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This article presents an advanced wind tunnel correction method to be used on the
Flying V in its experimental campaign in the Low Turbulence Wind Tunnel at TU
Delft. Due to strong vortices formed over the leading edge of the Flying V, the classical
method of images typically employed is not expected to accurately correct for wall and
strut effects, potentially hampering the development of the aircraft. The proposed
method involves comparing the Flying V’s aerodynamic performance in wind tunnel;
1.8%-scale, free-air; and full-scale, free-air conditions using RANS CFD. Simulations
are conducted under sea-level conditions at an airspeed of 50 m/s. The wind tunnel
model, mounted on a turntable, incorporates pivotal main struts and a circular aft
strut. Sixteen equispaced combinations of angle of attack and sideslip are investigated
between [0◦, 32◦], and [0◦, 25◦], respectively. Thin-plate splines are provided for data
interpolation. The current procedure is validated using external experimental and
numerical data from the F19 aircraft. The method was found to match the external
data to an acceptable level of accuracy, with an RMSE in the lift coefficient of 0.111
relative to the experiment and 0.073 relative to the CFD data. Through integral force
and moment polars, total pressure loss contours, surface pressure coefficients and
surface streamlines, the investigation reveals a significant influence of walls on leading-
edge vortices, causing premature vortex breakdown and lower stall angles in confined
conditions compared to free-air scenarios. The full-scale model exhibits resilience
against stall up to extreme angles of attack, emphasising the effect of the Reynolds
number. The angle of sideslip profoundly affects the overall flow field, particularly the
strength, coherence, and symmetry of leading-edge vortices. Classical corrections are
identified as insufficient in capturing this nuanced behaviour. An improved thin-plate
spline-based surrogate model for the corrections is presented using the current results.

Nomenclature

𝛼 = Angle of attack
𝑐 = Mean aerodynamic chord
𝛽 = Angle of sideslip
a = Vector of interpolation coefficients
c = Vector of interpolation centres
x = Attitude vector
𝜇∞ = Freestream dynamic viscosity
Ψ = Radial basis function
𝜌∞ = Freestream density
𝑏 = Aircraft span
𝐶𝑝 = Pressure coefficient
𝐶[ ] = Aerodynamic coefficient

𝐷 = Integral drag force
𝑓 = Thin-plate spline
𝐿 = Integral lift force
𝑙 = Integral rolling moment
𝑚 = Integral pitching moment
𝑛 = Integral yawing moment
𝑝 = Static pressure
𝑆 = Wing area
𝑉∞ = Freestream airspeed
𝑌 = Integral sideforce
𝑦+ = Dimensionless wall distance
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I. Introduction

The Flying V is a novel aircraft configuration conceived at Airbus Future Projcts and actively being
developed by TU Delft. By completely changing the aircraft architecture, the Flying V aims to pro-

vide a platform for significant efficiency gains, in contrast to conventional designs which have only seen
improvements in the order of 3% a year over the past decade and a half1. Unlike traditional aircraft designs
with a fuselage and separate wings, this effort integrates the wing and fuselage into a single structure.
The Flying V also incorporates a crescent wing shape, seen in Fig. 1. By reducing fuel consumption and
emissions, this innovative design could help to mitigate the impact of aviation on the environment, while
also providing a more comfortable and efficient passenger experience [1]. As research on the Flying V
progresses, the Faculty of Aerospace Engineering at TU Delft is preparing for an experimental campaign at
the Low Turbulence Wind Tunnel (LTT). The data from this experiment will help refine the understanding
of the aerodynamic performance of the aircraft, and elucidate the complex flow phenomena around the Flying V.

The presence of the wind tunnel walls and support struts may heavily influence the flow around the
test article, leading to altered data measurements. The difference in results can vary greatly depending on the
geometry of the test article and wind tunnel, as well as the testing conditions. To overcome this interference,
comprehensive wind tunnel corrections have been developed which are successful in accounting for these
effects over a large range of scenarios. Typically, the LTT employs the method of images for its corrections,
which is not valid for the flow around the Flying V since it does not account for the influence of the dominant
flow phenomenon at high angles of attack: leading edge vortices. In an effort to advance the accuracy of the
corrections and simultaneously gain insights into the Flying V’s aerodynamic behaviour, this investigation
uses computational fluid dynamics (CFD) to identify the wind tunnel effects on the Flying V. Unlike the
method of images, this approach should resolve the leading edge vortices which are formed over the suction
side of the aircraft and account for their influence on the flow field.

Figure 1. Artistic rendition of the Flying V

The article is structured as follows: in Section II, the numerical methodology is reported along with a
description of both the test article and wind tunnel. In Section III, the overarching method is validated using
experimental and numerical data from external investigations of the F19. In Section IV, the corrections are
shown, alongside an interpretation which makes use of the integral forces, moments, and predicted flow
field around the Flying V. These are compared against the classical method. Subsequently, the quality of
the thin-plate spline interpolation is evaluated, and the surrogate correction model is introduced. Finally, in
Section V, the conclusions are drawn, including limitations, recommendations, and future work. Supporting
work can be found in Appendices A to K.

1http://bit.ly/3MwSquO, accessed on 7 Nov. 2023
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II. Methodology
To identify the wind tunnel effects, three scenarios are compared, namely: the wind tunnel scenario, including
walls and struts; the sub-scale, free-air scenario, where the aircraft features the same 1.8%-scale as the
wind tunnel model; and finally the full-scale, free-air scenario. This arrangement allows for an independent
comparison of the effect of the walls and struts, and the effect of increasing the Reynolds number by a factor
of 54. Reynolds-Averaged Navier-Stokes (RANS) simulations are used to calculate the flow field around the
Flying V. Integral forces and moments are presented for a range of angles of attack, 𝛼, between 0◦ and 32◦ in
increments of 10.66◦, and a range of angles of sideslip, 𝛽, between 0◦ and 25◦ in increments of 8.33◦, both at
a chord-based Reynolds number of 1.16 × 106 and 62.7 × 106. Due to the limited number of runs, thin-plate
spline interpolation is applied to increase the resolution of the force and moment data.

A. Model Description
The current iteration of the Flying V geometry stands as the most recent update, aggregating developments in
aerodynamics, structures, flight dynamics and even interior design. Changes at this step of the design process
are expected but should not lead to any large changes in the performance of the aircraft - it can be assumed
that analyses of this iteration will capture the effects of the walls, struts and Reynolds number accurately, even
for future design revisions. Thus, the full-scale geometry illustrated in Fig. 2, should be representative of the
final test article. In Fig. 2b, the main and aft struts are visible. The mean aerodynamic chord (𝑐) of the Flying
V is referenced from previous investigations and measures 18.3 m [2]. All moments are calculated about the
model’s centre of volume, indicated as the moment reference point (MRP) in Fig. 2a.

(a) Schematic view including dimensions (b) Isometric view including support struts

Figure 2. Geometry of the Flying V

The main struts are reused from previous LTT experiments, with the tapered shroud extended upwards such
that there is a clearance of around 5 cm between them and the aircraft to minimise interference on the balance
measurements. These are fixed on the aircraft 23.2 cm outboard of the root, and 58.5 cm aft of the nose -
slightly ahead of the aircraft’s neutral point (𝑥np), calculated by Laar [3], to ensure that the assembly is stable.
Two cylindrical rods of 2 cm diameter comprise the aft rod which serve to pitch the aircraft. Their circular cross-
section is intended to minimise the frontal area, and hence sideforce under the sideslip, at the cost of increased
vortex-shedding. The fork joint between the vertical and horizontal members of the aft strut is modelled as a
cube with rounded corners of 2.5 cm radius. The horizontal member of the aft strut is rigidly connected to the
aircraft at the trailing edge of the root. Future developments of the Flying V geometry are expected to feature
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a small tail at this location which forms a natural connection point for a strut. While it may not be ideal
for this iteration of the Flying V, the struts are configured for the most likely design at the time of the experiment.

