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Abstract

Creating autonomous Micro Aerial Vehicles for executing complex missions poses various
challenges, including safe navigation in the presence of external wind disturbances. Most
current navigation methods handle external wind disturbances through real-time estimation
and rejection algorithms in the control stage, but lack safety guarantees in strong winds.
Recent robust methods provide safety guarantees but can be overly conservative. With the
availability of more powerful computing devices, data-driven control algorithms are becoming
increasingly feasible. Combining Gaussian Process models with Model Predictive Control has
shown to enhance safety and performance in various control applications. Moreover, Model
Predictive Control has been extended to solve more complex optimization algorithms that
combine trajectory generation and tracking, preventing reference trajectories that are risky
and challenging to control in the presence of disturbances.
This research aims to improve quadrotor navigation in windy environments by using Gaussian
Processes to model wind disturbances. The Gaussian Process model is integrated with a
Model Predictive Contouring Control formulation that combines trajectory generation and
control into one optimization problem. A nominal model of the quadrotor is derived and
the Gaussian Process disturbance model is trained with the quadrotor position as input and
wind disturbance as output. The wind disturbance map, along with the nominal model, is
implemented in the Model Predictive Contouring Controller to consider both the mean and
uncertainty of the resulting probabilistic model.
This study validates the use of Gaussian Processes to model complex wind disturbances in
quadrotor navigation. The wind disturbance map is trained from available state information,
with data collected using an optimal exploration design to minimize uncertainty and reduce
exploration times. The hyperparameters involved in training the Gaussian Process model are
discussed and the implementation of sparse Gaussian Processes is outlined to make it real-time
feasible for the Model Predictive Contouring Control formulation. Including the prediction
model by incorporating chance constraints results in improved tracking and increased ro-
bustness in cluttered environments compared to the nominal Model Predictive Contouring
Control formulation. The proposed algorithm is shown to outperform state-of-the-art meth-
ods for safe quadrotor navigation in windy and cluttered environments, being able to handle
more complex wind fields than existing methods while also being less conservative.
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Chapter 1

Introduction

Micro Aerial Vehicles (MAV’s), such as quadrotors, are becoming increasingly important in
our society. Tasks of MAV’s include search and rescue, environment monitoring, security
surveillance, transportation, and inspection [1]. Developing autonomous quadrotors that are
capable of executing complex missions poses various challenges for research.

1-1 State of the art

One of these challenges is safe navigation under real-world conditions where quadrotors are
exposed to external wind disturbances. Especially in complex, cluttered environments such
as forests or dense urban areas, unforeseen disturbances can cause the quadrotor to deviate
significantly from its course and potentially collide with nearby objects. The inclusion of
external disturbances for safe trajectory generation and tracking is therefore an important
aspect to consider for real-world applications.

For the quadrotor to effectively compensate for disturbances, its controller and planner must
take into account the external force. Existing methods mainly include external disturbances in
the control stage using algorithms such as real-time wind disturbance estimation and rejection
(see e.g. [2], [3]), and robust Model Predictive Control (MPC) methods such as tube-based
MPC [4]. Obtaining an aerodynamic model of the wind disturbances is generally too complex
and may also render the control problem infeasible. Instead, disturbance estimation and
rejection algorithms estimate the wind online and use it to adjust the quadrotor’s control
inputs in real-time to compensate for the external disturbance, but they lack guarantees on
their safety and can fail dramatically in case of tremendous forces. Other control methods
that provide theoretical guarantees on safety, such as robust and tube-based MPC, consider
bounded wind disturbances, but can be overly conservative as they consider all sources of
uncertainty.

The combination of data-driven models and MPC has shown great potential for improving
safety and performance in several control applications. Gaussian Process (GP) models [5],
in particular, offer a mean and uncertainty estimate of the disturbance model that can be
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2 Introduction

integrated into the controller to enhance tracking while also increasing robustness through the
measure of uncertainty. While GP models have been applied to model aerodynamic effects in
quadrotor flight [6], their use to model external disturbances in this context is not yet known.
Moreover, navigating the quadrotor through the environment requires motion planning, to
generate a feasible trajectory. In many cases, the trajectory is planned with a simplified
model, not taking into account uncertainties. This can lead to dangerous situations in which
the planned trajectory is safe, but the actual system trajectory enters unsafe regions. Ro-
bust trajectory planners have only been active areas of research in recent years, introducing
robustness into the planner using reachability theory [7] or MPC methods [8]. Modifications
to the standard MPC formulation such as the Model Predictive Contouring Control (MPCC)
formulation presented by the researchers in [9] allow to combine motion planning and control
into one Optimal Control Problem (OCP), ensuring safe trajectories.

1-2 Research objective

The objective of this study is to enhance the safety and performance of quadrotor navigation
by employing GP-based modeling techniques to learn external wind disturbances acting on
the quadrotor. Since wind disturbances can be highly variable and non-linear, the aim is to
assess the GP’s ability to capture these complex patterns in the data. In addition to predict-
ing mean wind conditions, the GP model can quantify the uncertainty in model predictions.
This information will be used to not only improve tracking and performance, but also provide
safety guarantees. In doing so, this research aims to bridge the gap between wind distur-
bance estimation methods and robust, model-based methods used to compensate for wind
disturbances.
Moreover, this study combines trajectory generation and control into one optimal control
problem, using a MPCC formulation. The modified formulation ensures that unsafe trajec-
tories are avoided as a reference to the controller, and that robustness is maintained during
both planning and control stages. Similar to existing robust control methods, the uncertainty
of the disturbances is considered in the controller, only that now the uncertain bounds are
provided by the model. Furthermore, it will be explored how to further reduce conservatism
by utilizing the probabilistic information provided by the GP.
The research objectives can be summarized into the following research questions:

1. How well do Gaussian Processes perform to model external wind disturbances using the
quadrotor state information?

2. By how much can the robustness of the MPCC controller be increased by including the
learned Gaussian Process model into the MPCC formulation?

As this is the first attempt on modelling external wind disturbances with GP with the system
states as input and combining it with a robust control scheme, several simplifying assumptions
are made, which should be eliminated gradually in future research:

• The wind field is assumed to be spatially-varying and time-invariant. A map of the
wind disturbances, represented by a GP, can be created by the quadrotor by exploring
the environment beforehand, learning the disturbances offline.

Johanna Probst Master of Science Thesis



1-3 Thesis contributions 3

• A mathematical description of the obstacle position and geometry is known beforehand.

• A simplified simulation is used, in which the only disturbance is the wind disturbance.
This means that the MPCC controller has perfect system knowledge, except for the
wind disturbances.

• The dimensionality of the quadrotor environment is reduced from 3D to 2.5D.

• The attitude controller is given, therefore the focus is on trajectory planning and position
control of the quadrotor.

1-3 Thesis contributions

The research discussed in this thesis has the following main contributions:
System identification of the attitude dynamics model of the HoverGames plat-
form This research is one of the first to work with the newly designed HoverGames [10]
platform, which is optimized for running computationally heavy algorithms on board of the
quadrotor. Utilizing the attitude controller provided by the flight controller onboard, the
attitude dynamics model is identified. As the HoverGames platform will be used in future
research at the department, a contribution is made by making the attitude dynamics model
available to other researchers.
Validation of GP’s to model a complex wind disturbance map based on quadrotor
state information and optimal data collection It is demonstrated that GP’s are capable
of modeling complex wind disturbances, by training a wind disturbance map based on avail-
able state information. Additionally, an optimal experiment design is provided to save time
during data collection while generating a more accurate wind disturbance map.
Extension of MPCC algorithm with the GP model for improved tracking and
increased robustness in quadrotor platforms The existing MPCC algorithm in [9] is
extended with the uncertain model including both the mean and uncertainty of the prediction
model, by incorporating the chance constraints in [11]. The improved tracking and increased
robustness of the GP-based MPCC method compared to the standard formulation is shown.
Advanced trajectory generation and control algorithm for complex wind fields and
cluttered environments By benchmarking the GP-based MPCC algorithm against existing
state-of-the-art methods for quadrotor navigation in windy and cluttered environments, it is
demonstrated that it outperforms the state of the art by being capable of handling more
complex wind fields while also being less conservative, which is crucial given the limited
space.

1-4 Thesis outline

The report is structured as follows:

• Chapter 2 gives a more detailed overview of the state of the art of trajectory planning
and control of quadrotors under wind and presents the problem formulation of this
thesis.
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4 Introduction

• Chapter 3 presents the nominal quadrotor model used in the motion planning and con-
trol algorithm together with system identification performed to find relevant parameters
of the attitude dynamics model.

• Chapter 4 describes training of the Gaussian Process disturbance map together with a
background on Gaussian Processes and an optimal experiment design.

• Chapter 5 introduces the proposed motion planning and control algorithm, integrating
the information provided by the Gaussian Process model.

• Chapter 6 presents a comparison of the proposed algorithm with the current state of
the art.

• Chapter 7 gives a summary of this thesis and recommendations for future work.
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Chapter 2

Trajectory planning and control of
quadrotors under wind

Research on quadrotor navigation in windy outdoor environments is ongoing. It involves com-
bining existing quadrotor navigation methods with techniques for rejecting wind disturbances.
This chapter provides an overview of current research, highlighting areas for improvement and
presenting the problem formulation used to address existing limitations.

2-1 Background

This section presents an overview of current motion planners and quadrotor control tech-
niques with a specific focus on methods for handling wind disturbances and uncertainty. This
includes data-driven and machine learning methods. Following the overview, the problem
statement and the ways in which this thesis aims to expand upon existing literature will be
discussed.

2-1-1 Standard flight trajectory planning and control

A quadrotor is the most common type of Micro Aerial Vehicle (MAV) that consists of a rigid
body with four rotors. By varying the rotational velocity of the rotors, the quadrotor can
perform various flight maneuvers, such as hovering, ascending, descending, and rotating about
its axes. Navigating a quadrotor involves both controlling its motion and planning a feasible
sequence of movements. The motion planner precedes the quadrotor controller, and ideally
both consider the quadrotor’s dynamics and external disturbances.

Quadrotor motion planning The goal of the motion planner is to find a valid motion
sequence for the quadrotor from start to goal position without collisions. Motion planners
can be divided into global planners and local planners. Global planners plan the entire motion
using a map of the environment while local planners update waypoints as the quadrotor moves,
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6 Trajectory planning and control of quadrotors under wind

taking into account dynamic obstacles and vehicle constraints. Another distinction is made
between path planners and trajectory planners. Path planners ignore the dynamics of the
quadrotor and other differential constraints. They focus primarily on the translations and
rotations required to move the robot. Common path planners are search-based methods,
sampling-based methods and potential field methods [12].

Trajectory planning However, if the robot is subject to dynamics:

ẋ = f(x,u) (2-1)

with state space x ∈ Rn, input space u ∈ Rm and mechanical constraints on the state space x ∈
X and input space u ∈ U , these must be considered in the motion planning problem. This is
called the trajectory planning problem, where the trajectory describes the evolution of vehicle
configurations over time. Usually, the path planner precedes the trajectory planner, which
then time-parameterizes the solutions of the path planner [13]. Some trajectory planners also
solve both problems simultaneously. Existing approaches for quadrotor trajectory planning
include polynomial, discrete-time search, sampling-based, and optimization methods [14].

Quadrotor control The quadrotor’s motion is typically controlled in a cascaded control
structure as shown in Figure 2-1. It consists of an outer loop position controller and an inner
loop attitude controller. The position controller computes the desired attitude angles of the
quadrotor to reach a certain position pc ∈ R3 and thrust Tc needed to keep the quadrotor in
the air. The attitude controller tracks the desired roll ϕc, pitch θc and yaw ψc by controlling
the angular velocities ϕ̇c, θ̇c, ψ̇c. The mixer is in place to translate the angular velocities and
thrust command into individual rotor commands.

Attitude
Controller

Position
Controller

Mixer
& Motors

Quadrotor

ϕ, θ, ψx, y, z

ϕc,
θc,
ψc

ϕ̇c,
θ̇c,
ψ̇c

Tcpc, ψc

Figure 2-1: Cascaded control architecture of a common quadrotor controller.

Control techniques Due to the increased research interest in quadrotors in the last decades,
numerous control techniques have been implemented for the quadrotor, ranging from linear to
nonlinear control methods, model-based versus model-free controllers, robust, adaptive, and
intelligent controllers (e.g.. [15], [16], [17], [18], [19]). Linear controllers are suitable when
the quadrotor does not deviate greatly from the hovering state, but for extreme maneuvers
or attitude control, nonlinear methods are typically used [20].

Model predictive control Model-based methods, such as Model Predictive Control (MPC)
[21], can incorporate system dynamics into the controller design and facilitate parameter tun-
ing when a model of the quadrotor dynamics is available. MPC solves an on-line optimization
problem at each sampling instant, taking the current state as the initial state, predicting fu-
ture evolution of states over a finite horizon and optimizing a sequence of control inputs with
a certain cost. Only the first control input is applied to the system and the process is repeated
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2-1 Background 7

at the next time-step. One of the main features of MPC is the use of constraints, which make
it possible to incorporate physical or operational limits into the control strategy.

Model predictive contouring control With optimization-based methods, it is also possible
to combine trajectory planning and trajectory tracking in one optimization problem. Given a
path by the planner, the optimization problem solves for the optimal system states and system
inputs. The solution to this problem lies in using a modified MPC algorithm that solves the
trajectory generation problem simultaneously. Model Predictive Contouring Control (MPCC)
[22] is a popular approach for this purpose. MPCC has been applied for static and dynamic
obstacle avoidance with ground vehicles [23] and autonomous ground robots [9]. In the
context of quadrotor navigation it has found an application in drone cinematography [24] and
quadrotor racing [25].

2-1-2 External wind disturbances

In many practical applications, the quadrotor is subject to external wind disturbances. The
wind field may vary in time and space, which must be considered in the motion planning and
control design.

Wind disturbance estimation and rejection There are several control algorithms that
observe the disturbance online and reject it by calculating a compensating control input. If
the quadrotor is equipped with airspeed sensors such as Pitot tubes, a local estimate of the
wind can be determined directly [26]. In most cases, however, these sensors are not present
on board of the quadrotor. Instead, one could use the model of the quadrotor to estimate the
wind based on the difference between the desired and measured velocity or acceleration. This
idea is used, e.g. for a nonlinear inversion-based position controller in [2]. The authors in
[27] use an observer design to estimate the external force vectors. However, this method only
provides a deterministic estimate of the disturbance. More information about the disturbance
can be obtained using stochastic estimators such as the extended or unscented Kalman filter
[3]. In addition to the nominal disturbance force or torque, these estimators also provide an
uncertainty of the estimate that can be incorporated into the controller design.

Wind disturbance model In motion planning and predictive control it is advantageous to
know the evolution of the disturbance over future states. One way to accomplish this is to
have a comprehensive aerodynamic model to describe wind disturbances [28]. A drawback is
that determining the model parameters requires extensive experimentation, and incorporating
the complex model into a predictive controller increases the computational cost. In addition,
robust methods have been developed [29] that assume a constant disturbance bound for all
future states, and guarantee performance for all disturbances within this bound.

Robust motion planners In particular, robust motion planning algorithms have been ac-
tive areas of research in the past few years [7]. A way to introduce robustness into the
motion planner are reachability-based methods, taking into account all possible states that
the quadrotor can reach, given information about its uncertainty. The authors in [30] pre-
compute a library of safety funnels around trajectories, which are pieced together at runtime
to generate feasible and safe trajectories. Furthermore, Hamilton-Jacobi (HJ) reachability
analysis is developed for robust offline trajectory planning in fully known environments and
independent of the motion planner, called FasTrack [31]. FasTrack computes the tracking
error as a function of control inputs and generates a feedback controller to compensate for
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8 Trajectory planning and control of quadrotors under wind

it. The work presented by the authors in [7] uses Forward Reachable Set (FRS)’s that are
computed offline and bound the tracking error. During online planning, the FRS are used
to map obstacles to parameterized trajectories so that a safe trajectory can be selected. The
authors in [8] use FRS to compute outer bounding ellipsoids that approximate the position
of the quadrotor plus its uncertainty, which are then used in an Nonlinear Model Predictive
Control (NMPC) controller.

Robust and stochastic nonlinear model predictive control Robust motion planning
and control algorithms that can handle both set-bounded and probabilistic uncertainties can
be achieved through the use of NMPC methods. For example, robust Model Predictive
Control (MPC) formulations have been used to solve the robust collision avoidance problem
as demonstrated in [32]. Additionally, the authors in [33] build upon the concept of robust
MPC and employ control contraction metrics to create a feedback control law and a tube.
Stochastic MPC formulations for collision and obstacle avoidance are first introduced by [34],
where polytopic chance constraints are reformulated into deterministic constraints. This work
is further advanced with the addition of quadratic obstacle avoidance constraints for dynamic
collision avoidance as presented in [11].

2-1-3 Data-driven disturbance model

With the availability of more powerful computing devices, data-driven modelling techniques
are becoming increasingly popular. Techniques for data-driven modeling have been developed
to enhance existing system models and estimate disturbances for various applications.

Set-membership identification A prominent method for learning a robust representation
of the model uncertainty is set-membership identification [35], [36]. A practical implementa-
tion of set-membership identification together with model predictive control on a quadrotor
is presented by the authors in [37]. Using set-membership identification, the quadrotor is able
to adapt parameters in uncertain wind conditions, while satisfying the constraints.

Neural networks The authors in [38] use meta-learning with a deep neural network to model
the residual dynamics associated with wind disturbances on a quadrotor platform.

