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SPACE-TIME GALERKIN POD WITH APPLICATION
IN OPTIMAL CONTROL OF SEMILINEAR PARTIAL

DIFFERENTIAL EQUATIONS∗

MANUEL BAUMANN† , PETER BENNER‡ , AND JAN HEILAND‡

Abstract. In the context of Galerkin discretizations of a partial differential equation (PDE),
the modes of the classical method of proper orthogonal decomposition (POD) can be interpreted
as the ansatz and trial functions of a low-dimensional Galerkin scheme. If one also considers a
Galerkin method for the time integration, one can similarly define a POD reduction of the temporal
component. This has been described earlier but not expanded upon—probably because the reduced
time discretization globalizes time, which is computationally inefficient. However, in finite-time
optimal control systems, time is a global variable and there is no disadvantage from using a POD
reduced Galerkin scheme in time. In this paper, we provide a newly developed generalized theory for
space-time Galerkin POD, prove its optimality in the relevant function spaces, show its application
for the optimal control of nonlinear PDEs, and, by means of a numerical example with Burgers’
equation, discuss the competitiveness by comparing to standard approaches.
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1. Introduction. The method of proper orthogonal decomposition (POD) is a
standard model reduction tool. For a generic dynamical system

v̇ = f(t, v),(1)

on the time interval (0, T ] with a solution v with v(t) ∈ RN and using samples v(tj),
POD provides a set of n̂ so-called POD modes v̂1, . . . , v̂n̂ ∈ RN which optimally
parametrize the solution trajectory. As a result, the system (1) can be projected
down to a system of reduced spatial dimension n̂ that often reflects the dynamical
behavior of (1) well. If the considered system stems from a finite element method
(FEM) discretization of a PDE, then the modes v̂i, i = 1, . . . , n̂, can be interpreted as
ansatz functions in the finite element space Y and the projected system as a particular
Galerkin projection of the underlying PDE.

In this paper we provide a theoretical framework and show cases for a space-time
Galerkin POD method. Some of the underlying ideas for this generalization of POD
have been developed and tested in our earlier works [2, 3].

The first innovation of the proposed generalized POD approach is based on the
observation that instead of the discrete time samples v(tj), one may use the projection
of v onto the finite dimensional subspace S · Y, where S is a, say, k-dimensional
subspace of L2(0, T ). The second innovation is that the projection onto S · Y can be
interpreted as Galerkin discretization in time which can be reduced analoguously to
the POD reduction of the space dimension. The resulting scheme is a POD reduced
space-time Galerkin discretization.
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A1612 M. BAUMANN, P. BENNER, AND J. HEILAND

This basic idea of a space-time POD has been taken up in [24] but has not pro-
gressed since then. We think that this is due to the fact that temporal POD destructs
the causality in time, which makes it inefficient for numerical simulations. In fact,
the POD reduced time ansatz functions are global such that the space-time Galerkin
system has to be solved as a whole rather than in sequences of time stretches as in
standard time-stepping or discontinuous Galerkin schemes [17, 22]. Thus, the reduced
space-time scheme is likely outperformed by a standard spatial POD combined with a
standard Runge–Kutta solver. However, in finite-time optimal control problems, the
time is a global variable and, as we will show by numerical examples, the space-time
Galerkin discretization becomes very competitive.

The need and the potential of also reducing the time dimension of a reduced order
model have been discussed in [6]. There—similar to our observation that an SVD of
a matrix of measurements also reveals compressed time information—it is proposed
to use the right singular vectors of a classical snapshot matrix for forecasting.

We want to point out that the method of proper generalized decomposition (PGD)
is related to the proposed space-time Galerkin POD only insofar as for PGD also
space-time (and parameter) tensor bases are used for the modeling; see, e.g., [8].
However, the PGD approach seeks to successively build up the bases by collocation,
greedy algorithms, and fixed-point iteration, whereas our approach reduces a given
basis on the base of measurements. For the same reasons, the connection of the
presented approach to other tensor-based low-dimensional approximation schemes
[13, 19] as well as to reduced basis approaches [25] is only marginal.

This paper is organized as follows. First, we introduce the mathematical frame-
work and rigorously prove the optimality of the reduced space and time bases. Then
we illustrate how the reduced bases can be used for low-dimensional space-time
Galerkin approximations. In particular, we address how to treat quadratic nonlinear-
ities, how to incorporate initial and terminal values, and how to set up the bases for
a general PDE by means of standard approximation schemes. Finally, we illustrate
the performance of the space-time Galerkin POD approach for the optimal control
of Burgers’ equation and compare it to well-established gradient-based methods com-
bined with standard POD.

2. Space-time Galerkin POD. In this section, we provide the analytical frame-
work for space-time POD. We introduce the considered function spaces and directly
prove the optimality of the POD projection in the respective space-time L2 norm.
For a time interval (0, T ) and a spatial domain Ω, consider the space-time function
space L2(0, T ;L2(Ω)). Let

S = span{ψ1, . . . , ψs} ⊂ L2(0, T ) and Y = span{ν1, . . . , νq} ⊂ L2(Ω)

be finite dimensional subspaces of dimension s and q, respectively, and let

X = S · Y ⊂ L2(0, T ;L2(Ω))(2)

be the product space of S and Y spanned by {ψj · νi}i=1,...,q
j=1,...,s.

The space-time L2-orthogonal projection x̄ := ΠS·Yx of some x ∈ L2(0, T ;L2(Ω))
onto X is given as

x̄(ξ, τ) =

s∑
j=1

q∑
i=1

xi,jνi(ξ)ψj(τ),(3)
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SPACE-TIME GALERKIN POD IN OPTIMAL CONTROL OF PDEs A1613

where the coefficients xi,j are the entries of the matrix

X =
[
xi,j
]j=1,...,s

i=1,...,q
:= M−1

Y

((x, ν1ψ1))S·Y . . . ((x, ν1ψs))S·Y
...

. . .
...

((x, νqψ1))S·Y . . . ((x, νqψs))S·Y

M−1
S ,(4)

where

((x, νiψj))S·Y := ((x, νi)Y , ψj)S :=

∫ T

0

(∫
Ω

x(ξ, τ)νi(ξ) dξ

)
ψj(τ) dτ.

Here, M−1
Y and M−1

S are the inverses of the mass matrices with respect to space
and time,

MY :=
[
(νi, νj)Y

]j=1,...,q

i=1,...,q
and MS :=

[
(ψi, ψj)S

]j=1,...,s

i=1,...,s
.(5)

Remark 2.1. We will refer to X = S · Y as the measurement space, to the basis
functions of Y and S as measurement functions, and to X as the measurement matrix.
This means that a function in L2(0, T ;L2(Ω)) can be measured in X , e.g., via its
projection onto X , and, the other way around, an element X of X can be seen as a
measurement of some functions in L2(0, T ;L2(Ω)).

We introduce some representations of the inner product and the norm of functions
in S · Y.

Lemma 2.2 (space-time discrete L2-product). Let

x1 =

s∑
j=1

q∑
i=1

x1
i,jνiψj ∈ S · Y, x2 =

s∑
j=1

q∑
i=1

x2
i,jνiψj ∈ S · Y;

then, with

x` = [x`1,1, . . . ,x
`
q,1,x

`
1,2, . . . ,x

`
q,2, . . . ,x

`
1,s, . . . ,x

`
q,s]

T =: vec(X`), ` = 1, 2,

the inner product in S · Y is given as

((x1, x2))S·Y =

∫ T

0

∫
Ω

x1x2 dξ dτ = (x1)T (MS ⊗MY) x2(6)

and the induced norm as

‖x`‖2S·Y := ((x`, x`))S·Y = ‖x`‖2MS⊗MY
= ‖M1/2

Y X`M
1/2
S ‖

2
F , ` = 1, 2,(7)

where ‖·‖MS⊗MY denotes the Euclidean vector norm weighted by MS⊗MY , and ‖·‖F
is the Frobenius norm.

Proof. The lemma is proved with straightforward calculations.

Remark 2.3. In practical applications, one uses a Cholesky factorization of the
mass matrices (5) rather than the square root. If memory is an issue, as it likely is for
large-scale three-dimensional (3D) problems, one can also resort to sparse Cholesky
factorizations that limit try to minimize the so-called fill-in; see, e.g., [9].

Corollary 2.4. Let MS = LSL
T
S and MY = LYLT

Y be given in factored form.
Then, for a given x ∈ S · Y with its coefficient matrix X and vector x = vec (X) it
holds that

‖x‖2S·Y = ‖x‖2MS⊗MY
= ‖LT

YXLS‖2F .
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A1614 M. BAUMANN, P. BENNER, AND J. HEILAND

Proof.

‖x‖2MS⊗MY
= xT(MS ⊗MY)x = xT(LS ⊗ LY) · (LT

S ⊗ LT
Y)x

= ‖(LT
S ⊗ LT

Y)x‖22 = ‖vec(LT
YXLS)‖22 = ‖LT

YXLS‖2F ,

as it follows from basic properties and relations between the Kronecker product, the
vectorization operator, and the Frobenius norm.

From now on, we will always consider the factorized form. In theory, one can
always replace the factors by the square roots of the respective mass matrices.

Next, we will consider a given function x ∈ S · Y and determine low-dimensional
subspaces of Y and S that can provide low-dimensional approximations to x in a
norm-optimal way.

Lemma 2.5 (optimal low-rank bases in space). Given x ∈ S · Y and the asso-
ciated matrix of coefficients X. The best-approximating q̂-dimensional subspace Ŷ in
the sense that the projection error ‖x−ΠS·Ŷx‖S·Y is minimal over all subspaces of Y
of dimension q̂ is given as span{ν̂i}i=1,...,q̂, where

ν̂1

ν̂2

...
ν̂q̂

 = V T
q̂ L−1
Y


ν1

ν2

...
νq

 ,(8)

where Vq̂ is the matrix of the q̂ leading left singular vectors of the matrix

LT
YXLS .

Remark 2.6. Here and in what follows, we use column vectors of the scalar basis
functions like [ν1 · · · νq]T as they can be formally treated like a vector and, thus,
simplify the notation. We illustrate the use of the formal vectors of functions in the
following proof that the reduced bases functions are mutually orthogonal, i.e., that
the mass matrix of Ŷ is the identity

MŶ =

∫
Ω

ν̂1(ξ)
...

