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A B S T R A C T

A spatiotemporal object-based rainfall analysis method is used to evaluate the hydrological response of two
systematic satellite error sources for storm estimation in the Capivari catchment, Brazil. This method is called
Spatiotemporal Contiguous Object-based Rainfall Analysis (ST-CORA) specifically evaluates the error structure
of satellite-based rainfall products using a 3D pattern clustering algorithm. Errors due to location and magnitude
in the Near Real-time (NRT) CMORPH product are subtracted by adjusting the shift and the intensity distribution
with respect to a storm object obtained from gauge-adjusted weather radar. Synthetic scenarios of each error
source are used as forcing for hourly calibrated distributed hydrological ‘wflow-sbm’ model to evaluate the main
sources of systematic errors in the hydrological response. Two types of storm events in the study area are
evaluated: short-lived and a long-lived storm. The results indicate that the spatiotemporal characteristics ob-
tained by ST-CORA clearly reflect the main source of errors of the CMORPH storm detection. It is found that
location is the main source of error for the short-lived storm event, while volume is the main source in the long-
lived storm event. The subtraction of both errors leads to an important reduction of the simulated streamflow in
the catchment. The method applied can be useful in bias correction schemes for satellite estimations especially
for extreme precipitation events.

1. Introduction

The spatiotemporal characteristics of storm events, such as magni-
tude, duration and spatial extent, are some of the main triggering fac-
tors of flooding. In conjunction with intrinsic characteristics of the
catchment, changes in the storm structure can dramatically impact the
severity of flood damage [e.g] Saulnier and Le Lay (2009), Bui et al.
(2014), Viglione et al. (2010). Therefore, an accurate representation of
storm dynamics is crucially important in disaster preparedness and
response (Phongsapan et al., 2019). However, in prominent monsoon
regions, the high spatial and temporal variability of storm events still
makes the estimation challenging.
A great deal of effort has been made to provide rainfall measure-

ments with high spatial and temporal resolution. Traditionally, rain-
gauge measurements were used since they are the most simple and
direct method for measuring of rainfall. However, in many regions, rain

gauge networks are often scarce, discontinuous and not dense enough
to accurately capture the spatiotemporal variation in rainfall
(Michaelides et al. (2009); Tolentino et al., 2016; Kidd et al., 2017).
Recently, satellite-based rainfall products (SRP) have widely used in
hydrological applications for overcoming the lack of spatial re-
presentation of rain-gauges [e.g.] Artan et al. (2007), Nikolopoulos
et al. (2013), Stisen and Sandholt (2010), Su et al. (2008). A variety of
global-scale satellite-derived rainfall products are freely and openly.
Sun et al. (2018) presented a full description of operational and non-
operational SRP.
Despite numerous advances, satellite products are subject to several

systematic and random errors from multiple sources [e.g] Hu et al.
(2016), Qiao et al. (2014), Dinku et al. (2010), Guo et al. (2015), Mei
et al. (2014), Sapiano and Arkin (2009), Thiemig et al. (2012),
Poortinga et al. (2017). These errors have several implications in re-
lation to their input for modelled flood response [e.g] Casse et al.
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(2015), Bitew and Gebremichael (2011), Mei et al. (2016), Vergara
et al. (2014), Yilmaz et al. (2005), Li et al. (2009). Maggioni and
Massari (2018), analysing the lessons from using satellite precipitation
products for riverine flood modelling around the world, argued that the
performance of SRP-forced hydrological model depends on several
factors including: the type of SRP sensor; the precipitation type; the
geomorphological conditions; and the hydrological model formulation.
In general, satellite error studies use pixel-based verification metrics

such as categorical or continuous metrics to calculate the differences
between pixels SRP and the corresponding ground measurement. Based
on this approach, error models have been developed to quantify the
systematic and random error distribution and to propagate their un-
certainty in the streamflow [e.g] Hossain and Anagnostou (2006),
Maggioni et al. (2014), Falck et al. (2015). While these outputs provide
valuable information about bias and correlation between SRP errors,
such metrics do not explicitly estimate errors associated with location,
spatial representation and geometrical patterns (Baldwin and Kain,
2006; Casati et al., 2008). Several analytical methods have been used to
analyse the error decomposition in satellites and evaluate the spatio-
temporal dynamics in terms of streamflow [e.g.] Viglione et al. (2010),
Mei et al. (2017), Mei et al. (2017). However, the error decomposition
is limited by the configuration of the hydrological model. In contrast to
analytical methods, rainfall object-based methods aim to represent the
cells and integrate spatiotemporal information from an event as an
interconnected mass figure which can be used to characterise the storm
events. These object-based methods offer an alternative way to analyse
the error in storm events [e.g] Skok et al. (2009), Li et al. (2015), Li
et al. (2016). These methods, applied in hydrological modelling, can be
used to evaluate the impact of several systematic SRP errors in fore-
casted streamflow, independently of the model configuration. For ex-
ample, Demaria et al. (2011) used the Contiguous Rainfall Analysis
(CRA, Ebert and McBride (2000)) to evaluate the hydrological impact of
location errors presented in three SRP namely Tropical Rainfall Mea-
surement Mission (TRMM), Climate Prediction Centre Morphing
Technique (CMORPH), and Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks (PERSIANN). The
analysis showed that errors due to location represented more than 65%
of the total errors affecting the peak of the streamflow, thus also its
volume.
Important challenges in object-based methods arise from the effect