Gaussian Processes Gaussian Process (GP) [5] models are used learn a stochastic model
of the dynamics. In the context of quadrotor control, GP’s have been used to describe
the nonlinear dynamics and aerodynamic effects during aggressive flight maneuvers [6] and
to guarantee robust obstacle avoidance [39]. Furthermore, GP’s are used to model wind
uncertainties in [40]. Three independent GP’s are trained based on the observed disturbances.
Therefore, the approach can only respond to disturbances if they have been observed. The
work in [41] creates a wind map based on the quadrotor position fusing Inertial Measurement
Unit (IMU) and airflow measurements. Moreover, GP’s have been used successfully to model
residual dynamics for mobile robots [42], race cars [43] and a robotic manipulator [44].

2-2 Breakdown of the proposed solution

Creating safe trajectories in complex and dynamic environments where quadrotors are subject
to external disturbances is a critical concern. Existing robust control methods that can
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2-2 Breakdown of the proposed solution 9

track a given trajectory and compensate for disturbances may struggle with handling large
instantaneous forces or produce overly conservative trajectories that account for all sources
of uncertainty. Furthermore, not considering external forces during trajectory planning can
result in potentially hazardous reference trajectories.

Proposed solution To avoid the risk of dangerous trajectories and control failures, this
approach uses a formulation of MPCC that combines trajectory generation and control into
a single optimal control problem, similar to MPC which is well established for quadrotor
control. In addition, data-driven modeling techniques are employed to construct a model
of the wind disturbances that not only accounts for instantaneous forces but also predicts
disturbances for future states. Specifically, a GP model is used which provides a mean and
stochastic uncertainty of the disturbance, which can be incorporated into the optimal control
problem to increase robustness without being overly conservative.

The problem is divided into three distinct steps as described below.

2-2-1 Nominal system model identification

As a baseline, a nominal system model is required. MPCC already uses a nonlinear Optimal
Control Problem (OCP) formulation, so a nonlinear model is chosen to describe the quadro-
tor’s nominal dynamics. This research focuses on navigation, thus the onboard attitude
controller will be used and priority will be given to position control. This also introduces
a separation layer to keep critical code running even if there is a failure in the high-level
computer [32]. The attitude dynamics are modeled with a linear first-order approximation
derived through system identification.

2-2-2 Data-driven wind disturbance model

As there are no additional wind sensors mounted on the quadrotor, the wind disturbance is
estimated based on the available sensor data. Starting from a nominal quadrotor model and
assuming that there are no other disturbances acting on the quadrotor, the momentary wind
is attributed to the difference between the predicted velocity and the measured velocity. With
the measured error as the training objective and the quadrotor states as the training input,
a GP model is learned.

Wind disturbance map To keep the initial problem simple while demonstrating the validity
of this approach, spatially varying, time-invariant wind is assumed. Thus, a wind disturbance
map is trained offline, reducing the training input to the quadrotor’s position p. This map can
be created during an initial mapping of the environment or when the quadrotor traverses the
environment several times. Later iterations should investigate the suitability of this approach
to also learn time-varying wind disturbances online.

Practical considerations of the GP model This research primarily aims to examine the
effectiveness of using Gaussian Process Regression (GPR) to learn wind disturbances based on
available data. Additionally, it addresses practical concerns such as reducing computational
complexity through the use of sparse GP and how to propagate uncertain system states.
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10 Trajectory planning and control of quadrotors under wind

2-2-3 Motion planning and control formulation

The probabilistic nature of the wind disturbance model leads to a mean and uncertain state
description, which is incorporated into the MPCC framework in [9], assuming a static map
of obstacles. By using a simple reference path and reference velocity, the MPCC’s opti-
mal control formulation guarantees obstacle avoidance while maintaining the reference ve-
locity. Taking inspiration from work on robust and stochastic model predictive control, this
is achieved by tightening the obstacle avoidance constraints based on the uncertain region
around the quadrotor trajectory. Since the uncertainty information is probabilistic in nature,
an ellipsoidal and a chance-constrained formulation are employed and compared to ensure
safe obstacle avoidance. In this scenario, a global map of the obstacles is known beforehand.

2-3 Problem formulation

An overview of the problem formulation is given in Figure 2-2. The center of the proposed
method is the MPCC controller which takes into account the static obstacle map, the given
reference path and the quadrotor model. The quadrotor model consists of the nominal model
and the added GP model.

Figure 2-2: Overview of the data-driven motion planning and control method.

Given this information, the MPCC solves an OCP for the control input that is sent to the
quadrotor. If the quadrotor is subject to any wind disturbances, the actual velocity of the
quadrotor will deviate from the velocity predicted by the nominal quadrotor model. This
information can be used to train the GP.
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2-4 Summary and discussion 11

2-4 Summary and discussion

The existing methods for navigation of quadrotors in wind disturbances have certain short-
comings. One limitation is that wind disturbances are often only rejected after they have been
observed, making it difficult to cope with strong winds due to the physical limitations of the
platform. Additionally, the task of identifying a feasible path and following it is commonly
approached separately, with wind disturbances only taken into account in one of these steps.
This leads to either a planned trajectory that is risky or motion planning and control methods
that are robust but overly conservative.

This work proposes to use a data-driven approach to model wind disturbances using a GP
model to predict disturbances in the future while being less conservative by using a stochas-
tic description of the uncertain bounds. This model is included into a MPCC formulation
combining both motion planning and control into one step, eliminating over-conservative or
risky reference trajectories.

In the coming chapters, the proposed method is explained in more detail and the validity of
the approach is shown.
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12 Trajectory planning and control of quadrotors under wind
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Chapter 3

Nominal quadrotor model

This chapter discusses the derivation of the nominal quadrotor Equations of Motion (EOM)
based on first-principle models, and how the inner-loop position controller can be approx-
imated and integrated into the dynamic model of the quadrotor. The second part of this
chapter describes the system identification to determine the coefficients of the attitude dy-
namics model.

3-1 First principle quadrotor model

The nominal quadrotor model can be found using first principle modeling techniques based on
simplifying assumptions of the real-world dynamics. Newton-Euler EOM are used to describe
the quadrotor dynamics.

ω1

ω2

ω4

ω3

F2

F4

F3

F1

B

A

ψ

Φ
θ

ax

ay

az

bx

by

bz

mg

Figure 3-1: Quadrotor configuration with world frame A and body frame B.

Quadrotor configuration The quadrotor consists of a rigid body cross-frame and four fixed-
pitch rotors at each end. Each rotor’s speed can be varied individually to control the output
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14 Nominal quadrotor model

states of the quadrotor. The output states are the Cartesian position states x, y, z, and the
three Euler angles roll, pitch, and yaw, denoted by ϕ, θ, and ψ, respectively. Having four
inputs and six outputs, the quadrotor is an under-actuated system. The quadrotor is treated
as a rigid body with mass m and inertia I ∈ R3×3. Two reference frames are defined as shown
in Figure 3-1 to describe the quadrotor motion: The position p = [x, y, z], and velocity v=[vx,
vy, vz] ∈ R3 are expressed in the world frame {A}. The orientation of the quadrotor body
frame {B} with respect to {A} is specified by the Euler angles.
Rotation matrix Different Euler angle representations can be used to describe the rotation
from the world frame to the body frame of the quadrotor {B}. Using a Z - X - Y Euler angle
configuration the rotation matrix R is described as:

R = RB→A = RZ(ψ)RX(ϕ)RY (θ) (3-1a)

=

 cψcθ cψsϕsθ − cϕsψ sψsϕ+ cψcϕsθ
cθsψ cϕcψ + sψsϕsθ cϕsθsψ − cψsϕ
−sθ cθsϕ cϕcθ

 (3-1b)

with c denoting the cosine function and s denoting the sine function.
Newton-Euler equations The longitudinal dynamics are then described through Newton’s
EOM as:

ṗ = v (3-2a)
mv̇ = −mga3 +RT (3-2b)

where g is the gravitation constant, a3 = [0, 0, 1]T ∈ {A} is the unit vector pointing in the z
axis of the world frame, and T = [0, 0, T ]T ∈ {B} is the generated thrust. Expanding (3-2b)
results in:

mv̇x = T (sinϕ sinψ + cosϕ sin θ cosψ) (3-3a)
mv̇y = T (− sinϕ cosψ + cosϕ sin θ sinψ) (3-3b)
mv̇z = T (cosϕ cos θ) −mg. (3-3c)

Cascaded control approach In practice, the control is often split such that a low-level atti-
tude controller is present as an inner-loop, while a model-based trajectory tracking controller
is running as an outer-loop [45]. The inner-loop attitude controller is stabilizing the system,
which can avoid numerical problems in optimization software and allows for a lower sampling
rate of the position controller [46]. As an inner-loop attitude controller is also provided by
the platform of this research, is it used, focusing on motion planning and position control of
the outer loop.
Attitude dynamics To achieve accurate trajectory tracking, the high-level position con-
troller must consider the inner loop system dynamics. These dynamics are approximated by
a simple linear model of the form:

ϕ̇ = 1
τ ϕ

(kϕϕc − ϕ) (3-4a)

θ̇ = 1
τ θ

(kθθc − θ) (3-4b)

ψ̇ = ψ̇c (3-4c)
T = Tc (3-4d)
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3-1 First principle quadrotor model 15

with system inputs u = [ϕc, θc, ψc, Tc]. The coefficients of the first-order model are found
using system identification. This is described in section 3-2.

Aerodynamic effects on the quadrotor can be included in the mathematical quadrotor
model. The two main effects when flying are blade flapping and induced drag [47]. One can
account for these effects by adding an external drag force proportional to the system velocity:

mv̇ = −mga3 +RT −Dv (3-5)

where D = diag (kD, kD, kD) and kD is the drag coefficient. The drag coefficient for a specific
system can be determined through system identification, with values ranging from kD =
0.02 to kD = 0.2 in related literature. Hereafter, literature values will be used for the model.
If values are not accurate enough, they should be determined through system identification
in future work.

Derived quadrotor model The resulting quadrotor model is summarized below:

ṗ = v (3-6a)
mv̇x = Tc (sin(ψ) sin(ϕ) + cos(ϕ) sin(θ) cos(ψ)) − kDvx (3-6b)
mv̇y = Tc (− sin(ϕ) cos(ψ) + cos(ϕ) sin(θ) sin(ψ)) − kDvy (3-6c)
mv̇z = Tc (cos(ϕ) cos(θ)) −mg − kDvz (3-6d)

ϕ̇ = 1
τϕ

(kϕϕc − ϕ) (3-6e)

θ̇ = 1
τθ

(kθθc − θ) (3-6f)

ψ̇ = ψ̇c (3-6g)

with state vector x =
[
pT ,vT , ϕ, θ, ψ

]T
and input vector u =

[
ϕc, θc, ψ̇c, Tc

]T
.

Linear quadrotor model Assuming small attitude angles, the quadrotor dynamics model
can be linearized around its hovering condition with velocity in z-direction v̇z = 0. Further-
more, the vehicle heading is aligned with the inertial frame x-axis, such that the yaw angle
ψ = 0. The linearized system dynamics are:



ẋ
ẏ
ż
v̇x

v̇y

v̇z

ϕ̇

θ̇

ψ̇


=



0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 −kD∗ 0 0 0 g 0
0 0 0 0 −kD∗ 0 −g 0 0
0 0 0 0 0 −kD∗ 0 0 0
0 0 0 0 0 0 − 1

τϕ
0 0

0 0 0 0 0 0 0 − 1
τθ

0
0 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

A



x
y
z
vx

vy

vz

ϕ
θ
ψ


+



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

kϕ

τϕ
0 0 0

0 kθ
τθ

0 0
0 0 1 0


︸ ︷︷ ︸

B

ϕc
θc

ψ̇c
Tc

 (3-7)

with the mass-normalized drag coefficient kD∗ = kD
m [48].
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16 Nominal quadrotor model

3-2 System identification of the attitude dynamics

System identification experiments are performed to identify the coefficients of the attitude dy-
namics model described in Eq. (3-4). Additionally, a thrust model is identified that translates
the thrust control inputs to the desired acceleration of the quadrotor.

3-2-1 Attitude dynamics and thrust model

The model of the attitude and thrust dynamics can take different forms depending on if a
basic model is considered or if real-world effects are taken into account.

First order attitude model The attitude dynamics in the roll and pitch direction of the
quadrotor are approximated by a first order model:

ϕ̇ = 1
τϕ

(kϕϕc − ϕ) (3-8a)

θ̇ = 1
τθ

(kθθc − θ) . (3-8b)

Here kϕ and kθ are the steady-state gains of the roll and pitch dynamics, respectively and τϕ
and τθ are the time constants of the roll and pitch dynamics, respectively. These parameters
are to be identified for the attitude dynamics model.

First order attitude model with time delay For the physical system delays arise between
the generation and execution of the control command. This is taken into account by adding
a time delay to the first order model, resulting in dynamics of the form:

ϕ̇ = 1
τ ϕ

(kϕ(t− β)ϕc − ϕ) (3-9a)

θ̇ = 1
τ θ

(kθ(t− β)θc − θ) . (3-9b)

where β is the time delay. It is assumed to be identical for pitch and roll control and identified
as part of the model to get more accurate coefficients. However, for the final model used in
the controller it will not be considered to reduce model complexity.

Thrust dynamics model The attitude controller on-board of the quadrotor is designed to
take a thrust command TPWM = 0 ... 1 that is translated into a Pulse-Width Modulation
(PWM) signal to the motors, resulting in a desired rotor speed and thrust of the quadrotor.
However, for the model in Eq. (3-6), the thrust command Tc corresponds to a force. Tc is
divided by the mass of the quadrotor to obtain an acceleration T ∗

c = Tc
m that can be accurately

measured with the on-board sensors. The relation between the PWM thrust command and
the accelerative thrust T ∗

c of the quadrotor can be described by a linear relation:

TPWM = aT · T ∗
c + Th. (3-10)

The linear scaling aT and an offset Th, corresponding to the hovering thrust, are to be
identified. For the real, physical quadrotor the thrust relation is furthermore a function of
the battery voltage U . A third therm bT is added to the thrust relation to account for that
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3-2 System identification of the attitude dynamics 17

effect. It is linearized around the average battery voltage at Ū = 14.5V , resulting in the
thrust dynamics model:

TPWM = aT · T ∗
c + bT · (U − 14.5V ) + Th. (3-11)

In the next section, it is described how the experiments are performed to find the model
parameters.

3-2-2 Experimental overview

System identification is performed for two types of environments. The first environment is
the Gazebo simulation environment, the second environment is the physical quadrotor which
is controlled in a laboratory. In both cases, control inputs specifically designed for system
identification are sent to the quadrotor. The measured outputs are processed such that they
can be used for system identification.

physical platform and software setup

Physical experiments are performed on the HoverGames [10] quadrotor provided as a devel-
opment toolkit by NXP. It is equipped with the RDDRONE-FMUK66 flight management
unit at its base. The software used by the flight controller is the PX4 Autopilot software [49].
The PX4 software handles the control of the quadrotor and the interface with other devices.
It provides a flexible, modular framework that allows the integration of an external control
scheme for the quadrotor position control while using the attitude controller provided by PX4
to maintain stability. PX4 furthermore provides a built-in state estimation, that fuses the
sensor data obtained by the Inertial Measurement Unit (IMU) and magnetometer with the
external pose information from the OptiTrack motion capture system to provide an estimate
of the system’s full odometry data.

Figure 3-2: The HoverGames platform used for this research [10].
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18 Nominal quadrotor model

The HoverGames quadrotor platform is moreover equipped with an Nvidia Jetson Xavier
on-board processor that sends control commands to the physical quadrotor using the Robot
Operating System (ROS) software library. PX4 supports MAVROS messages as a bridge
between the flight controller with MAVLink communication protocol and ROS. The MAVROS
mesages are sent via serial connection to the PX4 flight controller. A remote WiFi connection
allows accessing the on-board computer from the ground station.

Figure 3-3: HoverGames quadrotor flying in the lab environment.

Simulation environment

Before the code is tested on the actual quadrotor, Software in the Loop (SITL) tests are
performed in Gazebo, a 3D simulation environment for autonomous robots as shown in Figure
3-4. The SITL simulation environment is provided by PX4. It is adopted to reflect the
dynamics of the HoverGames quadrotor. In the simulation environment, the quadrotor is
controlled via MAVROS commands. If the simulation dynamics match the physical dynamics,
the controller code can therefore directly be transferred from the simulation to the quadrotor.

Control inputs

The control inputs that are sent to the quadrotor are the roll and pitch command, ϕc and θc
and the thrust command TPWM. The yaw ψ and yaw rate ψ̇ are kept at zero. Different types
of input signals are selected to excite the system.

Roll and pitch control commands As the system to be identified is first order, most
of the relevant coefficients can be identified from a simple step response of the system. To
generate more data, the step input is sent as a block wave varying between +1 and -1 with a
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Figure 3-4: HoverGames quadrotor flying in the Gazebo simulation environment.

constant frequency, which is determined by the environment bounds. The block wave is scaled
accordingly to track different input angles between 12 degrees and 24 degrees of the quadrotor,
assuming that this represents the operating range of the quadrotor. To furthermore excite
the system at different frequencies, a Random Binary Signal (RBS) is sent to the quadrotor,
varying the frequency of the blockwave randomly within a set frequency range. The upper
frequency is set to 0.5Hz which is calculated from the bandwidth of the excited input. The
lower frequency is determined by the lab bounds. The roll and pitch directions are excited
separately due to limited space in the laboratory. As there is no dependence between the roll
and pitch direction, this reflects the behavior of the quadrotor also if the control commands
are sent simultaneously. The remaining attitude input commands are calculated by a LQR
controller to stabilize the quadrotor. This model-based controller could be implemented using
some initial identification data without stabilization. The thrust command is calculated by
a PID controller stabilizing the quadrotor in z-direction, as no model is derived for the z-
direction.