ν̂q̂(ξ)

 [ν̂1(ξ) · · · ν̂q̂(ξ)
]

dξ

= V T
q̂ L−1
Y

∫
Ω

ν1(ξ)
...

νq(ξ)

 [ν1(ξ) · · · νq(ξ)
]

dξL−TY Vq̂ = V T
q̂ L−1
Y MYL−TY Vq̂ = I,

where we have used that the singular vectors that constitute Vq̂ are orthogonal.

Proof of Lemma 2.5. For the time dimension at fixed index j, we consider

y :=

q∑
i=1

xi,jνi =
[
x1,j . . . xq,j

] ν1

...
νq

 ∈ Y.
Next, we determine the orthogonal projection of y onto Ŷ. Therefore, we write y
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SPACE-TIME GALERKIN POD IN OPTIMAL CONTROL OF PDEs A1615

as a function in Ŷ and a remainder R̂ in the orthogonal complement:

y =
[
x1,j . . . xq,j

] ν1

...
νq

 =
[
β1 . . . βq̂

] ν̂1

...
ν̂q̂

+ R̂.

We determine the coefficients βk, k = 1, . . . , q̂, by testing against the basis func-
tions of Ŷ. By mutual orthogonality of ν̂i, i = 1, . . . , q̂ (see Remark 2.6), and their
orthogonality against R̂, it follows that

βk =

(
q̂∑
i=1

βiν̂i, ν̂k

)
Y

=

(
R̂+

q̂∑
i=1

βiν̂i, ν̂k

)
Y

=

(
q∑
i=1

xi,jνi, ν̂k

)
Y

(∗)
=
[
xi,j . . . xq,j

]
MYL−TY Vq̂,k

=
[
xi,j . . . xq,j

]
LYVq̂,k,

where in
(∗)
= we have used that ν̂k =

[
ν1 . . . νq

]
L−TY Vq̂,k and where Vq̂,k is the kth

column of Vq̂ in (8). Thus, we find that the coefficients of the orthogonal projection

of y onto Ŷ in the bases of Ŷ and Y are given through

ŷ =

q̂∑
i=1

βiν̂i =
[
β1 . . . βq̂

] ν̂1

...
ν̂q̂

 =
[
x1,j . . . xq,j

]
LYVq̂

ν̂1

...
ν̂q


=
[
x1,j . . . xq,j

]
LYVq̂V

T
q̂ L−1
Y

ν1

...
νq


=:
[
x̂1,j . . . x̂q,j

] ν1

...
νq

 .
Noting that

[
x1,j . . . xq,j

]T
makes up the jth column of the matrix X associated

with x, we conclude that the matrix X̂ of coefficients associated with ΠS·Ŷx is given
as

X̂ = L−TY Vq̂V
T
q̂ LT
YX

and, by Corollary 2.4, we have that

‖x−ΠS·Ŷx‖S·Y = ‖LT
YXLS − LT

YX̂LS‖F = ‖LT
Y [X− X̂]LS‖F

= ‖LT
YXLS − Vq̂V T

q̂ LT
YXLS‖F ,

which is minimized over all Vq̂ ∈ Rq,q̂ matrices by taking Vq̂ as the matrix of the q̂
leading left singular vectors of LT

YXLS .

The same arguments apply to the transpose of X.

Lemma 2.7 (optimal low-rank bases in time). Given x ∈ S · Y and the associated
matrix of coefficients X. The best-approximating ŝ-dimensional subspace Ŝ in the
sense that the projection error ‖x− ΠŜ·Yx‖S·Y is minimal over all subspaces of S of

dimension ŝ is given as span{ψ̂j}j=1,...,ŝ, where
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A1616 M. BAUMANN, P. BENNER, AND J. HEILAND
ψ̂1

ψ̂2

...

ψ̂ŝ

 = UT
ŝ L−1
S


ψ1

ψ2

...
ψs

 ,(9)

where Uŝ is the matrix of the ŝ leading right singular vectors of

LT
YXLS .

Remark 2.8. The approximation results Lemmas 2.5 and 2.7 hold in the space-
time L2 norm, which is the appropriate norm for the considered functions and which
is not part of the standard POD approach. However, the need for the right norms
has been accounted for through the use of weighted inner products or weighted sums.
If one lets S degenerate to a set of Dirac deltas, then Lemma 2.5 reduces to the
optimality result [23, Thm. 1.8] for the standard POD approximation in the sense
that the inner product is weighted with the FEM mass matrix (see also Remark
4.1). If one chooses S such that the induced time Galerkin scheme resembles a time
discretization by the trapezoidal rule (see [18, sect. 3.3]), then Lemma 2.5 reduces to
the optimality conditions for the continuous POD approach given in [23, sect. 1.3].
In fact, certain (discontinuous) Galerkin schemes with certain choices of quadrature
rules can attain many standard Runge–Kutta schemes [5].

Remark 2.9. The idea of generalized measurements also works as a generalization
of POD for a reduction of the state space. Consider the dynamical system (1), and
define XS := [(vi, ψj)S ]j=1,...,s

i=1,...,q , where vi is the ith component of the vector-valued

solution. Then the leading left singular vectors of the matrix XSL
−1
S are generalized

POD modes and a projection of (1) onto the space spanned by those modes yields
a POD-reduced dynamical system as we have previously described under the term
gmPOD in [3].

3. Space-time Galerkin schemes. In this section, we briefly describe how
to formulate a general space-time Galerkin approximation to a generic PDE. This
regression is then followed by the discussion of low-rank space-time Galerkin schemes
on the basis of POD reductions of standard Galerkin bases.

Let {ψ̂1, . . . , ψ̂ŝ} ⊂ H1(0, T ) and {ν̂1, . . . , ν̂q̂} ⊂ H1
0 (Ω) be the POD bases in space

and time, respectively. Then, a space-time Galerkin approximation of the generic
semilinear equation system

v̇ −∆v +N(v) = f on (0, T ]× Ω,(10a)

v
∣∣
∂Ω

= 0 on (0, T ],(10b)

v
∣∣
t=0

= v0 on Ω(10c)

is given as follows.
The approximate solution v̂ is assumed in the space Ŝ · Ŷ := span{ψ̂j ν̂i}j=1,...,ŝ

i=1,...,q̂ .
We introduce the formal vectors of the coefficient functions

Υ̂ :=

ν̂1

...
ν̂q̂

 and Ψ̂ :=

ψ̂1

...

ψ̂ŝ


and write v̂ as [

ψ̂1 . . . ψ̂q̂
]
⊗
[
ν̂1 . . . ν̂ŝ

]
v̂ = [Ψ̂T ⊗ Υ̂T]v̂,(11)
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where v̂ ∈ Rŝq̂ is the vector of coefficients. We determine the coefficients by requiring
them to satisfy the Galerkin projection of (10a) for every basis function ν̂iψ̂j , i =
1, . . . , q̂, j = 1, . . . , ŝ,∫ T

0

∫
Ω

ν̂iψ̂j ˙̂v + ψ̂j∇ν̂i∇v̂ + ν̂iψ̂jN(v̂) dx dt =

∫ T

0

∫
Ω

ν̂iψ̂jf dx dt.

The latter equations combined give a possibly nonlinear equation system for the
vector v̂ of coefficients, which is assembled as follows: For the term with the time
derivative we compute∫ T

0

∫
Ω

[Ψ̂⊗ Υ̂]
∂v̂

∂t
dx dt =

∫ T

0

∫
Ω

[Ψ̂⊗ Υ̂]

[
∂Ψ̂T

∂t
⊗ Υ̂T

]
v̂ dx dt

=

∫ T

0

∫
Ω

[
Ψ̂
∂Ψ̂T

∂t
⊗ Υ̂Υ̂T

]
dx dtv̂

=

[∫ T

0

Ψ̂
∂Ψ̂T

∂t
dt⊗

∫
Ω

Υ̂Υ̂T dx

]
v̂ =: [dMŜ ⊗MŶ ]v̂.

By the same principles, for the term with the spatial derivatives, we obtain∫ T

0

∫
Ω

[Ψ̂⊗∇Υ̂]∇v̂ dx dt =

∫ T

0

∫
Ω

[Ψ̂⊗∇Υ̂][Ψ̂T ⊗∇Υ̂T]v̂ dx dt

=

[∫ T

0

Ψ̂Ψ̂T dt⊗
∫

Ω

∇Υ̂∇Υ̂T dx

]
v̂ := [MŜ ⊗KŶ ]v̂.

Note that in higher spatial dimensions, ∇v̂ as well as ∇ν̂i is a vector and, thus, in the
preceding derivation, the products and ∇Υ̂ have to be interpreted properly.

Summing up, we can write the overall system as

[dMŜ ⊗MŶ +MŜ ⊗KŶ ]v̂ +HŜŶ(v̂) = fŜŶ ,(12)

where

MŜ := [
(
ν̂i, ν̂j

)
]i,j=1,...,ŝ,(13a)

dMŜ := [
(
ν̂i, ˙̂νj

)
]i,j=1,...,ŝ,(13b)

MŶ := [
(
ψ̂l, ψ̂k

)
]l,k=1,...,q̂,(13c)

KŶ := [
(
∇ψ̂l,∇ψ̂k

)
]l,k=1,...,q̂,(13d)

HŜŶ(v̂) := [
((
ν̂iψ̂l, N(v̂)

))
]i=1,...,ŝ; l=1,...,q̂,(13e)

and

fŜŶ := [
((
ν̂iψ̂l, f

))
]i=1,...,ŝ; l=1,...,q̂,(13f)

are the Galerkin projections of the system operators and the source term assembled
in the corresponding inner products.

