TU Delft

Solving Hitori
Applying Answer Set Programming to Hitori

Sappho de Nooij'
Supervisor: Dr. A.L.D. Latour!'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
25th January 2026

Name of the student: Sappho de Nooij
Final project course: CSE3000 Research Project
Thesis committee: Dr. A.L.D. Latour, Dr. T. Coopmans

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

We investigate the performance of modelling and
solving paradigms on the NP-complete puzzle
Hitori. The choice of paradigm can have a signi-
ficant impact on performance, but it is not always
clear which paradigm is most suitable and why. We
develop an ASP model to compare to models made
in other paradigms. We investigate the effect of
redundant constraints and research the effects of
different puzzle properties on the solving time of
our ASP model. In our experimental evaluation,
we compare the ASP model to the models in other
paradigms from parallel studies.

We find that redundant constraints have a negat-
ive impact on performance. The solving times of
the ASP model had little variance and was not or
slightly correlated with various puzzle properties.
Our results show that our approach solves 50-by-50
puzzles 38 times faster at PAR-2 than the second-
best model and is the only model that never ex-
ceeds the specified timeout, showing the suitability
of ASP to Hitori.

1 Introduction

There are many NP-complete problems, like Sudoku [1],
for which different solvers, that use different modelling-and-
solving paradigms, can be used. These paradigms all have
their own strengths and weaknesses. A recent Dagstuhl sem-
inar affirms the need for more interaction between the com-
munities of different paradigms and developing a better un-
derstanding between different kinds of problems and how dif-
ferent paradigms perform [2].

The effectiveness of paradigms have been explored several
times in the past by applying them to logic puzzles [3-5], but
these have not been explored through applying them to the
logic puzzle Hitori.

Hitori is an NP-complete puzzle [6] where certain numbers
have to be blacked out so that no row or column contains
duplicate numbers. Additionally, two black tiles may not be
adjacent and all white tiles must remain connected.

This thesis is part of a parallel study, where every thesis
applies one paradigm to Hitori. The overarching goal is to
provide a fair comparison of how well different paradigms
perform at Hitori. We have explored Hitori through Answer
Set Programming (ASP). This technique is used to find an
answer set, a minimal set of atoms that when true make a
valid model of a propositional logic program [7].

We developed an ASP-model that can solve Hitori and in-
vestigated the impact of different redundant constraints on
solving time. We analysed what puzzle properties impacted
the solvers performance and compared the ASP model against
models made in different paradigms.

We found that most redundant constraints have a negat-
ive impact on runtime performance. Most puzzle properties
had no impact on performance, but limiting the amount of
numbers in a puzzle did slightly increase runtime despite re-
ducing the number of conflicts. Furthermore, we found that
ASP scales better than models in other paradigms.

The rest of this paper is organised as follows. We give
an overview of related work on Hitori and other puzzles. In
section 3, we provide a background overview of Hitori and
different paradigms. Then we provide a proof sketch that
Hitori puzzles with at most one solution are NP-complete. In
section 5 we present our ASP model and the redundant con-
straints we implemented. In Section 6, we elaborate upon our
research questions and explain our experimental setup. Then
we show our results in section 7 and discuss them by provid-
ing potential reasons for the different results.

2 Related Work

Past studies have applied different paradigms to Hitori. In
their bachelor thesis [8], the authors used SAT to solve Hitori.
To ensure white tiles are connected, they enforce that the
black tiles do not form a cycle. This however, lead to an
exponential encoding. They also developed a custom al-
gorithm that uses derivations based on detecting certain pat-
terns, guessing, and backtracking.

Van der Knijff developed an SMT model but did not report
runtime performance [9].

In a recent study on generating Hitori puzzles and classify-
ing their difficulty [10], Wensveen made a rule-based solver
in addition to a SAT-based solver. With these she classified
different Hitori puzzles based on their difficulty, where more
difficult puzzles require more complicated rules to be solved
and the most difficult category even probing, where a cell is
given a color to see if that would lead to a contradiction.

Past studies on Hitori had different ways of gathering
puzzles. Some studies used pre-existing puzzles [8, 11]. Van
der Knijff tried to generate puzzles by filling in random num-
bers in a grid and checking whether there is a valid solution,
however this did not work because it almost never lead to a
good puzzle [9]. In [10], Wensveen took an alternative ap-
proach by iterating over all puzzles of a given size, while us-
ing equivalency classes to skip over symmetrically-equivalent
puzzles. The generated puzzles were not guaranteed to be
(uniquely) solvable and thus still needed to be filtered. This
approach has the advantage that the results were representat-
ive of all puzzles, but it limits the size of puzzles that can be
generated because of how fast the amount of puzzles grows
with the size.

In [12], the authors investigate the runtime performance
of ASP and CSP on four grid puzzles. They found that for
puzzles with reachability constraints ASP was faster since
their CSP solver did not support transitive closures. They
do note that solvers with special propagators for reachability
might have better runtime performance but left that as future
work.

3 Background

In this section, we explain the puzzle Hitori and elaborate
on its properties. Additionally, we give an overview of three
modelling and solving paradigms, and contrast their strengths
and weaknesses.

212213
30142
41414
41431

(b) An incorrect solution.
The black boxes with red,
dashed borders are adjacent,
violating constraint 2.

(a) Unsolved instance of an
Hitori puzzle.

(c) Another incorrect solu-
tion. The 4 in the bottom
left is not connected to the

(d) The same Hitori puzzle
solved.

other white tiles, violating
constraint 3.

Figure 1: A 4-by-4 Hitori puzzle, two incorrect solutions and one
correct solution. This Hitori puzzle is uniquely-solvable.

3.1 Hitori

Hitori is a logic puzzle containing an n-by-n grid of numbers
where you need to mark tiles black to satisfy the following
constraints [13]:

* Uniqueness: every number may only appear once in the
white tiles of a row and column,

* Adjacency: black tiles may not touch each other vertic-
ally or horizontally,

* Connectivity: all white tiles must be orthogonally con-
nected to all other white tiles.

Figure 1 shows an example of an unsolved instance, two
invalid solutions and the correct solution.

Past literature focuses on uniquely-solvable Hitori, which
is a variant of Hitori such that every puzzle has at most
one unique solution [10, 14]. In [14], the authors investig-
ate how many unique numbers a Hitori puzzle can contain.
Most websites that publish Hitori puzzles only use Hitori
puzzles n unique numbers, where n is the width and height
of the puzzle [15, 16]. We focus on uniquely-solvable Hitori
puzzles with at most n unique numbers.

In [6], the authors show that non-uniquely-solvable Hitori
is NP-complete. In section 4, we provide a proof sketch that
shows uniquely-solvable Hitori is NP-complete too. We re-
duce Unambiguous SAT (USAT) to uniquely-solvable Hitori.
USAT is a special case of SAT that has at most one solution,
which is NP-complete too [17].

3.2 Paradigms

There are several paradigms that can be used to solve logic
puzzles. We explored ASP, SMT and CSP. For each we ex-
plain what it is, explored its strengths and weaknesses, and
investigated examples of it being applied to logic puzzles.
Based on these findings, we then decided to use ASP.

3.3 Answer Set Programming (ASP)

One technique is Answer Set Programming (ASP). ASP is
used to find an answer set, a minimal set of atoms that when
true make a valid model of a propositional logic program [7].
ASP uses a higher-level modeling language, which includes
variables, that is turned into propositional logic using a pro-
cess called grounding [18].

Notable is Clasp which improves upon other ASP solv-
ers by incorporating Conflict-Driven Learning [7]. Whenever
Clasp encounters a conflict, an assignment of atoms that can-
not occur in a valid model, it analyses the cause of the conflict
and remembers the cause so that it can prevent the conflict
from occurring again, accelerating performance [7].

p(1). q(2). r(X) :- p(X), aX + 1).

Figure 2: A simple ASP model.

Figure 2 shows an example of an ASP model. Here p(1)
and p(2) are facts, which means that they are always true.
r(X) - p(X),q(X + 1) is a rule that states that if p(X) and
q(X + 1) are true, r(X) will be true too.

In [19], M. Gebser et al. describe the language as follows:
A model consists of a set of rules. Rules are statements that
consist of a head and a body like p(3) :- p(1), not p(2). The
head p(3) is considered true when all the elements of the body
are true, i.e. p(1) is true and p(2) is false. Facts are a special
type of rule with an empty body such that the head is always
true. Furthermore, there are constraints which are rules with
an empty head, like :- p(3),p(1). Constraints enforce that
the elements of the body are not all true.

As shown above, it is possible to use numbers in the mod-
eling language. However, these numbers cannot have an in-
finite range. A rule like p(X — 1) :- p(X) could cause the
grounding not to halt [19].

Additionally, ASP supports aggregates. An aggregate is a
counting operation on multiple elements [19]. The aggregate
evaluates to true if the specified lower- and upperbound are
fulfilled [19]. This can be used to model a choice, take the
following rule:

L #sum { p(1), p(2), a } 2

This rule evaluates to true when at least 1 of p(1), p(2) and
a is true and at most 2 of those, thus disallowing them to all
be true. Many solvers have dedicated support for aggregates
to avoid the quadratic encoding size caused by converting ag-
gregates to pure propositional logic [20].

Variables must be acyclically supported [20]. Consider the
program a :- a. The only valid answer set is {}. {a} is
a supported model, but it is not a valid answer set since it
only has a circular derivation. If a partial solution contains a

set of atoms that can not be acyclically supported, the solver
adds a loop nogood, so that the conflict can be reverted and
avoided [20].

In [5], C. Merve et al applied ASP to several logic puzzles
with some connectivity constraint. They argue that due to
aggregates, it is easy to represent them in ASP. However, they
also show that a “simple representation” can cause Clasp to
generate a lot of loop nogoods of large sizes.

3.4 Satisfiability Modulo Theory (SMT)

Satisfiability Modulo Theory (SMT) solvers check whether
a logical formula is satisfiable in some theory [21]. This
theory may be boolean satisfiability but may also be integer
arithmetic or a custom theory defined in the SMT-Lib lan-
guage [21]. Z3 is an SMT solver which is capable of in-
teger arithmetic, bit-vector, and equality reasoning out-of-
the-box [22].

Z3’s core consists of two parts, an EUF and a SAT
solver [23].

The EUF (equality and uninterpreted function) logic is
what allows the SMT solver to reason about the equality of
variables and the outputs of functions, even if the exact val-
ues of the variables and the functions are unknown [23]. For
example, p = q, f(p) # f(q) evaluates to false since f(p)
always equals f(q) if p = ¢, regardless of what the function
f evaluates to. This reasoning can also be performed with
nested functions [23].