Thrust control command In simulation, a blockwave is sent to the quadrotor varying the
PWM control command TPWM between zero and one and the resulting acceleration of the
quadrotor is measured to derive the linear relation. However, in the laboratory these kind
of experiments are too risky given the limited space. Instead, the quadrotor hovers with
different weights attached to it. The weights are increased in steps of 100g until a total of
1kg. Additionally, the nominal weight is reduced by removing the on-board processor. The
quadrotor is kept hovering at different weights, starting from a full battery, until the battery
voltage is critically low. The thrust command TPMW at which the drone hovers is recorded. It

Master of Science Thesis Johanna Probst



20 Nominal quadrotor model

is automatically adjusted by the PX4 software in response to changes in weight and decreasing
voltage.

Data processing

The control commands and outputs are recorded from the MAVROS topics at a frequency of
50Hz. The recorded data is processed using MATLAB.

Roll and pitch identification data The recorded data are the roll and pitch input com-
mands and the roll and pitch system response from ROS topics. As the messages are not
precisely sent at each sampling interval, the data is interpolated at equal timestamps of 0.02s,
matching the sampling frequency. The input and output are stored as MATLAB identification
data (iddata) object.

Thrust identification data In simulation, the recorded input is the thrust command and
the output is the acceleration of the quadrotor in z-direction. No further pre-processing is
required. For the physical experiments, the thrust command and battery level are recorded.
The respective acceleration, derived from the mass of the quadrotor for each experiment is:

T ∗
c = mn

mt
g (3-12)

with the nominal mass of the quadrotor mn and mt the total mass, given the added or removed
weight.

3-2-3 Parameter estimation and validation

From the recorded data, the attitude dynamics and thrust model are derived by identifying
the model parameters. The derived models are compared against previously unseen data to
validate the model.

Parameter estimation

Given the processed data, the attitude models are identified making use of the MATLAB
system identification toolbox. The thrust model can be derived by fitting a linear model to
the recorded data.

Roll and pitch model parameters The roll and pitch parameters are identified using the
transfer function estimation function in MATLAB tfest. Given the identification data object
and the desired numbers of poles, it estimates the continuous-time transfer function of the
roll and pitch dynamics. The steady-state gain and time constant can be extracted from the
coefficients of the transfer function model. Multiple datasets are combined and passed on to
the transfer function estimation function to cover a wide range of scenarios.

Time delay To estimate the time delay, the MATLAB function for delay estimation delayest
is used. This function estimates the number of time steps it takes for the output data to
respond to the input data. The time delay is passed on to the transfer function estimation
method and is taken into account when estimating the continuous-time transfer function
model. The delay is estimated from simple step responses.

Johanna Probst Master of Science Thesis



3-2 System identification of the attitude dynamics 21

Thrust model parameters The linear thrust dynamics model is identified fitting a first
degree polynomial to the data. For the real-world dynamics, two first-degree polynomial
functions are fitted. One describing the relation between TPWM and the acceleration T ∗

c and
the other one describing the relation between TPWM and the battery voltage U . The linear
models are combined to find the coefficients of the model in Eq. (3-11).

Model validation

The models are validated against previously unseen system data to determine how well the
derived models reflect the actual system behavior. This is described by the goodness of fit,
corresponding to (1 − NRMSE)100%, where NRMSE is the Normalized Root Mean Squared
Error between the predicted and measured output of the model.

3-2-4 Identification results

The identified model parameters for the first order attitude model including a time delay and
the thrust dynamics model for the simulation are listed in Table 3-1 and the parameters of
the real-world experiment are listed in Table 3-2.

Identified parameters in simulation In simulation, the quadrotor is perfectly symmetric
with equal tuning parameters of the attitude controller, such that the behavior in roll and pitch
direction is identical. Therefore, the identified parameter values for the attitude dynamics
are equal. A time delay of 0.8s is identified, which corresponds to 4 sampling intervals. The
quadrotor hovers at a PWM command of 0.657, corresponding to a thrust acceleration of
T ∗

c = 0. The large scaling factor aT implies that even small changes of TPWM, result in large
accelerations of the quadrotor.

Table 3-1: Identified parameter values for the attitude and thrust dynamics in simulation.

Parameter kϕ = kθ τϕ = τθ β [s] aT [s2 m−1] Th

Value 0.963 0.104 0.08 23.258 0.675

Input response comparison in simulation The response to the input command for the
roll dynamics and the behavior of the fitted model are shown in Figure 3-5. Figure 3-5a
shows the behavior of the system for one of the training data sets while Figure 3-5b shows
the input response to previously unseen validation data. A small offset between the identified
model and the peak value of the measured data can be noted, specifically in Figure 3-5a.
This could be due to higher-order dynamics in the underlying system that are not captured
by the first-order model. Nevertheless, the training data reaches a goodness of fit of 95.12%,
the validation data has a fit of 91.16%. These high goodness of fit values indicate that the
underlying attitude dynamics are well approximated by the identified first order model. The
results for the pitch dynamics are identical and therefore not discussed in more detail.

Thrust dynamics comparison in simulation For the thrust dynamics model in simula-
tion, the input command TPWM between zero and one is scaled according to the identified
hovering thrust and linear scaling factor to find the normalized thrust command T̂c

∗. It is
compared to the measured acceleration of the system v̇z, which corresponds to T ∗

c , as the roll
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(b) Validation data fit: 91.16%

Figure 3-5: Input response and model fit of the roll dynamics in simulation.

and pitch are zero during these experiments. This comparison is shown in Figure 3-6. Again,
the training data in Figure 3-6a is compared with a validation data in Figure 3-6b. The good-
ness of fit for the simulation is 84.59% for the training data and 57.86% for the validation
data. These lower fit values can be explained by the fact that the thrust relation has its
own dynamics that are not accounted for by the linear model. Especially when sending more
complex thrust commands, as is the case for the validation data, the simple thrust model
cannot reflect the actual system behavior as well anymore. However, these fit values are still
relatively good, such that the model is expect to perform sufficiently in an Model Predictive
Control (MPC)-like controller that does correct for some model mismatch by design.
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(b) Validation data fit: 57.86%

Figure 3-6: Comparison of the PWM commmand which is scaled according to the linear model
with the measured acceleration in z-direction.

Identified parameters for the real-world dynamics For the real-world dynamics, the
behavior in roll and pitch direction differ slightly, caused by a different weight distribution
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3-2 System identification of the attitude dynamics 23

on the quadrotor due to on-board processors and sensors and therefore also different tuning
parameters of the attitude controllers. This is also reflected by the obtained parameter values
for roll and pitch dynamics documented in Table 3-2. While the gain constants are almost
equal to the identified simulation parameters, the time constants for the real-world system
are smaller, meaning a slower system response to the step input, most likely due to higher
inertia of the quadrotor. For the real-world scenario, the pitch dynamics are faster than the
roll dynamics. Also, the delay is slightly larger with 0.1s, most likely caused by the physical
connections.

Table 3-2: Identified parameter values for the attitude and thrust dynamics on the physical
quadrotor.

Parameter kϕ kθ τϕ τθ β [s] aT [s2 m−1] bT [V−1] Th

Value 0.954 0.950 0.065 0.074 0.1 s 0.0329 -0.0456 0.2911

Input response comparison for the real-world dynamics The input responses in roll
and pitch direction on the real quadrotor are shown in Figure 3-7 and Figure 3-8. Again, high
values are reached for the goodness of fit, with 95.89% and 92.37% for training and validation
of the roll dynamics and 95.76% and 87.08% for training and validation of the pitch dynamics.
This confirms that the underlying attitude dynamics are well approximated by the identified
first order model, even in the real-world scenario.
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(a) Training data fit: 95.89%
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(b) Validation data fit: 92.37%

Figure 3-7: Input response and model fit of the real-world roll dynamics.

Real-world thrust dynamics As the experiments for identifying the thrust dynamics are
performed slightly different, the fitted curves are also shown in a different way. Figure 3-9
displays the measured curves of the hover thrust command TPWM over the battery voltage
for different weights, i.e. accelerations. The required thrust command increases as voltage
decreases and with an increase in weight or acceleration. In this case T ∗

c,1 indicates the thrust
curve without any added weight. For T ∗

c,2...T
∗
c,6, weight is added in steps of 200g, resulting in

a maximum added weight of 1kg. To this behavior, the linear model in Eq. (3-11) is fitted,
resulting in the solid curves displayed in Figure 3-9. The goodness of fit of this model is
65.85%.
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(a) Training data fit: 95.76%
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(b) Validation data fit: 87.08%

Figure 3-8: Input response and model fit of the real-world pitch dynamics.
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Figure 3-9: Comparison of the real-world thrust dynamics and the fitted linear model for training
data. The training data is shown as dashed lines and the fitted model as solid lines. The training
data fit is 65.85%.

Real-world thrust dynamics validation However, when comparing the model to valida-
tion data that is collected on a different day, the model fails, as the slope of the acceleration
curve changes. This behavior is shown in Figure 3-10. This might be caused by different
propeller models used on different days due to some braking during a crash, or it might de-
pend on internal computations of the PX4 controller translating the thrust input command
into PWM values in another way. This behavior is something that needs to be investigated
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3-3 Summary and discussion 25

further. However, as this thesis does not focus on the dynamics in z-direction, the identified
model is found good enough, as long as is does not show unstable or undesired behavior
during experiments.
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Figure 3-10: Comparison of the real-world thrust dynamics and the fitted linear model for
validation data. The validation data is shown as dashed lines and the fitted model as solid lines.
The validation data fit is 10.82%.

The performance for all identified models is summarized in Table 3-3.

Table 3-3: Goodness of fit for the conducted experiments to identify the parameters of the roll,
pitch and thrust dynamics model.

Roll Pitch Thrust
Simulation Experiment Simulation Experiment Simulation Experiment

Training 95.12% 95.89% 95.12 % 95.76% 84.59% 65.85%
Validation 91.16% 92.37% 91.16% 87.08% 57.86% 10.82%

3-3 Summary and discussion

The system dynamics nominal model can be obtained through first-principle modeling, leading
to linear and nonlinear approximations of quadrotor dynamics. Focusing on motion planning
and position control, the inner-loop attitude controller already available for the drone platform
is used, which stabilizes the quadrotor. The inner loop attitude dynamics are approximated
by a first-order linear model for the pitch and roll direction of the quadrotor. The coefficients
for this linear model are determined by sending step input commands to the quadrotor and
fitting the output to the model.
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26 Nominal quadrotor model

The attitude dynamics model is successfully identified with validation data goodness of fit
values over 90% in simulation and 85% on the real quadrotor. This indicates that the atti-
tude dynamics can be accurately approximated with a first-order model, even in real-world
environments. The difference between real-world experiments and simulation lies in the time
constants, meaning that the physical system response is slower. A time delay of four to five
sampling intervals is also identified, though it is neglected in subsequent sections for simplic-
ity in the simplified simulation model. However, in more complex simulations or physical
environments, accounting for the time delay could be critical.

Identifying a thrust dynamics model is also necessary, as the input to the controller is a PWM
command. This identification is simple in simulation by sending step input PWM commands
and fitting a linear model to the measured acceleration. The results are good, but with lower
goodness of fit values compared to the attitude dynamics, as the linear model can’t account
for the more complex thrust dynamics.

The real-world thrust dynamics identification results are worse. In these experiments, the
quadrotor is loaded with varying weights that can be converted into an acceleration. While
a model can be fitted to the training data, it fails for much of the validation data. Further
research is necessary to properly validate the thrust model with the physical quadrotor.
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Chapter 4

Gaussian Process disturbance map

The nominal model is extended by a Gaussian Process (GP) model to capture the external
wind disturbances. Starting from the quadrotor position as input and the external wind
disturbances as output, a wind disturbance map is trained. The background of GP’s is first
explained before the details of training the GP map are covered. This includes an optimal
experimental design and choosing the correct hyperparameters for training. Specifically, the
wind disturbance map is trained for two types of scenarios that will be used in the Model
Predictive Contouring Control (MPCC) motion planner and controller.

4-1 Gaussian Process Regression

The goal of Gaussian Process Regression (GPR) [5] is to obtain an approximation of the
nonlinear function that describes the behavior of wind disturbances with uncertainty. This
section introduces the mathematical foundation of GP, including how it is used to train and
predict the nonlinear model. It then extends to the idea of sparse GP to reduce computational
costs for the model to be used in the MPCC controller, before going into the specific GP
disturbance model used in this research.

4-1-1 Mathematical background

The basic building block of the GP is the Gaussian distribution. Particularly, the multivariate
Gaussian distribution, where each random variable is distributed normally and the joint
probability is also Gaussian. Assuming that the function values of the nonlinear function
f(x) follow a multivariate Gaussian distribution, GP regression uses a Bayesian approach to
determine a predictive distribution of the function value f(x∗) at unseen test locations x∗ [5].
The Bayesian approach works by specifying a prior on the nonlinear function and shifting
probabilities based on the observed data.
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28 Gaussian Process disturbance map

Gaussian Process prior Prior knowledge can be incorporated into the GP through the
selection of its mean µ(x) and covariance or kernel function k (x,x′):

µ(x) = E[f(x)] (4-1a)
k
(
x,x′) = E

[
(f(x) −m(x))

(
f
(
x′)−m

(
x′))] . (4-1b)

such that the nonlinear function is described by a GP, according to:

f(x) ∼ GP
(
µ(x), k

(
x,x′)) . (4-2)

Dataset To train the nonlinear function, a collection of inputs and respective outputs is
required. The dataset D of n observations, D = {(xi, yi) | i = 1, . . . , n}, is assumed to be
generated according to:

yi = f (xi) + εi (4-3)
where f : RD → R is the nonlinear function to be trained and εi ∼ N

(
0, σ2

ε

)
is Gaussian

measurement noise present in the observations with zero mean and variance σε [50]. Noise in
the data can be added to the covariance function. The prior on the measured function values
is then defined as p (y | X) = N

(
0,K(X,X) + σ2

εI
)
. Here, K(X,X) denotes the n×n matrix

of the covariance evaluated at pairs of the input points. From the GP prior, the available
system data and the desired test locations, one can write the joint distribution of the observed
values y and function values f∗ as:[

y
f∗

]
∼ N

(
0,
[
K(X,X) + σ2

εI K (X,X∗)
K (X∗, X) K (X∗, X∗)

])
. (4-4)

Figure 4-1: GP posterior distribution conditioned on five, noise free observations. The grey area
represents the mean ± two times the standard deviation. In colour are three random samples
drawn from the posterior distribution [5].

Inference Conditioning the joint Gaussian prior distribution on the observations, one can
derive the posterior distribution:

p (f∗ | X,y, X∗) ∼ N (µ∗,Σ∗) , where (4-5a)

µ∗ = K (X∗, X)
[
K(X,X) + σ2

εI
]−1

y, (4-5b)

Σ∗ = K (X∗, X∗) −K (X∗, X)
[
K(X,X) + σ2

εI
]−1

K (X,X∗) . (4-5c)
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In the case that there is only one test point x∗ the equations reduce to:

µ∗ = µ(x∗) + k⊤
∗

(
K(X,X) + σ2

εI
)−1

y (4-6a)

Σ∗ = k (x∗, x∗) − k⊤
∗

(
K(X,X) + σ2

εI
)−1

k∗ (4-6b)

with k∗ = K(x∗, X) and kT∗ = K(X,x∗). A GP posterior distribution for noise-free data is
shown in Figure 4-1.

Model selection The mean and covariance function of the GP prior must be chosen to
describe the underlying system model and form a critical part of the prediction process. The
mean of the GP prior is chosen to be zero. This is typically done if no other information
on the prior is available. The covariance is specified by a kernel function. The choice of
kernel or covariance function expresses the similarity between function values. It specifies
certain properties of the GP such as smoothness or periodicity [51]. For this thesis, two types
of kernels are explored. The most commonly used kernel is the Squared Exponential (SE)
kernel:

kSE
(
x,x′) = σ2

f exp
(

−1
2d
(
x,x′)) (4-7)

where d (x,x′) =
∑D
d=1 (xd − x′

d)
2 l−2
d is the scaled, squared Euclidean distance. Another

relevant kernel is the Matern kernel:

kMAT
(
x,x′) = σ2

f

1
Γ(ν)2ν−1

(√
2ν
l
d
(
x,x′))ν Kν

(√
2ν
l
d
(
x,x′)) (4-8)

where Kν(·) is a modified Bessel function and Γ(·) is the gamma function. The class of Matern
kernels is a generalization of the SE kernel.

Model parameters Each kernel function has free parameters which define the properties of
the GP. Common parameters of the SE and Matern kernel are the horizontal length scale
for each input dimension ld and the output variance σf . The horizontal length scale deter-
mines how correlated neighboring inputs are. The Matern kernel moreover has an additional
parameter ν which controls the smoothness of the resulting function. The smaller ν, the
less smooth the approximated function is. As ν → ∞, the kernel becomes equivalent to the
SE kernel. When ν = 1/2, the Matern kernel becomes identical to the absolute exponential
kernel. Important intermediate values are ν = 1.5 and ν = 2.5. The output variance σf
determines the average distance of the function away from its mean. In addition, the noise
covariance σε can be considered as a parameter of the kernel. The parameters do not have to
be determined beforehand but are trained as part of the GP prior using the measured data
D = {(X,y)}.

Model parameter training The model parameters are found by maximizing the marginal
likelihood (or evidence) of the prior, which is conditioned on the parameters θ through the
kernel function Kθ = K(x,x)(θ):

L = log p(y | X,θ) = −1
2y⊤

(
Kθ + σ2

εI
)−1

y − 1
2 log

∣∣∣Kθ + σ2
εI
∣∣∣− n

2 log(2π). (4-9)

The parameter vector:
θ̂ ∈ arg max

θ
log p(y | X,θ) (4-10)
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is the maximum likelihood estimate of the parameters, which trades off model complexity
versus the data fit [50]. Maximizing the likelihood is a non-convex, nonlinear optimization
problem which can be solved by hand or using available libraries such as GPyTorch [52] or
sklearn [53].