Remark 3.1. In the space-time Galerkin POD context, the reduced bases are pro-
jections of standard finite element bases. Concretely, by virtue of Lemmas 2.5 and
2.7 one has that

Ψ̂ = UT
ŝ L−1
S Ψ and Υ̂ = V T

q̂ L−1
Y Υ,
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A1618 M. BAUMANN, P. BENNER, AND J. HEILAND

where the columns of Uŝ and Vq̂ are orthonormal and where LS and LY are factors
of the mass matrices associated with Ψ and Υ. Accordingly, the coefficients in (13)
are given as

MŜ := UT
ŝ L−1
S

[∫ T

0

ΨΨT ds

]
L−TS Uŝ = UT

ŝ L−1
S MSL

−T
S Uŝ = Iŝ,(14a)

dMŜ := UT
ŝ L−1
S

[∫ T

0

ΨΨ̇T ds

]
L−TS Uŝ,(14b)

MŶ := V T
q̂ L−1
Y

[∫
Ω

ΥΥT dx

]
L−TY Vq̂ = V T

q̂ L−1
Y MYL−TY Vq̂ = Iq̂,(14c)

KŶ := V T
q̂ L−1
Y

[∫
Ω

∇Υ∇ΥT dx

]
L−TY Vq̂.(14d)

Note that, despite their larger size, stiffness matrices of the standard finite element
discretization, as they appear in (14b) and (14d), may be assembled efficiently by
finite element packages. Thus it might be much faster to assemble and project the
standard FEM matrices than to compute the stiffness matrices dMŜ and KŶ as in
the formulation given in (13b) and (13d).

4. Implementation issues. In this section, we address how to compute the
measurement matrices by means of standard tools, how to incorporate the initial and
terminal values in the time discretization, how to preassemble quadratic nonlinearities,
and how to use interpolation for general nonlinearities.

4.1. Computation of the measurements. We explain how the measurements
(cf. Remark 2.1) that are needed for the computation of the optimal low-rank bases
(cf. Lemmas 2.5 and 2.7) can be obtained in practical cases.

In the standard method-of-lines approach, a Y will be used as the FE space
for a Galerkin spatial discretization that approximates (10a) by an ODE. In a sec-
ond step, a time integration scheme is employed to approximate the coefficients
v1, . . . , vq : (0, T ]→ R of the solution

v̄ : (0, T ]→ Y : t 7→
q∑
i=1

vi(t)νi

of the resulting ODE. With this and with a chosen time measurement space S, a
numerical computed measurement in S · Y of the actual solution v of (10a) is given as

X =

(v1, ψ1)S . . . (v1, ψs)S
...

. . .
...

(vq, ψ1)S . . . (vq, ψs)S

M−1
S .(15)

Remark 4.1. For smooth trajectories and for measurements using delta distribu-

tions centered at some tj ∈ (0, T ), j = 1, . . . , s, with
∫ T

0
viδ(tj) dt = vi(tj) the matrix

(15) degenerates to the standard POD snapshot matrix. In this case, since the delta
distributions are not elements of L2(0, T ), there is no way to define an optimal time
basis as in Lemma 2.7. However, one can define an optimal low-rank spatial basis by
Lemma 2.5 which reduces to the standard POD optimality result with MS = I; cf.
Remarks 2.8 and 2.9.
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4.2. Treatment of the initial value. The initial value (10c) requires special
consideration. First of all, the solution of the PDE is well defined only when the
initial condition is specified. This transfers to the space-time Galerkin discretized
system (12) insofar that it is uniquely solvable only if an initial condition is provided.
Second, in particular in view of optimal control, the initial value can be subject to
changes which should be realizable in the discretized model.

To maintain the prominent role of the initial condition also in the time discretiza-
tion, we proceed as follows:

1. We choose an S that is spanned by a nodal basis {ψ1, . . . , ψs}, where ψ1 is
the basis function associated with the node at t = 0.

2. For a given function, we compute X0 as in (4) or (15) setting ψ1 = 0 and
Uŝ,0 as the matrix of the ŝ− 1 leading right singular vectors of LT

YX0LS .
3. We set

Uŝ =




1
0
...
0

 Uŝ,0


and compute the reduced basis as in Lemma 2.7 as

ψ̂1

ψ̂2

...

ψ̂ŝ

 = UT
ŝ L−1
S


ψ1

ψ2

...
ψs

 .
Under the assumption that LS is a lower-triangular factor such that LSL

T
S = MS , by

this construction we obtain that ψ̂1 = 1
‖ψ1‖ψ1 will be associated with the initial value,

whereas ψ̂2(0) = · · · = ψ̂ŝ(0) = 0 will still optimally approximate the trajectory.
A terminal value is treated similarly, though it requires an factorization LSL

T
S =

MS of the mass matrix with LS upper-triangular.

4.3. Assembling of quadratic nonlinearities. As an example, we consider
the nonlinearity in the Burgers’ equation

1

2
∂xz(t, x)2(16)

with the spatial coordinate x ∈ (0, 1) and the time variable t ∈ (0, 1].
In the time-space Galerkin projection (11), the il-component of the discretized

nonlinearity (13e) in the case of (16) is given as

Hil (v̂) =
1

2

∫ 1

0

∫ 1

0

ν̂iψ̂l · ∂xv̂2 dx dt

=
1

2

∫ 1

0

∫ 1

0

ν̂iψ̂l · ∂x
(([

Ψ̂T ⊗ Υ̂T
]

v̂
)2
)

dx dt

= v̂T

[∫ 1

0

ν̂iΨ̂Ψ̂T dt⊗ 1

2

∫ 1

0

ψ̂l∂x(Υ̂Υ̂T)2 dx

]
v̂,

where we have used the linearity of the Kronecker product and that

v̂2 = ([Ψ̂T ⊗ Υ̂T]v̂)2 = v̂T[Ψ̂⊗ Υ̂][Ψ̂T ⊗ Υ̂T]v̂ = v̂T[Ψ̂Ψ̂T ⊗ Υ̂Υ̂T]v̂.
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A1620 M. BAUMANN, P. BENNER, AND J. HEILAND

Thus, the evaluation of the discretized nonlinear term can be assisted by precomputing∫ 1

0

ν̂iΨ̂Ψ̂T dt and
1

2

∫ 1

0

ψ̂l(Υ̂∂xΥ̂T + ∂x(Υ̂)Υ̂T) dx

for all ν̂i, i = 1, . . . , ŝ and ψ̂l, l = 1, . . . , q̂. These precomputed quantities are matrices
of size ŝ× ŝ and q̂× q̂ and can be interpreted as slices of a tensor of size ŝ× ŝ× ŝ and
q̂ × q̂ × q̂ that realize the quadratic form in time and space, respectively.

Remark 4.2. If Vq̂ is the matrix of the spatial POD modes that transform the

FEM basis Υ into the reduced basis Υ̂ via Υ̂ = V T
q̂ L−1
Y Υ, then the spatial part of the

reduced nonlinearity fulfills

1

2

∫ 1

0

ψ̂l(Υ̂∂xΥ̂T + ∂x(Υ̂)Υ̂T) dx =
1

2
V T
q̂ L−1
Y

∫ 1

0

ψ̂l(Υ∂xΥT + ∂x(Υ)ΥT) dxL−TY Vq̂,

where the inner matrix of the latter expression might be efficiently assembled in a
FEM package. The same idea applies to the time-related part.

4.4. Interpolation of general nonlinearities. If the nonlinearity N is a gen-
eral function, one can approximate the evaluation of the space-time integral in (13e)
through quadrature. This, however, requires a representation of v̂ that can be eval-
uated at given quadrature points and, thus, may become computationally expensive.
In what follows, we assume that N : R → R is a scalar function and deliberately apply
to functions v and vectors v̄ using the conventions

v 7→ N(v)↔ v(t, x) 7→ N(v(t, x)) and v̄ 7→ N(v̄)↔

v1

...
vq

 7→
N(v1)

...
N(vq)

 .
If the full spaces S and Y are spanned by nodal bases, i.e., if the single basis

functions are associated with single grid points and if they have the value 1 at these
grid points and the value 0 at all other grid points, then for v =

∑s
j=1

∑q
i=1 vi,jνiψj ,

on the space-time grid, the value of N(v) is readily approximated by its interpolant

N(v) ≈
s∑
j=1

q∑
i=1

N(vi,j)νiψj .(17)

Since, generically, the (reduced) bases of Ŝ · Ŷ are not nodal, the low-dimensional
approximation

v̂ = [Ψ̂T ⊗ Υ̂T]v̂ ∈ Ŝ · Ŷ

needs to be expanded in the basis of S · Y first,

v̂ = [Ψ̂T ⊗ Υ̂T]v̂ = [ΨTL−TS Uŝ ⊗ Υ̂TL−TY Vq̂]v̂ = [ΨT ⊗ΥT][L−TS Uŝ ⊗ L−TY Vq̂]v̂ ∈ S · Y

(see Remark 3.1), before the interpolant can be computed as

N(v̂) ≈ [ΨT ⊗ΥT]N([L−TS Uŝ ⊗ L−TY Vq̂]v̂).
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SPACE-TIME GALERKIN POD IN OPTIMAL CONTROL OF PDEs A1621

Then, the nonlinearity HŜŶ(v̂) as in (13e) can be approximated through interpolation
via

HŜŶ(v̂) =

∫ T

0

∫
Ω

[Ψ̂⊗ Υ̂]N(v̂) dx dt

≈
∫ T

0

∫
Ω

[Ψ̂⊗ Υ̂][ΨT ⊗ΥT]N([L−TS Uŝ ⊗ L−TY Vq̂]v̂) dx dt

= [UT
ŝ L−1
S ⊗ V

T
q̂ L−1
Y ]

∫ T

0

∫
Ω

[Ψ⊗Υ][ΨT ⊗ΥT] dx dtN([L−TS Uŝ ⊗ L−TY Vq̂]v̂)

= [UT
ŝ L−1
S ⊗ V

T
q̂ L−1
Y ][MS ⊗MY ]N([L−TS Uŝ ⊗ L−TY Vq̂]v̂)

= [UT
ŝ LT
S ⊗ V T

q̂ LT
Y ]N([L−TS Uŝ ⊗ L−TY Vq̂]v̂).(18)

Remark 4.3. The interpolant N([L−TS Uŝ⊗L−TY Vq̂]v̂) is of dimension sq (the prod-
uct of the dimensions of the full time and space approximation spaces) and, thus,
causes a disproportional computational effort during the setup and solution of the low
order model. However, the product structure in [UT

ŝ LT
S⊗V T

q̂ LT
Y ]N([L−TS Uŝ⊗L−TY Vq̂]v̂)

seems well suited for an extension of the discrete empirical interpolation method [7]
to a space-time setup that, bluntly put, selects and interpolates the most relevant
components through

[UT
ŝ LT
S ⊗ V T

q̂ LT
Y ]W (PTW )−1PN([L−TS Uŝ ⊗ L−TY Vq̂]v̂)(19)

with a matrix W ∈ Rsq,w that spans the interpolation space of dimension w � sq
and a selector matrix P ∈ Rw,sq that consists of w chosen unit vectors of the Rsq.
Thus, if the product [UT

ŝ LT
S ⊗ V T

q̂ LT
Y ]W ∈ Rŝq̂,w is precomputed, the approximative

evaluation of N via (19) is independent of the full space dimensions.

