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Abstract- In a spatially adaptive subsampling scheme, the 
subsampling lattice is adapted to the local spatial frequency 
content of an image sequence. In this paper, we use rate-distortion 
theory to show that spatially adaptive subsampling gives a better 
performance than subsampling with a fixed sampling lattice. A 
new algorithm that optimally assigns sampling lattices to different 
parts of the image is presented. The proposed spatially adaptive 
subsampling method can be applied within a motion-compensated 
coding scheme as well. Experiments show an increased perfor- 
mance over fixed lattice subsampling. 

I. INTRODUCTION 

UBSAMPLING is a basic data compression method in S image coding. By discarding a part of the pixels, the 
image can be transmitted more efficiently. An application of 
fixed lattice subsampling is the coding of the color information 
in image sequences [l]. Because of the oversampling of the 
color information in current video standards, substantial data 
compression can be obtained. Fixed subsampling, however, 
discards a part of the spectrum without any consideration as 
to the actual content of the image. Such an approach causes 
an unacceptable loss of resolution when applied to luminance 
information. Therefore, an extension of basic subsampling 
should be made in order to account for the nonstationary nature 
of image sequences. 

In a spatially adaptive subsampling scheme, the image is 
subdivided into square blocks, and each block is represented 
by a specific spatial sampling lattice. In detailed regions, 
a dense sampling lattice is used, and in regions with little 
detail, a sampling lattice with only a few pixels is used. 
The choice of which lattice to use is determined by a rate 
and quality controller. In [2], the time axis transform (TAT) 
system that optimally assigns a sampling lattice to each block 
was described. This algorithm allows only for two different 
sampling lattices. A nonoptimal solution for the assignment 
problem in a system with three different sampling lattices 
was presented in [3]. This method was not optimal because 
no attempt was made to search for the global minimum 
distortion, and the algorithm stops in what may be a local 
minimum. A variation of this algorithm was presented in [4]. 
The number of different sampling lattices can be extended by 
using an hierarchical approach [5]. However, this introduces 
the problem of distributing the bit rate over the different levels 
in the hierarchy. In this paper, a new algorithm that assigns 
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Fig. 1. 
actions in the spectral domain. 

Basic subsampling scheme. The figures in the boxes illustrate the 

different spatial sampling lattices to the blocks is described 
based on rate-distortion theory. This theory has been used 
successfully in the past for solving the problem of optimally 
dividing bits among different channels [6]. The advantage 
of the algorithm is that the set of possible lattices is not 
limited and that, under certain conditions, optimality can be 
guaranteed. 

A further compression can be achieved by exploiting the 
temporal correlation in an image sequence. In a subsam- 
pling scheme, this is normally done by using sub-Nyquist 
subsampling techniques [7], [8]. The approach taken in our 
scheme is to use motion-compensated prediction as used in 
hybrid coders. If the prediction error is small, no additional 
information has to be transmitted. Thus, the spatially adaptive 
subsampling analogy is extended by decreasing the temporal 
sampling rate if the temporal activity is low. 

In Sections I1 and 111 some theoretical background is pre- 
sented about the basics of subsampling and spatially adaptive 
subsampling. The purpose of the theory is to provide a 
mathematical framework for analyzing the performance of 
adaptive subsampling system. We use the rate-distortion theory 
to prove that spatially adaptive subsampling works better than 
fixed lattice subsampling. The practical implementation of a 
spatially adaptive coding system is described in Sections I11 
and IV, and is finally evaluated in Section V. 

11. FIXED LATTICE SUBSAMPLING 

Subsampling can be defined as representing an image se- 
quence on a new sampling lattice with a lower sampling 
density than the original lattice. A simple subsampling scheme 
is shown in Fig. 1. To prevent aliasing caused by subsampling, 
the spatial frequencies of the image sequence should be 
confined to a unity cell [9]. This is a region in the frequency 
domain associated with a given sampling lattice and defined in 
such a way that by tiling this region, a complete coverage of 
the frequency plane can be obtained without any overlap. This 
can be seen as an extension of the Nyquist sampling theorem 
to multiple dimensions on an arbitrary sampling lattice. A 
prefilter can be used to confine the original image spectrum to 
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If we assume that prior to subsampling a prefilter H ( w )  is used 
with a cut-off frequency at W,,, then the corresponding mean 
square error distortion function is given by 

where we have taken into account the symmetry of S(w) 
and H ( w )  around the origin. The first part of the equation *A* 0 represents the distortion introduced by the prefilter, and the 
second part is the aliasing error caused by an imperfect 
prefilter. The two areas that contribute to the distortion are 
the shaded regions in Fig. 2. If an ideal Prefilter is used with 

