other other
than using the Storage subsystem. On registration, an app must provide the
following details:

• Name: A name that will be used for logging and in the main menu.

• Entry point: Entry point where execution of the app will start from.

• Checkpoint callback (Optional): If the app wants to perform some
action specific for recovering from a checkpoint (such as reloading/caching
data that is not checkpointed), it can register a callback here.

• App icon: A path to an icon contained in the internal file system.

• Storage size: Amount of storage that the app is requesting to have
available. Depending on availability, the system might not be able to
allocate it and all storage-related calls from this app will be ignored.

Even though each app is completely independent (it can freely use the heap
and storage assigned to it as much as it wants without interfering with other
apps in the system), only one app can be loaded into memory at the same time.

Storage

As explained before, each app can request to have available a certain chunk of
non-volatile memory where it can store arbitrary data. The maximum amount
of storage space in the system is designated at compile time, and the Kernel
will try to (at runtime) fulfill as many allocation requests from apps as possible.
If a chunk of storage space is successfully allocated, it will persist in the non-
volatile memory until the app that uses it is removed from the system. Due to
the fragmentation that this removal process creates, the system might choose
to move storage chunks around to compact them and make space for new ones.

Input

The input system is also handled by the Kernel to abstract changes in the button
layout amount different versions of the hardware. It currently supports up to
8 buttons and two joystick channels. It also additionally also supports up to 3
interaction inputs.
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4.2 Checkpointing

The checkpointing system is designed to provide a seamless power-down recovery
experience for the user of the system. The checkpointing system is also double-
buffered to ensure that, if a power-off happens during checkpointing, there will
always be at least one valid checkpoint to recover from.
The kernel has intentionally been architected in a way where it is totally state-
free, and it, therefore, doesn’t need to be stored in the checkpoint. This, in
exchange for extra initialization time, provides faster checkpointing since the
amount of memory that gets checkpointed is reduced significantly.
When a firmware update is performed, it is generally a good idea to fully erase
the checkpoints to avoid invalid checkpoints. This invalidation is currently done
at the tooling level when new firmware is updated by a programming probe.

4.2.1 Checkpoint Creation

During the checkpointing process, interrupts are disabled to ensure the consist-
ency of the checkpoint. First, as seen in Algorithm 2, the application heap is
stored. Modifications in the application heap are tracked through the use of the
memory protection peripheral found in the ARM core of the MCU. It is based
on the MPatch implementation from the original Battery-Free Game Boy [13].
Once the heap is stored, all the designated linker sections (.data and .bss),
which is where global C variables used by the kernel and apps are in memory
are also copied to the checkpoint. Finally, the stack and current register values
are also stored in the checkpoint. Since any C code running here could poten-
tially modify it, this part is written in assembly, taking special care to avoid
overwriting any of the registers. Finally, since the non-volatile memory we are
using has limited erase cycles, checkpoint creation is limited to only happenning
while the console is active (when there has been user input in the last 5 seconds)
and could be configured to also skip checkpointing frames if for example, the
energy storage % is high (so less risk of a turn-off)

4.2.2 Checkpoint Recovery

When the MCU is booted, it initializes the hardware present in the console and
then checks if there is a valid checkpoint available to recover from it. If there
isn’t, it will just launch the ”Main Menu” application. On the other hand, if a
checkpoint exists, it will disable interrupts, and fully restore the heap and the
linker sections. Then, in order to avoid modifying any registers or the stack,
some assembly code carefully restores both the registers and the stack and per-
forms a jump to the code location right after creating a checkpoint. This way,
the system has no idea that it has recovered from a checkpoint, from its point
of view, it just kept running after saving a checkpoint. This process is detailed
in Algorithm 3

In order to add more extensibility to the system, applications can have a special
callback that is called after recovering from a checkpoint (but before returning
the control) so that it can perform application-specific tasks. For example, it
could be used to preload/cache data into the faster, non-checkpointed SRAM.
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Algorithm 2 Algorithm used to create a new checkpoint.