of displacements calculated in space and time. The two-dimensional
approach of existing methods limits the description of the storm event
in space and time. Several methods have considered the spatiotemporal
dynamic of the storm event. For instance (Davis et al., 2009) developed
a Method for Object-based Diagnostic Evaluation with Time Domain
(MODE-TD) to evaluate the forecast of high-resolution numerical
weather prediction models. This model was later evaluated by
Mittermaier and Bullock (2013) over the United Kingdom out-
performing spatial object-based methods. For satellite-based products,
Sellars et al. (2013) developed a spatiotemporal rainfall analysis using
PERSIANN to create the four-dimensional global dataset – PERSI-
ANN-CONNECT. This product identifies the main characteristics of
large scale rainfall systems. In the case of spatiotemporal analyses at
catchment scale, Laverde-Barajas et al. (2019) developed a spatio-
temporal object-based method, later named ST-CORA (Spatiotemporal
Contiguous Object-based Rainfall Analysis). ST-CORA, a three-dimen-
sional object-based approach influenced by pattern recognition
methods for global data analysis [e.g.] Corzo Perez et al. (2011), is
designed to analyse errors resulting from satellite estimation as a con-
sequence of displacement, magnitude or pattern effects (Ebert and
McBride, 2000). This method performed well in identifying the main
characteristics of convective storm events.
In this study, we used the ST-CORA method to evaluate the hy-

drological impact of two systematic errors in the near real-time
CMORPH for storm event estimation: the error due to location and that
due to magnitude. Synthetic storm scenarios, created by the subtraction

of location and magnitude error sources, are propagated through the
distributed hydrological model wflow-sbm (Schellekens et al., 2018) in
the subtropical catchment of the Capivari River, Brazil. The model is
calibrated at an hourly scale during 2016 using a gauge-corrected
weather radar as reference data. Two types of storm event are analysed:
local and short events (short-lived storms) and long duration, spatially
extensive, extreme events (long-lived storms). We believe that this
approach can contribute to a better understanding of the hydrological
response to systematic errors in SRPs, especially in extreme conditions.
The paper is structured as follows: in Section 2, we describe the

formulation of ST-CORA and the methodology used for error source
subtraction and the hydrological response evaluation. In Section 3, the
study area and data availability is outlined. Section 4 presents the hy-
drological model as well as the calibration and validation process. In
Section 5, results regarding the error subtraction and error propagation
in the study area are presented. Section 6 discusses the results, and
finally, Section 7 presents the conclusions and the analysis of future
directions.

2. Methodology

2.1. Rainfall object estimation, ST-CORA

ST-CORA is a spatiotemporal object-based method designed to
analyse the spatiotemporal characteristics of different storm events at
catchment scale (duration, spatial extent, magnitude, and centroid).
This method uses a multidimensional connected-component labelling
algorithm to detect regions with similar features in space and time. The
error verification for SRP allows the error decomposition in displace-
ment, volume and pattern error. The methodology for error verification
is composed of three steps, briefly described below.

2.1.1. Identification of spatiotemporal convective objects
In this step, the method identifies convective rainfall objects using a

multidimensional connected-component labelling algorithm (Acharya
and Ray, 2005; Sedgewick, 1998). This object is defined as a group of
voxels (volume representation of a pixel) connected by a rainfall in-
tensity threshold S x y t[ , , ] (1 = “true” or 0 =“false”) (Eq. 1).

S
R1, if IT.

0, otherwise.x y t
x y t

[ , , ]
, ,

(1)

where, Rx y t, , is the rainfall voxel and IT is the rainfall intensity
threshold. Once all S x y t[ , , ] voxels have been determined, the algorithm
scans all voxels in a neighbouring system (from top to bottom and from
left to right) and groups voxels with similar features by assigning pre-
liminary labels to S x y t[ , , ] as

= =c S N s S S( ) { : }x y t x y t CR N[ , , ] [ , , ] (2)

where, c S( )x y t[ , , ] is a preliminary label, S S,CR N are binary properties of
the voxel S x y t[ , , ] and its neighbours N x y t[ , , ] respectively, and s is the
neighbour system in space and time. The labelling process c S( )x y t[ , , ] , is
repeated for resolving the equivalences of labels across the different
regions during the grouping phase.
After obtaining the convective rainfall object, the methodology

applies two error filtering algorithms to remove small noisy objects and
solves the false merging errors from the connected-component labelling
algorithm. In the first instance, a size-filtering algorithm removes ob-
jects lower than a size threshold, T, defined as noise (Ceperuelo et al.,
2006). In this study, we defined noise to objects lower than four con-
nected voxels in space and time (voxel=0.1°/h). The second algorithm
removes false merging errors, which are created when two individual
storm events are identified as a single storm. To overcome this error,
ST-CORA uses a closing algorithm morphology to delineate and seg-
ment convective objects. Using a dilation-erosion process, this algo-
rithm divides or merges convective objects with low or strong
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connectivity [e.g.] Han et al. (2009). For dilation, object boundaries are
expanded, whilst for erosion, those boundaries are removed.