Fig. 2. Power density function. The shaded areas are the components that 
contribute to the distortion. The dark shade represents the aliasing component 

~~ 

and the light shade the loss of resolution. transfer function 

the unity cell. If the original spectrum is already confined to 
the unity cell, prefiltering is optional. 

If the new sampling lattice is a subset of the original 
lattice, the actual subsampling can be implemented by simply 
discarding those pixels not present in the new lattice. If 
this is not the case, an intermediate sampling structure that 
bears a relation to both the original and the new lattice must 
be used [lo]. In a subsampling data compression system, 
the remaining pixels after subsampling are transmitted or 
forwarded to subsequent coding or processing stages. 

At the receiver, the image sequence has to be reconstructed 
to the original sampling lattice. This is done with an inter- 
polation filter. This filter has to be designed in such a way 
that the replicas introduced by the subsampling process are 
cancelled out. Further, it should not remove the frequency 
components within the unity cell because this would cause a 
loss of resolution. 

We investigate several coding aspects of fixed lattice sub- 
sampling from a rate-distortion point of view [l 11. Properties 
derived here are used in the next section when discussing 
spatially adaptive subsampling. The rate-distortion function 
R ( D )  provides a lower bound for the bit rate R necessary to 
transmit a source with an average distortion D. We derive the 
rate-distortion function for subsampling as a data reduction 
method to show the conditions under which subsampling is 
appropriate and to study the source of the different errors. 

We assume a band-limited spatially discrete source that is 
PCM encoded and has a power spectral density function S(w).  
An example of such a function is shown in Fig. 2. According 
to Parseval's theorem, the variance o2 of this source is 

1 "  
O2 = - 27r 1, S(w)dw. 

In a fixed lattice subsampling scheme, the spectrum of 
the input source is low-pass filtered and then subsampled 
according to the Nyquist theorem. If the rate required to 
transmit the original source using PCM coding is Ro, then 
the new rate after subsampling is 

( 2 )  
wss R = ~ . Ro(bits/pixel) 

where W,, is the bandwidth after prefiltering. Hence, the new 
bit rate is reduced proportionally with the bandwidth reduction. 

n- 

then the aliasing component is zero, and (3) reduces to 

1 "  
D = ; IwSs S(w)dw. 

(4) 

Substituting (2) in (5) and using (1) gives the distortion-rate 
function D(R) :  

D ( R )  = o2 - 11"" S(w)dw. 
7r 

Let us consider the properties of this distortion-rate function. 
The first derivative of D ( R )  is given by 

(7) 

The first derivative of the rate-distortion function is always 
monotonically decreasing because S(w ) is always greater or 
equal to zero. Thus, (7) is the trivial result wherein for every 
coding scheme, the distortion increases if the rate decreases. 
Another property of rate-distortion curves is convexity. This 
is a required property because it implies that the parts of 
the spectrum with the least relevance to the entire signal are 
discarded first. A function is convex if the second derivative 
is monotonically decreasing. From (7), we obtain 

We see that if the power spectral density function S(w)  is 
monotonically decreasing with increasing w (i.e., S' ( w )  < 0), 
then the rate-distortion function is convex. Thus, in subsam- 
pling schemes, the convexity of the rate-distortion curve is 
directly coupled to the decreasing character of S(w).  If the 
power spectrum density is nondecreasing, the rate-distortion 
curve may become nonconvex. 

If the argument presented in this section is extended to two 
dimensions, then after prefiltering and subsampling, S(w,, wy ) 
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the following relation holds for the bit rates: 

R1 = R2 = Rt.  (11) 

The total distortion D f ( R t )  can be computed by inserting 
RI this relation into (10): 

~ ~ s l ( w { - - j q  1 , 

I I = + D d R t ) .  (12) 

A 
I 
I I - ! - !  If spatially adaptive subsampling is used, the bits can 

be divided over the two regions in an uneven manner. In 
an optimal bit allocation where the mean square error is 
minimized, the resulting bit rate for each region is controlled 

I , , I by the following two relations: 

p + - j A - t j - R .  