Lastly, the LTT geometry is taken from existing sources [4] and is summarised in Fig. 3a. This atmo-
spheric, closed-throat, single-return type tunnel features an octagonal test section measuring 1.80 m wide,
1.25 m tall, and 2.60 m long. For RANS simulations, it is known that both the inlet and outlet should be
placed at a significant distance from the aerodynamic body, typically at least ten body lengths from the outlet,
and slightly less from the inlet [5]. Using the test section as the domain breaks this convention and would
very likely introduce inaccuracies or artefacts into the solution. In order to obtain a sufficiently long domain,
both the contraction chamber and diffuser are included, as seen in Fig. 3b. The LTT’s test section is slightly
diverging, such that the area in the throat excluding the boundary layer is constant along its length. This taper
is carefully designed to ensure that no buoyancy corrections are needed. In the numerical simulations, the
walls are treated as inviscid and the test section walls can be made parallel to emulate this behaviour [6].
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(a) Schematic view including dimensions (b) Isometric view including support struts

Figure 3. Geometry of the LTT

B. Computational Setup and Strategy
ANSYS Fluent® 2021R2, an unstructured finite-volume cell-centred solver, is used to perform the simulations.
Across all simulations, the flow is prescribed to be fully turbulent; while it may be laminar in the wind tunnel
in certain cases, it is assumed that the flow will be adequately tripped over the surfaces since this more closely
mimics the boundary layer behaviour at larger Reynolds numbers. The curvature correction option is enabled
to prevent the erroneous build-up of turbulence viscosity in the vortex cores [7, 8]. Due to a limitation in the
meshing software, the 𝑦+ value is maintained under 10, rather than the ideal limit of 1. The effectiveness of
this method’s 𝑦+ insensitive wall treatment is evaluated in Section III. First-order spatial discretisation schemes
are used for density, momentum, turbulence kinetic energy, specific rate of dissipation, and temperature over
the first 2 000 iterations, or until the solution stabilises, after which point all spatial discretisation schemes
are changed to second-order. These are paired with the PRESTO! pressure interpolation scheme due to its
higher stability under the presence of highly rotating flows, such as those in vortex cores2. For the equation
of state, the fluid is assumed to be an ideal gas using Sutherland’s three-coefficient method to calculate the
dynamic viscosity as a function of temperature. Gradients are calculated using the Least Squares Cell-Based
method. Lastly, Fluent’s hybrid initialisation is used for the free-air simulations, while full multigrid (FMG)

2www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node331.htm, accessed on 28 Sept. 2023
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initialisation is used for the wind tunnel tests. These settings enable the simulations to be run on the available
hardware at a reasonable compromise of speed, robustness and accuracy. A data-driven approach is taken
towards choosing the turbulence model and pressure-velocity coupling which is detailed in Section III.

The domains and boundary conditions for the confined and free-air simulations differ substantially. The
free-air simulations feature a cubical domain which extends ten times the largest dimension of the Flying V in
all directions. A velocity inlet is defined on five faces, with a pressure outlet on the rear face. The velocity is
set to 50 m/s at sea-level conditions. On the other hand, the wind tunnel domain features a pressure inlet,
slip walls, a pressure outlet and no-slip aircraft and strut walls. The total pressure and temperature at the
inlet are set to 102 856 Pa and 289.94 K respectively, while the static pressure at the outlet is set to 102 623
Pa. Assuming constant mass flow, an empty tunnel and standard sea-level conditions at the throat yields an
airspeed of 2.8 m/s, 50 m/s and 19.5 m/s at the inlet, throat and outlet, respectively. Both domains are shown
in Fig. 4. The turbulence level is taken as 0.06% in the wind tunnel, slightly below its maximum level of
0.07% at 75 m/s. The free-air scenarios, on the other hand, assume a turbulence level of 0.1% [5]. Across all
simulations, a non-zero operating pressure of 101 325 Pa is used to avoid round-off errors since at these Mach
numbers (𝑀 ≈ 0.15), the changes in pressure induced by the model are small relative to the freestream static
pressure3.
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Figure 4. Schematic view of simulation domains

C. Classical Corrections
The high-fidelity wind tunnel corrections in this article are benchmarked against the classical corrections
currently in place at the LTT, which are calculated using the method of images. This method involves
emulating the true conditions inside the wind tunnel using the Laplace equation for irrotational flow. This is
done through the rigorous use of singularities (e.g., sources, sinks, doublets), with their exact distribution in
the domain being a function of the model geometry, wind tunnel geometry, and flow conditions. It is then
assumed that the solution to this system is a sufficiently close approximation of an equivalent solution to
the Navier-Stokes equations. The direct solution of the Navier-Stokes equations is not used because it is
often too expensive to obtain. Barlow et al. summarised the results from several sources using the data to
present various correction models that take as inputs the aircraft performance and geometry as well as the

3www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node331.htm, accessed on 2 Oct. 2023
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test section shape and output the changes in forces and moments [9]. This allows for the corrections to be
calculated without having to model the wind tunnel numerically with the method of images. The accuracy of
the aforementioned models pivots on two fundamental assumptions:

1) There is a large volume of irrotational flow between the rotational flows at the test article and the walls
for which the Laplace equation is a satisfactory model.

2) The boundary conditions are imposed in such a way that the solution is indeed representative of the
equivalent Navier-Stokes solution.

It is not immediately clear that both assumptions are satisfied in these wind tunnel tests. Foremost, at certain
conditions, the Flying V generates strong vortices over its leading edge, which flow downstream. This implies
there is a large volume of rotational flow in the domain, in between the rotational flows past the walls and the
aircraft. While it can be argued that this phenomenon can be modelled with vortex singularities, Barlow et al.’s
implementation of the method of images does not account for this additional vorticity. Secondly, the Flying V
features a very complex geometry, which similarly is not accounted for in Barlow et al’s implementation.
Examples include the kink between the inboard and outboard sections of the wing, the large sweep angle, and
the curved winglets. Only panel methods can take into account such complex geometries but these do not offer
superior accuracy to Navier-Stokes codes while still requiring a significant time and skill investment, albeit at
a lower computational cost [9]. RANS has the advantage of not only providing high-fidelity insights into
wind tunnel effects but, in doing so, also offering insights into the test article’s performance and surrounding
flow field. The effectiveness of the classical corrections is evaluated in Section IV.

D. Data Extraction
In Eqs. (1) to (6), the equations for the force and moment coefficients are shown. They are defined as positive
in the forward direction relative to the airspeed axes - these are obtained by rotating the aircraft body reference
axes seen in Fig. 2b around the 𝑧 axis by 𝛽, followed by a rotation around the 𝑦 axis by 𝛼. The moments
follow the same convention using the right-hand rule.

𝐷 = 𝐶𝐷

1
2
𝜌∞𝑉

2
∞𝑆 (1) 𝑌 = 𝐶𝑌

1
2
𝜌∞𝑉

2
∞𝑆 (2) 𝐿 = 𝐶𝐿

1
2
𝜌∞𝑉

2
∞𝑆 (3)

𝑙 = 𝐶𝑙

1
2
𝜌∞𝑉

2
∞𝑏𝑆 (4) 𝑚 = 𝐶𝑚

1
2
𝜌∞𝑉

2
∞𝑐𝑆 (5) 𝑛 = 𝐶𝑛

1
2
𝜌∞𝑉

2
∞𝑏𝑆 (6)

In Eqs. (1) to (6), 𝜌 and 𝑉 , relate to the density and airspeed, respectively, with the ‘∞’ subscript denoting
freestream conditions. The integral drag, sideforce, lift, rolling moment, pitching moment and yawing moment
are denoted by 𝐷,𝑌, 𝐿, 𝑙, 𝑚, 𝑛, respectively. In addition to this, the pressure coefficient is also presented over
the aircraft using the relation given in Eq. (7). The Reynolds number is calculated with respect to the mean
aerodynamic chord - its formula is shown in Eq. (8), where 𝜇∞ is the freestream dynamic viscosity of air. The
aircraft parameters used for non-dimensionalisation are summarised in Table 1. Standard sea-level conditions
are used for the density, pressure, temperature and viscosity. At an airspeed of 50 m/s, this yields a freestream
Mach number of 0.147.

𝐶𝑝 =
𝑝 − 𝑝∞
1
2 𝜌∞𝑉

2
∞

(7) Re =
𝜌∞𝑉∞𝑐

𝜇∞
(8)
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Table 1. Sub- and full-scale Flying V parameters

Parameter Symbol Scaled value Full-scale value Units

Mean aerodynamic chord 𝑐 0.338 18.3 m
Aircraft span 𝑏 1.20 65.0 m
Wing area 𝑆 0.307 902 m2

Reynolds number Re 1.16 × 106 62.7 × 106 -

E. Interpolation Method
The test matrix for this investigation is relatively coarse; it features four points in both 𝛼 and 𝛽, including
every combination of the two for a total of 16 points. Across all 16 combinations, 6 different coefficients
are calculated. Interpolation is used to obtain refinements in the coefficients within the equispaced intervals.
Thin-plate splines can accommodate the non-linearity of the results in a portable format, with minimal
artefacting.

A thin-plate spline is constructed by placing radial basis functions (RBFs) at various combinations of
the input variables. For instance, every combination of 𝛽 and 𝛼. A bilinear polynomial may be superimposed
with these basis functions to improve the quality of the interpolation. The surface is mathematically described
by the sum of these basis functions with the polynomial, each multiplied by a coefficient which can be tuned.
The coefficients are obtained by forcing the surface to lie on an arbitrary set of input data. In the case of
interpolating a coefficient of the Flying V, using as input the predicted values at the 16 combinations of
𝛼 and 𝛽, it takes 16 coefficients to describe the basis functions, with another three coefficients being used
for a bilinear polynomial component. With these coefficients, the model can easily be rebuilt retroactively.
MATLAB®, for instance, features a built-in function which takes as input these coefficients and the basis
function centres and outputs the interpolation function (see stmak)4.

The equation of a surface, 𝑓 , obtained with thin-plate spline interpolation with 19 coefficients is shown in
Eq. (9), where x is the attitude vector, [𝛽, 𝛼]; |x| is the Euclidean norm of a vector x; Ψ(𝑟) is the radial basis
function, Ψ (𝑟) = 𝑟 log 𝑟; a is the vector of interpolation coefficients; and c is the vector of interpolation
centres, taken as the combinations of 𝛽 and 𝛼. The coefficients are calculated using MATLAB®’s tpaps5.