2.1.2. Storm segmentation and classification
In the second step, the storm is segmented and classified on basis of

the spatiotemporal properties of the convective object. In ST-CORA,
storm events are defined according to the Critical Mass Threshold
CMT( ) (Grams et al., 2006). This parameter corresponds to the
minimum volume of a convective rainfall object that is required in
order to be considered an extreme event. The CMT value is obtained
from the relationship between the maximum extent and object volume
(Steiner et al., 1995; Demaria et al., 2011). Once the storm event is
identified, the spatiotemporal properties are used to classify the type of
storm event. Following hydrometeorological and dynamical criteria to
classify severe rainfall events proposed by Molini et al. (2009), Molini
et al. (2011), Boers et al. (2015), ST-CORA classifies storm events in
two groups depending on the maximum area, the storm duration and
the volume of rainfall: small convective systems with a short duration
(short-lived) and long duration systems extended over large areas (long-
lived).
In ST-CORA, the definition of IT( ) and critical mass threshold CMT( )

are important parameters which help to identify and segment storm
events. Based on the sensitivity analysis made by Laverde-Barajas et al.
(2019) in the region, we selected an IT of 1 mm/h and a CMT of
0.01 km3 to identify and segment extreme convective objects. Based on
the spatiotemporal characteristics of extreme rainfall events presented
by Laverde-Barajas et al. (2018), Laverde-Barajas et al. (2019) in the
study area, we defined short-lived events as extreme convective objects
with a duration of less than 12 h and spatial distribution greater than

×86 86 km2

2.1.3. Spatiotemporal verification
The last step corresponds to the error verification analysis. In this

step, observed and estimated SRP storm objects are compared to eval-
uate the error level for storm estimation. In ST-CORA, several error
metrics can be evaluated to estimate the error. In this study, we used
the error decomposition from the Contiguous Rainfall Analysis method
(CRA) developed by Ebert and McBride (2000). This method analyses
the spatial elements of the SRP error decomposing the total error into
displacement, volume and pattern error as shown below.

= + +MSE MSE MSE MSEtotal displacement volume pattern (3)

where

=MSE MSE MSEdisplacement total location (4)

=MSE Y O( )volume
2 (5)

=MSE MSE MSEpattern location volume (6)

where MSElocation is calculated as the mean square error of the spatial
shifted SRP and Y and O are the mean satellite and observed values
after the shift. In the context of satellite-based rainfall data,
MSEdisplacement and MSEvolume are considered as systematic errors, while
MSEpattern corresponds to intrinsic random errors in the measurements,
which are calculated as the residual error of systematic errors (Hoffman
et al., 1995; Ebert and Gallus, 2009). It is important to highlight that
systematic errors integrate random error as a consequence of non-cor-
rected values from location and magnitude subtraction. In this research,
we considered non-corrected error as part of pattern error in the storm
event.

2.2. Systematic error source subtraction

The use of ST-CORA allows for the temporal and spatial description

Fig. 1. Scheme of object matching for location subtraction. a) Eigenvectors of a compressed the storm object b) weighted centroid and eigenvector matching. c)
Shifted storm object.
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of storm events as well as for identifying the main sources of error in the
measurement. Once the main storm characteristics are identified (vo-
lume, maximum intensity, max area and duration), we subtracted lo-
cation error as the main source in displacement and magnitude as as the
main source of volume by the following approach.

2.2.1. Location subtraction
Location is subtracted by finding the best match between the ob-

served and the satellite storm. In this research, we used the Principal
Component Analysis method (PCA) proposed by Johnson and Hebert
(1999), to remove the shifting and orientation effects of the satellite
storm in space and time (Grams et al., 2006) (Fig. 1). PCA is a statistical
method that describes the pattern of multi-variable data based on or-
thogonal variables called principal components (Abdi and Williams,
2010). Based on an ellipsoid wrapped over the object with weighted-
centroid WC( ), the methodology calculates the eigenvectors of the ob-
ject (Fig. 1a). These vectors describe the orthogonal basis in space and
time, in which the object position is described (Johnson and Hebert,
1999). Location error subtraction first removes the shifting effect by
matching the weighted-centroids of both objects in space and time and
then the orientation is adjusted by rotating the temporal eigenvector in
the direction of the observed vector (Fig. 1b, c).

2.2.2. Magnitude subtraction
The magnitude subtraction statistically adjusts all moments (quan-

tiles) of the intensity probability distribution function for the satellite
storm with respect to the observed storm. In this case, the adjusted
satellite storm intensity distribution should reflect the function of the
observed storm. Several methodologies have been developed to
equalise the histograms and remove the bias from the estimated data
[e.g] Cannon et al. (2015), Themeßl et al. (2012), Teng et al. (2015).
For this research, we selected the extensively used Empirical Quantile
Mapping method (EQM) (Themeßl et al., 2012). This method adjusts all
moments of the cumulative probabilistic function ecdfs( ) of the satellite
in terms of intensity with respect to the observed data. The relationship
between the ecdf for observed ecdf( )obs and the satellite ecdf( )sat is based
on the following equation:

=EGM ecdf ecdf I( ( )obs sat s
1 1 (7)

where, Is is the intensity storm distribution detected by the satellite.
Once the magnitude error source is subtracted, the volume equa-

tion, Eq. 5, can be reformulated to included the magnitude subtraction
as follows:

=MSE MSE MSEvolume total magnitude (8)

2.3. Evaluation of the hydrological response

Synthetic scenarios, created by the individual subtraction of loca-
tion and magnitude error sources from storm events detected by sa-
tellites, are propagated through a hydrological model to evaluate the
error response in terms of stream-flow. The hydrological response is
evaluated by comparing simulations from satellite scenarios against
simulations from observed rainfall. We used several metrics to analyse
the shape, phase and amplitude of the stream-flow along the catchment.
These metrics include the correlation coefficients r( ), Root Mean Square
Error RMSE( ), the Mean Absolute Peak Time Error MAPTE( ) (Ehret and
Zehe, 2011), Percentage Peak Effect index PPE( ) and the Percentage
Volume Effect PVE( ) (Bennett et al., 2013).

= =

= =

r
Q Q Q Q

Q Q Q Q( ) ( )

t

N

rad t rad sat t sat

t

N

rad t rad
t

N

sat t sat

1
, ,

1
,

2

1
,

2

(9)

=
=

RMSE
N

Q Q1 ( )
t

N

rad t sat t
1

, ,
2

(10)

=
=

MAPTE
N

P P1

t

N

rad i sat i
1

, ,
(11)

=PPE
Q Q

Q
*100rad sat

rad

max max

max (12)

=PVE V V
V

*100rad sat

rad (13)

Here, Qradmax and Qsatmax are the maximum discharge simulated by
the radar (referenced value), and the satellite discharge values (ori-
ginal, location and magnitude) for each discharge station. Prad t, and Psat i,
are the peak times andVrad andVsat are the simulated total volume based
on the radar and the satellite, respectively.
The streamflow error variation between CMORPH and the location

and magnitude scenarios for the short- and long-lived storms, is eval-
uated by the following equation:

=Errorvariation
Q Q

Q
*100t

sat t rad t

p

, ,

(14)

where, Qp is the maximum discharge value reached in all storm sce-
narios.

3. Case study and data availability

3.1. Study area

The study area corresponds to the subtropical catchment of the
Capivari River in south-eastern Brazil (Fig. 2). This river is a tributary of
the Tiete River which is part of the Parana area, one of the main river
systems in Brazil. The drainage area is 1655 km2 and the elevations
range from 400 to 1000 m above sea level. The catchment experiences
extreme climatological conditions, such induced by the convective
precipitation band associated with the South American Monsoon
System, making the study area prone to landslides and flash floods
(Swiss, 2011). We divided the catchment into three zones: upper,
middle, and lower. The upper zone is localised to the east part of
Campinas city, ending at the flow station at the boundary of the city.
This zone is characterised by semi-urbanised areas extended over an
elevated landscape.. The middle zone is located upstream the Monte
gauge station, and is covered by the urban area of Campinas city, which
is the main urban centre of the catchment. Finally, the lower zone is
located upstream of the streamflow outlet to the Tiete River and cor-
responds to rural and semi-rural areas of lower elevations.
Based on the Integrated Disaster Database system from National

Civil Protection Secretary (S2ID, SEDEC (2013)), we selected a short-
lived and long-lived storm event that impacted the Capivari basin
during monsoon season. The short-lived event was a high convective
storm that occurred on 1 January 2012. According to S2ID database,
the extreme rainfall from this event generated important pluvial floods
in urban areas along the catchment and initiated the overflowing
(alagamiento) of the Capivari river. The event corresponding to the
long-lived storm impacted the study area between 3 and 5 January
2011. This event dramatically impacted the area, triggering extensive
floods and landslides over the region.

3.2. Rainfall data

In this study, we used the CPC MORPHING product (CMORPH)
developed by the NOAA Climate Prediction Centre (Joyce et al., 2004).
This SRP combines Passive Microwave and Infrared sensor information
to produce high resolution data every 30 min. CMORPH NRT was se-
lected due to a superior performance for extreme rainfall estimation in
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the study area (Laverde-Barajas et al., 2018). We used CMORPH 1.0
raw version at 8 × 8 km scale (0.727 degrees) and 30 min resolution
(1 h aggregated).
Ground measurements were obtained from the Bauru weather radar

station (Bauru CAPPI 3.5 km) from the Faculty of Science, Sao Paulo
State University located at 22 21’28”S latitude, 49 01’36”W longitude
(Fig. 1). This radar provides information at 1km2 spatial resolution
every 15 min. Weather radar rainfall data was bias-corrected at hourly
scale using 8 automatic ground stations from the Integrated Centre of
Agrometeorological information (CIIAGRO, Centro Integrado de In-
formações Agrometeorológicas) applying the mean fields reduction
described in Amorati et al. (2012) (Eq. 15)

=R RF ,merged (15)

where, R is hourly rainfall field and F is the weighted correction factor
with temporal averaged windows, t , calculated as follows:

= = =
( )

F
N

log
log

,t
t t

t

i

N
G
R

t t

t
1

10
i t
i t
,
,

(16)

where, Gi and Ri are the Automatic Weather Stations (AWS) and radar
measurements at gauge i, respectively. A three-hour temporal window,

t , is considered for the Flog t . In order to reduce the effect of differ-
ences in the spatial resolution (Peleg et al., 2018), we scaled up weather
radar data by mean aggregation to match the spatial resolution of the
CMORPH dataset.

