
Laying the Foundations for a
New Thick Level Set Method

Student:
A. Poot

Project Supervisors:
F.P. van der Meer

L.A.T. Mororo

Assessment Committee:
F.P. van der Meer

L.A.T. Mororo
R.Y. Peters
L.J. Sluys

Delft University of Technology
July 21, 2020

Faculty of Civil Engineering and Geosciences

Abstract

In this thesis, the basis for a general implementation of the Thick Level Set method is
presented. This basis combines the general applicability of the TLS_V1 method by Moës
et al. [1] with the improved fracture mechanics of the TLS_V2 method by Lé et al [2].
In order to accomplish this, the topological skeleton needs to be found for an arbitrary
configuration of the iso-0 curve, and mapped onto the mesh. Additionally, a discontinuity
in the displacement field needs to be applied on the skeleton curve. Since the iso-0 curve
that determines the skeleton curve can be arbitrary, the displacement jump also needs to
be designed for an arbitrary skeleton curve.

For the deterimination of the location of the skeleton curve, this thesis relies on a
combination of the shrinking ball method by Ma et al. [3] and Prim’s algorithm [4]. The
resulting skeleton curve is then mapped onto the mesh using a newly developed set of
algorithms. Having mapped the skeleton curve onto the mesh, the displacement jump is
then modeled using the phantom node method by Hansbo and Hansbo [5].

During verification of the model, it is shown that the skeleton curve could be
found for virtually any acyclical iso-0 curve. If the iso-0 curve was not acyclical, a single
segment would be missing from the skeleton curve. Furthermore, it is demonstrated that
the phantom node method can be used to define the displacement jump on the skeleton
curve. Lastly, a mesh refinement study has been performed, which compared the results
of the proposed model for 5 different mesh sizes. It was found that, for the rail shear test
that was used to perform the verification, the shape of the iso-0 curve can vary randomly
when the mesh is refined. The load-displacement curves, however, do not show significant
dependence on the mesh size.

i

Contents

1 Introduction 1

1.1 Academic context . 1

1.2 Focus and scope . 2

1.3 Thesis outline . 2

2 Theory 3

2.1 The Thick Level Set method . 3

2.1.1 Computing the level set field . 3

2.1.2 Computing the displacement field . 5

2.1.3 Computing the front evolution . 6

2.1.4 Extending TLS_V1 into TLS_V2 8

2.2 The shrinking ball method . 12

2.2.1 The shrinking ball algorithm . 13

2.2.2 Noise reduction . 17

2.3 The phantom node method . 20

2.3.1 Element and node definitions . 20

2.3.2 Integration scheme . 22

3 Implementation 23

3.1 Skeletonizer . 24

3.1.1 makeLinestrings . 25

3.1.2 makeClosedLoops . 28

3.1.3 makeGroupedLoops . 28

3.1.4 makeAtomGraph . 31

3.1.5 makeCrackPattern . 33

3.1.6 makeElemGraph . 35

3.1.7 makeShortCuts . 37

3.1.8 makePhantomNodes . 39

3.2 PhantomNodeModel . 43

iii

CONTENTS CONTENTS

3.2.1 createPhantomNodes . 43

3.2.2 updateElements and getOriginalElements 45

3.2.3 Additional modifications . 45

4 Verification 47

4.1 Skeletonizer . 47

4.2 PhantomNodeModel . 53

4.3 Robustness . 56

5 Conclusion 59

5.1 Aim and research questions . 59

5.2 Limitations and recommendations . 60

5.3 Contribution to the field . 61

A Program listings a

Bibliography l

iv

Figures

2.1 A demonstration of the results of the fast marching algorithm. 8

2.2 A visualization of the way CZM and TLS_V1 are combined into TLS_V2 . 9

2.3 An example of a material damage function D(φ) and interfacial damage
d(φs) function that fulfill all requirements given by Lé et al. 10

2.4 The displacement field of a 1D bar where the three different models have
been applied. 11

2.5 An overview of the shrinking ball algorithm by Ma et al. 13

2.6 A demonstration of the effects of a noisy boundary on the skeleton curve . . 17

2.7 A comparison of the results of the shrinking ball algorithm for a noise-free
and noisy boundary. 18

2.8 A demonstration of the moment at which the medial ball ‘jumps’ from one
side of the point cloud to the other. 18

2.9 A visualization of the connectivity between two phantom elements and the
original nodes and the phantom nodes. 20

2.10 A comparison of the handling of a simple junction in the crack pattern by
removing the original element, and by taking a shortcut through the element. 21

2.11 A comparison of the handling of a junction that spans two elements by
removing the original element, and by taking a shortcut through the element. 21

2.12 A visualization of the displacement jump and phantom nodes at the crack
tip. 21

2.13 The subdomain triangulation of intersected elements and their integration
points. 22

3.1 A general overview of the Thick Level Set model. 23

3.2 A demonstration of the differences between closed linestrings, open linestrings,
disconnected linestrings and enclosed linestrings 25

3.3 The atom locations and connections describing of the skeleton curve. 31

3.4 The atomGraph that would be created by the makeAtomGraph function. 32

3.5 The elemGraph that would be created by the makeElemGraph function, based
on the atomGraph shown in figure 3.3 . 35

3.6 A comparison of the atomGraph and the elemGraph that is produced by the
makeElemGraph function . 37

v

FIGURES FIGURES

3.7 A visualization of the way the makePhantoNodes function iterates over a com-
plicated crack pattern . 39

3.8 An example of the procedure by which the next intersection point is deter-
mined by the getNextIntxn function in listing 3.10 40

4.1 An overview of the measurements of the model for the rail shear test. 48

4.2 The skeleton curve at different time steps 49

4.3 A plot of the load factor γ as a function of t 50

4.4 A comparison of the atomGraph and the elemGraph 51

4.5 A visualization of the elemGraph for two additional edge cases. 52

4.6 An overview of the measurements of the model for the CT test. 53

4.7 A comparison of the skeleton curve and the resulting deformed specimen
during the CT test. 54

4.8 A closeup of the deformed mesh at time step t = 100. 55

4.9 The relative runtime of the Skeletonizer procedure plotted for different mesh
sizes . 56

4.10 The skeleton curve at t = tcrack for different mesh sizes 57

4.11 The load-displacement diagram for different mesh sizes 58

vi

Tables

3.1 The crack pattern that corresponds to the atomGraph shown figure 3.4 33

3.2 An overview of which variables visual overview of the global algorithm for
the TLS_V1. 46

4.1 The mesh sizes for which a simulation has been run, and the corresponding
time steps at which a full crack is formed. 56

vii

Listings

2.1 Pseudocode for the shrinking ball algorithm by Ma et al. 14

2.2 Pseudocode for the ShrinkingBall-function by Ma et al. 15

2.3 Pseudocode for the ComputeCircle-function by Ma et al. 16

2.4 Pseudocode for the enhanced ShrinkingBall-function by Peters. 19

3.1 Pseudocode for the makeLinestrings function. 26

3.2 Pseudocode for the addSegmentsForward function. 27

3.3 Pseudocode for the makeClosedLoops function. 29

3.4 Pseudocode for the makeGroupedLoops function. 30

3.5 Pseudocode for the makeAtomGraph function. 32

3.6 Pseudocode for the makeCrackPattern function. 34

3.7 Pseudocode for the makeElemGraph function. 36

3.8 Pseudocode for the makeShortCuts function. 38

3.9 Pseudocode for the makePhantomNodes function. 40

3.10 Pseudocode for the getNextIntxn function. 42

3.11 Pseudocode for the createPhantomNodes function. 44

A.1 Pseudocode for the getIso0Elems function. a

A.2 Pseudocode for the addSegmentsBackward function. b

A.3 Pseudocode for the getNextElements function. c

A.4 Pseudocode for the getNodeNegPos and getNodePosNeg functions. d

A.5 Pseudocode for the edgeInPattern function. e

A.6 Pseudocode for the addAllSegments and addAllSegmentsExcept functions. . f

A.7 Pseudocode for the getAngle function. g

A.8 Pseudocode for the updateElements and getOriginalElements functions. . . h

ix

Chapter 1

Introduction

1.1 Academic context

Over the last 10 years, a new damage model has been developed, called the Thick Level
Set (TLS) method [1, 6, 7, 2]. This method distinguishes itself from other damage models
by defining the material damage as a function of the so-called ’level set field’, rather than
a direct function of the local or regional mechanical properties. The TLS method is an
enrichment of the Level Set (LS) method, which was initially proposed by Sethian [8, 9] and
Osher [9, 10] as a general method to model propagating fronts with curvature-dependent
speeds. A key advantage of the LS method is that it allows for merging and branching of
fronts in a way that previously required ad-hoc solutions [10]. In 2002, Allaire et al. [11] first
applied the LS method in the context of structural mechanics, more specifically as a method
for structural optimization [12, 13]. Later, this LS method was used to model damage
mechanics by Allaire et al. [14]. In this LS model, only a damaged and an undamaged zone
are distinguished, which are separated by iso-0 curve.

The main drawback of this LS method lies in the fact that there is no gradual
degradation of the material properties possible. This might give accurate results for ma-
terials that exhibit semi-brittle failure behavior, but in case of a material that fails more
gradually, this binary distinction will not suffice [1]. Furthermore, the LS model suffered
from mesh dependencies including spurious localization [1, 7]. To resolve these issues, a
critical length was introduced as a material property by Moës et al. [1] in 2010. Over
this critical lenght, a gradual transition from undamaged to fully damaged occurs, which
depends on the distance from the iso-0 curve. For this TLS model, a more general imple-
mentation was developed by Bernard et al. [6] and Van der Meer et al. [7], which allowed
for arbitrary damage fronts, as well as generalization into 3D.

It should be noted that this initial TLS model (which will be referred to as TLS_V1
from this point onwards) only allowed material damage1, though for many applications,
an approach involving both material damage and interfacial damage2 is required. To allow
for the inclusion of interfacial damage in the TLS model, a new version of the TLS method
(called TLS_V2 from this point onwards) has been proposed by Lé et al. [2]. This model
defines a displacement jump on the topological skeleton of the iso-0 curve. Similarly to the
material damage in TLS_V1, the interfacial damage on the skeleton curve is defined as a
function of the level set field. In their proposal, a few test cases were used to demonstrate
the improvements of the TLS_V2 model, compared to Moës’ initial proposal. However, all

1i.e. the gradual degradation of the elements’ material properties
2i.e. the explicit modeling of a crack formation as a discontinuity in the displacement field through

which energy dissipates

1

1.2. Focus and scope Chapter 1. Introduction

of these test cases made use of a trivial skeleton curve, either due to symmetry, or forced
by the boundary conditions of the problem. A general implementation of TLS_V2, similar
to the one proposed by Bernard for TLS_V1 has yet to be developed.

1.2 Focus and scope

This thesis aims to describe and develop a basis upon which a more generally applicable
implementation of the TLS_V2 model can be built. More specifically, it intends to answer
the following research questions:

• How can the skeleton curve be defined for a given damage front?

• How can the skeleton curve be discretised for any given triangular 2D mesh?

• How can the displacement jump be defined using this discretised skeleton curve?

The reason that the main focus of this thesis concerns a 2D mesh consisting of
triangular elements is twofold. Firstly, this is the most simple kind of mesh element, which
limits the number of edge cases that need to be taken into account when creating a dis-
cretised version of the skeleton curve. Also, the definition of a skeleton curve is more
straightforward for 2D than for 3D, as well as the implementation of the phantom node
method. Secondly, this thesis aims to support ongoing research into the fracture mechan-
ics of Fibre Reinforce Polymer (FRP) materials at TU Delft by Van der Meer, Mororó,
Sluys et al. [15, 16, 7, 17, 18]. The current TLS_V1-model used by the research group
only functions for triangular elements, and due to time constraints it will not be possible
to adapt the program for quadrilateral elements as well. For these reasons, the choice has
been made to create and analyze an implementation of TLS_V2 which will be validated
for structures with a 2D triangular mesh.

1.3 Thesis outline

This thesis will be split into four main sections: First, the background theory required
to develop an implementation of TLS_V2 will be discussed in chapter 2. In section 2.1,
a detailed description of TLS_V1 will be given, mainly following the approaches used
by Bernard et al. [6] and Meer et al. [7]. Afterwards, the modifications proposed by Le
et al. [2] to arrive at the TLS_V2 method will be explained. Additionally, the theory
behind the shrinking ball method and the phantom node method will be discussed in
sections 2.2 and 2.3, respectively. Both of these methods will be used later to create a basis
for an implementation of TLS_V2. Having layed out all required background knowledge, an
implementation of a basis for TLS_V2 will be proposed in chapter 3. The determination
of the skeleton curve for any given configuration of the iso-0 curve will be discussed in
section 3.1. Afterwards, in section 3.2, a method by which the displacement jump can be
included in the model will be described. These proposed implementations will then be
verified in chapter 4, from which a conclusion will be drawn in chapter 5.

2

Chapter 2

Theory

2.1 The Thick Level Set method

To properly understand TLS_V2, it is important to first gain a thorough understand-
ing TLS_V1, since the TLS_V2 model heavily relies on TLS_V1. For this reason, the
TLS_V1 model will first be completely described in sections 2.1.1 through 2.1.3, after
which the modifications that need to be made in order to arrive at TLS_V2 will be layed
out in section 2.1.4.

Both the TLS_V1 model and the TLS_V2 model consist of three main procedures
in each time step, which can be summarized as follows [1, 6, 19, 7]:

1. Compute the level set field

(a) Check for initiation if needed.
(b) Compute the updated level set field based on the front velocity.

2. Compute the mechanical equilibrium solution

(a) Assemble the linear system of equations for the mechanical problem
(b) Solve this system of equations to find the displacement field

3. Compute the evolution of the level set front

(a) Assemble the linear system of equations for the averaged energy release rate
(b) Solve this system of equations and compute the front velocity
(c) Extend this solution over the whole mesh

In the following sections, each of these steps will be discussed more elaborately.

2.1.1 Computing the level set field

The basis of the TLS method is given by the iso-0 curve, which is defined as the outer
boundary of the damaged zone, and denoted as Γ0. On the entire domain Ω, a level set
field φ is defined, which is equal to 0 on the iso-0 curve. The gradient of the level set field
has a magnitude equal to 1 over the whole domain. It can be fully described by

|∇φ(x)| = 1 | x ∈ Ω

φ(x) = 0 | x ∈ Γ0
(2.1)

3

2.1. The Thick Level Set method Chapter 2. Theory

This definition is equivalent to the signed distance function of Γ0 [1, 19]. In other
words, the value of φ is equal to the signed distance from the iso-0 curve at any point in the
domain. In this thesis, a positive value of φ corresponds to a location within the damaged
zone, whereas a negative value corresponds to a location outside the damaged zone.

As an enhancement of the LS method by Allaire et al. [14], a critical length lc
is introduced in the TLS method1, which represents the distance from Γ0 at which the
material is fully damaged. For the region between φ = 0 and φ = lc, a damage function
F (φ) is introduced. To ensure continuity, it must be that F (0) = 0 and F (lc) = 1. The
material damage D(φ) can thus be written as a function of φ as follows

D(φ) = 0 | φ < 0

D(φ) = F (φ) | 0 ≤ φ ≤ lc
D(φ) = 1 | φ > lc

(2.2)

where F (φ) is subjected to the following conditions
F (φ) = 0 | φ = 0

F ′(φ) ≥ 0 | 0 ≤ φ ≤ lc
F (φ) = 1 | φ = lc

(2.3)

In principle, any function that fulfills the conditions put forth in equation 2.3 can
be used as a damage function for the partially damaged zone, such as a parabolic damage
profile [2], or one which is based on an arctangent [6, 7]. In fact, a discontinuous damage
profile could also be used, provided that additional terms are included for any quantities
that are based on the spatial derivative of D(φ) [1].

Given the relations in equations 2.2 and 2.3, only the level set field φ needs to be
determined in order to find the value of D over the full domain Ω. As explained in the
introduction of section 2.1, the velocity of the front in its normal direction vn is determined
at the end of each time step. Accordingly, the level set field at time step t can be computed
by using a forward Euler method, discretized in time, as follows [19]:

φt = φt−1 + vn ∆t (2.4)

Here, ∆t refers to the time step size. It is possible to put an upper limit on the
crack growth that is allowed by the model, for example by simply introducing a maximum
front advance amax [6, 7], or by limiting the size of the time step ∆t, and reducing the
prescribed displacements accordingly [19].

Of course, this level set field update can only be used to extend the existing level
set field, and cannot by itself initiate new cracks. To this end, a crack initiation procedure
is necessary. Generally, a critical energy release rate Yc is used to determine whether a
new crack develops. This parameter can be based on the fracture energy Gc [1, 6, 19],
the tensile strength ft [7], or a combination of these two [7]. Regardless of the criterion
that is used, when the criterion is met at a given location in the mesh, a sufficiently small
circle2 will be introduced to the iso-0 curve, and the level set field will be updated following
equation 2.4. To do this, the fast marching algorithm by Sethian [8, 9] can be used, which
will be explained in section 2.1.3.

Theoretically it is not necessary to run the fast marching algorithm when no new
damage zones are initiated, since the level set field phi and front velocity vn are known over

1This critical length is the ‘thickness’ to which the term Thick Level Set method refers
2For 2D problems, a circle will be added to the level set field. For 3D problems, this will be a sphere.

4

Chapter 2. Theory 2.1. The Thick Level Set method

the entire domain from the previous time step. However, due to instability of the forward
Euler method, the resulting value of φ might start to drift away from its true value. This
drifting behavior, can be prevented by occasionally recomputing the level set field using
the fast marching method [19].