𝑓 (x) =
𝑛=16∑︁
𝑗=1

a 𝑗 · Ψ
(
|x − c 𝑗 |2

)
︸                      ︷︷                      ︸
Scaled radial basis functions

+

Bilinear polynomial︷                     ︸︸                     ︷
a17 · 𝛽 + a18 · 𝛼 + a19 (9)

4https://nl.mathworks.com/help/curvefit/stmak.html, accessed on 23 Oct. 2023
5https://nl.mathworks.com/help/curvefit/tpaps.html, accessed on 17 Nov 2023
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III. Validation
To establish the accuracy of the current method, and to gain confidence in the quality of the results, the current
procedure is validated using external experimental and numerical data from the DLR F-19, also known as
the Stability and Control Configuration (SACCON). This particular aircraft was chosen for its geometrical
similarities with the Flying V, namely, its large leading edge sweep angle. This entails that both form strong
vortices over the leading edge at moderate to high angles of attack. This validation is intended to provide
a data-based approach towards tuning the mesh refinement and solver settings while also quantifying the
current method’s ability to predict highly vortical flows.

A. Meshing Strategy
Due to the complexity of the flow around the Flying V, the meshing strategy must be carefully considered.
RANS’s ability to predict nuanced flow structures, such as vortices, is highly dependent on the mesh resolution
and quality [10]. The DLR F19, whose geometry is shown in Fig. 5, is used as a test bench to identify the
most appropriate meshing strategy in terms of accuracy and performance.

(a) Schematic view including dimensions (b) Isometric view

Figure 5. Geometry of the DLR F19

The current version of the F19 features a truncated trailing edge which was discretised into four cells along its
width for the baseline mesh. This avoids the formation of poor-quality elements around this region, such
as highly skewed cells, or excessive volume ratios. A local sizing is added to the aircraft, such that the
maximum curvature allowed is 5◦, with a maximum size of 1.5 mm and a minimum size of 0.2 mm. A body
of influence (BOI) with a local cell size of 20 mm encases the aircraft to enhance the prediction of off-body
phenomena such as flow separation or vortices. The cell size at the inlet and outlet of the domain is fixed
at 5 m. The aircraft features 30 inflation layers with a first-layer height of 7 𝜇m. For the mesh refinement
study, the surface grid is coarsened by a factor of 2 for the coarse mesh, and refined by a factor of 1.5 for the
fine mesh. This yields a coarse mesh with 16.3 × 106 elements, a baseline mesh with 41.0 × 106 elements,
and a fine mesh with 94.9 × 106 elements. The lift, drag and pitching moment polars for each variation are
compared against the baseline alongside experimental and numerical data from Frink et al. [11] in Fig. 6.
The latter employs EDGE’s6 implementation of Detached Eddy Simulations (DES) with the Spalart-Allmaras
turbulence model and a static mesh. The inclusion of external numerical data allows for an evaluation of the
method’s implementation (verification), while the experimental data allows for an evaluation of the method’s
accuracy (validation). The exact simulation conditions for the validation study can be found in Table 5.

6https://www.foi.se/rest-api/report/FOI-R--0298--SE, accessed on 7 Dec. 2023

8

https://www.foi.se/rest-api/report/FOI-R--0298--SE


0 10 20 30

0

0.2

0.4

0.6

0.8

1

Li
ft 

co
ef

fic
ie

nt
, C

L [-
]

(a) Lift

0 10 20 30
0

0.2

0.4

0.6

D
ra

g 
co

ef
fic

ie
nt

, C
D

 [-
]

(b) Drag

0 10 20 30
0

0.02

0.04

0.06

0.08

0.1

P
itc

hi
ng

 m
om

en
t c

oe
ffi

ci
en

t, 
C

m
 [-

]

Exp.
Control
Coarse
Fine
EDGE

(c) Pitching moment

Figure 6. F19 polars for different mesh refinement levels

B. Solver Tuning
In addition to the mesh refinement study, the influence of the turbulence model, pressure-velocity coupling
scheme, and 𝑦+ value are also investigated. For the latter, the baseline mesh is adapted to feature a 𝑦+ value no
greater than ten versus the default value of one. This comparison is necessary due to the meshing software’s
inability to produce elements of sufficient quality at very low first-layer heights over highly curved surfaces,
which is the case for the Flying V at high Reynolds numbers. The turbulence model and pressure-velocity
coupling scheme are investigated to identify a compromise between speed and accuracy. The baseline case
consists of a mesh with 41.0 × 106 elements, the 𝑘 − 𝜔 turbulence model, the SIMPLE pressure-velocity
coupling scheme, and a 𝑦+ value no greater than one across the surface of the aircraft. The comparisons to
the experimental and numerical results are shown in Figs. 7 to 9.
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Figure 7. F19 polars for different turbulence models
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Figure 8. F19 polars for different pressure-velocity coupling schemes
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Figure 9. F19 polars for varying levels of maximum 𝑦+

C. Chosen Settings
The solver settings must strike a balance between performance, accuracy and robustness. The CPU time
is calculated for the entire angle of attack sweep, with each variant being benchmarked against the control
configuration. Both the CPU time and the root-mean-square error (RMSE) relative to external data are shown
in Table 2.

Naturally, there is a large sensitivity to the mesh refinement level. The coarse mesh, despite featuring
roughly 60% fewer elements, takes only a staggering 6% of the time to run. Similarly, the fine mesh features
131% more elements yet takes 193% longer to run. The coarse mesh does not yield sufficiently accurate
results, while the fine mesh almost perfectly matches the numerical work of Frink et al. Yet it still does not
perfectly replicate the experimental data despite the enormous cost. Given that the flow over the Flying V
should not be as challenging to simulate, the baseline mesh emerges as the strongest choice. Furthermore, the
Spalart-Allmaras turbulence model does not offer either a convincing performance increase or improved data
agreement with the experiment. The coupled pressure-velocity scheme yields virtually identical results to the
SIMPLE algorithm at a significantly higher cost, while the lower 𝑦+ value offers comparable results with a
reduction of over a third in computational cost. Given the meshing software’s limited ability to generate thin
elements at the wall, the latter is considered an acceptable compromise taking into account the scope and
hardware availability of the current work. Taking all of the above in mind, the baseline configuration appears
as the best choice in terms of speed, accuracy and robustness - concerning the latter, none of the simulations
show significant differences in convergence stability.

Table 2. Summary of F19 simulation performance and accuracy

Variant Nodes CPU hours Difference
RMSE in lift coefficient

wrt. exp. [11] wrt. EDGE [11]

Control 384 326 - 0.111 0.0730
Spalart–Allmaras 384 347 +6.40% 0.149 0.0949
Coarse mesh 384 19.0 -94.2% 0.0963 0.188
Fine mesh 384 955 +193% 0.104 0.0704
Coupled scheme 576 610 +87.1% 0.108 0.0733
𝑦+ ≤ 10 384 209 -35.9% 0.0949 0.0701
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D. Method Evaluation
In general, the results show reasonable agreement with the experimental data, with the drag predictions being
particularly accurate. The moment predictions are the least accurate as to be expected, since it is well known
that RANS approaches tend to struggle in this regard [11, 12]. These conclusions practically mirror those
presented by Frink et al. In fact, their numerical results show excellent agreement with the current work,
particularly the results from the finest mesh. Frink et al. found that it was ‘extremely difficult’ to model the
vortical flow over the round leading edge of the F19 [11], with the methodologies of the time (2011). Even
the same discrepancies were found in the moment coefficient predictions. Upon closer inspection of the flow
field, it seems as though the same vortical structures are present in both the experimental and numerical
results, although the dynamics of the numerical system show a very high sensitivity to changes in turbulence
model, and grid refinement. This is particularly true at high angles of attack, where the correlation between
the models is the weakest. Figure 10 shows the surface streamlines, or friction lines, over the F19’s upper
surface overlaid with the local pressure coefficient. The comparison is made between the current work, which
uses ANSYS Fluent® with the 𝑘 −𝜔 turbulence model, and NASA’s USM3D7 which in this case, implements
the Spalart-Allmaras turbulence model. The figure illustrates how even the numerical methods can feature
significant discrepancies in the triple vortex system, despite the agreement in forces and moments. It then
follows that the triple vortex system should be examined in more detail.

(a) Current work (𝛼 = 16.0◦) (b) USM3D-SA (𝛼 = 16.83◦) [11] (c) USM3D-SA (𝛼 = 17.89◦) [11]

Figure 10. F19 pressure coefficient contours and surface streamlines

Figure 11 shows the vorticity contours at various slices of constant 𝑥 along the aircraft’s length. Particle image
velocimetry (PIV) data is available from Loeser et al. [13], while reference RANS CFD data is available from
Frink et al. [11]. Two important conclusions can be drawn. The first of which is that both CFD approaches
overestimate the vorticity at the vortex cores. While the work of Frink et al. overestimates the values at the
cores and further off-body, the current work seems to overestimate at the vortex cores and within the boundary
layer. The current work features a higher flow resolution, which presumably leads to the clear development
of the triple vortex system, albeit to an exaggerated degree compared to the PIV data. The vortex system
consists of an ‘apex vortex’, formed at the apex due to the local sharpness of the leading edge; a ‘thickness
vortex’ formed further outboard due to the separation over the wing which forms near the transition from a
sharp to a round leading edge; and a ‘tip vortex’ slightly inboard of the wingtip. The challenge of predicting
these vortical flows correctly lies in accurately predicting the location of these vortices as their interaction
will largely dictate the pressure field over the leeside of the wing [14].