Remark 4.4. For a straightforward implementation, the formulation of (18) as

vec

(
V T
q̂ LT
YN
(
L−TY Vq̂XU

T
ŝ L−1
S
)
LSUŝ

)
,

with the coefficients of v̂ as matrix X, that avoids the memory consuming projection
and lifting matrices like L−TS Uŝ ⊗ L−TY Vq̂ ∈ Rqs,q̂ŝ is preferable.

5. Application in PDE-constrained optimization. We consider a generic
optimal control problem.

Problem 5.1. For a given target trajectory x∗ ∈ L2(0, T ;L2(Ω)) and a penaliza-
tion parameter α > 0, we consider the optimization problem

J (x, u) :=
1

2
‖x− x∗‖2L2 +

α

2
‖u‖2L2 → min

u∈L2(0,T ;L2(Ω))
(20)

subject to the generic PDE

ẋ−∆x+N(x) = f + u on (0, T ]× Ω,(21a)

x
∣∣
∂Ω

= 0 on (0, T ],(21b)

x
∣∣
t=0

= x0 on Ω.(21c)

If the nonlinearity is Frechét differentiable, then necessary optimality conditions
with respect to Problem 5.1 for (x, u) are given through u = 1

αλ, where λ solves the
adjoint equation
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A1622 M. BAUMANN, P. BENNER, AND J. HEILAND

−λ̇−∆λ+DxN(x)Tλ+ x = x∗ on (0, T ]× Ω,(22a)

λ
∣∣
∂Ω

= 0 on (0, T ],(22b)

λ
∣∣
t=T

= 0 on Ω,(22c)

which is coupled to the state equation (21) through x and u; see [20]. Here, Dx

denotes the Frechét derivative.
Given low-dimensional spaces Ŝ := span{ψ̂1, . . . , ψ̂ŝ} ⊂ H1(0, T ), R̂ := span{φ̂1,

. . . , φ̂r̂} ⊂ H1(0, T ) and Ŷ := span{ν̂1, . . . , ν̂q̂} ⊂ H1
0 (Ω), Λ̂ := span{λ1, . . . , λp̂} ⊂

H1
0 (Ω), a tensor space-time Galerkin discretization of the coupled system (21)–(22)

reads

[dMŜ ⊗MŶ +MŜ ⊗KŶ ]v̂ +HŜŶ(v̂)− 1

α
[MŜR̂ ⊗MŶΛ̂]λ̂ = fŜŶ ,

(23a)

[−dMR̂ ⊗MΛ̂ +MR̂ ⊗KΛ̂]λ̂+DxN
T
Λ̂R̂(v̂)λ̂+ [MR̂Ŝ ⊗MΛ̂Ŷ ]v̂ = [MR̂Ŝ ⊗MΛ̂Ŷ ]v̂∗,

(23b)

with the coefficients dMR̂, MR̂, MΛ̂, KΛ̂ and the nonlinearity DxN
T
Λ̂R̂(v̂)λ̂ defined

as in (12), with MŜR̂, MR̂Ŝ , MŶΛ̂, MΛ̂Ŷ denoting the mixed mass matrices like

MŜR̂ := [
(
ψ̂`, φ̂k

)
]`=1,...,ŝ
k=1,...,r̂ ∈ Rŝ,r̂,

with v̂∗ representing the target v∗ projected onto Ŝ · Ŷ, with the spatial boundary
conditions resolved in the ansatz spaces, and with accounting for the initial and ter-
minal conditions via requiring

v̂(0) =

ŝ∑
j=1

q̂∑
i=1

x1
i,j ν̂iψ̂j(0) = ΠŶx0 and λ̂(T ) =

r̂∑
j=1

p̂∑
i=1

x1
i,jµ̂iφ̂j(T ) = 0;

cf. section 4.2.

Remark 5.2. Since the solution x to (21) depends on an initial value at time
t = 0, since the λ to (22) depends on a terminal value at t = T , and since both
systems are fully coupled, a numerical approach to them has to either decouple the
systems, e.g., in an iterative process, or consider the time as a global variable. In the
latter case a reduced model of the time evolution, as provided by the low-dimensional
time Galerkin spaces Ŝ and R̂, can lead to a significant complexity reduction.

Remark 5.3. In the case that the input enters the system through an input op-
erator B : Rnu → L2(Ω), nu ∈ N, and that an output y = Cx with C : L2(Ω)→ Rny ,
ny ∈ N, is tracked rather than the full state, the space-time discretized optimality
conditions (23) have to be modified as follows:

1

α
[MŜR̂ ⊗MŶΛ̂]λ̂ ← 1

α
[MŜR̂ ⊗BŶB

T
Λ̂

]λ̂,

[MR̂Ŝ ⊗MΛ̂Ŷ ](v̂ − v̂∗) ← [MR̂Ŝ ⊗ C
T
Λ̂
CŶ ](v̂ − v̂∗),

(24)

with the corresponding space discrete input and output operators.

6. Numerical experiments. We consider the optimal control of a Burgers’
equation as described in [12, 14] and the 2D Chafee–Infante equation and test the
proposed space-time Galerkin POD approach. To estimate the performance quanti-
tatively, we run similar tests with a well-established gradient-based method.
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6.1. Problem and test setup. For the first setup, in Problem 5.1, we replace
the generic PDE (21) by the one-dimensional Burgers’ equation, namely,

ẋ− ν∂ξξx+
1

2
∂ξ(x

2) = u on (0, T ]× (0, L),(25a)

x
∣∣
ξ=0,ξ=L

= 0 on (0, T ],(25b)

x
∣∣
t=0

= x0 on (0, L),(25c)

where L and T denote the length of the space and time interval and where ν > 0 is
the viscosity. We set T = 1 and L = 1 and, as the initial value, we take the step
function

x0 : (0, 1)→ R : ξ 7→

{
1 if ξ ≤ 0.5,

0 if ξ > 0.5.
(25d)

For the Chafee–Infante setup, we consider

ẋ− ν(∂ξ1ξ1x+ ∂ξ2ξ2x) + β(x3 − x) = 0 on (0, T ]× (0, L)2,(26a)

∂nx
∣∣
ξ2=0

= 0 on (0, T ],(26b)

∂nx
∣∣
ξ1=L

= g · u on (0, T ],(26c)

x
∣∣
ξ1=0

= x
∣∣
ξ2=L

= 0 on (0, T ],(26d)

where ∂n denotes the normal derivative, where, again, L and T denote the length of
the space and time interval, where ν > 0, again, is a viscosity parameter whereas β
is parameter that controls the nonlinearity, and where g = g(ξ2) is a shape function
that models the spatial extension of the control. We set T = 3 and L = 1 and, as the
initial value, we take the zero function.

Instead of tracking the full state, we observe an output y = Cx defined as

y(t) =
1

0.2 · 0.2

∫ 0.6

0.4

∫ 0.6

0.4

x(t, ξ) dξ2 dξ1(27)

which is basically the mean value of x at time t in a domain of observation.

6.1.1. Definition of the optimal control problems. For the first example
problem, we define x∗ via x∗(t) = x0 as the target. Thus, the concrete optimal control
problem which is designed to keep the system in its initial state (cf. Figure 1(c)) reads
as follows.

Problem 6.1. Given parameters ν and α, find u ∈ L2(0, 1;L2(0, 1)) such that

1

2

∫ 1

0

∫ 1

0

(x(t, ξ)− x0)2 dξ dt+
α

2

∫ 1

0

∫ 1

0

u2(t, ξ) dξ dt→ min
u∈L2(0,1;L2(0,1))

(28)

subject to Burgers’ equation (25).

As the second test case, we consider a space-time varying target state. Therefore,
we define the function χ♥ : (0, 1) × (0, 1) → {0, 1} as the indicator function of a
heart-shaped set in the space-time domain as depicted in Figure 2(c).
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Fig. 1. Illustration of the effect of the choice of the snapshots on the performance of the low-
dimensional approximations of the state (a), the adjoint state (b), and the target state (c) or the
response of the suboptimal controls (f), (i), (l). The second row (d)–(f) corresponds to the case that
snapshots of the state and the adjoint are used to approximate the state and the adjoint, respectively.
For the results depicted in the third row (g)–(i), the optimized basis for the state was used also for
the adjoint. The results depicted in the last row (j)–(l) were obtained by combining state and adjoint
snapshots for the computation of the reduced bases. For a comparable illustration we have used color
maps with linear intensity with light color values corresponding to low state values on the intervals
[−0.1, 1.1] for the states and [−0.5, 0.5] for the adjoint states. Values that exceeded these margins
were cropped.
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Problem 6.2. Given parameters ν and α, find u ∈ L2(0, 1;L2(0, 1)) such that

1

2

∫ 1

0

∫ 1

0

(x(t, ξ)− χ♥(t, ξ))2 dξ dt+
α

2

∫ 1

0

∫ 1

0

u2(t, ξ) dξ dt→ min
u∈L2(0,1;L2(0,1))

(29)

subject to Burgers’ equation (25).

As the third test case, we consider the optimal control of the Chafee–Infante
equation (26) toward the output trajectory

y∗(t) =


0 if t < 0.5,

C[1] if t > 2.5,
1
2 (1− cos( t−0.5

2 π))C[1] in between

that describes a smooth transition from the output of the zero function toward the
output of the function 1 that is 1 in the whole domain.

Fig. 2. Illustration of the optimization problem with a target state varying in space and time
as described in section 6.1.1. The snapshots are taken from a forward simulation without control
(a) and the corresponding adjoint solution (b) with respect to the target state (c). Plots (d) and
(e) show the results of the low-dimensional space-time Galerkin approximation to the primal and
the adjoint state. Plot (f) illustrates the response of a suboptimal control computed on the basis of
the space-time reduced system. For a comparable illustration we have used color maps with linear
intensity on the intervals [−0.1, 1.1] for the states and [−0.3, 0.3] for the adjoint states. Values that
exceeded these margins were cropped.
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Problem 6.3. Given parameters ν and α, find u ∈ L2(0, 1;L2(0, 1)) such that

1

2

∫ 3

0

(Cx(t)− y∗(t))2 dt+
α

2

∫ 3

0

u2(t) dt→ min
u∈L2(0,3;R)

(30)

subject to the Chafee–Infante equation (26).