4. Capivari model

We used distributed hydrological model wflow-sbm (version
2018.1), to represent the rainfall-runoff process in the Capivari River.
This model was developed by project Deltares OpenStreams
(Schellekens et al., 2018) based on the topog-sbm model (Vertessy and
Elsenbeer, 1999). The wflow-sbm simulates the hydrological routing

through a gridded mesh into a GIS environment called PCRaster-Python
(Wesselung et al., 1996).
The representation of the hydrological cycle within wflow-sbm is

divided into the three main routines: interception, soil, and water sur-
face. Wflow-sbm simulates interception using the analytical Gash model
(Gash et al., 1995). This model calculates the actual evapotranspiration
of the canopy based on the Potential Evapotranspiration (PET), soil
water content and land cover type. The soil routine runs per grid cell
through the topog-sbm model. This model is a simple bucket scheme
designed to transfer the water infiltration process into a saturated S( )
and unsaturated store US( ). The S and US interaction is based on the
exponential decay of the saturated hydraulic conductivity with depth
below the soil surface (Ksat) (Schellekens et al., 2018). The surface
water routine uses the kinematic wave algorithm to simulate the river
drainage and overland flow. The runoff is calculated per grid cell as the
sum of residual rainfall water from the interception and soil routines
and the horizontal and vertical interaction between cells estimated in
the routing process.

4.1. Model setup

For each rainfall data product, we setup the wflow-sbm model in a
1 km × 1 km grid integrating several static and dynamic inputs. Static
inputs are integrated by i) the Digital Elevation Model from the Shuttle
Radar Topography Mission (SRTM) version 3.0 (Van Zyl, 2001); ii) land
use map extracted from the Brazilian land use map of the National
Institute of Geography and Statistics (IBGE, 2017) for 2014; and iii) the
soil type map, extracted from the FAO Digital Soil Map of the World
(DSMW-FAO, 1960).
In addition to the rainfall data, dynamic inputs are hourly air

temperature T( ) in degree Celsius and potential evapotranspiration
PET( ) maps based on the AWS from CIIAGRO (Fig. 2). PET is calculated
using the method of Abtew (1996) recommended by Tangune and
Escobedo (2018) for the study area. This method calculates PET in
mm h/ using the air temperature and solar radiation as

Fig. 2. Geographical location of the Capivari catchment. Red dots represent the discharge station of Campinas, Monte and the virtual station in Outlet. Red cycled
represent the weather radar Bauru used as ground measurements. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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=PET
T

Rs0.53
2.501 0.002361

, (17)

where, Rs is the solar radiation data from AWS. Hourly T and PET data
was interpolated using the Inverse Distance Weight method (IDW-
2).This method is widely used in meteorology and it was selected for
providing reliable hourly information based on the total number of
available stations (Chung and Yun, 2004; Chen et al., 2019). However,
it is noted that interpolation methods are subject to several sources of
uncertainty due to the spatial sampling and geomorphological condi-
tions in the catchment. These uncertainties include the misrepresenta-
tion between meteorological variables and elevation (DeGaetano and
Belcher, 2007).

4.2. Model calibration and validation

Wflow-sbm requires 15 input parameters to be calibrated in the
study area (excluding the input snow parameters). We calibrated the
Capivari hydrological model using hourly discharge data from the Early
Warning Flood System of Sao Paulo state (SAISP) available in the area,
with the upper zone calibrated based on the Campinas station between
January and October 2016. In the middle zone the model was cali-
brated based on the Monte station between July and October 2016. In
the absence of hourly discharge data in the lower zone, the model was
calibrated based on a virtual discharge point in the outlet area calcu-
lated using the spatiotemporal linear estimator proposed by Paiva et al.
(2015):

=
=

Q S t Q S t, ,o o
i

N

i i i
1 (18)

Here, Q is the virtual station at location S Q,i are Campinas and
Monte discharges and = …[ ]n

T
1 is the set of weights for each mea-

surement. For the study area, represents the relative drainage area of
each discharge point. All areas were validated during the period of
November and December 2016.
The calibration process started by adjusting the input parameters to

the most realistic interval and then we selected the most sensitive ones
using a Monte Carlo Analysis. Table 1 shows the most sensitive input
parameters in the Capivari model. Using the Augmented Lagrangian
Harmony Search Optimizer (ALSHO, (Geem et al., 2001)) from Perez
et al. (2012), we calibrated the model for the three zones, from upp-
stream to downstream, using the Nash-Sutcliffe efficiency (NSE, Nash
and Sutcliffe (1970) as the objective function define as:
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where, Qobs and Qrad are the model’s observed and simulated
streamflow, respectively, using the gauge-corrected weather radar as
the input.
Model calibration and validation were additionally compared with

the Root Mean Square Error RMSE( ) (Eq. 10) and and correlation
coefficient r( ) (Eq. 9). Table 2 describes the model performance over
the three zones based on NSE RMSE R, , . Model results displayed sa-
tisfactory results for estimating hourly streamflow along the catchment
with NSE ranging between 0.6/0.5 and 0.8/0.6 in calibration/valida-
tion and having a correlation coefficient higher than 0.76 and RMSE
lower than 20 mm on the evaluated areas.