1: am hal interrupt master disable() {Disable interrupts}
2: k MemWatcher GetModifiedRegions(&modifiedRegions) {Get modified re-

gions}
3: k MemWatcher ResetRegions() {Reset memory regions}
4: newCheckpointID = (lastCheckpointID == 0 ? 1 : 0) {Get new checkpoint

ID}
5: k markCheckpointAsInvalid(newCheckpointID) {Mark checkpoint as in-

valid}
6: k ppr checkpointHeap(newCheckpointID) {Store heap state}
7: k ppr checkpointLinkerSections(newCheckpointID) {Store linker sections}
8: ASM Commands for Register Storing {Store CPU registers}
9: ASM Commands for Stack Copy {Copy the stack state}

10: k markCheckpointAsValid(newCheckpointID) {Mark checkpoint as valid}
11: ASM label ”restorePoint:” {Label for restoring the state} {The checkpoint

recovery process will jump here when done to continue execution}
12: am hal interrupt master enable() {Enable interrupts}
13: ASM Command to flush memory

Algorithm 3 Algorithm to recover from a checkpoint.

1: {Check if checkpoint is valid}
2: if !k isCheckpointValid(lastCheckpointID) then
3: return
4: end if
5: k WaitForPendingScreenFrames() {Wait for pending screen frames}
6: am hal interrupt master disable() {Disable interrupts}
7: MemWatcher SetEnabled(false) {Disable memory watcher}
8: k ppr restoreHeap(lastCheckpointID) {Restore heap}
9: MemWatcher SetEnabled(true) {Enable memory watcher}

10: k ppr restoreLinkerSections(lastCheckpointID) {Restore linker sections}
11: ASM Command to flush memory {Memory flush}
12: ASM Commands for Stack Restoration {Restore stack}
13: ASM Commands for Register Restoration {Restore registers}
14: ASM Command to jump to restorePoint {Jump to restore point in 2}
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Figure 4.1: Block format used in the internal file system.

Figure 4.2: Desktop app used to upload new files to the file system.

4.3 Internal File System and Download Mode

Since the internal non-volatile memory of the MCU is not large enough to ac-
commodate most game ROMs, an external Flash chip is used.

A small and efficient block-based file system, as described in Figure 4.1, has
been developed to allow for files to be stored there. Currently, this file storage
contains all icons/pictures the UI has, resource files for applications, and any
game ROM files that might want to be used by any of the ported emulators. An-
other advantage of this system is that it automatically makes use of the custom
flash caching system explained before in Section 4.1.1 for certain abstractions
such as drawing pictures to the screen since the same memory is read on each
frame.

Files in this file system can be changed by connecting the console through a
normal USB cable to a computer and running a small client app (Figure 4.2
that organizes, prepares, and uploads files. The main reason for this is to allow
a quick and easy way to load new ROMs and icons for faster iteration cycles.
Finally, any app can request the kernel to show a file-picking dialog to let the
user choose which file to open, providing useful features such as pagination,
scrolling, and filtering by file type.
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4.4 System-wide Settings

The kernel implements a set of system-wide settings, which can be read and
written at any time by any app. The user can also change them by using the
“Settings” application in the console. These settings are especially useful for
selecting different hardware configurations and allowing the researcher to have
different experiment setups/variations. These settings are persistent, statically
typed, and are designed to have extremely fast read accesses while providing a
user-friendly ”Folder and File” naming structure.

4.5 Other Built-in Apps

4.5.1 Main Menu

The main menu is an application that shows a list of the other applications in
the system and lets the user enter any of them. It is also the default application
the kernel will go to if an application crashes in a non-fatal way or exits.

4.5.2 Settings

The settings application is used as a front-end for the Settings subsystem of the
driver. It is able to parse each setting and create a folder/file structure from
the setting names. This makes it way easier for the end-user to quickly find and
modify a setting. For development purposes, it can also call contain settings
of the type ”Action”, which can call arbitrary functions and that allows the
creation of quick scripts/tasks without the need to create a whole new app.

4.5.3 Testing

This simple application is designed to test the different systems of the console.
You can interact with all the inputs of the system and see them change in
real-time on the screen.

4.6 Software Porting

For our experiments, two commonly known pieces of software were ported to the
console, both to demonstrate how easily existing titles can be ported, but also as
a baseline for our experiments on user interaction. The first one is Doom, a First
Person Shooter that was released in 1993, and which has become a cornerstone
of gaming as we know it today. Apart from that, it was also chosen to represent
a piece of software where one has complete access to its source code, and can
therefore easily modify and add new interactions. The second application is a
Game Boy Color emulator, for which you have no access to the source code of
its games. This fact makes it harder to both know the game state and to make
changes to it, which makes adding advanced interactions quite more challenging.