6.1.2. Reduced order optimization approaches. We compute suboptimal
solutions to the optimal control problems, Problems 6.1 and 6.2, i.e., we compute
optimal controls on the basis of reduced order models that approximate the actual
optimal control problems. For that, we consider

• space-time-pod—the space-time Galerkin POD projection of the optimality
system (cf. section 5),

• sqp-pod—a sequential-quadratic programming (SQP) approach for a POD re-
duced model.

Details on the implementation are given in sections 6.2 and 6.3 below.

6.1.3. Performance measures. We measure the performance of the subopti-
mal controls for the actual optimal control problems, Problems 6.1 and 6.2, through

• the tracking error 1
2‖x̂− x0‖2L2 or 1

2‖x̂− χ♥‖
2
L2 between the target state and

the state x̂ achieved by using the suboptimal control û in the simulation of
the full model,

• the time walltime it takes to solve the reduced systems for the suboptimal
control û. We report the lowest measured time out of five runs.

Furthermore, we report
• the norm of the computed control ‖u‖2L2(0,1;L2(0,1))

and, for the tests in the iterative gradient based approach sqp-pod,
• the numbers of function and gradient evaluations nfc/ngc.

6.1.4. Test definitions. We investigate the performance of the space-time
Galerkin approach over the given range of parameters by means of the following
test suites:

• Dimension of the reduced model. We gradually increase the degrees of freedom
of the reduced model, equally distributed to the space and time dimension.

• Varying space and time resolution. Starting from an equal distribution that
has proven to perform well, we gradually increase/decrease the dimension
of the reduced model in the time dimension while decreasing/increasing its
dimension in the space dimension. In other words, we gradually shift the
weighting between spatial and time resolution in the reduced model.

• Variable viscosity. For a fixed model dimension, we explore the performance
versus varying viscosity parameters.

• Variable regularization parameter. For a fixed model dimension, we explore
the performance versus the regularization parameter α in the cost functional.

It will turn out that the sqp-pod approach leads to low tracking errors and cost
function values but at higher computational costs. As an attempt to reduce the costs,
we consider another test suite for the sqp-pod approach:

• Variable gradient norm. We gradually change the threshold for the norm of
the gradient which is the termination criterion for the minimization.

References to all results are given in Table 1. More details on the particular test
setups and an interpretation of the results are given in sections 6.2 and 6.3 for space-
time-pod and sqp-pod, respectively. A comparison and an assessment of both methodsD
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Table 1
List of numerical experiments and the corresponding tables of results.

Test setup Problem 6.1—step function Problem 6.2—heart shape
space-time-pod sqp-pod space-time-pod sqp-pod

Dimension of the reduced model Table 5 Table 5 Table 13 Table 13
Varying space and time resolution Table 6 Table 6 Table 14 Table 14
Variable viscosity Tables 7, 8 Tables 7, 8 Tables 15, 16 Tables 15, 16
Varying regularization parameter Tables 9, 10 Tables 9, 10 Tables 17, 18 Tables 17, 18
Variable gradient norm — Tables 11, 12 — Tables 19, 20

are given in section 6.6. A 2D map of the performance of the methods with respect
to the degrees of freedom in the reduced model is given in Figure 3.

6.1.5. Implementation. The spatial discretization is carried out with the help
of the FEM library FEniCS [15]. For the time integration, we use SciPy ’s built-in
ODE-integrator scipy.integrate.odeint. The norms are approximated in the used
FEM space. The implementation and the code for all tests as well as the documen-
tation of the hardware are available from the author’s public git repository [11]; see
also the note on code availability in section 7.

6.2. Space-time generalized POD for optimal control. The general pro-
cedure is as follows:

1. Do at least one forward solve of the state equation (25) and at least one
backward solve of the corresponding adjoint equation (cf. (22)) to setup gen-
eralized measurement matrices of the state and the costate as explained in
section 4.1.

2. Compute optimized space and time bases for the state and the costate as
defined in Lemmas 2.5 and 2.7. To account for the initial and the terminal
value, one may resort to the procedure explained in section 4.2.

3. Set up the projected closed-loop optimality system (23) and solve for the

optimal costate λ̂ of the reduced system.
4. Lift û = 1

α λ̂ up to the full space-time grid and apply it as suboptimal control
in the full-fidelity discretization.

To solve the nonlinear system (23) for λ̂, we use SciPy ’s scipy.optimize.fsolve,
which is a wrapper for the method HYBRD of the Fortran package MINPACK. The
underlying method is the Powell hybrid method that combines a Newton and a steepest
descent algorithm. We provided the associated Jacobian as a function which, among
others, can be derived from the representation of the nonlinearities as laid out in
section 4.3, and we used the prolonged and projected initial state to initialize the
forward part of the solution and zero values for the backward part.

The procedure is defined by several parameters. In the presented examples, we fix
Y = Λ and S = R, corresponding to the full-fidelity space and time discretizations,
and investigate the influence of the other parameters on the numerical solution of the
optimal control problem. See Table 2 for an overview of the parameters and their
default values.

Choice of the measurements. The computation of the measurements and the
choice of the reduced bases are important parameters of the approach. Generally, the
basis of Ŝ · Ŷ should be well suited to approximate the state, whereas the basis R̂ · Λ̂
should well represent the adjoint state. In the optimization case, where the suboptimal
input is defined through 1

α λ̂ and its lifting to the full order space, two other conditionsD
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A1628 M. BAUMANN, P. BENNER, AND J. HEILAND

Fig. 3. Varying temporal and spatial dimensions in the reduced order models for space-time-
pod ( ) versus sqp-pod (◦,♥) for Problem 6.1 (top) and Problem 6.2 (bottom).

emerge. First, the reduced basis of the adjoint state should also well approximate the
optimal control. Second, the bases of the state and the adjoint must not be orthogonal
or “almost” orthogonal such that the joint mass matrix [MŜR̂ ⊗MŶΛ̂] degenerates
and the contribution of the input in (23a) vanishes.

As illustrated in the plots in Figure 1, the straightforward approach of construct-
ing the bases for the state by means of state measurements and the basis for the adjoint
by means of measurements of the adjoint well approximates the state and the adjoint
but not the coupled problem. It turned out that taking the state measurements to
also construct the reduced space for the adjoint gave a better approximation to the
optimality system while, naturally, only poorly approximating the adjoint. The best
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Table 2
Description and values of the parameters of the numerical tests with space-time-pod; cf. section

6.2.

Parameter Description Default values Range
Y, Λ Space of piecewise linear finite elements

on an equidistant grid of dimension q, p
q = p = 220 –

S, R Space of linear hat functions on an
equidistant grid of dimension s, r

s = r = 120 –

Ŷ, Λ̂ POD reductions of Y and Λ of dimension
q̂, p̂; cf. Lemma 2.5

q̂ = p̂ = 12 6 – 24

Ŝ, R̂ POD reductions of S andR of dimension
ŝ, r̂; cf. Lemma 2.7

r̂ = ŝ = 12 6 – 24

α Regularization parameter in the cost
functional (28)

1 · 10−3 2.5 · 10−4 – 1.6 · 10−2

ν Viscosity parameter in the PDE (25) 5 · 10−3 5 · 10−4 – 1.6 · 10−2

results were obtained in combining state and adjoint state measurements to construct
the bases.

Thus, for the computation of the optimal bases for the following tests, we com-
bined the measurements obtained from one forward solve with no control and one
backward solve with the state from the forward solve and the target state.

In what follows, we report on the performance of space-time-pod in the test setups
as defined in section 6.1.4.

Dimension of the reduced model. We set q̂ = p̂ = r̂ = ŝ = K̂/4 with
K̂ ∈ {24, 36, 48, 72, 96}. Thus, for every setup, the nonlinear system (23) of dimension

K̂ has to be solved for the optimal costate λ̂. The results of these tests are reported
in Tables 5 and 13, respectively.

As expected, the larger the reduced model, the lower the achieved values of the
cost functional. Also, with growing order of the reduced model, the time needed
to solve the corresponding nonlinear system increases drastically. Also the memory
requirement grows with K̂3, which is mainly due to the nonlinear part; see section
4.3.

Varying space and time reduction. From the previous tests, we found that
in the considered setup, an overall number of K̂ = 48 modes is a good compromise
between accuracy and computation time. In this section, we examine how the distri-
bution of modes between space and time affects the quality of the suboptimal control.
Therefore, and for varying increments/decrements j and i, we set q̂ = p̂ := 12∓ j and
ŝ = r̂ := 12± i. Accordingly, the overall number of degrees of freedom stays more or
less the same throughout the tests but we add weight on the approximation of either
the time or the space component.

The results are listed in Tables 6 and 14. By putting more emphasis on the
space component (for Problem 6.1) or on the time component (for Problem 6.2) it
is possible to get a significant increase in the performance. Interestingly, the timings
walltime vary significantly even for the same overall dimensions of the reduced model.
This variance is due to different convergence behavior of the optimization algorithm
used to solve the nonlinear system.

Variable viscosity. In these tests, we examine how the low-rank space-time
Galerkin approach performs over a range of viscosity parameters ν.

The results for Problem 6.1 are listed in Table 8 for (q̂, ŝ) = (p̂, r̂) = (16, 8), which
was the most beneficial distribution as found in the previous tests, and in Table 7 for
(q̂, ŝ) = (p̂, r̂) = (12, 12). The optimal distribution (16, 8) has its performance peak
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at ν = 8 · 10−3 and outperforms the model with the equally distributed modes over
almost the whole range.

The results for Problem 6.2 are listed in Tables 16 and 15 for (q̂, ŝ) = (10, 15)
and for (q̂, ŝ) = (12, 12). In terms of the tracking error, the nonequal distribution
outperforms the equal distribution over the whole range, while in computation time
there is no significant difference. The failure of space-time-pod for ν = 1.6e − 2 in
Table 15 is due to a particularly bad performing reduced basis for the adjoint state.