Computational complexity Training the GP with a training set of size n requires O
(
n3)

per gradient step due to the inversion of the Kernel matrix K(X,X) which makes training
very expensive [5]. To make predictions, the inversion of the kernel matrix demands most
operations and results in a computational complexity of O

(
n3) per prediction. Cholesky

factorization can help to reduce the computational complexity of the matrix inversion to
O
(
n3/6

)
. Sparse GP’s can further reduce the complexity, which motivates the use of it.

4-1-2 Sparse Gaussian Process Regression

To achieve a real-time feasible MPCC controller, the GP model has to be fast in making
predictions. Sparse GP’s reduce the complexity of training the GP model and making pre-
dictions. Instead of using all n training inputs, a smaller training set of size m, also referred
to as inducing inputs is used to form the covariance matrix K(X,X). The complexity of
inverting the covariance matrix is thereby reduced to O

(
nm2) - a significant speed up.

Choosing inducing inputs Using fewer inputs to train and predict GP’s also reduces the
accuracy and expressiveness of the GP. Selecting the inducing inputs can be challenging. If
it is selected greedily from the available data, it becomes difficult to include all the necessary
information. In this thesis, a variational approach [54] is used which is a popular method to
train sparse GP’s as it optimally selects the inducing points.

Variational Inference Using a variational approach, the inducing points are note selected
from the available dataset, but insetad are pseudo data points u, that are optimized for in the
course of training. The posterior distribution in Eq. (4-5a) is approximate as a multivariate
Gaussian q(u) over the inducing variables u with variance µu and covariance Σu. The inducing
points, mean and variance are the variational parameters which are selected by minimizing
the Kullback-Leibler divergence between the variational distribution and the exact posterior
GP. The Kullback-Leibler divergence is minimized using stochastic gradient descent methods,
where the gradients are estimated using samples from the approximating distribution. This
is done together with the minimization of the marginal likelihood in Eq. (4-10) as part of the
model parameter training.

Practical use of sparse GP Some parametrization tricks come in handy for practical
applications of sparse GP prediction. Instead of defining the random variable q(u), one can
define the inducing variable w := cholK−1

u v, where v = u−µu and chol refers to the Cholesky
decomposition. The variational parameters are the mean vector µw and covariance matrix
Σw. From this, the posterior sparse GP formulation can be computed as follows:

f(x) ∼ GP
(
µ(x) + kuxL

−⊤
u µw, k (x,x) − kxuL

−⊤
u (I − Σw)L−1

u kux
)

(4-11)

denoting chol (Ku) as Lu and making use of the identity K−1
u = L−⊤

u L−1
u . This parametriza-

tion of the inducing variables can facilitate the optimization and speed up the prediction.
The method has been implemented in GPyTorch [52] which provides a library for sparse GP
inference.
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4-1-3 Disturbance model

After introducing the mathematical background on GP, this section presents the specifics of
how sparse GPs are employed in this study to model wind disturbances affecting the quadrotor
in the x- and y-directions. The input and output data necessary for this approach, as well as
the technique for handling a multivariate training target, are described.

Training dataset The quadrotor does not have any on-board sensors to directly measure
the wind disturbance. Instead, the wind will be estimated using available state information.
Starting from a nominal quadrotor model and assuming that there are no other disturbances
acting on the quadrotor, the momentary wind is attributed to the difference between the
predicted velocity v̂k by the nominal model and the measured velocity at the same time
instance vk. The disturbance at the quadrotor position pk = [xk, yk]T can be calculated as
follows:

dvx,k(pk) = v̂x,k − vx,k (4-12a)
dvy ,k(pk) = v̂y,k − vy,k. (4-12b)

With this information, the GP model is trained for the disturbance vector d(p) = [dvx , dvy ]T .

Multivariate GP model Classic GP’s, as described in section 4-1, are only capable of mod-
elling nonlinear dynamics with one output. As the disturbance output of the GP model is a
multivariate target, i.e. d ∈ R2, each output is trained independently. This is a simplification
of the problem, assuming that the two wind directions are computationally independent, re-
sulting in a diagonal covariance matrix. In a real-world scenario, the wind directions may be
correlated, leading to information loss when training models independently. In that case, it
might be beneficial to use multi-output Gaussian processes [55]. However, it also makes GP
training more complex. Therefore, the performance of independent GP’s will be tested first
in this research.

Independent GP model Two GP’s are trained for the two disturbance directions using the
same quadrotor position as input, but only one of the disturbances as training target. The
data collection method and hyperparameters of the training discussed hereafter will be the
same. However, training the GP with different training targets will result in different trained
model parameters. The resulting disturbance vector is:

d(p) =

dvx(p) ∼ N
(
µdvx (p),Σdvx (p)

)
dvy (p) ∼ N

(
µdvy (p),Σdvy (p)

) . (4-13)

The predictive distribution is given by:

µd =
[
µvx , µvy

]⊤ (4-14a)

Σd = diag
([

Σdvx Σdvy

])
(4-14b)

As the training inputs and training targets are sampled in discrete time, the resulting GP
model will also be of discrete nature.
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4-2 Data collection

To train the GP disturbance map, data of the wind disturbance in the environment has to
be collected. This section discusses the experiment setup and generation of the wind force as
well as an optimal Active Learning (AL) strategy to explore the environment.

4-2-1 Active Learning

Active Learning [56] is an iterative algorithm to query data points in an optimal way. It is
very useful for experiment design, especially when the training samples are limited because
they are expensive, time-consuming or difficult to obtain. The key components of the AL
algorithm are the model, the uncertainty measure and the querying strategy.

Active Learning strategy The advantage of using AL with GP’s is that the GP model
directly provides the uncertainty. The query strategy is chosen such that the most uncertain
points are sampled at each iteration. Afterwards, the GP is retrained with the newly obtained
data samples. Querying and retraining the model is repeated until the model is found to be
accurate enough. The general workflow of AL is shown in Figure 4-2.

Gather data Build model
Is my
model

accurate?
Employ

Measure
uncertainty

of predictions

Query for
labels

Yes

No

Figure 4-2: Active Learning workflow [56].

4-2-2 Quadrotor environment

The quadrotor is navigated in a windy environment. The wind varies in x- and y-direction
and is assumed constant over time, resulting in a spatially varying wind field, that can be
learned by the quadrotor.

Simulation environment

The initial experiments are performed in a simple simulation environment, where the quadro-
tor dynamics perfectly match the derived quadrotor model in Chapter 3, including the identi-
fied simulation model parameters in 3-1 and a normalized drag coefficient of k∗

D = 0.02. The
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environment is programmed using a Python client library for Robot Operating System (ROS),
to keep the quadrotor control in the ROS environment.

Figure 4-3: Simplified simulation environment of the quadrotor, visualized in RViZ. The quadro-
tor is represented by the 3D coordinate system indicating it’s position and orientation, the pink
arrow shows the wind acting on the quadrotor at any given position, the grey path shows the
reference path and the cyan point indicates the next reference point.

Dynamics update The quadrotor is controlled by sending attitude commands, i.e. uc =[
ϕc, θc, ψ̇c, Tc

]T
. The simple simulation environment uses Runge-Kutta 4th (RK4) method

to integrate the quadrotor dynamics and returns the odometry data of the quadrotor. This
happens at a rate of 20Hz.

Simplified simulation environment The quadrotor is assumed to move in a grid of
20 m × 20 m, in which the wind acts on the quadrotor. During exploration, there are no
obstacles present in the environment. The control and dynamics in z-direction are kept at
the same altitude, reducing the problem to 2.5 dimensions. The environment and quadrotor
are visualized using RViz, a visualization software tool for ROS. The simulation scenario is
shown in Figure 4-3.

Generated wind fields

The wind field is simulated by adding a force to the quadrotor dynamics in vx and vy, changing
the speed of the quadrotor.

Constant wind The simple simulation supports adding a constant wind in both directions,
which is equal across the entire environment. That force can moreover be altered with Gaus-
sian noise, simulating randomness of the wind.

Wind plugin Next to that, a self-written wind plugin is added to the simulation that allows
adding any custom, static wind field to the simulation. The wind is defined in terms of a
grid, which is given by the resolution of the grid and dimension of the environment. The
wind force is defined at each grid point and interpolated using a 2D-interpolation scheme to
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(a) Fan in x-direction with an initial speed
of 5m s−1.

(b) Fan in y-direction with an initial speed
of 5m s−1.

(c) Crossing fans in x- and y-direction. (d) Crossing fans in random directions.

Figure 4-4: Generated wind fields.

calculate the force at any point in the environment. For now, the wind fields are generated
in 2D, but the plugin can easily be extended to a 3D-environment.

Custom wind fields The wind plugin is used to generate wind fields that can easily be
replicated in a lab environment. The wind fields are created to resemble fans distributed in
the environment, with a high velocity close to the fan and decreasing velocity with a spread
of the wind field further away from the fan. Simple cases are generated where only one fan
points in the x- or y-direction, but more complex cases are also experimented with where two
fans are crossing. Again, noise can be added to the scenarios. A visualization of the different
wind fields is shown in Figure 4-4. More information on the wind plugin and generation of
the wind fields can be found in Appendix A.

4-2-3 Exploration of the environment

To train the GP model, data on the wind disturbance map has to be gathered. One way of
doing this is by maneuvering the quadrotor inside the environment with a predefined path.
However, this is either very time-expensive or does not guarantee that all relevant points
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needed to train an accurate GP model are visited. Instead, the exploration experiment is
designed in an optimal way using the concept of AL.

Active Learning experiment As the active learning experiment needs an initial model, N
points in the environment are randomly selected and explored. An initial GP model is trained
to describe the disturbance map. From this model, the points with the maximum uncertainty
are determined from a predefined grid. As the points of maximum uncertainty tend to appear
in lager clusters in the map, additionally a threshold radius r= 2m is defined. If a point is
selected as most uncertain point, all other points within the radius of that point are discarded
to avoid exploring only in one corner of the environment. In total, another N uncertain points
are selected this way. At each iteration the selected points are visited in an optimal way by
solving the Traveling Salesman Problem (TSP). Details on the implementation of the TSP
can be found in Appendix B. Sampling the most uncertain points and retraining the model
is repeated until the maximum uncertainty is lower than a specified threshold σ̄.

(a) Uncertainty of the disturbance map after
two iterations.

(b) The most uncertain data point and
threshold radius.

(c) Sampled data points and threshold radii.
Discarded points are shown in gray.

(d) Generated path connecting data points
solving the TSP.

Figure 4-5: Steps of the Active Learning experiment.
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Number of points visited The number of points sampled at each iteration is selected
by conducting a few experiments and tracking the time of the quadrotor path and training
results. For small N , the quadrotor path is too random, resulting in long experiment duration.
On the other hand, if N is too large, training of the GP is repeated not frequent enough, such
that the points of maximum uncertainty are no longer relevant to explore while conducting
the experiments. A number of N = 10 is found to be a good intermediate value.
Active Learning illustration The procedure of the AL experiment design is shown in
Figure 4-5. Figure 4-5a shows the uncertainty disturbance map of the entire grid after two
iterations, such that the quadrotor has already collected some data. The certainty is high in
areas where disturbance data is collected, while uncertainty is high in areas that have not yet
been visited. From the information on the uncertainty, the most uncertain point is sampled as
shown in Figure 4-5b. It also illustrates the threshold radius. Within the threshold radius all
subsequent sampled points are discarded, until the next most uncertain point outside of that
radius is found. Repeating this for ten points results in Figure 4-5c. The optimal sequence
of points computed with the TSP is shown in Figure 4-5d, which is sent as a path reference
to the quadrotor.
Quadrotor control and data collection The quadrotor is navigated in the environment
using a PID position controller. The data is collected along the entire quadrotor path at a
frequency of 20Hz. As the quadrotor is travelling at a low speed through the environment,
sampling the data at a frequency of 20Hz results in large datasets with data points sampled
very close to each other. For GP training, the data is therefore down-sampled to 4Hz to avoid
large datasets and training times, without a loss of information on the disturbance map.

4-3 Training the Gaussian Process disturbance map

With the collected data samples, the GP model can be trained to find the parameters of
the GP kernel function. In addition, different types of kernel functions are explored and the
hyperparameters of the GP training algorithm are selected. During training, the disturbance
vector d(p) is scaled by the sampling interval Ts, for easier comparison with the original wind
fields.

4-3-1 Model and hyperparameters

The GP is trained to find the model parameters using stochastic variational GPR in GPyTorch
[52], which is the sparse GP regression method explained in section 4-1-2 with the Cholesky
form of the variational distribution. As explained there, the sparse GP regression method
uses stochastic optimization techniques. The optimization loops over a number of training
iterations (epochs) and minibatches of the given data, maximizing the variational Evidence-
Lower Bound (ELBO) between the variational distribution and the exact posterior GP. Next
to the model parameters, that can be found during training, relevant hyperparameters of the
training need to be selected beforehand. Those are the number of inducing points, epoch and
batch size and the type of kernel function.
Number of inducing points The sparse GP is initialized with 30 inducing points. This
number is selected based on related literature (see. e.g. [6], [44], [43]) and is a balance between
the speed of the prediction and the accuracy of the GP.
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Epoch and batch size Choosing the optimal combination of epochs and batch size is a cru-
cial step in training the GP dynamics model and precedes the model parameter optimization.
Kernel function The GP kernel function must also be selected as the GP prior. Two kernel
functions, the SE kernel and Matern kernel, are considered to vary kernel smoothness.

4-3-2 Hyperparameter selection

The training hyperparameters that need to be explored are the epoch, batch size and type
of kernel function. To find the optimal model parameters, the model is trained with the
data collected during the AL experiment. The results are then validated by comparing the
predicted wind field over the entire grid with the original wind field, to make sure that the
trained model generalizes to previously unseen data points.

Epoch and Batch size

To investigate the influence of the epoch and batch size on the accuracy of the trained model,
grid search is performed. The data used for this investigation is generated by exploring the
environment according to the experiment design in 4-2-3 for a total of four iterations. This
is done for the SE and Matern kernel for a simple scenario with the wind generated from a
fan pointing in x-direction as shown in Figure 4-4a. As it is found during the experiments
that the choice of kernel function minimally influences the optimal epoch and batch size, the
results here are discussed for the SE kernel.
Grid search During GP training the epoch and batch size are each varied in steps of 10,
between 10 and 50 and each pair of epoch and batch size is combined for training. The result
of the training is compared by computing the Mean Squared Error (MSE) of the prediction
of the trained GP model and the ground truth wind field over the entire environment. Si-
multaneously, the training time is tracked and compared for the combinations of epoch and
batch size. The results are shown in Figure 4-6.
Trade-off between accuracy and training times The most accurate results with a MSE
of less than 0.02 can be achieved for a large number of epochs. However, if the size of the
batch is too small, the quality of the prediction decreases again. In that case, the GP is most
likely overfitting the data. While the training time scales almost linearly with the number of
epochs and size of the data batch, training already becomes accurate with a batch size around
40, if the number of epochs is not chosen too low. It is found that the optimal combination
of accuracy and training time is reached at 20 epochs.
Size of training data and batch Performing this step for less AL experiment iterations,
i.e. with less data, it is furthermore found that the optimal batch size depends on the size of
the training data. If the training dataset is smaller, the batch size has to be lowered as well
in order to achieve similar results for the accuracy. The resulting choice for the batch size
is therefore i × 10, where i is the number of experiment iterations. The number of training
epochs is fixed at 20.
Kernel function
To find the optimal kernel function the SE kernel is compared to a Matern kernel with a
medium smoothness parameter of ν = 1.5. The SE kernel function is chosen as it is the most
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Figure 4-6: Mean squared error and training times for different combinations of epoch and batch
size.

commonly used kernel functions that works for most applications. It is compared against
the Matern kernel, which is less smooth and might fit complex wind fields better than the
smooth SE kernel. The comparison is made for the more complex wind field with two fans
crossing as shown in Figure 4-4c, assuming that the results will generalize to simpler wind
fields. The two kernels are compared in terms of the generated path, the MSE and the mean
and maximum uncertainty of the wind, corresponding the the variance of the trained GP,
averaged for both directions. In total, five AL iterations are performed.

Figure 4-7: Generated path after one, three, and five Active Learning iterations with the squared
exponential kernel.

Influence on the data collection Figures 4-7 and 4-8 show the generated path and collected
wind data for the SE and Matern kernel, respectively. The generated paths by the two
different kernel types do not differ much, such that after five iterations, almost the entire
space is covered with similar exploration times.

Accuracy and uncertainty Comparing the MSE shown in Figure 4-9a the uncertainties
shown in Figure 4-9b, the training results are similar. The SE kernel is slightly more accurate
for more training iterations, but also has a slightly higher uncertainty. Again, there is no
significant difference between the two types of kernel functions.

Effect of smoothness on the learning result In general, the SE kernel is smoother than
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Figure 4-8: Generated path after after one, three, and five Active Learning iterations with the
Matern kernel.
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Figure 4-9: MSE and uncertainty of the trained GP model for the SE and Matern kernel.

the Matern kernel. It therefore extrapolates the information better into regions where no data
is available. Since the generated wind fields in simulation are also smooth, this combination
works well for the training data resulting in accurate models with less training data and less
uncertainty. However, this might also be a pitfall if the wind fields are less smooth, which
could be the case in a real-world scenario. In that case, the SE kernel might extrapolate the
data too much not capturing the disturbance model and the less smooth Matern kernel could
perform better.

Chosen kernel type The results of the experiments are similar, so the simpler SE kernel is
chosen for subsequent hyperparameter training. The Matern kernel should still be considered
in case the SE kernel doesn’t perform well in real-world conditions where wind fields are likely
less smooth.