Secondly, it contains a SAT solver. This SAT solver in-
cludes Conflict Driven Clause Learning to avoid wasting time
on unsatisfiable branches [23], just like Clasp. Whenever a
conflict arises, the solver will analyse the causes of the con-
flict and remember those so it will not reach the same conflict
again [24].

In [3], R. Behari applies SMT to a puzzle called Fillomino.
They compare the runtime performance of SMT to their own
custom solver and show that for small puzzles, their custom
solver is faster but SMT’s performance becomes similar for
larger puzzles and is better at difficult puzzles.

3.5 Constraint Satisfaction Programming (CSP)

In CSP, a model is defined using a set of variables, the values
those variables may take and constraints, which limit the valid
combinations between two or more variables [25].

One CSP solver is Gecode[26], which can be programmed
using the high-level modeling language MiniZinc, which is
designed to be able to use multiple solvers with low over-
head [27].

Another solver is Pumpkin, which creates a proof while
it is solving so that correctness can later be verified [28].
The proof creator of Pumpkin is designed so that it select-
ively records conflicts in the proof to minimise performance
overhead [28]. It not only supports MiniZinc but can also be
called directly from Rust.

Models with few variables with large domains tend to per-
form better than models with many variables with small do-
mains [25]. This means that to use CSP well for Hitori, a
different approach should be looked for other than using one
binary variable for each cell.

In [29], Crawford et al. apply CSP to Sudoku. They
showed that the solver was faster when using fail-first heurist-
ics, heuristics that will cause the solver to first explore part of
the search space where you are likely to fail quickly. This is,
they argue, because unnecessary work in branches that will
be pruned is avoided.

3.6 Comparison

All these paradigms could be suitable for Hitori. They have
several things in common. They all have support for boolean
variables and some form of conflict learning, meaning they
could have similar performance

One of the important differences is how well they sup-
port non-boolean variables. ASP only supports other types
by encoding them as booleans. Z3 on the other hand is ex-
plicitly designed to be able to combine boolean expression
with other theories. Finally, CSP supports both boolean and
integers but performs better with fewer variables with larger
domains [25]. Therefore, CSP might be slower unless an en-
coding with no or little booleans can be found.

4 Proof sketch of NP-completeness

In this section, we provide a proof sketch that uniquely-
solvable Hitori is NP-complete. We reduce Unambiguous
SAT (USAT) to uniquely-solvable Hitori. USAT is a spe-
cial case of SAT that has at most one solution, which is NP-
complete too [17].

We construct a partial Hitori solution P from a USAT for-
mula ¢. In this partial solution, every tile is either black,
white, or its colour depends on the solution to ¢. In the third
case, the value of a tile is associated with a literal in ¢ and is
white iff that literal is true in the solution to ¢. Later, we con-
struct a uniquely-solvable puzzle such that the full solution
to ¢ can be determined from the colours of tiles associated
with literals. In our reduction, the puzzle has a solution iff
the USAT formula is satisfiable.

For every clause ' VI?V...VI* in ¢, we add a clause gadget
to our partial Hitori solution. The clause gadget contains a
wall of black squares with k gaps, where the tiles of the gaps
are filled with a number associated with one of the clause’s
literals. We show that a partial solution P can only have a
solution iff at least one of the tiles of the literals is white.

We show that we can connect all clause gadgets using con-
necting gadgets such that if in a solution a tile associated with
a literal is marked white, all other tiles associated with that lit-
eral are white and all tiles associated with the negated literal
are black.

Then we show that we can construct a solution to ¢ from
a solution to P. We prove that P has at most one solution
and that we can construct a uniquely-solvable Hitori puzzle
H that has a solution iff the USAT formula ¢ is satisfiable.

We argue that this reduction is computable and takes poly-
nomial time. It is trivial to show that Hitori is in NP. There-
fore, Hitori is NP-complete.

In appendix E, we provide a more elaborate proof sketch
that uniquely-solvable Hitori is NP-complete.

1

)

5 Approach

In this section we describe how we modelled Hitori in ASP.
Then we mention which redundant constraints we implemen-
ted and how they work.

5.1 Modelling Hitori in ASP

Our model consists of several parts. Every tile in the puzzle
is encoded as cell(X, Y, Z)., where X and Y represent
the column and row index, and Z represents the number in
that tile. We define the following helper variables, where
col(1..n) is shorthand notation for defining col for every
value from 1 to n.

col(l..n). row(l..n). number(l..n).

The uniqueness constraint is modelled using the following
constraints.

- is_white(X, Y), cell(X, Y, Z), is_white(X
, Y2), cell(X , Y2, Z), Y != Y2.

3 :- is_white(X, Y), cell(X, Y, Z), is_white(X2
, Y), cell(X2, Y , Z), X != X2.

4

6

8

9

1

5

13

Alternatively, we could have modelled the uniqueness con-
straint using an aggregate. Line 2, 3 and 4 could be re-
placed by the rule ® { iswhite(X, Y) : cell(X, Y,
Z) } 1 :- col(X), number(Z). and a similar one for the
rows. However, we found that that model, despite the gen-
eral guideline to use aggregates (see Section 8.4 of [20]), was
slower at both grounding and solving itself. This might be
because in practice, the amount of atoms in the aggregate is
limited and thus the benefits of aggregates are not noticeable.

On line 4 and 5, we ensure that every tile is either marked
black or white. Furthermore, we explicitly enforce that a tile
cannot be both black and white on line 6.

is_white(X, Y) :- not is_black(X, Y), col(X),
row(Y).
is_black(X, Y) :- not is_white(X, Y), col(X),
row(Y).
:- is_black(X, Y), is_white(X, Y), col(X),
row(Y).

To enforce the adjacency constraint, we add constraints
that disallow two adjacent tiles to be black.

is_black(X, Y + 1).
is_black(X + 1, Y).

- is_black(X, Y),
:- is_black(X, Y),

Lastly, we model connectivity by using the transitive prop-
erty of connectedness. We specify that the two tiles in the
top left corner are connected if they are white. Since they are
adjacent, they may not both be black thus at least one will
be marked as connected. Every other tile is considered con-
nected if it is next to a connected white tile. On line 17 we
enforce that a white tile may not be disconnected.

connected(l, 1) :- is_white(l, 1).
10 connected(l, 2) :- is_white(l, 2).
connected(X, Y) :- connected(X - 1, Y),
is_white(X - 1, Y).
connected(X, Y) :- connected(X + 1, Y),
is_white(X + 1, Y).

14

15

connected(X, Y) :- connected(X, Y + 1),
is_white(X, Y + 1).

connected(X, Y) :- connected(X, Y -
is_white(X, Y - 1).

1)!

:- not connected(X, Y), is_white(X, Y).

5.2 Redundant constraints

We compared our base model (as described above), against
our base model with several redundant constraints added.

We used the following two constraints based on the fact
that the puzzle must be uniquely solvable:

Unique Cell (UC) [10]: If a tile is unique in its row and
column, mark it to as white.

Unique Cell Dynamic (UCD) [10]: Idem as UC, but now
looking only at tiles that could be white: if all other tiles
with the same number in the row/column are already marked
black, we force it to be white.

The correctness of UC(D) can be shown using a proof-by-
contradiction. Assume that it is possible that the tile is black.
This means that there is a solution S such that this tile is black.
The adjacent tiles will be white and connected as per the rules
of Hitori. We can construct a solution S’ which is identical
except that this tile is white since the number of the cell does
not appear in the row or column. Since the tile is adjacent to
connected tile, this tile is also connected. Thus S’ is a valid
solution too but this contradicts the assumption that Hitori is
unique-solvable. Therefore, a tile that can be white must be
white.

To check connectivity, we implemented the following re-
dundant constraints:

(a) A partial Hitori
solution before QM
is applied.

(b) A partial Hitori
solution after QM is
applied.

Figure 3: An example of the Quad Middle technique.

Quad Middle (QM)[30]: Since the white tiles must be
connected, every white tile has at least one adjacent white
tile. We add a constraint s.z. no white tile is surrounded by
four black squares. See fig. 3.

Isolated Area (IA): IA detects when an area is isolated
and makes sure that the only entrance is marked white. In
fig. 4a, the middle square could be determined to be white
using QM, however the square above must also be white. IA
can determine this by marking every square that has 3 adja-
cent black squares as isolated. Additionally, a white square
surrounded by a combination of 3 black or isolated squares
is marked isolated. If this is the case, the square that is not
black or isolated is marked white since this is the only remain-

(a) A partial Hitori solution
before IA is applied.

(b) A partial Hitori solution
after IA is applied. The cyan
area is marked isolated.

Figure 4: An example of the isolated area technique.

ing square that can guarantee connectivity. Figure 4b shows
which squares would be marked white.

Additionally, we implemented some techniques humans
use to solve Hitori as described by Hanssen [30]. For each
technique listed, we checked whether it was not something
our model already does and whether it was concise enough
to implementable. Some human techniques were already
covered by our base model. For the sake of brevity, we will
omit descriptions of the constraints. The human techniques
can be grouped in three ways: some techniques work spe-
cifically on the corner, some specifically at the edge and oth-
ers can work everywhere in the grid.

6 Experimental Setup

First, we discuss for each research question how we will an-
swer them. We explain how we generated our puzzles and we
mention which software and hardware we used and how we
performed the statistical analyses.

6.1 Research Questions

RQ1: What is the impact of different redundant constraints
on solving performance?

We identified and implemented several redundant con-
straints. Then we generated 1000 puzzle instances where
n = 50. We ran every puzzle instance with the base model
and the base model plus one redundant constraint. We recor-
ded the CPU time. For each run, we measured the grounding
time and solving time separately. The sum of these values
we call the fotal solving time. Additionally, we used the stat-
istics output of Clasp to record the number of choices Clasp
makes (i.e. the number of times Clasp guesses the truth value
of an atom because it cannot continue otherwise), the number
of conflicts analysed, and the average length of the recorded
conflicts.

We report the values averaged over the puzzle instances.
RQ2: What puzzle characteristics influence the performance
of the ASP base model?

We identified different properties that could potentially in-
fluence the solving time and measure the effect on the base
model. We looked at the impact of the puzzle size. Secondly,
we looked at the number of adjacent-duplicate tiles, tiles that
have the same value as an adjacent tile. These tiles could
make it easier to solve since if two adjacent tiles have the

same number, any other tile with the same number in that
row or column must be black. Thirdly, we looked at the num-
ber of row-column duplicate tiles, tiles whose value appears
elsewhere in both their row and their column. More of these
tiles might make solving faster since the tile can be marked
black if the solver marks the other tile in its row with the same
value white and if the tile with the same number in its column
is marked white. Additionally, we looked at the number of
unique tiles, tiles whose value does not appear in their row or
column. Since these are guaranteed to be white, they theor-
etically reduce the search space, potentially leading to better
performance. However, since we do not explicitly model this,
it might not affect the base model.