All tests reveal another phenomenon, namely, that the control magnitude ‖û‖2L2 in-
creases with the parameter ν. This reflects that, in contrast to forward simulations,
in control problems, a larger viscosity makes the system harder to solve especially for
nonsmooth target functions. At the other side of the spectrum, for low values of ν,
the problem is convection dominated and hard to approximate by POD bases.

Regularization parameter. In this section, we examine the influence of the
regularization parameter α on the performance—for (q̂, ŝ) = (p̂, r̂) ∈ {(16, 8), (12, 12)}
(for Problem 6.1) and (q̂, ŝ) = (p̂, r̂) ∈ {(10, 15), (12, 12)} (for Problem 6.2). The
results are reported in Tables 10 and 9 and Tables 18 and 17, respectively.

With smaller values of α, in all cases, the control magnitude ‖û‖2L2 increases.
However, the tracking error 1

2‖x̂− x0‖2L2 reaches a minimum and then increases again.
A reason for this increase might be that the increased control action leads to more
extreme states that are not well captured in the reduced model and, thus, not well
propagated to the full simulation.

6.3. Gradient-based optimal control with POD. To give also a quantita-
tive estimate of the performance of the space-time POD-reduced Galerkin approach
for the solution of PDE-constrained optimal control problems, we tackle the same op-
timization Problem 6.1 with the established approach of SQP [4, 10] with the BFGS
approximation combined with standard POD for spatial model order reduction.

Briefly, the SQP method is an iterative scheme for the minimization of the re-
duced cost functional J̃ (u) := J (x(u), u) where the iterant uk+1 is given as the
argument minimum of the Taylor approximation of J̃ (u) around uk truncated after
the quadratic term,

J̃Q(u;uk) := J̃ (uk) + [∇uJ̃ (uk)](u− uk) +
1

2
(u− uk)T[∇uuJ̃ (uk)](u− uk).(31)

We approximate the gradient ∇uJ̃ (uk) and the inverse of the Hessian ∇uuJ̃ (uk), as
needed for the minimization of J̃Q(u;uk) in (31), by solving the adjoint equation and
employing the BFGS approximation formula [10, Chap. 3.2.1]. Accordingly, in the
generic case, the cost of every iteration is basically that of a solve of (21) to obtain
the state xk corresponding to uk and a solve of (22) to obtain λk from xk(uk) that
defines the current gradient ∇uJ̃ (uk) plus, possibly, another few forward solves to
determine the step size of the gradient step (line search).

We realize this iteration for the Burgers’ problem, Problem 6.1, with the same
parameters as before; cf. Table 2. In particular, the numerical solution of the corre-
sponding PDEs bases on the same FEM discretization with q = 220 degrees of freedom
as in the numerical experiments in section 6.2 and SciPy ’s built-in ODE-integrator
scipy.integrate.odeint.

The SQP approach iterates on fully discrete approximations to the input uk and
the BFGS iteration approximates the full Hessian matrix. Thus, for both efficiency
and feasibility, the discrete representation needs to be compressed. Therefore, we
use the same optimized reduced state spaces Ŷ and Λ̂ for the forward and adjoint
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Table 3
Description and values of the parameters of the numerical examples of section 6.3. The value

in parentheses refers to Problem 6.2.

Parameter Description Base value Range
Y, Λ Space of piecewise linear fi-

nite elements on an equidis-
tant grid of dimension q, p

q = p = 220 –

S, R Space of linear hat functions
on an equidistant grid of di-
mension s, r – to compute the
snapshots for the POD

s = r = 120 –

Ŷ, Λ̂ POD reductions of Y and Λ of
dimension q̂, p̂; cf. Lemma 2.5

q̂ = p̂ = 18 10 – 25

nt dimension of the time grid on
which uk is linearly interpo-
lated

18 10 – 25

tol∇ Termination tolerance for the
norm of the gradient in the
SQP iterations

2.5 · 10−4 1.77 · 10−4 – 1 · 10−3

α Regularization parameter in
the cost functional (28)

3.125 · 10−5

(6.25 · 10−5)
7.81 · 10−6 – 2.5 · 10−4

ν Viscosity parameter in the
PDE (25)

5 · 10−3 5 · 10−4 – 1.6 · 10−2

problem and, accordingly, the spatial dimension of the control as for the space-time
Galerkin approach; cf. Table 2. The time dimension of uk is reduced by considering
the linear interpolant on an equidistant time grid of nt nodes. Thus, the dimension
of the discrete uk that defines the number of unknowns in the optimization is given
as q̂ · nt.

As further parameters that influence the performance of the SQP-BFGS itera-
tion, we consider tol∇—the target tolerance value of the gradient minimization. All
approximation defining parameters, as well as the problem parameters ν and α, are
listed in Table 3.

We use SciPy ’s routine scipy.optimize.fmin bfgs to solve the reduced discrete
optimization problem and then lift the obtained suboptimal control û to the full space
and apply it in the unreduced problem.

Remark 6.4. In the optimal control of systems, the evaluation of the cost func-
tional J̃(uk) and its gradient ∇uJ̃(uk) are both based on the same solution xk(uk)
of the forward problem. In the built-in SciPy implementation of the BFGS iteration
this redundancy is not considered. To account for that, in the reported walltime,
we have subtracted the time of the redundant forward solves that we estimate as the
number of gradient computations times the average time for one forward solve.

Dimension of the reduced model. In this section, we test how the dimension
of the reduced model affects the performance. The results are listed in Tables 5 and
13. Generally, for higher model dimension, the tracking error decreases at the ex-
pense of higher computation times. For the easier problem, Problem 6.1, the tracking
error, however, goes up again, which might be due to the poorer performance of the
optimization algorithm.

Variable viscosity. Here, we examine how a reduced model of fixed dimension
performs with respect to the viscosity parameter. The results are listed in Tables 7
and 8 and Tables 15 and 16. For the step-function target (Problem 6.1), the expected
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behavior can be observed: a performance peak in the middle of the parameter range
and a control magnitude that increases with the viscosity (Tables 7, 8). For the
harder problem with the heart-shaped target, the performance is good over the whole
parameter range without showing the particular patterns except that the computation
time increases toward the margins (15, 16).

Regularization parameter. In Tables 9 and 10 and Tables 17 and 18, we
tabulate the measured performance for the sqp-pod approach versus varying choices
of the regularization parameter α as used in the definition of the cost functionals to
penalize the input action. Throughout the investigated range, the performance is
equally good. The expected pattern that ‖û‖2L2 decreases with increasing α cannot
be observed, which is probably due to the termination of the minimization due to loss
of precision, meaning that the algorithm could not find further descent directions.

Target norm of gradient. We investigate the influence of the termination
criterion for the SQP iteration defined through the target value tol∇ of the gradient
‖∇uJ̃ (uk)‖. The results are summarized in Tables 11 and 12 and Tables 19 and 20.
If the threshold value is increased, the computation time decreases at the expense of
a higher tracking error. On the other hand, a threshold below a certain value does
not have any further effect. This is due to a stagnation in the minimization process
and the termination of the iteration because of precision loss.

6.4. Output tracking for the Chafee–Infante equation. In this section, we
compute suboptimal controls for the tracking problem, Problem 6.3, by means of the
space-time-pod and sqp-pod approaches as explained in sections 6.2 and 6.3.

The underlying equation (26) has an unstable equilibrium associated with x = 0
and two attractors associated with x = −1 and x = 1. The parameter β ≥ 0 that
controls the reaction rate such that with a larger β the attractors are approached
faster is subject to the investigation. The viscosity parameter is set to ν = 0.1, which
appeared to be a suitable value for the diffusion of the boundary control into the
domain.

For the spatial discretization, namely, for Y and Λ, we use an equally sized tri-
angulation and piecewise linear functions such that q = p = 900. For the time
discretization we use equispaced piecewise linear functions and s = r = 90. For the
reduced model, we computed snapshots for the forward problem with the simulation
data with the test input

utest(t) = sin

(
2

3
tπ

)
and snapshots for the backward problem on the base of the corresponding adjoint
state. The reduced model was then defined with the manually optimized values q̂ =
p̂ = 10 and ŝ = r̂ = 15 for the space-time-pod reduced model and q̂ = nt = 20 for
the sqp-pod approximation. Since the input is a scalar function, it is only discretized
with respect to time. Accordingly, the computation of the sqp-pod solution requires
the solution of an optimization problem with nt = 20 parameters. The space-time-
pod approach that solves for the reduced forward and adjoint states, nonetheless,
requires the solution of a nonlinear system with q̂ · ŝ+ p̂ · r̂ = 300 unknowns. In both
approximations the nonlinearity is interpolated as described in section 4.4.

We tested the space-time-pod and the sqp-pod approaches for Problem 6.3 with
varying β ∈ {1, 3, 5}; see Table 4 and Figure 4. In all setups, the problem is challenging
since the control acts only on the boundary and since for large β the reaction is fast
(see Figures 4(c), (f) and note the steep ascend of the solutions toward the attractor
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Table 4
Performance of the space-time-pod and sqp-pod approaches for computing suboptimal controls

for the Chafee–Infante equation for various parameter β.

β 1.0 3.0 5.0

space-time-pod 1
2
‖Cx̂− y∗‖2 0.0232 0.0098 0.1731

walltime 297 351 483

sqp-pod 1
2
‖Cx̂− y∗‖2 0.0304 0.0378 0.1234

walltime 116 99.1 125

Fig. 4. Performance of the suboptimal controls uopt for the tracking of the Chafee–Infante
equation computed with space-time-pod (top row) and sqp-pod (bottom row) for varying β. The
plots show the response y(uopt) of the full order model, the response y(uopt) of the reduced order
model, the target trajectory y∗, and, as an illustration of the dynamics, the response of the test
input utest in the full order system.

and that the action of utest for t > 1.5 has but a small effect), whereas for β = 1 still
the high viscosity makes the control more expensive the more that the influence of the
zero Dirichlet conditions moves the attractor away from the target of the optimization
(see Figures 4(a), (d).

For the β = 5 case, both approaches led to suboptimal controls that hardly
changed the transient behavior toward the attractor. For the other cases, the sqp-
pod approach terminated three to four times faster than space-time-pod but with less
performant suboptimal controls. This lack of performance was due to the optimizer in
the sqp-pod that stagnated after a few iterations. Since the reduced model aligns well
with the full order model (see Figures 4(d)–(f)), one may assume that the problem
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itself with a strong attractor and a relatively weak control is not well suited for an
SQP approach.

