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Effectiveness of trip planner data in predicting short-term
bus ridership

Full Paper
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Verma · Panchamy Krishnakumari · Peter

van Brakel · Niels van Oort

Abstract Predictions on public transport ridership are beneficial as they allow
for sufficient and cost-efficient deployment of vehicles. At an operational level,
this relates to short-term predictions with lead times of less than an hour. Where
conventional data sources on ridership, such as Automatic Fare Collection (AFC)
data, may have longer lag times, in contrast, trip planner data is often available in
(near) real-time. This paper analyzes how such data from a trip planner app can
be utilized for short-term bus ridership predictions. This is combined with AFC
data (in this case smart card data) to construct a ground-truth on actual ridership.
The trip planner data is studied using correlation analysis to select informative
variables, that are then used to develop 4 supervised machine learning models
(linear, k-nearest neighbors, random forest, and gradient boosting decision tree).
The best performing model relies on random forest regression and reduces the
error by approximately half compared to a baseline model based on the weekly
trend. We show that this model performance is maintained even for prediction
lead times up to 30 minutes ahead, and for different periods of the day.

Keywords Public Transport · Trip Planner · Bus Ridership Prediction · Machine
Learning

1 Introduction

Predicting public transport (PT) ridership is vital to address the increasing pas-
senger demand (Van Oort et al., 2016; Noursalehi et al., 2018; Hao et al., 2019).
It allows operators for allocating vehicles sufficiently and cost-efficiently, which
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improves passenger satisfaction and leads to a higher level of PT service (Pel
et al., 2014; Ohler et al., 2017). At an operational level, this prediction needs to
be realized in the short-term with less than an hour.

Until now, such short-term passenger demand predictions have typically used
Automatic Fare Collection (AFC) or Global System for Mobile Communications
(GSM) data. Scholars have widely shown that AFC data is useful in predicting
short-term passenger demand (see, for instance, Van Oort et al. 2015; Xue et al.
2015; Ding et al. 2016; Zhou et al. 2016; Wang et al. 2018). Such datasets, however,
are collected over days and do not depict the variability in short-term (from real-
time up to 30 minutes) ridership patterns (Pelletier et al., 2011; Van Oort et al.,
2015). On the other hand, transit information can also be collected in real-time
using mobile phone data. This data is essential for representing, analyzing, and
planning the PT system (Elias et al., 2016). De Regt et al. (2017) fused GSM data
with smart card data (retrieved from AFC system) to reveal the spatial and tem-
poral pattern and to offer insightful mobility patterns from strategical and tactical
level. The same methodology is also seen in the passenger flow measurement at
Paris metro (Aguiléra et al., 2014).

AFC and GSM (regardless of their lag time in data availability) inherently show
realized ridership, as it occurs. But for ridership prediction, it is valuable to have
data on travel intention, before the trip is executed. The latter is captured in data
from trip planner apps. Therefore, trip planner data (especially when available in
near real-time) provides a source for ridership prediction. Applications that make
the collection of planner data available, provide integrated travel information to
its users, which helps users realize their travel needs and brings in convenience
and flexibility (Ferreira et al., 2017). Thus, as a proxy, trip planner data provides
the same granular level of spatial and temporal information about possible trips,
as smart card data (Ferreira et al., 2017), implying the possibility of its use for
predicting ridership. Since users do not have to realize their trips for data to be
aggregated, the user intent of a trip lodged in real-time and collected through
digitized apps (e.g. 9292) 1 can prove very useful in predicting short-term PT
ridership. The proliferation of this kind of trip planner app offers a unique oppor-
tunity to combine trip planner data and smart card data, which could potentially
cater to the substantial interest of operators in matching the vehicle supply and
passenger flow demand at an operational level.

In this paper, we investigate how trip planner data can be utilized for predict-
ing short-term ridership. We use trip planner data provided by 9292 to predict
the short-term ridership on two case study lines in the provinces of Groningen
and Drenthe (in the Netherlands) during October 2019. We use smart card data
provided by OV-bureau Groningen Drenthe (regional PT authority) to derive his-
torical ridership patterns and validate our methods of prediction. We design two
baseline models and four supervised machine learning (ML) models to predict
short-term bus ridership and compare the performance of the models. Using the
model performance scores, we further infer the role of trip planner data in the
short-term prediction of ridership patterns using variables such as lead times (real-
time to 10, 15, 30 min ahead), variability across a day and in space, day type, and
line characteristic. We find that trip planner data contributes to the best per-

1 A PT travel information company based in the Netherlands, covering all PT modes -
https://9292.nl/



forming model with a feature/variable importance up to 50%, and this model can
reduce the errors by half, compared to the baseline model based on the weekly
trend. Moreover, this model performance is maintained for prediction lead times
up to 30 minutes ahead, and different periods of the day.

The remainder of this paper is organized as follows: We present the data and
methods in the following Section 2. In Section 3, we analyze the results of the
models for ridership prediction. Lastly, in Section 4, we present our reflections and
provide avenues for future research. Section 5 draws the main conclusions. Wang
(2020) presents more details of the methodology and additional cases, which can
be found in the supplementary materials.

2 Data and method

This section first presents the description of the data for a better understanding of
the rest of the paper, including context, data description, and data analysis (Sec-
tion 2.1). Then, it explains the different components of the method: the baseline
models, the correlation analysis for variable selection, the ML models for ridership
prediction with trip planner data, and the evaluation criteria, along with feature
importance analysis (Section 2.2).