4.6.1 Doom

This Doom port is based on the work of the previous nrf53840Doom port [14].
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Figure 4.3: Doom running in the console.

Several features such as sound and networking were removed due to the lim-
ited energy available in our system. Many optimizations that were customized
for the NRF52 hardware had to be removed and reverted back to the original
DOOM source. The game files are stored as a resource file in the external Flash,
which amounts to 3.1MB of data after some optimizations (down from 4MB).
All the game logic is contained in the code itself, which is stored in the MRAM
memory of the MCU.

To add checkpoint support for the game, the RAM used to store the actual
game status had to be physically separated from the one being used as a cache
(for example to store the current level geometry) so that the amount of memory
needed to save the game state could be reduced to a minimum. All the cached
assets that need to be present at runtime but do not need to be stored are
loaded from the external Flash when the system recovers from a checkpoint.
This differentiation makes it possible to achieve high framerates with a signific-
ant reduction in the amount of checkpointable RAM (1.3MB down to 100KB)
in exchange for a slightly longer recovery time from a checkpoint.

4.6.2 Game Boy Color Emulator

The Game Boy Color emulator port is based on Gaembuoy [26] project. It is a
dual Game Boy and Game Boy Color emulator that implements most features
of the original hardware. Our port removes the sound and networking features
and adds new optimizations to be able to achieve 60FPS in most games. These
optimizations include changing the memory layout of many internal structures
of the emulated CPU to make it easier for our MCU to have them in the cache,
detecting ”hot-paths” in the cartridge code, and storing these tight loops in
RAM to make it emulation faster and frame skipping. The frame-skipping
system tries to skip the rendering of the screen during some frames when it
is likely that 60FPS is not going to be reached. This enables the game to
keep running at its designed speed (60FPS) while saving power (we only output
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Figure 4.4: Doom running in the console.

20FPS to our screen) and making the game playable without slowdowns.
The whole system memory of the emulated Game Boy is checkpointed, provid-

ing easy and seamless integration with the checkpointing system.

4.6.3 In-Game Features Connected to Energy Harvesting
Inputs

As part of the interactive aspect of the system, an application can know at
any time the status of the crank, including both the cranking direction and
speed. This makes it possible to have complex interactions, which not only take
into account whether the crank is being turned, but also its speed, real energy
transfer, and direction.

• Doom: Doom is a fast-paced First-Person Shooter (FPS) that requires
constant input (movement and firing) to avoid losing. This makes it really
hard to switch one’s hand from the buttons to the crank without being
detrimental to the gameplay experience. Here is where adding a gameplay
element to the crank is really useful. By connecting the crank movement
to the fire animation of the Doom minigun, one can provide an intuitive
and satisfactory way to entice the user to crank the system. Since the
character is also harder to move around to dodge attacks while cranking,
an invincibility status is also given to the character while cranking.

• Game Boy Color (Tetris): Contrary to the Doom integration, when
emulating a GBC game it is rare to have access to the source code of the
game, so the range of available ways to integrate the crank is limited to
the actual button inputs. For Tetris, we chose to link the crank movement
to the rotation of the pieces while falling. This is done by simulating A/B
button pushes while the crank is turning.
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Chapter 5

Evaluation

This research platform was designed to demonstrate whether incentives in a
power-constrained environment increase the interaction and usability of the sys-
tem.

It is therefore essential to make sure the system is capable of generating
enough energy and is efficient in using that limited resource. For that, thanks to
the integrated measurement capabilities of the logging module, the performance
of the solar panels and the crank module will be measured, alongside the power
consumption in different scenarios.

After that, I will go into detail analyzing the performance of the software
implementation of the kernel, and especially the checkpointing system.

5.1 Evaluation Setup

The measurements taken for the efficiency measurements were done by putting a
SDM3055 multimeter in series with each power rail, thanks to the jumpers that
were designed into the PCB that allow easy access to this type of measurement.

Any other electrical measurement that appears in this section has been re-
corded through the integrated logging module of the hardware platform. This
module uses the Analog to Digital Converters (ADC) of the ESP32 microcon-
troller to perform the measurements. The measurements taken by the ADCs
of each ESP32 module are then refined in software based on the individual in-
factory calibration values recorded in the internal memory of each MCU. Based
on the ESP32 specification, the maximum error after this calibration is 1.1%
[18].

Unless stated otherwise, all timing measurements in this section are determin-
istic and have been carried out by the console itself (through the use of hardware
timers) or by using the timestamps in the files produced by the logging module.