2.1.2 Computing the displacement field

With φ, and consequently D(φ) fully known, the displacement field can be computed. The
process of building up the global stiffness matrix K and global external force vector fext,
and solving the following system of equations

Ku = fext (2.5)

is well known for elastic materials. K and fext are built up on the elemental stiffness
matrix Ke and elemental external force vector fe

ext, which are defined according to

Ke =

∫
Ωe

BT ·D ·BdΩ

fe =

∫
Ωe

NT · t dΩ

(2.6)

The strain energy per unit volume Ψ in the material can be written as a function of the
strain vector ε only, using

Ψ(ε) =
1

2
ε ·D · ε (2.7)

From this relation, a simple expression for the stress tensor σ can be found:

σ =
∂Ψ

∂ε
= D · ε (2.8)

This formulation, however, only works for linear elastic materials. To include the
non-linear effects of damage growth, a spectral decomposition is required, after which Ψ
can be linked to the principal strain vector ε̄ for isotropic materials using the following
relation [1, 6]:

Ψ(ε̄, D) = µ ε̄ · (I − ᾱD) · ε̄+
1

2
λ (1− αvD) εv

2 (2.9)

In this relation, εv represents the volumetric strain, which can be obtained by
taking the trace of ε̄, and µ and λ are the Lamé parameters, which can be obtained from
D. I is the second-order identity tensor, and ᾱ is a diagonal matrix, which accounts for the
difference between compressive and tensile strains in damaged elements in each principal
direction. The scalar αv fulfills the same function for the volumetric strain. If for both
ᾱ and αv, it is assumed that the damage does not affect the material behavior under
compression, and that the damages has full effect under tension, it follows that [7]:

ᾱii = 0 | ε̄i ≤ 0

ᾱii = 1 | ε̄i > 0

αv = 0 | εv ≤ 0

αv = 1 | εv > 0

(2.10)

5

2.1. The Thick Level Set method Chapter 2. Theory

From this relationship, the principal stress tensor σ̄ and energy release rate Y can
be found using{

σ̄ = ∂Ψ
∂ε̄ = 2µ (I − ᾱD) · ε̄+ λ (1− αvD) εv

Y = ∂Ψ
∂D = −µ ε̄ · ᾱ · ε̄− 1

2 λαv εv
2

(2.11)

For pure tension and pure compression, the relationships from equation 2.11 can
be simplified to those found below [6]. Note that in this case, the conditions need to apply
to all (diagonal) components of ε̄ in order for the relationship to hold.{

σ̄ = ∂Ψ
∂ε̄ = 2µ (1−D) I · ε̄+ λ (1−D) εv

Y = ∂Ψ
∂D = µ ε̄ · ε̄+ 1

2 λ εv
2

| ε̄ ≥ 0 (2.12){
σ̄ = ∂Ψ

∂ε̄ = 2µ (I − ᾱD) · ε̄+ λ (1− αvD) εv

Y = ∂Ψ
∂D = µ ε̄ · ᾱ · ε̄+ 1

2λαv εv
2

| ε̄ ≤ 0 (2.13)

Using the eigenvectors obtained during the spectral decomposition and the prin-
cipal stresses σ̄, the stresses in the original coordinate system σ can be retrieved. With
the relationships between φ, D, ε and σ now fully known, it is possible to determine Ke

and fe
ext, build up K and fext, and find the displacement field by solving the system of

equations 2.5. It should be noted that so far, only the material damage D has been taken
into account. How these expressions need to be modified in order to include the interfacial
damage d will be explained in section 2.1.4.

2.1.3 Computing the front evolution

For elastic materials, the total amount of energy that has dissipated from the system,
E(u, φ) is given by the difference between the work exerted onto the system and the po-
tential energy that is still stored in the system in the form of strain energy. This relationship
can be written as

E(u, φ) =

∫
ΓN

f · u dΓ−
∫

Ω
Ψ(ε(u), D(φ)) dΩ (2.14)

A small movement of the level set front δφ produces a small amount of dissipated
energy δE according to

δE(u, φ) = E(u, φ+ δφ)− E(u, φ)

= −
∫

Ω
Ψ(ε(u), D(φ+ δφ)) dΩ +

∫
Ω

Ψ(ε(u), D(φ)) dΩ

= −
∫

Ω
δΨ(ε(u), D(φ)) dΩ

= −
∫

Ω

∂Ψ

∂ε
δε+

∂Ψ

∂D

∂D

∂φ
δφ dΩ

= −
∫

Ω
Y D′(φ) δφ dΩ

(2.15)

By changing the coordinate system into a curvilinear system, as was done by
Bernard et al. [6], the term dΩ is changed to

(
1− φ

ρ

)
dφ ds, which yields the following

expression for δE

δE(φ) = −
∫

Γ0

∫ l

0
Y (φ, s)D′(φ)

(
1− φ

ρ

)
dφ δφ(s) ds = −

∫
Γ0

g(s) δφ(s) ds (2.16)

6

Chapter 2. Theory 2.1. The Thick Level Set method

In this expression, g(s) is the configurational force along the level set front Γ0.
Bernard et al. noted, however, that for damage initiation, l approaches 0, and thus, the
configurational force also approaches 0 [6]. To resolve this issue, an averaged energy release
rate Ȳ is introduced, which is defined such that

g(s) =

∫ l

0
Y (φ, s)D′(φ) (1− φ

ρ(s)
) dφ =

∫ l

0
Ȳ (s)D′(φ)

(
1− φ

ρ(s)

)
dφ (2.17)

Following Van der Meer et al. [7], equation 2.17 can be approximated by applying
the Galerkin method and weakly enforcing that Ȳ is constant over φ by including Lagrange
multipliers that demand that ∇Ȳ · ∇φ = 0. This yields the following system of equations[

K L
L 0

] [
Ȳ
l

]
=

[
fY

0

]
(2.18)

in which K, L and fY are given by [7, 20, 17]:

Kij =

∫
Ωd

D′(φ)NiNj +
κh2

lc

∂Ni

∂xk

∂Nj

∂xk
dΩ

Lij =

∫
Ωd

lc

(
∂Ni

∂xk

∂φ

∂xk

) (
∂Nj

∂xk

∂φ

∂xk

)
dΩ

fYi =

∫
Ωd

NiD
′(φ)Y dΩ

(2.19)

Here, Ni is the shape functions which corresponds to node i. κ is a stabilization
parameter and h refers to the typical element size in the domain Ωd, which is the damaged
area of the material. xk refers to the coordinates in the kth direction.

This value of Ȳ has to be compared to a parameter Yc, which represents the resis-
tance of the material to damage growth. To properly compare Ȳ and Yc, it is necessary to
determine its averaged value over φ, Ȳc, which can be done by following the same procedure
as for Ȳ [6, 7]. However, in case this material property is uniform over the material, it is
not necessary to perform this calculation, since it is obvious that Ȳc = Yc [7, 17].

In order to ensure adequate crack growth, the load in the next time step is linked
to the averaged energy release rate via a load factor γt+1 [7]. This load factor is used to
scale the results from the unit load that is applied to their actual values. It is constructed
in such a way that the following condition is satisfied

γ2
t+1

(
Ȳ

Ȳc

)
max

= 1 (2.20)

Here, the ratio between Ȳ and Ȳc has been maximized over the nodes. The load factor
γt+1 then ensures that at least in one node, the resistance of the material to crack growth
is reached. Following Van der Meer et al. [7], the level set increment a for each node i is
given by

ai = max
〈
amax

c− 1

(
c γ2

t+1 Ȳi

Ȳci
− 1

)
, 0

〉
(2.21)

The spreading parameter c is intended to influence the spread of movement. It has to be
larger than 1 to ensure that Ȳc is met for at least one node, though it should be noted
that values of c that are very close to 1 will lead to a very slow simulation, since only one
node would be incorporated into the damage zone for each time step. To avoid damage
regression, a minimum value of 0 has been included in the calculation of ai.

7

2.1. The Thick Level Set method Chapter 2. Theory

For any point in the damaged zone Ωd, the level set increment a is now known,
which also yields the front movement velocity v via the relation a(s) = v(s) ∆t [7].To
update the level set field in the next time step, the velocity v needs to be known over the
whole mesh, as shown in equation 2.4. For this purpose, the ‘fast marching method’ by
Sethian [8, 9] can be used, which is able to map the velocity values of the damage zone
onto the entire mesh [1, 19], as shown in figure 2.1.

(a) The front velocity v in Ωd
(b) After extending it over all of Ω and con-
sidering only the positive part

Figure 2.1: A demonstration of the results of the fast marching algorithm. [19]

Essentially, the fast marching method works by determining repeatedly which node
would be reached first for a given front velocity. A narrow band of nodes that are taken
into consideration is determined based on the connectivity around the level set front. If
out of the nodes that are taken into consideration, the node that would be reached earliest
is found, the extended velocity at that node is known. The node is then removed from the
set of nodes that is taken into consideration, and all surrounding nodes that have not been
treated are added to this set. The process is then repeated until no nodes are left [8, 9].

Since only a relatively small part of the mesh is considered each time, the procedure
can be executed very quickly [9, 21]. Due to its low cost of operation, it can be used at
every time step to recompute the level set field based on the iso-0 curve [19], as mentioned
in section 2.1.1.

2.1.4 Extending TLS_V1 into TLS_V2

In the TLS model described so far, material damage was only modeled as a gradual process
in which the stiffness of the damaged material slowly reduces to 0 as the damage increases.
Although the displacement jump representing the crack formation is modeled implicitly
when no stiffness is left in the material, this limits the flexibility of the crack model. Two
disadvantages mentioned by Lé et al. [2] of the TLS_V1 model are the fact that very
large strains are needed to model the displacement jump, and that it does not allow for
interfacial models such as traction forces on the cracked surface. To improve the model,
they propose to combine the TLS_V1 model with the Cohesive Zone Model (CZM), which
produces the TLS_V2 model.

In figure 2.2, the three models are compared. As shown, the TLS_V2 model in-
corporates both the level set-based damage progression from the TLS_V1 model and the
crack formation from the CZM. Note that the CZM does not affect the initial damage

8

Chapter 2. Theory 2.1. The Thick Level Set method

(a) CZM (b) TLS_V1 (c) TLS_V2

Figure 2.2: A visualization of the way CZM and TLS_V1 are combined into TLS_V2 [2].

model, and is only incorporated when the level set has reached a certain critical value φ∗.

For the CZM, the amount of energy dissipated due to the crack formation ψ can
be written as a function of the displacement jump w and interfacial damage d. Though
several functions describing this relationship exist, the following is given by Lé et al [2],
and will also be used here as an example:

ψ(w, d) =
1

2
k

(
1

d
− 1

)
w2 (2.22)

Using the same approach as in equation 2.11, the cohesive traction t(d,w) and
cohesive energy release rate y(d,w) can be found via the following relations:

t(d,w) =
∂ψ

∂w
= k

(
1

d
− 1

)
w

y(d,w) = −∂ψ
∂d

=
1

2
k

(
1

d

)2

w2

(2.23)

In order to combine the damage model from TLS_V1 and the CZM, equation 2.2
needs to be modified in such a way that the material damage D(φ) no longer reaches 1
at φ = lc. This ensures that the material does not lose all its stiffness, and thus avoids
infinite strains. The remaining energy is dissipated through the interfacial damage d(φs).
The modified set of equations for D(φ) is given below:

D(φ) = 0 | φ < 0

D(φ) = F (φ) | 0 ≤ φ ≤ lc
D(φ) = F (lc) < 1 | φ > lc

(2.24)

where F (φ) is subjected to the following conditions
F (φ) = 0 | φ = 0

F ′(φ) ≥ 0 | 0 ≤ φ ≤ lc
F (φ) < 1 | φ = lc

(2.25)

Similarly to how the material damage D(φ) is defined as a function of the level set
field φ, the interfacial damage d(φs) is defined as a function of the level set field on the
skeleton curve φs. To allow for the full formation of a crack, d(φs) has to be defined in
such a way that it does reach 1 at φs = lc. On the other hand, since the introduction of the
discontinuity should only occur after a significant amount of damage has developed, d(φs)

9

2.1. The Thick Level Set method Chapter 2. Theory

should be equal to 0 for φs ≤ φ∗s rather than for φs ≤ 0. The following sets of equations
can be used to describe the relation between d(φs) and φs:

d(φs) = 0 | φs < φ∗s
d(φs) = f(φs) | φ∗s ≤ φs ≤ lc
d(φs) = 1 | φs > lc

(2.26)

where the damage funcion f(φs) is subjected to the following conditions
f(φs) = 0 | φs = φ∗s
f ′(φs) ≥ 0 | φ∗s ≤ φs ≤ lc
f(φs) = 1 | φs = lc

(2.27)

In figure 2.3, an example of a material damage function D(φ) that fulfills the
conditions from equations 2.24 and 2.25 and an interfacial damage function d(φs) that
fulfills the conditions from equations 2.26 and 2.27 is given.

Figure 2.3: An example of a material damage function D(φ) and interfacial damage d(φs)
function that fulfill all requirements given by Lé et al. [2]

In order to account for the additional dissipated energy, equation 2.17, which de-
scribes the configurational force g(s), will also need to be modified. Lé et al. [2] give the
following expression for g(s):

g(s) =

∫ φs

0
Y (φ, s)D′(φ) dφ+

1

2
y d′(φs)

∣∣∣∣∣
φ=φs

(2.28)

This expression only applies to straight segments, however. It is not possible to
simply apply the same modifications as those by Bernard et al. [6], since there is no direct
way to map the skeleton boundary Γs onto the iso-0 curve Γ0. To overcome these issues,
Lé et al. [2] suggest to use the modal approach by Moreau et al. [22]. To use this approach,
the following variational form needs to be solved:∫

Γ0

g Y ∗ dΓ =

∫
Ω
Y D′(φ)Y ∗ dΩ +

∫
Γs

1

2
y d′(φs) dΓ | ∀Y ∗ ∈ Y (2.29)

where Y is the set of all fields that are constant along ∇φ. The set of admissible solutions
Y is then discretized into a number of nodes Y ∗i [2, 22]. The discretized configurational

10

Chapter 2. Theory 2.1. The Thick Level Set method

force can then be written as a sum of these modes according to

g =
∑

gi Y
∗
i (2.30)

where each coefficient gi is given by the following expression:

gi =

∫
Ω Y D

′(φ)Y ∗i dΩ +
∫

Γs

1
2 y d

′(φs)Y
∗
i dΓ∫

Γ0
Y ∗i dΩ

(2.31)

In order to give a basic impression of the difference in the results of the CZM,
TLS_V1 and TLS_V2, Lé et al. [2] provide an example that considers a simple 1D bar.
The resulting displacements fields for the three models are given in figure 2.4. As one might
expect, the TLS_V2 model yields a displacement field that lies somewhere between the
CZM and TLS_V1 model, since it incorporates material damage from TLS_V1 as well as
interfacial damage from the CZM.

(a) CZM (b) TLS_V1 (c) TLS_V2

Figure 2.4: The displacement field of a 1D bar where the three different models have been
applied. [2]

11

2.2. The shrinking ball method Chapter 2. Theory

2.2 The shrinking ball method

Since the topological skeleton of the iso-0 curve plays an integral part in the TLS_V2
method, the determination of the location of the skeleton curve is a critical part of thesis.
Although Lé et al. [2] define the skeleton curve as the set of points where the gradient of
the level set field is discontinuous, this definition is not very useful when determining the
location of the skeleton curve. This is because, since the level set field is only defined in
the nodes of the mesh, the determination of the level set field as a continuous function
requires extrapolation and interpolation from these nodal values.

Instead, the fact that the level set field φ is equivalent to the signed distance
function of the iso-0 curve can be used to more easily determine the location of the the
skeleton curve. Many approaches to finding the medial axis of a shape have been proposed,
most of which give similar results for continuous sets, though discrete sets and digital grids
may give different results, depending on the method that is applied [23].

The initial method for finding the skeleton curve, as proposed by Blum [24], con-
siders a fire with a constant propagation speed. The boundary of the original shape is set
on fire, and wherever two fronts meet, the fire is quenched. The collection of these so-called
‘quench points’ describes the topological skeleton of the shape. For closed shapes that are
not strictly convex, this method would generate quench points both inside and outside the
object, which might appear to contradict the fourth property of the medial axis mentioned
earlier. However, using only the quench points lying within the original shape, the origi-
nal shape can still be retrieved from the skeleton curve and radius function, and thus no
information is lost by discarding the quench points lying outside the original shape [24].

Although this definition is quite intuitive, it does not have the most straightforward
implementation, since there is not a way to directly tell beforehand at which distance from
the boundary a given fire front will be quenched. Rather, the skeleton curve will be defined
as the set of centers of all bitangential inscribed circles (or ‘disks’) of the original shape3.
These centers can be found by picking a point of the edge of the original shape, drawing a
tangent circle from that point, and shrinking it until it touches the shape in at least one
other point, and has no intersections with the original shape [25].

As a final remark, the terms ‘medial axis’ and ‘skeleton curve’ can or cannot be
used interchangeably. In their original paper [24], Blum coins the term ‘medial axis’, but
notes that it can also be referred to as the ‘skeleton’ [24] of a shape. According to Saha
et al. [23], a common distinction between the two terms is that the skeleton curve has the
additional property that it allows for the original shape to be restored from the skeleton
curve, whereas this is not possible for the medial axis. On the other hand, the conversion
from the original shape to its skeleton and vice versa is commonly called the ‘Medial Axis
Transformation’ (MAT), and it is common for authors to distinguish between the ‘skeleton
function’ and the ‘radius function’, and refer to the set of these two functions as the medial
axis [26, 27, 28]. Regardless, for thesis, only the transformation form the original shape to
the skeleton curve is required, which means that only the skeleton function needs to be
found, and the radius function can be discarded. For that reason, the shape will be referred
to as ‘skeleton curve’ rather than ‘medial axis’ in this thesis.

3Note that this definition only applies to a 2D shape. For 3D shapes, the centers of inscribed spheres
would need to be used, and so forth for higher-dimensional shapes

12

Chapter 2. Theory 2.2. The shrinking ball method

2.2.1 The shrinking ball algorithm

An algorithm, called the ‘shrinking ball algorithm’, has been proposed by Ma et al. [3]
as an efficient method of finding the set of bitangential disks of a surface. While this
method has been designed to find the skeleton curve of point clouds rather than continuous
shapes, it can also be used to find the skeleton curve for any discretized 2D shape, since
generating a point cloud from a given polygon is relatively straightforward. In figure 2.5,
the iterative process is demonstrated. Initially, a point p on the surface S is chosen at
random, and a circle with radius rinit is generated. For the center of this circle, c, a
‘nearest neighbor’ algorithm is used to find its closest neighbor in the point cloud, pi (see
figure 2.5a). Then, a new circle is generated, which touches the surface in p, and runs
through pi (see figure 2.5b). Both the radius r and the center cp of this circle can be found
using some basic trigonometry. This process repeats until the radius no longer changes,
at which point the maximum touching circle originating from p has been found. Now, the
maximum disk will be searched for the next point, q (see figure 2.5c). Rather than using an
initial radius rinit, the point pi will be reused as a starting point. This process will repeat
until the maximal inscribed circle has been found for all points on the surface S.

(a)
(b)

(c)

Figure 2.5: An overview of the shrinking ball algorithm by Ma et al. [3]

In listings 2.1, 2.2 and 2.3, pseudocode is provided of a possible implementation
of the shrinking ball algorithm. This pseudocode combines the implementation of Ma et
al. [3] with the one provided by Peters [29]. The main difference between the pseudocode
of Ma et al. and Peters lies in the fact that Ma et al. provide code for the main loop, which
generates the set of maximal inscribed circles, where Peters provides code which generates
the maximal inscribed circle for a given point. For this reason, the shrinking ball algorithm
in this paper has been split up in a main function called ‘ShrinkingBallAlgorithm’ (listing
2.1), which is close to the code provided by Ma et al. [3], and a subfunction ‘ShrinkingBall’
(listing 2.2), which is closer to algorithm by Peters4.

4It should be noted that there are some details that are glossed over in the pseudocode, for instance
what happens if at the start of an iteration, p̃ is the same point as p, or the code behind the distance-
function, or the NearestNeighbour-algorithm that is used. Nevertheless, it gives a good impression for a
basic implementation of the shrinking ball algorithm.