2.1 Data

Trip planner In this study, we use the trip planner data from 9292. 9292 is an
interactive trip planner, established in 1992, the Netherlands. It is notably the
biggest one, and with the largest market share of approximately 46 % 2 so that
it is a representative set against the other competitors such as NS (the biggest
railway operator), Google Maps, and ANWB.

Every day, it has 600,000 active devices with 4 to 5 requests per device on
average, resulting in around 3 million requests per day 3. It provides local infor-
mation of the Netherlands and includes PT information of all modes such as bus,
metro, train and light rails, which matches the interest of this study. The users
can access such a trip planner either through a mobile app, tablet app or a web
browser. With the filled-in information of origin, destination, and preference, the
planner searches the database for the transport supply and provides the most suit-
able and possibly multi-modal trip alternatives with the corresponding temporal
and spatial details. It can also provide the position of the predicted arrival time
of a transit vehicle at a stop or station as real-time transit information. Hence,
it could benefit passengers by reducing waiting time and correspondingly increase
the ridership of transit as a result of elevated transit service and perceived personal
security (Brakewood and Watkins, 2019).

Case study We apply the methodology in two bus lines - Qliner 300 (inter-city,
fast service) and Q-link 1 (connecting multiple important locations, including a

2 The market share is estimated by Newcom: https://www.newcom.nl/
3 9292 hires Flurry to measure the number of unique devices per day on which the app is

used at least once: https://www.flurry.com/



hospital and campus) in region Groningen and Drenthe, two provinces in the
northeast of the Netherlands, covering a total population of 1,076,157 and an area
of 5,640 km2. It is suitable for this study as bus is the only mode in that region,
and bus users are much more inclined to be mobile app users, compared to train
users as the timetable is not frequently adjusted (Mulley et al., 2017). Besides,
Mulley et al. (2017) concluded that age has a strong negative impact on the usage
of the trip planner. More than half of the population of Groningen and Drenthe
are below 45 years old, which is appropriate for this study.

Data description The study utilizes the smart card and trip planner data in Octo-
ber (2019). During this period, there was an official holiday for schools from 19th
to 27th in the case study region, which influences the travel of students, teachers,
and other school-related jobs.

The trip planner data contain four parts, namely stops, modality, answer, and
question. A question is the recording of a trip request (desired point-to-point travel
information) while an answer is the trip advice accordingly. Only the answer with
the least travel time is recorded in the trip planner dataset, and IP or location
tracking is not available. Examples of trip planner question and answer data are
presented in Tab. 1 and 2, respectively.

Table 1 Sample of fictitious 9292 question data

Unique ID Request Date Travel Date Request Time Desired Travel Time Origin Destination

{3A9EA79A} 2019-10-01 2019-10-01 17:36 17:36 1000187 1210130

{2C1F1461C} 2019-10-05 2019-10-06 01:44 06:30 1010777 1010750

{4B3558F8F} 2019-10-23 2019-10-23 08:27 08:30 zh* 1000145

*: Due to privacy concerns, an exact location typed in by the user will be hashed to a random string.

Table 2 Sample of fictitious 9292 answer data

Unique ID Journey Sequence Line Number Modality Estimated Travel Time

{3A9EA79A} 1 5 172 25

{3A9EA79A} 2 6 172 28

{2C1F1461C} 1 10 1 12

Unique ID Transport Company Vehicle Departure Time Stop (Origin) Stop (Destination)

{3A9EA79A} 219 17:40 1000187 1210130

{3A9EA79A} 219 18:10 1010777 1010750

{2C1F1461C} 15 06:35 1000188 1000145

In the Netherlands, a nationwide smart card system is in operation, for all
modes, using tap-in and tap-out technology (see Van Oort et al. (2016) for a full
description). The smart card data is split into trips, namely a tap-in and tap-out of
a single leg of a journey with the corresponding spatio-temporal details. However,
it is not possible to distinguish the user type as we have no information on the
subscription type.

Data cleaning is conducted before the analysis steps to handle inaccurate
recordings, duplicates, and special arrangements of the trips. Both the trip plan-
ner and smart card data do not have the information on the trip number (vehicle
recording), and they do not have standardized systems for the stop numbers or
names. Thus, we have to map the ridership and requests onto the vehicles based



on AVL data and stop names. This leads to around 5% loss of trip planner data
and a 3% loss of smart card data, which is not significant. For further details on
the data cleaning process and results, see Wang (2020).

Data analysis In order to unveil the usefulness of trip planner data with a certain
prediction lead time, we can use the difference between vehicle start time and
requested travel time of passengers. The number of requests generally drops with
the increase of the prediction lead time in every case study line as shown in the
left part of Fig. 1. People prefer asking for route advice 10 to 30 minutes before
their trip. Most of the requests are sent within a prediction lead time of an hour.
If we are interested in a larger prediction horizon, the drop in the percentage of
requests is considerable.

Fig. 1 Comparison of prediction lead time per line and per period

It is intuitive that during different periods of a day, people behave differently
while using such a trip planner. We differentiate the periods of a day and cluster
them into four groups with the same time horizon of 6 hours. The right part of
Fig. 1 testifies that people plan their trip at least 8 hours before the trip during
the night but roughly continue with the same behavior for the other three periods.
The aim of using such a trip planner varies over the whole day.