By default, the generator does not generate a very diverse
set of puzzles. Therefore, we modified the generator to add
bias to the generation. When choosing the number for a black
tile, instead of picking a random number there is a chance it
will instead pick a value of its neighbour or a number that
appears in both its row and column. We made it possible to
specify the probability it does this and generated puzzles with
different probabilities to get a more diverse set of puzzles for
analysis.

We also investigated the range of numbers that appear in a
puzzle. Normally, we looked at puzzles with n unique num-
bers. We investigated how performance differs when less than
n unique numbers may be used and when more than n may be
used. The solver could be faster for puzzles with less unique
numbers since it means more duplicate numbers appear in a
row or column, allowing the solver to mark more values as
black if a tile becomes white. On the other hand, it may be
slower since it could have more conflicts. For this experi-
ment, we modified the generator to allow a smaller or larger
range of unique numbers to be used in a puzzle.

RQ3: How does the runtime performance of different
paradigms vary for Hitori puzzles?

We ran the models in other paradigms from the parallel
studies on Hitori puzzles of size n = 5,10,15,...,45, 50.
We measured performance using penalised average runtime
2 (PAR-2), where the runtime is averaged. If a solver takes
longer than the timeout, this is penalised by recording the
time taken as twice the timeout. We used a timeout of 10
seconds.

We tested five models each in a different paradigm: we
tested our base model with the Clasp solver, an SMT model
written for the Z3 solver, a CSP model for Pumpkin, an In-
teger Linear Programming (ILP) model written for the solver
Gurobi, and a logic program model written in the program-
ming language Prolog.

We measured the runtime inside the program of each
model, so that the reported time excludes the overhead of
starting an interpreter and initialising libraries.

6.2 Generator

We made our own puzzle generator that is capable of gener-
ating every uniquely-solvable Hitori puzzle (for proof sketch
see appendix D). The generator starts with a solution, fills the
white tiles with numbers, then fills in the black tiles and then
checks whether the puzzle is uniquely-solvable.

The solution is made by iterating over all tiles in a random
order and marking each tile black if this would not violate any
constraint. It checks if none of the adjacent tiles are black and
whether marking the tile black does not split the white tiles
into two disconnected regions. It tries this for all tiles since
if a tile that may be black is not black, there are at least two
solutions: one with the tile marked black, one without.

When a solution has been found, it fills in the numbers in
the white tiles by choosing a random number for every white
tile that does not already appear in that row or column. If
no such number exists, it backtracks and tries again. After-
wards, it fills in the black tiles. Every black tile is filled with
a number that also appears in the tile’s row or column. Fi-
nally, the uniqueness is verified by running our ASP model
and asking for two solutions. If only one is given, the puzzle
is uniquely-solvable.

6.3 Software and Hardware

All experiments were run by calling Clingo, an integrated sys-
tem for the grounder Gringo and the ASP solver Clasp, from
Python. We used Clingo version 5.8.0 and Python version
3.14.0. We generated the graphs with Matplotlib and per-
formed our statistical analyses with SciPy.

The experiments for RQ 1 and RQ 2 were run on an Apple
M2 laptop on MacOS, while plugged-in. To minimize the
effects of thermal throttling, we alternated running the puzzle
between different models to spread any performance impact
of thermal throttling evenly over all models.

The experiment for RQ 3 was run on a desktop PC with
an AMD Ryzen 7 5800X. That experiment was run inside a
docker image.

6.4 Statistical Analyses

To compare the performance difference of the different con-
straints, we calculated significance using a permutation test,
since it does not assume the underlying distribution is normal
unlike other tests [31].

To measure the impact of the puzzle properties with per-
formance, we used linear regression. The p-value was calcu-
lated using the Wald test with t-distribution (SciPy’s default).
We considered p < 0.01 to be significant.

7 Results and Discussion

RQ1: What is the impact of different redundant constraints
on solving performance?

In table 1, we can see the effect of the redundant con-
straint on performance. The Base model + Unique Cell is
the fastest model, both in grounding time and solving time
(p < 10~* for both). Surprisingly, the second-best model is
the base model. Although Sandwich Triple has a higher solv-
ing time than the base model (p < 10~%), it notably performs
identically with respect to number of choices, conflicts and
mean conflict size. This result could be explained by ASPs
support of preprocessing [32]. We tested this hypothesis by
disabling equivalence-based preprocessing and found that the
base model had bigger and more conflicts than ST without
preprocessing (see appendix C for a full table).

A possible explanation for the fact that most redundant
constraints perform worse than the base model might be that

the solver could be slower the more constraints it has, and
that the extra cost of learning constraints is smaller than the
overhead by additional grounded constraints, some of which
might not end up being used by the solver. This also explains
why Unique Cell improves performance, with Unique Cell
the grounder generates less variables and constraints since it
is already known during grounding that a tile is white.

Notably, M-Pair, Sandwich Pair, Impossible Pair and
Paired Isolation all report a mean conflict size near 1, mean-
ing most conflicts are about a single tile. They also have the
fewest conflicts. Since they were promising in this regard,
we reran them with Unique Cell. This reduced the number of
choices and conflicts and solving time, but the solving time
was still higher than that of Unique Cell.

On the other end of the spectrum, Isolated Area stands out
by having more than 10 times the solving time and number
of conflicts than the base model. The poor performance of
Isolated Area likely is due the model generating on average
5.4 loop nogoods of mean size 6.0, while none of the other
models generate loop nogoods. Additionally, because it intro-
duces an extra variable per tile, the solver might be wasting
time on proving whether a tile is isolated instead of whether
it is white or black.

In table 2, we can see the effect of redundant constraints
for the corners and edges of a puzzle. Despite being run on
relatively small, 10-by-10 puzzles, the performance impact
is small. Like with the other constraints, the base model is
fastest. Double corner reduces the number of conflicts the
most, despite only being applicable in the corner. Surpris-
ingly, Close Edge has more conflicts and its average conflict
size is more than 8 times as large.

An interesting result in table 1 and 2 is that every con-
straint related to connectivity (Quad Middle, Isolated Area
and Close Edge) heavily increases the number of conflicts and
the average conflict size. These results may be due to these
constraints interfering with ASPs preprocessing, since Quad
Middle and Close Edge do improve upon the base model in
these metrics when preprocessing is disabled.

RQ2: What puzzle characteristics influence the performance
of the ASP model?

In fig. 5, the average solving with respect to puzzle size is
shown in a log-log plot. Surprisingly, most time is spent on
grounding. The solving time increases more steeply than the
grounding time but never exceeds it for the sizes we tested.
The model scales well with n, taking less than 300 ms to
solve a 100-by-100 puzzle. Figure 6 shows the distribution of
solving and grounding time. There is very little variation in
solving time and grounding time.

In fig. 7, the correlation between solving time and num-
ber of adjacent-duplicate tiles and between the number of
row-column duplicate tiles is shown. There were very little
statistically significant correlations. The number of adjacent-
duplicate tiles, the number of row-column duplicate tiles and
the number of unique tiles all have no correlation with the
grounding or solving time for the base model. The number
of row-column duplicate tiles is negatively correlated with
the number of conflicts (R = —0.064, p = 0.003). The
only significant result we found for the number of unique tiles
is the number of choices the solver makes, which it slightly

grounding time (ms) solving time (ms) #choices #conflicts mean conflict size
Base model 54 63 20.0 2.8 2.5
Unique Cell 54 55 11.7 24 8.4
Unique Cell Dynamic 61 8.6 5.4 1.9 37.0
M-pair 59 8.1 18.8 1.8 1.0
Sandwich Pair 56 8.1 19.0 1.9 1.1
Sandwich Triple 56 64 20.0 2.8 2.5
Paired Isolation 56 8.0 18.9 1.9 1.1
Impossible Pair 61 79 19.0 1.9 1.0
Quad Middle 57 7.1 21.6 15.8 41.5
Isolated Area 72 103.0 136.4 31.2 29.1
Unique Cell + Sandwich Pair 57 6.6 10.4 1.7 1.1
Unique Cell + M Pair 59 6.6 10.5 1.7 1.1
Unique cell + PI 56 6.6 10.3 1.7 1.1
Unique Cell + IP 62 6.5 10.2 1.8 1.1

Table 1: Performance of the base model and the base model plus one or two of the redundant constraints that are applicable everywhere. The
runtime is split into grounding time and solving time. Values represent the mean of 1000 50-by-50 puzzles.

grounding time (ms) solving time (ms) #choices #conflicts avg conflict size
Base model 2.7 0.27 3.7 1.4 1.3
Quad Corner 2.8 0.27 3.7 14 1.3
Triple Corner 2.8 0.28 3.7 1.4 1.3
Double Corner 2.9 0.30 33 1.2 1.2
Double Edge Pair 2.9 0.28 3.7 1.5 1.3
N-Edge Pair 2.9 0.28 3.7 1.4 1.3
Close Edge 2.9 0.29 39 23 11.3

Table 2: Performance of the base model and the base model plus one of the redundant constraints of the corners or edges. The runtime is split
into grounding time and solving time. Values represent the mean of 1000 10-by-10 puzzles.

time (ms)

107t

Performance on differently sized puzzles

102_

101_

100_

—— Grounding + Solving time
Grounding time
---- Solving time

10?2
puzzle width, i.e. n

Figure 5: The average grounding and solving time with respect to
puzzle size measured in the number of tiles. The figure has logar-
ithmic scaling.

1.0

0.8

Proportion of puzzles

0.2

0.0

Distribution of grounding & solving time

0.6 1

0.4 1

—— CDF (grounding + solving)
CDF (grounding)
---- CDF (solving)

10

20 30 40 50 60
Solving/grounding time (ms)

70

Figure 6: Proportion of 50-by-50 puzzles that are solved within a
certain time frame.