7https://software.nasa.gov/software/LAR-16670-GS, accessed on 11 Oct. 2023
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(a) Current work (𝛼 = 16.0◦) (b) PIV (𝛼 = 16.9◦) [13] (c) USM3D-SA (𝛼 = 16.83◦) [11]

Figure 11. F19 off-body vorticity at slices of constant 𝑥

To conclude, this section should elucidate the difficulty of predicting highly vortical flows. Despite the
underwhelming agreement with the experiment, the results show that the method is correctly implemented,
with the data in line with that of Frink et al. This should inspire confidence in the quality of the data since
the reference work coalesces efforts from the National Aeronautics and Space Administration (NASA), the
Swedish Defence Research Agency (FOI) and the Defence Science and Technology Group (DSTO). While
the flow over the Flying V is also highly vortical, the same challenges should not arise, at least not to the
same degree, in simulating its flow field. In part, this is due to the simpler geometry of the Flying V - the
vortex locations are fixed at the apex and at the wing kink. The F19 features a nuanced leading edge and
upper surface which make for a more complicated flow field. With this in mind, the results from the current
work should still be considered with some reservations, as it has been proven that RANS approaches with
static meshes are not always able to exactly model highly vortical flows. For a higher degree of confidence in
the results, it is recommended that DES are considered since they apply more detailed physics fundamentally,
and also yield a time-dependent solution, which may capture vortex breakdown more accurately. It is also
suggested that this is paired with a dynamically refining mesh - with this approach the mesh at the vortex
cores can be automatically refined based on the local solution gradients. This ensures better resolution of the
vortices at a non-prohibitive cost. Neither of these recommendations was possible to implement due to the
scale of the investigation, hardware availability and software restrictions.

IV. Results
In this section, the meshing process for the Flying V is described, followed by a discussion on the convergence
and performance of the simulations. Once the quality of the simulations is assured, the wall and strut
corrections are introduced - these are defined as the delta between the confined and free-air, sub-scale
simulations. These results are followed by the Reynolds number corrections, which similarly are defined as
the delta between the full- and sub-scale simulations, both in free-air. Following this, the classical corrections
are introduced and their accuracy is evaluated. Subsequently, the thin-plate spline interpolation applied to the
Flying V polars is discussed, including how these are used to build surrogate models for the wall and strut,
and Reynolds number corrections, respectively. Finally, the interpolation is validated with additional scaled
Flying V runs.

A. Mesh Description
The meshing process incorporates the insights from Section III. Similarly to the F19, the CAD model of the
scaled Flying V used for simulations features a truncated trailing edge. It measures 0.2 mm or approximately
0.059% of the mean aerodynamic chord. The trailing edge of the scaled aircraft is meshed such that there are
always four elements along its width. A local sizing is added to the aircraft, such that the maximum curvature
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allowed is 5◦, with a maximum size of 1.5 mm and a minimum size of 0.05 mm. A body of influence (BOI)
with a local cell size of 15 mm encases the aircraft to enhance the prediction of off-body phenomena such as
flow separation or vortices. The cell size at the walls, inlet and outlet of the LTT is fixed at 1 000 times the
smallest cell size, i.e., 50 mm. Another local sizing condition is applied to the struts such that the maximum
curvature is 5◦ and the smallest and largest sizes allowed are 0.1 mm and 1.5 mm, respectively. The surface
mesh of the scaled Flying V is shown in Fig. 12a - the grid for the full-scale aircraft is identical but refined by
a factor of 2.5. The struts and aircraft are modelled as no-slip walls. Therefore, 30 inflation layers are added
with a first-layer height of 70 𝜇m for the scaled scenarios, and 100 𝜇m for the full-scale scenario. Due to the
larger domain of the free-air simulations, these feature a cell size at the domain walls of 104 times the smallest
element, i.e., 5 m and 150 m for the scaled and full-scale scenarios, respectively. The volume mesh is then
populated with poly-hex cells for all scenarios, producing a scaled mesh with 35.3 × 106 cells, wind tunnel
meshes with 54.5 × 106 cells on average, and a full-scale mesh with 144 × 106 cells. For a visual inspection
of the meshes, refer to Appendix B. Each configuration in the wind tunnel required a separate mesh meaning
that, in total, 18 meshes were used. All 18 meshes used feature an average inverse orthogonality greater than
0.8 and a minimum value no smaller than 0.05.

(a) Surface mesh (b) Cut volume mesh

Figure 12. Scaled Flying V mesh showcase

B. Simulation Convergence
The forces at each iteration are shown in Fig. 96. The total forces are included in Figs. 96a to 96c, with their
normalised counterparts in Figs. 96d to 96f. The normalisation is done with respect to the final, or converged
value. As a result of vortex shedding on the circular struts, oscillations are present in the normalised solution
of the wind tunnel simulations. Their amplitude is never concerning, reaching a maximum of 6% of the
converged value at an angle of attack of 0◦, where the absolute value is small, and around 0.1% of the solution
for the remaining simulations. Across all simulations, the amplitudes are too small to be considered relevant
and therefore are not shown in the data.
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The effect of changing the order of the discretisation scheme is very apparent. This change can be seen
when the solution jumps violently within the first 2 000 iterations. Upon inspection of the last 100 iterations
using the first- and second-order discretisation, it is clear that the solution stabilises at significantly different
values - the difference at times is in the order of 20%. Not only is there a large delta in the forces between the
discretisation schemes, but the first-order schemes often do not appear to predict any vortex shedding, which
is a major phenomenon of the flow field. This dual-scheme method successfully accelerates convergence
without compromising accuracy.

With the above information, it can be concluded with a high degree of confidence that the simulations are
indeed converged. The residuals - see Fig. 95 - and solution variables are all stable during at least the last 100
iterations, with any changes remaining below 0.1% of the converged value and the flow field exhibiting no
non-physical artefacts.

C. Simulation Performance
All simulations were run on AMD EPYC™ 7643 processors featuring 48 cores and DDR4 memory, which
was allocated proportionally to the total number of nodes used. For each scenario, Table 3 shows the total
CPU hours taken for each full test matrix, as well as the average time taken per iteration and per run in
seconds. Naturally, the full-scale simulations are the most expensive due to the large grid size, followed by
the wind tunnel and scaled scenarios.

Table 3. Simulation performance for Flying V runs

Scenario CPU hours Seconds/iteration Seconds/run Nodes

Scaled 4 860 2.98 5 690 192
Wind tunnel 18 600 2.17 8 700 480
Full-scale 36 000 5.48 14 100 576

D. Wall and Strut Effects
The walls and struts act to confine the flow, artificially increasing the airspeed the test article encounters
relative to the free-air condition. This in effect means the model appears to produce more lift and drag than
expected as evidenced by the corrections in Fig. 13: both the lift and drag corrections at low to moderate
angles of attack are negative. At high angles of attack, the leading edge vortices dominate the flow field.
The walls confine their vorticity and increase their suction. As these flow downstream and their pressure
normalises back to the freestream pressure, they encounter a higher adverse pressure gradient than the free-air
scenario. Under the current conditions, this higher adverse pressure gradient causes the vortices to break
down. Since these vortices tend to stabilise the flow over the leeside of the wing, their absence causes most
of the outboard wing to stall, advancing the onset of separation and stall to a lower angle of attack. From
Fig. 13, it can be seen that the highest angles of attack generally do not follow the same trend as the rest of
the data points. Furthermore, this change to the vortex system has a vast impact on the moments felt by the
model. Since the vortices have a strong stabilising effect on the pressure over the leeside, any disturbance to
them will change the pressure distribution over the aircraft. Small changes in the distribution may not affect
the forces greatly, but they may shift the location of the resultant aerodynamic force, thus greatly affecting
the moments experienced by the aircraft. This is clearly visible in Fig. 13e, where the difference in pitching
moment between the confined and free-air simulations is highly irregular, with no clear pattern emerging
presumably due to unstable vortices.
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Figure 13. Corrections for wall and strut effects

Consider the leading edge vortices over the Flying V in symmetric conditions. In free-air, these travel
downstream over the aircraft, creating a ‘streak’ of low pressure on the upper surface, e.g. in Fig. 46. In the
wind tunnel, the presence of the walls decreases the pressure at their cores and promotes premature breakdown,
thereby generating higher pressures near the aft of the aircraft. One may not expect this new distribution
to yield a substantially different magnitude of the resultant force, but its location would very likely shift.
This is the underlying mechanism that is dominating the moments, despite relatively small changes to the forces.