13

2.2. The shrinking ball method Chapter 2. Theory

Listing 2.1: Pseudocode for the shrinking ball algorithm by Ma et al. [3]. This function
finds the maximum inscribed circle for each point within S. This algorithm contains the
main loop over the point in S, whereas the actual computation of the maximum inscribed
circles occurs in the ShrinkingBall-function, which is expaned on in listing 2.2.
/∗
∗ Shr ink ingBal lAlgor i thm
∗
∗ Desc r ip t i on :
∗ This a lgor i thm gene ra t e s a s e t o f max c i r c l e s f o r each po int in S .
∗
∗ Input :
∗ s e t <point_t> S = A given s e t o f s u r f a c e po in t s
∗
∗ Output :
∗ s e t <c i r c l e_t> c i r c l e s = A se t with the max c i r c l e f o r each po int in S
∗/

// de f i n e a c i r c l e based on i t s c en te r and i t s rad iu s
typedef pair <point_t , double> c i r c l e_ t ;

set <c i r c l e_t> Shr ink ingBal lAlgor i thm

(set <point_t> S)

{
// I n i t i a l i z e empty s e t to s t o r e the maximal d i s k s
set <c i r c l e_t> c i r c l e s ;

// I n i t i a l i z e p_bar
point_t p_bar = S [random , but not 0] ;

for (int i = 0 ; i < S . s i z e () ; i++){
// Get the cur rent po int and i t s normal vec to r
point_t p = S [i] ;
vector_t n = p . normal_vector () ;

// Find the po int p_bar f o r the cur rent po int
p_bar = sh r i nk i ngBa l l (p , n , p_bar , S) ;

// Get the maximal d i sk corre spond ing to p and p_bar
c i r c l e_ t max_circle = computeCirc le (p , n , p_bar) ;

// Add the maximal d i sk to the OutputSet o f maximal d i s k s
c i r c l e s . pushBack (max_circle) ;

}

return c i r c l e s ;
}

14

Chapter 2. Theory 2.2. The shrinking ball method

Listing 2.2: Pseudocode for the ShrinkingBall-function by Ma et al. [3]. This function return
the point p̃, which is the point within S that intersects the maximum inscribed circle that
touches the point p with normal vector n.
/∗
∗ Shr ink ingBa l l
∗
∗ Desc r ip t i on :
∗ This procedure f i n d s the po int p_bar , which i s the po int that i s
∗ i n t e r s e c t e d by the maximal i n s c r i b e d c i r c l e touching the po int p
∗
∗ Input :
∗ point_t p = The point p , which l i e s with in S
∗ vector_t n = The normal vec to r o f p
∗ point_t p_bar_0 = The i n i t i a l p_bar
∗ s e t <point_t> S = The given s e t o f s u r f a c e po in t s

∗ Output :
∗ point_t p_bar = The po int in S that i s i n t e r s e c t e d by the
∗ maximal i n s c r i b ed c i r c l e touching p
∗/

point_t Shr ink ingBa l l
(point_t p ,

vector_t n ,
point_t p_bar_0 ,
set <point_t> S)

{
// I n i t i a l i z e
point_t p_bar = p_bar_0 ;
c i r c l e_ t c i r c l e = ComputeCircle (p , n , p_bar) ;

point_t c = c i r c l e . f i r s t ;
double r = c i r c l e . second ;

// I t e r a t e u n t i l the sma l l e s t c i r c l e i s found
while (true){

point_t p_bar_i = NearestNeighbor (S [except p] , c) ;
c i r c l e_ t c i r c l e_ i = ComputeCircle (p , n , p_bar_i) ;

// Get the cente r and rad iu s o f the c i r c l e
double c_i = c i r c l e_ i . f i r s t () ;
double r_i = c i r c l e_ i . second () ;

i f (abs (r_i − r) < err_conv){
break ;

}

// update center , r ad iu s and p_bar f o r next i t e r a t i o n
c = c_i ;
r = r_i ;
p_bar = p_bar_i ;

}

// Return the f i n a l p_bar
return p_bar ;

}

15

2.2. The shrinking ball method Chapter 2. Theory

Listing 2.3: Pseudocode for the ComputeCircle-function by Ma et al. [3]. This function
finds the circle that touches the point p with normal vector n, and intersects the point p̃
/∗
∗ ComputeCircle
∗
∗ Desc r ip t i on :
∗ This procedure f i n d s the rad iu s and cente r o f a c i r c l e touching the
∗ point p with normal vec to r n , which i n t e r s e c t s p_bar
∗
∗ Input :
∗ point_t p = The point that i s touched by the c i r c l e
∗ vector_t n = The normal vec to r o f p
∗ point_t p_bar = The po int that i s i n t e r s e c t e d by the c i r c l e
∗
∗ Output :
∗ c i r c l e_ t c i r c l e = A pa i r o f the cente r and rad iu s o f the c i r c l e
∗/

double ComputeCircle

(point_t p ,
vector_t n ,
point_t p_bar)

{
// Compute the ang le from p to p_bar to c
double theta = arcco s ((n ∗ (p − p_bar)) / (d i s t ance (p , p_bar))) ;

// Compute the rad iu s and cente r o f the c i r c l e
double r = (d i s t ance (p , p_bar)) / (2 ∗ cos (theta)) ;
double c = p + n ∗ r ;

return make_pair (c , r) ;
}

16

Chapter 2. Theory 2.2. The shrinking ball method

2.2.2 Noise reduction

The algorithm demonstrated in listings 2.1-2.3, as proposed by Ma et al. has been designed
for point sets that contain little to no noise [3, 29]. It has been well-documented that
the skeleton curve is unstable, in the sense that a small amount of noise will lead to
large changes in the skeleton curve [27, 25, 30, 29]. These changes will mainly consist of
large perturbations, which run between the main axis, and the locations of the boundary
perturbations.

(a) The unprocessed skeleton curve of an ar-
bitrary object with a noisy boundary.

(b) An example of a pruned skeleton curve
of the same noisy object.

Figure 2.6: A demonstration of the effects of a noisy boundary on the skeleton curve [31].

Many so-called ‘pruning’ methods have been suggested, which intend to prevent
scattering of the skeleton curve, either by smoothening the boundary of the original ob-
ject [27, 31], or by modifying the algorithm by which the skeleton curve is found [32, 30, 29].
For the shrinking ball algorithm proposed by Ma et al., specifically, a noise reduction
method has been proposed by Peters [29], which is based on a threshold that is placed on
the angle θip as shown in figure 2.5b.

This pruning method does not discard balls that have been affected by noise.
Rather, it relies on the observation that for a given noisy ball, the shrinking ball algorithm
will have yielded a decent medial ball in a previous iteration. A demonstration of this prin-
ciple has been offered by Peters [29], which is shown in figure 2.7. Here, the shrinking ball
algorithm is applied to a noise-free boundary, and a noisy boundary. For many purposes,
including the purpose of the shrinking ball algorithm in this thesis, one might want to find
the medial ball corresponding to the noise-free boundary, while using the data provided by
the noisy boundary. As figure 2.7 shows, a medial ball similar to the minimum medial ball
in figure 2.7a is generated when the algorithm is applied to the noisy case in figure 2.7b.
This means that, if the algorithm can be interrupted at the right moment, a decent medial
ball can be generated based on the noisy boundary [29].

17

2.2. The shrinking ball method Chapter 2. Theory

(a) The shrinking ball algorithm, applied to
a noise-free boundary.

(b) An example of a pruned skeleton curve
of the same noisy object.

Figure 2.7: A comparison of the results of the shrinking ball algorithm for a noise-free
and noisy boundary. Note that, when applied to the noisy boundary, the shrinking ball
algorithm has yielded a ball in iteration 4, which is comparable to the noise-free case [29].

To determine at which point the shrinking ball algorithm should be interrupted,
Peters [29] suggests to use the separation angle θi, noting that a large jump in this angle
can be observed when the medial ball ‘jumps’ from one side of the point cloud to the other
side. When comparing θi and θi+1 in figure 2.8, it becomes clear that the last ball for
which thetai is sufficiently large should be considered an end solution to the shrinking ball
algorithm. In listing 2.4 an updated version of the shrinking ball algorithm is presented,
which includes the noise reduction features proposed by Peters [29].

Figure 2.8: A demonstration of the moment at which the medial ball ‘jumps’ from one side
of the point cloud to the other. [29]

18

Chapter 2. Theory 2.2. The shrinking ball method

Listing 2.4: Pseudocode for the enhanced ShrinkingBall-function by Peters [29]. This func-
tion has the same function as the ShrinkingBall-function from listing 2.2, but it includes
the noise reduction features proposed by Peters.
/∗
∗ Shr ink ingBa l l
∗
∗ Desc r ip t i on :
∗ This procedure f i n d s the po int p_bar , which i s the po int that i s
∗ i n t e r s e c t e d by the maximal i n s c r i b e d c i r c l e touching the po int p
∗
∗ Input :
∗ point_t p = The point p , which l i e s with in S
∗ vector_t n = The normal vec to r o f p
∗ point_t p_bar_0 = The i n i t i a l p_bar
∗ s e t <point_t> S = The given s e t o f s u r f a c e po in t s

∗ Output :
∗ point_t p_bar = The po int in S that i s i n t e r s e c t e d by the
∗ maximal i n s c r i b ed c i r c l e touching p
∗/

{
// I n i t i a l i z e
point_t p_bar = p_bar_0 ;
c i r c l e_ t c i r c l e = ComputeCircle (p , n , p_bar) ;

point_t c = c i r c l e . f i r s t ;
double r = c i r c l e . second ;

// I t e r a t e u n t i l the sma l l e s t c i r c l e i s found
while (true){

point_t p_bar_i = NearestNeighbor (S [except p] , c) ;
c i r c l e_ t c i r c l e_ i = ComputeCircle (p , n , p_bar_i) ;

// Get the cente r and rad iu s o f the c i r c l e
double c_i = c i r c l e_ i . f i r s t () ;
double r_i = c i r c l e_ i . second () ;

i f (abs (r_i − r) < err_conv){
break ;

} else i f (ang le (p , c_i , p_bar_i) < ang l e_cr i t){
break ;

}

// update center , r ad iu s and p_bar f o r next i t e r a t i o n
c = c_i ;
r = r_i ;
p_bar = p_bar_i ;

}

// Return the f i n a l p_bar
return p_bar ;

}

19

2.3. The phantom node method Chapter 2. Theory

2.3 The phantom node method

When modeling the failure of FRPs due to crack development, it is not a trivial task
to choose a suitable damage model. Continuous models fail to properly account for the
orientation of the fibers in the composite material when modeling crack formation, and
thus a discontinuous model is preferred [15]. Discontinuous methods that explicitly model
the crack formation, however, often require predefined crack locations. For the complex
failure mechanisms of FRPs, the location and orientation of these interface elements might
be very difficult to predict [16].

In order to overcome both these issues, the phantom node method, as proposed
by Hansbo and Hansbo [33, 5], is used in this thesis. This method allows for crack growth
in arbitrary locations that do not need to be specified beforehand, while still creating a
discontinuous model of crack formation, thereby avoiding both issues mentioned before [16,
34].

2.3.1 Element and node definitions

The fundamental idea behind the phantom node method is that a crack in the material
can be modeled by adding so-called ‘phantom nodes’ and ‘phantom elements’ to the mesh.
To model a discontinuity in an element K, it is split into two elements K1 and K2, such
that K1 ∪K2 = K and K1 ∩K2 = ∅. The displacement fields of both K1 and K2 can be
expressed using duplicated nodes on the standard element locations [5], with the standard
degrees of freedom. This means that if an element is intersected by only one discontinuity,
it can be replaced by two copies of that element [5, 35, 36]. For the each of nodes of the
element, one copy needs to be made, which supplements the original nodes. Each phantom
element is connected to the original nodes on their side of the discontinuity, and to the
phantom nodes on the other side of the discontinuity, as shown in figure 2.9.

Figure 2.9: A visualization of the connectivity between two phantom elements and the
original nodes (i, j, k) and the phantom nodes (i∗, j∗, k∗) [35]

An additional point that should be noted is the fact that it is possible in case of
branching that multiple discontinuities appear in a single element. Often, this is dealt with
by simply removing the element at hand [36, 37], but in this thesis, a part of the element will
still be kept active, as shown in figures 2.10c and 2.11c. Rather than completely discarding
the element containing the junction, a part of the element is kept active, by taking a
shortcut straight through the element. Although this approach will still produce a lower
stiffness than if the full element is accounted for, it does produce a better approximation
than removing the element, without the need to define new shape functions.

Furthermore, attention needs to be payed at the element at the crack tip. Although
approaches that would allow for a partial discontinuity in a crack tip element, do exist [37,

20

Chapter 2. Theory 2.3. The phantom node method

(a) An example of a sim-
ple junction in the crack
pattern

(b) Handling the junc-
tion by removing the el-
ement

(c) Handling the junc-
tion by shortcutting the
element

Figure 2.10: A comparison of the handling of a simple junction in the crack pattern by
removing the original element, and by taking a shortcut through the element.

(a) An example of a
junction that spans two
elements

(b) Handling the junc-
tion by removing the two
elements

(c) Handling the junc-
tion by shortcutting the
element

Figure 2.11: A comparison of the handling of a junction that spans two elements by re-
moving the original element, and by taking a shortcut through the element.

38], the most common and simple approach is to force the crack tip to be located on an
element edge [35, 36, 16, 39]. This implies that the crack tip element5 will not be replaced
by two phantom elements, and none of its nodes will be replaced by phantom nodes, as
shown in figure 2.12.

Figure 2.12: A visualization of the phantom elements at the crack tip. [40]

5Note that the term ‘crack tip element’ still refers to the same element, even though it is no longer
intersected by the discontinuity

21

2.3. The phantom node method Chapter 2. Theory

2.3.2 Integration scheme

To account for the difference in geometry of the phantom elements, is is not needed to
define new shape functions [35, 36, 16], although it is necessary to modify the integration
scheme of the intersected elements. This is due to the fact that the displacement jump
splits a triangular element into a triangle and a quadrilateral element. This quadrilateral
can be handled by triangulating it into two [35, 36, 37] or three [16] subdomains, each
of which have their own integration points. To these triangular subdomains, the original
integration scheme can be applied. In order to apply traction forces, it is also necessary to
add two integration points to the location of the discontinuity [35, 16]. An visualization of
this integration scheme is given in figure 2.13.

Figure 2.13: The subdomain triangulation of intersected elements and their integration
points. [16]

22

Chapter 3

Implementation

The implementation of the TLS_V2 heavily relies on the implementation of TLS_V1 de-
signed by Van der Meer [7] and Mororó [17], which was used to study and model the damage
development of FRP materials. It was developed using Jem and Jive, two C++ libraries
developed by Dynaflow Research Group, which providee a framework for Finite Element
Analysis (FEA). Jem provides the most fundamental building blocks of the Jem/Jive-
framework, such as Vectors, Arrays, Hashmaps, et cetera. Jive, on the other hand, handles
the FEA itself. It allows for the definition of elements, nodes and degrees of freedom, as
well as the creation of stiffness matrices and force vectors, and finding the corresponding
solution.

Their routine consists of three so-called ‘chains’: the ‘level set update’ chain, the
‘equilibrium solution’ chain and the ‘front evolution’ chain. Each chain calls a series of
modules, which in turn perform certain actions on the models that are defined in the
properties file. This setup allows for a lot of flexibility when defining a FEA. An overview
of the program can be found in figure 3.1. These three chains reflect the setup of the TLS
method explained in section 2.1, where the details of the steps taken in each of these chains
can be found.

Figure 3.1: A general overview of the Thick Level Set model designed by Van der Meer
and Mororó

As explained in chapter 1, this thesis mainly focuses on the determination of a
skeleton curve, and how the displacement jump at this skeleton curve can be modeled.
Since the skeleton curve can only be determined after the full iso-0 curve is known, it

23

3.1. Skeletonizer Chapter 3. Implementation

can only be determined after the ‘level set update’ chain. On the other hand, the mesh
does need to be modified before the mechanical problem is analyzed in the ‘equilibrium
solution’ chain. This means that the Skeletonizer function, which determines the location of
the skeleton curve based on the level set field, should be executed at the end of the ‘level
set update’ chain. The PhantomNodeModel, which updates the mesh using the results from
the Skeletonizer function will be executed right at the start of the ‘equilibrium solution’
chain. These two functions will be discussed in sections 3.1 and 3.2, respectively.

3.1 Skeletonizer

In order to find the skeleton curve based on the level set field, it is convenient to first find the
iso-0 curve, and store it in a convenient format. To do this, the functions makeLineStrings,
makeClosedLoops and makeGroupedLoops are created, which are described in sections 3.1.1,
3.1.2 and 3.1.3, respectively. The makeLineStrings function determines the location of the iso-
0 curve, and stores the result in a set of lstring_ts. The makeClosedLoops and makeGroupedLoops
functions then group the items in this set of lstring_ts in such a way that each group cor-
responds to a closed off damage zone.

After the iso-0 curve is known for each damage zone, the skeleton curve can be
determined using the shrinking ball algorithm as described in section 2.2.1. Additionally,
the atoms returned by the shrinking ball algorithm will have to be connected in a man-
ner that corresponds to the connectivity of the skeleton curve. This will be done in the
makeAtomGraph function, which will explained in secion 3.1.4. The resulting atomGraph con-
tains the skeleton curve, stored in a graph_t format. It stores the atoms as vertices, and
connecting segments between the atoms as edges, which captures the full connectivity of
the skeleton curve. The atomGraph will then be organized using the makeCrackPattern func-
tion as described in section 3.1.5, in order to more conveniently handle the atomGraph in
later procedures.

Once the skeleton curve is fully known, it can be mapped onto the mesh, which
is done by the makeElemGraph function. This function takes the atomGraph as input, and
returns an elemGraph, which stores elements as vertices and the intersections of the skele-
ton curve with the element edges as graph edges. In order to handle certain edge cases,
the makeShortCuts function is used, which slightly modifies the elemGraph at corners and
junctions. These two functions will be explained in sections 3.1.6 and 3.1.7.

Lastly, the makePhantomNodes function is called, which determines based on the
elemGraph which elements and nodes should be replaced by phantom elements and nodes.
This is the last step of the Skeletonizer, after which the PhantomNodeModel will take over to
actually perform the modifications to the mesh that are prescribed by the Skeletonizer.

24

Chapter 3. Implementation 3.1. Skeletonizer

3.1.1 makeLinestrings

In order to find the linestring describing the iso-0 curve, it is necessary to first consider
what possible shapes this linestring could have. In figure 3.2, the three possible kinds of
iso-0 curves are possible. The first, and most straightforward kind is the closed linestring,
which forms a closed, non-intersecting loop distinguishing the positive and negative parts
of the level set field, which are inside and outside the loop, respectively.

There are, however, three non-trivial cases that require special consideration, which
are shown in figure 3.2:

1. Open linestrings – damage fronts that hit the boundary of the material in a single
location will form an open linestring. Although the damaged zone is still enclosed
by a single linestring, they still need special attention, since they cannot be directly
distinguished from disconnected linestrings.

2. Disconnected linestrings – if a damage fronts hits the boundary of the material in mul-
tiple distinct locations, it creates multiple disconnected linestring. These linestrings
will have to be combined into a multilinestring in order to store the full boundary of
the damaged zone in a single object.

3. Enclosed linestrings – it is also possible for a damaged zone to contain an undamaged
zone within it. This means that it might be necessary to combine multiple closed
linestrings into a multilinestring to fully describe the boundary of the damaged zone.