—~ 23
@
£
g
£22
21
40 60 80 100 120 140 160
number of adjacent-duplicate tiles
234
w
E
CU
€22
= o
214
190 200 210 220 230 240 250 260 270
number of row-column duplicate tiles
23
m
S
~ 22
v
&=
21

N
o

690 700 7i0 720 730 740 750 760
number of unique tiles

Figure 7: Correlation between solving time and puzzle properties.
The puzzles have size n = 30.

increases (R = 0.027, p = 0.008). When using the base
model with the Unique Cell constraint, the number of unique
tiles is correlated negatively with solving time (R = —0.064,
p < 10710),

The higher the number of unique numbers that may ap-
pear in a puzzle, the lower the grounding and solving time
(p < 1072 for both statistics). However, the more numbers
that may appear in a puzzle, the higher the amount of con-
flicts. For a regular 50-by-50 puzzle, the average amount of
conflicts is 2.8, whereas this is only 2.1 when a puzzle has
at most 40 unique values. On the other hand, if we loosen
the rule that the number of a cell is limited by n and allow
up to 100 numbers in a 50-by-50 puzzle, there are on average
4.1 conflicts. That the total solving speed decreases while the
number of conflicts increases is a surprising result, but could
be explained by the overhead extra constraints add since more
tiles having duplicate values means more constraints get ad-
ded during grounding.

RQ3: How does the runtime performance of different
paradigms vary for Hitori puzzles?

Figure 8 shows the PAR-2 performance of the models made
in different paradigms for different puzzle size. ILP and Pro-
log both scale poorly and always time out for n = 25. The
SMT, CSP and ASP models are all able to solve puzzles of

size n = 50, but the ASP model is the only model that never
times out. For n = 50, the PAR-2 score of the CSP model
is 38 times higher than ASP’s score. This is in line with the
results of [12].

A limitation of the collected data is that the models meas-
ured time in slightly different ways, notably the CSP model

PAR-2 performance on differently sized puzzles

P e = —————
—— ASP i
!
ILP ;
---- Prolog H
157 e CSP ,,’
SMT H
iy 1
~—~ ’l
(] 4
e /
-~ ’l
1
!
/
/
54 #
/
/
/
/
/
/
0 — , : — .
10 20 30 40 50

puzzle width n

Figure 8: Runtime performance of the models in the different
paradigms with respect to puzzle width n. The base model was used

for ASP.

measured wall time instead of CPU time. Additionally, the
performance is influenced by how well a solver is optimised
and thus does not fully reflect the performance potential of
other paradigms.

8 Conclusion and Future Work

We explored the suitablity of different modelling and solving
paradigms to the NP-complete puzzle Hitori. We made an
ASP model and developed a generator that can generate every
uniquely-solvable Hitori puzzle.

We investigated the impact of redundant constraints. We
showed that they tend to have a negative impact on perform-
ance, despite often reducing the amount of guesses and con-
flicts. However, we found that redundant constraints related
to connectivity heavily increase the size of conflicts.

We investigated the relation between puzzle properties and
Hitori. We found that the model scales relatively well with
the puzzle’s size, but other properties had little to no correla-
tion. Limiting the amount of unique numbers used in a puzzle
slightly decreased the number of conflicts while increasing
performance impact.

Lastly, we showed that ASP performs up to 38 faster in our
experiments than models in other paradigms, confirming past
research that ASP is well-suited to problems with connectiv-
ity constraints.

Additional research is needed to understand why the re-
dundant constraints related to connectivity increase the size
of conflicts heavily.

Further studies on Hitori could explore better or alternative
ways to generate puzzles. An unbiased generator could be
developed, so research results are more generalisable to all
Hitori puzzles. This could be realised by using an algorithm
for sampling uniformly from CSP solutions, like described
by [33].

Responsible Research

We designed our experiments to be reproducible and ex-
tendible. The code used for RQ 1 and 2 can be found at
https://github.com/sappho3/Thesis-Hitori-ASP. All graphs,
tables and statistical analyses can be reproduced by run-
ning the python scripts in the benchmarks folder. The
used python dependencies and their versions can be found
in the requirements.txt file. The code for benchmark-
ing the models can be found at https://github.com/sappho3/
Thesis-Hitori-shared. The code is licensed under the MIT
license so it can be extended by others in the future.

No LLMs were used for this thesis due to the risk of fac-
tual errors and due to the high environmental costs of running
those models.

Acknowledgements

Thanks to Lesley Smits, Robin Rietdijk, Sophieke van
Luenen and Tom Friederich for the feedback, ideas and code
they shared. Special thanks my supervisor Anna Latour for
supervising the project, giving guidance and the immense
amount of feedback on my writing. Thanks to Sarah van de
Noort, Jana Donszelmann and Charlie Cia$ for giving feed-
back on my writing.

References

[1] T. Yato and T. Seta, “Complexity and completeness of
finding another solution and its application to puzzles,”
IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Science, vol. 86-A,
no. 5, pp. 1052-1060, 2003.

[2] K. Fazekas, M. Jdrvisalo, N. Narodytska and P. J.
Stuckey, Interactions in Constraint Optimization,
Schloss Dagstuhl, 2025. [Online]. Available: https://
www.dagstuhl.de/25371 (visited on 06/01/2026).

[3] R. Behari, “Solving Fillomino: An Algorithmic and
SMT-Based Approach,” University Leiden, 31st Jul.
2025.

[4] Rico te Wechel, ““Bridges” as an SMT problem: Solv-

ing and generating puzzles using different boolean en-
codings,” 22nd Aug. 2023.

[5S] M. Cayli, A. G. Karatop, A. E. Kavlak, H. Kaynar, F.
Tiire and E. Erdem, Solving challenging grid puzzles
with answer set programming, S. Costantini and R.
Watson, Eds., Porto: Universidade do Porto, Faculdade
de Ciencias, Sep. 2007. [Online]. Available: https://
research.sabanciuniv.edu/id/eprint/5086/.

[6] R. A. Hearn, Games, Puzzles, and Computation, 1st
ed. Florida: CRC Press LLC, 2009, 1 p., ISBN: 978-1-
56881-322-6 978-1-4398-6505-7.

[71 M. Gebser, B. Kaufmann and T. Schaub, “Conflict-
driven answer set solving: From theory to practice,’
Artificial Intelligence, vol. 187-188, pp. 52—89, Aug.
2012, 1SSN: 00043702. por: 10.1016/j.artint.2012.04.
001. [Online]. Available: https://linkinghub.elsevier.
com / retrieve / pii / S0004370212000409 (visited on
10/11/2025).

(8]
[9]

[10]

(1]

(12]

[13]

[14]

[15]
[16]

(17]

(18]

[19]

(20]

M. Gander and C. Hofer, “Hitori Solver,” BA thesis,
Universitdt Innsbruck, 8th Apr. 2006.

G. van der Knijff, “Solving and generating puzzles
with a connectivity constraint,” BA thesis, Rad-
boud University, 2021. [Online]. Available:
https : // www . cs . ru . nl / bachelors - theses / 2021 /
Gerhard_van_der_Knijff___1006946___Solving_and_
generating_puzzles_with_a_connectivity_constraint
pdf.

R. Wensveen, “Solving, Generating and Classifying
Hitori,” Leiden University, 2024. [Online]. Available:
https://theses.liacs.nl/3122.

A. Tran, “Enhancing GNNs: An Exploration of Iterat-
ive Solving and Augmentation Techniques,” BA thesis,
ETH Ziirich, 24th Aug. 2023.

M. Celik, H. Erdogan, F. Tahaoglu, T. Uras and E. Er-
dem, “Comparing ASP and CP on four grid puzzles,”
in Proceedings of the 16th RCRA Workshop on Ex-
perimental Evaluation of Algorithms for Solving Prob-
lems with Combinatorial Explosion, RCRA@AI*IA
2009, Reggio Emilia, Italy, December 11-12, 2009, M.
Gavanelli and T. Mancini, Eds., ser. CEUR Workshop
Proceedings, vol. 589, CEUR-WS.org, 2009. [Online].
Auvailable: https://ceur-ws.org/Vol-589/paperO1.pdf.
“Rules of Hitori puzzle.” (2006), [Online]. Available:
https://web.archive.org/web/20170812215618/http:
//www.nikoli.com/en/puzzles/hitori/rule.html (visited
on 12/11/2025).

A. Suzuki, M. Kiyomi, Y. Otachi, K. Uchizawa and
T. Uno, “Hitori numbers,” J. Inf. Process., vol. 25,
pp. 695-707,2017. port: 10.2197/TPSJJIP.25.695. [On-
line]. Available: https://doi.org/10.2197/ipsjjip.25.695.

V. Hanssen. “Hitori Puzzles.” (2006).

S. Tatham. “Singles, from Simon Tatham’s Portable
Puzzle Collection.” (2025), [Online]. Available: https:
/Iwww.chiark.greenend.org.uk/~sgtatham/puzzles/js/
singles.html.

L. G. Valiant and V. V. Vazirani, “NP is as easy as de-
tecting unique solutions,” Theoretical Computer Sci-
ence, vol. 47, no. 3, pp. 85-93, 1986. por: 10.1016/
0304 -3975(86)90135- 0. [Online]. Available: https:
//doi.org/10.1016/0304-3975(86)90135-0.

M. Gebser, R. Kaminski, M. Ostrowski, T. Schaub and
S. Thiele, “On the Input Language of ASP Grounder
Gringo,” in Logic Programming and Nonmonotonic
Reasoning, E. Erdem, F. Lin and T. Schaub, Eds., Ber-
lin, Heidelberg: Springer, 2009, pp. 502-508, 1SBN:
978-3-642-04238-6. DOI: 10.1007/978-3-642-04238-
6-49.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski,
T. Schaub and S. Thiele, “A User’s Guide to gringo,
clasp, clingo, and iclingo,” 4th Oct. 2010.