There is a significant negative influence on the ridership during weekend and
holiday, which matches the findings in the literature (Chiang et al., 2011; Karn-
berger and Antoniou, 2020). However, the difference in ridership pattern over the
day of the week is not apparent. The spatial characteristic is considerable, which
is again in line with literature (Chakour and Eluru, 2016; Ding et al., 2016). The
busy corridors with respect to ridership are usually a railway station, a Park and
Ride (P+R) stop, a business area, or a city center. The average ridership of trips on
each case study line is roughly below the seating capacity. However, it is the busy
trips during peak hours that lower the level of service. It indicates the potential
benefits of enhancing those crowded trips to improve comfort.



The joint distribution of trip planner requests and ridership is derived at stop-
level, shown in Fig. 2. Although both distributions follow the same trend, there
are more dots above the line, which means that the number of requests is generally
larger than the ridership for a given trip, i.e. the realized trips. Besides, several
outliers lie beyond the line remarkably. Therefore, a linear relationship between
them is hard to find.

Fig. 2 Joint distribution of ridership and requests at stop-level

Moreover, the distribution of ridership is right-skewed, which means that we
have an imbalanced distribution on the target that we want to predict. If we
calibrate the ML model by randomly sampling from these observations of ridership,
the minimization of errors under less crowded conditions will naturally outweigh
that of crowded conditions. This is not necessarily optimal if PT operators may
wish to prioritize the predictions for crowded situations. This kind of issue is
prevalent in many domains within predictive tasks (Branco et al., 2017). In Section
3.2, we propose an approach to capture the rarest and relevant cases equally as
the majority.

2.2 Methodology

Two baseline models are established in this paper. The first one is currently being
used by PT operators. In such a model, the ridership of this week is estimated by
the ridership of last week. The second baseline method uses a multiplier to ridership
to capture the weekly trend. This multiplier is calculated by the ridership of the
day before divided by the ridership of the day before from last week.

For any ML model, the input variables are as important as the model itself.
The selection of variables would always be an iterative process to reach a higher



performance of the models. We first choose the variables based on the literature
and data analysis. Then, a variance-covariance analysis is performed to test the
correlation between a specific variable and ridership (target). The insignificant
variables will be kept out to avoid redundancy.

There are four learning paradigms in ML, namely supervised, unsupervised, semi-

supervised and reinforcement learning. We choose supervised learning in this study
as it uses labeled training datasets to build the model and maps an input to the
desired output based on example input-output pairs (Russell and Norvig, 2009).
For other paradigms, readers are referred to the work of Dey (2016). Both regres-
sion and classification have been used for ridership prediction problem (Chiang
et al., 2011; Xue et al., 2015; Ding et al., 2016; Zhou et al., 2016; Ohler et al.,
2017; Wang et al., 2018; Karnberger and Antoniou, 2020). In this paper, we aim to
forecast the number of passengers on board in a specific section. It is a continuous
quantity and is, therefore, a regression problem.

There are numerous models for regression, and there is no single model that
can be the best for every scenario (Raschka, 2015). Among the supervised mod-
els, we turn to more interpretable models suggested by Molnar (2019) because
they can explain themselves so that we can know the importance of trip planner
data in such a model. We decide to include the following interpretable ML mod-
els: linear regression (LR), k-nearest neighbors regression (k-NNR), random forest
regression(RFR), and gradient boosting decision tree regression (GBDTR).

We split the data into two instances, namely training data and test data with
the 80/20 rule as a rule-of-thumb, also known as the Pareto Principle. Moreover,
we assess the model at stop-level using the following metrics: mean absolute error
(MAE), rooted mean square error (RMSE), coefficient of determination (R2),
and R2 from cross-validation (Handelman et al., 2019). By stop level, we mean to
measure the ridership between two consecutive stops during one bus trip.

We also explore the importance of the chosen features for the ridership pre-
diction in the best-performing model. Feature importance measures the relative
importance of each feature when making a prediction by assigning scores to the
input features (Kuhn et al., 2013). In this work, we use this technique to discover
and quantify the usefulness of trip planner data.

For k-NNR, GBDTR, and RFR, we use permutation feature importance. This is
computed by measuring the decrease in a model score when a single feature value is
randomly shuffled (Breiman, 2001). Although it considers the interactions among
features, it is computationally efficient and facilitates the interpretation. For tree-
based models, mean decrease in impurity (MDI) is used to investigate the feature
importance. Albeit this method is purely based on the training dataset and tends
to inflate cardinality features, it is easily understandable and computationally light
(Louppe, 2014).

3 ML models for ridership prediction with trip planner data

To predict the ridership at stop-level, we explore the ridership of a section between
stops. To begin with, we illustrate the selection of variables and the variance-
covariance matrix calculated from them in Section 3.1. Next, Section 3.2 discusses
the model calibration, including sampling design and model tuning. After that,



we compare the model performance by the metrics in Section 3.3. Finally, Section
3.4 analyzes the best performing model further.

3.1 Covariance analysis and variable selection

Based on the data analysis, we list the variables considered in this study in Tab.
3. Other than the request-related variables, the other variables have been exhaus-
tively studied in the literature.