Closed
linestrings

Open
linestring

Disconnected
linestrings

Enclosed
linestring

Figure 3.2: A demonstration of the differences between closed linestrings, open linestrings,
disconnected linestrings and enclosed linestrings

To tackle these issues, three separate procedures will be used. First, the makeLinestrings
function generates a set of linestrings describing the iso-0 curve. Each entry in this set will
consist of three items: iso0 is a linestring object which describes a single connected part of
the iso-0 curve, which can be either a closed linestring, an open linestring, or a disconnected
linestring. The elements elemFirst and elemLast correspond to the elements at the beginning
and end of each linestring, respectively. Closed linestrings can easily be distinguished from
open and disconnected linestrings, by checking whether elemFirst and elemLast are the same
element.

25

3.1. Skeletonizer Chapter 3. Implementation

Possible open or disconnected linestrings are dealt with by the makeClosedLoops func-
tion, which links disconnected linestrings together by walking along the material boundary.
Afterwards, the makeGroupedLoops function is called, which merges any enclosed linestring
with the multilinestring that encircles it. These two functions are called as sub-routines of
the makeLinestings function, the pseudocode for which can be found in listing 3.1.

Listing 3.1: Pseudocode for the makeLinestrings function. It takes the set of elements de-
scribing the mesh as input, and returns a set of multilinestrings, each of which corresponds
to a closed off damage zone.

set <mlstring_t> makeLinestr ings

(set <element_t> elems)

{
// Get the s e t o f i n d i c e s o f e lements i n t e r s e c t e d by i so−0 curve
set <idx_t> iso0 Idx = getIso0Elems (elems) ;

// Keep track o f which e lements have been t r ea t ed
set <bool> elemsToDo (elems . s i z e ()) ;
elemsToDo = fa l se ;
elemsToDo [i s o0 Idx] = true ;

// I n i t i a l i z e the s e t o f l i n e s t r i n g s d e s c r i b i n g the i so−0 curve
set <pair <lstring_t , pair<element_t , element_t>>> iso_0

while (not elemsToDo . a l lTrue ()){
// Find the f i r s t element that has not been done yet
idx_t i e l em = elemsToDo . f i r s tT ru e () ;

// I n i t i a l i z e the s t a r t o f the l i n e s t r i n g
segment_t segment = elems [i e l em] . g e t I n t e r s e c t i o n () ;

lstring_t l i n e s t r i n g ;
l i n e s t r i n g . pushBack (segment) ;

// Set the f i r s t and l a s t e lements
element_t e l emFi r s t = elems [i e l em] ;
element_t elemLast = elems [i e l em]

// Loop forward to add segments to the back o f the l i n e s t r i n g
addSegmentsForward (i so0 , e lemFirst , elemLast) ;

// Check i f a c l o s ed loop has been found
i f (e l emFi r s t != elemLast){

// I f not , loop backwards to add segments to the l i n e s t r i n g
addSegmentsBackward (i so0 , e lemFirst , elemLast) ;

}

// Add the l i n e s t r i n g to the s e t o f l i n e s t r i n g s
i s o 0 . pushBack (makePair (l i n e s t r i n g , makePair (e lemFirst , elemLast))) ;

}

// Connect the open and d i sconnected l i n e s t r i n g s in i s o 0
set <mlstring_t> i soC l o s e = makeClosedLoops (i s o 0) ;

// Group the loops to handle undamaged zones with in damaged zones
set <mlstring_t> isoGroup = makeGroupedLoops (i s oC l o s e) ;

// re turn the groups o f mu l t i l i n e s t r i n g s
return isoGroup ;

}

26

Chapter 3. Implementation 3.1. Skeletonizer

The makeLinestrings function heavily relies on the addSegmentsForward function, which
is summarized in listing 3.2. It operates by looping over the edges of the last element, and
checking for each edge if the level set field value goes from positive to negative at that
edge. If so, the next element can be found on the other side of that edge, and elemLast is
updated. The algorithm terminates for closed linestrings when it arrives back at elemFirst,
or for open linestrings if no new elements are found. It should be noted that this method
only works if all element nodes are stored in a certain rotational direction1. If this is the
case, however, the resulting linestring will be oriented in the same rotational direction if it
encloses a damaged zone, and oriented in the opposite direction if it is contained within a
damaged zone.

The addSegmentsBackward works in the same way, but looks at elemFirst instead of
elemLast, and checks if the level set field value goes from negative to positive instead of vice
versa. The pseudocode for this function can be found in appendix A in listing A.2, along
with the pseudocode for the getNextElements function in listing A.3 and the getNodeNegPos
and getNodePosNeg functions in listing A.4

Listing 3.2: Pseudocode for the addSegmentsForward function. It adds segments to the
back of the iso0 linestring, until either the linestring loops back onto itself, or no new
segments are found. The input elements elemFirst and elemLast are used to keep track of
the begin and endpoint of the linestring, and updated accordingly.

void addSegmentsForward
(lstring_t i s o 0 ,

element_t e l emFi r s t
element_t elemLast)

{
// I t e r a t e forward un t i l no e lements are found , or the loop i s c l o s ed
while (true){

// Get the nodes where the l e v e l s e t f i e l d goes from >= 0 to < 0
pair <node_t , node_t> nodeNegPos = getNodeNegPos (elem_last) ;
node_t pos = nodeNegPos . f i r s t ;
node_t neg = nodeNegPos . second ;

// Find the ne ighbor ing element
set <element_t> elemsNext = getNextElements (elemLast , pos , neg) ;

// [Ver i f y that elemsNext conta in s no more than 1 element]

i f (elemsNext . s i z e () == 0){
// The end o f the l i n e s t r i n g i s found , so e x i t the loop
break ;

} else {
// Add the segment to the l i n e s t r i n g
segment_t segment = elemsNext [0] . g e t I n t e r s e c t i o n () ;
i s o 0 . pushBack (segment) ;

// Break i f the l i n e s t r i n g has been c l o s ed
i f (elemsNext [0] = e l emFi r s t) break ;

// Update the l a s t element
elemLast = elemsNext [0] ;

}
}

}

1i.e. either clockwise or counterclockwise

27

3.1. Skeletonizer Chapter 3. Implementation

3.1.2 makeClosedLoops

Although it is possible to treat the open linestrings and disconnected linestrings separately,
it is not straightforward to distinguish beforehand whether a linestring encloses a damaged
zone on its own, or whether multiple linestrings are required to describe iso-0 curve of a
damaged zone. In order to determine if a linestring is open or disconnected, an ad hoc
solution would be required, which distinguishes these two cases based on, for instance, the
distance between its first and last element. For most applications, such a solution might
suffice, but more robust implementation can be created by not making this distinction at
all. This approach will be described below, although it should be noted that due to time
constraints, it was not possible to fully implement this procedure. The procedure that will
be explained in this section is currently only applied to disconnected chains, although in
principle, it should work for open chains as well.

The fundamental idea behind the makeClosedLoops function is that the next linestring
can be found by traversing along the boundary of the material from the endpoint of the
current linestring. Since the last element is located at the material boundary, and is inter-
sected by the iso-0 curve, one of the boundary nodes must have a negative level set value,
and one must have a positive value. By iterating over the boundary in the direction of
the positive node, until a negative node is found, the first element belonging to the next
linestring can be found. For open linestrings, this next linestring is the same linestring, and
the process can be terminated directly. For disconnected linestrings, on the other hand,
the process has to be repeated multiple times for disconnected linestrings, until the first
element of the initial linestring has been found. The pseudocode for the makeClosedLoops
function can be found in listing 3.3.

3.1.3 makeGroupedLoops

Since all multilinestrings returned by the makeClosedLoops function represent a closed bound-
ary of the damaged zone, they can be treated as closed linestrings by the makeGroupedLoops
function. Accordingly, the open multilinestrings are implicitly converted2 to closed linestrings
in the pseudocode of this function, shown in listing 3.4

The method by which the makeGroupedLoops works is relatively straightforward. It
checks for each multilinestring if it is contained within another multilinestring. If this is
the case, it is skipped. If not, it must be the outermost boundary of the damaged zone.
Another loop over the set of linestrings is then used to gather all multilinestrings that are
contained within the outermost boundary. This way, all multilinestrings belonging to a
single damage zone will always be grouped together. The pseudocode for this function can
be found in listing 3.4

2it should be noted that this implicit conversion is not actually possible. It will be treated as if this is
possible, however, since it has been shown in section 3.1.2 that all multilinestrings do form a closed circuit.

28

Chapter 3. Implementation 3.1. Skeletonizer

Listing 3.3: Pseudocode for the makeClosedLoops function. This function takes the set
of linestrings returned by the makeLinestrings function, as well as their elemFirst and
elemLast elements, as input, and returns a set of multilinestring. Each multilinestring
corresponds to a closed loop of the iso-0 curve.

set <mlstring_t> makeClosedLoops

(set <lstring_t> i s o0 ,
set <element_t> elemFi r s t ,
set <element_t> elemLast)

{
// I n i t i a l i z e the s e t o f mu l t i l i n e s t r i n g s
set <mlstring_t> isoC lo s ed ;

// Keep track o f which l i n e s t r i n g have been t r ea t ed
set <bool> lineDone (i s o 0 . s i z e ()) ;
l ineDone = fa l se ;

// Loop over the s e t o f l i n e s t r i n g s i s o 0
for (idx_t i = 0 ; i < i s o 0 . s i z e () ; i++){

// Check i f the l i n e s t r i n g i s a c l o s ed loop
i f (e l emFi r s t [i] == elemLast [i]){

// I f so , add i t to the i s o_c l o s e st ra ightaway
i soC lo s ed . pushBack (i s o 0 [i])
l ineDone [i] = true ;

} else {
// I n i t i a l i z e a mu l t i l i n e s t r i n g , and get i t s l a s t element
mlstring_t mul t iL ineSt r ing ;
element_t currElemLast = elemLast [i] ;

// I t e r a t e from elemLast [i] u n t i l e l emFi r s t [i] has been found again
while (true){

// Get the element on the other s i d e o f the damage zone
nextElemFirst = getOppositeElement (currELemLast) ;

// Break the loop i f the loop i s completed
i f (nextElemFirst == e lemFi r s t [i]) break ;

// Find t h i s element in the e l emFi r s t s e t
for (idx_t j = 0 ; j < e l emFi r s t . s i z e () ; j++){

i f (e l emFi r s t [j] == nextElemFirst){
currElemLast = elemLast [j] ;

// Add the next iso_0 l i n e s t r i n g to the mu l t i l i n e s t r i n g
mul t iL ineSt r ing . pushBack (iso_0 [j]) ;
l ineDone [j] = true ;

}
}

}

// Add the mu l t i l i n e s t r i n g to the i s oC lo s ed
i soC lo s ed . pushBack (mul t iL ineSt r ing) ;

}
}

// Return the s e t o f c l o s ed mu l t i l i n e s t r i n g s
return i s oC lo s ed

}

29

3.1. Skeletonizer Chapter 3. Implementation

Listing 3.4: Pseudocode for the makeGroupedLoops function. This function takes the set
of multilinestrings returned by the makeClosedLoops function as input, and groups all
multilinestrings that are encircled by other multilinestrings together.

set <mlstring_t> makeGroupedLoops

(set <mlstring_t> isoC lo s ed)

{
// I n i t i a l i z e isoGroup
set <mlstring_t> isoGroup

set <bool> mlstringDone (i s o_c l o s e . s i z e ()) ;
mlstr ingDone = fa l se ;

// Loop over the s e t o f c l o s ed mu l t i l i n e s t r i n g s
for (idx_t i = 0 ; i < i soC lo s ed . s i z e () ; i++){

// Check i f the cur rent ml s t r ing l i e s i n s i d e another loop
bool ins ideLoop = fa l se ;
for (idx_t j = 0 ; j < i soC lo s ed . s i z e () ; j++){

// Skip i f i t concerns i t s e l f
i f (i == j) continue ;

// Check i f m l s t r ing i l i e s with in ml s t r ing j
i f (i s oC lo s ed [i] . wi th in (i s oC lo s ed [j])){

ins ideLoop = true ;
break ;

}
}

// Skip i f m l s t r ing i l i e s i n s i d e another ml s t r ing
i f (ins ideLoop == true) continue ;

// Gather a l l m l s t r i ng s with in ml s t r ing i
mlstring_t mlGroup ;

mlGroup . pushBack (i s oC lo s ed [i]) ;

for (idx_t j = 0 ; j < i s o_c l o s e . s i z e () ; j++){
// Skip i f i t concerns i t s e l f
i f (i == j) continue ;

// Check i f m l s t r ing j l i e s with in ml s t r ing i
i f (i s oC l o s e [j] . w i th in (i s oC l o s e [i])){

// I f so , add ml s t r ing j to the group
mlGroup . pushBack (i s oC l o s e [j]) ;

}
}

// Add the grouped mu l t i l i n e s t r i n g to isoGroup
isoGroup . pushBack (mlGroup) ;

}

// Return the grouped mu l t i l i n e s t r i n g s
return isoGroup ;

}

30

Chapter 3. Implementation 3.1. Skeletonizer

3.1.4 makeAtomGraph

In order to determine the location skeleton curve, the shrinking ball algorithm as pro-
posed by Ma et al. [3] will be used, including the noise reduction measures proposed by
Peters [29]. The procedure in the implementation is very similar to listing 2.1. The main
difference lies in the way information is stored and processed. Rather than simply storing
the coordinates of each of the maximal inscribed circles in a list or a vector, they are stored
in a graph, making use the Boost Graph Library. This library includes minimum spanning
tree algorithms, as well as iterators over a graph, both of which will be useful in later parts
of the procedure.

For each atom, the index, which contains a unique idx_t index, and the coords,
which contains a point_t for its coordinates, are stored in the graph. Furthermore, the
Boost Graph Library requires the possibility to store the predecessor of each atom as an
idx_t, and a double for the distance before it can run Prim’s algorithm and create a shortest
spanning tree of the atom graph. The atoms will be stored as vertices of the graph, and all
aforementioned properties will be assigned to the vertices of the graph. The edges, then,
will also be assigned a unique idx_t index, index, and contain a double length to store its
length. This last property will also be used as a weightmap in Prim’s algorithm.

In listing 3.5, the general structure of the makeAtomGraph function is presented.
Some details are simplified or ignored; most significantly the conversion of the isoGroup
variable from a multilinestring to a set of points with normal vectors. However, since the
orientation of the linestrings has been handled carefully in the makeLineStrings procedure,
the direction of an inward-pointing normal vector can be straightforwardly found based on
the orientation of each segment of the linestring.

Since Prim’s algorithm will always yield a tree3, the makeAtomGraph function is
guaranteed to produce a set of trees that does not contain any cycles [4]. This property
can be used to more easily navigate over the atomGraph, which will be used to loop over
the skeleton curve in the makeCrackPattern and makeElemGraph functions.

Figure 3.3: The atom locations and connections describing of the skeleton curve.

3i.e. an undirected graph which is acyclic and connected

31

3.1. Skeletonizer Chapter 3. Implementation

Figure 3.4: The atomGraph that would be created by the makeAtomGraph function.

Listing 3.5: Pseudocode for the makeAtomGraph function. This function transforms takes
the set of multilinestrings returned by the makeLinestrings function, and produces a graph
containing the centers of the maximal inscribed disks as vertices, and their minimum
spanning graph as edges.

graph_t makeAtomGraph

(set <mlstring_t> isoGroup)

{
// I n i t i a l i z e the atom graph f o r the whole mesh
graph_t atomGraph ;

// Loop over each group o f i so−0 po in t s
for (idx_t i = 0 ; i < isoGroup . s i z e () ; i++){

// Apply the sh r ink ing b a l l a lgor i thm to each group o f l i n e s t r i n g s
set<c i r c l e_t> maxDisks = Shr ink ingBal lAlgor i thm (isoGroup [i]) ;

// Create an i nd i v i dua l graph f o r each group o f l i n e s t r i n g s
graph_t partialAtomGraph ;

// Add the c en t e r s o f the maximal d i s k s as v e r t i c e s to the atomGraph
partialAtomGraph . addVert i ces (maxDisks . f i r s t) ;

// Apply Prim ’ s a lgor i thm to the atom graph o f the group
partialAtomGraph . primMinimumSpanningTree () ;

// Add the i nd i v i dua l graph to the graph f o r the whole mesh
atomGraph . insertGraph (partialAtomGraph) ;

}

// Return the graph f o r the whole mesh
return atomGraph ;

}

32

Chapter 3. Implementation 3.1. Skeletonizer

Crack Index Atoms
1 1 2 3
2 3 4 5 6 7 8
3 3 14 13 12 11 8
4 8 9 10
5 15 16 17 18 19
6 20 21 22 23
7 24 25 26 27
8 27 28 29 30 31
9 27 32 33 34 35 36 37

Table 3.1: The crack pattern that corresponds to the atomGraph shown figure 3.4

3.1.5 makeCrackPattern

Once the atomGraph has been determined, it can be said that the skeleton curve is fully
known, since the connectivity and coordinates of all atoms skeleton curve has been de-
termined. However, it is useful to organize the atomGraph in a way that allows for a
more convenient translation from the atomGraph to the elementGraph. To achieve this, the
makeCrackPattern function has been introduced. This function takes the atomGraph as input
and returns as output a set of sets of atoms, each of which corresponds to a crack. In more
precise terms, each set of atoms corresponds to a series of vertices with exactly two edges,
except for the first and last atom in the set.

As an example, he crackPattern that would be created for the atomGraph in figure 3.4
by the makeCrackPattern function is given in table 3.1.

The procedure accomplishes this by looping over the vertices of the atomGraph, and
checking for each vertex if it has either 1 or more than 3 adjacent vertices. If this is the
case, an endpoint or junction has been found, which can be seen as the starting point
of the crack. For each outgoing edge of this vertex, the algorithm checks if has already
been included in the crackPattern, using the edgeInPattern function, which can be found in
listing A.5. If the edge has not yet been included, the procedure creates starts iterating over
the atomGraph, until another endpoint or junction is found. All vertices that are encountered
during this process are added to the crackPattern, until all vertices have been treated. The
pseudocode for this function is given in listing 3.6.