- - _ - _ - - - - - _ - 
Fig. 3. Model for spatially adaptive subsampling. 

and 

min Dl (R1)  + Dz(R2) = D f ( R t )  (14) does not extend over a specific bandwidth but covers a region 

by the subsampling lattice. Equations (2) and ( 5 )  now become 
UL in the 2-D space. This region is the unity cell prescribed RI ,Rz 

where D t ( R t )  is the distortion in a spatially adaptive coding 
scheme. We now show in the following that if an optimal 
bit allocation is used, 0: is always less than or equal to 
Df. Using the transformation R1/2 - R2/2 = AT, where 
IATI represents the difference between the allocated bit rate 
assigned to each region and the desired bit rate, (13) can be 
inserted into (14): 

(15) 

Area( U L )  
(9) R = -  RO 

( 2 K Y  

D = g 2 - -  1 1 S(Wz, w,)dwzdw,. 
%FDp(Rt )  = minDl(Rt  + A T )  + D2(Rt - AT). 

(U5 W y  )E UL Ar 
(2nl2 

Without any specific knowledge about the 2-D subsampling 
lattice, it is not possible to obtain a close form relation for the 
rate-distortion function. 

111. SPATIALLY ADAFTIVE SUBSAMPLING 

A. A Model of a Spatially Adaptive Subsampling Scheme 
In order to examine the advantage of spatially adaptive 

subsampling over fixed subsampling, a simple model is in- 
troduced. A block diagram of the model is given in Fig. 3. 
To account for the nonstationary nature of the input signal, 
we consider a signal that consists of two distinct regions 
(e.g., blocks in an image) with different statistics so that 
the power spectral density functions &(w) and &(U) differ 
from each other. We assume that the power spectral density 
functions exist and are monotonically decreasing; therefore, 
the corresponding rate-distortion functions are convex. Both 
regions have the same number of samples, and all samples are 
fed into a single coding scheme. The resulting bit rate Rt is 
given by the average of the two bit rates R I  and R2 used to 
code each region. The resulting distortion Dt ( R t )  after coding 
is given by 

where Dl(R1)  and D2(R2) are the rate-distortion functions 
of each region separately. 

Let us first consider the case of fixed subsampling. Because 
both regions are encoded with the same sampling frequency, 

The optimal bit allocation can now be solved by setting the 
first derivative with respect to AT to zero: 

= 0. (16) 

Inserting (7) into this expression yields the following expres- 
sion for the optimal bit allocation: 

(17) 

If Sl(7rRt) > S2(7rRt), then AT is positive, meaning that 
more bits are assigned to the first region. If the power spectral 
density function of the first region is greater, then (7) implies 
that the slope of the rate-distortion curve of the first region is 
greater than that of the second region. This leads to 

D l ( R t )  - D1(Rt + AT) > &(Rt - AT) - M R t )  (18) 

dD1 (Rt + AT) + dD2( Rt - AT) 
 AT  AT 

Sl ( (R t  +AT).) = Sa((& - AT)..). 

where we have used the convexity of the rate-distortion 
function. This relation indicates that the gain in assigning 
more bits to the first region is larger than the loss caused by 
assigning fewer bits to the second region. Rewriting (1 8) gives 

D l ( R t )  + D2(Rt) > D1(Rt + AT) + Dz(Rt - AT) 
@ D m )  > D f ( R t ) .  (19) 

The above argument also holds if the characteristics of the 
first and second regions are exchanged. If the power densities 
differ, then the performance of spatially adaptive subsam- 
pling is always better than the performance of nonadaptive 
subsampling. If the solution to (17) yields AT = 0, then 
Sl(7rRt) is equal to Sz(7rRt). In this case, the performance 
of fixed subsampling is obviously identical to the performance 
of spatially adaptive subsampling. 
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Fig. 5. General spatially adaptive coding scheme. Mode 1 Mode 2 Mode 3 

Fig. 4. 
transmitted. 