The angle of sideslip has a profound impact on the performance of the Flying V. It appears as though
sideslip inversely affects the strength and coherence of the left and right leading edge vortices. With the flow
reaching the wing from the right, the right wing effectively features less sweep, with the opposite being true
for the left wing. This, in turn, reduces the strength of the right vortex. Without this stabilising factor, the
flow over this section of the wing is more susceptible to stall, as evidenced by the pressure loss contours in
Appendix G. The right wing at times is completely stalled, while the left wing features mostly attached flow.
Under high angles of sideslip, the left vortex appears stronger and to flow further downstream often showing
few signs of breakdown. The data shows a small separation region just aft of the left leading edge which is
subsequently controlled by the left vortex. This is true across all three conditions, which contributes to a
significant reduction in drag coefficient at high angles of attack. Due to the severe stall on the right wing
across all conditions, the lift generation at high angles of sideslip is moderately hampered. For the full-scale
aircraft, the stall is concentrated towards the outboard wing only. Due to the higher Reynolds number, this is
also the only condition which does not show signs of stall in the sideforce polars. Due to the asymmetric stall,
the moments are all greatly affected by the angle of sideslip, although to different degrees between the three
conditions. While the scaled and full-scale predictions suggest that the pitching and yawing moments are still
increasing beyond an angle of attack of 32◦, the wind tunnel moment predictions appear to reach a maximum
at 21.33◦. The exact mechanism behind this discrepancy is unclear.
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E. Reynolds Number Effects
At the full-scale Reynolds number, there is a large discrepancy in the data sets at high angles of attack and
sideslip. The mechanism behind the discrepancy is relatively simple, but its effect is profound. The full-scale
aircraft features a proportionally thinner boundary layer, with an increased level of turbulence and higher
resistance to adverse pressure gradients. As evidenced by the pressure loss contours such as Fig. 62, the onset
of separation is significantly delayed in the full-scale aircraft. This is clearly visible in Fig. 14, where the
corrections suggest that the aircraft should, in fact, reach substantially higher maximum forces and moments
at a lower drag penalty.
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Figure 14. Corrections for Reynolds number effects

A consequence of the higher turbulence levels within the boundary layer is higher pressure loss under attached
conditions. Take for instance Fig. 62: there is a visible wake over most of the wing in both of the sub-scale
scenarios, while this is only true for the outboard wing of the full-scale aircraft. The pressure loss over the
leading edge of the full-scale aircraft is also noticeably higher. The same logic applies to the vertical tail,
hence the delayed stall in sideforce in Fig. 37. This is also confirmed by the pressure coefficient contours and
the surface streamlines in Fig. 45. The full-scale aircraft maintains a strong pressure peak along its right
leading edge, while in both sub-scale models, the pressure is close to ambient - an indication of stall. The
conclusion that can be drawn from the data is unsurprising - the full-scale aircraft is more resistant to stall.

F. Comparison with Classical Corrections
The classical corrections shown in Fig. 15 do not reflect the findings of the numerical results from Fig. 13 to an
acceptable level of accuracy. Foremost, the classical corrections are not able to account for the non-linearities
arising at extreme attitudes. Since the corrections are a function of the lift generated by the confined aircraft,
among other variables, they assume that the same phenomena are taking place in the wind tunnel as in
free-air. As a result, both the general shape of the correction curves and the magnitudes are remarkably
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incorrect. The results are only comparable in trivial scenarios, such as the rolling moment, yawing moment
and sideforce coefficients at symmetric conditions. It can therefore be deduced that the classical corrections
cannot accurately account for the complex flow phenomena over the Flying V to a sufficient degree of accuracy,
likely because the underlying assumptions are not valid.
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Figure 15. Classical corrections

G. Data Interpolation
As discussed in Section II, thin-plate spline interpolation is applied to the results in order to overcome the
relative sparsity of the test matrix. This method is applied to the forces and moments rather than to the
correction factors because the latter is highly scattered, meaning that any interpolation attempts would likely
return invalid results. Across the three scenarios, for each of the six force and moment coefficient polars,
all 19 interpolation coefficients, a, are documented in Appendix D, for parties interested in reproducing the
results retroactively. An example of the interpolation is shown for the sub-scale drag coefficient in Fig. 16.

Take, as an example, the free-air, sub-scale and wind tunnel drag coefficients. Subtracting the latter
from the former yields the correction factors in terms of 𝛼 and 𝛽 for the effect of the walls and struts. Applying
the same logic to the full- and sub-scale coefficients would yield a correction contribution for the influence of
the Reynolds number.

𝐶𝐷free-air, full-scale = 𝐶𝐷wind tunnel + Δ𝐶𝐷walls︸                    ︷︷                    ︸
𝐶𝐷free-air,sub-scale

+ Δ𝐶𝐷Re (10)

By using the splines for the coefficients, this approach effectively provides a surrogate model for the wind
tunnel corrections for any combination of 𝛽 and 𝛼, requiring only three inputs: the angle of attack, the angle
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of sideslip and the measured coefficient of interest. Both correction contributions - for the effect of the walls
and struts and for the effect of the Reynolds number - can be accounted for independently. The interpolation
centres, c, are the same as for the coefficient interpolations, while the interpolation coefficients, a, are shown
in Appendix E.
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Figure 16. Thin-plate spline surface for sub-scale drag coefficient including validation points

To evaluate the accuracy of the interpolation, four additional runs are carried out on the scaled aircraft. The
four attitudes are randomly distributed while avoiding proximity to existing data points. The validation
attitudes are shown in Table 4a. The thin-plate splines for the scaled conditions are evaluated at these attitudes
and are compared to the RANS simulations. The RMSE across all four simulations is documented in Table 4b
for each coefficient. The interpolation errors can also be visualised in Appendix I.

While the interpolation shows excellent agreement at low angles of attack and sideslip, the non-linearities
at high angles become hard to predict with such coarse data and consequently, the accuracy of the data
fitting suffers. The surfaces for the full-scale aircraft, for instance, feature a much simpler topology with
less curvature, since there are no signs of stall. This makes them much better candidates for interpolation.
Generally speaking, the interpolation yielded the best results for the drag, lift and yawing moment. Their
splines may be used with a high degree of confidence across the entire test matrix. Since the remaining
coefficients are much more sensitive to stall, their interpolation should be considered with caution, particularly
close to extreme attitudes.

Table 4. Summary of interpolation validation

(a) Attitude combinations for validation

Run Angle of sideslip Angle of attack

1 9◦ 27◦

2 2◦ 0◦

3 21◦ 18◦

4 7◦ 13◦

(b) Interpolation error

Coefficient RMSE

Drag 0.00549
Sideforce 0.00400

Lift 0.00897
Rolling moment 9.22 × 10−4

Pitching moment 0.00862
Yawing moment 4.37 × 10−4
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V. Conclusion
The current work presents high-fidelity corrections for wind tunnel effects over the Flying V through the
use of state-of-the-art RANS codes. The analyses elucidate the complex vortical flow structures around the
aircraft at high angles of attack and provide insights into their sensitivities to the presence of the walls and
struts, as well as Reynolds number. Namely, the presence of the walls confines the vorticity at the vortex
cores, creating stronger suction and a consequently more abrupt adverse pressure gradient near the aft of the
aircraft. This, in turn, is reflected in the force polars to a moderate degree: the onset of stall is advanced under
confined conditions. The moments are significantly and chaotically affected, with the corrections featuring
large magnitudes with no clear trend. The increase in Reynolds number has the opposite effect: it stabilises
the boundary layer over the aircraft, making it more resilient to stall. The flow remains attached over most of
the aircraft across the entire attitude range in full-scale conditions, with the vortices being more concentrated.
Presumably due to higher levels of turbulence in the boundary layer, higher pressure loss is also observed
over the surface. Lastly, the angle of sideslip acts to increase the severity of stall, when present, on the
right wing (for positive angles), while greatly stabilising the flow on the left wing. The left vortex becomes
smaller in diameter but extends further downstream to cover more of the wing. As a result, even at extreme
attitudes the flow over the left wing has a strong tendency to remain attached, leading to decreased drag and
lift at high angles of attack relative to the low sideslip conditions. The moments show a high sensitivity to
the sideslip due to the significant changes to the pressure distribution. The free-air predictions suggest that
the moments have not reached a maximum value at 32◦ of angle of attack, unlike the confined simulations.
The classical corrections cannot, to any capacity, predict any of the complex interactions described above.
These corrections did not match either the sign or the order of magnitude of the CFD corrections across
most of the test matrix, thereby motivating such an involved procedure for the prediction of corrections for
wind tunnel effects. As an alternative to the classical method, a thin-plate spline-based surrogate model of
the corrections is presented which returns corrections within the equispaced points provided by the simulations.

The main limitations of the current work are primarily concerned with hardware and software constraints.
Foremost, the software suite available strongly restricted the maximum aspect ratio at the walls, thereby
constraining the dimensionless wall distance. This parameter has been proven to have a significant impact
on the prediction of separated flows. While the validation suggests that this effect is minimal, it is strongly
recommended that future RANS analyses of the Flying V revise the meshing procedure. On a hardware-related
note, the accuracy of the results would have benefited from both finer discretisation and more accurate physics
modelling. More specifically, DES and dynamic mesh refinement appear as strong candidates to improve the
fidelity of the data. The former uses a different approach towards solving turbulence which should capture
more subtleties in the flow field, and its unsteady approach should more accurately predict vortex breakdown
and its effect on the rest of the flow. The latter ensures that the mesh is refined and coarsened locally, based
on solution gradients such that the resources can be allocated more efficiently, making the most out of the
available hardware. In both cases, more hardware power is required, and dynamic mesh refinement was not
available at the time of writing. Finally, the thin-plate spline interpolation showed good agreement with
the validation data, however, the highly non-linear nature of the flow over the Flying V at high angles calls
for more data points to be collected. No interpolation method is suggested to improve the quality of the
interpolation.