33

3.1. Skeletonizer Chapter 3. Implementation

Listing 3.6: Pseudocode for the makeCrackPattern function. This function takes the atom-
Graph returned by the makeAtomGraph function as input, and organizes the vertices as
demonstrated in figure 3.4 and table 3.1.
set <set <idx_t>> makeCrackPattern

(graph_t atomGraph)

{
// I n i t i a l i z e the crackPattern
set <set <idx_t>> crackPattern ;

// Loop over the v e r t i c e s o f the atomGraph
for (idx_t i v = 0 ; i v < atomGraph . v e r t i c e s . s i z e () ; i v++){

vertex_t atom = atomGraph . v e r t i c e s [i v] ;

// Check i f the ver tex i s a junc t i on or an endpoint
i f (atom . ad j a c en tVe r t i c e s . s i z e () != 2){

// Loop over the adjacent v e r t i c e s o f the atom
for (idx_t i a = 0 ; i a < atom . ad j a c en tVe r t i c e s . s i z e () ; i a++){

edge_t segment = atomGraph . edges [atom , atom . ad j a c en tVe r t i c e s [i a]] ;

// Check i f the edge a l ready e x i s t s in the crackPattern
bool edge_found = edgeInPattern (segment , crackPattern) ;

i f (not edge_found){
// I f not , I n i t i a l i z e a new crack
set <idx_t> crack ;
vertex_t prevAtom = atom ;
vertex_t currAtom = atom . ad j a c en tVe r t i c e s [i a] ;

// Add the cur rent atom to the crack
crack . pushBack (atom . index) ;

// I t e r a t e u n t i l a junc t i on or endpoint i s found
while (true){

// Add the cur rent atom to the crack
crack . pushBack (currAtom . index) ;

// Break the loop i f the cur rent atom i s a junc t i on or endpoint
i f (currAtom . ad j a c en tVe r t i c e s . s i z e () != 2) break ;

// Get the atom ’ s ad jacent v e r t i c e s
set <vertex_t> adj = currAtom . ad j a c en tVe r t i c e s ;

// Find the next atom
vertex_t nextAtom = (adj [0] == prevAtom) ? adj [1] : adj [0] ;

prevAtom = currAtom ;
currAtom = nextAtom ;

}

// Add the crack to the crackPattern
crackPattern . pushBack (crack) ;

}
}

}
}
// Return the crackPattern
return crackPattern ;

}

34

Chapter 3. Implementation 3.1. Skeletonizer

3.1.6 makeElemGraph

With the atomGraph fully known, and organized in the crackPattern, the skeleton curve
can now be mapped onto the mesh. To accomplish this, again a graph from the Boost
Graph Library will be used, which will be called elemGraph. In this graph, the vertices
will correspond to elements, whereas the edges correspond to the intersection points of
the skeleton curve with the element edges. This method of data storage makes it easier
to determine for any given element which intersection points it contains, and to which
elements it connects. After all, for any given vertex in a graph, its edges and adjacent
vertices are known.

Similarly to the atomGraph, properties belonging to the elements can be stored
as vertex properties, and properties belonging to the intersection points can be stored
as edge properties. This will be used to store the index of each element as an idx_t. A
set <segment_t> will be used to store a number of segments corresponding to the location
of the skeleton curve in each element. Also, a set <idx_t> called atoms will be used to
store an atom that falls within the element. This set can have a size of either zero or one,
depending on if the element in question contains an atom or not. It cannot be larger than
one, since an element cannot contain multiple atoms, due to the restrictions described in
section 3.1.4. To store the locations of the intersection points of the skeleton curve with the
element edges, a point_t is stored for each edge of the elemGraph, containing the coordinates
of the intersection point.

An additional complication for the elemGraph lies in the fact that, unline the
atomGraph, it might contain cycles at locations where the atomGraph contains a corner or
a junction. After all, at any point where the atomGraph bends, it might intersect the same
element edge twice. Since these intersection points are stored as edges in the elemGraph,
they produce two edges that both connect the same pair of vertices. To handle these cy-
cles, the makeShortCuts function will be introduced in section 3.1.7, which will handle all
elements that contain an atom. Initially, the elemGraph will only trace the straight segments
of the atomGraph that run through elements that do not contain an atom. This will be the
output of the makeElemGraph function. Afterwards, the elemGraph will be modified by the
makeShortCuts function, which produces the graph shown in figure 3.5.

Figure 3.5: The elemGraph that would be created by the makeElemGraph function, based on
the atomGraph shown in figure 3.3

35

3.1. Skeletonizer Chapter 3. Implementation

Listing 3.7: Pseudocode for the makeElemGraph function. This function takes the atom-
Graph and crackPattern as input, and returns a graph describing the skeleton curve. This
graph has elements as vertices and intersection points as edges.

graph_t makeElemGraph

(graph_t atomGraph ,
set <set <idx_t>> crackPattern)

{
// I n i t i a l i z e the elemGraph
graph_t elemGraph ;

// Loop over the crackPattern
for (idx_t i = 0 ; i < crackPattern . s i z e () ; i++){

// I n i t i a l i z e c rackIntxns to keep track o f the crack ’ s i n t e r s e c t i o n s
set <pair <point_t , idx_t>> crackIntxns ;
set <idx_t> crack = crackPattern [i] ;

// Loop over the crack
for (idx_t j = 0 ; j < crack . s i z e () − 1 ; j++){

// Get the v e r t i c e s from the atomGraph and the segment between them
point_t sourceCoords = atomGraph . v e r t i c e s [crack [j]] . coords ;
point_t targetCoords = atomGraph . v e r t i c e s [crack [j +1]] . coords ;
segment_t crackEdge (sourceCoords , targetCoords) ;

// I n i t i a l i z e edgeIntxns to keep track o f the segment ’ s i n t e r s e c t i o n s
set <pair <point_t , element_t>> edgeIntxns ;

for (idx_t i e = 0 ; i e < elems . s i z e () ; i e++){
i f (crackEdge . i n t e r s e c t s (elems [i e]){

// Add the element to the elemGraph i f i t doesn ’ t e x i s t yet
i f (not elemGraph . v e r t exEx i s t s (i e)) elemGraph . addVertex (i e) ;

// Get the i n t e r s e c t i o n o f the crack edge with each element
segment_t elemIntxn = elems [i e] . i n t e r s e c t i o n (crackEdge) ;

// Add the in txns to edgeIntxns and the segment to elemGraph
edgeIntxns . pushBack (makePair (elemIntxn . f i r s t , e lems [i e])) ;
edgeIntxns . pushBack (makePair (elemIntxn . second , elems [i e])) ;

}
}

// Sort the edgeIntxns
i f (sourceCoords < targetCoords) edgeIntxns . sortAscending () ;
i f (sourceCoords > targetCoords) edgeIntxns . sortDescending () ;

// Add the edgeIntxns to the back o f c rackIntxns
crackIntxns . i n s e r t (c rackIntxns . end () , edgeIntxns) ;

}

// Loop over the crackIntxns in s t ep s o f 2
for (idx_t j = 0 ; j < crackIntxns . s i z e () ; j+=2){

vertex_t sourceElement = elemGraph . v e r t i c e s [c rackIntxns [j] . f i r s t] ;
vertex_t targetElement = elemGraph . v e r t i c e s [c rackIntxns [j +1] . f i r s t] ;

// Connect the v e r t i c e s in the elemGraph
elemGraph . addEdge (sourceElement , targetElement) ;

}
}

}

36

Chapter 3. Implementation 3.1. Skeletonizer

3.1.7 makeShortCuts

As mentioned in section 3.1.6, an additional difficulty for the elemGraph, which was not an
issue for the atomGraph, stems from the fact that elements might be connected with the
same element multiple times. This means that the acyclical property of the atomGraph is
not preserved, and local cycles may appear. Four examples of skeleton curves that would
produces such cycles are given in figure 3.6. It is noteworthy to mention that all series of
cycles can be said to originate in an element containing an atom. After all, only at the
location of an atom is a change in direction of the skeleton curve possible.

Because of this fact, the makeElemGraph itself has been set up in such a way that all
elements containing an atom are not considered. This prevents the addition of unnecesary
segments to the vertices of the elemGraph, which would later need to be removed. In the
function no distinction is made between corners4 and junctions5, since these two categories
are not mutually exclusive. Although it appears unlikely, configurations that fall within
both of these definitions can be thought of, and do occasionally occur in practice, as will
be shown in figure 4.5b.

In listing 3.8, the pseudocode of the makeShortCuts function is given. The first part
of the function adds additional segments to the elemGraph. Since these segmnets are the
same for corners and junctions, as shown in figure 3.6, this part of the procedure is executed
for every element that contains an atom. Afterwards, it is checked whether all intersection
points lie on the same element edge. If this is the case, the intersection points are removed,
along with all segments that connect to it.

(a) The atomGraph and elemGraph for a cor-
ner that cuts off a single element

(b) The atomGraph and elemGraph for a junc-
tion that cuts off a single element

(c) The atomGraph and elemGraph for a cor-
ner that cuts off multiple elements

(d) The atomGraph and elemGraph for a junc-
tion that cuts of multiple elements

Figure 3.6: A comparison of the atomGraph and the elemGraph that is produced by the
makeElemGraph function

4Corners are defined as elements with more than one intersection points, all of which lie on the same
element edge.

5Junctions are defined as elements with more than two intersection points.

37

3.1. Skeletonizer Chapter 3. Implementation

Listing 3.8: Pseudocode for the makeShortCuts function. This function makes the required
modifications to the elemGraph for it to be used by the makePhantomNodes function.

void makeShortCuts

(graph_t elemGraph)

{
// Loop over the v e r t i c e s
for (idx_t i v = 0 ; i v < elemGraph . v e r t i c e s . s i z e () ; i v++){

vertex_t sourceElement = elemGraph . v e r t i c e s [i v] ;
set <edge_t> intxns = sourceElement . edges ;
// Skip the element i f i t does not conta in an atom
i f (sourceElement . atoms . s i z e () == 0) continue ;

// Find the po int where the outgoing edges po int to d i f f e r e n t e lements
for (idx_t i o = 0 ; i o < intxn . s i z e () ; i o++){

for (idx_t ip = 0 ; ip < intxn . s i z e () ; ip++){
// Make sure every combination o f i o and ip i s t r ea t ed once
i f (i o <= ip) continue ;

vertex_t targetElement = sourceElement ;
point_t oPoint = intxns [i o] . coords ;
point_t pPoint = intxns [ip] . coords ;

while (true){
getOppos i tePo ints (oPoint , pPoint , targetElement . segments) ;
vertex_t oElem = getVertexFromPoint (oPoint , targetElement) ;
vertex_t pElem = getVertexFromPoint (pPoint , targetElement) ;

i f (oElem != pElem) break ;
// Go to the next element as long as oElem and pElem are the same
targetElement = oElem ;

}
targetElement . segments . pushBack (segment_t (oPoint , pPoint))) ;

}
}

i f (sourceElement . edges . s i z e () < 2) continue ;

while (true){
// Break the loop i f sourceElement has two d i f f e r e n t adjacent e lements
i f (not onlyOneAdjacent (sourceElement)) break ;

i n txns = sourceElement . edges ;
targetElement = intxns [0] . t a r g e t ;
set <segment_t> segs = targetElement . segments ;

for (idx_t i o = 0 ; i o < intxns . s i z e () ; i o++){
// Remove a l l t a r g e t element segment po in t ing to the source element
for (idx_t i s e g = 0 ; i s e g < seg s . s i z e () ; i s e g++){

i f (s eg s [i s e g] . conta insPo int (in txns [i o] . coords)){
s eg s . e r a s e (i s e g) ;

}
}
// Remove the edge i t s e l f
elemGraph . removeEdge (in txns [i o]) ;

}
// Progres s to the next element
sourceElement = targetElement ;

}
}

}

38

Chapter 3. Implementation 3.1. Skeletonizer

3.1.8 makePhantomNodes

Once the full elemGraph is known, and preparations have been taken to avoid duplicate
adjacent vertices when looping over the elemGraph, the makePhantomNodes function can be
called. As mentioned in section 3.1.7, this function iterates over the vertices over the
elemGraph, turning right whenever it encounters a junction. During the procedure, the
endpoints of the graph6 will be used as anchors, at which a crack face begins and ends.
This ensures that each side of the crack is treated in one continuous motion, which in turn
makes it easier to make a distinction between the ‘left’ and ‘right’ side of the crack.

Since it was shown in section 3.1.4 that the atomGraph does not contain any cycles,
there will be no cycles in the elemGraph that are larger than 2. In section 3.1.7, precautions
that have been taken to avoid any hindrance in the makePhantomNodes procedure that may
occur due to small loops in the elemGraph. For these reasons, the elemGraph will be treated
as if it does not contain any loops when handling the iteration over the graph.

Figure 3.7: A visualization of the way the makePhantoNodes function iterates over a compli-
cated crack pattern

In figure 3.7, a general overview of the manner in which the makePhantomNodes func-
tion should loop over the elemGraph is given. In order to accomplish this, special attention
needs to be payed to the way that junctions are handled. After all, whenever a junction
may appear, multiple internal segments can be found, out of which the correct segment
needs to be chosen. To demonstrate how the procedure ensures this, an example is given
in figure 3.8. Here, the current and previous element are known, as well as the current and
previous intersection points, as indicated in the figure7. When the getNextIntxn function is
called, it checks all segments in the currElement, and determines which segment forms the
smallest angle with the internal segment in the prevElement. In the case of the example
shown in figure 3.8, segment 2 makes the smallest angle, and so the intersection point at
the bottom of the currElement will become the nextIntxn, which causes element A to be come
the nextElement.

The pseudocode for the makePhantomNodes procedure can be found in listing 3.9,
and the getNextIntxn function can be found in listing 3.10.

6i.e. the element that have only one adjacent element
7It is important to emphasize again that the elements are stored as vertices and the intersection points

as edges of the elemGraph. The segments as shown in the figure are stored as properties of the vertices.

39

3.1. Skeletonizer Chapter 3. Implementation

Figure 3.8: An example of the procedure by which the next intersection point is determined
by the getNextIntxn function in listing 3.10

Listing 3.9: Pseudocode for the makePhantomNodes function. This function takes the
elemGraph as input, and returns a set of phantom elements, a set of phantom nodes and
a set of regular nodes.

pair <set <set <element_t>>, pair <set <set <node_t>>>> makePhantomNodes

(graph_t elemGraph)

{
// I n i t i a l i z e the phantomElems , phantomNodes and regularNodes
set <set <element_t>> phantomElems ;
set <set <node_t>> phantomNodes ;
set <set <node_t>> regularNodes ;

// I n i t i a l i z e the prev ious , cur rent and next element
for (idx_t i v = 0 ; i v < elemGraph . v e r t i c e s . s i z e () ; i v++){

i f (elemGraph . v e r t i c e s [i v] . edges . s i z e () == 1){
vertex_t prevElement = elemGraph . v e r t i c e s [i v] . ad j a c en tVe r t i c e s [0] ;
vertex_t currElement = elemGraph . v e r t i c e s [i v] ;
vertex_t nextElement = prevElement ;
vertex_t f i r s tE l ement = currElement ;
point_t prevIntxn = currElement . edges [0] . coords ;
point_t curr Intxn = prevIntxn ;
point_t nextIntxn = prevIntxn ;
break ;

}
}

while (true){
// I n i t i a l i z e the phantom_elems , phantom_nodes and regular_nodes
set <element_t> phantom_elems ;
set <node_t> phantom_nodes ;
set <node_t> regular_nodes ;

// update the prev ious cur rent and next element
prevElement = currElement ;
currElement = nextElement ;
prevIntxn = curr Intxn ;

40

Chapter 3. Implementation 3.1. Skeletonizer

curr Intxn = nextIntxn ;

// Check i f currElement has 0 , 1 or more segments
idx_t segmentCount = currElement . segments . s i z e () ;

i f (segmentCount = 0 or currElement == f i r s tE l ement){
// Endpoint i s met , so the crack f a c e i s added to the pattern
phantomElems . pushBack (phantom_elems . removeDupl icates ()) ;
phantomNodes . pushBack (phantom_nodes . removeDupl icates ()) ;
regularNodes . pushBack (regular_nodes . removeDupl icates ()) ;

// Exit the loop when i t i s back at the f i r s t element
i f (currElement == f i r s tE l ement) break ;

// Clear the s e t s f o r the next loop
phantom_elems . c l e a r () ;
phantom_nodes . c l e a r () ;
regular_nodes . c l e a r () ;

}

// Find the nextIntxn based on currElement , prevIntxn and curr Intxn
nextIntxn = getNextIntxn (currElement , prevIntxn , curr Intxn) ;

// Find nextElement based on nextIntxn
for (idx_t i o = 0 ; i o < currElemnt . edges . s i z e () ; i o++){

i f (currElement . edges [i o] . coords == nextIntxn){
nextElement = currElement . edges [i o] . ta rgetVertex ;
break ;

}
}
// Add the cur rent element to phantom_elems
phantom_elems . pushBack (currElement) ;
set <node_t> nodes = currElement . getNodes () ;

// Check i f each node f a l l s l e f t or r i g h t o f the crack
for (idx_t in = 0 ; in < nodes . s i z e () ; in++){

double ang le = getAngle (currIntxn , nextIntxn , nodes [in] . coords) ;
i f (ang le > 0) phantom_nodes . pushBack (nodes [in]) ;
i f (an lge < 0) regular_nodes . pushBack (nodes [in]) ;

}
}

// Turn a l l nodes o f endpoint e lements in to r e gu l a r nodes
for (idx_t i v = 0 ; i v < elemGraph . v e r t i c e s . s i z e () ; i v++){

vertex_t element = elemGraph . v e r t i c e s [i v] ;
i f (element . edges . s i z e () == 1){

set <node_t> nodes = elems [element . index] . getNodes () ;

for (idx_t in = 0 ; nodes . s i z e () ; in++){
for (idx_t i = 0 ; i < PhantomElems . s i z e () ; i++){

for (idx_t j = 0 ; j < PhantomNodes [i] . s i z e () ; j++){
i f (PhantomNodes [i] [j] == nodes [in]){

PhantomNodes [i] [j] . remove () ;
RegularNodes [i] . pushBack (nodes [in]) ;

}
}

}
}

}
}

}

41

3.1. Skeletonizer Chapter 3. Implementation

Listing 3.10: Pseudocode for the getNextIntxn function. This function determines the next
Intersection point based on the segments inside the current element, as well as the previous
and current intersection points. It is used by the makePhantomNodes function in listing 3.9
to iterate along the crack.

point_t getNextIntxn

(vertex_t currElement ,
point_t prevIntxn ,
point_t curr Intxn)

{
// I n i t i a l i z e the nextIntxn
point_t nextIntxn

// Check i f currElement has 0 , 1 or more segments
idx_t segmentCount = currElement . segments . s i z e () ;

i f (segmentCount = 0){
// The cur rent element i s an endpoint , so the loop turns around
nextIntxn = curr Intxn ;

} else i f (segmentCount == 1){
// The next i n t e r s e c t i o n po int i s on the other s i d e o f the segment
segment_t segment = currElement . segments [0] ;
i f (curr Intxn == segment . sourcePo int){

nextIntxn = segment . ta rge tPo in t ;
} else {

nextIntxn = segment . sourcePo int ;
}

} else i f (segmentCount >= 2){
// Set the next i n t e r s e c t i o n c o r r e c t l y based on the sma l l e s t ang le
double minAngle = 2 ∗ pi () ;

for (idx_t i s = 0 ; i s < segmentCount ; i s++){
segment_t segment currElement . segments [i s] ;

// Check f o r each segment i f i t connects to curr Intxn
i f (segment . sourcePo int == curr Intxn){

point_t poss ib l eNext Intxn = segment . t a rge tPo in t
} else i f (segment . t a rge tPo in t == curr Intxn){

point_t poss ib l eNext Intxn = segment . sourcePo int
} else {

continue ;
}

// Set nextIntxn to be the po int that would g ive the sma l l e s t ang le
double ang le = getAngle (poss ib leNextIntxn , currIntxn , prevIntxn) ;
i f (ang le < minAngle){

minAngle = angle ;
nextIntxn = poss ib l eNext Intxn ;

}
}

}

// Return the next i n t e r s e c t i o n
return nextIntxn ;

}

42

Chapter 3. Implementation 3.2. PhantomNodeModel

3.2 PhantomNodeModel

Ultimately, the Skeletonizer returns three set <set <idx_t>> types, containing the phantomElements,
phantomNodes and regularNodes. It should be noted that all three of these sets refer to the
original mesh, since the Skeletonizer does not make any modifications to the mesh itself.
The addition of phantom nodes and elements will occur in the PhantomNodeModel, though
the modifications that need to occur in other parts of the code to accommodate for the
added elements and nodes will also be discussed in this section.