Examples of different modes. The solid dots are the pixels that are 

B. Spatial Adaptive Subsampling in Practice 

Now that we have shown that spatially adaptive subsam- 
pling works better that fixed lattice subsampling from a 
theoretical point of view, we consider the practical imple- 
mentation. The ideal case would be to segment the image 
into regions that require the same spatial sampling frequency 
and sample each region according to this frequency. Such 
a solution would require a detailed analysis of the image, 
and a large amount of side information would be needed to 
transmit the shape of the regions. Therefore, we subdivide the 
image into square blocks, and within each block, one specific 
sampling lattice is used. The size of the blocks is an important 
system parameter. If large blocks are chosen, the amount of 
side information is low, but the ability to adapt to the local 
spatial frequency contents would be lost. Small blocks cause 
a large overhead but warrant a better adaptation. 

Another consideration in a practical system is the sampling 
lattice to be used for each block. Ideally, each block should 
be sampled with a sampling lattice optimally suited for that 
particular block. Again, this implies a large amount of side 
information. Therefore, only a limited set of possible sampling 
lattices is used. This set is designed in such a way that it 
gives a good coverage of the range of all the necessary spatial 
frequencies. In the sequel, each specific sampling lattice is 
called a mode. In Fig. 4, some examples of modes are given 
with different data reduction factors. For instance, in mode 
3, only four pixels are kept out of 64 pixels, giving a data 
reduction factor of 16. Mode 1 can be used for highly detailed 
regions, whereas mode 3 can be used for areas with a slowly 
varying luminance. The number of possible modes is affected 
by the block size because for decreasing block size, the number 
of possible sampling lattices within the block decreases as 
well. 

In a constant bit rate application, the output of the spatially 
adaptive subsampling scheme should be a fixed number of 
samples. Thus, the available modes should be distributed over 
the different blocks in such a way that the weighted sum 
of all the modes is equal to the desired bit rate. Of course, 
the image quality should be the best possible. Therefore, a 
criterion function that reflects the quality of the block for 
a particular mode needs to be used. In the next section, 
an allocation algorithm is discussed for this optimal mode 
distribution problem. 

The resulting overall coding scheme is shown in Fig. 5. 
The input image is first prefiltered and subsampled for each 

mode. The subsampled images are fed into an interpolation 
module that also evaluates the quality criterion. The quality 
of each mode is used in the mode allocation that assigns a 
particular mode to each block. Finally, this information is 
transmitted to the receiver together with the pixels remaining 
after subsampling all blocks. 

If, at the receiver, each block is interpolated using a tech- 
nique that involves only the pixels within the block, the 
interpolation of each block is straightforward. However, if 
a more sophisticated interpolation technique is used, such as 
a filtering, information from neighboring blocks is required. 
This poses a problem if a neighboring block is sampled 
with a different mode because the pixels necessary for the 
interpolation may not be available. To avoid such problems, a 
hierarchical set of modes should be used. In a hierarchical set 
mode, n+l is always a subset of mode n: 

{z I z E mode,+l} c {z I z E mode,}, V n  (20) 

where the vector x represents a pixel location. For instance, 
the modes given in Fig. 4 form an hierarchical set. The mode 
with the smallest sampling density can be now be interpolated 
because the required boundary pixels are always present in 
the neighboring blocks. After interpolating all blocks with 
this mode, the same argument holds for the next mode in 
the hierarchy. It is obvious that this interpolation scheme will 
result in a worse interpolation result as compared with the 
interpolation made at the transmitter where all the required 
pixels are always present in the neighboring blocks. The 
severity of this loss of performance is examined in Section 
V. If a nonhierarchical set is used, a common intermediate 
sampling lattice must be introduced. From this lattice, the 
boundary pixels for the different modes can be deduced, and 
interpolation is still possible. 

C. The Mode Allocation Problem 

The mode allocation is of great significance as it influences 
the output quality considerably. A brute force search t ies  all 
the modes on all the blocks and selects the combination that 
gives the smallest distortion. In a practical situation, this is not 
feasible because in a system with N different modes and M 
blocks, the number of possible allocations is equal to N M .  As 
the number of blocks grows linearly, the number of allocations 
increases exponentially. 

In a system where only two modes are used, the mode 
allocation problem can be solved analytically [2 ] .  If the 
fraction of blocks sampled with mode 1 at a rate of RI is 
equal to a1 and the fraction of blocks sampled with mode 2 at 
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a rate of R2 is cy2 (RI  > R2) then the following relations hold: 

a1 + CY2 = 1 

alR1 -I- a2R2 = Rt (21) 

where Rt is the desired total bit rate. From these equations, 
al and a2 can be solved. To minimize the distortion, all the 
blocks are first assigned to mode 2. Next, a fraction a1 of 
the blocks with the highest distortion are assigned to mode 1. 
This will lead to an optimal mode assignment in the sense of 
minimizing the overall distortion. 