4-4 Results

After deciding on the disturbance model, experiment setup and the training and model pa-
rameters, the GP model can be trained and evaluated in terms of its performance. First,
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collecting the data using AL is compared to other methods for data collection. Second, the
sparse GP approach is compared to training the GP with all available data. Third, the distur-
bance maps for two types of wind fields are trained, that are going to be used in the following
chapters.

4-4-1 Data collection with Active Learning

The data collection method is compared to two other exploration paths. In one scenario, the
data is collected by exploring the environment in a structured way, to cover as much area
as possible. The resulting collected data is shown in Figure 4-10a. In the second scenario,
the environment is explored by flying a lemniscate trajectory, with collected data shown in
Figure 4-10b. The collected data using the AL approach with four iterations is shown in
Figure 4-10c. All paths are tracked under the same conditions, with the wind acting in both
x- and y- directions as shown in Figure 4-4c to ensure the generality of the comparison. The
three exploration methods are compared in terms of the exploration time and collected data
samples, the training time and the goodness of the prediction in terms of the accuracy and
uncertainty. The results are summarized in Table 4-1.

Table 4-1: Comparison of collecting data using the AL exploration method versus predefined
paths.

Path Structured Lemniscate Active Learning

Exploration time [s] 471 173 394
Data samples 1827 767 1321
MSE 0.033 0.274 0.031
Mean uncertainty [m/s2] 0.662 1.072 0.474
Maximum uncertainty [m/s2] 0.984 1.571 0.722

Numerical comparison of the data collection methods Both the structured and AL
path learn the distribution of the wind field well with similar MSE. However, tracking the
structured path takes almost one-third more time, also increasing the amount of training
data. Moreover, comparing the maximum uncertainty, it is lower for the AL approach as the
environment is covered in such a way to minimize the uncertainty. The lemniscate path is
tracked faster than the rest, however it covers only part of the environment such that it fails
to generate accurate predictions over the entire grid.
Visual comparison of the data collection methods This is also reflected in the second
and third row of Figure 4-10 where the predicted wind fields and uncertainties are shown.
The structured path and AL path can reconstruct the wind field over the entire grid, while
the prediction for the lemniscate path is only accurate near areas covered by the quadrotor.
The uncertainty is large where the environment is not covered by the lemniscate reference
path and more evenly distributed for the structured and AL path.

4-4-2 Sparse versus full Gaussian Process model

The sparse GP training and prediction is compared to full GP training and prediction in
terms of training and prediction time and the accuracy of the model. The reference data
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(a) Data collected
along the structured
path.

(b) Data collected
along the lemniscate
path.

(c) Data collected
along the AL path.

(d) Wind prediction
from structured path
data.

(e) Wind prediction
from lemniscate path
data.

(f) Wind prediction
from AL path data.

(g) Uncertainty of the
prediction with struc-
tured path data.

(h) Uncertainty of the
prediction with lemnis-
cate path data.

(i) Uncertainty of the
prediction with AL path
data.

Figure 4-10: The collected data, predictions of wind fields, and predicted uncertainties for the
structured path, lemniscate path, and Active Learning path.

for this comparison is generated with a simple wind field pointing in x-direction for four AL
iterations. This simple scenario is chosen as the superiority of sparse GP is already visible
here and generalizes to more complex scenarios.

Full versus sparse GP The sparse GP approach is compared to the full GP approach in
terms of the accuracy and uncertainty, and the training and prediction times. The results
are summarized in Table 4-2. The results on the accuracy and uncertainty show that the
performance of the GP prediction is slightly worse when using the sparse approach. The
MSE is about five times higher and the uncertainty is doubled. This is to be expected, as
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Table 4-2: Comparison of full versus sparse GP.

GP Full Sparse

MSE 0.0045 0.029
Mean uncertainty [m/s2] 0.112 0.221
Maximum uncertainty [m/s2] 0.248 0.501
Training time [s] 5.6 15
Prediction time [s] 9.224 0.059

the number of data points used to express the model is significantly decreased. However,
despite the lower MSE, the model is still able to replicate the wind fields for the largest
part. This will also be shown when discussing the final trained wind fields in section 4-4-3.
Also, the information on the higher uncertainty will be accounted for in the controller design.
The advantage of using sparse GP for this application is clear when comparing training and
prediction times, as prediction is around 150 times faster. While the training time is longer
due to the stochastic training and learning the predictive distribution along with the kernel
parameters, it is not a concern as the GP parameters are not trained online. The prediction
time will be even faster for a single data point.

4-4-3 Trained disturbance models

Two disturbance models are trained to be used in subsequent sections. The two scenarios
are the wind field pointing in x-direction (see Figure 4-4a) and the crossing wind fields (see
Figure 4-4d). Summarizing the findings from the previous sections, the training conditions
used to train the disturbance models are listed in Table 4-3. The wind fields are trained using
a sparse GP with 30 inducing points and a SE kernel. For both wind fields, four AL iterations
are preformed. The generated paths and collected data are shown in the top row of Figure
4-11.

Table 4-3: Final training conditions.

Training hyperparameter Setting

Kernel SE
Number of inducing points 30
Number of AL iterations 4
Epochs 20
Batch size 40

Trained model parameters The final trained model parameters of the SE kernel in Eq.
4-7 are summarized in Table 4-4. The length scales of the wind field in x are generally larger,
indicating that the wind field is smoother than the wind field with crossing fans. The output
variance in y-direction is very small for the wind field pointing only in x-direction, while all
other output variances are in a similar range.

Performance metrics The final performance metrics of the trained disturbance models is
summarized in Table 4-5. The GP model is able to train the wind field with an MSE of
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(a) Collected wind disturbance data for the
wind field in x-direction.

(b) Collected wind disturbance data for the
wind field with crossing fans.

(c) Trained wind disturbance map for the
wind field in x-direction.

(d) Trained wind disturbance map for the
wind field with crossing fans.

Figure 4-11: Collected training data and trained disturbance maps.

Table 4-4: Final model parameters of the two trained wind disturbance models.

Wind field Wind in x-direction Crossing fans

Disturbance direction dvx dvy dvx dvy

Length scale l1[m] 7.875 7.93 2.27 1.675
Length scale l2 [m] 1.009 11.21 2.66 2.597
Output covariance σ2

f [m2] 0.096 2.8e-6 0.050 0.076
Noise covariance σ2

ε [m2] 0.032 2.4e-4 0.037 0.043

0.019 and 0.060, respectively. With similar training times, the accuracy is lower for the more
complex wind field. Also, the uncertainties are higher. However, both trained models can
capture most of the underlying wind dynamics which is also visible in the bottom row of
Figure 4-11 which shows the trained wind disturbance maps over the entire grid.

Comparison to ground truth wind field From the results in Figure 4-11, it can already be
seen that the mean of the trained wind disturbance map is not accurate everywhere. Figure

Master of Science Thesis Johanna Probst



44 Gaussian Process disturbance map

Table 4-5: Final performance metrics of the two trained wind disturbance maps.

Wind field Wind in x-direction Crossing fans

Training time [s] 15.07 14.81
Prediction time [s] 0.069 0.067
MSE 0.019 0.060
Mean uncertainty [m/s2] 0.248 0.498
Maximum uncertainty [m/s2] 0.3575 0.639

4-12 therefore shows the difference between the trained mean d̂v· and the actual mean dv· for
the x- and y-direction independently, again for both trained wind fields. Specifically, near
the fans, the prediction is less accurate. This is likely due to the rapid drop in wind near
the fans, which cannot be accurately captured by the smooth GP model, especially since the
expressiveness is reduced due to the sparse GP approach.

(a) Training error d̂vx −dvx for fan pointing
in x-direction.

(b) Training error d̂vy −dvy for fan pointing
in x-direction.

(c) Training error d̂vx −dvx for crossing fans. (d) Training error d̂vy −dvy for crossing fans.

Figure 4-12: Difference between the trained mean disturbance and the mean disturbance of the
original wind fields.
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(a) Disturbance bound of the trained wind
wind field pointing in x-direction in x.

(b) Disturbance bound of the trained wind
wind field pointing in x-direction in y.

(c) Disturbance bound of the trained wind
wind field for crossing fans in x.

(d) Disturbance bound of the trained wind
wind field for crossing fans in y.

Figure 4-13: Confidence bounds of the trained wind fields compared to the mean of the original
wind fields. The original wind fields are shown in red, the disturbance bounds corresponding to a
confidence interval of 99.5% are represented by the transparent surfaces.

Uncertainties of the trained wind fields Finally, the ground truth wind fields are com-
pared to the trained models in terms of the uncertainties to see if the uncertain region covers
the actual disturbance despite some model mismatch. Figure 4-13 shows the actual mean
disturbance the uncertain regions above and below the trained mean within 2.807 standard
deviations. This uncertain region, also referred to as the 2.807σ confidence bound, corresponds
to a 99.5% confidence interval, meaning that 99.5% of data points, generated according to
the trained GP model will lie in this region. For this choice of confidence interval, the actual
disturbance lies within the trained wind fields for the largest part. Despite some mismatch in
the mean prediction, the designed motion planner and controller should therefore be robust
enough, taking in account the uncertainty with a confidence interval of 99.5%. However for
large spikes of the disturbance, the GP model just fails to capture the disturbances within
the uncertain bounds, as can be seen in Figure 4-13c and 4-13d. After some investigation on
the influence of the training parameters, the sparse learning approach is found as a cause.
Again, it is likely that reducing the number of data points to 30, reduces the expressiveness of
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the GP, which fails to capture the large spikes and their proper uncertainties during training.
Moreover, the sparse GP approach complicates the training by using a stochastic approach.
It is advised, to investigate this behavior in follow-up research to see if there is a way to train
the sparse GP where it also captures the spikes in the data. Moreover, this also motivates the
use of online GP in which the data would only capture the environment near the quadrotor
and not the entire grid. For now, a way to work around the problem is to increase the con-
fidence bounds to make sure the true wind field lies within the uncertain bounds. However,
as in this case the spikes in the disturbance only barely exceed the confidence bounds, the
confidence interval of 99.5% is kept so that the controller is less conservative.

4-5 Summary and discussion

GP’s are a powerful machine learning tool that can be used to model the wind disturbance
maps with little prior knowledge. In order to use GP for this application, several aspects of
GP training have to be considered.

Despite the model parameters that are optimized during training, the type of kernel function
has to be chosen as the model prior. Comparing a Matern and SE for this application, no
significant difference is found so the SE kernel is chosen for its simpler form.

Moreover, the use of AL for optimal exploration is introduced. By collecting data with AL,
the data can be gathered optimally and adjusted to the disturbance map. This results in
faster exploration times and lower uncertainty in the trained GP compared to pre-designed
exploration paths.

The use of sparse GP methods is implemented for compatibility with the MPCC formulation.
While this reduces the accuracy of the GP model and increases uncertainty in predictions,
it also speeds up predictions by 150 times, making GP feasible for use. The decrease in
model performance is captured by the increased uncertainty and is into consideration by the
controller design.

Two types of wind maps are trained for the upcoming MPCC design. Although the trained
models do not have perfect mean predictions, the model mismatch is largely contained within
the uncertain bounds with a confidence interval of 99.5%. Reducing the number of training
points during the sparsification process, however, may result in inaccurate predictions of
high spikes in the training data. Therefore, exploring online learning methods that don’t
require mapping the whole environment, especially for real-world scenarios with changing
wind conditions, is recommended for future research.
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Chapter 5

Data-driven MPCC motion planner

This chapter covers the derivation of the controller formulation of the Model Predictive Con-
touring Control (MPCC) controller for navigating the quadrotor through windy and cluttered
environments using a simple reference path and taking into account the information of the
wind disturbance map. Then, the implementation of the MPCC controller and its first re-
sults in simple scenarios are discussed to validate that the data-driven controller formulation
is functioning properly.

5-1 Data-driven controller formulation

The resulting data-driven controller formulation consists of several building blocks that are
familiar from the classical Model Predictive Control (MPC) formulation: the system dynam-
ics, the cost function, and the constraints. All of these components are discussed for the
problem at hand before moving on to the resulting controller formulation.

5-1-1 System dynamics

The system dynamics are a combination of the nominal quadrotor model and the disturbance
map. As the disturbance map is represented by a Gaussian Process (GP), the resulting system
dynamics become probabilistic. Subsequently, the propagation of the model across multiple
states will be discussed given the probabilistic formulation.

Data-driven quadrotor model

The system equations of the quadrotor are given as a combination of the nominal model and
the GP model. Due to the discrete nature of the GP model, as is trained in discrete time,
the system dynamics are represented in discrete form, according to:

xk+1 = f(xk,uk) +Bd (d(pk) + wk) . (5-1)
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As the nominal, nonlinear dynamics f(xk,uk), that follow the model derived in Eq. (3-6),
are given in continuous time, they are discretized using a Runge-Kutta 4th (RK4) integration
scheme to obtain fully discrete dynamics. As the trained GP disturbance map:

d(pk) =

dvx(pk) ∼ N
(
µdvx (pk),Σdvx (pk)

)
dvy (pk) ∼ N

(
µdvy (pk),Σdvy (pk)

) (5-2)

is only defined for the velocities vx and vy, the disturbance vector d(pk) ∈ R2 is mapped to
the correct states with Bd ∈ R9×2. Additional uncertainty in the system is accounted for by
the process noise wk∼ N (0,Σw

k ).

State and uncertainty propagation

Due to the representation of the nonlinear disturbance map by a Gaussian Process, the
predicted states are given as stochastic distributions. Evaluating the posterior of the GP at
the next uncertain state input, however, is computationally intractable. Instead, the posterior
distribution is approximated by a Gaussian distribution, i.e.

xk+1 ∼ N
(
µx
k+1,Σx

k+1
)

(5-3)

with approximate inference using linearization. For more information on the uncertainty
propagation the reader is referred to Appendix C.

Propagation of the mean With the next state estimate given by Eq. (5-1) the mean of the
next state estimate can be computed by passing the mean values through the system model.
This gives:

µx
k+1 = f(µx

k ,uk) +Bd
(
µd
k (µp

k ) + wk

)
(5-4)

for the update of the state mean. Here, µd
k (µp

k ), is the mean of the GP disturbance map
evaluated at the mean of the uncertain position vector pk.

Propagating the uncertainty For the propagation of the uncertainty, the next state esti-
mate is approximated by its first-order Taylor approximation:

xk+1 ≈ x0
k +

(
df

dxf(xk,uk)
∣∣∣∣
x=µx

+ df

dxBdd(pk)
∣∣∣∣
x=µx

)
xk (5-5a)

xk+1 ≈ x0
k +

(
∇xf (µx

k ,uk) +Bd∇xµd
k

(
µp
k

))
xk (5-5b)

where ∇xµd
k

(
µp
k

)
is the derivative of the GP with respect to its state vector evaluated at

the mean of the position vector. Given the function linearization, one can propagate the
uncertainty as for the linear case:

Σx
k+1 = [∇xf (µx

k ,uk) +Bd∇xµd
k

(
µp
k

)
]Σk[∇xf (µx

k ,uk) +Bd∇xµd
k

(
µp
k

)
]T

+Bd
(
Σd
k + Σw

k

)
BT
d

(5-6)
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with Bd
(
Σd
k + Σw

k

)
BT
d being the propagation of the GP uncertainty Σd

k at the k-th state
plus the uncertainty from the added noise wk.

Rewriting the expression results in the final update equation of the uncertainty:

Σx
k+1 = [∇xf (µx

k ,uk) Bd]
[

Σx
k Σxd

k

Σdx
k Σd

k + Σw
k

]
[∇xf (µx

k ,uk) Bd]
T (5-7)

with Σdx
k = ∇xµd

k

(
µp
k

)
Σx
k and Σxd

k = Σdx
k

T .

State and uncertainty update Replacing the nonlinear nominal function dynamics with
the linear model in Eq. (3-7) the resulting mean and uncertainty propagation are given by:

µx
k+1 = f(µx

k ,uk) +Bd
(
µd
k (µp

k ) + wk

)
(5-8a)

Σx
k+1 = [ABd]

[
Σx
k Σxd

k

Σdx
k Σd

k + Σw
k

]
[ABd]T . (5-8b)

The update equations of the state mean and state uncertainty are used in the cost function
and obstacle avoidance constraints, derived in the following.

5-1-2 Model Predictive Contouring Control and resulting cost function

The MPCC controller follows the reference path by tracking a given velocity while minimizing
the the distance to the path. This objective has to be translated into the cost function of the
MPCC controller. The formulation discussed hereafter is taken from the research in [9] and
slightly modified for the application of this thesis.

Reference path The reference path of the MPCC controller is given by a set of reference
points determining by the position and yaw angle of the quadrotor. The reference points are
translated into a reference path using spline interpolation.

Progress along the path The progress along the path is described by a variable sk. The
desired path is parameterised by s. For a given longitudinal vehicle speed vk= ∥vk∥2 at time
step k, the approximate progress along the reference path can be described by:

sk+1 = sk + vkTs. (5-9)

with sampling time Ts. To make progress along the path and track a desired speed, a cost is
defined that penalizes the deviation of the quadrotor speed vk from a reference velocity vref,
i.e.,

Jspeed (xk) = Qv (vref − vk)2 (5-10)

with Qv a design weight.

Tracking error For tracking of the reference path, a contour error ec and lag error el are
defined and combined in an error vector:

ek =
[
êl (xk, sk)
êc (xk, sk)

]
. (5-11)
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Figure 5-1: Contour and lag error and their approximations in 2D, inspired by [22].

The contour and lag error are approximated to define the distance to the reference path,
given the progress along the path sk as shown in Figure 5-1. The tracking cost is designed to
minimize the distance to the path:

Jtracking(xk, sk) = eTkQϵek, (5-12)

where Qϵ is a design weight.