On the other hand, the space-time-pod suboptimal controls deliver an almost
perfect tracking in the reduced order model, though not in the full order model.
This suggests that the computed control is indeed optimal in the reduced setting and
that the reduced order model does not capture all dynamics. Finally, we note that
the relatively long walltime for the computation can be reduced significantly if one
would provide the Jacobian of system (23).

6.5. POD, space-time POD, and empirical interpolation. As illustrated
in section 4.3, for the considered Burgers’ equation, the (quadratic) nonlinearity can
be reduced in line with the linear terms. However, in more general setups, the question
of how to treat a nonlinearity in the reduced equations is immanent.

A generic approach would be an interpolation of N(v̂) in the basis of Ŝ · Ŷ, i.e.,

N(v̂) ≈
q̂∑
i=1

ŝ∑
j=1

nij ν̂iψ̂j ,

for which the empirical interpolation method [1] might be extended to space-time
setups.

Also for the SQP-POD approach of section 6.3, the nonlinearity, which basically is
defined through the spatial part of the tensor described in section 4.3, is preassembled
and reduced to the reduced dimension. Thus, the nonlinearity can be efficiently
evaluated not resorting to the full dimension.

6.6. Summary and interpretation of the numerical results. In the preced-
ing sections, we have used the proposed space-time Galerkin POD approach (space-
time-pod) to compute suboptimal controls for a nonlinear PDE.

As a benchmark, we have solved the same problems with a well-established
gradient-based method (sqp-pod). The benchmark implementation is highly opti-
mized in terms of runtime and accuracy. In particular, the space dimension of the
forward and backward problem is reduced through POD, the nonlinearities are pre-
assembled for efficient evaluation in the reduced dimension, and the numerical time
integration as well as the optimization are done by SciPy ’s built-in routines that call
on high-performance Fortran packages.

In the scenario of the time-constant target (Problem 6.1), in terms of the tracking
error, the sqp-pod outperformed space-time-pod by a factor of 2. If the optimization
in the sqp-pod algorithm is stopped on the tracking error level of space-time-pod, the
space-time Galerkin approach appears to be faster by a factor of 4; cf. Tables 12
and 11 for tol∇ = 7.07 · 10−4 versus Table 6 for, e.g., (q̂, ŝ) = (16, 8). Thus, for this
scenario, the sqp-pod approach leads to good controls, while space-time-pod might be
of use for the computation of less optimal controls in significantly shorter times.

In the scenario of the heart-shaped target (Problem 6.2), the space-time-pod ap-
proach reaches the tracking error level of sqp-pod while still being faster by a factor
of 5; cf., e.g., the performance tabulation with respect to viscosity—Table 16.

7. Conclusion and outlook. We have presented a novel approach to low-rank
space-time Galerkin approximations that is based on a generalization of classical
snapshot-based POD which then can be extended to POD reduction of time dis-
cretizations. We have proven optimality of the reduced bases in the relevant function
spaces and discussed the numerical implementation.
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The space-time Galerkin POD reduction applies well to optimal control problems,
as we have illustrated for the optimal control of a Burgers’ equation. In terms of
both computation time for and efficiency of a suboptimal control, the new approach
competes well with established gradient-based approaches. In terms of time needed
to compute suboptimal controls, the newly proposed approach clearly outperforms
the benchmark implementation. In a more challenging setup with a target function
varying both with space and time, the proposed space-time Galerkin catches up with
the benchmark also in terms of the tracking error.

In the current implementation of the numerical tests, the resulting nonlinear
systems were solved by a general purpose routine, namely, MINPACK ’s HYBRD [16]
as it is included in SciPy. It might be worth investigating whether the performance
of the space-time Galerkin approach for optimal control can be improved by better
choices and tuning of the optimization routines.

Another possible further improvement and an issue for future work concerning
the proposed space-time POD in application to optimal control problems lie in the
freedom of the choice of the measurement functions [3]. Moreover, the underlying
tensor structure is readily extended to include further directions of the state space
like parameter dependencies [2] or inputs. Another issue that needs to be addressed
is the treatment of general nonlinearities that cannot be treated by preassembling
like in the presented quadratic case. Then, an inclusion of empirical interpolation
[1] might be needed to achieve efficiency of the reduction. Moreover, it seems worth
investigating whether the principles of space-time POD can be used to construct
optimized bases for the interpolation.

Code availability.

The source code of the implementations used to compute the presented results
can be obtained from

doi:10.5281/zenodo.583296

and is authored by Jan Heiland. Please contact Jan Heiland for licensing
information

Appendix A. Numerical results for the step-function target.

Table 5
Problem 6.1 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying resolutions of space and time.

K̂ 24 36 48 72 96
1
2
‖x̂− x0‖2L2 0.0322 0.0268 0.0138 0.0070 0.0066

‖û‖2
L2 4.1516 5.4906 7.9611 10.944 9.2154

walltime [s] 0.08 0.26 0.75 7.41 51.2

(q̂, nt) (10, 10) (12, 12) (15, 15) (18, 18) (21, 21) (25, 25)
1
2
‖x̂− x0‖2L2 0.0263 0.0180 0.0121 0.0066 0.0074 0.0092

‖û‖2
L2 9.6605 11.746 21.044 18.948 13.776 9.0060

walltime 4.52 5.86 10.3 21.1 71.6 201

nfc/ngc 113/101 127/115 140/140 175/174 112/112 93/ 93
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Table 6
Problem 6.1 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying distributions of space and time resolutions; cf. sections 6.2 and 6.3.

(q̂, ŝ)/(p̂, r̂) (16, 8) (15,10) (12,10) (12,12) (10,12) (10,15) (8,16)

1
2
‖x̂− x0‖2L2 0.0110 0.0101 0.0137 0.0138 0.0214 0.0215 0.0323

‖û‖2
L2 9.9313 10.313 7.8039 7.9611 7.1523 6.9013 4.8211

walltime 0.70 0.98 0.53 0.75 0.52 0.82 0.56

(q̂, nt) (13, 18) (15, 19) (16, 20) (19, 15) (20, 16) (18, 13)

1
2
‖x̂− x0‖2L2 0.0159 0.0100 0.0097 0.0064 0.0061 0.0071

‖û‖2
L2 11.472 14.295 14.068 19.243 18.885 20.781

walltime 7.29 13.2 20 15.7 22.9 11.6

nfc/ngc 109/109 153/145 154/143 161/151 132/132 135/135

Table 7
Problem 6.1 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying diffusion parameters ν for (q̂, ŝ) = (p̂, r̂) = (12, 12) for space-time-pod and for
(q̂, nt) = (18, 18) for sqp-pod; cf. sections 6.2 and 6.3, respectively.

ν 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2 3.2 · 10−2

1
2
‖x̂− x0‖2L2 0.0206 0.0208 0.0192 0.0150 0.0126 0.0106 0.0134

‖û‖2
L2 6.3481 6.5214 6.7930 7.5351 9.3249 10.434 13.365

walltime 0.85 0.80 0.75 0.75 0.75 0.80 0.85

ν 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2 3.2 · 10−2

1
2
‖x̂− x0‖2L2 0.0169 0.0167 0.0147 0.0087 0.0079 0.0105 0.0138

‖û‖2
L2 9.7995 9.7424 9.2163 16.656 16.363 14.363 19.127

walltime 21.3 16.6 13.3 17 21.8 20.5 17.1

nfc/ngc 203/191 141/141 111/111 134/134 113/113 97/ 97 72/ 72

Table 8
Problem 6.1 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying diffusion parameters ν for (q̂, ŝ) = (p̂, r̂) = (16, 8) for space-time-pod and for
(q̂, nt) = (18, 13) for sqp-pod; cf. sections 6.2 and 6.3, respectively.

ν 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2 3.2 · 10−2

1
2
‖x̂− x0‖2L2 0.0224 0.0209 0.0166 0.0121 0.0090 0.0106 0.0140

‖û‖2
L2 5.8554 6.4424 7.1055 9.1532 10.204 11.390 13.537

walltime 0.78 0.81 0.74 0.74 0.74 0.70 0.63

ν 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2 3.2 · 10−2

1
2
‖x̂− x0‖2L2 0.0174 0.0168 0.0172 0.0100 0.0077 0.0098 0.0112

‖û‖2
L2 10.142 9.4359 12.516 18.845 17.036 17.809 27.821

walltime 12.9 11.7 10.3 10.4 15.5 17.3 23

nfc/ngc 166/166 168/160 135/135 127/127 107/107 101/101 109/109
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Table 9
Problem 6.1 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying regularization parameters for (q̂, ŝ) = (p̂, r̂) = (12, 12) for space-time-pod and
for (q̂, nt) = (18, 18) for sqp-pod; cf. sections 6.2 and 6.3, respectively.

α 2.5 · 10−4 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2

1
2
‖x̂− x0‖2L2 0.0165 0.0151 0.0138 0.0133 0.0142 0.0168 0.0217

‖û‖2
L2 10.710 9.5104 7.9611 6.2444 4.6319 3.2791 2.2012

walltime 0.65 0.71 0.75 0.80 0.95 1.19 1.38

α 3.91 · 10−6 7.81 · 10−6 1.56 · 10−5 3.13 · 10−5 6.25 · 10−5 1.25 · 10−4

1
2
‖x̂− x0‖2L2 0.0067 0.0076 0.0069 0.0066 0.0087 0.0088

‖û‖2
L2 18.032 14.408 18.539 18.948 12.454 12.742

walltime 17.6 14.5 21.4 21 14.6 14

nfc/ngc 136/136 113/113 200/189 175/174 136/130 131/122

Table 10
Problem 6.1 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying regularization parameters α for for (q̂, ŝ) = (p̂, r̂) = (16, 8) for space-time-
pod and for (q̂, nt) = (18, 13) for sqp-pod; cf. sections 6.2 and 6.3, respectively.