If the number of modes is greater than two, (21) generalizes 
to a pair of equations with more than two unknowns, which 
cannot be solved uniquely. In [3], a heuristic algorithm is 
presented that does not guarantee optimality . Further, this 
algorithm is only suitable for three modes and is based on the 
2-D histogram of the error differences between the different 
modes. A variation of this algorithm was described in [4]. 
Here, we describe a mode allocation algorithm that allows for 
an arbitrary number of modes and is under some conditions 
optimal. 

The algorithm is based on the convex hull bit allocation 
scheme used for assigning quantizers to the subbands in a 
subband coding scheme [6]. Two modifications have to be 
made to this algorithm: 

The sources that have to be coded correspond to the 

The quantizers correspond to the different mode struc- 

Two assumptions made in the original algorithm require 
special attention. First, it is necessary that the rate-distortion 
curve of each source is convex. In Section 11, we saw that this 
is not always the case and depends on the shape of the power 
spectral density function of each block. For a whole image, 
this may be a valid assumption, but for a small block in an 
image, this will no longer hold in general. A solution to this 
problem is to remove the modes that cause the rate-distortion 
curve to be nonconvex from the allocation process. The impact 
of this is that some allocations are no longer possible. If the 
optimal solution is contained in this set of excluded allocations, 
then the mode allocation in no longer optimal. The second 
requirement is that the total distortion is equal to the sum of 
the distortion for each source: 

blocks into which the image is subdivided. 

tures. 

M 

Dt = Di(R;). (22)  
i= l  

As we saw in the previous section, this condition cannot 
be satisfied because of the nonavailability of boundary pixels 
at the receiver. Hence, the mode allocation is performed on 
an estimate of the distortion. The effect of this problem is 
discussed in Section V. 

The mode allocation algorithm starts by assigning each 
block i(i E (1 . . . M}) the mode with the lowest possible 
bit rate Rei. This point gives the highest distortion, and it 
is guaranteed that this point lies on the rate-distortion curve. 
Starting from this point, for each block i, the rate difference 
ARij equal to 

(23) ARij = (Rei - R;jJ 

D (MSE) 
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Fig. 6. 
different modes. 

Evaluated points in a mode allocation with four blocks and three 

and the distortion difference AD,, 

of assigning mode j ( j  E (1.. . N}) to that source is com- 
puted. The source with the smallest relative distortion gain 
(min,,, ADijlARij) is assigned a new mode. In [6] ,  it is 
proved that due to the convexity of the rate-distortion curve, 
this new mode allocation again lies on the rate-distortion curve. 
Starting from the new allocation, the described procedure is 
repeated. The algorithm terminates when the desired bit rate 
is reached. Hence, instead of evaluating all the possible mode 
allocations, only those lying on the rate-distortion function are 
examined. This causes a drastic decrease of the number of 
iterations and guarantees optimality. An example of the points 
evaluated is given in Fig. 6 for a system with M = 4 different 
blocks and N = 3 different modes different modes. In this 
case, a brute force allocation requires 34 = 81 iterations. The 
fundamental benefit of the proposed search algorithm is to 
use an iterative method, which automatically follows the nine 
combinations being optimal from the rate-distortion point of 
view (solid triangles in Fig. 6). 

IV. MOTION-COMPENSATED 
SPATIALLY ADAPTIVE SUBS AMPLINC 

Motion compensation has been used in many coding 
schemes to exploit the temporal correlation in image 
sequences. If a correct motion estimate is made, then no 
additional information has to be transmitted except for the 
motion vectors. A spatially adaptive subsampling scheme can 
benefit from this property if, for a particular region, the spatial 
correlation is low but the temporal correlation is high. In this 
case, spatially adaptive subsampling would require a lot of 
samples, whereas motion compensation requires none. The 
overall system is shown in Fig. 7. The shaded areas contain 
the components that were also present in the basic spatially 
adaptive subsampling scheme as shown in Fig. 5. 
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Fig. 7. Motion-compensated spatially adaptive coding scheme: (PF + SS 
is the prefilter and subsampling, MS is the mode selection, EC is the error 
computation, MA is the mode allocation, INT is the interpolation, FM is the 
frame memory, and MC is the motion compensation). 