3.2.1 createPhantomNodes

In order to easily switch between the updated mesh and the original mesh, two new types
are defined, called mappingOldToNew_t and mappingNewToOld_t. These types are defined as
set <pair <idx_t, set <idx_t>>> and set <pair <idx_t, idx_t>>, respectively. The reason
for the difference between these two types lies in the fact that an old element can have
multiple phantom elements in the updated mesh, whereas it is not possible for any element
to have multiple original elements. Below, an example is given which demonstrates the
mappings for a mesh with N original elements and P additional phantom elements. In
the example, element 1 has been replaced by phantom elements N + 0 and N + 1. The
pseudocode for the createPhantomNodes function can be found in listing 3.11.

elems
set <element_t>

0
1
2
...
N − 1
N + 0
N + 1
...
N + P − 1

mapOldToNew
set <set <idx_t>>

0
[
0
]

1
[
N + 0 N + 1

]
2

[
2
]

...
N − 1

[
N − 1

]

mapNewToOld
set <idx_t>

0 0
2 2
...

...
N − 1 N − 1
N − 0 1
N + 1 1
...

...
N + P − 1 3

43

3.2. PhantomNodeModel Chapter 3. Implementation

Listing 3.11: Pseudocode for the createPhantomNodes function. This function adds the
phantom elements and nodes to the mesh, based on the phantomElements and phan-
tomNodes that are returned by the Skeletonizer.

void createPhantomNodes

(set <element_t> elems ,
set <node_t> nodes ,
set <dof_t> do f s ,
set <set <element_t>> phantomElements ,
set <set <node_t>> phantomNodes)

{
// I n i t i a l i z e the mappings between the o ld and new elements
mappingOldToNew_t mapOldToNew ;
mappingNewToOld_t mapNewToOld ;

// Loop over the phantomElements
for (idx_t i = 0 ; i < phantomElements . s i z e () ; i++){

set <pair <node_t , node_t>> nodeMapping ;

for (idx_t j = 0 ; j < phantomNodes [i] . s i z e () ; j++){
// Create a new node on the same l o c a t i o n as the o ld node
node_t oldNode = phantomNodes [i] [j] ;
point_t oldCoords = oldNode . getCoords () ;
node_t newNode = nodes . addNode (oldCoords) ;

// Map the new node to the o ld node
nodeMapping . pushBack (makePair (oldNode , newNode)) ;

// Add the new degree s o f freedom to the s e t o f do f s
do f s . addDofs (newNode) ;

}

for (idx_t j = 0 ; j < phantomElems [i] . s i z e () ; j++){
// Get the o ld element and i t s nodes
element_t oldElement = phantomElements [i] [j] ;
set <node_t> nodes = oldElement . getNodes () ;

// Convert a l l nodes that are found in the mapping
for (idx_t in = 0 ; in < nodes . s i z e () ; in++){

i f (nodeMapping . f i nd (nodes [in]) != NULL){
nodes [in] = nodeMapping . f i nd (nodes [in]) ;

}
}

// Add a new element us ing the converted nodes
element_t newElement = elems . addElement (nodes) ;

// Add the new element to the mappings
mapOldToNew [oldElement] . pushBack (newElement) ;
mapNewToOld [newElement] = oldElement ;

}
}

// Add a l l other e lements to the mapping , mapping to themse lves
for (idx_t i = 0 ; i < elems . s i z e () ; i++){

i f (mapOldToNew [i] != NULL and mapNewToOld [i] != NULL){
mapOldToNew [i] . pushBack (i) ;
mapNewToOld [i] = i ;

}
}

}

44

Chapter 3. Implementation 3.2. PhantomNodeModel

3.2.2 updateElements and getOriginalElements

During the procedure, only a single set <element_t> is used, with set <idx_t> types to
keep track of which elements are part of the original mesh8. These set <idx_t> types will
always be called ielems, possibly with some suffix to distinguish it. The three sets that will
be used are ielems_0, ielems_i and ielems_0_i, which point to the original elements, updated
elements, and original versions of updated elements, respectively.

ielems_i can be created from ielems_0 using the updateElements function, which re-
places all elements with phantom elements when applicable. This ielems_i can be mapped
back with the getOriginalElements function, which yields the ielems_0_i set. Since ielems_i and
ielems_0_i will always have the same size, the same index can be used when looping over
the elements in the mesh, which allows for convenient switching between the original and
updated mesh whenever necessary in other procedures. The pseudocode for these two func-
tions can be found in appendix A.8. Using the mappings from section 3.2.1, the following
three sets would be created:

ielems_0
set <idx_t>

0
1
2
...
N − 1

ielems_i
set <idx_t>

0
N + 0
N + 1
2
...
N − 1

ielems_0_i
set <idx_t>

0
1
1
2
...
N − 1

3.2.3 Additional modifications

When the mesh has been modified, it is necessary to modify other parts of the code, most
importantly the parts where the stiffness matrix and external force vectors are built up.
The main distinction that needs to be made is whether or not any given variable needs to
be based on the original or updated mesh. In the implementation, all variables related to
the level set field are only defined on the original mesh, whereas variables related to the
mechanical problem are mostly defined on the updated mesh.

An overview of which variables are defined on the original mesh, and which are
defined on the updated mesh is given in table 3.2. A point of attention is the fact that Y
is based on the updated mesh, whereas Ȳ is only defined on the original mesh. This is due
to the fact that Y needs to be computed based on the strain vector ε, which is based on
the updated mesh, but in order to compute the front velocity v, the Ȳ needs to be defined
on the original mesh.

In equation 3.1, the parts of equation 2.6, which concerns the elemental stiffness
matrix and force vector, have been colored blue or green depending on whether they should
be based on the original mesh or the updated mesh, respectively. Since almost all variables
except d need to be based on the updated mesh, adapting the builder of the stiffness matrix
and external force vector to accommodate for the updated mesh is relatively straightfor-
ward. The integration domain Ωe has also been colored green to indicate that the loop

8In fact, this was also the approach that was taken in the code for section 3.1, although this was often
glossed over in the pseudocode in order to improve readability, as explained in the introduction to this
chapter.

45

3.2. PhantomNodeModel Chapter 3. Implementation

Table 3.2: An overview of which variables visual overview of the global algorithm for the
TLS_V1. This same algorithm is used for the TLS_V2 [18]

Variable Symbol Mesh
Level set field φ Original
Damage d Original
Displacement vector u Updated
External force vector fext Updated
Stiffness matrix K Updated
Strain vector ε Updated
Stress vector ε Updated
Strain energy ψ Updated
Energy release rate Y Updated
Averaged release rate Ȳ Original
Level set increment a Original
Front velocity v Original

needs to be performed over the updated elements.

Ke =

∫
Ωe

BT · D (ε , d) · B dΩ

fe =

∫
Ωe

NT · t dΩ

(3.1)

For the system of equations that is used to determine Ȳ in equation 2.18, it is more
challenging to adapt for the updated mesh. As mentioned, Y is only defined on the updated
mesh, whereas Ȳ is needed on the original mesh. In equation 3.2, the same highlighting
has been applied, indicating which parts are based on the updated mesh, and which are
based on the original mesh.

Kij =

∫
Ωd

d′(φ) Ni Nj +
κh2

lc

∂Ni

∂xk

∂Nj

∂xk
dΩ

Lij =

∫
Ωd

lc

(
∂Ni

∂xk

∂φ

∂xk

) (
∂Nj

∂xk

∂φ

∂xk

)
dΩ

fYi =

∫
Ωd

Ni d′(φ) Y dΩ

(3.2)

Even though Kij , Lij and fYi all refer to the original mesh, it is still necessary
to loop over the updated mesh rather than the original mesh. This does mean that, for
instance, the term d′(φ) is accounted for twice for a phantom element. However, since this
term is multiplied by the shape functions of these element, which consider only part of the
element, the correct result will still be returned. The same applies to any other term that
is based on the original mesh.

46

Chapter 4

Verification

In order to validate the implementation of both the Skeletonizer and the PhantomNodeModel
as explained in sections 3.1 and 3.2, two different test will be used. The first test is a
rail shear test based on Greenhalgh et al. [41, 42], which has been modeled before using
TLS_V1 by Van der Meer et al. [7]. This rail shear test is based on ASTM standard
ASTM C273-20 [43] Due to the branching and merging of damage fronts in the material,
as well as the complex crack patterns, it provides a good test for the Skeletonizer function.

The second test is based on the compact tension (CT) test from ISO standard
ISO 7539:6 [44] and ASTM standard ASTM E647-15 [45]. Although these standards are
intended for the fatigue testing of metals and alloys, they will be used in this thesis to verify
the functionality of the PhantomNodeModel by loading the specimen under pure tension. It
was also used by Van der Meer et al. [7] to demonstrate the influence of the initiation
model on the results of a TLS_V1 simulation.

4.1 Skeletonizer

For the rail shear test, the same dimensions were used as those given by Van der Meer et
al. [7], as shown in figure 4.1. For the core, the Youngs modulus, Poisson’s ratio, tensile
strength and fracture toughness are given by E = 40 kN mm−2, ν = 0.2, ft = 20 N mm−2

and Gc = 0.05 N mm−1, respectively. For the two faces, these properties are set to E =
200 kN mm−2, ν = 0.3, ft = 20 N mm−2 and Gc = 0.05 N mm−1, respectively.

The critical length has been set to lc = 0.60 mm, and an arctangent-based damage
function f(φ) used by Bernard et al. [6] will be used in this thesis as well, which is given
by

f(φ) = c2 arctan

(
c1

(
φ

lc
− c3

))
+ c4 (4.1)

where
c1 = 10

c2 =
1

arctan (c1 (1− c3))− arctan (−c1 c3)

c3 = 0.5

c4 = −c2 arctan (−c1 c3)

(4.2)

To ensure that no infinite strains occur for elements that are completely inside the
iso-lc curve, the maximum damage has been set to 0.99. This ensures that some stiffness still

47

4.1. Skeletonizer Chapter 4. Verification

remains in fully damaged elements, which prevents singularities in the nodal displacements
from occurring.

In order to compute the critical energy release rate Yc, the approach by Van der
Meer et al. [7] is followed, where Yc is given by

log(Yc) = log(Y f
c) +

φ̄

φ̄max

(
log(Y G

c)− log(Y f
c)
)

(4.3)

with

Y G
c =

Gc

2
∫ lc

0 f(φ) dφ

Y f
c =

1

2

f2
t

E

(4.4)

In equation 4.3, φ̄ refers to the averaged value of φ over the domain where 0 <
φ < lc, which can vary from 0 to 0.5 [7]. φ̄max is set to lc

3 . For the given values, the
energy-based and strength-based critical release rates evaluate to Y G

c = 0.05 N mm−2 and
Y f
c = 0.005 N mm−2, respectively.

Figure 4.1: An overview of the measurements of the model for the rail shear test. [7]

The measurements of the rail shear test are given in figure 4.1. These are the same
as those used in the FEA by Van der Meer et al. [7], although a courser mesh of three-noded
triangular elements has been used, with a typical element size of h = 0.80 mm for the two
faces, and h = 0.14 mm for the core. The meshing has been performed using Gmsh [46].

For the shrinking ball algorithm, the critical angle and initial radius have been set
to tcrit = 90◦ and rinit = 50 lc, respectively. A minimum distance between the atoms of
0.60 mm is enforced, and φ∗ = 0.5lc. The resulting iso-0 curve, iso-lc curve, atoms and
skeleton curve can be found in figure 4.2.

In figures 4.2a through 4.2e, the skeleton curve has been visualized for time steps
200, 600, 1000, 1400 and 1800, respectively. From visual inspection, it can be determined
that the atoms are generated at the correct locations by the makeAtoms function from
section 3.1.8, and that they are connected in the right manner for time steps 1 to 1400 by
the makeAtomGraph function from section 3.1.4. However, when cycles start to develop in
the iso-0 curve, issues start to appear. Since a shortest spanning tree algorithm is used, a
skeleton curve that does not contain any cycles is created. An approach that can properly
deal with damage zones that are topologically equivalent to an n-holed torus still needs to
be found.

48

Chapter 4. Verification 4.1. Skeletonizer

(a) The skeleton curve at t = 200

(b) The skeleton curve at t = 600

(c) The skeleton curve at t = 1000

(d) The skeleton curve at t = 1400

(e) The skeleton curve at t = 1800

Figure 4.2: The skeleton curve at different time steps

49

4.1. Skeletonizer Chapter 4. Verification

Furthermore, once a full crack1 has developed, the iso-0 curve starts widening
beyond 2lc. It should be mentioned, however, that this is not a shortcoming of the model,
but rather it is a result of the fact that the structure is no longer statically determinate.
In figure 4.3, the load scale factor γ is plotted as a function of the time step t. It is
obvious that at t = 1319, when the full crack has developed, the load factor increases to
unrealistic values. Since both the stresses and strains are multiplied by this load factor,
and the energy release rate is a function of these strains, the front velocity starts to grow
rapidly in locations where usually only small growth occurs.

Figure 4.3: A plot of the load factor γ as a function of t

To verify the makeElemGraph and makePhantomNodes functions, a closer inspection
of the edge cases described in section 3.1.6 is required. In particular, the treatment of
corners and junctions will be investigated, since these parts of the skeleton curve required
special attention, as mentioned in section 3.1.7. The elemGraphs for a trivial corner, a trivial
junction, and the four edge cases from figure 3.6 can be found in figure 4.4. Note that for
figures 4.4e and 4.4f, a different time step had to be used, since these situations are less
common, and were not found at t = 1500.

As demonstrated in figure 4.4, the makeElemGraph and makeShortCuts functions are
able to convert the atomGraph to an elemGraph without adding superfluous segments to the
vertices of the elemGraph. Additionally, the makePhantomNodes function is able to find the
correct phantom nodes and regular nodes for all cases that are verified. It is clear that
the presented approach works for both corners and junctions, regardless of the number of
elements that are ‘cut off’ by the shortcut.

1i.e. a crack that completely intersects the material, causing a statically indeterminate structure.

50

Chapter 4. Verification 4.1. Skeletonizer

(a) A corner without shortcuts (b) A junction without shortcuts

(c) A corner that shortcuts a single element (d) A junction that shortcuts a single element

(e) A corner that shortcuts multiple elements at
t = 1494

(f) A junction that shortcuts multiple elements
at t = 1588

Figure 4.4: A comparison of the atomGraph and the elemGraph. The edges of the atomGraph
are shown in green, whereas the segments that are stored in the vertices of the elemGraph
are shown in pink. Additionally, the phantom nodes and regular nodes that belong to the
phantom elements have been shaded red and blue, respectively. This has only been done
for one side of the crack, to avoid duplicate coloring of the nodes.

It should be noted, however, that all test cases presented so far only concern three-
edged junctions, and junctions that intersect at least two different element edges. Although
situations that do not adhere to these conditions are rare—in fact, for the presented ex-
ample, this never occurred—these edge cases should still be handled correctly by the al-
gorithm. To validate these situations, multiple simulations have been run with different
initial settings, until the two cases presented in figure 4.5 were found.

As shown, the elemGraph that is produces by the proposed implementation still
yields the correct phantom nodes and regular nodes for both cases. In figure 4.5a, it can
be observed that the junction junction element does contain two superfluous segments,
which intersect the element diagonally. These additional segments, however, do not affect
the makePhantomNodes function, since this function will always turn right whenever possi-

51

4.1. Skeletonizer Chapter 4. Verification

ble. This implies that these diagonal segments will never be traversed, and will thus not
affect the end result of the makePhantomNodes function. For the second edge case, shown
in figure 4.5b, no superfluous segments were added by the makeShortCuts function, and the
connectivity of the junction is handled as intended. Consequently, the makePhantomNodes
function yields the correct phantom nodes and regular nodes for this edge case as well.

(a) A junction that connects to four dif-
ferent elements

(b) A junction that intersects only 1 el-
ement edge

Figure 4.5: A visualization of the elemGraph for two additional edge cases.

52

Chapter 4. Verification 4.2. PhantomNodeModel

4.2 PhantomNodeModel

As stated in the introduction to this chapter, in order to validate the PhantomNodeModel,
the CT-test from ISO standard ISO 7539:6 [44] and ASTM standard ASTM E647-15 [45]
will be used. During the test, a vertical displacement will be imposed. Although these
standards are intended for the fatigue testing of metals and alloys, they will be used in this
thesis to verify the functionality of the PhantomNodeModel by loading the specimen under
pure tension. It was also used by Van der Meer et al. [7] to demonstrate the influence of
the initiation model on the results of a TLS_V1 simulation.

The same material properties as those by Van der Meer et al. [7], which in turn
are based on Li et al. [47], are used. This means that the Youngs modulus, Poisson’s
ratio, tensile strength and fracture toughness are given by E = 7 kN mm−2, ν = 0.3,
ft = 79 N mm−2 and Gc = 40 N mm−1, respectively.

The critical length has been set to lc = 2.0 mm, and the same arctangent based is
applied as in the rail shear test, with the same values for c1, c2, c3 and c4. Furthermore,
the same mixed-mode energy release rate based on equation 4.3 by Van der Meer et al. [7]
is applied, where Y G

c and Y f
c are again determined via equation 4.4, which yields Y G

c =
20 N mm−2 and Y f

c = 0.4458 N mm−2. φ̄max and φ∗ have been set to φ
3 and φ

2 , respectively.

The meshing has again be performed with Gmsh [46], using a typical element size
that ranges from h = 3.00 mm at the outer faces to h = 0.20 mm in the middle of the
specimen at the height of the horizontal. The dimensions of the CT test are given in
figure 4.6.

Figure 4.6: An overview of the measurements of the model for the CT test. [47]

In figure 4.7, the results from the CT test can be found, which has been performed
including both the Skeletonizer and the PhantomNodeModel. The iso-0 curve and skeleton
curve have been plotted along with the deformed specimen for time steps 50, 350 and 640.
After time step 640, convergence was no longer reached, and the simulation breaks down.
From visual inspection, is becomes apparent that the PhantomNodeModel is indeed able
to update the mesh based on the skeleton curve, and explicitly model the crack formation.
Additionally, issues arising due to the modification of the mesh are handled correctly when
proceeding to the next time step, which allows the displacement jump to continuously
develop over the course of the simulation.

53

4.2. PhantomNodeModel Chapter 4. Verification

(a) The iso-0 curve and skeleton curve (left) and deformation plot (right) at t = 50

(b) The iso-0 curve and skeleton curve (left) and deformation plot (right) at t = 350

(c) The iso-0 curve and skeleton curve (left) and deformation plot (right) at t = 640

Figure 4.7: A comparison of the skeleton curve and the resulting deformed specimen dur-
ing the CT test. A scaling factor of 5 has been applied to the deformations. Due to the
PhantomNodeModel, a crack formation becomes clearly visible.