5.2 System Power Usage

The overall system power usage and capacitor voltage over a play session can
be observed in 5.1. There is a noticeable difference in power usage depending
on the game the user is playing.
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Figure 5.1: System power consumption and capacitor level.

During that play session, the average power usage while playing DOOM was
103 mW, and it slightly decreased over time because enemies were being killed
and therefore, the overall complexity of running the game went down too.

The power usage while playing Tetris (emulated in the Game Boy emulator)
was constant over time, resulting in an average of 97.5 mW. These measurements
were taken by the logging module by measuring the voltage dropped across a
resistor in the output of the 5V regulator (After being amplified by an INA180
current-sense amplifier from TI [22].

5.3 Energy Harvesting

The measurements for the harvesting modules use an INA180 [22] amplifier
from TI, and they are carried out by the logging module as explained in the
introduction of this chapter.

5.3.1 Solar Module

The energy harvested through the solar module can be seen in Figure 5.2. This
example represents an indoor environment, where the solar panels are able to
produce 1-1.2 mW. The relative light level during the experiment can also be
seen, as measured by an OPT3004 sensor from TI [20]. Even though this sensor
is calibrated to provide accurate light intensity in lux, due to the way it was
placed in the console enclosure, only the light incident within 20º of the surface
normal could hit the sensor.

Nevertheless, the light measurement should still be valid for relative compar-
ison, and in fact, it is directly proportional to the amount of solar energy being
harvested. Due to dynamic range limitations of the measurement ADC, the
measurement for solar power clips at 1.9 mW.

5.3.2 Crank Module

As it can be seen in Figure 5.3, the crank is the main energy contributor to the
console. The amount of energy harvested through the crank varies depending
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Figure 5.2: Solar module generation and relative light level.

Figure 5.3: Crank module generation and capacitor voltage.

on the cranking speed, but it is easy to reach 1.4 W under normal conditions.

To evaluate the performance of the custom Maximum Power Point Tracking
(MPPT) system developed for the crank module, a separate measurement is
done, where the crank speed is kept constant and the power harvested by the
system is measured at different output capacitor voltage. As can be seen in
figure 5.4, if the MPPT system is disabled (and therefore the DC-DC converter
is always on), the performance of the system is significantly worse than with
MPPT enabled. This difference is even more visible when the output capacitor
voltage is close to 0, since in this case the converter will try to load the crank
motor as much as possible, moving it further from its maximum power point.

5.4 Power Path Efficiency

Table 5.1 shows the average amount of current drawn by the system from each
power rail while idling in the main menu. Efficiency figures for the power rails
were obtained by either disabling the ones not being measured (for the ones
that do not affect the rest of the system, like MEM or 1.2V), or analytically
measuring the input and output power of each converter in its path.
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Figure 5.4: Crank module generation vs output capacitor voltage. The
MPPT approach increases the performance significantly, especially
when the main supercapacitor level is low.

Rail 5V 3V3 AUX 1V8 MEM 1V2 TOT
Current (mA) 4 0.15 10.3 4.6 0.4 1.2 -
Efficiency 91% 81% 81% 79% 79% 73% 84%
Power used (mW) 27 0.5 44 9.3 0.7 1.64 83.1
Power loss (mW) 2.7 0.1 10 2 0.2 0.6 15.6

Table 5.1: Power usage and efficiency while idle.

5.5 Checkpointing

5.5.1 Checkpoint Creation

This checkpointing saving process takes 1.5ms with the checkpoint configuration
seen in Table 5.2 This number is a worst-case checkpointing scenario, where the
whole heap needs to be stored.

That configuration, as reported by the linker after compilation, represents a
release build optimized for performance. It is also the firmware used to conduct
the rest of the experiments, and contains all the software necessary to run
DOOM and the Game Boy emulator.

Since our targeted framerate is 30FPS (33ms per frame), checkpointing only
represents a worst-case overhead of 5% (1.25 ms out of 33 ms). This isn’t even
noticeable most of the time since the console is usually faster than this goal,
and the CPU would just stay in low power mode waiting for the remaining
of the frame-time. In the case where the load is large enough to make the
console run at, for example, only 20FPS, this overhead would only reduce overall
FPS by 0.6FPS. Anything lower than that, where this overhead would be more
noticeable, would also be deemed unplayable by most users. As it can be seen
in Figure 5.5, once your FPS increases above the FPS limit, the checkpointing
overhead that is noticeable by the user drops to zero.