α 2.5 · 10−4 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2

1
2
‖x̂− x0‖2L2 0.0120 0.0111 0.0110 0.0121 0.0144 0.0180 0.0239

‖û‖2
L2 16.286 13.209 9.9313 7.0006 4.7352 3.1187 1.9797

walltime 0.70 0.71 0.70 0.80 0.91 1.06 1.27

α 3.91 · 10−6 7.81 · 10−6 1.56 · 10−5 3.13 · 10−5 6.25 · 10−5 1.25 · 10−4

1
2
‖x̂− x0‖2L2 0.0070 0.0070 0.0070 0.0071 0.0073 0.0073

‖û‖2
L2 20.186 20.302 20.451 20.781 17.063 17.089

walltime 11.4 11.7 11.6 11.6 12.2 12.6

nfc/ngc 133/133 136/136 134/134 135/135 156/149 159/151

Table 11
Problem 6.1 with sqp-pod: Performance of the suboptimal control versus varying target values

of the gradient minimization tol∇ for (q̂, nt) = (p̂, nt) = (18, 18); cf. section 6.3.

tol∇ 1.77 · 10−4 2.5 · 10−4 3.54 · 10−4 5 · 10−4 7.07 · 10−4 1 · 10−3 1.41 · 10−3

1
2
‖x̂− x0‖2L2 0.0069 0.0066 0.0078 0.0142 0.0170 0.0224 0.0247

‖û‖2
L2 20.045 18.948 14.268 5.9516 4.0778 2.7446 3.4519

walltime 21.1 21.1 16.3 7.18 5.83 4.16 3.39

nfc/ngc 177/176 175/174 143/142 58/ 58 47/ 47 34/ 34 28/ 28

Table 12
Problem 6.1 with sqp-pod: Performance of the suboptimal control versus varying target values

of the gradient minimization tol∇ for (q̂, nt) = (p̂, nt) = (18, 13).

tol∇ 1.77 · 10−4 2.5 · 10−4 3.54 · 10−4 5 · 10−4 7.07 · 10−4 1 · 10−3 1.41 · 10−3

1
2
‖x̂− x0‖2L2 0.0071 0.0071 0.0072 0.0078 0.0105 0.0176 0.0186

‖û‖2
L2 20.922 20.781 17.206 14.402 8.6073 4.3427 4.3608

walltime 13.7 11.6 10.2 8.61 5.99 3.28 2.88

nfc/ngc 164/152 135/135 117/117 102/102 73/ 73 40/ 40 35/ 35
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Appendix B. Numerical results for the heart-shaped target.

Table 13
Problem 6.2 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying resolutions of space and time; cf. sections 6.2 and 6.3.

K̂ 24 36 48 72 96

1
2
‖x̂− χ♥‖2L2 0.0649 0.0468 0.0369 0.0158 0.0133

‖û‖2
L2 4.1219 8.0076 9.4988 12.317 12.681

walltime [s] 0.14 0.63 3.34 10.4 60.0

(q̂, nt) (10, 10) (12, 12) (15, 15) (18, 18) (21, 21) (25, 25)

1
2
‖x̂− χ♥‖2L2 0.0335 0.0325 0.0294 0.0213 0.0191 0.0176

‖û‖2
L2 8.9765 9.2680 10.034 17.073 20.067 21.057

walltime 5.74 7.49 7.60 19.0 88.3 250

nfc/ngc 94/ 84 104/ 93 82/ 70 124/114 165/157 134/125

Table 14
Problem 6.2 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying distributions of space and time resolutions; cf. sections 6.2 and 6.3.

(q̂, ŝ)/(p̂, r̂) (16,12) (16,10) (12,10) (12,12) (10,12) (10,16) (12,16)

1
2
‖x̂− χ♥‖2L2 0.0353 0.0353 0.0363 0.0369 0.0371 0.0209 0.0207

‖û‖2
L2 9.6202 8.9154 8.8530 9.4988 9.2766 10.347 10.609

walltime 2.10 1.38 1.64 3.33 1.51 3.80 2.38

(q̂, nt) (13, 18) (15, 19) (16, 20) (19, 15) (20, 16) (18, 13)

1
2
‖x̂− χ♥‖2L2 0.0243 0.0261 0.0236 0.0282 0.0259 0.0294

‖û‖2
L2 18.968 13.898 17.129 9.2041 12.164 9.0284

walltime 13.2 16.8 25.2 10.7 21.7 8.33

nfc/ngc 108/108 89/ 89 145/139 86/ 74 121/113 84/ 72

Table 15
Problem 6.2 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying diffusion parameters ν for (q̂, ŝ) = (p̂, r̂) = (12, 12) for space-time-pod and for
(q̂, nt) = (18, 18) for sqp-pod; cf. sections 6.2 and 6.3.

ν 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2 3.2 · 10−2

1
2
‖x̂− χ♥‖2L2 0.0421 0.0429 0.0424 0.0390 0.0250 0.1565 0.0417

‖û‖2
L2 8.5599 8.3219 8.3904 9.0221 12.890 34.558 28.385

walltime 1.68 1.65 1.71 1.98 2.36 2.10 1.78

ν 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2 3.2 · 10−2

1
2
‖x̂− χ♥‖2L2 0.0273 0.0311 0.0263 0.0223 0.0261 0.0208 0.0210

‖û‖2
L2 20.078 11.560 14.617 20.686 9.8258 17.029 19.335

walltime 42.4 21.2 21.3 22.4 19.7 31.5 35.2

nfc/ngc 256/246 134/122 137/126 144/132 108/ 97 104/ 94 99/ 88D
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Table 16
Problem 6.2 with space-time-pod (top) and sqp-pod (bottom): for (q̂, ŝ) = (p̂, r̂) = (12, 16) for

space-time-pod and for (q̂, nt) = (13, 18) for sqp-pod; cf. sections 6.2 and 6.3.

ν 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2 3.2 · 10−2

1
2
‖x̂− χ♥‖2L2 0.0331 0.0345 0.0314 0.0236 0.0179 0.0286 0.0233

‖û‖2
L2 10.016 9.3107 9.2424 9.9573 11.463 16.820 20.378

walltime 3.56 3.75 3.76 6.80 2.49 5.73 3.29

ν 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2 3.2 · 10−2

1
2
‖x̂− χ♥‖2L2 0.0346 0.0294 0.0309 0.0269 0.0223 0.0234 0.0243

‖û‖2
L2 11.172 16.089 11.540 14.321 17.264 14.183 12.718

walltime 12.9 16.0 10.9 12.9 11.6 18.4 19.3

nfc/ngc 125/114 152/140 111/101 131/119 118/106 95/ 86 86/ 78

Table 17
Problem 6.2 with space-time-pod: Performance of the suboptimal control versus varying regu-

larization parameters α for (q̂, ŝ) = (p̂, r̂) = (12, 12) for space-time-pod and for (q̂, nt) = (18, 18) for
sqp-pod; cf. sections 6.2 and 6.3.

α 2.5 · 10−4 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2

1
2
‖x̂− χ♥‖2L2 0.0536 0.0454 0.0369 0.0311 0.0303 0.0346 0.0431

‖û‖2
L2 15.563 12.586 9.4988 6.7663 4.6295 3.0430 1.8744

walltime 1.87 2.26 3.33 1.76 1.17 1.22 1.37

α 7.81 · 10−6 1.56 · 10−5 3.13 · 10−5 6.25 · 10−5 1.25 · 10−4 2.5 · 10−4

1
2
‖x̂− χ♥‖2L2 0.0196 0.0228 0.0229 0.0213 0.0228 0.0281

‖û‖2
L2 19.440 13.358 13.688 17.073 13.010 9.0108

walltime 22 16.2 18.8 19.1 19.5 14.6

nfc/ngc 141/130 109/ 97 132/122 124/114 137/127 110/105

Table 18
Problem 6.2 with space-time-pod (top) and sqp-pod (bottom): Performance of the suboptimal

control versus varying regularization parameters α for (q̂, ŝ) = (p̂, r̂) = (12, 16) for space-time-
pod and for (q̂, nt) = (13, 18) for sqp-pod; cf. sections 6.2 and 6.3.

α 2.5 · 10−4 5 · 10−4 1 · 10−3 2 · 10−3 4 · 10−3 8 · 10−3 1.6 · 10−2

1
2
‖x̂− χ♥‖2L2 0.0217 0.0210 0.0207 0.0225 0.0266 0.0330 0.0421

‖û‖2
L2 25.726 15.882 10.609 7.1721 4.8042 3.1383 1.9333

walltime 2.0 4.8 2.4 2.8 2.4 2.5 2.8

α 7.81 · 10−6 1.56 · 10−5 3.13 · 10−5 6.25 · 10−5 1.25 · 10−4 2.5 · 10−4

1
2
‖x̂− χ♥‖2L2 0.0242 0.0242 0.0265 0.0243 0.0266 0.0302

‖û‖2
L2 18.339 18.530 13.327 18.968 13.847 9.4158

walltime 13.3 15.1 10.3 13.2 13.5 8.8

nfc/ngc 130/122 147/138 108/ 98 131/120 138/128 100/ 90

Table 19
Problem 6.2 with sqp-pod: Performance of the suboptimal control versus varying target values

of the gradient minimization tol∇ for (q̂, nt) = (p̂, nt) = (18, 18); cf. section 6.3.

tol∇ 1.77 · 10−4 2.5 · 10−4 3.54 · 10−4 5 · 10−4 7.07 · 10−4 1 · 10−3

1
2
‖x̂− χ♥‖2L2 0.0213 0.0213 0.0213 0.0226 0.0280 0.0300

‖û‖2
L2 17.073 17.073 17.073 14.149 9.1307 6.9991

walltime 19.1 19.1 19.1 15.4 10.6 9.44

nfc/ngc 124/114 124/114 124/114 93/ 93 66/ 66 58/ 58
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Table 20
Problem 6.2 with sqp-pod: Performance of the suboptimal control versus varying target values

of the gradient minimization tol∇ for (q̂, nt) = (p̂, nt) = (13, 18).

tol∇ 1.77 · 10−4 2.5 · 10−4 3.54 · 10−4 5 · 10−4 7.07 · 10−4 1 · 10−3

1
2
‖x̂− χ♥‖2L2 0.0243 0.0243 0.0243 0.0243 0.0302 0.0347

‖û‖2
L2 18.968 18.968 18.968 18.968 9.7463 8.0792

walltime 13.1 13.1 13.1 11.2 6.29 4.69

nfc/ngc 131/120 131/120 131/120 108/108 67/ 67 50/ 50

Acknowledgment. We thank Joost van Zwieten, codeveloper of Nutils [21], for
providing benchmarks and valuable insight into space-time discretizations of Burgers’
equation.
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