A motion-compensated prediction (MC) of the actual image 
is made using the previous image stored in the frame memory 
(FM). The prediction error is determined by subtracting the 
original image from the motion-compensated predicted image. 
In many coding schemes, the prediction error is coded and 
transmitted over the channel. Generally, this is not a good 
solution. The reason for this is that the computation of the 
prediction error acts as a high-pass filter and introduces extra 
high-frequency components. If an incorrect motion estimate 
is made and the spatial correlation is high (e.g., flat areas 
in the image), then the prediction error is still low. The 
area pointed to by the bad motion estimate can still be 
a reasonable prediction of the actual block. However, if a 
bad motion estimate is made and the spatial correlation is 
high (e.g., an area containing edges), extra high frequency 
components are introduced. This is because besides the edges 
in the original image, the edges of the previous image are 
also present in the prediction error. For a coding scheme, this 
property is not advantageous because of the decrease in spatial 
correlation. Thus, motion-compensated prediction can both 
reduce and increase the spatial correlation of the prediction 
error. 

Therefore, a hybrid solution is chosen. Both the predic- 
tion error and the original image are used in the spatially 
adaptive coding scheme. The original image is subsampled 
(PF+SS) and the interpolation error is computed (EC) for the 
different modes. The prediction error is fed together with the 
interpolation errors into the mode allocation (MA). The mode 
allocation now starts by assigning to each block a mode with 
zero pixels. The interpolation for this mode is based on the 
predicted image. If the prediction error is high, then the modes 
used for spatially subsampling are assigned to the blocks in a 
similar manner as pure spatially adaptive subsampling. Hence, 
both the spatial and temporal correlation are exploited. 

An advantage of this scheme is that it implicitly adjusts the 
threshold for the decision between intra and interframe coding. 
If the desired bit rate is high, then the algorithm is biased in 
the direction of intraframe coding, and if the bit rate is low, 
then interframe coding is preferred. Another advantage of this 
scheme is that now, there is a mode that requires no additional 
pixels; therefore, the maximal compression factor is no longer 
bounded by the block size, as is the case when only spatially 
adaptive subsampling is used. 

V. EXPERIMENT RESULTS 

A.  The Effect of the System Parameters 

In this section, the effect of the different system parameters 
is investigated for spatially adaptive subsampling. This is 
illustrated by a practical example using the Lena test image. 
As a reference in all experiments, unless otherwise stated, a 
system with the mode structure as given in Fig. 4, a block 
size of 8 by 8 and a 3-tap prefilter is used. Mode information 
is accounted for in all experiments by reserving logz(N) bits 
per block if N different modes are used. The transmission 
of the motion vectors is not accounted for. The algorithm is 
evaluated using the signal-to-noise ratio (SNR) defined by 

SNR = 101olog - (A&) 
where MSE is the mean square error. 

First, spatially adaptive subsampling is compared with fixed 
lattice subsampling in Fig. 8(a). For the fixed lattice subsam- 
pling, horizontal, vertical, and quincunx subsampling was used 
and each time the scheme that gave the best result was selected. 
We see that spatially adaptive subsampling gives a significant 
improvement over fixed subsampling. The difference decreases 
with decreasing rate because eventually, for zero rate, the mean 
square error is equal to the image variance in both coding 
schemes. 

In Fig. 8(b), the effect of different block sizes is shown. 
Small blocks give a better performance than large blocks 
because of a better adaptation to the local spatial frequency 
contents. For low bit rates, the advantage is smaller because 
there is a relative increase in the amount of side information 
compared to large blocks. In Fig. 8(c), the effect of different 
mode structures are shown. The first scheme is the mode 
structure as shown in Fig. 4. The second scheme starts from 
a block containing all samples and each time quincunx sub- 
sampling is used on the previous block. The third scheme 
is a modification of Fig. 4. In between the existing modes, 
two extra modes are introduced. One mode is a horizontal 
subsampling of the previous mode, and the second extra mode 
is a vertical subsampling of the previous mode. Note that this 
is not a hierarchical set. If the number of different modes 
increases, the performance increases as well. This is because a 
better adaptation is possible and a closer match can be found 
between the necessary Nyquist frequency and the available 
sampling frequencies. 