There are 50 sections coded as dummy variables for the two case study bus
lines. We include the day of the week but are not considering each day of the week
since it is not significant as aforementioned (Section 2.1). Additionally, we put
variables with prediction lead time into models in pairs. For instance, request and
request var would be a pair to see how the model performs when we have all the
trip planner data available, while other variables with a specific prediction lead
time would test how the model performs with fewer data and when the prediction
is performed for further ahead in time.

With the considered input variables, we present the variance-covariance ma-
trix in Fig. 3. The variance-covariance matrix shows the spread and deviation by
the variance on the diagonal and the dependency between two variables by the
covariance in other cells. Results, shown here, are derived from the case study lines
during October. The top left corner represents the variance of ridership, which is
the target we want to predict. This variance of ridership has a large span as high
as 125.42, which means the prediction is valuable. The variance of requests also
has a large value of 240.12. As a predictor variable, a high variation leads to a
lower variation in the regression model and hence, a better prediction.

The most influencing factors are ridership-related and requested-related. The
largest three positive covariances are seen in the request, request with at least 10
minutes ahead, and ridership last week. It confirms that the relationship between
trip planner requests and ridership has a strong positive correlation, which implies
the potential of the trip planner data to predict the ridership. Moreover, all co-
variances of trip planner variables with prediction lead time are strongly positive,
which indicates that the travel purpose and behavior do not change when we con-
sider further ahead in time. Plus, this covariance changes slightly when we focus
on a specific period. However, we also notice that both line characteristics and
temporal variables have unexpectedly small covariances. This implies that tem-
poral and spatial influences on ridership are marginal. But we keep those in the
prediction model as extensive literature prove their effectual influences (Chiang
et al., 2011; Xue et al., 2015; Chakour and Eluru, 2016; Ding et al., 2016; Ohler
et al., 2017; Karnberger and Antoniou, 2020).

3.2 Model calibration

The data analysis above shows that ridership is imbalanced. This imbalance is not
inherently a problem. However, it is the conjunction between preference (crowded
cases) and imbalance (more observations on the less crowded conditions) that
causes a degradation of the performance of the most desirable instances (Fernández
et al., 2018). The learning methods that we choose in this study (k-NNR, GBDTR,



Table 3 List of variables in ridership prediction with trip planner data

Variable Explanation Category Unit/Coding

Ridership The passengers on board Numerical Person

Ridership mean
The historical average

of ridership
Numerical Person

Holiday The autumn holiday Categorical One-hot encoding

Request† The trip requests Numerical Record

Request var†
The variance of trip

requests, compared to

the historical average

Numerical Record

Request mean
The historical average

of trip requests
Numerical Record

Day of week Weekday or weekend Categorical One-hot encoding

Section
The section that a vehicle

traverses during a trip
Categorical One-hot encoding

Direction The direction of the trip Categorical One-hot encoding

Period Peak or off-peak hour Categorical One-hot encoding

Ridership last week
The passengers on board

of the same trip last week
Numerical Person

Request 10†
The trip requests that are

sent 10 minutes ahead
Numerical Record

Request var 10†
The variance of trip

requests that are sent

10 minutes ahead

Numerical Record

Request 15†
The trip requests that are

sent 15 minutes ahead
Numerical Record

Request var 15†
The variance of trip

requests that are sent

15 minutes ahead

Numerical Record

Request 30†
The trip requests that are

sent 30 minutes ahead
Numerical Record

Request var 30†
The variance of trip

requests that are sent

30 minutes ahead

Numerical Record

†: Variables with this symbol will be put into models in pairs, e.g. request and re-
quest var.

and RFR) do not give equal importance to the minority class as the majority class.
Therefore, we resample the training data to tackle this issue (He and Ma, 2013).

We randomly undersample the majorities and oversample the minorities by
applying synthetic minority oversampling technique (SMOTE) proposed by Chawla
et al. (2002). SMOTE creates new instances of a minority class by using a K-
Nearest-Neighbor approach. A random number of original observations are chosen



Fig. 3 Variance-covariance matrix at stop-level

and for each of their K neighbors, a new sample is created as a linear combination
of the initial observation and its neighbor. Chawla et al. (2002) and Fernández
et al. (2018) indicate that a combination of SMOTE and undersampling performs
the best.

A pair-wise study on random forest regressor with 4 undersampling and 6 over-
sampling strategies is developed to reach the optimal combination. The random
forest regressor tends to focus more on the prediction accuracy of the majority
class, which often results in low accuracy for the minority class (Khoshgoftaar
et al., 2007). Figure 4 presents the min-max scaled R2 results of sampling design
of each case study line through 5-fold cross-validation. Normally, the dataset is
recommended to split up into k-partitions - 5 or 10 partitions as a rule of thumb
(James et al., 2014). Both case study lines show a similar pattern through a 10-
time experiment since the train/test split is random. Therefore, we resample the



data without undersampling the majorities but oversampling the minorities by
50%.