Penalizing the inputs Additionally, the inputs are penalized to discourage large control
inputs with

Jinput (uk) = uTkQuuk, (5-13)

where Qu is a design weight.

Total cost The total stage cost of the MPCC is

JMPCC (xk,uk, sk) := Jtracking (xk, sk) + Jspeed (xk) + Jinput (uk) . (5-14)

The stage cost is evaluated at the mean of the Gaussian state distribution.

5-1-3 Obstacle avoidance constraints

To guarantee that the generated trajectory is feasible, given the obstacle space, obstacle
avoidance constraints have to be enforced such that:

B (xk,Σx
k) ∩ Co = ∅ (5-15)

where B(xk,Σx
k) represents the occupancy volume of the quadrotor and Co denotes the collision

region with surrounding obstacles. As the dynamics model provides an uncertainty of the state
distribution, this uncertainty is taken into account in the constraint formulation to guarantee
more robust obstacle avoidance in contrast to using only the nominal state. For obstacle
avoidance, the relevant uncertainties are the uncertainties in the positional states:

Σp
k =

[
σx σxy
σyx σyy

]
. (5-16)
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The uncertainty of the position Σp
k is extracted from the propagated uncertainty at each

state k. Two types of constraints are considered in this work and compared in terms of their
performance: ellipsoidal constraints and Gaussian constraints. Both types of constraints
assume static, circular obstacles.
Ellipsoidal constraints
The uncertainty in the position can be used to construct an uncertain ellipsoidal bound
around the quadrotor. The major axis a and minor axis b of the ellipsoid and its rotation ψ
can be found using a singular value decomposition of Σp

k [57]. To guarantee a certain collision
probability, the ellipsoid is scaled given the confidence interval χ. The obstacle avoidance
constraint at each state is [57]:

cok(xk) =
[
∆xok
∆yok

]T

R(ψ)T
[ 1
α2 0
0 1

β2

]
R(ψ)

[
∆xok
∆yok

]
> 1, ∀o ∈ Io (5-17)

where ∆xokand ∆yok is the distance between the quadrotor and the obstacle in x and y, respec-
tively, for each obstacle in the obstacle space Io. The rotation matrix R(ψ) is describing the
rotation of the uncertain ellipsoid. The quadrotor radius rquad is enlarged by the uncertain
ellipsoid such that the total clearances α and β, are given by:

α = √
χ · a+ ro + rquad (5-18a)

β = √
χ · b+ ro + rquad (5-18b)

with obstacle radius ro.
Chance constraints
Instead of converting the Gaussian uncertainties into hard ellipsoidal boundaries using sigma
confidence intervals, the Gaussian distribution of the uncertainty can be directly transformed
into constraints using a chance constraint formulation which is derived by the authors in [11].
The chance constraints are defined as a collision probability:

Pr (xk /∈ Co) ≥ 1 − δo,∀o ∈ Io (5-19)

Pr
(
aTo (p − po) ≤ b

)
(5-20)

with collision probability δo and collision region with each obstacle Co. The collision region
is given as an enlarged half space of the actual collision region:

C̃o :=
{

x | aTo (p − po) ≤ b
}
, (5-21)

where ao = (p̂ − po) / ∥p̂ − po∥ with uncertain quadrotor position

p ∼ N
(
p̂,Σp

k

)
, (5-22)

the deterministic obstacle position po and nominal distance between the obstacle and quadro-
tor b = rquad + ro. The chance constraints can be reformulated into deterministic ones using
the following relation in [34]:

Pr
(
aTx ≤ b

)
= 1

2 + 1
2 erf

(
b− aT x̂√
2aT

∑
a

)
(5-23)
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where erf denotes the error function:

erf(x) = 2√
π

∫ x

0
e−t2dt. (5-24)

This deterministic chance constraints take the form:

aTo (p̂ − po) − b ≥ erf−1 (1 − 2δo)
√

2aTo
(
Σp
k

)
ao,∀o ∈ Io. (5-25)

Soft constraints

To ensure feasibility of the optimization problem, the obstacle avoidance constraints are
formulated as soft constraints. A slack variable ξ≥ 0 is added to the constraints. Using a
linear quadratic soft constraint formulation, an additional cost Jξ = ∥ξ∥2

qξ
+ cξξ for the slack

variable is defined. For sufficiently large cξ the soft constraint formulation is exact, if feasible
[58].

5-1-4 Resulting controller formulation

Combining the dynamics model, the cost function and obstacle avoidance constraints with
the standard MPC formulation, the following controller formulation is implemented:

J ∗
MPCC = min

x,u,s
JMPCC(µx,u, s) (5-26a)

s.t. µx
0 = µx(0), (5-26b)

s0 = s(0), (5-26c)

µx
k+1 = f(µx

k ,uk) +Bd
(
µd
k (µp

k ) + wk

)
(5-26d)

Σx
k+1 = [ABd]

[
Σx
k Σxd

k ,

Σdx
k Σd

k + Σw
k

]
[ABd]T , (5-26e)

sk+1 = sk + vkTs, (5-26f)
B (xk,Σx

k) ∩ Co = ∅, (5-26g)
µx
k ∈ X , (5-26h)

uk ∈ U , (5-26i)
0 ≤ sk ≤ L (5-26j)
k = 0, . . . , Np − 1 (5-26k)

with cost function

JMPCC(x,u, s) =
Np−1∑
k=0

JMPCC(µx
k ,uk, sk) + JMPCC(µx

Np
,uNp , sNp). (5-27)

In addition to the obstacle avoidance constraints, this formulation also sets input and state
constraints as well as a path constraint. Details on the constraints and tuning parameters are
given in the next part of this section, describing the controller implementation.
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5-2 Data-driven controller implementation

With the resulting data-driven MPCC formulation, an optimization problem is solved to find
the control inputs to the quadrotor. This section discusses the implementation of the optimal
control problem, the tuned parameters and chosen state constraints and the system interface
to control the quadrotor in simulation.

5-2-1 Parameters of the controller implementation

The data-driven MPCC problem is implemented with a prediction horizon of Np= 20 at
a sampling rate of Ts = 50ms, resulting in a 1s look-ahead. The underlying optimization
problem is solved with the interior-point-based Nonlinear Programming (NLP) solver from
FORCES PRO [59]. The maximum number of solver iterations is set to 300.

Adding the GP model to the solver As FORCES PRO does not support an interface
with the GPyTorch library yet, the GP model prediction is implemented by hand, extracting
the variational parameters u, µu, and Σu from the trained model in GPyTorch. The mean
GP prediction is added to the nominal system dynamics. The state uncertainty is propagated
outside of the solver, based on the predicted value at the previous MPCC iteration, and set
as a fixed parameter. This choice is made to reduce the optimization variables of the solver
and to save computation time. Furthermore, numerical issues appear in the solver when
having the state uncertainty as an optimization variable inside the constraints. The solver
lacks transparency into its internal processes, leading to speculation about the cause of the
issue. It is recommended to investigate this further using a more insightful open-source solver
or studying the research by [60], which suggests a specific formulation of the optimization
problem that incorporates the uncertainty within the solver.

Input and state constraints The input and state constraints are given by:

U =

 u ∈ Rm
(ϕc, θc) ∈ [−40, 40]deg
ψ̇c ∈ [−10, 10]deg/s
Tc ∈ [5, 15]m/s2

 , (5-28)

X =


x ∈ Rn

(x, y) ∈ [−∞,∞]m
z ∈ [−1, 1]m
(vx, vy, vz) ∈ [−10, 10]m/s
(ϕ, θ) ∈ [−50, 50]deg
ψ̇ ∈ [−15, 15]deg/s


. (5-29)

The path constraint is dependent on the scenario and can therefore be set to a high value:

U = {s ∈ R | s ∈ [0, 1e4]m} (5-30)

Furthermore, the controller parameters listed in Table 5-1 are used.

5-2-2 Simulation interface

The output of the optimal control problem is interfaced with the simple simulation environ-
ment described in section 4-2-2, visualized in RViz. The control commands generated by
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Table 5-1: MPCC parameters.

Name Value
Roll and pitch input weight ϵϕ and ϵθ 0.5
Yaw rate input weight ϵψ̇ 0.01
Thrust input weight ϵT 0.01
Lag error weight ϵl 3.0
Contour error weight ϵc 1.0
Reference velocity weight ϵv 1.0
Reference velocity vref 2.0
Slack weight qξ 1000
Slack weight cξ 100

the solver are translated into Robot Operating System (ROS) commands. The quadrotor is
subject to the same wind disturbances that are trained previously. In addition, the environ-
ment is now populated with static obstacles whose locations are assumed to be known. The
quadrotor in simulation has an outer radius of rquad = 0.325m. To demonstrate the validity of
the approach the quadrotor is flying a lemniscate trajectory with one circular obstacle placed
at po = [0, 0] with a radius robst = 0.5m. This scenario is shown in Figure 5-2a.

5-3 Data-driven controller validation

To show the validity of the data driven MPCC motion planner, several scenarios are tested
for the described simulation environment. First, the GP mean is added to the nominal model
to assess its impact on tracking performance. Second, the uncertainty is added to the model
together with ellipsoidal and chance constraints for obstacle avoidance. A comparison for both
types of constraints is presented. Third, robustness of the controller formulation is validated.

5-3-1 Tracking performance

The lemniscate trajectory is tracked by giving the controller path way points along the trajec-
tory as a reference. Then, the quadrotor is navigated through the environment three times.
First, without any wind in the environment and using only the nominal model of the quadro-
tor. Second, with wind acting on the quadrotor but without considering the GP model, and,
third, with wind acting on the quadrotor and propagating the mean of the learned wind dis-
turbance map within the controller formulation. These scenarios are tested for the two types
of wind fields trained in the previous chapter.

Visual comparison The results are shown in Figure 5-3 for the wind field pointing in x-
direction and in Figure 5-4 for the two crossing fans. If there is no wind acting on the
quadrotor, it is perfectly capable of tracking the reference path, due to the perfectly match-
ing models. When wind is acting on the quadrotor and it is not considered in the model,
tracking the reference path becomes significantly worse, particularly in regions of high wind
speeds. When adding the GP model, the quadrotor tracks the reference more accurately
again, however worse than in the case without any present winds. This can be explained
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(a) Simple obstacle scenario with one obstacle.

(b) Complex obstacle scenario with three obstacles.

Figure 5-2: Quadrotor following a lemniscate reference path while avoiding circular obstacles
visualized in red. The quadrotor is represented by the 3D coordinate system indicating it’s position
and orientation, the pink arrow shows the wind acting on the quadrotor at any given position.
The uncertainty of the quadrotor position is propagated for the training horizon and shown in
cyan.

by the fact that the mean of the trained wind disturbance map and the actual wind in the
environment do not match at all locations. Where the difference is higher, as shown in Figure
4-12, tracking of the reference is less accurate.

Table 5-2: Distance between the reference path and nearest point on the trajectory flown by the
quadrotor with and without the Gaussian process model.

Wind in x-direction Crossing fans

Wind - no GP 0.126 0.150
Wind - GP 0.070 0.053

Numerical comparison Improved tracking is also validated numerically by computing the
distance between the reference path and nearest point on the trajectory flown by the quadro-
tor, summarized in Table 5-2. By adding the mean of the GP model, tracking becomes around
two to three times as accurate, showing superiority of the data-driven model.
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Figure 5-3: Tracking of the lemniscate reference path with and without the GP model for the
wind field pointing in x-direction.
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Figure 5-4: Tracking of the lemniscate reference path with and without the GP model for the
wind field with two crossing fans.

5-3-2 Ellipsoidal versus chance constraints

Apart from including the mean information to make tracking more accurate, the uncertainty
information of the GP model can be used to make obstacle avoidance more robust. In the
following, the ellipsoidal and chance constraints for obstacle avoidance discussed in section
5-1-3 are compared for the more complex wind field with the crossing fans. In both cases,
the collision probability is set to 0.5%, matching the confidence interval of 99.5%, discussed
in section 4-4-3. The quadrotor is navigated around the obstacle at p = (0, 0), for which the
relevant path of the quadrotor is shown for ellipsoidal constraints in Figure 5-5a and chance
constraints in Figure 5-5b.
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(a) Ellipsoidal constraints. The quadrotor
path and outer radius are shown in blue.
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(b) Chance constraints. The quadrotor path
and outer radius are shown in red.

Figure 5-5: Quadrotor navigating around the obstacle with the two types of constraints active.
The circular obstacle is shown in gray.
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Figure 5-6: Propagation of the quadrotor path and uncertain ellipsoidal bound around the
quadrotor for one solver iteration over the prediction horizon with ellipsoidal constraints and a
collision probability of 0.5%. The quadrotor path and outer radius are shown in blue, the obstacle
is shown in gray.

Conservatism of the constraints Taking a closer look at the propagated uncertainty for
one solver iteration over the entire horizon of Np = 20, a difference between the two types
of constraints can be noted. Both Figures 5-6 and 5-7 show the propagated bound around
the quadrotor, resulting from the sum of the quadrotor radius and the uncertain ellipsoid for
a collision probability of 0.5%. With the ellipsoidal constraints in Figure 5-6, the uncertain
bounds are exactly tangent to the obstacle, as a hard constraint bound is used. However, with
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the chance constraints in Figure 5-7, the uncertain ellipsoidal bounds are intersecting with
the obstacle. While this seems to be a break of the constraint at first, it can be shown that
in both cases no constraints are violated over the horizon, guaranteeing the same theoretic
collision probability. This is because the chance constraints provide a probabilistic guarantee
rather than a strict requirement, which makes them less conservative than the ellipsoidal
constraints.
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Figure 5-7: Propagation of the quadrotor path and uncertain ellipsoidal bound around the
quadrotor for one solver iteration over the prediction horizon with chance constraints. As the
stochastic uncertainty cannot be visualized the uncertain ellipsoidal bound for a collision proba-
bility of 0.5% is shown. The quadrotor path and outer radius are shown in red, the obstacle is
shown in gray.

Chosen constraint type As the ultimate goal of this project is to navigate the quadrotor
in crowded environments, having less conservative constraints is crucial for finding a feasi-
ble path. In subsequent sections, the solver is therefore always implemented with chance
constraints.

5-3-3 Robustness

The robustness of the MPCC controller is evaluated by comparing its nominal and GP-based
versions in a more complex scenario with additional obstacles, as shown in Figure 5-2b for the
wind field with the crossing fans. The robustness of the controllers is measured by examining
the slack ξ, which represents the degree of constraint violation with respect to the obstacles.

Nominal MPCC The path of the quadrotor with the nominal MPCC controller is shown in
Figure 5-8. Computing the mean of the slack variable, it is ξ = 3.13e− 4, indicating several
constraint violations. When checking for the number of constraint violations at the initial
state, there are a total of seven constraint violations. In a real scenario, this would result in
several crashes of the quadrotor with obstacles in the environment.

GP-based MPCC The path of the quadrotor with the GP-based MPCC controller is shown
in Figure 5-9. It can be noted, that the quadrotor chose to take a different path taking into
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Figure 5-8: Quadrotor navigating around multiple obstacles with the nominal MPCC controller.
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Figure 5-9: Quadrotor navigating around multiple obstacles with the GP-based MPCC controller.

account the mean and uncertainty of the GP model. As the quadrotor flies past the obstacle
on the side where the wind is blowing, it needs less control input, which likely explains the
solver’s choice to pass on this side. The mean of the slack variable in this case is ξ = 2.91e−12.
As this is within orders of the numerical accuracy of the solver, no constraints are violated.
With the GP model and chance constraints in place the quadrotor therefore manages to
successfully navigate around the obstacles without any crashes.

5-3-4 Solver times

To discuss the real-time capabilities of the GP based controller, the solving times of the
optimization and control loop are compared for the two experiments performed in the previous
section: one with the MPCC formulation including the GP model with uncertainty and one
with the MPCC formulation using only the nominal model. Here, the control loop refers to
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the total time that passes between receiving the next state and sending the computed control
command. The optimization loops refers to the time that FORCES PRO needs to compute
the optimal control sequence. The simulations run on an Intel(R) Core(TM) i7-10510U CPU
@ 1.80GHz processor with 16GB ram and a Mesa Intel(R) UHD Graphics card without GPU
acceleration. A summary of the timing results is given in Table 5-3.

Nominal MPCC For the nominal MPCC controller, the control and optimization loop run
at similar sampling times. The optimization loop has a mean solving time of 83.2ms and the
control loop runs at a mean sampling frequency of 83.6ms. Here, the solver takes up most of
the total time needed to run the entire control loop. With this setup, the controller is not yet
capable to run in real-time at a desired sampling frequency of 20Hz. However, as the design
of the nominal MPCC controller is not the focus of this thesis, a comparison of the solving
times with the added GP model is presented, showing by how much the added GP model is
slowing down the computations.

GP-based MPCC Adding the mean of the GP model to the solver, its solving times are
in fact decreased to 61.2ms. This is most likely due to the reduced model mismatch, such
that the initial guess of the solver, which is based on the previous prediction, is closer to the
output of the solver. The added GP model does not seem to negatively effect the solving
times here. Nevertheless, the total control loop takes longer to compute with a mean solving
time of 108.9ms. This results from the propagation of the uncertainty which is done in the
control loop, based on the previous solver output. Currently, this is implemented by calling
an external Python-based node with the previous positional states, which then sends back
the propagation of the uncertainty to the MPCC implementation in C++. The service call
is what takes up most of the computation time and can be avoided by implementing the
uncertainty propagation together with the MPCC in C++. The uncertainty is then set as a
parameter of the solver before the optimization loop.

Table 5-3: Solving times of the optimization and control loop of the MPCC controller with and
without the GP model.