M. Gebser, R. Kaminski, B. Kaufmann and T. Schaub,
Answer Set Solving in Practice (Synthesis Lectures on
Artificial Intelligence and Machine Learning). Cham:
Springer International Publishing, 2013, 1SBN: 978-3-
031-00433-9 978-3-031-01561-8. por1: 10.1007/978-

https://github.com/sappho3/Thesis-Hitori-ASP
https://github.com/sappho3/Thesis-Hitori-shared
https://github.com/sappho3/Thesis-Hitori-shared
https://www.dagstuhl.de/25371
https://www.dagstuhl.de/25371
https://research.sabanciuniv.edu/id/eprint/5086/
https://research.sabanciuniv.edu/id/eprint/5086/
https://doi.org/10.1016/j.artint.2012.04.001
https://doi.org/10.1016/j.artint.2012.04.001
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000409
https://linkinghub.elsevier.com/retrieve/pii/S0004370212000409
https://www.cs.ru.nl/bachelors-theses/2021/Gerhard_van_der_Knijff___1006946___Solving_and_generating_puzzles_with_a_connectivity_constraint.pdf
https://www.cs.ru.nl/bachelors-theses/2021/Gerhard_van_der_Knijff___1006946___Solving_and_generating_puzzles_with_a_connectivity_constraint.pdf
https://www.cs.ru.nl/bachelors-theses/2021/Gerhard_van_der_Knijff___1006946___Solving_and_generating_puzzles_with_a_connectivity_constraint.pdf
https://www.cs.ru.nl/bachelors-theses/2021/Gerhard_van_der_Knijff___1006946___Solving_and_generating_puzzles_with_a_connectivity_constraint.pdf
https://theses.liacs.nl/3122
https://ceur-ws.org/Vol-589/paper01.pdf
https://web.archive.org/web/20170812215618/http://www.nikoli.com/en/puzzles/hitori/rule.html
https://web.archive.org/web/20170812215618/http://www.nikoli.com/en/puzzles/hitori/rule.html
https://doi.org/10.2197/IPSJJIP.25.695
https://doi.org/10.2197/ipsjjip.25.695
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/singles.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/singles.html
https://www.chiark.greenend.org.uk/~sgtatham/puzzles/js/singles.html
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1016/0304-3975(86)90135-0
https://doi.org/10.1007/978-3-642-04238-6_49
https://doi.org/10.1007/978-3-642-04238-6_49
https://doi.org/10.1007/978-3-031-01561-8

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

3-031-01561- 8. [Online]. Available: https://link.
springer.com/10.1007/978-3-031-01561-8 (visited
on 04/01/2026).

C. Barrett, A. Stump and C. Tinelli, The SMT-LIB
Standard, 21st Dec. 2010.

L. De Moura and N. Bjgrner, “Z3: An Efficient SMT
Solver,” in Tools and Algorithms for the Construction
and Analysis of Systems, C. R. Ramakrishnan and J.
Rehof, Eds., red. by D. Hutchison et al., vol. 4963,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008,
pp- 337-340, 1SBN: 978-3-540-78799-0 978-3-540-
78800-3. DOI: 10.1007/978-3-540-78800-3_24. [On-
line]. Available: http://link.springer.com/10.1007/978-
3-540-78800-3_24 (visited on 10/11/2025).

N. Bjgrner, L. De Moura, L. Nachmanson and C. M.
Wintersteiger, “Programming Z3,” in Engineering
Trustworthy Software Systems, J. P. Bowen, Z. Liu and
Z. Zhang, Eds., vol. 11430, Cham: Springer Interna-
tional Publishing, 2019, pp. 148-201, ISBN: 978-3-
030-17600-6 978-3-030-17601-3. po1: 10.1007/978-
3-030-17601-3_4. [Online]. Available: https://link.
springer.com/10.1007/978-3-030-17601-3_4 (visited
on 10/11/2025).

J. P. M. Silva and K. A. Sakallah, “GRASP: A search
algorithm for propositional satisfiability,” IEEE Trans.
Computers, vol. 48, no. 5, pp. 506-521, 1999. port: 10.
1109/12.769433. [Online]. Available: https://doi.org/
10.1109/12.769433.

S. C. Brailsford, C. N. Potts and B. M. Smith, “Con-
straint satisfaction problems: Algorithms and applic-
ations,” European Journal of Operational Research,
vol. 119, no. 3, pp. 557-581, Dec. 1999, ISSN:
03772217. por: 10.1016/S0377-2217(98) 00364 -
6. [Online]. Available: https ://linkinghub. elsevier.
com / retrieve / pii / S0377221798003646 (visited on
10/11/2025).

Gecode. [Online]. Available: https://www.gecode.dev/
(visited on 14/12/2025).

N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J.
Duck and G. Tack, “MiniZinc: Towards a standard
CP modelling language,” in Principles and Practice of
Constraint Programming — CP 2007, C. Bessiere, Ed.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp- 529-543, 1SBN: 978-3-540-74970-7.

M. Flippo, K. Sidorov, I. Marijnissen, J. Smits and
E. Demirovi¢, “A multi-stage proof logging frame-
work to certify the correctness of CP solvers,” in 30th
International Conference on Principles and Practice
of Constraint Programming (CP 2024), P. Shaw, Ed.,
ser. Leibniz International Proceedings in Informatics
(Lipics), vol. 307, Dagstuhl, Germany: Schloss Dag-
stuhl — Leibniz-Zentrum fiir Informatik, 2024, 11:1-
11:20, 1SBN: 978-3-95977-336-2. pDOI: 10 . 4230 /
LIPIcs.CP.2024.11. [Online]. Available: https://drops.
dagstuhl.de/entities/document/10.4230/LIPIcs.CP.
2024.11.

[29]

(30]

(31]

(32]

(33]

B. Crawford, C. Castro and E. Monfroy, “Solving
Sudoku with Constraint Programming,” in Cutting-
Edge Research Topics on Multiple Criteria Decision
Making, vol. 35, Chengdu, People’s Republic of
China: Springer, 2009, pp. 345-348, ISBN: 1865-0929.
DOI: 10.1007/978-3-642-02298-2_52. [Online]. Avail-
able: https://link.springer.com/chapter/10.1007/978-
3-642-02298-2_52.

V. Hanssen. “Hitori solving methods,” Hitori solv-
ing Methods. (2006), [Online]. Available: https://
menneske . no / hitori / methods / eng/ (visited on
03/12/2025).

M. D. Ernst, “Permutation methods: A basis for exact
inference,” Statistical Science, vol. 19, no. 4, pp. 676—
685, 2004, 1SSN: 08834237. JSTOR: 4144438. [On-
line]. Available: http://www.jstor.org/stable/4144438
(visited on 14/01/2026).

M. Gebser, B. Kaufmann, A. Neumann and T. Schaub,
“Advanced preprocessing for answer set solving,” in
ECAI 2008 - 18th European Conference on Artificial
Intelligence, Patras, Greece, July 21-25, 2008, Pro-
ceedings, M. Ghallab, C. D. Spyropoulos, N. Fakotakis
and N. M. Avouris, Eds., ser. Frontiers in Artificial In-
telligence and Applications, vol. 178, IOS Press, 2008,
pp. 15-19. por: 10.3233/978-1-58603-891-5-15.
[Online]. Available: https://doi.org/10.3233/978-1-
58603-891-5-15.

V. Gogate and R. Dechter, “A new algorithm for
sampling CSP solutions uniformly at random,” in
Principles and Practice of Constraint Programming
- CP 2006, 12th International Conference, CP 2006,
Nantes, France, September 25-29, 2006, Proceedings,
F. Benhamou, Ed., ser. Lecture Notes in Computer Sci-
ence, vol. 4204, Springer, 2006, pp. 711-715. DOIL:
10.1007/11889205 \ _56. [Online]. Available: https:
//doi.org/10.1007/11889205_56.

https://doi.org/10.1007/978-3-031-01561-8
https://link.springer.com/10.1007/978-3-031-01561-8
https://link.springer.com/10.1007/978-3-031-01561-8
https://doi.org/10.1007/978-3-540-78800-3_24
http://link.springer.com/10.1007/978-3-540-78800-3_24
http://link.springer.com/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-030-17601-3_4
https://doi.org/10.1007/978-3-030-17601-3_4
https://link.springer.com/10.1007/978-3-030-17601-3_4
https://link.springer.com/10.1007/978-3-030-17601-3_4
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1109/12.769433
https://doi.org/10.1016/S0377-2217(98)00364-6
https://doi.org/10.1016/S0377-2217(98)00364-6
https://linkinghub.elsevier.com/retrieve/pii/S0377221798003646
https://linkinghub.elsevier.com/retrieve/pii/S0377221798003646
https://www.gecode.dev/
https://doi.org/10.4230/LIPIcs.CP.2024.11
https://doi.org/10.4230/LIPIcs.CP.2024.11
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.11
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.11
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CP.2024.11
https://doi.org/10.1007/978-3-642-02298-2_52
https://link.springer.com/chapter/10.1007/978-3-642-02298-2_52
https://link.springer.com/chapter/10.1007/978-3-642-02298-2_52
https://menneske.no/hitori/methods/eng/
https://menneske.no/hitori/methods/eng/
http://www.jstor.org/stable/4144438
http://www.jstor.org/stable/4144438
https://doi.org/10.3233/978-1-58603-891-5-15
https://doi.org/10.3233/978-1-58603-891-5-15
https://doi.org/10.3233/978-1-58603-891-5-15
https://doi.org/10.1007/11889205_56
https://doi.org/10.1007/11889205_56
https://doi.org/10.1007/11889205_56

A Author contributions

Lesley Smits: software (equal); formal analysis (equal).
Robin Rietdijk: software (equal). Sappho de Nooij:
software (equal); formal analysis (equal). Sophieke van
Luenen: software (equal); formal analysis (equal); project
administration; and visualisation. Tom Friederich: software
(equal); formal analysis (equal)

B Redundant constraints

Here we list our ASP implementations of the redundant con-
straints. The constraints are grouped by whether they apply
every in the puzzle or only at the edge or corner.

B.1 Middle Constraints

Unique Cell:

is_white(X, Y) :- cell(X, Y, Z), { cell(X, Y2
, Z) Y !=Y2; cell(X2, Y, Z) : X != X2}

0.

Unique Cell Dynamic:

is_white(X, Y) :- cell(X, Y, Z), { is_white(X
, Y2) cell(X, Y2, Z), Y != Y2; is_white
(X2, Y) cell (X2, Y, Z), X != X2} 0.

Quad Middle:

:- is_white(X, Y), is_blackX - 1, Y),
is_black(X, Y - 1), is_blackX + 1, Y),
is_black(X, Y + 1), row(Y-1), row(Y+1),
col(X-1), col(X+1).

Isolated Area:

isolated(X, Y) :- is_black(X, Y).

isolated(X, Y), is_white(X, Y + 1) :-
is_white(X, Y), isolated(X - 1, Y),
isolated(X + 1, Y), isolated(X, Y - 1),
col(X), row(Y).

3 isolated(X, Y), is_white(X, Y - 1) :-
is_white(X, Y), isolated(X - 1, Y),
isolated(X + 1, Y), isolated(X, Y + 1),
col(X), row(Y).

isolated(X, Y), is_white(X - 1, Y) :-
is_white(X, Y), isolated(X + 1, Y),
isolated(X, Y + 1), isolated(X, Y - 1),
col(X), row(Y).

isolated(X, Y), is_white(X + 1, Y) :-
is_white(X, Y), isolated(X - 1, Y),
isolated(X, Y + 1), isolated(X, Y - 1),
col(X), row(Y).