5.5.2 Checkpoint Recovery

The process of restoring a checkpoint takes 0.5ms when restoring the whole
heap, which is insignificant when compared with the time it takes to initialize
all the hardware in the console (129.75ms) 5.6 during the kernel start-up. The
screen interface initialization takes the longest (80 ms, most of that waiting for
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Heap Stack Register + header Linker sections
100KB 16KB 20B 55KB

Table 5.2: Checkpoint benchmark configuration.

Figure 5.5: Perceived checkpointing overhead vs FPS. The amount
of overhead grows linearly with the desired FPS. If the game FPS
is larger than the FPS limit of the system, the overhead becomes
invisible to the user.

the internal clocks to stabilize), followed by the Random Number Generator
(RNG) with 20 ms and Flash memory (15 ms).

Due to the deterministic nature of the hardware, these measurements are
stable on each initialization, unless the system encounters a random error and
has to retry after a certain period of time.
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Figure 5.6: Initialization time breakdown.
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Chapter 6

Preliminary Experiments

This chapter details the methodology, setup, and observations taken from the
preliminary experiments to try to answer the question: Can incentives such as
a crank in an energy-constrained environment improve interactivity?. The goal
is to provide a transparent account of the experimental process, the insights
gained from it, and the implications of these findings on future work.

Due to time constraints for the presentation of this thesis caused by several
hardware iterations and complications creating a reproducible environment for
the experiments, this analysis will be based on a limited sample size. Therefore,
these results will be used as a pre-study evaluation to gain insights into how to
run the actual experiment. These preliminary results are based on a sample size
of 8, all of which are students or faculty at TUDelft. All the study participants
knew beforehand that they would receive a 5 euro gift card at the end of the
experiment. The data used for this analysis can be found in [27].

6.1 Experiment Description

Upon arrival to the experiment room, participants are introduced to the context
of the experiment and asked to sign an informed consent form, ensuring their
understanding and agreement to participate in the experiment. Participants are
then introduced to the game console. They are given an initial system tutorial,
during which they are familiarized with the console’s interface, controls, and
main features.

6.1.1 Gameplay

Participants are given either Tetris or DOOM to play first. Clear instructions
are provided to start the game. In all cases, the game console was fully charged
and set to the appropriate console settings for the experimental procedure. Par-
ticipants are given control of the console and they are instructed to play the
game for a period of about five minutes.

After the initial game, participants were then given the second game. Just
like before, they receive instructions and are given control of the console for
another five-minute gameplay session.
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Figure 6.1: User interaction by experiment type.

6.1.2 Feedback Process

Following the gameplay, participants are asked to fill out a survey and engage
in a semi-structured interview. They are asked about their overall impression of
the system, their feeling of connectedness to the games console and its energy-
harvesting mechanics, the best and worst parts of their experience, their use of
the pause feature during gameplay, and suggestions for other potential applica-
tions for the console’s energy harvesting mechanics.

6.2 Objective Data From Logs

Even though the sample count from this preliminary study is not large enough
to make any substantial conclusions, a significant trend can already be seen in
the data so far. In these experiments, the presence of interaction is defined as
the existence of interaction between the user and the console within a 100ms
interval. Joystick movement, button presses, and crank usage are taken into
account. When the percentage of time a user is interacting with the console is
plotted against the experiment type in Figure 6.1, a significant difference can
be seen between the baseline (battery-powered) and the self-powered one with
the remaining energy indicator (power level). This result confirms the question
behind the thesis since it establishes a relationship between the presence of
incentives and the interaction with the system.

Nevertheless, Due to the low sample number, no conclusions can be taken at
this point for the one with crank incentives.
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6.3 User Feedback

In general, user feedback was focused on a series of key criticisms:

• User interaction: From our direct observations during gameplay, we
found that the learning curve of operating the crank system varied among
users, with some understanding the need for faster cranking only after
the second DOOM session. Others noted that the crank system was hard
to operate during gameplay, especially in fast-paced games like DOOM.
Some participants were annoyed with the noise produced by the crank
system and its imposition on the gameplay experience.