Nominal MPCC GP-based MPCC
Optimization loop 83.2ms 61.2ms
Control loop 83.6ms 108.9ms

Discussion Overall, for this setup the solver is not capable yet of running real-time at a
sampling frequency of 50ms. However, a large part of this is caused by the nominal MPCC
implementation being too slow. Adding the mean of the GP model, for the current solving
times, does not negatively affect the optimization loop. However, propagating the uncertainty
outside of the solver still causes a slow down of the solver of around 40ms.

Speed-up of the computations Most importantly, the nominal computation times need to
be sped up. As the real quadrotor supports GPU acceleration, this might already speed up
the computation times. The other bottleneck of the computations is the propagation of the
uncertainties. To speed up the compuation, it is recommended to implement the propagation
of uncertainty inside the MPCC implementation in C++. Moreover, the researchers in [60]
suggest an optimal way to solve the problem of propagating the uncertainty inside the solver.
They make use of the acados [61] solver, which also supports a Python interface to directly
include the trained GP model from GPyTorch, unlike FORCES PRO.
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5-4 Summary and discussion

MPCC as presented by the authors in [9], offers a way to follow a reference path in an
optimal way, solving the trajectory generation and tracking problem simultaneously. The
motion planner and controller requires a system model. If the model is not accurate, such as
when the quadrotor is subject to wind, the controller performance will be poor and it may
fail in the presence of obstacles, leading to a crash in a real-world scenario.

By incorporating a data-driven approach, using a GP model of the wind that is integrated
into the MPCC controller, it is demonstrated that the quadrotor not only exhibits improved
tracking but also increased robustness when avoiding obstacles in the environment.

Extending the MPCC controller with the GP model of the wind derived in chapter 4 poses
various challenges. These challenges include propagating the uncertain model over future
states, calculating the cost of the MPCC controller using a probabilistic model and incorpo-
rating uncertainty for obstacle avoidance. Solutions to these challenges are provided in this
chapter. Additionally, it is demonstrated that a chance constraint formulation is less conser-
vative for obstacle avoidance and effectively utilizes the uncertainty information provided by
the model, making the implementation particularly attractive for cluttered environments.

However, the real-time capability of the approach has not yet been fully validated. It is found
that incorporating the mean propagation of the GP model does not slow down the solver,
however, even the solving times of the nominal MPCC are currently too large. Including
uncertainty in the model further slows down the computations. Improving computation speed
is recommended for future research to validate this approach on a physical system. Methods
to improve computation times are discussed in section 5-3-4.
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Chapter 6

Performance comparison

After validating the data-driven Model Predictive Contouring Control (MPCC) algorithm, it
is compared to the external forces resilient safe motion planning algorithm by the authors in
[8] to benchmark the developed algorithm in existing literature.

6-1 Comparative method

The data-driven MPCC algorithm aims to solve two main issues in quadrotor flight: First,
ensuring safe flight by considering external forces and their uncertainty, and second, navigating
the quadrotor through a populated environment given the information on the external force.
For the comparison, a method is chosen that is solving the same two issues: The external
forces resilient safe motion planning algorithm by the authors in [8].
Motion planning and control The comparative method [8] solves the motion planning and
control problem in two separate steps. Given a goal point, a front-end A∗ path finding algo-
rithm, searches for a feasible trajectory, considering a nominal, external force and simplified
quadrotor model. In a second step, the reference trajectory is tracked by a robust Nonlinear
Model Predictive Control (NMPC) controller, that is also considering the current, nominal
force and a constant, outer bound of the uncertainty. Using feedback control, the authors in
[8] construct an uncertain ellipsoid around the quadrotor using forward reachable sets.
Force estimation and re-planning The external force is obtained by VID-Fusion [62], and
therefore updated online. When the variance of the external force is larger than the allowed
bound, the force is too fierce for the NMPC to find a solution, given the current initial state
and reference trajectory. In that case, the front-end path finder re-plans the trajectory with
the new, current force estimate. Details on the formulation can be found in [8]. A system
overview diagram of the re-planning framework is shown in Figure 6-1.
Theoretic comparison A theoretic comparison of the data-driven MPCC method of this
thesis and the method by the authors in [8] is summarized in Table 6-1. The main differences
concern the way the information on the external force is obtained and processed in the al-
gorithm and the (separate) motion planning and controller formulation. While the external
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Figure 6-1: System overview diagram of the re-planning framework of the external forces resilient
motion planning algorithm [8].

forces resilient motion planner obtains information on the force online, and uses it instantly,
the data-driven MPCC controller gathers information on the force and processes it into a
model offline. This in turn influences the way the force information is integrated into the
controller. As the Gaussian Process (GP) model provides a stochastic uncertain bound, this
information can be used in the motion planner and controller formulating chance constraints.
The external forces resilient method, on the other hand, only has the nominal information on
the force available, with the uncertain bound constructed by hand, resulting in an ellipsoidal
constraint formulation. Moreover, the representation of the obstacles is different for both
planners. While the external forces resilient planner uses a point cloud representation of the
obstacles, the GP-based MPCC has a geometric shape of the obstacles available. Having a
point-cloud information is in this case beneficial for real-world experiments where the exact
shape of the obstacle might not be known.

Table 6-1: Theoretic comparison of the external forces resilient planner and the GP-based MPCC.

External Forces Data-driven MPCC

Online force estimation Offline force estimation
No external force model External force model
Force estimation from VID-fusion Force estimation from model mismatch
Hard, constant noise bound Stochastic, dynamic noise bound
Feedback in controller No feedback in controller
Ellipsoidal constraints Chance constraints
Trajectory re-plan only when force too high Constant re-planning
Separate trajectory generation and control Trajectory generation and control combined
Point cloud representation of obstacles Geometric description of obstacles
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6-2 Scenario

The two methods are compared for the same scenario in the simple simulation environment,
displayed in RViz in Figure 6-2. The quadrotor is given goal points between (0,−5) and (0, 5),
such that it is always traveling in y−direction. The environment on the way is populated
with three, circular obstacles, at p1 = (−0.5, 2), p2 = (0.7, 0) and p3 = (−1, 2) with a radius
of r1 = 0.25, r2 = 0.35 and r3 = 0.25, respectively. Additionally, a wind force is acting on the
quadrotor. The comparative method and the GP-based MPCC are tested with wind pointing
in x-direction and the two crossing fans.

(a) External forces resilient planner. The
obstacles are represented by a point cloud
shown in white.

(b) GP-based MPCC. The obstacles are
represented by a geometric shape shown in
red.

Figure 6-2: Quadrotor traveling between the two goal points with wind acting on it and ob-
stacles populating the environment for the two types of navigation algorithms. The quadrotor is
represented by the 3D coordinate system indicating it’s position and orientation, the pink arrow
shows the wind acting on the quadrotor at any given position. The uncertainty of the quadrotor
position is propagated for the training horizon and shown in cyan.

Modifications to the external forces resilient planner The external forces resilient
planner is provided with its own Gazebo simulation environment. To benchmark it against
the proposed algorithm, which uses a simplified environment with perfectly matching models,
the simulation interface is changed to the simple RViz environment with likewise perfectly
matching models. This also reduces the problem from 3D to 2.5D. Moreover, the force esti-
mation step with VID-fusion is skipped and a perfect force estimation is directly provided for
the planner. The force estimate is updated at the same sampling frequency as the simulation
at 50ms. The obstacles are provided as a global point cloud. The quadrotor radius is set at
rquad = 0.27m with an inflate ratio of 1.2 such that the resulting radius equals the radius of
the quadrotor used in the GP-based controller.
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6-3 Experiment results

With the scenarios described above, several experiments are performed to compare the exter-
nal forces resilient planner against the proposed algorithm. The two methods are evaluated
in terms of the generated trajectory, the conservatism and reliability.

6-3-1 External forces resilient safe motion planner

First, the external forces resilient safe motion planner is tested with the wind pointing in
x-direction. From the described algorithm, it is expected that the path is re-planned several
times, when the magnitude of the wind disturbance exceeds the predefined bound of 0.5m s−1.
Moreover, by arranging the obstacles in the chosen way, the conservatism of the algorithm is
tested.

Quadrotor path In Figure 6-3, the resulting quadrotor trajectory including the radius of
the quadrotor is shown for the quadrotor travelling in both positive and negative y-direction.

(a) Quadrotor travelling in positive y-
direction.

(b) Quadrotor travelling in negative y-
direction.

Figure 6-3: Trajectory generated by the external forces resilient safe motion planner for the
quadrotor travelling from the start point to the end goal. The dotted green lines show the
planned path by the front-end planner. Each black mark indicates the point along the trajectory,
where the path is re-planned and also marks the start of the newly planned path.

Travelling in positive y-direction Initially, the front-end path planner is planning a path
through the obstacles, which is the shortest way to reach the goal. However, when travelling
along the path, the quadrotor encounters the wind disturbance which cause a re-planning of
the path. Moreover, around the bottom left obstacle, the path is re-planned multiple times as
the planned quadrotor trajectory collides, when moving through the obstacles. The resulting
quadrotor trajectory is planned around the obstacles, leading to a safe but more conservative
way to reach the goal point.
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Travelling in negative y-direction Traveling in the other direction, the algorithm chooses
the shorter way through the obstacles. However, when the wind disturbances start acting on
the quadrotor this is nearly resulting in a crash. A lot of re-planning iterations are needed to
find a feasible path to the goal point, significantly slowing down the quadrotor near the top
right obstacle. Finally, the quadrotor finds a feasible path, reaching the goal point.

(a) Quadrotor ravelling in positive y-
direction.

(b) Quadrotor travelling in negative y-
direction.

Figure 6-4: Propagated uncertain ellipsoids over the planning horizon by the external forces
resilient safe motion planner at one point of the total trajectory shown in blue.

Conservatism and uncertainty The reason for the quadrotor choosing the more conserva-
tive path to the goal and multiple re-planning iterations in the second case can be explained by
the uncertain bounds shown in Figure 6-4. Propagating the uncertain bound results in large
uncertainties along the predicted trajectory over one iteration, making it more complicated
for the NMPC controller to find a feasible trajectory.

More complex wind fields Moreover, the external forces resilient safe motion planner is
tested for the force field with two crossing fans. In that case, the change in force is too large,
such that the re-planning is only triggered once the quadrotor is already too close to the
obstacle in order to find a feasible path. The algorithm fails, getting stuck in the re-planning
loop, as shown in Figure 6-5.

6-3-2 Data-driven MPCC

The same experiments are repeated with the data-driven MPCC approach.

Quadrotor path As the data-driven MPCC controller solves the problem of trajectory plan-
ning and control simultaneously, and both the obstacle location and wind field are known be-
forehand, the trajectory is planned online as part of the optimization problem. The resulting
quadrotor trajectories are shown in Figure 6-6. In both travelling directions the algorithm
chooses the straight path to the goal, without any collisions.
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Figure 6-5: Quadrotor getting stuck in the re-planning framework with the wind field generated
by two crossing fans.

(a) Quadrotor travelling in positive y-
direction.

(b) Quadrotor travelling in negative y-
direction.

Figure 6-6: Trajectory generated by the GP-based MPCC controller for the quadrotor travelling
from the start point to the end goal. As the trajectory is not planned prior only the quadrotor
trajectory and radius are shown.

Conservatism As the GP describes the uncertainty of the wind field in a probabilistic way,
the uncertain bounds are significantly smaller than for the forces resilient planner (see Figure
6-7). This in combination with the use of a chance constraint formulation to generate an
optimal trajectory through the obstacles, results in a less conservative trajectory through the
obstacles without having to avoid the obstacles by a large margin.

Other wind fields Repeating the experiment for the wind field with crossing fans yields
similar results. The force of the wind and its uncertainty are known beforehand, such that
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(a) Quadrotor travelling in positive y-
direction.

(b) Quadrotor travelling in negative y-
direction.

Figure 6-7: Propagated uncertain ellipsoids over one planning horizon by the GP-based MPCC
controller at one point of the total trajectory shown in blue.

the quadrotor is able to find a feasible trajectory without any crashes.

6-3-3 Experimental comparison

The experiments validate the theoretical comparison. As the external forces resilient planner
only reacts to instantaneous forces, the situation occurs where this information is obtained
too late, leading to infeasibility of the approach. The GP-based motion planner, on the other
hand, has the information on the wind available beforehand, allowing it to take the evolution
of the force acting on the quadrotor into account during planning and avoiding a deadlock.
However, this comparison also has to be taken with caution for two reasons. On one hand,
the force estimate is currently only updated at a rate of 20Hz, which is much slower than in
the Gazebo simulation environment proposed in the original paper [8]. Failure of the forces
resilient planner may therefore not only result from too fierce changes in force but also the
decreased update frequency of the force. On the other hand, the GP-based MPCC does
an exploration of the environment beforehand, providing it information that would not be
available in case of online exploration. The online capability is one of the major advantages of
the forces-resilient planner. For a fair comparison, it is recommended to extend the GP-based
MPCC to an online learning setup. Still, one would anticipate that the online GP-based
MPCC would outperform the forces resilient planner, given that it offers a force model that
enables predicting into the future. Moreover, for now perfect force information is assumed for
the forces resilient planner, which will not be the case when using VID-fusion measurements,
that decrease the accuracy of the planner.

Conservatism Moreover, it is validated experimentally that the GP-based MPCC is less
conservative than the forces resilient planner despite the missing feedback in the control law
that could help contain the uncertainty even more. It is one of the main advantages of the
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GP-model that it provides and estimate of the uncertainty, which is generally less conservative
than a hand-designed uncertain bound. It is also already shown in the previous chapter that
the chance constraint formulation is less conservative than the ellipsoidal constraints used in
the forces resilient planner.

Complex wind fields Finally, it is also shown that combining the motion planner and
controller into one optimization problem avoids the re-planning framework which can cause
the quadrotor to get stuck or requires a lot of re-planning iterations, as is the case for the
forces resilient planner. Nevertheless, the current formulation of the Optimal Control Problem
(OCP) also causes the quadrotor to come very close to the obstacles. A sufficient safety margin
is therefore recommended in a real-world setup.

6-4 Summary and discussion

Comparing the proposed GP-based motion planner to the current state-of-the-art external
forces resilient safe motion planner by [8] shows the potential and areas for improvement of
the proposed GP method.

It is shown that providing a GP model of the wind can outperform methods that only react
to the force once it has been observed, especially in case of more rapidly changing winds.
However, for a fair comparison it is crucial to extent the current method to online learning.
The GP-based motion planner has the potential to be less conservative, which is a huge benefit
in crowded environments, while avoiding constant re-planning. It even has the potential to
become less conservative by including feedback into the controller. Further research should
also include validation of the method in more complex simulation environments and real-world
scenarios.
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Chapter 7

Conclusions and future work

This report concludes by summarizing the results and drawing main findings and conclusions
from the discussed results. The limitations of the current implementation are highlighted and
recommendations for improvement are provided for future work.

7-1 Summary

One of the main challenges in developing autonomous quadrotors that can execute complex
missions is ensuring their safe navigation in real-world conditions, particularly in cluttered
and complex environments like forests or urban areas where they are exposed to external wind
disturbances. This research aims to improve the state of the art in safe quadrotor navigation
in windy environments by using a Gaussian Process (GP) model to model wind disturbances
and incorporating the learned model into a state-of-the-art Model Predictive Contouring
Control (MPCC) [9] framework. The research is novel in that it is the first to validate the use
of GP’s to model external wind disturbances using quadrotor state information. Additionally,
by incorporating the trained GP model into the MPCC controller, it is possible to improve
the performance and robustness of the controller, resulting in improved trajectory generation
and tracking.

The MPCC controller is based on a model of the quadrotor, and the GP only captures
differences in the model caused by external disturbances. Therefore, a nominal model of
the quadrotor is derived using first principle modeling techniques. This research is the first
to work with the Hovergames platform and make use of the attitude controller on board of
the quadrotor. A first-order approximation of the attitude dynamics model is identified by
sending step signals to the quadrotor and using the data to identify the model parameters for
the Gazebo simulation and the real-world platform. Additionally, a linear thrust dynamics
model is identified to convert the Pulse-Width Modulation (PWM) signal to the quadrotor
into an acceleration. The attitude dynamics model has very good fit results, verifying that a
first-order model is sufficient to describe the attitude dynamics. However, the thrust dynamics
model fails to capture the underlying dynamics particularly in real-world experiments. While
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currently there is no focus on the z-axis and the MPCC can compensate for some model
mismatch, future investigations should be conducted.
Based on the derived nominal model, the GP disturbance model is trained. Specifically, a
wind disturbance map is trained with the quadrotor position as input and wind disturbance
as output. The wind disturbance is estimated from the difference between the model’s predic-
tion at the next state and the actual next state. In a simple simulation with perfect matching
models, the model mismatch can directly be attributed to the measured disturbance. Collect-
ing the data through an optimal experiment design using Active Learning (AL), exploration
times are reduced and overall uncertainty of the model is decreased. To reduce computation
times, a sparse GP approach is used, making it feasible for use in subsequent controllers.
The relevant training parameters such as the kernel, batch, and epoch size are discussed,
and the trained disturbance map for two wind scenarios is provided for use in subsequent
sections. The trained disturbance map is able to capture the actual wind disturbances with
slight model mismatch in areas of rapidly changing wind. Despite this, all disturbances are
captured within the uncertain bounds, with the exception of some extreme spikes in the data.
Using a sparse GP approach can decrease computation times and make it usable for future
controllers, but it may also limit the expressiveness of the model in capturing all spikes in the
data. These extreme spikes, however, are unlikely to occur in real-world scenarios.
The trained wind disturbance map, along with the nominal model, is implemented in the
MPCC to consider both the mean and uncertainty of the resulting probabilistic model. The
uncertainty is approximately propagated using successive linearization and included into the
MPCC controller through the use of ellipsoidal and chance constraints. Chance constraints
are chosen to continue with for this research as they are shown to be less conservative. This
implementation of the GP-based MPCC is shown to improve tracking and increases robustness
of the motion planner and controller during obstacle avoidance. However, it should be noted
that several assumptions or simplifications are made within the entire implementation, such
as using a discrete model, propagating the uncertainty using linearization and propagating the
uncertainty outside of the solver, which introduce other sources of uncertainty into the model.
These should be considered during real-world applications by including a safety margin or
increasing the process noise. Unfortunately, the real-time feasibility of the approach on the
machine used to run the experiments has not yet been proven. This is mainly due to the
original MPCC implementation not being real-time feasible, and also because propagating
the uncertainty adds significant computation times to the controller.
The proposed GP-based MPCC implementation is compared to the external forces resilient
safe motion planner proposed in [8] which is the state of the art for safe quadrotor naviga-
tion in windy and cluttered environments. The external forces resilient safe motion planner
uses an external force estimator to estimate instantaneous forces acting on the quadrotor
and combines motion planning and robust Model Predictive Control (MPC) in a re-planning
framework to generate safe trajectories given information on the external force. When both
navigation algorithms are tested in the same scenario, it is observed that the external forces
resilient safe planner struggles with rapidly changing wind conditions. In contrast, the GP-
based MPCC controller, which uses a trained disturbance map, performs well and does not
show any difficulties. However, for a fair comparison, the GP-based MPCC controller should
also be implemented online. If the GP-based MPCC controller is implemented online, it is
still expected to perform better than the external forces resilient planner as it has access
to a model of the disturbance and information about it before it can be encountered. Ad-
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ditionally, the resilient planner, despite its feedback in the controller, is more conservative,
creating larger safety margins and stricter constraints, resulting in the controller taking a
safer, longer route to reach the goal points in cluttered environments, rather than the direct
route. This highlights the superior performance of the GP-based MPCC approach in cluttered
environments.