54

Chapter 4. Verification 4.2. PhantomNodeModel

In order to validate the connectivity of the phantom elements and nodes that have
been generated by the PhantomNodeModel, a closer look is taken at time step t = 100.
In figure 4.8, a closeup of the crack formation at this time step has been shown, with
highlighted phantom elements. It can be observed that that the shape of the phantom
elements on either side of the crack is identical, which indicates that the elements that
are intersected by the displacement jump have indeed been replaced by phantom elements,
which are connected correctly to the regular elements, as well as one another.

Additionally, it can be seen in the right figure that the phantom elements on both
sides of the crack end up at the crack tip element, where they share a single edge. This
matches the intended behavior as described in section 2.3, and shown in figure 2.12.

Figure 4.8: A closeup of the deformed mesh at time step t = 100. The displacements have
been scaled up by a factor of 2.5, and a color gradient corresponding to the normal stress
in y-direction, σyy has been applied. Additionally, phantom elements have been colored
red, and the end point element has been shaded red.

55

4.3. Robustness Chapter 4. Verification

4.3 Robustness

In order to validate the robustness of the algorithms that have been proposed, the influence
of the mesh size on both the results and runtime of the procedure will be compared.
However, the number of time steps that is required until a full crack has formed depends
on the typical element size h, it is not possible to simply compare the same time step t for
different mesh sizes. This issue can be solved by determining the time step tcrack at which
a full crack has formed, and comparing the results at these time steps for the different
element sizes. The huge jump in the load scale factor, shown in figure 4.3 can be used to
easily pinpoint the time step at which this occurs. In table 4.1, the mesh sizes for which a
model has been run are given, along with their respective values of tcrack. For h = 0.10 mm,
no value is given, because no full crack was found after the simulation had run for more
than 42 hours. Due to time constraints, the run had to be broken off after t = 1200.

Mesh size mm tcrack
Runtime

Skeletonizer (h) PhantomNodeModel (s) Total (h)
0.10 > 1200 (0.500) (63.82) (42.39)
0.14 1319 1.004 62.11 12.65
0.20 896 0.635 20.49 3.63
0.30 584 0.210 9.80 0.89
0.40 304 0.099 4.11 0.34

Table 4.1: The mesh sizes for which a simulation has been run, and the corresponding time
steps at which a full crack is formed. For h = 0.10 mm, the run was not completed, so the
values at t = 1200 are given, rahter than t = tcrack, It should be emphasized that these
values cannot be compared directly to those of the other mesh sizes.

In figure 4.9, the runtime of the Skeletonizer has been plotted as a function of t.
In order to qualtitatively compare the run-times, they are plotted as a percentage of the
total runtime of each time step. Additionally, the rolling average over 20 time steps is used,
rather than the raw data, to remove noise from the visualization. As mentioned previously,
the time step is scaled with respect to tcrack. For h = 0.10 mm, it has been assumed that
tcrack = 2000.

Figure 4.9: The relative runtime of the Skeletonizer procedure plotted for different mesh
sizes

56

Chapter 4. Verification 4.3. Robustness

As shown in figure 4.9, the Skeletonizer procedure can take up a significant amount
of the runtime. Especially when the crack pattern grows more complicated, it can account
for up to 75 % of the runtime. However, as the mesh size decreases, the relative amount
of the runtime that is dedicated to the Skeletonizer decreases as well. This implies that the
O-complexity of the Skeletonizer is less than the O-complexity of the full procedure. As a
result, it can be said that, despite taking up a large part of the runtime for coarse meshes,
the Skeletonizer will not come to dominate the runtime of the whole procedure.

(a) The skeleton curve for h = 0.14 mm at t = tcrack = 1319

(b) The skeleton curve for h = 0.20 mm at t = tcrack = 896

(c) The skeleton curve for h = 0.30 mm at t = tcrack = 584

(d) The skeleton curve for h = 0.40 mm at t = tcrack = 304

Figure 4.10: The skeleton curve at t = tcrack for different mesh sizes

57

4.3. Robustness Chapter 4. Verification

In order to compare the results for different mesh sizes as well, the skeleton curve
has been plotted for different mesh sizes in figure 4.10. It is directly apparent that depending
on the mesh size, different crack patterns are found. In particular, the location(s) at which
the crack moves from the bottom face to the top face vary greatly. This result is not
unexpected, since the location at which the initial crack start to form is ultimately up
to chance. Once a crack has started to form, however, stress concentrations will start to
appear at the end points of the crack, which causes it to continue to grow. The resulting
energy release in turn causes relaxation throughout the rest of the material. These two
factors make it more likely for a crack to continue to grow than for new cracks to form.

Finally, the load-displacement diagrams are compared for different mesh sizes in
figure 4.11. As stated before, the results of this model are not yet physically accurate.
However, it can still be useful to validate the internal consistency of the model, by checking
the mesh sensitivity of the results. Based on visual inspection, it can be said that the
choice of mesh size does not have a large effect on the load-displacement diagrams. Only
for h = 0.40 mm, somewhat larger loads and displacements are found before snapback
occurs, though this could simply be due to the fact that an 0.40 mm mesh is relatively
coarse for this problem.

(a) The load-displacement diagram of the
rail shear test with h = 0.14 mm

(b) The load-displacement diagram of the
rail shear test with h = 0.20 mm

(c) The load-displacement diagram of the
rail shear test with h = 0.30 mm

(d) The load-displacement diagram of the
rail shear test with h = 0.40 mm

Figure 4.11: The load-displacement diagram for different mesh sizes

58

Chapter 5

Conclusion

5.1 Aim and research questions

As stated in the introduction, the aim of this thesis is to create a basis upon which an
implementation of TLS_V2 can be built. For any implementation of TLS_V2, it is neces-
sary to have an explicitly defined discontinuity in the displacement field, which is located
on the skeleton of the iso-0 curve. To accomplish this, the three research questions posed
in the introduction have been answered and will be summarized below.

How can the skeleton curve be defined for a given damage front?

In chapter 3, it has been shown that the Shrinking Ball Algorithm by Ma et al. [3] and
Peters [29] can be used to find a set of atoms that lie on the skeleton curve. This set of
atoms can then be connected using Prim’s algorithm [4], which finds the shortest spanning
tree for a given set of points. This shortest spanning tree is identical to the skeleton curve,
provided that the distance between atoms is sufficiently small. The proposed procedure is
able to handle branching and merging of damage fields well. However, for damage fields
that are not acyclical, the connectivity of the skeleton curve will not be entirely accurate.
This is due to the fact that the shortest spanning tree of a set of points will never contain
any cycles, and thus the topological properties of the iso-0 curve are not preserved.

How can a the skeleton curve be discretised for a given 2D mesh consisting of triangular
elements?

In order to link the skeleton curve to the elements it intersects, it is necessary to map
the skeleton curve onto the mesh. In a sense, this yields a discretized version of the skele-
ton curve. In chapter 3, an approach is presented that organizes the skeleton curve and
maps it onto the mesh. By essentially cutting up the skeleton curve at its junctions, and
handling each of its straight parts separately, the discretized skeleton curve can easily be
found. Junction and sharp corners are given special attention, and modified in such a way
that the discretized skeleton curve does not intersect any element edge more than once.
During the validation in chapter 4, no skeleton curves were found for which the proposed
implementation did not yield the intended results.

How can the the displacement jump be explicitly modeled on the skeleton curve?

Due to its applicability to Fibre-Reinforced Composites, the Phantom Node Method by
Hansbo and Hansbo [5, 33] is used to define the displacement jump on the skeleton curve.
This method requires the definition of phantom elements, which replace the elements that
are intersected by the skeleton curve. In chapter 3, an algorithm is proposed via which the

59

5.2. Limitations and recommendations Chapter 5. Conclusion

phantom nodes and phantom elements can be determined. This algorithm iterates over
the crack pattern from end point to end point, while turning right whenever a junction is
encountered. Provided that no cycles occur in the discretized skeleton curve, this approach
will have iterated over each edge exactly twice when it has returned to its starting point.
Furthermore, any junction where n edges meet will have been encountered n times. This
means that no additional measures need to be taken to ensure that the element located at
this junction will be replaced by n phantom elements. Again, no skeleton curves have been
found during validation for which the implementation did not produce the correct results.

Due to the modification of the mesh, it is necessary to carefully keep track of the
elements that have been added and removed. To conveniently translate from the original
mesh to the updated mesh and vice versa, two mappings have been proposed. The mapping
from the original to the updated mesh can be used to create a set containing all elements in
the updated mesh. Then, the mapping from the updated to the original mesh can be used
to create a set of the same size, but containing the corresponding original elements. These
two sets can then be used to conveniently switch back and forth between the updated and
original mesh, depending on which is needed.

5.2 Limitations and recommendations

It should be noted that the proposed algorithms have only been implemented and verified
for 2D triangular meshes. In order to apply the proposed algorithm to a quadrilateral mesh,
some modifications will be required, particularly in the way the iso-0 curve is determined
based on the level set field. However, there are no fundamental issues that would make a
general 2D implementation of the proposed algorithms impossible. Generalizing into 3D,
on the other hand, poses considerable problems that do not have a straightforward solu-
tion. Since a lot of procedures rely on the fact that a 2D crack pattern can be represented
as a graph, where each edge corresponds to (a part of) a crack. In 3D, this is not possible,
because a crack in a three-dimensional material is represented as a surface in 3D space,
rather than a line in 2D space. It is uncertain whether modifications to the proposed algo-
rithms could be applied to make them support 3D models as well, or whether completely
new solutions would need to be found.

Another shortcoming of the proposed implementation is that it does not handle
cyclical damage fields well. The first issue for cyclical damage fields occurs when the atoms
are connected using Prim’s algorithm, which does not preserve the cycles in the damage
field. In chapter 4, a solution has been proposed, which could add the missing segments
to the skeleton curve. This solution would check for each end point whether another atom
can be found in its vicinity that would form an angle of more than, for example, 135◦

with the end point atom. If this solution—or any other solution that would yield a cyclical
skeleton curve—is implemented, algorithms that follow will have to be modified as well
to cope with the cycles in the skeleton curve. Especially the iterative procedures over the
crack pattern will have to be updated to ensure that the cycles are not skipped because
they don’t contain an end point. Regardless, these modifications will be relatively small
and easy to implement. Often, this only entails a repetition of the iterative procedure for
each cycle.

Lastly, it should be mentioned that the functions and procedures that have been
proposed only form a basis upon which TLS_V2 can be built. No attention has been
payed to the shape functions of the phantom elements, correcting for the energy dissipation
through the interfacial damage progression, and including traction forces at the location of
the displacement jump. Although this thesis does demonstrate that it is possible to create

60

Chapter 5. Conclusion 5.3. Contribution to the field

a general implementation of TLS_V2, and offers a framework upon which this can be done,
the results found so far are not physically accurate. This means that, at the moment, the
work that has been presented in this thesis cannot yet be applied in practical situations. In
order to do so, the main priority should be to include the interfacial damage as a function
of the level set field in the model, and modify the expressions for the configurational force
g(s) and averaged energy release rate Ȳ (s) accordingly.

5.3 Contribution to the field

In spite of the fact that the model proposed in this thesis does not yet produces physically
accurate results, it does provide a robust basis for an implementation of TLS_V2 in 2D.
It has provided a method by which the skeleton curve can be found for arbitrary crack
patterns, and it has shown how this skeleton curve can be discretized for any given mesh.
Additionally, a method has been presented by which the displacement jump on the skeleton
curve can be explicitly modeled, and it has been demonstrated how this method can be
implemented for arbitrary crack patterns.

61

Appendix A

Program listings

Listing A.1: Pseudocode for the getIso0Elems function. This function takes the mesh as
input and returns a set of elements that are intersected by the iso-0 curve.

set <element_t> getIso0Elems

(set <element_t> elems)

{
// I n i t i a l i z e iso0Elems
set <element_t> iso0Elems ;

// Loop over a l l e lements
for (idx_t i e l em = 0 ; ie l em < elems . s i z e () ; i e l em++){

// Get the element nodes
set <node_t> nodes = elems [i e l em] . getNodes () ;

bool hasPos = fa l se ;
bool hasNeg = fa l se ;

// Check f o r each node i f the l e v e l s e t f i e l d i s p o s i t i v e or negat ive
for (idx_t inode = 0 ; inode < nodes . s i z e () ; inode++){

i f (nodes [inode] . g e tLeve lSe t () >= 0){
hasPos = true ;

} else {
hasNeg = true ;

}
}

// Add the element to iso0Elems , i f both p o s i t i v e and negat ive
i f (hasPos == true and hasNeg == true){

iso0Elems . pushBack (elems [i e l em]) ;
}

}

// Return iso0Elems
return i so0Elems

}

a

Chapter A. Program listings

Listing A.2: Pseudocode for the addSegmentsBackward function. It performs the same
function as the addSegmentsForward function in listing 3.2, but adds segments to the
front of the linestring rather than to the back. Also, it uses the getNodePosNeg function
instead of the getNodeNegPos function, to retrieve the next element. Note that, if the
addSegmentsForward function has already been excuted, this function only needs to be
run if the linestring is not a closed loop yet.

void addSegmentsBackward
(lstring_t i s o 0 ,

element_t e l emFi r s t
element_t elemLast)

{
// I t e r a t e backward un t i l no e lements are found , or the loop i s c l o s ed
while (true){

// Get the nodes where the l e v e l s e t f i e l d goes from < 0 to >= 0
pair <node_t , node_t> nodePosNeg = getNodePosNeg (e l em_f i r s t) ;
node_t neg = nodePosNeg . f i r s t ;
node_t pos = nodePosNeg . second ;

// Find the ne ighbor ing element
set <element_t> elemsNext = getNextElements (elemLast , neg , pos) ;

// [Ver i f y that elemsNext conta in s no more than 1 element]

i f (elemsNext . s i z e () == 0){
// The end o f the l i n e s t r i n g i s found , so e x i t the loop
break ;

} else {
// Add the segment to the l i n e s t r i n g
segment_t segment = elemsNext [0] . g e t I n t e r s e c t i o n () ;
i s o 0 . i n s e r t (i s o 0 . begin () , segment) ;

i f (elemsNext [0] = elemLast){
// The l i n e s t r i n g has been c losed , so e x i t the loop
break ;

} else {
// Update the f i r s t element
e l emFi r s t = elemsNext [0] ;

}
}

}
}

b

Chapter A. Program listings

Listing A.3: Pseudocode for the getNextElements function. It takes an element and two
of its nodes as input, and returns a vector containing all elements in the mesh that share
both nodes with the source element elem0
/∗
∗ getNextElements
∗
∗ Desc r ip t i on :
∗ This func t i on f i n d s the ne ighbor ing element f o r a g iven element and two
∗ o f i t s nodes
∗/

set <element_t> getNextElements

(element_t elem0 ,
node_t node1 ,
node_t node2)

{
// I n i t i a l i z e the s e t o f ne ighbor ing e lements f o r output
set <element_t> elemsNext ;

// [Check i f node_1 and node_2 are indeed element nodes]

// Get a l l p o s s i b l e ne ighbor ing e lements
set <element_t> pos s ib l eNe i ghbor s = node_1 . getElements () ;

// Check which o f the p o s s i b l e ne i gbor s a l s o conta in node_2
for (idx_t i e = 0 ; i e < pos s ib l eNe i ghbor s . s i z e () ; i e++){

// Get the nodes o f each p o s s i b l e ne ighbor
element_t poss ib leElem = pos s ib l eNe i ghbor s [i e] ;
set <node_t> nodes = poss ib leElem . getNodes () ;

// Check i f one o f the nodes i s node_2
for (idx_t in = 0 ; in < nodes . s i z e () ; in++){

i f (nodes [in] == node_2){
// I f so , add next_elem to the s e t o f ne ighbor ing e lements
elemsNext . pushBack (poss ib leElem) ;

}
}

}

// Return the s e t o f ne ighbour ing e lements
return elemsNext ;

}

c

Chapter A. Program listings

Listing A.4: Pseudocode for the getNodeNegPos and getNodePosNeg functions. These func-
tions loop around the nodes of the input element in a counterclockwise direction, and return
the pair of nodes where the level set field value goes from negative to positive, or negative
to positive, respectively. For a T3 mesh, there can be no more than 1 solution, although
this is not the case for quadrilaterals or higher-order elements

pair <node_t , node_t> getNodeNegPos

(element_t elem)

{
set <node_t> nodes = elem . getNodes () ;

// Loop over the nodes o f the element
for (idx_t in = 0 ; in < nodes . s i z e () ; in++){

// Set jn to the node a f t e r in
idx_t jn = (in + 1) % nodes . s i z e () ;

i f (nodes [in] . g e tLeve lSe t () >= 0){
i f (nodes [jn] . g e tLeve lSe t () < 0){

// Return nodes in and jn
return makePair (nodes [in] , nodes [jn]) ;

}
}

}

// [Ver i f y that a p o s s i b l e pa i r has been found]
}

pair <node_t , node_t> getNodePosNeg

(element_t elem)

{
set <node_t> nodes = elem . getNodes () ;

// Loop over the nodes o f the element
for (idx_t in = 0 ; in < nodes . s i z e () ; in++){

// Set jn to the node a f t e r in
idx_t jn = (in + 1) % nodes . s i z e () ;

i f (nodes [in] . g e tLeve lSe t () < 0){
i f (nodes [jn] . g e tLeve lSe t () >= 0){

// Return nodes in and jn
return makePair (nodes [in] , nodes [jn]) ;

}
}

}

// [Ver i f y that a p o s s i b l e pa i r has been found]
}

d

Chapter A. Program listings

Listing A.5: Pseudocode for the edgeInPattern function. This function checks if a given
edge appears in the crack pattern. It returns true if that is the case, and false if not.

bool edgeInPattern

(edge_t edge ,
set <set <idx_t>> pattern)

{
// Get the source and ta r g e t ver tex o f the edge
vertex_t source = edge . sourceVertex ;
vertex_t t a r g e t = edge . ta rgetVer tex ;

// Loop over the c racks in the pattern
for (idx_t i = 0 ; i < pattern . s i z e () ; i++){

set <idx_t> crack = pattern [i] ;

// Loop over the i n d i c e s in each crack
for (idx_t j = 0 ; j < crack . s i z e () − 1 ; j++){

// Check i f the source and ta r g e t are found
i f (source . index == crack [j] and t a r g e t . index == crack [j +1]){

return true ;
} else i f (t a r g e t . index == crack [j] and source . index == crack [j +1]){

return true ;
}

}
}

// return f a l s e i f no match i s found
return fa l se ;

}

e

Chapter A. Program listings

Listing A.6: Pseudocode for the addAllSegments and addAllSegmentsExcept functions.
These functions are used by the makeShortCuts function in listing 3.8 to add all possible
internal segments to an element. The addAllSegmentsExcept will skip any edge pointing
to the exceptElement.

void addAllSegments

(vertex_t element)

{
// Remove a l l e x i s t i n g segments
element . segments . c l e a r () ;

set <edge_t> intxns = element . edges ;

// Loop over the edges o f the element twice
for (idx_t i o = 0 ; i o < intxns . s i z e () ; i o++){

for (idx_t ip = i o+1 ; ip < intxns . s i z e () ; ip++){
segment_t elemSegment (in txns [i o] . coords , in txns [ip] . coords) ;
e lement . segments . pushBack (elemSegment) ;