This article puts forth convincing evidence that RANS not only gives a better understanding of a test
article’s aerodynamic performance, both in confined and free-air conditions, but also gives higher confidence
in the understanding of wall, strut and Reynolds number effects at a significant, yet reasonable computational
cost. Such an approach is strongly recommended for similar investigations provided that similar or more
powerful hardware is available.
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Appendix

A. F19 Validation Data

Table 5. F19 simulation conditions

Variable Symbol Value Units

Density 𝜌∞ 1.1698 kg/m3

Airspeed 𝑉∞ 50.8 m/s
Pressure 𝑝∞ 97 767 Pa
Temperature 𝑇∞ 291.2 K
Dynamic viscosity 𝜇∞ 18.03 × 10−6 Pa · s
Reference chord 𝑐ref 0.479 m
Reference area 𝑆ref 0.77 m2

Reynolds number Re 1.58 × 106 -
Mach number 𝑀 0.149 -
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B. Flying V Meshes

Figure 17. Overview of scaled volume mesh

Figure 18. Overview of scaled volume mesh - cut along symmetry plane
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Figure 19. Overview of scaled volume mesh - zoom on body of influence

Figure 20. Perpendicular view of scaled volume mesh cut along symmetry plane - far zoom
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Figure 21. Perpendicular view of scaled volume mesh cut along symmetry plane - close zoom

Figure 22. Perpendicular view of scaled volume mesh cut at outer wing - close zoom
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Figure 23. Overview of scaled and wind tunnel surface mesh

Figure 24. Overview of scaled and wind tunnel surface mesh - zoom on forward section
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Figure 25. Overview of scaled and wind tunnel surface mesh - zoom on aft section

Figure 26. Overview of scaled and wind tunnel surface mesh - zoom on nose
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Figure 27. Overview of scaled and wind tunnel surface mesh - zoom on tail

Figure 28. Overview of scaled and wind tunnel surface mesh - zoom on wingtip
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Figure 29. Perpendicular view of scaled mesh inflation layers at centreline

Figure 30. Perpendicular view of scaled mesh inflation layers at centreline - zoom on leading edge
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Figure 31. Perpendicular view of scaled mesh inflation layers at centreline - zoom on trailing edge

Figure 32. Perpendicular view of wind tunnel volume mesh (𝛼 = 0◦, 𝛽 = 0◦) cut along symmetry plane
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Figure 33. Perpendicular view of wind tunnel volume mesh (𝛼 = 0◦, 𝛽 = 0◦) cut along symmetry plane -
zoom on aft strut

Figure 34. Perpendicular view of wind tunnel volume mesh (𝛼 = 0◦, 𝛽 = 0◦) cut along symmetry plane -
zoom on upper section of right main strut
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Figure 35. Perpendicular view of wind tunnel volume mesh (𝛼 = 0◦, 𝛽 = 0◦) cut along symmetry plane -
zoom on lower section of right main strut
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C. Force and Moment Polars
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(d) Wind tunnel (corrected)

Figure 36. Flying V drag coefficient polars
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(d) Wind tunnel (corrected)

Figure 37. Flying V sideforce coefficient polars
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(d) Wind tunnel (corrected)

Figure 38. Flying V lift coefficient polars
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(d) Wind tunnel (corrected)

Figure 39. Flying V rolling moment coefficient polars
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(d) Wind tunnel (corrected)

Figure 40. Flying V pitching moment coefficient polars
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(d) Wind tunnel (corrected)

Figure 41. Flying V yawing moment coefficient polars
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(f) Yawing moment

Figure 42. LTT strut force and moment coefficient polars
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Table 6. Scaled Flying V interpolation validation data

Run
Interpolated coefficient

Drag Sideforce Lift Rolling moment Pitching moment Yawing moment

1 0.2327 0.0080 0.6321 0.0133 -0.0179 -0.0130
2 0.0088 -0.0029 -0.0179 0.0003 0.0200 -0.0011
3 0.0735 0.0078 0.3650 0.0290 0.0200 -0.0138
4 0.0430 -0.0080 0.3414 0.0101 -0.0368 -0.0039
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D. Thin-Plate Spline Coefficients

c (𝛽, 𝛼) =



0◦ 0◦

0◦ 10.66◦

0◦ 21.33◦

0◦ 32◦

8.33◦ 0◦

8.33◦ 10.66◦

8.33◦ 21.33◦

8.33◦ 32◦

16.66◦ 0◦

16.66◦ 10.66◦

16.66◦ 21.33◦

16.66◦ 32◦

25◦ 0◦

25◦ 10.66◦

25◦ 21.33◦

25◦ 32◦



(11)


ascaled

awind tunnel

afull-scale


⊺

𝐶𝐷

=



5.2944 × 10−5 5.0290 × 10−5 3.6956 × 10−5

−1.0637 × 10−4 −1.3080 × 10−4 −6.2490 × 10−5

−4.3421 × 10−5 −6.6652 × 10−7 −7.8447 × 10−5

1.7333 × 10−5 9.2261 × 10−6 2.3648 × 10−5

2.7131 × 10−5 3.3990 × 10−5 2.3242 × 10−5

−2.6936 × 10−5 −4.9669 × 10−5 1.2130 × 10−6

2.8613 × 10−5 1.0740 × 10−4 −4.0007 × 10−5

1.1102 × 10−4 2.8045 × 10−5 1.6885 × 10−4

4.0157 × 10−6 1.5067 × 10−5 7.4955 × 10−6

−1.0885 × 10−5 −3.6594 × 10−5 −3.9519 × 10−5

−1.4765 × 10−5 −1.2169 × 10−5 2.5033 × 10−5

−1.9501 × 10−5 9.9937 × 10−6 −5.8623 × 10−5

5.2188 × 10−5 5.1843 × 10−5 4.3261 × 10−5

−1.6012 × 10−5 −4.1470 × 10−5 −9.1178 × 10−6

−5.8726 × 10−5 −3.0920 × 10−5 −1.9508 × 10−5

3.3730 × 10−6 −3.5623 × 10−6 −2.1991 × 10−5

−1.6029 × 10−3 −1.3001 × 10−3 −1.8576 × 10−3

8.1568 × 10−3 6.5849 × 10−3 7.1378 × 10−3

−3.1933 × 10−1 −1.8520 × 10−1 −2.8673 × 10−1



(12)
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
ascaled

awind tunnel

afull-scale


⊺

𝐶𝑌

=



1.0579 × 10−5 2.2901 × 10−5 3.3635 × 10−5

1.7823 × 10−5 9.6539 × 10−6 1.9944 × 10−5

1.2143 × 10−6 1.5508 × 10−5 3.9851 × 10−5

1.2832 × 10−5 −5.5646 × 10−6 −9.9037 × 10−5

1.1140 × 10−6 −1.9918 × 10−5 −1.4531 × 10−5

−2.8085 × 10−5 −2.1446 × 10−5 −3.0523 × 10−5

−1.3507 × 10−5 −3.6583 × 10−5 −1.2421 × 10−5

−3.3051 × 10−5 2.5270 × 10−5 5.9504 × 10−5

1.0733 × 10−5 1.4466 × 10−5 1.0806 × 10−5

−3.0291 × 10−5 −1.8995 × 10−5 2.3176 × 10−5

8.5630 × 10−5 7.6308 × 10−5 −3.1469 × 10−5

−4.6340 × 10−5 −9.3883 × 10−5 1.0238 × 10−5

7.0439 × 10−6 6.1690 × 10−6 −1.5472 × 10−6

−4.4551 × 10−5 −5.7869 × 10−5 −1.8343 × 10−5

8.4932 × 10−6 5.1246 × 10−5 −6.9531 × 10−5

4.0365 × 10−5 3.2736 × 10−5 8.0247 × 10−5

4.0803 × 10−4 3.2621 × 10−5 2.5573 × 10−3

7.0007 × 10−4 3.4995 × 10−4 2.5966 × 10−3

−7.5802 × 10−2 −5.5565 × 10−2 −1.7439 × 10−1



(13)