7-2 Conclusions

This research shows that Gaussian Processes (GP) can effectively model the external wind
disturbance map, even in the presence of complex wind conditions, using a simple simulation.
Additionally, the optimal experiment design developed for gathering data on the wind distur-
bance map may have other potential applications. It is also found that incorporating the GP
model into the controller does not significantly increase computation time, making the nomi-
nal GP model feasible for real-time implementation. The thesis also provides an explanation
of how GP can be integrated into the MPCC controller to improve tracking and increase ro-
bustness during obstacle avoidance, and includes validation of the theoretical design. Initial
comparisons with state-of-the-art methods suggest that the GP-based MPCC controller has
the potential to handle more complex wind disturbances while being less conservative.

Nevertheless, this research also has some drawbacks to consider. One limitation is that the
simulation used is very simple and does not fully reflect real-world scenarios. As noted earlier,
the identification of the thrust model suggests that a perfect match with the real system cannot
be expected. Also, the wind fields in the real-world will likely be more complex and may also
change over time. The research has also made a number of simplifying assumptions, which
could affect the results when applied to real-world scenarios, particularly when it comes to
strict obstacle avoidance. Another issue to keep in mind is that the long computation times
of the MPCC with uncertainty can be a challenge, particularly when uncertainty is included.
Additionally, this research uses offline learning methods, which are not fair to compare with
online learning.

The current implementation of this research serves as a first step towards the use of a GP
model for wind disturbances in quadrotor flight. It is a feasibility study that shows that
it is generally possible to use GP to model wind disturbances for quadrotor flight, and it
also discusses various aspects that are relevant to successfully train the disturbance map
and include it into the controller formulation. The potential of this method to improve the
performance and safety of quadrotor flight is significant. However, it should be noted that
the current implementation is very basic and not feasible for online exploration. Future work
should build on this research, with a more detailed and advanced implementation. This is
discussed hereafter.

7-3 Recommendations for future work

The following points are recommended as a follow-up on the research presented in this thesis.

Test in more complex simulation and real-world scenarios The proposed method for
training a wind disturbance map and testing the GP-based MPCC has only been validated in
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a simple simulation scenario with perfectly matching models. It is recommended to test the
method in more complex scenarios, both in simulation and on a real quadrotor platform, where
model mismatch and noise are present. Initial tests in more complex simulation environments
and real-world experiments to collect wind disturbance data indicate that the drag of the
system also needs to be identified. Additionally, it must be confirmed that estimating external
forces from state information is feasible on a physical platform, otherwise alternative force
estimators such as VID-fusion [62] should be considered. Furthermore, the algorithm should
be tested with real wind to determine if it can capture the stochastic behavior of real wind
in a model.

Ensure real-time feasibility Several steps are proposed to make the algorithm real-time
feasible. The first step is to speed up the computation of the basic MPCC by identifying the
cause of the slow computation. Secondly, the way that the uncertainty is propagated can be
sped up by integrating the uncertainty propagation code in C++. Lastly, it is recommended
to look into the algorithm presented by [60] as it provides a way to propagate the uncertainty
insight the solver while ensuring real-time feasibility. Additionally, it may be beneficial to
consider using a different solver than FORCES PRO, as the researchers in the cited paper
used the acados solver with Python.

Revisit MPCC algorithm In addition to improving the computation times of the MPCC
controller, other improvements are also recommended. To ensure the performance of the
MPCC in more realistic scenarios, it is suggested to extend the obstacle avoidance constraints
to other shapes of obstacles. Furthermore, incorporating feedback into the controller can
reduce uncertainty and further decrease conservatism. The current setup of the controller
finds the closest distance to the obstacle and barely avoids it when the path crosses through
an obstacle, which can be risky, especially if there is model mismatch. To address this, a prior
path planner can be used to construct a more realistic path, and then the GP-based MPCC
controller can be used to ensure performance and safety.

Extension to online learning methods Incorporating online learning of the GP model
into the MPCC controller would allow for the exploration of new environments and provide
a more realistic comparison to other quadrotor navigation algorithms such as the external
forces resilient planner [8]. It could also help with the reduced expressiveness of the sparse
GP model when covering less of the environment. Online learning has been implemented for
other applications such as race cars and robotic arms, see e.g. [44], [63]. Additionally, this
extension would also enable the controller to adapt to time-varying wind fields.

Explore other applications The primary objective of this research is to enhance the safety
of quadrotor navigation in windy and cluttered environments by incorporating a GP model
of the wind. Initially, a wind disturbance map is trained to demonstrate the feasibility
of the approach. However, the ultimate goal is to extend the method to include online
learning, allowing the controller to adapt to time-varying wind fields during exploration.
However, as discussed earlier, there are still several potential issues that may arise in the real-
world implementation of the proposed algorithm. Therefore, it is important to consider other
applications where the current setup of training a wind disturbance map could be useful, such
as in quadrotor swarm applications for the maintenance of wind parks [64] or firefighting [65].
In such scenarios, one or more quadrotors could explore the environment and make the wind
disturbance map available to other quadrotors, thus improving their performance and safety
when performing their task.
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Custom wind plugin

The wind plugin for the simple simulation is inspired by the wind plugin for the RotorS
simulator, whose description can be found here.

Grid format and interpolation

The wind data is defined on a specified grid in 3D, where each grid point specifies the magni-
tude of the wind in x-, y- and z-direction. The data is interpolated using a 3D interpolation
scheme as described in the wind plugin for the RotorS simulator.

Wind file text format

To specify a custom wind field, a text file is loaded that contains information about the grid
geometry and wind values. The data needed in the text file consists of:

• The smallest x-coordinate of the grid min_x

• The smallest y-coordinate of the grid min_x

• The number of grid points in x-direction n_x

• The number of grid points in y-direction n_y

• The resolution of the grid in x-direction res_x

• The resolution of the grid in y-direction res_y

• The (nz)-dimensional array of vertical_spacing_factors in z-direction. These are
float values between 0 for the lowest and 1 for the highest point.

• The altitude of each grid point contained in the lower x-y plane bottom_z
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• The altitude of each grid point contained in the upper x-y plane top_z

• The (nx × ny × nz)-dimensional array of wind speed for each grid point in x-direction
u, in y-direction v, and in z-direction w.

Code to generate fan scenario

The code to generate the fan scenario was custom written to imitate fans distributed in the
environment. It is not based on any scientific wind properties as this would be out of the scope
of this research but rather aims to imitate the fans which have a certain initial wind speed,
that decreases further away from the fan while also spreading out from the initial dimensions
of the fan. The code written supports to add as many fans as desired, by specifying the fan
properties in a list as shown in the code below. For each fan, one has to specify the position
of the fan, the size of the fan, the wind direction in x and y, the initial strength, how much
the fan can spread and also how fast the initial speed is decreased.

1 fans = {
2 ’fan1’ : {
3 "x_pos" : −10,
4 "y_pos" : 0 ,
5 "size" : 2 ,
6 "x_dir" : 0 ,
7 "y_dir" : 1 ,
8 "strength" : 5 ,
9 "spread" : 0 . 25 ,

10 "decrease" : 0 . 25 ,
11 }
12 ’fan2’ : {
13 "x_pos" : −10,
14 "y_pos" : 0 ,
15 "size" : 2 ,
16 "x_dir" : 0 ,
17 "y_dir" : 1 ,
18 "strength" : 3 ,
19 "spread" : 0 . 15 ,
20 "decrease" : 0 . 15 ,
21 }
22 }

With that information, for each fan of the list, the grid information is generated as follows
(also see the code hereafter): for the initial speed and size of the fan, a quadratic polynomial
is fitted such that it has the maximum strength at the center of the fan and is zero or negative
outside of the defined fan region. For each grid dimension (here in y, but it would equally work
for x), the polynomial is fitted and negative values are corrected to zero. Afterward, the start
and end point of the fan are increased according to the defined spread and the maximum
strength is lowered according to the defined decrease. The process of fitting a polynomial
to the new data row is repeated, until the whole x-y-grid is filled. Then, this matrix is
rotated and shifted to place the fan at the desired location with the desired rotation. For this
application the z-dimension is one, but the code could be extended to also allow rotation and
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shift in z. The data is placed in the wind speed fields u, v, and w and stored to a text file
together with the other relevant information discussed above.

1 start = − fan_parameters [ "size" ] / 2
2 end = fan_parameters [ "size" ] / 2
3 max_strength = fan_parameters [ "strength" ]
4 # For one row of the grid
5 for i in range ( n_y ) :
6 # Fit a quadratic polynomial to the start and end point
7 # with the maximum at the maximum strength value
8 x_fit = np . array ( [ start , 0 , end ] )
9 y_fit = np . array ( [ 0 , max_strength , 0 ] )

10 z = np . polyfit ( x_fit , y_fit , 2)
11 p = np . poly1d ( z )
12 # Define grid row and fit the data
13 y_in = np . arange ( min_y + res_y / 2 , min_y + dim_y + res_y / 2 , res_y )
14 y_out = p ( y_in )
15 # Correct negative values to zero
16 y_out [ y_out < 0 ] = 0
17 # Append data row to grid
18 mat = np . append ( mat , y_out )
19 # Spread the fan for next row
20 start = start − res_x ∗ fan_parameters [ "spread" ]
21 end = end + res_x ∗ fan_parameters [ "spread" ]
22 # Decrease the strength for next row
23 max_strength = max_strength − res_x ∗ fan_parameters [ "decrease" ]
24 # Reshape to marix format
25 wind_mat = np . reshape ( mat , ( n_x , n_y ) )
26 # Rotate matrix to have the correct direction of the fan
27 rot = math . atan2 ( fan_parameters [ "y_dir" ] , fan_parameters [ "x_dir" ] ) ∗ 180 /

math . pi
28 wind_mat_rot = ndimage . rotate ( wind_mat , rot , reshape=False )
29 # Shift to the correct starting position
30 max_value = np . where ( wind_mat_rot == np . amax ( wind_mat_rot ) )
31 x_shift = math . floor ( fan_parameters [ "y_pos" ] − ( max_value [ 0 ] ∗ res_x +

min_x ) ) /res_x
32 y_shift = math . floor ( fan_parameters [ "x_pos" ] − ( max_value [ 1 ] ∗ res_y +

min_y ) ) /res_y
33 wind_mat_shift = ndimage . shift ( wind_mat_rot , ( x_shift , y_shift ) )

Loading the wind field

The generated text file can be passed on the the simple simulator, which reads the file mak-
ing use of the custom written wind plugin. For future projects the wind plugin was also
implemented and texted for the Gazebo environment which reads the same wind field files.
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Appendix B

Travelling salesman problem

The Traveling Salesman Problem (TSP) is an algorithmic problem tasked with finding the
shortest route between a set of points and locations that must be visited. In this thesis, it
is used to find the most efficient route for the quadrotor to travel between different points in
the environment. The TSP is NP-hard, meaning that it cannot be solved in polynomial time,
but several solutions have been proposed to solve it.

In this thesis, Dynamic programming is used to solve the TSP to find the optimal route
connecting the ten optimal points to visit to maximize the uncertainty of the Gaussian Process
(GP). Specifically, pyhton-tsp is used, which is a library written in Python for solving typical
TSP problems.

The code to solve the TSP problem is shown below. First, the distance between all 10 points
has to be computed and stored it in a matrix, which is done by the create_distance_matrix
function. Then, the library solves the dynamic programming problem to find the optimal
permutation of points. The points are then rearranged according to the permutation and
returned.

1 from itertools import permutations
2 from math import dist
3 import numpy as np
4 from python_tsp . exact import solve_tsp_dynamic_programming
5 from hovergames_simplesim_control import helpers
6
7 def create_distance_matrix ( X_path ) :
8 distance_matrix = np . zeros ( ( X_path . shape [ 0 ] , X_path . shape [ 0 ] ) )
9 for i in range ( X_path . shape [ 0 ] ) :

10 for j in range ( X_path . shape [ 0 ] ) :
11 distance = helpers . compute_coordinate_distance ( X_path [ i ] ,

X_path [ j ] )
12 distance_matrix [ i , j ] = distance
13 return distance_matrix
14
15 def compute_permutation ( X_path ) :
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16 distance_matrix = create_distance_matrix ( X_path )
17 permutation , distance = solve_tsp_dynamic_programming ( distance_matrix

)
18 return permutation
19
20 def solve_tsp ( X_path , X_last ) :
21 X = np . vstack ( ( X_last , X_path ) ) #Add the current last point to TSP
22 permutation = compute_permutation ( X )
23 X_tsp = X [ permutation , : ]
24 X_tsp = X_tsp [ 1 : , : ] #Exclude the first point from list again
25 return X_tsp
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Appendix C

Uncertainty propagation for nonlinear
systems

Inspired by the derivations in the appendix [66] the mean and uncertainty can be propagated
using the law of iterated expectations and the law of total variance, which are repeated here
for the readers information.

The system model is
xk+1 = f(xk,uk) +Bd (d(pk) + wk) . (C-1)

and the mean and variance are denoted by µx
k and Σx

k , respectively. Using the law of iterated
expectation, we have:

µx
k+1 = Exk

(
Ed|xk

(xk+1)
)

(C-2a)

µx
k+1 = Exk

(
f(xk,uk) +Bdµ

d
k (pk)

)
(C-2b)

Similarly, for the law of total variance, we have:

Σx
k+1 = Exk

(
vard|xk

(xk+1)
)

+ varxk

(
Ed|xk

(xk+1)
)

(C-3a)

Σx
k+1 = Exk

(
BdΣd

k (pk)BT
d

)
+ varxk

(
f(xk,uk) +Bdµ

d
k (pk)

)
(C-3b)
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List of Acronyms

EOM Equations of Motion

PWM Pulse-Width Modulation

ROS Robot Operating System

SITL Software in the Loop

RBS Random Binary Signal

MAV Micro Aerial Vehicle

MPC Model Predictive Control

OCP Optimal Control Problem

MPCC Model Predictive Contouring Control

FRS Forward Reachable Set

NMPC Nonlinear Model Predictive Control

GP Gaussian Process

GPR Gaussian Process Regression

IMU Inertial Measurement Unit

SE Squared Exponential

TSP Traveling Salesman Problem

ELBO Evidence-Lower Bound

MSE Mean Squared Error

AL Active Learning

NLP Nonlinear Programming

RK4 Runge-Kutta 4th
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List of Symbols

β Time delay
θ Hyperparameter vector
χ Confidence interval
ϕ̇ Roll rate
ψ̇ Yaw rate
θ̇ Pitch rate
Γ(·) Gamma function
d Disturbance vector
d Disturbance vector
d(pk) Disturbance vector
p Position
u Inducing points
u Input space
v Speed
wk Process noise
x State space
B Occupancy volume
Co Collision region
D Dataset of observations
Io Obstacle space
U Input constraint set
X State constraint set
µ(x) Mean
ν Smoothness parameter of the Matern kernel
ϕ Roll
ψ Ellipsoid rotation
ψ Yaw
θ Pitch
ξ Slack variable
{A} World frame
{B} Body frame
a Major ellipsoid axis
aT Linear scaling
b Minor ellipsoid axis
Bd Mapping of the uncertainty
bT Linear scaling
f(x) Nonlinear function
g Gravitation constant
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I Inertia
k Steady-state gain
k Time step
K(X,X) Kernel matrix
k (x,x′) Kernel function
Kν(·) Modified Bessel function
kD∗ Normalized drag coefficient
kD Drag coefficient
ld Horizontal length scale for output dimension d

m Mass
N Sampling points
n Size of dataset
Np Prediction horizon
R Rotation matrix
r Radius
s Path variable
T Thrust
Tc Thrust command
Th Hover thrust
Ts Sampling time
U Battery voltage
vx Velocity in x
vy Velocity in y
vz Velocity in z
vref Reference velocity
vk Normalized velocity
x Position in x
y Position in y
z Position in z
σε Noise covariance
σf Output variance
τ Time constant
ec Contour error
el Lag error
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