Paired Isolation:

is_black(X2, Y) :- cell(X, Y, Z), cell(X + 1,

Y, Z), X2 !'= X, X2 !'=X + 1, row(X), row
(X2), col(Y), cell(Xx2, Y, Z).

is_black(X, Y2) :- cell(X, Y, Z), cell(X, Y +

1, Z2), Y2 !'=Y, Y2 I=Y + 1, row(X), row
(Y2), col(Y), cell(X, Y2, Z).

Flanked Isolation:

is_black(X2, Y) cell (X2, Y, Z1;;X2, Y, Z2)
- cell(X, Y, Z1), cell(X + 1, Y, Z2),
cell(X + 2, Y, Z2), cellX + 3, Y, Z1), 1

<= X2 <= n, X2 <X ; X2 > X + 3.
is_black(X, Y2) cell (X, Y2, Z1;;X, Y2, Z2)
- cell(X, Y, Z1), cell(X, Y + 1, Z2),
cell(X, Y + 2, Z2), cell(X, Y + 3, Z1), 1
<= Y2 <= n, Y2 <Y ; Y2 >Y + 3.

Impossible Pair:

IS}

3 is_white (X2,

5 is_black (Xm,

is_white(X + 1, Y2 ;; X, Y2 + 1) :- cell(X, Y
, 21), cell(X + 1, Y, Z2), cell(X, Y2, Z1
), cell(X + 1, Y2 + 1, Z2), Y2 !=Y, Y2
+ 1 != Y, col(Y2), row(X), X + 1 <= n,
col(Y).

is_white(X + 1, Y2 ;;
, Z1), cell(X + 1,
), cell(X + 1, Y2
-1 1!=Y, col(Y2),
col(Y).

X, Y2 - 1) :- cell(X, Y
Y, Z2), cell(X, Y2, Z1
-1, z22), Y2 '=Y, Y2

row(X), X + 1 <= n,

Y+ 1 ;; X2 + 1,
, Z21), cell(X, Y + 1, Z2), cell(X2, Y, Z1
), cell(X2+ 1, Y + 1, Z2), X2 != X, X2 +
1 !'= X, col(X2), row(X), X + 1 <= n, col
(Y).

is_white(X2, Y + 1 ;; X2 -

Z1), cellX, Y + 1,
cell(X2- 1, Y + 1,
col (X2),

Y) :- cell(X, Y

1, Y) :- cell(X, Y
Z2), cell(X2, Y, Z1
Z2), X2 !'= X, X2 -

row(X), X + 1 <= n, col

), ’
1 =X,
Y.

Sandwich Pair:

is_white(X, Y) :- cell(X-1, Y , Z),
Y,), cell(X+1, Y , Z), col(X),
is_white(X, Y) :- cell(X , Y-1, Z),
Y,), cell(X , Y+1, Z), col(X),

Sandwich Triple:

is_black(X-1,Y
(X+1, Y)
Z), cell(X+1, Y ,
is_black(X ,Y-1),
X , YY) :- cell(X ,
Z), cell(X , Y+1, Z),

M-Pair:

is_black(X , Ym) :- cell(X, Y1, Z1), cell(X
+1, Y1, Z2), cell(X, Y2, Z1), cell(X+1,
Y2, Z2), col(X), col(X+1), row(Y1l), row(
Y2), cell(X, Ym, Z1), Ym != Y1, Ym != Y2,

row(Ym), Y1 Y2.

is_black(X+1, Ym) :- cell(X, Y1, Z1), cell(X
+1, Y1, Z2), cell(X, Y2, Z1), cell(X+1,
Y2, Z2), col(X), col(X+1), row(Y1l), row(
Y2), cell(X+1, Ym, Z2), Ym != Y1, Ym !=
Y2, row(Ym), Y1 != Y2.

cell (X,
row(Y).
cell (X,
row(Y).

), is_white(X, Y
- cell(X-1, Y , Z2),
Z), col(X), row(Y).
is_black (X, Y+1), is_white
Y-1, Z), cell(X, Y,
col(X), row(Y).

), is_black
cell(X, Y,

is_black(Xm, Y) :- cell(X1l, Y, Z1), cell(X1,
Y+1, Z2), cell(X2, Y, Z1), cell(X2, Y+1,
Z2), col(X1), col(X2), row(Y), row(X+1),
cell(Xm, Y , Z1), Xm != X1, Xm != X2,
col(Xm), X1 != X2.

Y+1) :- cell(X1, Y,

, Y+1, Z2), cell(X2, Y, Z1),

+1, Z2), col(X1), col(X2), row(Y),

Xm, Y+1, Z2), Xm != X1, Xm != X2,

, X1 I= X2.

Z1), cell(X1
cell (X2, Y
cell(
col (Xm)

B.2 Edge Constraints

Double Edge Pair:

edge(l..n, 1, 0, 1).

edge(l, 1..n, 1, 0).
; edge(l..n, n, 0, -1).

edge(n, 1..n, -1, 0).

is_white(X - 2 * DY, Y - 2 * DX), is_white(X
+ 2 * DY, Y + 2 * DX) :- edge(X, Y, DX,
DY), cell(X, Y, Z), cell(X + DY, Y + DX,
Z), cell(X + DX, Y + DY, Z2), cell(X + DX
+ DY, Y + DX + DY, Z2), col(X - 2 * DY),
col(X + 2 * DY), row(Y - 2 * DX), row(Y

+ 2 * DX).
N-Edge Pair:
edge(l..n, 1, 0, 1).
edge(l, 1..n, 1, 0).
; edge(l..n, n, 0, -1).
edge(n, 1..n, -1, 0).

we have a variable is_edge_pair which
detects pairs at the edge

is_edge_pair(X, Y, DX, DY) :- edge(X, Y, DX,
DY), cell(X, Y, Z), cell(X + DY, Y + DX,
Z), col(X - 2 * DY), col(X + 2 * DY), row
(Y - 2 * DX), row(Y + 2 * DX).

s # if there is a pair next to an edge pair, we
mark that as an "edge pair" and mark
tiles white

is_edge_pair(X + DX, Y + DY, DX, DY),
is_white(X - 2 * DY, Y - 2 * DX),
is_white(X + 2 * DY, Y + 2 * DX):-
is_edge_pair(X, Y, DX, DY), cell(X + DX,
Y + DY, Z2), cell(X + DX + DY, Y + DX +

DY, Z2).
Close Edge:
edge(l..n, 1, 0, 1).
edge(l, 1..n, 1, 0).
; edge(l..n, n, 0, -1).
edge(n, 1..n, -1, 0).

- is_black(X, Y), is_black(X + 2 * DY, Y + 2
* DX), is_black(X + DX + DY, Y + DX + DY
), edge(X, Y, DX, DY),1 <= X + 2 * DY <=
n,l1 <= Y + 2 * DX <= n,1 <= X + DX + DY
<= n,l <= Y + DX + DY <= n.

B.3 Corner Constraints

Quad Corner:

is_black(l, 1), is_black(2 , 2) :- cell(1,
1, Z2), cell(1l, 2, Z), cell(2, 1, Z2),
cell(2, 2, 7).
is_black(n, 1), is_black(n-1, 2) :- cell(n,
1, Z2), cell(n - 1, 1, Z), cell(n, 2, Z),
cell(n-1, 2, Z).
3 is_black(l, n), is_black(2 , n-1) :- cell(1,
n, Z), cell(2, n, Z), cell(l, n-1, Z),
cell(2, n-1, Z).
is_black(n, n), is_black(n-1, n-1) :- cell(n,
n, Z2), cell(n-1, n, Z), cell(n, n-1, Z).

Triple Corner:

is_black(l, 1) :- cell(l, 1, Z), cell(l, 2, Z

), cell(2, 1, Z).
is_black(n, 1) :- cell(n, 1, Z), cell(n - 1,
1, 2), cell(n, 2, Z).

IS

3 is_black (1,
), cell(l,
is_black(n,
Z), cell(n,

Double Corner:

is_white(1,

)

is_white(1,

)

3 is_white (2,

)

is_white (2,

Do

5 is_white(n,

Z).

is_white(n,

2, 7).

is_white(n-1,

Z).

; is_white(n-1,

2, 7).

is_white(1,

Z).

) is_white (1,
-1, 2).
is_white (2,

Z).

is_white (2,
-1, 2).
3 is_white(n,

n, 7).

is_white(n,
-1, n-1,

5 is_white(n-1,
-1, 2).

is_white(n-1,
-1, n-1,

cell(2, n, Z

cell(n-1, n,

cell(2, 1, Z
cell(2, 2, Z
cell(1l, 2, Z
cell(2, 2, Z

cell(n-1, 1,

Z), cell(n-1,
Z), cell(n, 2,
Z), cell(n-1,
Z), cell(2, n,

Z), cell(2, n

cell(l, n-1,

Z), cell(2, n

Z), cell(n-1,

Z), cell(n

Z), cell(n, n

Z), cell(n

C Performance with equivalence-based preprocessing disabled

Here we list the performance of our different models when equivalence-based preprocessing is disabled. In appendix C the
performance is listed for constraints that work everywhere. Appendix C lists the performance for constraints that work in the
edge or corner.

grounding time (ms) solving time (ms) #choices #conflicts mean conflict size

Base model 57 6.9 21.3 7.6 44.8
Unique Cell 62 7.4 20.3 7.3 43.1
Unique Cell Dynamic 67 9.5 33.7 15.7 5.5
M-pair 62 7.3 21.1 7.6 34
Sandwich Pair 58 73 27.3 7.8 1.0
Sandwich Triple 59 7.0 20.6 7.4 32.3
Paired Isolation 58 7.2 22.0 6.8 1.0
Impossible Pair 60 6.8 35.0 7.8 1.0
Quad Middle 57 7.1 20.8 7.5 41.8
Isolated Area 76 107.9 230.8 24.4 25.5

Table 3: The performance of the base model and the base model plus one of the redundant constraints that are applicable everywhere. The
runtime is split into grounding time and solving time. Values represent the mean of 1000 50-by-50 puzzles. Equivalence-based preprocessing
was disabled.

grounding time (ms) solving time (ms) #choices #conflicts mean conflict size

Base model 2.7 0.28 3.9 1.1 11.3
Quad Corner 2.8 0.28 3.9 1.1 11.3
Triple Corner 2.8 0.28 3.9 1.1 11.2
Double Corner 2.9 0.29 3.6 1.1 8.2
Double Edge Pair 2.9 0.28 3.9 1.1 11.3
N-Edge Pair 2.9 0.28 3.9 1.1 10.8
Close Edge 2.9 0.29 3.8 1.0 10.4
all 3.7 0.30 34 1.0 7.7

Table 4: Performance of the base model and the base model plus one of the redundant constraints of the corners or edges. The runtime is split
into grounding time and solving time. Values represent the mean of 1000 10-by-10 puzzles. Equivalence-based preprocessing was disabled.