Two different mode allocation schemes were compared, 
namely, the histogram method as described in [3] and the pro- 
posed algorithm. The performance of the histogram allocation 

T - r  
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Fig. 8. Simulation result of Lena: (a) Comparison with fixed subsampling; (b) different block sizes; (c) different mode schemes. 

did not differ much from the optimal allocation. However, 
the proposed allocation scheme can benefit from the fact that 
increasing the number of modes has a positive influence on the 
performance. In addition, the difference between the expected 
error given by the mode allocation and the actual error after 
interpolation was investigated. This difference was small, and 
therefore, it may be concluded that the impact of the errors 
introduced by different sampling structures at block boundaries 
can be neglected. 

B. System Comparison 

with each other: 
In this section, the following coding schemes are compared 

Spatially adaptive subsampling (SA-SS): This scheme 
uses no motion information. 
Motion-compensated coding 2 (MCZVSS): In this scheme, 
there are only two modes: If a good prediction is made, 
then noting is transmitted, and the original image is 
transmitted if a bad prediction is made. Hence, this 
scheme uses only temporal and no spatial adaptivity. 
Motion-compensated spatially adaptive subsampling 
(MCXA-SS): This scheme uses motion-compensated pre- 
diction and spatially adaptive subsampling as described 
in Section IV. 

The simulations were done using 20 frames of the Bi- 
cycles sequence, which consists of various moving objects. 

Fig. 9. Second image of original Bicycles sequence. 

The second frame of the sequence is shown in Fig. 9. The 
size of the blocks was 4 by 4 pixels, and for the spatial 
adaptive subsampling, the hierarchy with seven modes from 
Fig. 8(c) was used. The motion vectors were estimated using 
hierarchical block matching with two levels. The results are 
shown in Fig. 10. 

We see that spatially adaptive subsampling without motion 
compensation gives the worse performance. This is what 
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Fig. 11. Mode assignment of second image of the Bicyles sequence at a 
reduction factor of 0.2. The grey level indicates the mode used: Dark indicates 
a high sampling density and light a low sampling density. 

can be expected because no use is made of the temporal 
correlation in the image sequence. After motion compensation, 
the redundancy in the sequence is reduced considerably as is 
shown by the second scheme. Motion-compensated spatially 
adaptive subsampling gives the best coding result because 
both the spatial and temporal correlation can be exploited. 
The differences with the other coding results increases for low 
bit rates when the efficiency of the algorithm becomes more 
important. In Fig. 11, the mode assignment for the motion- 
compensated spatially adaptive subsampling scheme is shown. 
It can be observed that the regions with a constant luminance 
are assigned a mode with a low sampling density, whereas 
detailed regions are assigned a mode with a high sampling 
density. 

VI. CONCLUSION 

analysis of fixed lattice subsampling, it is proven that spatially 
adaptive subsampling gives a better performance in the rate- 
distortion sense compared with fixed lattice subsampling. 
The convex hull allocation algorithm based on rate-distortion 
theory is applied in modified form to assign the modes to the 
different blocks. We have seen that the major benefit of this 
allocation scheme compared with existing allocation schemes 
is that an arbitrary number of different modes can be used. This 
enables the extension of the coding system to three dimensions 
and gives a more flexible system than the existing spatially 
adaptive subsampling schemes. 

In sub-Nyquist sampling schemes, which also use subsam- 
pling for bandwidth compression, only the temporal correlation 
of the image sequence is used. If the temporal correlation 
is strong, then a data reduction is achieved by spatially 
subsampling at the encoder and by temporal interpolation at 
the receiver. This is done regardless of the spatial content of 
the image sequence. However, motion-compensated spatially 
adaptive subsampling uses both the spatial and the temporal 
correlation in the image sequence. Therefore, the proposed 
scheme will work better than sub-Nyquist sampling schemes. 
Sub-Nyquist systems are usually incorporated into a digitally 
assisted television (DATV) system. Motion-compensated spa- 
tially adaptive subsampling can also be incorporated into a 
DATV system. The remaining pixels after subsampling can 
be transmitted using analog transmission. The necessary side 
information can be transmitted within the DAW channel. 
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