ascaled

awind tunnel

afull-scale


⊺

𝐶𝐿

=



−5.7081 × 10−5 −1.6920 × 10−4 −8.5425 × 10−5

−6.0031 × 10−5 1.0423 × 10−4 5.3275 × 10−5

1.3553 × 10−4 1.5214 × 10−4 9.2603 × 10−5

−1.2291 × 10−4 −1.7355 × 10−4 −1.6748 × 10−4

−3.0109 × 10−6 −7.7319 × 10−5 −2.9924 × 10−5

−2.3543 × 10−5 5.3812 × 10−5 5.5182 × 10−5

8.3721 × 10−5 1.3298 × 10−4 −4.8393 × 10−5

1.7113 × 10−4 7.8872 × 10−5 2.4913 × 10−4

−4.1926 × 10−5 −5.9076 × 10−5 −4.3224 × 10−5

7.1271 × 10−6 1.7086 × 10−5 −3.5337 × 10−6

6.7360 × 10−5 6.8476 × 10−5 5.1222 × 10−5

−1.7566 × 10−4 −1.4400 × 10−4 −1.3535 × 10−4

6.7792 × 10−5 1.3951 × 10−4 2.6137 × 10−5

−4.4438 × 10−5 −1.7880 × 10−4 7.3989 × 10−5

5.7805 × 10−5 1.5186 × 10−4 −5.6072 × 10−5

−6.1865 × 10−5 −9.7013 × 10−5 −3.2128 × 10−5

−4.1928 × 10−3 −3.3224 × 10−3 −2.5735 × 10−3

1.7830 × 10−2 1.5918 × 10−2 2.1515 × 10−2

5.7557 × 10−1 1.0830 5.3757 × 10−1



(14)
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
ascaled

awind tunnel

afull-scale


⊺

𝐶𝑙

=



1.4102 × 10−5 1.4269 × 10−5 2.7058 × 10−5

−1.0977 × 10−5 −2.3357 × 10−5 −2.1142 × 10−5

−3.0545 × 10−6 7.1167 × 10−6 7.9771 × 10−6

−1.1637 × 10−5 −1.2657 × 10−5 −2.7352 × 10−5

−8.1201 × 10−6 −5.8847 × 10−6 −1.5125 × 10−5

1.3926 × 10−5 3.6863 × 10−5 2.4486 × 10−5

−1.9016 × 10−5 −3.8502 × 10−5 −2.2682 × 10−5

3.6097 × 10−5 4.9319 × 10−5 3.3554 × 10−5

4.5622 × 10−6 −7.9287 × 10−6 −7.9779 × 10−7

−1.2839 × 10−5 −7.9842 × 10−6 8.4740 × 10−6

2.5952 × 10−5 2.0558 × 10−5 −1.3432 × 10−5

−2.8746 × 10−5 −4.4337 × 10−5 5.6579 × 10−6

−2.2881 × 10−5 −1.8046 × 10−5 −3.3761 × 10−5

1.7635 × 10−5 1.4303 × 10−5 3.0641 × 10−5

1.7630 × 10−5 2.3932 × 10−5 1.1073 × 10−5

−1.2632 × 10−5 −7.6641 × 10−6 −1.4629 × 10−5

3.8315 × 10−4 5.7555 × 10−4 9.8471 × 10−4

1.7604 × 10−4 1.9964 × 10−4 8.5723 × 10−4

6.5520 × 10−2 5.9745 × 10−2 5.7274 × 10−2



(15)


ascaled

awind tunnel

afull-scale


⊺

𝐶𝑚

=



3.9064 × 10−5 7.4163 × 10−5 8.3145 × 10−5

−3.2925 × 10−5 −1.1095 × 10−4 −8.8254 × 10−5

2.3792 × 10−5 7.9886 × 10−5 −2.3813 × 10−6

1.2799 × 10−5 −7.1885 × 10−6 7.4149 × 10−5

1.7817 × 10−5 3.0852 × 10−5 3.0517 × 10−5

1.8505 × 10−5 −2.4742 × 10−5 −6.4303 × 10−5

−1.0590 × 10−4 −8.1892 × 10−5 3.8681 × 10−5

−1.1096 × 10−5 2.1984 × 10−6 −1.2557 × 10−4

4.7157 × 10−5 6.1065 × 10−5 4.2303 × 10−5

−8.8340 × 10−5 −1.4542 × 10−4 −2.1616 × 10−5

3.2460 × 10−5 9.3278 × 10−5 −3.2129 × 10−5

4.1890 × 10−5 3.0501 × 10−5 5.2835 × 10−5

−4.1748 × 10−5 −6.1003 × 10−5 −4.0879 × 10−5

−6.4191 × 10−6 3.3272 × 10−5 −4.1378 × 10−5

8.1197 × 10−5 8.9272 × 10−5 8.1783 × 10−5

−2.8251 × 10−5 −6.3294 × 10−5 1.3099 × 10−5

1.7684 × 10−3 1.3986 × 10−3 2.2566 × 10−3

−4.6686 × 10−4 −2.0422 × 10−3 −9.1021 × 10−4

−1.9317 × 10−1 −1.4937 × 10−1 −3.3117 × 10−1



(16)
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
ascaled

awind tunnel

afull-scale


⊺

𝐶𝑛

=



−2.4072 × 10−6 3.9663 × 10−6 −2.5155 × 10−6

−2.5834 × 10−6 −5.1150 × 10−6 −1.6760 × 10−7

−1.4932 × 10−7 3.4782 × 10−6 −1.6495 × 10−5

2.0450 × 10−5 1.7591 × 10−5 3.2944 × 10−5

−5.1550 × 10−7 −8.1678 × 10−6 4.5218 × 10−7

3.9815 × 10−6 3.4561 × 10−6 −4.7304 × 10−6

−2.5580 × 10−6 3.7870 × 10−6 3.2655 × 10−5

−2.9778 × 10−5 −3.9442 × 10−5 −4.8769 × 10−5

−7.0993 × 10−6 −7.8334 × 10−6 −4.2022 × 10−6

6.0578 × 10−9 6.1204 × 10−6 −7.0124 × 10−6

1.8713 × 10−6 −1.1862 × 10−5 −4.9806 × 10−6

1.7033 × 10−5 3.4547 × 10−5 1.5690 × 10−5

2.1764 × 10−6 2.1925 × 10−6 1.6357 × 10−6

1.3604 × 10−5 2.0923 × 10−5 1.3835 × 10−5

−5.6517 × 10−6 −1.6654 × 10−5 −1.1435 × 10−6

−8.3808 × 10−6 −6.9867 × 10−6 −7.1955 × 10−6

−8.2689 × 10−4 −9.0159 × 10−4 −8.2862 × 10−4

−2.6639 × 10−4 −1.4134 × 10−4 −3.9386 × 10−4

2.1489 × 10−3 −1.0597 × 10−2 5.4531 × 10−3



(17)
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E. Surrogate Model for Corrections

[
awalls

aRe

]⊺
Δ𝐶𝐷

=



2.6544 × 10−6 −1.5988 × 10−5

2.4430 × 10−5 4.3880 × 10−5

−4.2755 × 10−5 −3.5026 × 10−5

8.1071 × 10−6 6.3151 × 10−6

−6.8588 × 10−6 −3.8892 × 10−6

2.2733 × 10−5 2.8149 × 10−5

−7.8784 × 10−5 −6.8620 × 10−5

8.2975 × 10−5 5.7835 × 10−5

−1.1051 × 10−5 3.4798 × 10−6

2.5708 × 10−5 −2.8634 × 10−5

−2.5961 × 10−6 3.9798 × 10−5

−2.9495 × 10−5 −3.9121 × 10−5

3.4526 × 10−7 −8.9268 × 10−6

2.5458 × 10−5 6.8944 × 10−6

−2.7806 × 10−5 3.9218 × 10−5

6.9353 × 10−6 −2.5364 × 10−5

−3.0286 × 10−4 −2.5470 × 10−4

1.5719 × 10−3 −1.0190 × 10−3

−1.3413 × 10−1 3.2608 × 10−2



(18)
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[
awalls

aRe

]⊺
Δ𝐶𝑌

=



−1.2322 × 10−5 2.3056 × 10−5

8.1688 × 10−6 2.1217 × 10−6

−1.4294 × 10−5 3.8637 × 10−5

1.8396 × 10−5 −1.1187 × 10−4

2.1032 × 10−5 −1.5645 × 10−5

−6.6390 × 10−6 −2.4378 × 10−6

2.3076 × 10−5 1.0862 × 10−6

−5.8321 × 10−5 9.2555 × 10−5

−3.7339 × 10−6 7.3751 × 10−8

−1.1297 × 10−5 5.3467 × 10−5

9.3215 × 10−6 −1.1710 × 10−4

4.7543 × 10−5 5.6578 × 10−5

8.7496 × 10−7 −8.5911 × 10−6

1.3318 × 10−5 2.6208 × 10−5

−4.2753 × 10−5 −7.8024 × 10−5

7.6295 × 10−6 3.9882 × 10−5

3.7541 × 10−4 2.1493 × 10−3

3.5012 × 10−4 1.8965 × 10−3

−2.0237 × 10−2 −9.8585 × 10−2



(19)

[
awalls

aRe

]⊺
Δ𝐶𝐿

=



1.1212 × 10−4 −2.8344 × 10−5

−1.6426 × 10−4 1.1331 × 10−4

−1.6608 × 10−5 −4.2924 × 10−5

5.0649 × 10−5 −4.4574 × 10−5

7.4308 × 10−5 −2.6913 × 10−5

−7.7355 × 10−5 7.8725 × 10−5

−4.9256 × 10−5 −1.3211 × 10−4

9.2257 × 10−5 7.7997 × 10−5

1.7150 × 10−5 −1.2983 × 10−6

−9.9590 × 10−6 −1.0661 × 10−5

−1.1154 × 10−6 −1.6138 × 10−5

−3.1665 × 10−5 4.0307 × 10−5

−7.1714 × 10−5 −4.1655 × 10−5

1.3437 × 10−4 1.1843 × 10−4

−9.4060 × 10−5 −1.1388 × 10−4

3.5148 × 10−5 2.9737 × 10−5

−8.7036 × 10−4 1.6193 × 10−3

1.9117 × 10−3 3.6856 × 10−3

−5.0742 × 10−1 −3.8004 × 10−2



(20)
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[
awalls

aRe

]⊺
Δ𝐶𝑙

=



−1.6751 × 10−7 1.2957 × 10−5

1.2379 × 10−5 −1.0164 × 10−5

−1.0171 × 10−5 1.1032 × 10−5

1.0198 × 10−6 −1.5715 × 10−5

−2.2353 × 10−6 −7.0047 × 10−6

−2.2937 × 10−5 1.0560 × 10−5

1.9486 × 10−5 −3.6655 × 10−6

−1.3222 × 10−5 −2.5434 × 10−6

1.2491 × 10−5 −5.3600 × 10−6

−4.8545 × 10−6 2.1313 × 10−5

5.3932 × 10−6 −3.9384 × 10−5

1.5592 × 10−5 3.4404 × 10−5

−4.8341 × 10−6 −1.0880 × 10−5

3.3311 × 10−6 1.3007 × 10−5

−6.3021 × 10−6 −6.5569 × 10−6

−4.9677 × 10−6 −1.9976 × 10−6

−1.9240 × 10−4 6.0156 × 10−4

−2.3604 × 10−5 6.8119 × 10−4

5.7749 × 10−3 −8.2463 × 10−3



(21)