D Generator Proof Sketch

Below, we prove that our generator can generate only any
single-solution Hitori puzzle. We do so in three steps. In
the first step we prove that we can generate any valid solution
topology. In the second step we prove that, given a valid solu-
tion topology .S, we can generate any valid Hitori puzzle that
has that solution topology. In the last step we put everything
together to prove the following theorem:

Theorem D.1. Our generator is complete. That is, Algorithm
1 can generate exactly only every uniquely-solvable puzzle
H.

Algorithm 1 Algorithm that exactly any valid Hitori instance
H

[1]

GenerateHitorilnstance Let S = GenerateSolutionTopology
Let H = GenerateHitorilnstanceS H is not uniquely solvable
H = GenerateHitorilnstanceS

H

D.1 Generating Solution Topologies

A solution topology S is an n x n grid where each element
S;; (with 4,5 € [l..n]) is marked or unmarked. Given a
Hitori instance H with S as its solution topology, having .S; ;
be marked means the solution of H has tile H; ; marked.
Similarly, if S; ; is unmarked, the solution of H has tile H; ;
unmarked. A solution topology S is valid if it adheres to the
adjacency and uniqueness constraints defined by the Hitori
rules.

Algorithm 2 is a pseudo-code representation of the al-
gorithm with which we generate our solution topologies.

Algorithm 2 Algorithm that generates a solution topology S.
(1]

GenerateSolutionTopology ~ Let S[1,...,n][1,...,n]
be the two-dimensional array of tiles, all unmarked
Let C' be the collection of all coordinates in S
((1,1),(1,2),...(1,n),(2,1),...,(n,n)) in random
order

i = C[1] to C[n?] no orthogonally adjacent tile is marked
S[i] = marked the unmarked tiles of S are disconnected
S[i] = unmarked

S

Lemma D.2. Algorithm 2 only generates valid solution to-
pologies.

Proof. For any marked tile that the algorithm places it checks
whether the adjacency or connectivity constraint are met. If
this is not the case, it rolls back the decision and moves on.
Since our generator loops over every tile on the board and
checks whether it can be marked, and only leaves the tile un-
marked if it were to break the adjacency or connectivity
constraints, it cannot generate any solution topology with un-
marked tiles that could be marked without violating the adja-
cency or connectivity constraints. O

Lemma D.3. Algorithm 2 can generate exactly only any valid
solution topology.

Proof. Algorithm 2 generates solution topologies by iterating
over the tiles in a random order. We will use this to show that
it can generate any valid solution topology.

Take any valid solution topology S with marked tiles M
and unmarked tiles U. Since the solution topology is valid,
none of the tiles in M violate the adjacency or connectivity
constraints. Since Algorithm 2 visits tiles in a random order,
there is a non-zero chance that it will first visit all the tiles in
M before visiting any tile in U. Marking any of the tiles in M/
does not violate the adjacency or connectivity constraints,
and as such all will be marked by the algorithm.

Since S is a valid solution topology, no tiles in U could
be marked without breaking the adjacency or connectivity
constraints, thus when the algorithm visits the tiles in U after
already marking the tiles in M, it will mark none of them.
After having visited the last tile in U, the algorithm will return
solution topology S.

Now given that Lemma D.2 proves that Algorithm 2 can
only generate valid solution topologies, we have now proven
that the algorithm can generate exactly only any valid solution
topology. O

D.2 Generating Hitori instances

A puzzle instance of Hitori H is an n X n grid of numbers
where each element H; ; € [l1.n] with 4,5 € [l.n]. Al
gorithm 3 is a pseudo-code representation of our algorithm
for generating an instance H from a given solution topology
S. It consists of two subsequent algorithms, Algorithm 4
which generates numbers for the tiles in H which corres-
pond to unmarked tiles in S, and Algorithm 5 which generates
numbers for the tiles in H which correspond to marked tiles
inS.

Algorithm 3 Algorithm that generates a Hitori instance H
from a solution topology S.

(1]

GenerateHitorilnstanceFromSS Let H[1,...,n|[l,...,n] be
a grid of Os FillUnmarkedTilesH, S, n, 1 FillMarkedTilesH,
S,n, 1 H

Algorithm 4 Algorithm that fills in the unmarked tiles given
a partial Hitori instance H and a solution topology S.

[1] FillUnmarkedTilesH, S, n,k Leti = [£] Let j = ((k—1)
mod n) + 1

k > n? true

S[i][j] == marked FillUnmarkedTilesH, S, n, k + 1

Let row be the numbers used in the row of H[é][j] Let col be
the numbers used in the column of H[i][j] C = {1,...,n} \
row \ col C = () We check if a conflict occurred false this
is optimized by analyzing the conflict and returning to the
conflict’s cause shuffle C' H[i][j] = C[1] Assign H[i][;j] the
first element in C

FillUnmarkedTilesH, S, n, k + 1

Lemma D.4. Given a valid solution topology S, Algorithm 4
can generate all valid combinations of numbers in unmarked
tiles.

Proof. Take any valid partial Hitori instance H correspond-
ing to solution topology .S, which has numbers assigned to
all its unmarked tiles such that all of the assigned numbers
are unique in their row and column. We will now show that
our generator can create this partial Hitori instance.

Our generator iterates over all tiles in order, moving from
left to right, top to bottom. At each unmarked tile the gen-
erator will create a list C' of valid numbers to put in this tile.
This list consists of the numbers 1,2, ..., n excluding any
number that is already present in the row or column.

If a number is not in C, putting it in the given tile would
not result in a valid partial Hitori instance corresponding to
the solution topology S, as it would either break the unique-
ness constraint if it remains unmarked in the solution, or it
would break the adjacency or connectivity constraints if it
is marked (by the definition of .S).

Since C contains all valid numbers that the tile could re-
ceive, and Algorithm 4 selects a number at random, each pos-
sible valid number has a non-zero chance of being chosen,
including the corresponding value in H. Since this holds for
every unmarked tile that the algorithm visits, it can generate
H. As such, given a valid solution topology S, Algorithm 4
can generate all valid combinations of numbers in unmarked
tiles. O

Lemma D.5. Given a valid solution topology S, Algorithm
4 can only generate valid combinations of numbers in un-
marked tiles.

Proof. Any invalid combination of numbers in unmarked
tiles has to contain two of the same numbers on a given row
or column. Since Algorithm 4 selects a number to give to
a tile from a list C' that contains every number from 1 to n
excluding any number that is already present in the row or
column, the generator cannot create an invalid combination
of numbers in unmarked tiles. O

Algorithm 5 Algorithm that fills in the marked tiles of a par-
tial Hitori instance H.

[1]

FillMarkedTilesH, S, n, k Let i = [£] Letj = ((k — 1)
mod n) + 1

k > n? true

S[i][j] == unmarked FillMarkedTilesH, S, n, k + 1

Let 7ow be the numbers used in the unmarked tiles of the row
of HJi][j] Let col be the numbers used in the unmarked tiles
of the column of H[é][;]

C = row U col shuffle C' H[i][j] = ¢[1] Assign H[i][j] the
first element in C

FillMarkedTilesH, S, n, k + 1

Lemma D.6. Given a valid solution topology S, and a valid
partial Hitori instance H with numbers assigned to each un-
marked tile, Algorithm 5 can generate any valid combination
l of numbers for in the marked tiles.

Proof. For a combination of numbers for in the marked tiles
to be valid, each number in [must already be present in the
row or column that [will be assigned to. When assigning
numbers to tiles, Algorithm 5 will create a list C' which con-
sists of all numbers of unmarked tiles in the row and column
of the given tile.

Furthermore, since all numbers in [must be covered, as-
signing multiple tiles in [with a new number that is not
present in their row and column is not a valid move: at least
one of those tiles will not have to be covered.

Algorithm 5 then randomly selects a number from C' and
assigns it to the given tile. Given that C contains all valid
options for in the tile, and given that the number is chosen at
random from C, each number has a non-zero chance of being
selected for the tile. As such, Algorithm 5 can generate any
valid combination ! of numbers for in the marked tiles. O

Lemma D.7. Given a valid solution topology S, and a valid
partial Hitori instance H with numbers assigned to each un-
marked tile, Algorithm 5 can generate only any valid combin-
ations | of numbers for in the marked tiles.

Proof. For a combination of numbers for in the marked tiles
to be invalid, at least one number in [must not already be
present in the row or column that [will be assigned to. Since
we pick a number at random from C, and C only contains
numbers from the tiles’ row and column, it is not possible for
the generator to pick an invalid number. As such, Algorithm
5 cannot generate an invalid combination of numbers for in
the marked tiles. O

Lemma D.8. Given a valid solution topology S, Algorithm 3
can generate any valid puzzle instance H.

Proof. Lemma D.4 proves that, given any valid solution to-
pology S, we can generate all valid combinations of numbers
for the unmarked tiles of a valid corresponding partial Hitori
instance H. Lemma D.5 proves that we can generate nothing
but valid combinations of numbers.

Lemma D.6 then proves that given a valid solution topo-
logy S, and a valid partial Hitori instance H, we can generate
any valid combination of numbers for the marked tiles in H.
Lemma D.7 proves that we can only generate valid combina-
tions of numbers for the marked tiles in H.

Since we can generate only exactly any valid combination
of unmarked tiles, and given any valid combination of un-
marked tiles we can generate only exactly any valid combin-
ation of marked tiles, we can generate any valid combination
of tiles to create a valid Hitori instance given a valid solution
topology S. O

D.3 Proving Theorem D.1

Proof. Lemma D.3 has proven that our algorithm can gener-
ate exactly any valid solution topology S, and Lemma D.8
has proven that, given any valid solution topology S we can
generate exactly only any valid puzzle instances H. In the
last part of Algorithm 1 we keep generating new instances
H from S until we have found one that is uniquely solvable.
Once we have found such an H, we return it.