Fig. 4 Evaluation of different sampling designs per line

Given the optimal sampling design, we perform nested k-fold cross-validation to
calibrate the model and investigate the robustness of the model as this technique
is able to avoid information leakage and significant bias, caused by applying k-fold

cross-validation twice (Cawley and Talbot, 2010). In this nested cross-validation,
stratified 5-fold cross-validation is applied in the inner loop to equally capture the
class while random permutation 5-fold cross-validation is adopted in the outer loop
to approximate the reality (Kuhn et al., 2013). Tuning hyperparameters of non-
parametric regression algorithms (such as k-NNR, GBDTR, and RFR) is of im-
portance as they do not rely on the assumed shape or parameters of the underlying
population distribution (Hopkins et al., 2018). The optimal hyper-parameters are
presented in Tab. 4 for both bus lines. R2 of the training dataset is optimized by
cross-validated grid-search over a pre-defined parameter grid. For tree-based mod-
els, a process called regularization can help to use hyper-parameters to control the
structure of the decision tree-based models and therefore GBDTR and RFR in
this study (Probst et al., 2019). As for k-NNR, the only hyper-parameter we need
to tune is the nearest K, which is calculated by conducting a sensitivity analysis
of different k based on the Euclidean distance.

3.3 Model performance: comparison of models

With the tuned hyper-parameters of the models and the optimal method of sam-
pling, we proceed to analyze the results of the four ML models for the two bus lines.
We present the performance of the prediction models of Qliner 300 and Q-link 1
in Tab. 5 and 6, respectively.

In both cases, RFR outperforms the other models as shown by the R2 from
repeated random 5-fold cross-validation while for Qliner 300, GBDTR has the same
score as that of RFR. In such a case, both RFR and GBDTR beat other models
with a R2 from cross-validation of 0.726. However, RFR outperforms GBDTR by



Table 4 Optimal hyper-parameters of the non-parametric models

Qliner 300 Q-link 1

GBDTR

learning rate = 0.01

n estimators1 = 13000

max depth2 = 4

min samples split3 = 2

min samples leaf4 = 6

subsample5 = 1

max features6 = 11

learning rate = 0.02

n estimators = 25000

max depth = 4

min samples split = 2

min samples leaf = 15

subsample = 1

max features = 15

k-NNR n neighbors7 = 14 n neighbors = 10

RFR

bootstrap8 = False

n estimators = 700

max depth = 20

min samples split = 2

min samples leaf = 4

max features = 10

bootstrap = False

n estimators = 400

max depth = 25

min samples split = 2

min samples leaf = 2

max features = 20

1: Number of trees.
2: The maximum depth of a tree.
3: The minimal number of samples in a node for the node to be
split.
4: The minimum number of samples in a leaf node.
5: The fraction of samples to be used for fitting the individual
base learners.
6: The number of features randomly chosen as candidates for a
split.
7: Number of neighbors to use.
8: Whether bootstrap samples are used when building trees. If
False, the whole dataset is used to build each tree.

Table 5 Performance of short-term prediction models (Qliner 300)

Qliner 300 MAE (Person) RMSE (Person) Rˆ2

Rˆ2 from

Repeated Random

5-Fold Cross-Validation

Baseline 5.761 9.060 0.461 -

Baseline with weekly trend 10.721 30.408 -6.179 -

LR 5.573 9.870 0.276 0.595

GBDTR 4.664 7.114 0.624 0.726

k-NNR 4.699 7.277 0.607 0.666

RFR 4.123 6.357 0.700 0.726

the other three metrics. For Q-link 1, RFR significantly improves the prediction
accuracy compared to other models. For the baseline model with weekly trend
and linear regression model of Q-link 1, the performance was shockingly low with
negative R2 values. It means that a simple mean would work better than these



Table 6 Performance of short-term prediction models (Q-link 1)

Q-link 1 MAE (Person) RMSE (Person) Rˆ2

Rˆ2 from

Repeated Random

5-Fold Cross-Validation

Baseline 7.744 12.588 0.287 -

Baseline with weekly trend 9.920 26.071 -2.049 -

LR 9.095 68.056 -17.879 0.536

GBDTR 9.462 13.667 0.239 0.796

k-NNR 5.622 9.235 0.652 0.698

RFR 4.329 7.045 0.798 0.826

two models, which indicates the failure of these models to find any meaningful
relationship between the input and output.

Figure. 5 shows a specific instance of the predicted and actual values of Qliner
300. ML models mostly can capture quiet trips as well as beat the baseline models
for busy trips. However, all models have higher average error and bias when the ac-
tual value of ridership increases, which implies the existence of heteroscedasticity.
When the value of ridership is low, all models can function efficiently, where GB-
DTR tends to overestimate the prediction, k-NNR tends to underestimate while
RFR is relatively neutral. However, the linear regression performs worse than even
the baseline models, indicating an absence of a linear relationship between rider-
ship and the selected variables.

3.4 Model performance: further analysis of RFR model

Residual analysis The best performing model -RFR- is used to investigate the
residuals, especially the over- and under-estimation of the prediction. Over- and
under-estimation is of interest as they cause differences in the PT operations.
Overestimation of ridership leads to wasted supply while underestimation results
in a lower level of service. The analysis of the over- and under-estimation with
residuals of RFR is presented in Tab. 7.

Table 7 Overestimation and underestimation based on residual analysis of RFR

Percentage
95th Percentile Absolute

Error(Person)

Average of top 5 Percentile

Absolute Error(Person)

Overestimation Underestimation Overestimation Underestimation Overestimation Underestimation

Qliner 300 46.77% 53.23% 10.125 14.492 16.486 22.013

Q-link 1 50.51% 49.49% 12.079 18.285 18.353 25.833

Qliner 300 has more underestimation than overestimation and the difference
between them is approximately 7%. Q-link 1 is balanced with a similar percentage
of over- and under-estimation of the ridership prediction. Both cases have more
tendency to underestimate the actual values, and this tendency is much more
profound when we see the average of the top 5 percentile error.