5. Results

5.1. Spatiotemporal errors of satellite-based CMORPH

5.1.1. Detecting systematic errors in satellite-based storm events using ST-
CORA
Fig. 3 presents the object structure and storm properties of the re-

ference radar and the satellite-based CMORPH identified by ST-CORA
for the short-lived storm event that occurred on 1 January 2012 and,
the long-lived storm event that occurred between 3 and 5 January
2011. Fig. 3a, b present storm objects of the radar and satellite-based
CMORPH for the short-lived event, while Fig. 3d, e show the object
structures for the long-lived event. Fig. 3c, f present the comparison of
the scatter plots and the spatiotemporal properties of both objects for
both storm events.
According to the results, radar and CMORPH exhibit similar spa-

tiotemporal structures but differ in the magnitude and the location of
the object. CMORPH performance for the short-lived event showed a
underestimation on high intensity rain rates (Fig. 3c). However, the
total storm volume was higher compared to the storm detected by the
radar. The spatiotemporal properties are characterised by a mismatch
in the orientation of the CMORPH event. Both objects have the same
duration (7 h), and CMORPH reached a bigger spatial extension. The
satellite performance for the long-lived event displayed low scatter
correlation, overestimating both the total storm volume and the max-
imum volume intensity. Regarding the spatiotemporal characteristics,
CMORPH and the weather radar shared the same orientation but differ
in the maximum extension and the duration of the storm. CMORPH had
a bigger extension with a longer duration (1 h) compared to the
weather radar storm.
One of the main aims of an object-based approach is to decompose

the total error into the sum of individual errors due to displacement,
volume and pattern. The results obtained for the short-lived event in-
dicate the pattern (aleatory error) the major error source, contributing
83%. This is followed by displacement, which contributed 13% to the
total error. In the long-lived storm, volume and displacement con-
tributed 47% and 50% of the total error, respectively.

5.1.2. Satellite error subtraction
After the storm objects were identified, errors in the satellite esti-

mates due to location and magnitude were subtracted in the satellite
data to create synthetic storm scenarios. To illustrate the spatial dis-
tribution of the storm scenarios over the Capivari catchment, Fig. 4
presents the total storm maps and the rainfall accumulation over the
river streams based on radar, CMORPH and synthetic storm scenarios
for the short-lived storm while Fig. 5 describes the corresponding maps
for the long-lived storm event. The results for the short-lived storm
scenario highlights the overestimation of CMORPH, in the upstream

Table 1
Wflow-sbm parameters selected.

No Parameter Description Interval

Canopy interception
1 CanopyGapFraction Fraction of precipitation that does not

hit the canopy directly
[0–1]

Soil
2 M parameter in the SBM model. Governs

the decay of Ksat with depth [–]
[20–20000]

3 thetaS Saturated water content (porosity)
[mm/mm]

[0.2–0.5]

4 KsatVer Saturated conductivity [mm/h] [0–10000]
5 Infilt CapSoil Soil infiltration capacity [m/h] [25–750]
6 Soil Thickness Maximum depth of the soil [m] [0–20000]

Surface Water
7 N Manning’s N parameter [0.02–0.15]
8 Nriver Manning’s N parameter for cells marked

as river
[0.01–0.6]

M. Laverde-Barajas, et al. Journal of Hydrology 591 (2020) 125554

6



area of the catchment. The location error scenario displaced the storm
event to the northwest of the catchment, smoothing the rainfall excess
of the storm event. The storm scenario due to magnitude scenario
considerably reduced the overestimation in CMORPH, decreasing the
total volume in the upstream area. The scenario for the long-lived storm
event (Fig. 5) showed a significant rainfall overestimation in the
northwestern part of the catchment, affecting the middle and lower
areas. The location scenario slightly adjusted the storm event in the
northwest, reducing the rainfall excess of the upstream area. However,
this scenario still overestimated rainfall in the middle part of the
catchment. Lastly, the magnitude storm error scenario effectively re-
duced extreme rainfall, overestimating rainfall over the catchment at
small scales.

5.2. Hydrological impact

The hydrological response of systematic error due to location and

magnitude was analysed over three zones along the catchment: Upper
(Campinas), Middle (Monte), and Lower (Outlet). Figs. 6 and 7 present
the hydrological effect of systematic errors in CMORPH for the short-
and long-lived scenarios using the hydrological simulation based on the
radar storm for reference. In order to achieve a better description of the
hydrological impact, hydrographs have been normalised with respect to
the peak volume,Qp, and the peak time, tp, according to Q Qmin Q( )/ p
and t t/ p. Table 3 summarises the evaluation of hydrological impact to
the location and the magnitude scenarios in the streamflow along the
catchment based on r RMSE MAPTE PPE, , , and PVE.
The results for the short-lived storm event (Fig. 6) suggest that the

overestimation of CMORPH in the rainfall storm consequently in-
creased the streamflow volume over the catchment. The upper and
lower areas, corresponding to Campinas and Monte, showed over-
estimation in the total volume of the storm of 70% and 40%, respec-
tively, as a consequence of the notable overestimation of the peak flow.
On the contrary, in the Outlet area, the level of overestimation was

Table 2
Performance criteria of model calibration and validation at different stations based on NSE, RMSE and R.