}
}

}

void addAllSegmentsExcept

(vertex_t element ,
vertex_t exceptElement)

{
// Remove a l l e x i s t i n g segments
element . segments . c l e a r () ;

set <edge_t> intxns = element . edges ;

// Loop over the edges o f the element twice
for (idx_t i o = 0 ; i o < intxns . s i z e () ; i o++){

// Skip i f the except ion element i s found
i f (i o . targetElement == exceptElement) continue ;

for (idx_t ip = i o+1 ; ip < intxns . s i z e () ; ip++){
// Skip i f the except ion element i s found
i f (ip . targetElement = exceptElement) continue ;

segment_t elemSegment (in txns [i o] . coords , in txns [ip] . coords) ;
e lement . segments . pushBack (elemSegment) ;

}
}

}

f

Chapter A. Program listings

Listing A.7: Pseudocode for the getAngle function. This function calculates the angle from
point A to point B to point C, and returns a value between -pi and pi.

double getAngle

(point_t A ,
point_t B ,
point_t C)

{
// Find the ang le based on teh atan2 func t i on
double ang le = atan2 (C. y−B. y , C. x−B. x) − atan2 (B. y−A. y , B. x−A. x) ;

// Add or subt rac t 2 p i i f the ang le f a l l s ou t s id e o f the range
i f (ang le <= −pi ()){

ang le += 2 ∗ pi () ;
} else i f (ang le > pi ()){

ang le −= 2 ∗ pi () ;
}

// Return the ang le
return ang le ;

}

g

Chapter A. Program listings

Listing A.8: Pseudocode for the updateElements and getOriginalElements functions. The
updateElements function converts ielems_0 to ielems_i, and the getOriginalElements con-
verts ielems_i to ielems_0_i, as explained in the section above.

set <idx_t> updateElements

(set <idx_t> ielems_0 ,
mappingOldToNew_t mapOldToNew)

{
// I n i t i a l i z e the ie l ems_i
set <idx_t> ie lems_i ;

// Add the updated e lements from the mapping to the ie l ems_i
for (idx_t i = 0 ; i < ielems_0 . s i z e () ; i++){

set <idx_t> newElements = mapOldToNew . f i nd (ielems_0 [i]) ;

for (idx_t j = 0 ; j < newElements . s i z e () ; j++){
ie lems_i . pushBack (newElements [j]) ;

}
}

// Return the ie l ems_i
return i e l ems_i ;

}

set <idx_t> getOr ig ina lE lements

(set <idx_t> ie lems_i ,
mappingNewToOld_t mapNewToOld)

{
// I n i t i a l i z e the ielems_0_i
set <idx_t> ielems_0_i ;

// Add the o r i g i n a l e lements from the mapping to the ielems_0_i
for (idx_t i = 0 ; i < ie lems_i . s i z e () ; i++){

idx_t oldElement = mapNewToOld . f i nd (ie l ems_i [i]) ;
ielems_0_i . pushBack (oldElement) ;

}

// Return the ielems_0_i
return ielems_0_i ;

}

h

Bibliography

[1] N. Moës, C. Stolz, P.-E. Bernard, and N. Chevaugeon, “A Level Set Based Model for
Damage Growth: The Thick Level Set Approach,” International Journal for Numerical
Methods in Engineering, vol. 86, pp. 358–380, Dec 2010. doi:10.1002/nme.3069

[2] B. Lé, N. Moës, and G. Legrain, “Coupling Damage and Cohesive Zone Models with
the Thick Level Set Approach to Fracture,” Engineering Fracture Mechanics, vol. 193,
pp. 214–247, Apr 2018. doi:10.1016/j.engfracmech.2017.12.036

[3] J. Ma, S. W. Bae, and S. W. Choi, “3D Medial Axis Point Approximation Using
Nearest Neighbours and the Normal Field,” The Visual Computer, vol. 28, pp. 7–19,
Jan 2012. doi:10.1007/s00371-011-0594-7

[4] R. C. Prim, “Shortest Connection Networks and Some Generalizations,” Bell
System Technical Journal, vol. 36, pp. 1389–1401, Nov 1957. doi:10.1002/j.1538-
7305.1957.tb01515.x

[5] A. Hansbo and P. Hansbo, “A Finite Element Method for the Simulation
of Strong and Weak Discontinuities in Solid Mechanics,” Computational Meth-
ods in Applied Mechancis and Engineering, vol. 193, pp. 3523–3540, Aug 2004.
doi:10.1016/j.cma.2003.12.041

[6] P.-E. Bernard, N. Moës, and N. Chevaugeon, “Damage Growth Modeling Using the
Thick Level Set (TLS) Approach: Efficient Discretization for Quasi-Static Loadings,”
Computer Methods in Applied Mechanics and Engineering, vol. 233, pp. 11–27, Aug
2012. doi:10.1016/j.cma.2012.02.020

[7] F. P. van der Meer and L. J. Sluys, “The Thick Level Set Method: Sliding Deformations
and Damage Initiation,” Computer Methods in Applied Mechanics and Engineering,
vol. 285, pp. 64–82, Mar 2015. doi:10.1016/j.cma.2014.10.020

[8] J. A. Sethian, “Theory and Algorithms and and Applications of Level Set Meth-
ods for Propagating Interfaces,” Acta Numerica, vol. 5, pp. 309–395, Jan 1996.
doi:10.1017/S0962492900002671

[9] ——, “A Fast Marching Level Set Method for Monotonically Advancing Fronts,” Pro-
ceedings of the National Academy of Sciences of the United States of America, vol. 93,
pp. 1591–1595, Feb 1996. doi:10.1073/pnas.93.4.1591

[10] S. Osher and J. A. Sethian, “Fronts Propagating with Curvature Dependent Speed,”
Journal of Computational Physics, vol. 79, pp. 12–49, Nov 1988. doi:10.1016/0021-
9991(88)90002-2

[11] G. Allaire, F. Jouve, and A.-M. Toader, “A Level-Set Method for Shape Optimization,”
Comptes Rendus Mathematique, vol. 334, pp. 1125–1130, Apr 2002. doi:10.1016/S1631-
073X(02)02412-3

i

http://dx.doi.org/10.1002/nme.3069
http://dx.doi.org/10.1016/j.engfracmech.2017.12.036
http://dx.doi.org/10.1007/s00371-011-0594-7
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dx.doi.org/10.1002/j.1538-7305.1957.tb01515.x
http://dx.doi.org/10.1016/j.cma.2003.12.041
http://dx.doi.org/10.1016/j.cma.2012.02.020
http://dx.doi.org/10.1016/j.cma.2014.10.020
http://dx.doi.org/10.1017/S0962492900002671
http://dx.doi.org/10.1073/pnas.93.4.1591
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.1016/S1631-073X(02)02412-3
http://dx.doi.org/10.1016/S1631-073X(02)02412-3

BIBLIOGRAPHY BIBLIOGRAPHY

[12] ——, “Structural Optimization Using Sensitivity Analysis and a Level-Set
Method,” Journal of Computational Physics, vol. 194, pp. 363–393, Feb 2004.
doi:10.1016/j.jcp.2003.09.032

[13] ——, “Structural Optimization Using Topological and Shape Sensitivity via a Level-
Set Method,” Comptes Rendus Mathematique, vol. 334, pp. 1125–1130, Apr 2002.
doi:10.1016/S1631-073X(02)02412-3

[14] G. Allaire, F. Jouve, and N. van Goethem, “A Level-Set Method for the Numerical
Simulation of Damage Evolution,” International Congress on Industrial and Applied
Mathematics, vol. 1, pp. 3–22, Dec 2007. doi:10.4171/056-1/1

[15] F. P. van der Meer and L. J. Sluys, “Continuum Models for the Analysis of Progressive
Failure in Composite Laminates,” Journal of Composite Materials, vol. 40, pp. 2131–
2156, Aug 2009. doi:10.1177/0021998309343054

[16] ——, “A Phantom Node Formulation with Mixed Mode Cohesive Law for Splitting
in Laminates,” International Journal of Fracture, vol. 158, pp. 107–124, May 2009.
doi:10.1007/s10704-009-9344-5

[17] L. A. T. Mororó and F. P. van der Meer, “Combining the Thick Level Set Method
with Plasticity,” European Journal of Mechanics - A/Solids, vol. 79, Jan 2020.
doi:10.1016/j.euromechsol.2019.103857

[18] L. A. T. Mororó, “Parallel Computing with the Thick Level Set (TLS) Method,” Feb
2020, used this paper while it was still being written.

[19] F. P. van der Meer and L. J. Sluys, “A Level Set Model for Delamination – Modeling
Crack Growth without Cohesive Zone or Stress Singularity,” Engineering Fracture
Mechanics, vol. 79, pp. 191–212, Jan 2012. doi:10.1016/j.engfracmech.2011.10.013

[20] M. Latifi and L. J. Sluys, “A Thick Level Set Interface Model for Simulating Delami-
nation in Composites,” International Journal for Numerical Methods in Engineering,
vol. 111, pp. 303–324, Nov 2016. doi:10.1002/nme.5463

[21] J. A. Sethian, “Fast Marching Methods and Level Set Methods for Propagating In-
terfaces,” Proceedings of the National Academy of Sciences of the United States of
America, vol. 93, pp. 1591–1595, Feb 1996. doi:10.1073/pnas.93.4.1591

[22] K. Moreau, N. Moës, and N. Chevaugeon, “Concurrent Development of Local and
Non-Local Damage with the Thick Level Set Approach: Implementation Aspects and
Application to Quasi-Brittle Failure,” Computer Methods in Applied Mechanics and
Engineering, vol. 327, pp. 306–326, Dec 2017. doi:10.1016/j.cma.2017.08.045

[23] P. K. Saha, G. Borgefors, and G. S. di Baja, Skeletonization: Theory and Methods and
Application, 1st ed. Academic Press, Jan 2017. ISBN 9780081012918

[24] H. F. Blum, “A Transformation for Extracting New Descriptors of Shape,” in Models
for the Perception of Speech and Visual Form, W. Warthen-Dunn, Ed. MIT Press,
Nov 1967, pp. 362–380. ISBN 9780262230261

[25] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd ed. Prentice Hall,
Jan 2002. ISBN 9780201180756

[26] E. C. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter, “Differential and Topological
Properties of Medial Axis Transforms,” Graphic Models and Image Processing, vol. 58,
pp. 574–592, Nov 1996. doi:10.1006/gmip.1996.0047

j

http://dx.doi.org/10.1016/j.jcp.2003.09.032
http://dx.doi.org/10.1016/S1631-073X(02)02412-3
http://dx.doi.org/10.4171/056-1/1
http://dx.doi.org/10.1177/0021998309343054
http://dx.doi.org/10.1007/s10704-009-9344-5
http://dx.doi.org/10.1016/j.euromechsol.2019.103857
http://dx.doi.org/10.1016/j.engfracmech.2011.10.013
http://dx.doi.org/10.1002/nme.5463
http://dx.doi.org/10.1073/pnas.93.4.1591
http://dx.doi.org/10.1016/j.cma.2017.08.045
http://dx.doi.org/10.1006/gmip.1996.0047

BIBLIOGRAPHY BIBLIOGRAPHY

[27] D. Shaked and A. M. Bruckstein, “Pruning Medial Axes,” Computer Vision and Image
Understanding, vol. 69, pp. 156–169, Feb 1998. doi:10.1006/cviu.1997.0598

[28] J. H. Elder, T. Oleskiw, A. Yakubovich, and G. Peyré, “On Growth and Formlets:
Sparse Multi-Scale Coding of Planar Shape,” Image and Vision Computing, vol. 1,
pp. 1–13, Jan 2013. doi:10.1016/j.imavis.2012.11.002

[29] R. Y. Peters, “Geographical Point Cloud Modelling with the 3D Medial Axis Trans-
form,” Ph.D. dissertation, Delft University of Technology, Mar 2018.

[30] S. W. Choi, “On the Stability of Medial Axis Transform,” Journal of Applied Mathe-
matics and Computing, vol. 23, pp. 419–433, Jan 2007. doi:10.1007/BF02831988

[31] A. S. Montero and J. Lang, “Skeleton Pruning by Contour Approximation and the
Integer Medial Axis Transform,” Computers & Graphics, vol. 36, pp. 477–487, Aug
2012. doi:10.1016/j.cag.2012.03.029

[32] J. August, K. Siddiqi, and S. W. Zucker, “Ligature Instabilities in the Perceptual
Organization of Shape,” Computer Vision and Image Understanding, vol. 76, pp. 231–
243, Dec 1999. doi:10.1006/cviu.1999.0802

[33] A. Hansbo and P. Hansbo, “An Unfitted Finite Element Method and Based
on Nitsche’s Method and for Elliptic Interface Problems,” Computational Meth-
ods in Applied Mechancis and Engineering, vol. 191, pp. 5537–5552, Nov 2002.
doi:10.1016/S0045-7825(02)00524-8

[34] B. Y. Chen, S. T. Pinho, N. V. de Carvalho, P. M. Báiz, and T.-E.
Tay, “A Floating Node Method for the Modeling of Discontinuities in Com-
posites,” Engineering Fracture Mechanics, vol. 127, pp. 104–134, Sep 2014.
doi:10.1016/j.engfracmech.2014.05.018

[35] J. Mergheim, E. Kuhl, and P. Steinmann, “A Finite Element Method for the Compu-
tational Modeling of Cohesive Cracks,” International Journal for Numerical Methods
in Engineering, vol. 63, pp. 3523–3540, Feb 2005. doi:10.1016/j.cma.2003.12.041

[36] J.-H. Song, P. M. A. Arelas, and T. Belytschko, “A Method for Dynamic Crack and
Shear Band Propagation with Phantom Nodes,” International Journal for Numerical
Methods in Engineering, vol. 67, pp. 868–893, Feb 2006. doi:10.1002/nme.1652

[37] T. Rabczuk, G. Zi, A. Gerstenberger, and W. A. Wall, “A New Crack Tip El-
ement for the Phantom-Node Method with Arbitrary Cohesive Cracks,” Interna-
tional Journal for Numerical Methods in Engineering, vol. 75, pp. 577–599, Jan 2008.
doi:10.1002/nme.2273

[38] T. Chau-Dinh, G. Zi, P.-S. Lee, T. Rabczuk, and J.-H. Song, “Phantom-Node Method
for Shell Models with Arbitrary Cracks,” Computers and Structures, vol. 92-93, pp.
242–256, Feb 2012. doi:10.1016/j.compstruc.2011.10.021

[39] N. Vu-Bac, H. Nguyen-Xuan, L. Chen, C. K. Lee, G. Zi, X. Zhuang, G. R. Liu, and
T. Rabczuk, “A Phantom-Node Method with Edge-Based Strain Smoothing for Linear
Elastic Fracture Mechanics,” Journal of Applied Mathematics, vol. 2013, pp. 1–12, Jul
2013. doi:10.1155/2013/978026

[40] J.-H. Song, P. Lea, and J. Oswald, “Explicit Dynamic Finite Element Method for
Predicting Implosion/Explosion Induced Failure of Shell Structures,” Computational
Methods for Fracture, vol. 2013, pp. 1–11, Oct 2013. doi:10.1155/2013/957286

k

http://dx.doi.org/10.1006/cviu.1997.0598
http://dx.doi.org/10.1016/j.imavis.2012.11.002
http://dx.doi.org/10.1007/BF02831988
http://dx.doi.org/10.1016/j.cag.2012.03.029
http://dx.doi.org/10.1006/cviu.1999.0802
http://dx.doi.org/10.1016/S0045-7825(02)00524-8
http://dx.doi.org/10.1016/j.engfracmech.2014.05.018
http://dx.doi.org/10.1016/j.cma.2003.12.041
http://dx.doi.org/10.1002/nme.1652
http://dx.doi.org/10.1002/nme.2273
http://dx.doi.org/10.1016/j.compstruc.2011.10.021
http://dx.doi.org/10.1155/2013/978026
http://dx.doi.org/10.1155/2013/957286

BIBLIOGRAPHY BIBLIOGRAPHY

[41] C. E. Rogers, E. S. Greenhalgh, and P. Robinson, “Developing a Mode II Fracture
Model for Composite Laminates,” Jun 2008, from the 13th European Conference on
Composite Materials. url:https://extra.ivf.se/eccm13_programme/abstracts/514.pdf

[42] E. S. Greenhalgh, C. E. Rogers, and P. Robinson, “Fractographic Observa-
tions on Delamination Growth and the Subsequent Migration through the Lam-
inate,” Composites Science and Technology, vol. 69, pp. 2345–2351, Nov 2009.
doi:10.1016/j.compscitech.2009.01.034

[43] ASTM C273-20, “Standard Test Method for Shear Properties of Sandwich Core Ma-
terials,” ASTM International, Tech. Rep., 2020.

[44] ISO 7539-6:2018, “Corrosion of Metals and Alloys — Stress Corrosion Testing —
Part 6: Preparation and Use of Precracked Specimens for Tests under Constant Load
or Constant Displacement,” International Organisation for Standardization, Tech.
Rep., 2018. url:https://www.iso.org/obp/ui/#iso:std:iso:7539:-6:ed-4:v2:en

[45] ASTM E647-15, “Standard Test Method for Measurement of Fatigue Crack Growth
Rates,” ASTM International, Tech. Rep., 2015.

[46] C. Geuzalne and J.-F. Remacle, “Gmsh: A 3-D Finite Element Mesh Generator with
Built-In Pre- and Post-Processing Facilities,” International Journal for Numerical
Methods in Engineering, vol. 79, pp. 1309–1331, May 2009. doi:10.1002/nme.2579

[47] S. Li, M. D. Thouless, A. M. Waas, J. A. Schroeder, and P. D. Zavattieri, “Use of a
Cohesive-Zone Model to Analyze the Fracture of a Fibre-Reinforced Polymer-Matrix
Composite,” Composites Science and Technology, vol. 65, pp. 537–549, Mar 2005.
doi:10.1016/j.compscitech.2004.08.004

l

https://extra.ivf.se/eccm13_programme/abstracts/514.pdf
http://dx.doi.org/10.1016/j.compscitech.2009.01.034
https://www.iso.org/obp/ui/#iso:std:iso:7539:-6:ed-4:v2:en
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.1016/j.compscitech.2004.08.004

	Introduction
	Academic context
	Focus and scope
	Thesis outline

	Theory
	The Thick Level Set method
	Computing the level set field
	Computing the displacement field
	Computing the front evolution
	Extending TLS_V1 into TLS_V2

	The shrinking ball method
	The shrinking ball algorithm
	Noise reduction

	The phantom node method
	Element and node definitions
	Integration scheme

	Implementation
	Skeletonizer
	makeLinestrings
	makeClosedLoops
	makeGroupedLoops
	makeAtomGraph
	makeCrackPattern
	makeElemGraph
	makeShortCuts
	makePhantomNodes

	PhantomNodeModel
	createPhantomNodes
	updateElements and getOriginalElements
	Additional modifications

	Verification
	Skeletonizer
	PhantomNodeModel
	Robustness

	Conclusion
	Aim and research questions
	Limitations and recommendations
	Contribution to the field

	Program listings
	Bibliography