The residuals of prediction vary with period and day type, shown in Fig. 6.
For Q-link 1, it is the evening peak that has the highest variance of residuals



Fig. 5 Prediction vs. actuality plot of Qliner 300

because it is the second-highest commuting time. Besides, commuters have a non-
uniform off-duty time so that the ridership is easy to fluctuate, and therefore a
higher variance of prediction error. In contrast, Qliner 300 has a higher variance
of residuals during the morning peak because it is a fast-service less-stopping line,
and passengers flow into this line during the morning peak. This results in higher
variance and predictive difficulty. Concerning day type, the variance of the weekday
is higher than the weekends for both lines.

Feature importance We report the feature importance of RFR on Qliner 300 as an
example in Fig. 7. Since it is a tree-based model, we can apply both permutation
feature importance and MDI to calculate the feature importance and compare the
results from both approaches to gain a complete understanding of the importance
of features. We carry out MDI feature importance on the training set while we
apply the permutation feature importance on the test set. In this case, we use the
scenario with all trip planner requests without any prediction lead time.

No matter the feature importance measurement method, the first five con-
tributing features are the average number of ridership, the ridership of last week,
the number of requests, the average number of requests, and the variance of re-
quests. The most influencing variable is usually the average number of ridership,
which shows its relevance in ridership prediction. The MDI importance of Q-link
1 demonstrates that the number of requests supports the prediction the most with



Fig. 6 Residuals of Qliner 300 per scenario (RFR)

Fig. 7 Feature importance of Qliner 300 (RFR)

almost 35% of the importance score. Regardless of the approach of measurement,
Q-link 1 regards requests-related variables are more important with almost 50% of
the feature importance on average. In contrast, they play about 20% importance on
average for Qliner 300. Still, at least one of the request-related variable often rank
within the first three substantial variables, such as the average request in MDI im-
portance and variance of request in permutation importance. Unexpectedly, both
temporal and spatial variables exhibit minor importance for the predictions. Our
feature importance analysis also backs up the argument that the impurity-based
feature importance can inflate the importance of numerical features (Strobl et al.,
2007).

Performance with prediction lead time We further analyze the performance of RFR
with the same configuration and the same sampling design but with different pre-
diction lead times. In other words, how the model performs with trip planner data
that is further ahead of time, such as 10 minutes, 15 minutes, and 30 minutes
before the vehicle start time. Figure. 8 displays the number of requests per pre-
diction lead time per scenario (inset), the model performance of R2 per scenario



(solid line with circle marker), and the feature importance of the request-related
variables per scenario (dashed line with star marker). Request-related variables in
each scenario contain the number of requests, the historical average of requests,
and the variance of the requests.

Fig. 8 Model performance with different prediction lead times in the short-term

By using trip planner data with different prediction lead times, the performance
of RFR remains almost stable. Although the number of data and the correlation
between requests and ridership drop, the model functions essentially the same,
reflected by the R2 value. Among all scenarios of Qliner 300, the model with only
10-minute in advance is the best as it is the closest time to the vehicle start time,
containing most of the information. However, unlike Qliner 300, Q-link 1 has 15-
minute ahead of time as the best-performing. It shows that people probably change
their travel behavior for such a line when it moves from 15-minute to 10-minute
ahead. Depending on the line characteristics, people opt for using such a trip
planner differently. Sometimes, when it comes close to the vehicle start time, it
has an adverse effect on the prediction model.

The further ahead in time, both the importance of the number of requests
and the average number of requests decrease. However, we see an increase in
the importance of the variance of the requests. This leads to the sum of feature
importance to remain the same.

Performance with requests sent from different periods In data analysis (Section 2.1),
we conclude that people behave differently during different times while using such
a trip planner. Thus, we execute the model again with the same optimal hyper-
parameters and sampling design, but we investigate the performance of RFR by
leveraging trip requests sent from different periods. Each period has the same
horizon of 6 hours, e.g. morning is from 4:00 to 10:00. Figure. 9 exhibits the
results with the same layout as Fig. 8.

Essentially, we see the model performance, and the summed request-related im-
portance has the same trend with the number of requests. The best performances
are seen from 10:00 to 16:00 when the number of requests is the largest, compared
to including all the requests. Users send very few requests at night (from 22:00 to
4:00), which is around 5% of all requests. But the performance does not degrade
dramatically. In contrast, it is during the evening (from 16:00 to 22:00) when RFR



Fig. 9 Model performance with requests sent from different periods

predicts worse for both cases. It means that during the evening, the relationship
between the variables and ridership is complicated. Concerning the feature impor-
tance of request-related variables, the request importance drops sharply when the
number of requests is low. The role of average and variance of requests becomes
more important, while the number of requests tends to be less influencing.

4 Discussion

In this study, we investigated how trip planner data can contribute to the short-
term prediction of bus ridership and built 2 baseline and 4 supervised machine
learning models with a selection of variables, based on correlation analysis. We
found that trip planner data can have feature importance up to 50% in the best
performing model (RFR), which can reduce the error by approximately half, com-
pared to the baseline model that is established by the weekly trend. However,
in this section, we will discuss the limitations and further opportunities for this
research domain.