• Feedback on the performance of the console: Regarding the con-
sole’s performance, user feedback highlighted several areas for improve-
ment. The rapid battery discharge and the need to continually operate
the crank system for charging were cited as notable concerns. Users found
the cranking system to be disruptive to gameplay and expressed a prefer-
ence for a longer-lasting charge that would allow for extended gameplay
without the need for cranking. Moreover, users voiced dissatisfaction with
the console’s screen visibility, particularly under dim light conditions. The
use of a dimmed screen was described as disturbing, and even ”hated” by
a participant.

• Feedback on the console design: Participants found the console similar
to regular game consoles, with the crank seen as a ”nice extra feature”
but not a significant distinction. Some participants found the console too
big to hold in one hand, suggesting a need for a more ergonomic design.

• Suggested improvements: When asked to provide suggestions for games
where the cranking interaction could be integrated into gameplay, parti-
cipants had difficulty coming up with ideas, with one suggesting a football
game where cranking could be used to pass the ball. For power storage,
one user suggested that a 55% charge should allow for 5 minutes of game-
play and that a 10% charge could serve as an indication to start cranking.

• Considerations for further experiments: A key observation from
the experiments was the varying light conditions during gameplay, which
appeared to influence users’ gameplay experience. Future experiments will
need to control this factor.
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Chapter 7

Future Work

The evaluation and experiments have proven that it is possible to have a battery-
free gaming platform capable of playing relatively new games while also being
completely self-powered.

The increased power available to the system thanks to the improvements to
the energy harvesting system, as detailed in Section 1, opens the door to a lot
of additional features that were unthinkable before.

Moreover, the development of a system as complex as this one requires a lot
of iterations and further refinement. With that in mind, these improvements
can be separated into two topics, hardware and software:

7.1 Hardware

• Adding support for wireless communication: Nowadays, online
gaming represents over 53% of the gaming industry[12]. Adding support
for wireless communication would be a significant improvement to this
platform and would further increase interactivity by allowing multiplayer
experiences. Using one of the upcoming NRF54 series of 2.4 GHz MCUs
from Nordic Semiconductor might be acceptable energy-wise, since their
RX power consumption has been significantly reduced, down to 5mW ac-
cording to their announcement [24].

• Audio support: Even though having speakers is out of the question due
to their huge power consumption, adding headphone support for sound
effects might be helpful in increasing user immersion in exchange for in-
creased power usage.

• Improve enclosure ergonomics: The current physical format should
be redesigned to make the console thinner, using a custom motor gear
assembly and using multiple smaller capacitors instead of a big one. This
would also make the console thinner, and therefore lighter and more ergo-
nomic.
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7.2 Software

• Simplify the app build system: One of the most limiting issues of
the platform right now is the need for all the code that runs on the system
to be compiled and linked all together. This severely limits the developer-
friendliness of the system, since it is not possible to add/update/remove
applications at runtime. Nevertheless, the system architecture is designed
with this in mind, providing extremely light coupling between applications
and the kernel, so making this change should be quite straightforward.

• Add support for other screen technologies: Support for black/white
screens should be added back into the Kernel, with the appropriate dither-
ing techniques to make the image quality better.
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Chapter 8

Conclusions

This thesis presented an in-depth study into the design, implementation, and
evaluation of an interactive, low-power, intermittent gaming research platform.
The integration of a robust checkpointing system effectively navigated the unique
challenges of intermittent power, enabling a seamless gaming experience that
was resilient to power interruptions. The innovative console has successfully
navigated the balance between user interaction, system performance, and en-
ergy efficiency.

The development process showcased that the adoption of common program-
ming frameworks and APIs could simplify the process of porting existing games
to the new platform. All the hardware-dependent aspects of porting games like
Doom and the GameBoy Color emulator were removed, effectively focusing the
porting efforts in maintainability and optimization.

The conducted experiments have also proven to be an invaluable source of
insight. Not only did they provide valuable feedback about understanding how
the end user interacts and values each part of the console, but they also illumin-
ated potential areas of improvement and refinement. These findings will serve
as a foundation for future developments and iterations of the platform.

The preliminary results obtained seem to indicate that the answer to the ques-
tion that originated this thesis (whether incentives can increase interactivity in
power-constrained systems) is “Yes”, but more data is needed before a definitive
answer can be given. The preliminary study conducted has also been invaluable
in refining and simplifying the experiment procedure for the final study.

Moreover, the platform’s design was able to maintain a strong focus on sus-
tainability, minimizing electronic waste and emphasizing eco-friendly gaming
solutions. This perspective is instrumental as we move towards more sustain-
able practices in technological development.
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