Station Campinas Monte Outlet

Calibration Validation Calibration Validation Calibration Validation

NSE 0.78 0.54 0.61 0.58 0.73 0.52
RMSE 3.52 2.57 6.17 8.99 16.23 19.98
R 0.89 0.76 0.81 0.77 0.91 0.72

Fig. 3. object structure and storm error properties of the reference Radar and the satellite-based CMORPH identified by ST-CORA. a), b), c) short-lived storm and d),
e), f) long-lived storm events.

M. Laverde-Barajas, et al. Journal of Hydrology 591 (2020) 125554

7



minimal, just 3% of the volume. Regarding the systematic errors, both
scenarios decreased the streamflow volume and slightly increased the
streamflow correlation over the catchment. The location scenario pre-
sented an important decrease of RMSE in Campinas and Monte. How-
ever, the RMSE was high in the Outlet area due to the underestimation
by 4% of the streamflow volume. Regarding the hydrological effect in
the temporal response of the storm, location and magnitude scenarios
had an impact in the peak delay of 1 h at Monte, and 1–3 h at Outlet.
The hydrological response for the long-lived storm event (Fig. 7) is

marked by the significant effect of the rainfall overestimation by
CMORPH over the catchment. CMORPH systematically over-predicted
stream-flow in Campinas, Monte and Outlet by 138%, 86% and 26%,
respectively. The systematic error scenarios reduced the peak flow ex-
cess and consequently the RMSE in Campinas and Monte. However, the
location did not affect the Outlet volume streamflow error. The location
scenario had an important impact in Campinas, displaying the smallest
RMSE and the higher r. On the other hand, The magnitude scenario was
more relevant in Monte and especially in Outlet, which had a small
RMSE and higher r. According to the MAPTE, the hydrological response
showed a systematic delay of the peak in CMORPH as much as 3 h in
Monte and 1 h in Outlet. The location scenario did not seem to impact
on time delay, but the magnitude scenario exhibited a 1 h additional
delay in Monte and zero delay in Outlet.

5.3. Streamflow error comparison

Fig. 8 describes the dispersion of the error variation corresponding
to CMORPH and location and magnitude streamflow scenarios for
short-lived (Fig. 8 and long-lived storm (Fig. 8b) events. Boxes re-
present the error variation dispersion between 25 and 75 percentiles
and dots represent values outside the 99.9% percentile (back lines).
positive percentile represents flow overestimation while negative per-
centile represents underestimation. Based on the results, overestimation
prevails for both storm events over the catchment. In the short-lived
storm, the location scenario displayed the lowest error variation (clo-
sest to zero), while the magnitude scenario showed the smallest var-
iation in the long-lived storm. These results demonstrate that the error
due to location in CMORPH had a dominant influence on the hydro-
logical response of short-lived storm events. Meanwhile, error due to
magnitude had a bigger influence in the hydrological response of the
long-lived storm event.

6. Discussion

In the previous sections, we showed the evaluation of the impact of
two systematic sources of error in CMORPH on the hydrological re-
sponse in the Capivari catchment, Brazil. By using the ST-CORA
method, we described the spatiotemporal characteristics of two me-
teorological storm events. Differences between physical properties of

Fig. 4. Total event maps and rainfall accumulation by RADAR, CMORPH and synthetic storm scenarios for short-lived storm.
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observed and estimated objects allowed for the subtraction of two types
of error: due to location and magnitude. Corresponding systematic
scenarios were later propagated through a calibrated hydrological
model to evaluate the individual hydrological impact of each source of
error. In comparison to analytical approaches, this method analyses the

error decomposition independently of the hydrological model config-
uration.
The results indicate that CMORPH overestimates the total volume of

both storm events, in agreement with multiple findings in South
America (Ebert et al., 2007; Demaria et al., 2011; Laverde-Barajas et al.,

Fig. 5. Total event maps and rainfall accumulation by RADAR, CMORPH and synthetic storm scenarios for long-lived storm.

Fig. 6. hydrological response for short-live storm. Upper plots represent the rainfall hietograms and lower plots represent the corresponding discharges for Campinas,
Monte and outlet zones.
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Fig. 7. hydrological response for long-lived storm. Upper plots represent the rainfall hietograms and lower plots represent the corresponding discharges for
Campinas, Monte and outlet zones.

Table 3
Hydrological response evaluation for short and long-lived storm at Campinas, Monte and Outlet zones corresponding to Original, Location and Magnitude scenarios.