Data availability Broader studies can be carried out if more information about trip
planner data is available and privacy concerns of the 9292 trip planner can be min-
imized. It is unknown whether it is a single journey with multiple legs or a group of
people traveling with one trip planner request. Therefore, if the user ID is available,
the underestimation of the trip planner’s importance can be avoided. Moreover,
knowing the alternatives provided for a piece of trip advice can be meaningful
so that we can study the user preference and behavior. Besides, distinguishing
between the user type will be advantageous to understand the travel preference
among different kinds of travelers. Also, with this additional information, we can
gain insights into how often different types of people make requests.

Error weighting and data imbalance Note that if we calibrate the model based on
a random sample from all observations, then naturally the minimization of er-
rors under regularly observed ridership conditions (e.g. less busy conditions) will
outweigh the minimization of errors under rarely observed ridership conditions
(e.g. very busy conditions). This is not necessarily optimal from the perspective of
the PT operator who may wish to prioritize having good predictions specifically



for irregular situations. This can be solved (directly) by using error-weighting in
the calibration process or (indirectly) by using non-random sampling. The latter
is applied here in this paper, where the sparse data in the high-value domain is
oversampled. This optimal sampling design was based on a pair-wise study, which
implies that better methods for sampling can be explored.

Enhancement of baseline models Several failed models can be substantially im-
proved, including the baseline model and the baseline model with weekly trend.
Missing recordings were notable, which results in a deterioration of the baseline
model (currently used in practice) performance. The baseline model with weekly
trend was strongly biased due to the high week multiplier factor on several sections
of last week. Smoothing can be added to elevate the model by considering the trip
of yesterday or so forth.

Inclusion of more significant variables The inclusion of new significant variables
should be considered for improving the predictions. During the residual analysis,
we found out that the existence of heteroscedasticity in the prediction. Since we
have already transformed the variable, the other solution for improving it is to
add more contributing variables so that the model can capture the relationship.

Findings on feature importance In this study, the contribution of the historical rid-
ership variable was significant, which supports the literature that it is a sound
basis for the ridership prediction. However, the temporal and spatial feature im-
portances were minor, which is contradictory to previous studies. Unexpectedly,
the day of the week was also found to be not significant. Only morning peak and
off-peak variables marginally influenced the model. Some high-traffic locations
were also insignificant.

5 Conclusion

In this paper, we proposed a method to analyze the effectiveness of trip plan-
ner data in predicting short-term bus ridership. The case studies showed that the
best performing model relied on the RFR can reduce the errors by almost half,
compared to a baseline model based on the weekly trend. This model generally
reached a balanced estimation, and the temporal variation of the prediction was in
line with the temporal variation of the ridership with specific line characteristics.
Moreover, the model performance was maintained even for prediction lead times
up to 30 minutes ahead, and for different periods of the day. Regardless of the
approach of measurement, the trip planner data can roughly have a 35% feature
importance on average. The presented method explained the use of real-time tran-
sit information followed by apps at an operational level. Such information could
help PT operators cope with short-term passenger demand and could facilitate
the trip planner to notify its users about the crowdedness level. Discussions are
made to further explore the capability of trip planner data.

The paper has reported that, it is novel and useful to combine trip planner
data and the historical ridership data to realize the short-term ridership predic-
tion as trip planner data is often available in (near) real-time. In this way, we can



substantially avoid the long collection time of smart card data and able to cap-
ture the temporal and spatial influence such that it can enhance the operational
performance of transit operators.

Although the study takes place in the Netherlands with the local trip planner,
it is scalable and portable to many other case studies with a similar data provi-
sion. The trip planner is and will become more and more beneficial to PT users.
Accordingly, millions of trip planner data provide a unique and real-time large
data source with the knowledge of user behavior. If we can minimize the privacy
concerns and other technical limitations, PT operators and researchers will offer
a better understanding of the role of the trip planner in ridership prediction and
facilitate the operation of the PT system and improve its level of service.
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6 Supplementary materials

In the project with wider scope (Wang, 2020), we also test two more case study
lines, including Line 50 Groningen-Assen (city-city bus line) and Line 35 Groningen-
Oldehove (city-village bus line). The performances are presented in Tab. 8 and Tab.
9.

Table 8 Performance of short-term prediction models (line 50)

Line 50 MAE (Person) RMSE (Person) Rˆ2
Repeated Random

5-Fold Cross-Validation

Baseline 4.026 5.938 0.494 -

Baseline with weekly trend 6.799 12.022 -1.423 -

LR 4.491 10.959 -0.780 0.515

GBDTR 11.819 13.693 -1.778 0.657

k-NNR 3.248 4.864 0.639 0.686

RFR 3.578 5.179 0.603 0.770



Table 9 Performance of short-term prediction models (line 35)

Line 35 MAE (Person) RMSE (Person) Rˆ2
Repeated Random

5-Fold Cross-Validation

Baseline 3.423 6.158 0.341 -

Baseline with weekly trend 4.225 10.338 -0.858 -

LR 3.732 12.577 -1.656 0.530

GBDTR 2.243 3.922 0.742 0.811

k-NNR 2.458 4.204 0.703 0.747

RFR 1.938 3.493 0.795 0.831

For line 50, GBDTR performs the worst due to the different distribution of data
(sparse in the high-value domain) and a relatively large oversampling strategy
(350%). GBDTR is sensitive to “noisy” data (in our case, it is the underlying
difference in the distribution of the training set and test set). We have a trade-off
between k-NNR and RFR. The margin between k-NNR and RFR is small, with
respect to MAE, RMSE, andR2. However, we have a better R2 from the cross-
validation of RFR. In this specific case, the sampling design varies considerably
every time, and therefore less sensitivity to training data is of importance. Hence,
we regard RFR is the best performing model.