Given this, we know that the generator can only return
uniquely-solvable valid instances [, and as such we have
proven Theorem D.1 O

E Proof sketch of NP-completeness
uniquely-solvable Hitori

We reduce USAT to uniquely-solvable Hitori. We first con-
struct a partial Hitori solution P from a USAT formula ¢. In
this partial solution, every tile is either black, white, or con-
tains a number. In the third case, the tile is given a number
and labelled with a literal in ¢. The tile is white iff the literal
it is labelled with is true in the solution to ¢. We note this as
a;, where the tile contains the number ¢ in the (partial) Hitori
solution and is white iff « is true in ¢. From P, we construct
a puzzle H s.t. the solution to ¢ can be determined from the
solution of H by reading off the colours of the tiles labelled
with a literal. In our reduction, the puzzle has a solution iff
the USAT formula is satisfiable.

Definition E.1 (USAT formula). Let ¢ be a USAT formula
in conjunctive normal form. Every clause c in ¢ consists of
one or more literals, which is an atom (e.g. a) or a negated
atom (e.g. @). A clause is true if at least one of its literal is
true. ¢ is satisfiable if there is an assignment of atoms such
that every clause is true. There is at most one assignment of
atoms for which every clause is true.

Definition E.2 (Solution). Let S = (n, M) be a Hitori solu-
tion where M is an n-by-n binary matrix such that tile is
marked black or marked white. No two adjacent tiles in the
matrix may be black (the adjacency constraint). Additionally,
all white tiles must be orthogonally connected.

Definition E.3 (partial Hitori Solution). Let P = (n, M) de-
note a partial Hitori solution. M is an n-by-n matrix where
every tile is marked black, marked white or has a number.

E.1 Partial Hitori Solution

S = (n, M} is a valid solution to P iff for every tile in M
that has a color, M' has the same colour, and for every tile
in M that has a number, M’ is white or black such that for
every pair of tiles in M that have the same number and that
appear in the same row, at most one is white in S.

We construct the partial solution P from ¢ as follows. For
every clause ' VI2V...VI¥ in ¢, we add a clause gadget to our
partial Hitori solution. The clause gadget contains a wall of
black tiles with & gaps, where the tiles of the gaps are filled
with a number and labelled one of the clause’s literals. We
later show that a partial solution P can only have a solution
iff at least one of the tiles of labeled with a literal is white.

For every atom x, we add k—2 connecting gadgets where k
is the amount of clauses atom z is used in. These connecting
gadgets ensure that if in solution a tile labeled with a literal is
white, all other tiles labelled with that literal are white and all
tiles labelled with the negated literal are black. A connecting
gadget can connect to at most 3 other gadgets. In between
every gadget, before the first gadget and after the last gadget,
we add a filler pattern (see fig. 11) to guarantee we can en-
sure that every tile not labelled with a literal must be black
or white. We can ensure P is square by adding filler patterns
to the right as needed, and extending all patterns and gadgets
downwards according to the filler pattern.

Lemma E.1. P only has a solution if for all clause gadgets,
one of the clause’s literals is true.

Figure 9: A clause gadget for the clause a V b.

Figure 9 shows an example of a clause gadget. The black
tiles in column B and C of the clause gadget extend from the
top of the puzzle to the bottom of the puzzle. For every literal
in a clause, a black tile in column C is labelled that literal.
To the right of that tile, the tile is labelled with the negated
literal.

By the connectivity constraint, a solution is only valid if
the white tiles on the left of the gadget are connected to the
tiles on the right of the gadget. If for a clause gadget, all tiles
labelled with a literal in column C are black, the white tiles
on the left of the gadget are disconnected from the white tiles
on the right of the gadget. Therefore, P only has a solution if
at least one of the tiles labelled with the literals of the clause
is white.

E.2 Consistency

Definition E.4 (Consistency). An atom is consistent, iff in a
solution to P, all tiles labelled with that atom have the same
colour and all tiles labelled with the negated atom have the
opposite colour.

Lemma E.2. All atoms within a connecting gadget are con-
sistent.

Proof. Figure 10 shows a connecting gadget. In fig. 10, if
both a; and @3 are black, tile 2B is not connected to the other
white tiles violating the connectivity constraint. Therefore,
either the tile labelled a; or the tile labelledas must be white.
Similarly, either a7 or @3 must be white, idem for the other
literals. Since the tile labelled a; has the same number as that
of ay, if the tile aq is white (i.e. true), the tile ay is black (i.e.
false). If @y is black, ag in tile 4C is white, thus a3 in tile 8C
is black. This in turn means a3 in tile 8 A is white, so a3 in tile
6A is black and as is white and @5 is black. In other words,
if the tile labelled a; is white, all tiles labelled with a positive

A|B|C|D
A|B|C

1
1

2
2 |ay as

3
3
_ 4
4a1 as
5 5
6(1_3 as 6
7 7
8 | as a 8
N | :

Figure 10: A connecting
gadget. Every connecting
gadget can be connected to
three other gadgets. The
literals on line 2, 4 and 6
can be used for connecting.

Figure 11: The filler pat-
tern. This pattern can be
extended downwards.

atom are white and all tiles labelled with a negative atom are
black. Similarly, it can be shown that if @3 is white, all tiles
labelled with a negative atom are white and all tiles labelled
with a positive atom are white. Thus all literals within the
connecting gadget are consistent.

0

Lemma E.3. All literals are consistent between a connecting
gadget and a clause gadget.

Proof. We connect a connecting gadget to a clause gadget
as shown in fig. 12 s.t. the literals in the clause gadget are
the negated form of the literals that appear in that row in the
connected gadget. As shown above, either a; or as must be
white. If a; is white, a7 is black, and by the adjacency con-
straint as is white. If aq is black, as is white and thus as is
black and a7 is white.
Thus, the literals in a clause gadget are consistent with
those of the connected gadget.
O

Lemma E.4. All literals are consistent between a connecting
gadget and another connecting gadget.

Proof. Figure 13 shows two connected connecting gadgets.
If tile 6A labelled a3 is white, as is black and a5 is white.
Similarly, if tile 6C labelled ao is white, a3 is black and ag
is white. Thus the literals in these tiles are consistent among
each other. By transitivity, all literals in the first connecting
gadget are consistent with all literals in the second connecting
gadget. O

Lemma E.5. All atoms in our partial solution P are consist-
ent.

9

Figure 12: A clause gadget for the clause a \ b. The clause gadget
is connected to two connecting gadgets.

Figure 13: Two connecting gadgets that are connected to each other.

Proof. In P, every tile labelled with an atom is connected to
every other tile labelled with that atom. If an atom is used in
at most three literals, we connect them all to the same con-
necting gadget. If an atom is used in more than three gadgets,
they cannot be connected to the same connecting gadget. In
this case, we chain the connecting gadgets without loss of
consistency, as shown in fig. 13.

Since literals are consistent within a connecting gadget
(theorem E.2, between a connecting gadget and a clause gad-
get (theorem E.3), literals between a connecting gadget and
another connecting gadget are consistent (theorem E.4), and
all gadgets are connected in P, all literals are consistent. []

E.3 Constructing the full Hitori puzzle

We now construct the full Hitori puzzle H from our partial
solution P. We do this such that P and I will have the same
solution. Then we prove that the solution to H can be used to
derive the solution to ¢ and vice versa.

Lemma E.6. We can construct a puzzle H from our partial
solution P such that H and P share the same solutions.

Proof. We construct a puzzle H from our partial solution P.
We fill in the numbers of all tiles. For every tile labelled with
a literal a; or @;, we put the number ¢ in the tile. In every
white tile in H, we put a unique number.

We fill the black tiles in H using the Sandwich Triple pat-
tern[30]: If the same number appears three times next to each
other, like 1 1 1, the middle number must be white and the
outer two must be black. We can apply Sandwich Triple in
the filler pattern, the clause gadget and the connecting gadget.
Any tile next to these black tiles must be white. Additionally,
it can be shown that every other white tile must be white by
the connectivity constraint.

The filler pattern and the clause gadget have one black tile
in the top row that is not fillable by Sandwich Triple. These
tiles can be made black by setting the number of the tile to
that of a tile adjacent to a tile forced black by the sandwich
triple. The same holds for the rightmost tiles in the clause
gadget (see column G of fig. 9).

O

Lemma E.7. A solution to ¢ can be derived from a solution
to H.

Proof. By lemma E.5, we can construct an assignment of
atoms A such that an atom is true in A if the tiles labeled
with its positive literals are white, and false in A, if the tiles
labeled with its negative literal are white. By theorem E.1,
every clause gadget has at least one tile labeled with a literal
that is white. Every clause gadget maps one-to-one to a clause
in ¢. Therefore, for every clause in ¢, there is an atom that is
true in A.

O

Lemma E.8. A solution S of H can be derived from a solu-
tion to ¢.

Proof. By construction of H, all tiles that have a colour in P,
must have the same colour in the S. Every other tile in P is
labeled with a literal. Let A be the solution to ¢. For every

tile that is labeled with a literal, we mark it white in S iff the
literal is true in A, otherwise we mark the tile black in S. By
construction of the clause gadgets, for every clause gadget at
least one gap in the wall of black tiles is white thus S is a
valid solution.

O

Lemma E.9. H is uniquely-solvable, i.e., it has at most one
solution.

Proof. Assume H has multiple solutions.

The solutions to H can only differ for tiles related to a
literal, since we constructed H such that all tiles that have a
specific colour in P must be that colour. By theorem E.5, if
a tile labelled with a literal changes colour, every tile labelled
with that literal or the negated literal must change colour, so
we have a different set of literals that is true.

By theorem E.7, we can construct a different solution to ¢.
This violates our premise that ¢ has at most one solution, thus
H has at most one solution. O

E.4 Completion of Reduction

Proof. We have reduced USAT formula ¢ to a uniquely-
solvable Hitori puzzle H, such that every solution to H maps
to a solution to ¢ and vice versa. This reduction can be per-
formed in polynomial time. It is trivial to show that Hitori is
in NP. Thus, Hitori is NP-complete. O

	Introduction
	Related Work
	Background
	Hitori
	Paradigms
	Answer Set Programming (ASP)
	Satisfiability Modulo Theory (SMT)
	Constraint Satisfaction Programming (CSP)
	Comparison

	Proof sketch of NP-completeness
	Approach
	Modelling Hitori in ASP
	Redundant constraints

	Experimental Setup
	Research Questions
	Generator
	Software and Hardware
	Statistical Analyses

	Results and Discussion
	Conclusion and Future Work
	Author contributions
	Redundant constraints
	Middle Constraints
	Edge Constraints
	Corner Constraints

	Performance with equivalence-based preprocessing disabled
	Generator Proof Sketch
	Generating Solution Topologies
	Generating Hitori instances
	Proving Theorem D.1

	Proof sketch of NP-completeness uniquely-solvable Hitori
	Partial Hitori Solution
	Consistency
	Constructing the full Hitori puzzle
	Completion of Reduction