Storm type Statistical index Campinas Monte Outlet

Org Location Magnitude Org Location Magnitude Org Location Magnitude

r 0.964 0.991 0.986 0.974 0.974 0.994 0.997 0.995 0.996
RMSE (mm) 4.99 0.89 2.92 7.03 2.17 3.39 5.91 11.70 12.08

Short-lived storm MAPTE (h) 0 0 0 0 1 1 1 3 1
PPE (%) (64.40) (13.80) (43.20) (44.88) (4.63) (30.38) 2.63 13.53 12.36
PVE (%) (68.59) (6.26) (34.78) (41.84) (9.23) (18.80) (2.67) 3.47 3.89
R 0.938 0.961 0.938 0.992 0.993 0.991 0.996 0.990 0.999
RMSE (mm) 12.60 6.16 8.79 25.69 16.84 11.31 73.71 71.71 18.90

long-lived storm MAPTE (h) 0.00 0.00 0.00 3.00 3.00 4.00 1.00 1.00 0.00
PPE (%) (118.58) (64.76) (77.62) (111.54) (74.15) (43.21) (49.46) (51.99) (9.83)
PVE (%) (137.92) (59.06) (99.22) (86.40) (51.86) (41.94) (26.22) (22.76) (7.97)

Fig. 8. Boxplots of the error distribution contribution for the original CMORPH event and location and magnitude stream-flow scenarios. a) Short-lived storm b) long-
lived storm.
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2018). Aleatory errors exhibited an important error component in
CMORPH, especially in the short-lived storm event, where it re-
presented almost 85% of the total error. Regarding systematic errors,
location was found to be the main source of error for the short-lived
storm events, while magnitude had a bigger influence on the long-lived
storm event. In relation to the storm structure, errors CMORPH for the
short-lived event are mainly attributed to the description of the storm
orientation. In the case of the long-lived event those are a mainly fo-
cused to the spatiotemporal dimension of the storm. Despite that, these
results do not represent the general performance of CMORPH for dif-
ferent storm types, these findings provide a framework to analyse the
systematic error as a function of the type of storm event.
Regarding the hydrological response, the systematic overestimation

by the satellite consequently lead to a large excess in the streamflow
over the catchment. Errors in CMORPH due to location had a stronger
effect on the short-lived storm mainly delaying between 1 and 3 h the
time of the flow peak along catchment. In the analysis, the RMSE due to
location decreased by 70% and 80% RMSE in the upper and middle
zones, respectively. Results in the long-lived event showed that location
subtraction had a low influence in the hydrological response. For this
event, the location subtraction slightly reduced the streamflow volume
in Campinas and Monte corresponding to elevated medium altitude
areas and delaying 1 h peak flow of the streamflow in the area of outlet.
On the other hand, Errors in CMORPH due to volume were more im-
portant for the long-lived storm. In all three zones, the reduction in
rainfall volume directly impacted the decrease in streamflow excess.
This reduction was especially important in Campinas and Monte
slightly affecting the peak time of the stream flow in both areas. For the
short-live event, the volume scenario marginally reduced the stream-
flow in all three areas and it had a small impact in the delay of the
peakflow in Monte. These results suggest that there is a strong corre-
lation between systematic errors inside satellite-based products and the
streamflow properties, which are also found in similar studies using
analytical approaches [e.g.] Zoccatelli et al. (2011), Mei et al. (2017)
We acknowledge certain limitations in the presented study. Firstly,

the error in the hydrological model was not considered as an integral
part of this research. Errors associated with modelling rainfall-runoff
process were reduced by the use of an intense optimisation process to
calibrate the hydrological model over the catchment. Another limita-
tion to take into account arises from the sensitivity rainfall intensity
threshold and the Critical Mass Threshold for the identification and the
segmentation of storm objects. The characterisation parameters used in
ST-CORA have potential implications for the storm definition and seg-
mentation. Laverde-Barajas et al. (2019) showed the sensitivity analysis
of the Critical Mass threshold used for delineating the storm object.
Further studies could implement more sophisticated segmentation al-
gorithms, such as multi-variable kernel segmentation or convolutions
methods, to delineate the storm event.

7. Conclusions

In this study, we used the spatiotemporal object-based verification
method, ST-CORA, to evaluate the hydrological impact of location and
magnitude errors in CMORPH for storm estimation. The results ob-
tained using a calibrated hydrological model of the Capivari river to
reveal the main sources of systematic errors for short-lived and long-
lived storm events. The most important conclusions of this study in-
clude the following:

1. Storm events described as objects using ST-CORA provided a
unique perspective to characterise the main spatiotemporal char-
acteristics of the storm in the catchment. Based on this information,
differences between satellite and observed objects are calculated by
separating the total error into three types: displacement, volume and
pattern.
2. This study established location as the main source of systematic

error in the short-lived storm, while volume was identified as the
main source in long-lived storm event. These errors significantly
impacted the shape phase and amplitude of the streamflow hydro-
graph. In the short-lived storm, the subtraction of location error
positively affected the error reduction in the upper and middle
zones. In the long-lived storm, the subtraction of magnitude error in
the storm event lead to an error reduction over all three zones in the
catchment.
3. This study presented a better understanding of the spatiotemporal
characteristics of the systematic errors in satellites for storm esti-
mation and the impact in the hydrological response. However, er-
rors relating to the hydrological model needs to be taken into ac-
count the potential “equifinality” of the optimal parameters used in
the model.
4. Further research will incorporate the ST-CORA to improve the
accuracy of satellite-based products in storm detection. Location and
magnitude error subtraction methods can be incorporated into bias
correction approaches for reducing the systematic error of near-real
time satellite products in space and time. Additional satellite-based
rainfall datasets can also be evaluated using the methodology for
example, the GPM-IMERG satellite-based product (Huffman et al.,
2015) or the Climate Hazards Group Infrared Precipitation with
Station datasets (CHIRPS) (Funk et al., 2015).
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