The prediction vs. actuality plot of Q-link 1 is shown in Fig. 10.

Fig. 10 Prediction vs. actuality plot of Q-link 1



The feature importance plot of Q-link 1 is shown in Fig. 11.
Full information of four cases on model performance with prediction lead times

is shown from Tab. 10 to Tab. 13.

Table 10 Performance of RFR with timing advance of trip planner requests (Qliner 300)

Qliner 300 Number Correlation MAE (Person) RMSE (Person) Rˆ2 Request Request mean Request var

All 124350 0.397 4.131 6.385 0.697 0.090 0.080 0.110

10-minute 101313 0.328 4.199 6.612 0.675 0.070 0.070 0.110

15-minute 91176 0.304 4.269 6.647 0.672 0.070 0.060 0.110

30-minute 70824 0.274 4.215 6.623 0.674 0.060 0.060 0.110

Table 11 Performance of RFR with timing advance of trip planner requests (Q-link 1)

Q-link 1 Number Correlation MAE (Person) RMSE (Person) Rˆ2 Request Request mean Request var

All 122913 0.618 4.308 6.992 0.801 0.340 0.090 0.100

10-minute 90408 0.541 4.375 7.156 0.791 0.300 0.070 0.100

15-minute 77920 0.501 4.317 7.099 0.795 0.230 0.070 0.100

30-minute 56664 0.458 4.387 7.181 0.790 0.200 0.060 0.100

Table 12 Performance of RFR with timing advance of trip planner requests (line 50)

Line 50 Number Correlation MAE (Person) RMSE (Person) Rˆ2 Request Request mean Request var

All 91719 0.560 3.609 5.241 0.593 0.210 0.160 0.060

10-minute 72666 0.411 3.897 5.656 0.526 0.130 0.100 0.070

15-minute 63489 0.411 4.408 6.337 0.405 0.130 0.110 0.070

30-minute 44667 0.313 5.853 7.472 0.173 0.090 0.080 0.090

Full information of four cases on model performance with requests sent during
different periods is shown from Tab. 14 to Tab. 17.

Fig. 11 Feature importance of Q-link 1 (RFR)



Table 13 Performance of RFR with timing advance of trip planner requests (line 35)

Line 35 Number Correlation MAE (Person) RMSE (Person) Rˆ2 Request Request mean Request var

All 25822 0.707 1.839 3.298 0.817 0.310 0.180 0.060

10-minute 18231 0.630 1.910 3.460 0.800 0.300 0.120 0.060

15-minute 15572 0.576 1.943 3.543 0.789 0.280 0.110 0.070

30-minute 10908 0.472 1.862 3.409 0.805 0.210 0.100 0.070

Table 14 Performance of RFR with requests at different times (Qliner 300)

Qliner 300 Number Correlation MAE (Person) RMSE (Person) Rˆ2 Request Request mean Request var

All 124350 0.397 4.279 6.538 0.682 0.100 0.110 0.090

Morning 29644 0.307 4.546 6.967 0.639 0.050 0.120 0.080

Noon 57783 0.230 4.401 6.774 0.659 0.050 0.120 0.070

Evening 33792 0.072 4.711 7.337 0.600 0.030 0.120 0.080

Night 3131 0.123 4.509 6.907 0.646 0.010 0.120 0.090

Table 15 Performance of RFR with requests at different times (Q-link 1)

Q-link 1 Number Correlation MAE (Person) RMSE (Person) Rˆ2 Request Request mean Request var

All 122913 0.618 5.098 8.443 0.709 0.360 0.110 0.110

Morning 25423 0.308 5.366 8.803 0.684 0.060 0.150 0.100

Noon 55479 0.436 5.191 8.499 0.706 0.130 0.150 0.070

Evening 39173 0.247 7.112 11.527 0.458 0.090 0.150 0.100

Night 2838 0.145 5.567 9.227 0.653 0.020 0.150 0.100

Table 16 Performance of RFR with requests at different times (line 50)

Line 50 Number Correlation MAE (Person) RMSE (Person) Rˆ2 Request Request mean Request var

All 91719 0.560 4.202 6.096 0.449 0.230 0.070 0.170

Morning 22890 0.376 5.707 8.022 0.046 0.110 0.100 0.090

Noon 42251 0.350 4.194 5.802 0.501 0.100 0.090 0.090

Evening 24615 0.096 4.489 6.305 0.411 0.040 0.100 0.090

Night 1963 0.134 8.126 11.346 -0.907 0.020 0.090 0.060

Table 17 Performance of RFR with requests at different times (line 35)

Line 35 Number Correlation MAE (Person) RMSE (Person) Rˆ2 Request Request mean Request var

All 25822 0.707 2.257 3.882 0.747 0.340 0.070 0.200

Morning 7191 0.479 3.293 5.677 0.459 0.130 0.130 0.100

Noon 12568 0.489 2.373 4.343 0.683 0.140 0.110 0.140

Evening 5488 0.050 3.601 6.500 0.291 0.050 0.110 0.090

Night 575 0.187 2.451 4.307 0.688 0.040 0.110 0.080