[
awalls

aRe

]⊺
Δ𝐶𝑚

=



−3.5100 × 10−5 4.4081 × 10−5

7.8022 × 10−5 −5.5329 × 10−5

−5.6094 × 10−5 −2.6173 × 10−5

1.9988 × 10−5 6.1350 × 10−5

−1.3035 × 10−5 1.2699 × 10−5

4.3247 × 10−5 −8.2808 × 10−5

−2.4010 × 10−5 1.4458 × 10−4

−1.3295 × 10−5 −1.1447 × 10−4

−1.3908 × 10−5 −4.8546 × 10−6

5.7084 × 10−5 6.6724 × 10−5

−6.0817 × 10−5 −6.4589 × 10−5

1.1389 × 10−5 1.0945 × 10−5

1.9254 × 10−5 8.6979 × 10−7

−3.9691 × 10−5 −3.4959 × 10−5

−8.0756 × 10−6 5.8617 × 10−7

3.5043 × 10−5 4.1350 × 10−5

3.6975 × 10−4 4.8822 × 10−4

1.5753 × 10−3 −4.4335 × 10−4

−4.3793 × 10−2 −1.3800 × 10−1



(22)
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[
awalls

aRe

]⊺
Δ𝐶𝑛

=



−6.3735 × 10−6 −1.0830 × 10−7

2.5316 × 10−6 2.4158 × 10−6

−3.6275 × 10−6 −1.6345 × 10−5

2.8593 × 10−6 1.2494 × 10−5

7.6523 × 10−6 9.6768 × 10−7

5.2538 × 10−7 −8.7119 × 10−6

−6.3450 × 10−6 3.5213 × 10−5

9.6640 × 10−6 −1.8991 × 10−5

7.3405 × 10−7 2.8971 × 10−6

−6.1144 × 10−6 −7.0185 × 10−6

1.3733 × 10−5 −6.8519 × 10−6

−1.7513 × 10−5 −1.3434 × 10−6

−1.6142 × 10−8 −5.4068 × 10−7

−7.3185 × 10−6 2.3022 × 10−7

1.1003 × 10−5 4.5082 × 10−6

−1.3942 × 10−6 1.1853 × 10−6

7.4706 × 10−5 −1.7317 × 10−6

−1.2505 × 10−4 −1.2747 × 10−4

1.2746 × 10−2 3.3042 × 10−3



(23)
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F. Pressure Coefficient Contours and Streamlines

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 43. Flying V pressure coefficient contours and surface streamlines (𝛼 = 0◦, 𝛽 = 0◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 44. Flying V pressure coefficient contours and surface streamlines (𝛼 = 10.66◦, 𝛽 = 0◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 45. Flying V pressure coefficient contours and surface streamlines (𝛼 = 21.33◦, 𝛽 = 0◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 46. Flying V pressure coefficient contours and surface streamlines (𝛼 = 32◦, 𝛽 = 0◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 47. Flying V pressure coefficient contours and surface streamlines (𝛼 = 0◦, 𝛽 = 8.33◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 48. Flying V pressure coefficient contours and surface streamlines (𝛼 = 10.66◦, 𝛽 = 8.33◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 49. Flying V pressure coefficient contours and surface streamlines (𝛼 = 21.33◦, 𝛽 = 8.33◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 50. Flying V pressure coefficient contours and surface streamlines (𝛼 = 32◦, 𝛽 = 8.33◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 51. Flying V pressure coefficient contours and surface streamlines (𝛼 = 0◦, 𝛽 = 16.66◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 52. Flying V pressure coefficient contours and surface streamlines (𝛼 = 10.66◦, 𝛽 = 16.66◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 53. Flying V pressure coefficient contours and surface streamlines (𝛼 = 21.33◦, 𝛽 = 16.66◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 54. Flying V pressure coefficient contours and surface streamlines (𝛼 = 32◦, 𝛽 = 16.66◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 55. Flying V pressure coefficient contours and surface streamlines (𝛼 = 0◦, 𝛽 = 25◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 56. Flying V pressure coefficient contours and surface streamlines (𝛼 = 10.66◦, 𝛽 = 25◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 57. Flying V pressure coefficient contours and surface streamlines (𝛼 = 21.33◦, 𝛽 = 25◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 58. Flying V pressure coefficient contours and surface streamlines (𝛼 = 32◦, 𝛽 = 25◦)
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(a) 𝛽 = 0◦ (b) 𝛽 = 8.33◦

(c) 𝛽 = 16.66◦ (d) 𝛽 = 25◦

Figure 59. LTT strut pressure coefficient contours and surface streamlines
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G. Pressure Loss Slices

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 60. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 0◦, 𝛽 = 0◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 61. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 10.66◦, 𝛽 = 0◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 62. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 21.33◦, 𝛽 = 0◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 63. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 32◦, 𝛽 = 0◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 64. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 0◦, 𝛽 = 8.33◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 65. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 10.66◦, 𝛽 = 8.33◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 66. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 21.33◦, 𝛽 = 8.33◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 67. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 32◦, 𝛽 = 8.33◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 68. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 0◦, 𝛽 = 16.66◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 69. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 10.66◦, 𝛽 = 16.66◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 70. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 21.33◦, 𝛽 = 16.66◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 71. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 32◦, 𝛽 = 16.66◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 72. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 0◦, 𝛽 = 25◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 73. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 10.66◦, 𝛽 = 25◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 74. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 21.33◦, 𝛽 = 25◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 75. Flying V total pressure loss at slices of constant 𝑥 (𝛼 = 32◦, 𝛽 = 25◦)
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(a) 𝛽 = 0◦ (b) 𝛽 = 8.33◦

(c) 𝛽 = 16.66◦ (d) 𝛽 = 25◦

Figure 76. LTT strut total pressure loss at slices of constant 𝑥
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H. Dimensionless Wall Distance Contours

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 77. Flying V 𝑦+ value over surface (𝛼 = 0◦, 𝛽 = 0◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 78. Flying V 𝑦+ value over surface (𝛼 = 10.66◦, 𝛽 = 0◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 79. Flying V 𝑦+ value over surface (𝛼 = 21.33◦, 𝛽 = 0◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 80. Flying V 𝑦+ value over surface (𝛼 = 32◦, 𝛽 = 0◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 81. Flying V 𝑦+ value over surface (𝛼 = 0◦, 𝛽 = 8.33◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 82. Flying V 𝑦+ value over surface (𝛼 = 10.66◦, 𝛽 = 8.33◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 83. Flying V 𝑦+ value over surface (𝛼 = 21.33◦, 𝛽 = 8.33◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 84. Flying V 𝑦+ value over surface (𝛼 = 32◦, 𝛽 = 8.33◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 85. Flying V 𝑦+ value over surface (𝛼 = 0◦, 𝛽 = 16.66◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 86. Flying V 𝑦+ value over surface (𝛼 = 10.66◦, 𝛽 = 16.66◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 87. Flying V 𝑦+ value over surface (𝛼 = 21.33◦, 𝛽 = 16.66◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 88. Flying V 𝑦+ value over surface (𝛼 = 32◦, 𝛽 = 16.66◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 89. Flying V 𝑦+ value over surface (𝛼 = 0◦, 𝛽 = 25◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 90. Flying V 𝑦+ value over surface (𝛼 = 10.66◦, 𝛽 = 25◦)

(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 91. Flying V 𝑦+ value over surface (𝛼 = 21.33◦, 𝛽 = 25◦)
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(a) Scaled (b) Wind tunnel (c) Full-scale

Figure 92. Flying V 𝑦+ value over surface (𝛼 = 32◦, 𝛽 = 25◦)
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(a) 𝛽 = 0◦ (b) 𝛽 = 8.33◦

(c) 𝛽 = 16.66◦ (d) 𝛽 = 25◦

Figure 93. LTT strut 𝑦+ value over surface
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I. Interpolation Validation
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Figure 94. Interpolation errors of scaled Flying V interpolation validation runs
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J. Residuals
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Figure 95. Convergence of Flying V simulation residuals
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Figure 96. Convergence of Flying V body forces
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Figure 97. Convergence of LTT strut simulation residuals
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K. Combined Wind Tunnel Corrections
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Figure 98. Deltas between wind tunnel and full-scale simulation data
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